1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2023 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static DEFINE_SPINLOCK(reg_indoor_lock); 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 static void reg_process_hint(struct regulatory_request *reg_request); 137 138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 139 { 140 return rcu_dereference_rtnl(cfg80211_regdomain); 141 } 142 143 /* 144 * Returns the regulatory domain associated with the wiphy. 145 * 146 * Requires any of RTNL, wiphy mutex or RCU protection. 147 */ 148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 149 { 150 return rcu_dereference_check(wiphy->regd, 151 lockdep_is_held(&wiphy->mtx) || 152 lockdep_rtnl_is_held()); 153 } 154 EXPORT_SYMBOL(get_wiphy_regdom); 155 156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 157 { 158 switch (dfs_region) { 159 case NL80211_DFS_UNSET: 160 return "unset"; 161 case NL80211_DFS_FCC: 162 return "FCC"; 163 case NL80211_DFS_ETSI: 164 return "ETSI"; 165 case NL80211_DFS_JP: 166 return "JP"; 167 } 168 return "Unknown"; 169 } 170 171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 172 { 173 const struct ieee80211_regdomain *regd = NULL; 174 const struct ieee80211_regdomain *wiphy_regd = NULL; 175 enum nl80211_dfs_regions dfs_region; 176 177 rcu_read_lock(); 178 regd = get_cfg80211_regdom(); 179 dfs_region = regd->dfs_region; 180 181 if (!wiphy) 182 goto out; 183 184 wiphy_regd = get_wiphy_regdom(wiphy); 185 if (!wiphy_regd) 186 goto out; 187 188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 189 dfs_region = wiphy_regd->dfs_region; 190 goto out; 191 } 192 193 if (wiphy_regd->dfs_region == regd->dfs_region) 194 goto out; 195 196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 197 dev_name(&wiphy->dev), 198 reg_dfs_region_str(wiphy_regd->dfs_region), 199 reg_dfs_region_str(regd->dfs_region)); 200 201 out: 202 rcu_read_unlock(); 203 204 return dfs_region; 205 } 206 207 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 208 { 209 if (!r) 210 return; 211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 212 } 213 214 static struct regulatory_request *get_last_request(void) 215 { 216 return rcu_dereference_rtnl(last_request); 217 } 218 219 /* Used to queue up regulatory hints */ 220 static LIST_HEAD(reg_requests_list); 221 static DEFINE_SPINLOCK(reg_requests_lock); 222 223 /* Used to queue up beacon hints for review */ 224 static LIST_HEAD(reg_pending_beacons); 225 static DEFINE_SPINLOCK(reg_pending_beacons_lock); 226 227 /* Used to keep track of processed beacon hints */ 228 static LIST_HEAD(reg_beacon_list); 229 230 struct reg_beacon { 231 struct list_head list; 232 struct ieee80211_channel chan; 233 }; 234 235 static void reg_check_chans_work(struct work_struct *work); 236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 237 238 static void reg_todo(struct work_struct *work); 239 static DECLARE_WORK(reg_work, reg_todo); 240 241 /* We keep a static world regulatory domain in case of the absence of CRDA */ 242 static const struct ieee80211_regdomain world_regdom = { 243 .n_reg_rules = 8, 244 .alpha2 = "00", 245 .reg_rules = { 246 /* IEEE 802.11b/g, channels 1..11 */ 247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 248 /* IEEE 802.11b/g, channels 12..13. */ 249 REG_RULE(2467-10, 2472+10, 20, 6, 20, 250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 251 /* IEEE 802.11 channel 14 - Only JP enables 252 * this and for 802.11b only */ 253 REG_RULE(2484-10, 2484+10, 20, 6, 20, 254 NL80211_RRF_NO_IR | 255 NL80211_RRF_NO_OFDM), 256 /* IEEE 802.11a, channel 36..48 */ 257 REG_RULE(5180-10, 5240+10, 80, 6, 20, 258 NL80211_RRF_NO_IR | 259 NL80211_RRF_AUTO_BW), 260 261 /* IEEE 802.11a, channel 52..64 - DFS required */ 262 REG_RULE(5260-10, 5320+10, 80, 6, 20, 263 NL80211_RRF_NO_IR | 264 NL80211_RRF_AUTO_BW | 265 NL80211_RRF_DFS), 266 267 /* IEEE 802.11a, channel 100..144 - DFS required */ 268 REG_RULE(5500-10, 5720+10, 160, 6, 20, 269 NL80211_RRF_NO_IR | 270 NL80211_RRF_DFS), 271 272 /* IEEE 802.11a, channel 149..165 */ 273 REG_RULE(5745-10, 5825+10, 80, 6, 20, 274 NL80211_RRF_NO_IR), 275 276 /* IEEE 802.11ad (60GHz), channels 1..3 */ 277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 278 } 279 }; 280 281 /* protected by RTNL */ 282 static const struct ieee80211_regdomain *cfg80211_world_regdom = 283 &world_regdom; 284 285 static char *ieee80211_regdom = "00"; 286 static char user_alpha2[2]; 287 static const struct ieee80211_regdomain *cfg80211_user_regdom; 288 289 module_param(ieee80211_regdom, charp, 0444); 290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 291 292 static void reg_free_request(struct regulatory_request *request) 293 { 294 if (request == &core_request_world) 295 return; 296 297 if (request != get_last_request()) 298 kfree(request); 299 } 300 301 static void reg_free_last_request(void) 302 { 303 struct regulatory_request *lr = get_last_request(); 304 305 if (lr != &core_request_world && lr) 306 kfree_rcu(lr, rcu_head); 307 } 308 309 static void reg_update_last_request(struct regulatory_request *request) 310 { 311 struct regulatory_request *lr; 312 313 lr = get_last_request(); 314 if (lr == request) 315 return; 316 317 reg_free_last_request(); 318 rcu_assign_pointer(last_request, request); 319 } 320 321 static void reset_regdomains(bool full_reset, 322 const struct ieee80211_regdomain *new_regdom) 323 { 324 const struct ieee80211_regdomain *r; 325 326 ASSERT_RTNL(); 327 328 r = get_cfg80211_regdom(); 329 330 /* avoid freeing static information or freeing something twice */ 331 if (r == cfg80211_world_regdom) 332 r = NULL; 333 if (cfg80211_world_regdom == &world_regdom) 334 cfg80211_world_regdom = NULL; 335 if (r == &world_regdom) 336 r = NULL; 337 338 rcu_free_regdom(r); 339 rcu_free_regdom(cfg80211_world_regdom); 340 341 cfg80211_world_regdom = &world_regdom; 342 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 343 344 if (!full_reset) 345 return; 346 347 reg_update_last_request(&core_request_world); 348 } 349 350 /* 351 * Dynamic world regulatory domain requested by the wireless 352 * core upon initialization 353 */ 354 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 355 { 356 struct regulatory_request *lr; 357 358 lr = get_last_request(); 359 360 WARN_ON(!lr); 361 362 reset_regdomains(false, rd); 363 364 cfg80211_world_regdom = rd; 365 } 366 367 bool is_world_regdom(const char *alpha2) 368 { 369 if (!alpha2) 370 return false; 371 return alpha2[0] == '0' && alpha2[1] == '0'; 372 } 373 374 static bool is_alpha2_set(const char *alpha2) 375 { 376 if (!alpha2) 377 return false; 378 return alpha2[0] && alpha2[1]; 379 } 380 381 static bool is_unknown_alpha2(const char *alpha2) 382 { 383 if (!alpha2) 384 return false; 385 /* 386 * Special case where regulatory domain was built by driver 387 * but a specific alpha2 cannot be determined 388 */ 389 return alpha2[0] == '9' && alpha2[1] == '9'; 390 } 391 392 static bool is_intersected_alpha2(const char *alpha2) 393 { 394 if (!alpha2) 395 return false; 396 /* 397 * Special case where regulatory domain is the 398 * result of an intersection between two regulatory domain 399 * structures 400 */ 401 return alpha2[0] == '9' && alpha2[1] == '8'; 402 } 403 404 static bool is_an_alpha2(const char *alpha2) 405 { 406 if (!alpha2) 407 return false; 408 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 409 } 410 411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 412 { 413 if (!alpha2_x || !alpha2_y) 414 return false; 415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 416 } 417 418 static bool regdom_changes(const char *alpha2) 419 { 420 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 421 422 if (!r) 423 return true; 424 return !alpha2_equal(r->alpha2, alpha2); 425 } 426 427 /* 428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 430 * has ever been issued. 431 */ 432 static bool is_user_regdom_saved(void) 433 { 434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 435 return false; 436 437 /* This would indicate a mistake on the design */ 438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 439 "Unexpected user alpha2: %c%c\n", 440 user_alpha2[0], user_alpha2[1])) 441 return false; 442 443 return true; 444 } 445 446 static const struct ieee80211_regdomain * 447 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 448 { 449 struct ieee80211_regdomain *regd; 450 unsigned int i; 451 452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 453 GFP_KERNEL); 454 if (!regd) 455 return ERR_PTR(-ENOMEM); 456 457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 458 459 for (i = 0; i < src_regd->n_reg_rules; i++) 460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 461 sizeof(struct ieee80211_reg_rule)); 462 463 return regd; 464 } 465 466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 467 { 468 ASSERT_RTNL(); 469 470 if (!IS_ERR(cfg80211_user_regdom)) 471 kfree(cfg80211_user_regdom); 472 cfg80211_user_regdom = reg_copy_regd(rd); 473 } 474 475 struct reg_regdb_apply_request { 476 struct list_head list; 477 const struct ieee80211_regdomain *regdom; 478 }; 479 480 static LIST_HEAD(reg_regdb_apply_list); 481 static DEFINE_MUTEX(reg_regdb_apply_mutex); 482 483 static void reg_regdb_apply(struct work_struct *work) 484 { 485 struct reg_regdb_apply_request *request; 486 487 rtnl_lock(); 488 489 mutex_lock(®_regdb_apply_mutex); 490 while (!list_empty(®_regdb_apply_list)) { 491 request = list_first_entry(®_regdb_apply_list, 492 struct reg_regdb_apply_request, 493 list); 494 list_del(&request->list); 495 496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 497 kfree(request); 498 } 499 mutex_unlock(®_regdb_apply_mutex); 500 501 rtnl_unlock(); 502 } 503 504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 505 506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 507 { 508 struct reg_regdb_apply_request *request; 509 510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 511 if (!request) { 512 kfree(regdom); 513 return -ENOMEM; 514 } 515 516 request->regdom = regdom; 517 518 mutex_lock(®_regdb_apply_mutex); 519 list_add_tail(&request->list, ®_regdb_apply_list); 520 mutex_unlock(®_regdb_apply_mutex); 521 522 schedule_work(®_regdb_work); 523 return 0; 524 } 525 526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 527 /* Max number of consecutive attempts to communicate with CRDA */ 528 #define REG_MAX_CRDA_TIMEOUTS 10 529 530 static u32 reg_crda_timeouts; 531 532 static void crda_timeout_work(struct work_struct *work); 533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 534 535 static void crda_timeout_work(struct work_struct *work) 536 { 537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 538 rtnl_lock(); 539 reg_crda_timeouts++; 540 restore_regulatory_settings(true, false); 541 rtnl_unlock(); 542 } 543 544 static void cancel_crda_timeout(void) 545 { 546 cancel_delayed_work(&crda_timeout); 547 } 548 549 static void cancel_crda_timeout_sync(void) 550 { 551 cancel_delayed_work_sync(&crda_timeout); 552 } 553 554 static void reset_crda_timeouts(void) 555 { 556 reg_crda_timeouts = 0; 557 } 558 559 /* 560 * This lets us keep regulatory code which is updated on a regulatory 561 * basis in userspace. 562 */ 563 static int call_crda(const char *alpha2) 564 { 565 char country[12]; 566 char *env[] = { country, NULL }; 567 int ret; 568 569 snprintf(country, sizeof(country), "COUNTRY=%c%c", 570 alpha2[0], alpha2[1]); 571 572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 574 return -EINVAL; 575 } 576 577 if (!is_world_regdom((char *) alpha2)) 578 pr_debug("Calling CRDA for country: %c%c\n", 579 alpha2[0], alpha2[1]); 580 else 581 pr_debug("Calling CRDA to update world regulatory domain\n"); 582 583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 584 if (ret) 585 return ret; 586 587 queue_delayed_work(system_power_efficient_wq, 588 &crda_timeout, msecs_to_jiffies(3142)); 589 return 0; 590 } 591 #else 592 static inline void cancel_crda_timeout(void) {} 593 static inline void cancel_crda_timeout_sync(void) {} 594 static inline void reset_crda_timeouts(void) {} 595 static inline int call_crda(const char *alpha2) 596 { 597 return -ENODATA; 598 } 599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 600 601 /* code to directly load a firmware database through request_firmware */ 602 static const struct fwdb_header *regdb; 603 604 struct fwdb_country { 605 u8 alpha2[2]; 606 __be16 coll_ptr; 607 /* this struct cannot be extended */ 608 } __packed __aligned(4); 609 610 struct fwdb_collection { 611 u8 len; 612 u8 n_rules; 613 u8 dfs_region; 614 /* no optional data yet */ 615 /* aligned to 2, then followed by __be16 array of rule pointers */ 616 } __packed __aligned(4); 617 618 enum fwdb_flags { 619 FWDB_FLAG_NO_OFDM = BIT(0), 620 FWDB_FLAG_NO_OUTDOOR = BIT(1), 621 FWDB_FLAG_DFS = BIT(2), 622 FWDB_FLAG_NO_IR = BIT(3), 623 FWDB_FLAG_AUTO_BW = BIT(4), 624 }; 625 626 struct fwdb_wmm_ac { 627 u8 ecw; 628 u8 aifsn; 629 __be16 cot; 630 } __packed; 631 632 struct fwdb_wmm_rule { 633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 635 } __packed; 636 637 struct fwdb_rule { 638 u8 len; 639 u8 flags; 640 __be16 max_eirp; 641 __be32 start, end, max_bw; 642 /* start of optional data */ 643 __be16 cac_timeout; 644 __be16 wmm_ptr; 645 } __packed __aligned(4); 646 647 #define FWDB_MAGIC 0x52474442 648 #define FWDB_VERSION 20 649 650 struct fwdb_header { 651 __be32 magic; 652 __be32 version; 653 struct fwdb_country country[]; 654 } __packed __aligned(4); 655 656 static int ecw2cw(int ecw) 657 { 658 return (1 << ecw) - 1; 659 } 660 661 static bool valid_wmm(struct fwdb_wmm_rule *rule) 662 { 663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 664 int i; 665 666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 669 u8 aifsn = ac[i].aifsn; 670 671 if (cw_min >= cw_max) 672 return false; 673 674 if (aifsn < 1) 675 return false; 676 } 677 678 return true; 679 } 680 681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 682 { 683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 684 685 if ((u8 *)rule + sizeof(rule->len) > data + size) 686 return false; 687 688 /* mandatory fields */ 689 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 690 return false; 691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 693 struct fwdb_wmm_rule *wmm; 694 695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 696 return false; 697 698 wmm = (void *)(data + wmm_ptr); 699 700 if (!valid_wmm(wmm)) 701 return false; 702 } 703 return true; 704 } 705 706 static bool valid_country(const u8 *data, unsigned int size, 707 const struct fwdb_country *country) 708 { 709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 710 struct fwdb_collection *coll = (void *)(data + ptr); 711 __be16 *rules_ptr; 712 unsigned int i; 713 714 /* make sure we can read len/n_rules */ 715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 716 return false; 717 718 /* make sure base struct and all rules fit */ 719 if ((u8 *)coll + ALIGN(coll->len, 2) + 720 (coll->n_rules * 2) > data + size) 721 return false; 722 723 /* mandatory fields must exist */ 724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 725 return false; 726 727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 728 729 for (i = 0; i < coll->n_rules; i++) { 730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 731 732 if (!valid_rule(data, size, rule_ptr)) 733 return false; 734 } 735 736 return true; 737 } 738 739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 740 #include <keys/asymmetric-type.h> 741 742 static struct key *builtin_regdb_keys; 743 744 static int __init load_builtin_regdb_keys(void) 745 { 746 builtin_regdb_keys = 747 keyring_alloc(".builtin_regdb_keys", 748 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 749 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 750 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 751 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 752 if (IS_ERR(builtin_regdb_keys)) 753 return PTR_ERR(builtin_regdb_keys); 754 755 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 756 757 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 758 x509_load_certificate_list(shipped_regdb_certs, 759 shipped_regdb_certs_len, 760 builtin_regdb_keys); 761 #endif 762 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 763 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 764 x509_load_certificate_list(extra_regdb_certs, 765 extra_regdb_certs_len, 766 builtin_regdb_keys); 767 #endif 768 769 return 0; 770 } 771 772 MODULE_FIRMWARE("regulatory.db.p7s"); 773 774 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 775 { 776 const struct firmware *sig; 777 bool result; 778 779 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 780 return false; 781 782 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 783 builtin_regdb_keys, 784 VERIFYING_UNSPECIFIED_SIGNATURE, 785 NULL, NULL) == 0; 786 787 release_firmware(sig); 788 789 return result; 790 } 791 792 static void free_regdb_keyring(void) 793 { 794 key_put(builtin_regdb_keys); 795 } 796 #else 797 static int load_builtin_regdb_keys(void) 798 { 799 return 0; 800 } 801 802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 803 { 804 return true; 805 } 806 807 static void free_regdb_keyring(void) 808 { 809 } 810 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 811 812 static bool valid_regdb(const u8 *data, unsigned int size) 813 { 814 const struct fwdb_header *hdr = (void *)data; 815 const struct fwdb_country *country; 816 817 if (size < sizeof(*hdr)) 818 return false; 819 820 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 821 return false; 822 823 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 824 return false; 825 826 if (!regdb_has_valid_signature(data, size)) 827 return false; 828 829 country = &hdr->country[0]; 830 while ((u8 *)(country + 1) <= data + size) { 831 if (!country->coll_ptr) 832 break; 833 if (!valid_country(data, size, country)) 834 return false; 835 country++; 836 } 837 838 return true; 839 } 840 841 static void set_wmm_rule(const struct fwdb_header *db, 842 const struct fwdb_country *country, 843 const struct fwdb_rule *rule, 844 struct ieee80211_reg_rule *rrule) 845 { 846 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 847 struct fwdb_wmm_rule *wmm; 848 unsigned int i, wmm_ptr; 849 850 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 851 wmm = (void *)((u8 *)db + wmm_ptr); 852 853 if (!valid_wmm(wmm)) { 854 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 855 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 856 country->alpha2[0], country->alpha2[1]); 857 return; 858 } 859 860 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 861 wmm_rule->client[i].cw_min = 862 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 863 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 864 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 865 wmm_rule->client[i].cot = 866 1000 * be16_to_cpu(wmm->client[i].cot); 867 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 868 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 869 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 870 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 871 } 872 873 rrule->has_wmm = true; 874 } 875 876 static int __regdb_query_wmm(const struct fwdb_header *db, 877 const struct fwdb_country *country, int freq, 878 struct ieee80211_reg_rule *rrule) 879 { 880 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 881 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 882 int i; 883 884 for (i = 0; i < coll->n_rules; i++) { 885 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 886 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 887 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 888 889 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 890 continue; 891 892 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 893 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 894 set_wmm_rule(db, country, rule, rrule); 895 return 0; 896 } 897 } 898 899 return -ENODATA; 900 } 901 902 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 903 { 904 const struct fwdb_header *hdr = regdb; 905 const struct fwdb_country *country; 906 907 if (!regdb) 908 return -ENODATA; 909 910 if (IS_ERR(regdb)) 911 return PTR_ERR(regdb); 912 913 country = &hdr->country[0]; 914 while (country->coll_ptr) { 915 if (alpha2_equal(alpha2, country->alpha2)) 916 return __regdb_query_wmm(regdb, country, freq, rule); 917 918 country++; 919 } 920 921 return -ENODATA; 922 } 923 EXPORT_SYMBOL(reg_query_regdb_wmm); 924 925 static int regdb_query_country(const struct fwdb_header *db, 926 const struct fwdb_country *country) 927 { 928 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 929 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 930 struct ieee80211_regdomain *regdom; 931 unsigned int i; 932 933 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 934 GFP_KERNEL); 935 if (!regdom) 936 return -ENOMEM; 937 938 regdom->n_reg_rules = coll->n_rules; 939 regdom->alpha2[0] = country->alpha2[0]; 940 regdom->alpha2[1] = country->alpha2[1]; 941 regdom->dfs_region = coll->dfs_region; 942 943 for (i = 0; i < regdom->n_reg_rules; i++) { 944 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 945 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 946 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 947 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 948 949 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 950 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 951 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 952 953 rrule->power_rule.max_antenna_gain = 0; 954 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 955 956 rrule->flags = 0; 957 if (rule->flags & FWDB_FLAG_NO_OFDM) 958 rrule->flags |= NL80211_RRF_NO_OFDM; 959 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 960 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 961 if (rule->flags & FWDB_FLAG_DFS) 962 rrule->flags |= NL80211_RRF_DFS; 963 if (rule->flags & FWDB_FLAG_NO_IR) 964 rrule->flags |= NL80211_RRF_NO_IR; 965 if (rule->flags & FWDB_FLAG_AUTO_BW) 966 rrule->flags |= NL80211_RRF_AUTO_BW; 967 968 rrule->dfs_cac_ms = 0; 969 970 /* handle optional data */ 971 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 972 rrule->dfs_cac_ms = 973 1000 * be16_to_cpu(rule->cac_timeout); 974 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 975 set_wmm_rule(db, country, rule, rrule); 976 } 977 978 return reg_schedule_apply(regdom); 979 } 980 981 static int query_regdb(const char *alpha2) 982 { 983 const struct fwdb_header *hdr = regdb; 984 const struct fwdb_country *country; 985 986 ASSERT_RTNL(); 987 988 if (IS_ERR(regdb)) 989 return PTR_ERR(regdb); 990 991 country = &hdr->country[0]; 992 while (country->coll_ptr) { 993 if (alpha2_equal(alpha2, country->alpha2)) 994 return regdb_query_country(regdb, country); 995 country++; 996 } 997 998 return -ENODATA; 999 } 1000 1001 static void regdb_fw_cb(const struct firmware *fw, void *context) 1002 { 1003 int set_error = 0; 1004 bool restore = true; 1005 void *db; 1006 1007 if (!fw) { 1008 pr_info("failed to load regulatory.db\n"); 1009 set_error = -ENODATA; 1010 } else if (!valid_regdb(fw->data, fw->size)) { 1011 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1012 set_error = -EINVAL; 1013 } 1014 1015 rtnl_lock(); 1016 if (regdb && !IS_ERR(regdb)) { 1017 /* negative case - a bug 1018 * positive case - can happen due to race in case of multiple cb's in 1019 * queue, due to usage of asynchronous callback 1020 * 1021 * Either case, just restore and free new db. 1022 */ 1023 } else if (set_error) { 1024 regdb = ERR_PTR(set_error); 1025 } else if (fw) { 1026 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1027 if (db) { 1028 regdb = db; 1029 restore = context && query_regdb(context); 1030 } else { 1031 restore = true; 1032 } 1033 } 1034 1035 if (restore) 1036 restore_regulatory_settings(true, false); 1037 1038 rtnl_unlock(); 1039 1040 kfree(context); 1041 1042 release_firmware(fw); 1043 } 1044 1045 MODULE_FIRMWARE("regulatory.db"); 1046 1047 static int query_regdb_file(const char *alpha2) 1048 { 1049 int err; 1050 1051 ASSERT_RTNL(); 1052 1053 if (regdb) 1054 return query_regdb(alpha2); 1055 1056 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1057 if (!alpha2) 1058 return -ENOMEM; 1059 1060 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1061 ®_pdev->dev, GFP_KERNEL, 1062 (void *)alpha2, regdb_fw_cb); 1063 if (err) 1064 kfree(alpha2); 1065 1066 return err; 1067 } 1068 1069 int reg_reload_regdb(void) 1070 { 1071 const struct firmware *fw; 1072 void *db; 1073 int err; 1074 const struct ieee80211_regdomain *current_regdomain; 1075 struct regulatory_request *request; 1076 1077 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1078 if (err) 1079 return err; 1080 1081 if (!valid_regdb(fw->data, fw->size)) { 1082 err = -ENODATA; 1083 goto out; 1084 } 1085 1086 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1087 if (!db) { 1088 err = -ENOMEM; 1089 goto out; 1090 } 1091 1092 rtnl_lock(); 1093 if (!IS_ERR_OR_NULL(regdb)) 1094 kfree(regdb); 1095 regdb = db; 1096 1097 /* reset regulatory domain */ 1098 current_regdomain = get_cfg80211_regdom(); 1099 1100 request = kzalloc(sizeof(*request), GFP_KERNEL); 1101 if (!request) { 1102 err = -ENOMEM; 1103 goto out_unlock; 1104 } 1105 1106 request->wiphy_idx = WIPHY_IDX_INVALID; 1107 request->alpha2[0] = current_regdomain->alpha2[0]; 1108 request->alpha2[1] = current_regdomain->alpha2[1]; 1109 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1110 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER; 1111 1112 reg_process_hint(request); 1113 1114 out_unlock: 1115 rtnl_unlock(); 1116 out: 1117 release_firmware(fw); 1118 return err; 1119 } 1120 1121 static bool reg_query_database(struct regulatory_request *request) 1122 { 1123 if (query_regdb_file(request->alpha2) == 0) 1124 return true; 1125 1126 if (call_crda(request->alpha2) == 0) 1127 return true; 1128 1129 return false; 1130 } 1131 1132 bool reg_is_valid_request(const char *alpha2) 1133 { 1134 struct regulatory_request *lr = get_last_request(); 1135 1136 if (!lr || lr->processed) 1137 return false; 1138 1139 return alpha2_equal(lr->alpha2, alpha2); 1140 } 1141 1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1143 { 1144 struct regulatory_request *lr = get_last_request(); 1145 1146 /* 1147 * Follow the driver's regulatory domain, if present, unless a country 1148 * IE has been processed or a user wants to help complaince further 1149 */ 1150 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1151 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1152 wiphy->regd) 1153 return get_wiphy_regdom(wiphy); 1154 1155 return get_cfg80211_regdom(); 1156 } 1157 1158 static unsigned int 1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1160 const struct ieee80211_reg_rule *rule) 1161 { 1162 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1163 const struct ieee80211_freq_range *freq_range_tmp; 1164 const struct ieee80211_reg_rule *tmp; 1165 u32 start_freq, end_freq, idx, no; 1166 1167 for (idx = 0; idx < rd->n_reg_rules; idx++) 1168 if (rule == &rd->reg_rules[idx]) 1169 break; 1170 1171 if (idx == rd->n_reg_rules) 1172 return 0; 1173 1174 /* get start_freq */ 1175 no = idx; 1176 1177 while (no) { 1178 tmp = &rd->reg_rules[--no]; 1179 freq_range_tmp = &tmp->freq_range; 1180 1181 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1182 break; 1183 1184 freq_range = freq_range_tmp; 1185 } 1186 1187 start_freq = freq_range->start_freq_khz; 1188 1189 /* get end_freq */ 1190 freq_range = &rule->freq_range; 1191 no = idx; 1192 1193 while (no < rd->n_reg_rules - 1) { 1194 tmp = &rd->reg_rules[++no]; 1195 freq_range_tmp = &tmp->freq_range; 1196 1197 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1198 break; 1199 1200 freq_range = freq_range_tmp; 1201 } 1202 1203 end_freq = freq_range->end_freq_khz; 1204 1205 return end_freq - start_freq; 1206 } 1207 1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1209 const struct ieee80211_reg_rule *rule) 1210 { 1211 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1212 1213 if (rule->flags & NL80211_RRF_NO_320MHZ) 1214 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160)); 1215 if (rule->flags & NL80211_RRF_NO_160MHZ) 1216 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1217 if (rule->flags & NL80211_RRF_NO_80MHZ) 1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1219 1220 /* 1221 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1222 * are not allowed. 1223 */ 1224 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1225 rule->flags & NL80211_RRF_NO_HT40PLUS) 1226 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1227 1228 return bw; 1229 } 1230 1231 /* Sanity check on a regulatory rule */ 1232 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1233 { 1234 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1235 u32 freq_diff; 1236 1237 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1238 return false; 1239 1240 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1241 return false; 1242 1243 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1244 1245 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1246 freq_range->max_bandwidth_khz > freq_diff) 1247 return false; 1248 1249 return true; 1250 } 1251 1252 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1253 { 1254 const struct ieee80211_reg_rule *reg_rule = NULL; 1255 unsigned int i; 1256 1257 if (!rd->n_reg_rules) 1258 return false; 1259 1260 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1261 return false; 1262 1263 for (i = 0; i < rd->n_reg_rules; i++) { 1264 reg_rule = &rd->reg_rules[i]; 1265 if (!is_valid_reg_rule(reg_rule)) 1266 return false; 1267 } 1268 1269 return true; 1270 } 1271 1272 /** 1273 * freq_in_rule_band - tells us if a frequency is in a frequency band 1274 * @freq_range: frequency rule we want to query 1275 * @freq_khz: frequency we are inquiring about 1276 * 1277 * This lets us know if a specific frequency rule is or is not relevant to 1278 * a specific frequency's band. Bands are device specific and artificial 1279 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1280 * however it is safe for now to assume that a frequency rule should not be 1281 * part of a frequency's band if the start freq or end freq are off by more 1282 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1283 * 60 GHz band. 1284 * This resolution can be lowered and should be considered as we add 1285 * regulatory rule support for other "bands". 1286 * 1287 * Returns: whether or not the frequency is in the range 1288 */ 1289 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1290 u32 freq_khz) 1291 { 1292 #define ONE_GHZ_IN_KHZ 1000000 1293 /* 1294 * From 802.11ad: directional multi-gigabit (DMG): 1295 * Pertaining to operation in a frequency band containing a channel 1296 * with the Channel starting frequency above 45 GHz. 1297 */ 1298 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1299 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1300 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1301 return true; 1302 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1303 return true; 1304 return false; 1305 #undef ONE_GHZ_IN_KHZ 1306 } 1307 1308 /* 1309 * Later on we can perhaps use the more restrictive DFS 1310 * region but we don't have information for that yet so 1311 * for now simply disallow conflicts. 1312 */ 1313 static enum nl80211_dfs_regions 1314 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1315 const enum nl80211_dfs_regions dfs_region2) 1316 { 1317 if (dfs_region1 != dfs_region2) 1318 return NL80211_DFS_UNSET; 1319 return dfs_region1; 1320 } 1321 1322 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1323 const struct ieee80211_wmm_ac *wmm_ac2, 1324 struct ieee80211_wmm_ac *intersect) 1325 { 1326 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1327 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1328 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1329 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1330 } 1331 1332 /* 1333 * Helper for regdom_intersect(), this does the real 1334 * mathematical intersection fun 1335 */ 1336 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1337 const struct ieee80211_regdomain *rd2, 1338 const struct ieee80211_reg_rule *rule1, 1339 const struct ieee80211_reg_rule *rule2, 1340 struct ieee80211_reg_rule *intersected_rule) 1341 { 1342 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1343 struct ieee80211_freq_range *freq_range; 1344 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1345 struct ieee80211_power_rule *power_rule; 1346 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1347 struct ieee80211_wmm_rule *wmm_rule; 1348 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1349 1350 freq_range1 = &rule1->freq_range; 1351 freq_range2 = &rule2->freq_range; 1352 freq_range = &intersected_rule->freq_range; 1353 1354 power_rule1 = &rule1->power_rule; 1355 power_rule2 = &rule2->power_rule; 1356 power_rule = &intersected_rule->power_rule; 1357 1358 wmm_rule1 = &rule1->wmm_rule; 1359 wmm_rule2 = &rule2->wmm_rule; 1360 wmm_rule = &intersected_rule->wmm_rule; 1361 1362 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1363 freq_range2->start_freq_khz); 1364 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1365 freq_range2->end_freq_khz); 1366 1367 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1368 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1369 1370 if (rule1->flags & NL80211_RRF_AUTO_BW) 1371 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1372 if (rule2->flags & NL80211_RRF_AUTO_BW) 1373 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1374 1375 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1376 1377 intersected_rule->flags = rule1->flags | rule2->flags; 1378 1379 /* 1380 * In case NL80211_RRF_AUTO_BW requested for both rules 1381 * set AUTO_BW in intersected rule also. Next we will 1382 * calculate BW correctly in handle_channel function. 1383 * In other case remove AUTO_BW flag while we calculate 1384 * maximum bandwidth correctly and auto calculation is 1385 * not required. 1386 */ 1387 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1388 (rule2->flags & NL80211_RRF_AUTO_BW)) 1389 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1390 else 1391 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1392 1393 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1394 if (freq_range->max_bandwidth_khz > freq_diff) 1395 freq_range->max_bandwidth_khz = freq_diff; 1396 1397 power_rule->max_eirp = min(power_rule1->max_eirp, 1398 power_rule2->max_eirp); 1399 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1400 power_rule2->max_antenna_gain); 1401 1402 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1403 rule2->dfs_cac_ms); 1404 1405 if (rule1->has_wmm && rule2->has_wmm) { 1406 u8 ac; 1407 1408 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1409 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1410 &wmm_rule2->client[ac], 1411 &wmm_rule->client[ac]); 1412 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1413 &wmm_rule2->ap[ac], 1414 &wmm_rule->ap[ac]); 1415 } 1416 1417 intersected_rule->has_wmm = true; 1418 } else if (rule1->has_wmm) { 1419 *wmm_rule = *wmm_rule1; 1420 intersected_rule->has_wmm = true; 1421 } else if (rule2->has_wmm) { 1422 *wmm_rule = *wmm_rule2; 1423 intersected_rule->has_wmm = true; 1424 } else { 1425 intersected_rule->has_wmm = false; 1426 } 1427 1428 if (!is_valid_reg_rule(intersected_rule)) 1429 return -EINVAL; 1430 1431 return 0; 1432 } 1433 1434 /* check whether old rule contains new rule */ 1435 static bool rule_contains(struct ieee80211_reg_rule *r1, 1436 struct ieee80211_reg_rule *r2) 1437 { 1438 /* for simplicity, currently consider only same flags */ 1439 if (r1->flags != r2->flags) 1440 return false; 1441 1442 /* verify r1 is more restrictive */ 1443 if ((r1->power_rule.max_antenna_gain > 1444 r2->power_rule.max_antenna_gain) || 1445 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1446 return false; 1447 1448 /* make sure r2's range is contained within r1 */ 1449 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1450 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1451 return false; 1452 1453 /* and finally verify that r1.max_bw >= r2.max_bw */ 1454 if (r1->freq_range.max_bandwidth_khz < 1455 r2->freq_range.max_bandwidth_khz) 1456 return false; 1457 1458 return true; 1459 } 1460 1461 /* add or extend current rules. do nothing if rule is already contained */ 1462 static void add_rule(struct ieee80211_reg_rule *rule, 1463 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1464 { 1465 struct ieee80211_reg_rule *tmp_rule; 1466 int i; 1467 1468 for (i = 0; i < *n_rules; i++) { 1469 tmp_rule = ®_rules[i]; 1470 /* rule is already contained - do nothing */ 1471 if (rule_contains(tmp_rule, rule)) 1472 return; 1473 1474 /* extend rule if possible */ 1475 if (rule_contains(rule, tmp_rule)) { 1476 memcpy(tmp_rule, rule, sizeof(*rule)); 1477 return; 1478 } 1479 } 1480 1481 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1482 (*n_rules)++; 1483 } 1484 1485 /** 1486 * regdom_intersect - do the intersection between two regulatory domains 1487 * @rd1: first regulatory domain 1488 * @rd2: second regulatory domain 1489 * 1490 * Use this function to get the intersection between two regulatory domains. 1491 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1492 * as no one single alpha2 can represent this regulatory domain. 1493 * 1494 * Returns a pointer to the regulatory domain structure which will hold the 1495 * resulting intersection of rules between rd1 and rd2. We will 1496 * kzalloc() this structure for you. 1497 * 1498 * Returns: the intersected regdomain 1499 */ 1500 static struct ieee80211_regdomain * 1501 regdom_intersect(const struct ieee80211_regdomain *rd1, 1502 const struct ieee80211_regdomain *rd2) 1503 { 1504 int r; 1505 unsigned int x, y; 1506 unsigned int num_rules = 0; 1507 const struct ieee80211_reg_rule *rule1, *rule2; 1508 struct ieee80211_reg_rule intersected_rule; 1509 struct ieee80211_regdomain *rd; 1510 1511 if (!rd1 || !rd2) 1512 return NULL; 1513 1514 /* 1515 * First we get a count of the rules we'll need, then we actually 1516 * build them. This is to so we can malloc() and free() a 1517 * regdomain once. The reason we use reg_rules_intersect() here 1518 * is it will return -EINVAL if the rule computed makes no sense. 1519 * All rules that do check out OK are valid. 1520 */ 1521 1522 for (x = 0; x < rd1->n_reg_rules; x++) { 1523 rule1 = &rd1->reg_rules[x]; 1524 for (y = 0; y < rd2->n_reg_rules; y++) { 1525 rule2 = &rd2->reg_rules[y]; 1526 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1527 &intersected_rule)) 1528 num_rules++; 1529 } 1530 } 1531 1532 if (!num_rules) 1533 return NULL; 1534 1535 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1536 if (!rd) 1537 return NULL; 1538 1539 for (x = 0; x < rd1->n_reg_rules; x++) { 1540 rule1 = &rd1->reg_rules[x]; 1541 for (y = 0; y < rd2->n_reg_rules; y++) { 1542 rule2 = &rd2->reg_rules[y]; 1543 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1544 &intersected_rule); 1545 /* 1546 * No need to memset here the intersected rule here as 1547 * we're not using the stack anymore 1548 */ 1549 if (r) 1550 continue; 1551 1552 add_rule(&intersected_rule, rd->reg_rules, 1553 &rd->n_reg_rules); 1554 } 1555 } 1556 1557 rd->alpha2[0] = '9'; 1558 rd->alpha2[1] = '8'; 1559 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1560 rd2->dfs_region); 1561 1562 return rd; 1563 } 1564 1565 /* 1566 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1567 * want to just have the channel structure use these 1568 */ 1569 static u32 map_regdom_flags(u32 rd_flags) 1570 { 1571 u32 channel_flags = 0; 1572 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1573 channel_flags |= IEEE80211_CHAN_NO_IR; 1574 if (rd_flags & NL80211_RRF_DFS) 1575 channel_flags |= IEEE80211_CHAN_RADAR; 1576 if (rd_flags & NL80211_RRF_NO_OFDM) 1577 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1578 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1579 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1580 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1581 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1582 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1583 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1584 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1585 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1586 if (rd_flags & NL80211_RRF_NO_80MHZ) 1587 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1588 if (rd_flags & NL80211_RRF_NO_160MHZ) 1589 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1590 if (rd_flags & NL80211_RRF_NO_HE) 1591 channel_flags |= IEEE80211_CHAN_NO_HE; 1592 if (rd_flags & NL80211_RRF_NO_320MHZ) 1593 channel_flags |= IEEE80211_CHAN_NO_320MHZ; 1594 if (rd_flags & NL80211_RRF_NO_EHT) 1595 channel_flags |= IEEE80211_CHAN_NO_EHT; 1596 if (rd_flags & NL80211_RRF_DFS_CONCURRENT) 1597 channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT; 1598 if (rd_flags & NL80211_RRF_NO_UHB_VLP_CLIENT) 1599 channel_flags |= IEEE80211_CHAN_NO_UHB_VLP_CLIENT; 1600 if (rd_flags & NL80211_RRF_NO_UHB_AFC_CLIENT) 1601 channel_flags |= IEEE80211_CHAN_NO_UHB_AFC_CLIENT; 1602 if (rd_flags & NL80211_RRF_PSD) 1603 channel_flags |= IEEE80211_CHAN_PSD; 1604 return channel_flags; 1605 } 1606 1607 static const struct ieee80211_reg_rule * 1608 freq_reg_info_regd(u32 center_freq, 1609 const struct ieee80211_regdomain *regd, u32 bw) 1610 { 1611 int i; 1612 bool band_rule_found = false; 1613 bool bw_fits = false; 1614 1615 if (!regd) 1616 return ERR_PTR(-EINVAL); 1617 1618 for (i = 0; i < regd->n_reg_rules; i++) { 1619 const struct ieee80211_reg_rule *rr; 1620 const struct ieee80211_freq_range *fr = NULL; 1621 1622 rr = ®d->reg_rules[i]; 1623 fr = &rr->freq_range; 1624 1625 /* 1626 * We only need to know if one frequency rule was 1627 * in center_freq's band, that's enough, so let's 1628 * not overwrite it once found 1629 */ 1630 if (!band_rule_found) 1631 band_rule_found = freq_in_rule_band(fr, center_freq); 1632 1633 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1634 1635 if (band_rule_found && bw_fits) 1636 return rr; 1637 } 1638 1639 if (!band_rule_found) 1640 return ERR_PTR(-ERANGE); 1641 1642 return ERR_PTR(-EINVAL); 1643 } 1644 1645 static const struct ieee80211_reg_rule * 1646 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1647 { 1648 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1649 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1650 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE); 1651 int i = ARRAY_SIZE(bws) - 1; 1652 u32 bw; 1653 1654 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1655 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1656 if (!IS_ERR(reg_rule)) 1657 return reg_rule; 1658 } 1659 1660 return reg_rule; 1661 } 1662 1663 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1664 u32 center_freq) 1665 { 1666 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1667 1668 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1669 } 1670 EXPORT_SYMBOL(freq_reg_info); 1671 1672 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1673 { 1674 switch (initiator) { 1675 case NL80211_REGDOM_SET_BY_CORE: 1676 return "core"; 1677 case NL80211_REGDOM_SET_BY_USER: 1678 return "user"; 1679 case NL80211_REGDOM_SET_BY_DRIVER: 1680 return "driver"; 1681 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1682 return "country element"; 1683 default: 1684 WARN_ON(1); 1685 return "bug"; 1686 } 1687 } 1688 EXPORT_SYMBOL(reg_initiator_name); 1689 1690 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1691 const struct ieee80211_reg_rule *reg_rule, 1692 const struct ieee80211_channel *chan) 1693 { 1694 const struct ieee80211_freq_range *freq_range = NULL; 1695 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1696 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1697 1698 freq_range = ®_rule->freq_range; 1699 1700 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1701 center_freq_khz = ieee80211_channel_to_khz(chan); 1702 /* Check if auto calculation requested */ 1703 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1704 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1705 1706 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1707 if (!cfg80211_does_bw_fit_range(freq_range, 1708 center_freq_khz, 1709 MHZ_TO_KHZ(10))) 1710 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1711 if (!cfg80211_does_bw_fit_range(freq_range, 1712 center_freq_khz, 1713 MHZ_TO_KHZ(20))) 1714 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1715 1716 if (is_s1g) { 1717 /* S1G is strict about non overlapping channels. We can 1718 * calculate which bandwidth is allowed per channel by finding 1719 * the largest bandwidth which cleanly divides the freq_range. 1720 */ 1721 int edge_offset; 1722 int ch_bw = max_bandwidth_khz; 1723 1724 while (ch_bw) { 1725 edge_offset = (center_freq_khz - ch_bw / 2) - 1726 freq_range->start_freq_khz; 1727 if (edge_offset % ch_bw == 0) { 1728 switch (KHZ_TO_MHZ(ch_bw)) { 1729 case 1: 1730 bw_flags |= IEEE80211_CHAN_1MHZ; 1731 break; 1732 case 2: 1733 bw_flags |= IEEE80211_CHAN_2MHZ; 1734 break; 1735 case 4: 1736 bw_flags |= IEEE80211_CHAN_4MHZ; 1737 break; 1738 case 8: 1739 bw_flags |= IEEE80211_CHAN_8MHZ; 1740 break; 1741 case 16: 1742 bw_flags |= IEEE80211_CHAN_16MHZ; 1743 break; 1744 default: 1745 /* If we got here, no bandwidths fit on 1746 * this frequency, ie. band edge. 1747 */ 1748 bw_flags |= IEEE80211_CHAN_DISABLED; 1749 break; 1750 } 1751 break; 1752 } 1753 ch_bw /= 2; 1754 } 1755 } else { 1756 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1757 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1758 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1759 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1760 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1761 bw_flags |= IEEE80211_CHAN_NO_HT40; 1762 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1763 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1764 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1765 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1766 if (max_bandwidth_khz < MHZ_TO_KHZ(320)) 1767 bw_flags |= IEEE80211_CHAN_NO_320MHZ; 1768 } 1769 return bw_flags; 1770 } 1771 1772 static void handle_channel_single_rule(struct wiphy *wiphy, 1773 enum nl80211_reg_initiator initiator, 1774 struct ieee80211_channel *chan, 1775 u32 flags, 1776 struct regulatory_request *lr, 1777 struct wiphy *request_wiphy, 1778 const struct ieee80211_reg_rule *reg_rule) 1779 { 1780 u32 bw_flags = 0; 1781 const struct ieee80211_power_rule *power_rule = NULL; 1782 const struct ieee80211_regdomain *regd; 1783 1784 regd = reg_get_regdomain(wiphy); 1785 1786 power_rule = ®_rule->power_rule; 1787 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1788 1789 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1790 request_wiphy && request_wiphy == wiphy && 1791 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1792 /* 1793 * This guarantees the driver's requested regulatory domain 1794 * will always be used as a base for further regulatory 1795 * settings 1796 */ 1797 chan->flags = chan->orig_flags = 1798 map_regdom_flags(reg_rule->flags) | bw_flags; 1799 chan->max_antenna_gain = chan->orig_mag = 1800 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1801 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1802 (int) MBM_TO_DBM(power_rule->max_eirp); 1803 1804 if (chan->flags & IEEE80211_CHAN_RADAR) { 1805 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1806 if (reg_rule->dfs_cac_ms) 1807 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1808 } 1809 1810 if (chan->flags & IEEE80211_CHAN_PSD) 1811 chan->psd = reg_rule->psd; 1812 1813 return; 1814 } 1815 1816 chan->dfs_state = NL80211_DFS_USABLE; 1817 chan->dfs_state_entered = jiffies; 1818 1819 chan->beacon_found = false; 1820 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1821 chan->max_antenna_gain = 1822 min_t(int, chan->orig_mag, 1823 MBI_TO_DBI(power_rule->max_antenna_gain)); 1824 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1825 1826 if (chan->flags & IEEE80211_CHAN_RADAR) { 1827 if (reg_rule->dfs_cac_ms) 1828 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1829 else 1830 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1831 } 1832 1833 if (chan->flags & IEEE80211_CHAN_PSD) 1834 chan->psd = reg_rule->psd; 1835 1836 if (chan->orig_mpwr) { 1837 /* 1838 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1839 * will always follow the passed country IE power settings. 1840 */ 1841 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1842 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1843 chan->max_power = chan->max_reg_power; 1844 else 1845 chan->max_power = min(chan->orig_mpwr, 1846 chan->max_reg_power); 1847 } else 1848 chan->max_power = chan->max_reg_power; 1849 } 1850 1851 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1852 enum nl80211_reg_initiator initiator, 1853 struct ieee80211_channel *chan, 1854 u32 flags, 1855 struct regulatory_request *lr, 1856 struct wiphy *request_wiphy, 1857 const struct ieee80211_reg_rule *rrule1, 1858 const struct ieee80211_reg_rule *rrule2, 1859 struct ieee80211_freq_range *comb_range) 1860 { 1861 u32 bw_flags1 = 0; 1862 u32 bw_flags2 = 0; 1863 const struct ieee80211_power_rule *power_rule1 = NULL; 1864 const struct ieee80211_power_rule *power_rule2 = NULL; 1865 const struct ieee80211_regdomain *regd; 1866 1867 regd = reg_get_regdomain(wiphy); 1868 1869 power_rule1 = &rrule1->power_rule; 1870 power_rule2 = &rrule2->power_rule; 1871 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1872 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1873 1874 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1875 request_wiphy && request_wiphy == wiphy && 1876 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1877 /* This guarantees the driver's requested regulatory domain 1878 * will always be used as a base for further regulatory 1879 * settings 1880 */ 1881 chan->flags = 1882 map_regdom_flags(rrule1->flags) | 1883 map_regdom_flags(rrule2->flags) | 1884 bw_flags1 | 1885 bw_flags2; 1886 chan->orig_flags = chan->flags; 1887 chan->max_antenna_gain = 1888 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1889 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1890 chan->orig_mag = chan->max_antenna_gain; 1891 chan->max_reg_power = 1892 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1893 MBM_TO_DBM(power_rule2->max_eirp)); 1894 chan->max_power = chan->max_reg_power; 1895 chan->orig_mpwr = chan->max_reg_power; 1896 1897 if (chan->flags & IEEE80211_CHAN_RADAR) { 1898 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1899 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1900 chan->dfs_cac_ms = max_t(unsigned int, 1901 rrule1->dfs_cac_ms, 1902 rrule2->dfs_cac_ms); 1903 } 1904 1905 if ((rrule1->flags & NL80211_RRF_PSD) && 1906 (rrule2->flags & NL80211_RRF_PSD)) 1907 chan->psd = min_t(s8, rrule1->psd, rrule2->psd); 1908 else 1909 chan->flags &= ~NL80211_RRF_PSD; 1910 1911 return; 1912 } 1913 1914 chan->dfs_state = NL80211_DFS_USABLE; 1915 chan->dfs_state_entered = jiffies; 1916 1917 chan->beacon_found = false; 1918 chan->flags = flags | bw_flags1 | bw_flags2 | 1919 map_regdom_flags(rrule1->flags) | 1920 map_regdom_flags(rrule2->flags); 1921 1922 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1923 * (otherwise no adj. rule case), recheck therefore 1924 */ 1925 if (cfg80211_does_bw_fit_range(comb_range, 1926 ieee80211_channel_to_khz(chan), 1927 MHZ_TO_KHZ(10))) 1928 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1929 if (cfg80211_does_bw_fit_range(comb_range, 1930 ieee80211_channel_to_khz(chan), 1931 MHZ_TO_KHZ(20))) 1932 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1933 1934 chan->max_antenna_gain = 1935 min_t(int, chan->orig_mag, 1936 min_t(int, 1937 MBI_TO_DBI(power_rule1->max_antenna_gain), 1938 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1939 chan->max_reg_power = min_t(int, 1940 MBM_TO_DBM(power_rule1->max_eirp), 1941 MBM_TO_DBM(power_rule2->max_eirp)); 1942 1943 if (chan->flags & IEEE80211_CHAN_RADAR) { 1944 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1945 chan->dfs_cac_ms = max_t(unsigned int, 1946 rrule1->dfs_cac_ms, 1947 rrule2->dfs_cac_ms); 1948 else 1949 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1950 } 1951 1952 if (chan->orig_mpwr) { 1953 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1954 * will always follow the passed country IE power settings. 1955 */ 1956 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1957 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1958 chan->max_power = chan->max_reg_power; 1959 else 1960 chan->max_power = min(chan->orig_mpwr, 1961 chan->max_reg_power); 1962 } else { 1963 chan->max_power = chan->max_reg_power; 1964 } 1965 } 1966 1967 /* Note that right now we assume the desired channel bandwidth 1968 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1969 * per channel, the primary and the extension channel). 1970 */ 1971 static void handle_channel(struct wiphy *wiphy, 1972 enum nl80211_reg_initiator initiator, 1973 struct ieee80211_channel *chan) 1974 { 1975 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1976 struct regulatory_request *lr = get_last_request(); 1977 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1978 const struct ieee80211_reg_rule *rrule = NULL; 1979 const struct ieee80211_reg_rule *rrule1 = NULL; 1980 const struct ieee80211_reg_rule *rrule2 = NULL; 1981 1982 u32 flags = chan->orig_flags; 1983 1984 rrule = freq_reg_info(wiphy, orig_chan_freq); 1985 if (IS_ERR(rrule)) { 1986 /* check for adjacent match, therefore get rules for 1987 * chan - 20 MHz and chan + 20 MHz and test 1988 * if reg rules are adjacent 1989 */ 1990 rrule1 = freq_reg_info(wiphy, 1991 orig_chan_freq - MHZ_TO_KHZ(20)); 1992 rrule2 = freq_reg_info(wiphy, 1993 orig_chan_freq + MHZ_TO_KHZ(20)); 1994 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 1995 struct ieee80211_freq_range comb_range; 1996 1997 if (rrule1->freq_range.end_freq_khz != 1998 rrule2->freq_range.start_freq_khz) 1999 goto disable_chan; 2000 2001 comb_range.start_freq_khz = 2002 rrule1->freq_range.start_freq_khz; 2003 comb_range.end_freq_khz = 2004 rrule2->freq_range.end_freq_khz; 2005 comb_range.max_bandwidth_khz = 2006 min_t(u32, 2007 rrule1->freq_range.max_bandwidth_khz, 2008 rrule2->freq_range.max_bandwidth_khz); 2009 2010 if (!cfg80211_does_bw_fit_range(&comb_range, 2011 orig_chan_freq, 2012 MHZ_TO_KHZ(20))) 2013 goto disable_chan; 2014 2015 handle_channel_adjacent_rules(wiphy, initiator, chan, 2016 flags, lr, request_wiphy, 2017 rrule1, rrule2, 2018 &comb_range); 2019 return; 2020 } 2021 2022 disable_chan: 2023 /* We will disable all channels that do not match our 2024 * received regulatory rule unless the hint is coming 2025 * from a Country IE and the Country IE had no information 2026 * about a band. The IEEE 802.11 spec allows for an AP 2027 * to send only a subset of the regulatory rules allowed, 2028 * so an AP in the US that only supports 2.4 GHz may only send 2029 * a country IE with information for the 2.4 GHz band 2030 * while 5 GHz is still supported. 2031 */ 2032 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2033 PTR_ERR(rrule) == -ERANGE) 2034 return; 2035 2036 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2037 request_wiphy && request_wiphy == wiphy && 2038 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2039 pr_debug("Disabling freq %d.%03d MHz for good\n", 2040 chan->center_freq, chan->freq_offset); 2041 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2042 chan->flags = chan->orig_flags; 2043 } else { 2044 pr_debug("Disabling freq %d.%03d MHz\n", 2045 chan->center_freq, chan->freq_offset); 2046 chan->flags |= IEEE80211_CHAN_DISABLED; 2047 } 2048 return; 2049 } 2050 2051 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2052 request_wiphy, rrule); 2053 } 2054 2055 static void handle_band(struct wiphy *wiphy, 2056 enum nl80211_reg_initiator initiator, 2057 struct ieee80211_supported_band *sband) 2058 { 2059 unsigned int i; 2060 2061 if (!sband) 2062 return; 2063 2064 for (i = 0; i < sband->n_channels; i++) 2065 handle_channel(wiphy, initiator, &sband->channels[i]); 2066 } 2067 2068 static bool reg_request_cell_base(struct regulatory_request *request) 2069 { 2070 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2071 return false; 2072 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2073 } 2074 2075 bool reg_last_request_cell_base(void) 2076 { 2077 return reg_request_cell_base(get_last_request()); 2078 } 2079 2080 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2081 /* Core specific check */ 2082 static enum reg_request_treatment 2083 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2084 { 2085 struct regulatory_request *lr = get_last_request(); 2086 2087 if (!reg_num_devs_support_basehint) 2088 return REG_REQ_IGNORE; 2089 2090 if (reg_request_cell_base(lr) && 2091 !regdom_changes(pending_request->alpha2)) 2092 return REG_REQ_ALREADY_SET; 2093 2094 return REG_REQ_OK; 2095 } 2096 2097 /* Device specific check */ 2098 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2099 { 2100 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2101 } 2102 #else 2103 static enum reg_request_treatment 2104 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2105 { 2106 return REG_REQ_IGNORE; 2107 } 2108 2109 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2110 { 2111 return true; 2112 } 2113 #endif 2114 2115 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2116 { 2117 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2118 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2119 return true; 2120 return false; 2121 } 2122 2123 static bool ignore_reg_update(struct wiphy *wiphy, 2124 enum nl80211_reg_initiator initiator) 2125 { 2126 struct regulatory_request *lr = get_last_request(); 2127 2128 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2129 return true; 2130 2131 if (!lr) { 2132 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2133 reg_initiator_name(initiator)); 2134 return true; 2135 } 2136 2137 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2138 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2139 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2140 reg_initiator_name(initiator)); 2141 return true; 2142 } 2143 2144 /* 2145 * wiphy->regd will be set once the device has its own 2146 * desired regulatory domain set 2147 */ 2148 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2149 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2150 !is_world_regdom(lr->alpha2)) { 2151 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2152 reg_initiator_name(initiator)); 2153 return true; 2154 } 2155 2156 if (reg_request_cell_base(lr)) 2157 return reg_dev_ignore_cell_hint(wiphy); 2158 2159 return false; 2160 } 2161 2162 static bool reg_is_world_roaming(struct wiphy *wiphy) 2163 { 2164 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2165 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2166 struct regulatory_request *lr = get_last_request(); 2167 2168 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2169 return true; 2170 2171 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2172 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2173 return true; 2174 2175 return false; 2176 } 2177 2178 static void reg_call_notifier(struct wiphy *wiphy, 2179 struct regulatory_request *request) 2180 { 2181 if (wiphy->reg_notifier) 2182 wiphy->reg_notifier(wiphy, request); 2183 } 2184 2185 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2186 struct reg_beacon *reg_beacon) 2187 { 2188 struct ieee80211_supported_band *sband; 2189 struct ieee80211_channel *chan; 2190 bool channel_changed = false; 2191 struct ieee80211_channel chan_before; 2192 struct regulatory_request *lr = get_last_request(); 2193 2194 sband = wiphy->bands[reg_beacon->chan.band]; 2195 chan = &sband->channels[chan_idx]; 2196 2197 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2198 return; 2199 2200 if (chan->beacon_found) 2201 return; 2202 2203 chan->beacon_found = true; 2204 2205 if (!reg_is_world_roaming(wiphy)) 2206 return; 2207 2208 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2209 return; 2210 2211 chan_before = *chan; 2212 2213 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2214 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2215 channel_changed = true; 2216 } 2217 2218 if (channel_changed) { 2219 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2220 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON) 2221 reg_call_notifier(wiphy, lr); 2222 } 2223 } 2224 2225 /* 2226 * Called when a scan on a wiphy finds a beacon on 2227 * new channel 2228 */ 2229 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2230 struct reg_beacon *reg_beacon) 2231 { 2232 unsigned int i; 2233 struct ieee80211_supported_band *sband; 2234 2235 if (!wiphy->bands[reg_beacon->chan.band]) 2236 return; 2237 2238 sband = wiphy->bands[reg_beacon->chan.band]; 2239 2240 for (i = 0; i < sband->n_channels; i++) 2241 handle_reg_beacon(wiphy, i, reg_beacon); 2242 } 2243 2244 /* 2245 * Called upon reg changes or a new wiphy is added 2246 */ 2247 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2248 { 2249 unsigned int i; 2250 struct ieee80211_supported_band *sband; 2251 struct reg_beacon *reg_beacon; 2252 2253 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2254 if (!wiphy->bands[reg_beacon->chan.band]) 2255 continue; 2256 sband = wiphy->bands[reg_beacon->chan.band]; 2257 for (i = 0; i < sband->n_channels; i++) 2258 handle_reg_beacon(wiphy, i, reg_beacon); 2259 } 2260 } 2261 2262 /* Reap the advantages of previously found beacons */ 2263 static void reg_process_beacons(struct wiphy *wiphy) 2264 { 2265 /* 2266 * Means we are just firing up cfg80211, so no beacons would 2267 * have been processed yet. 2268 */ 2269 if (!last_request) 2270 return; 2271 wiphy_update_beacon_reg(wiphy); 2272 } 2273 2274 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2275 { 2276 if (!chan) 2277 return false; 2278 if (chan->flags & IEEE80211_CHAN_DISABLED) 2279 return false; 2280 /* This would happen when regulatory rules disallow HT40 completely */ 2281 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2282 return false; 2283 return true; 2284 } 2285 2286 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2287 struct ieee80211_channel *channel) 2288 { 2289 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2290 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2291 const struct ieee80211_regdomain *regd; 2292 unsigned int i; 2293 u32 flags; 2294 2295 if (!is_ht40_allowed(channel)) { 2296 channel->flags |= IEEE80211_CHAN_NO_HT40; 2297 return; 2298 } 2299 2300 /* 2301 * We need to ensure the extension channels exist to 2302 * be able to use HT40- or HT40+, this finds them (or not) 2303 */ 2304 for (i = 0; i < sband->n_channels; i++) { 2305 struct ieee80211_channel *c = &sband->channels[i]; 2306 2307 if (c->center_freq == (channel->center_freq - 20)) 2308 channel_before = c; 2309 if (c->center_freq == (channel->center_freq + 20)) 2310 channel_after = c; 2311 } 2312 2313 flags = 0; 2314 regd = get_wiphy_regdom(wiphy); 2315 if (regd) { 2316 const struct ieee80211_reg_rule *reg_rule = 2317 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2318 regd, MHZ_TO_KHZ(20)); 2319 2320 if (!IS_ERR(reg_rule)) 2321 flags = reg_rule->flags; 2322 } 2323 2324 /* 2325 * Please note that this assumes target bandwidth is 20 MHz, 2326 * if that ever changes we also need to change the below logic 2327 * to include that as well. 2328 */ 2329 if (!is_ht40_allowed(channel_before) || 2330 flags & NL80211_RRF_NO_HT40MINUS) 2331 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2332 else 2333 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2334 2335 if (!is_ht40_allowed(channel_after) || 2336 flags & NL80211_RRF_NO_HT40PLUS) 2337 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2338 else 2339 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2340 } 2341 2342 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2343 struct ieee80211_supported_band *sband) 2344 { 2345 unsigned int i; 2346 2347 if (!sband) 2348 return; 2349 2350 for (i = 0; i < sband->n_channels; i++) 2351 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2352 } 2353 2354 static void reg_process_ht_flags(struct wiphy *wiphy) 2355 { 2356 enum nl80211_band band; 2357 2358 if (!wiphy) 2359 return; 2360 2361 for (band = 0; band < NUM_NL80211_BANDS; band++) 2362 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2363 } 2364 2365 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2366 { 2367 struct cfg80211_chan_def chandef = {}; 2368 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2369 enum nl80211_iftype iftype; 2370 bool ret; 2371 int link; 2372 2373 iftype = wdev->iftype; 2374 2375 /* make sure the interface is active */ 2376 if (!wdev->netdev || !netif_running(wdev->netdev)) 2377 return true; 2378 2379 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) { 2380 struct ieee80211_channel *chan; 2381 2382 if (!wdev->valid_links && link > 0) 2383 break; 2384 if (wdev->valid_links && !(wdev->valid_links & BIT(link))) 2385 continue; 2386 switch (iftype) { 2387 case NL80211_IFTYPE_AP: 2388 case NL80211_IFTYPE_P2P_GO: 2389 if (!wdev->links[link].ap.beacon_interval) 2390 continue; 2391 chandef = wdev->links[link].ap.chandef; 2392 break; 2393 case NL80211_IFTYPE_MESH_POINT: 2394 if (!wdev->u.mesh.beacon_interval) 2395 continue; 2396 chandef = wdev->u.mesh.chandef; 2397 break; 2398 case NL80211_IFTYPE_ADHOC: 2399 if (!wdev->u.ibss.ssid_len) 2400 continue; 2401 chandef = wdev->u.ibss.chandef; 2402 break; 2403 case NL80211_IFTYPE_STATION: 2404 case NL80211_IFTYPE_P2P_CLIENT: 2405 /* Maybe we could consider disabling that link only? */ 2406 if (!wdev->links[link].client.current_bss) 2407 continue; 2408 2409 chan = wdev->links[link].client.current_bss->pub.channel; 2410 if (!chan) 2411 continue; 2412 2413 if (!rdev->ops->get_channel || 2414 rdev_get_channel(rdev, wdev, link, &chandef)) 2415 cfg80211_chandef_create(&chandef, chan, 2416 NL80211_CHAN_NO_HT); 2417 break; 2418 case NL80211_IFTYPE_MONITOR: 2419 case NL80211_IFTYPE_AP_VLAN: 2420 case NL80211_IFTYPE_P2P_DEVICE: 2421 /* no enforcement required */ 2422 break; 2423 case NL80211_IFTYPE_OCB: 2424 if (!wdev->u.ocb.chandef.chan) 2425 continue; 2426 chandef = wdev->u.ocb.chandef; 2427 break; 2428 case NL80211_IFTYPE_NAN: 2429 /* we have no info, but NAN is also pretty universal */ 2430 continue; 2431 default: 2432 /* others not implemented for now */ 2433 WARN_ON_ONCE(1); 2434 break; 2435 } 2436 2437 switch (iftype) { 2438 case NL80211_IFTYPE_AP: 2439 case NL80211_IFTYPE_P2P_GO: 2440 case NL80211_IFTYPE_ADHOC: 2441 case NL80211_IFTYPE_MESH_POINT: 2442 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, 2443 iftype); 2444 if (!ret) 2445 return ret; 2446 break; 2447 case NL80211_IFTYPE_STATION: 2448 case NL80211_IFTYPE_P2P_CLIENT: 2449 ret = cfg80211_chandef_usable(wiphy, &chandef, 2450 IEEE80211_CHAN_DISABLED); 2451 if (!ret) 2452 return ret; 2453 break; 2454 default: 2455 break; 2456 } 2457 } 2458 2459 return true; 2460 } 2461 2462 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2463 { 2464 struct wireless_dev *wdev; 2465 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2466 2467 wiphy_lock(wiphy); 2468 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2469 if (!reg_wdev_chan_valid(wiphy, wdev)) 2470 cfg80211_leave(rdev, wdev); 2471 wiphy_unlock(wiphy); 2472 } 2473 2474 static void reg_check_chans_work(struct work_struct *work) 2475 { 2476 struct cfg80211_registered_device *rdev; 2477 2478 pr_debug("Verifying active interfaces after reg change\n"); 2479 rtnl_lock(); 2480 2481 for_each_rdev(rdev) 2482 reg_leave_invalid_chans(&rdev->wiphy); 2483 2484 rtnl_unlock(); 2485 } 2486 2487 void reg_check_channels(void) 2488 { 2489 /* 2490 * Give usermode a chance to do something nicer (move to another 2491 * channel, orderly disconnection), before forcing a disconnection. 2492 */ 2493 mod_delayed_work(system_power_efficient_wq, 2494 ®_check_chans, 2495 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2496 } 2497 2498 static void wiphy_update_regulatory(struct wiphy *wiphy, 2499 enum nl80211_reg_initiator initiator) 2500 { 2501 enum nl80211_band band; 2502 struct regulatory_request *lr = get_last_request(); 2503 2504 if (ignore_reg_update(wiphy, initiator)) { 2505 /* 2506 * Regulatory updates set by CORE are ignored for custom 2507 * regulatory cards. Let us notify the changes to the driver, 2508 * as some drivers used this to restore its orig_* reg domain. 2509 */ 2510 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2511 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2512 !(wiphy->regulatory_flags & 2513 REGULATORY_WIPHY_SELF_MANAGED)) 2514 reg_call_notifier(wiphy, lr); 2515 return; 2516 } 2517 2518 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2519 2520 for (band = 0; band < NUM_NL80211_BANDS; band++) 2521 handle_band(wiphy, initiator, wiphy->bands[band]); 2522 2523 reg_process_beacons(wiphy); 2524 reg_process_ht_flags(wiphy); 2525 reg_call_notifier(wiphy, lr); 2526 } 2527 2528 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2529 { 2530 struct cfg80211_registered_device *rdev; 2531 struct wiphy *wiphy; 2532 2533 ASSERT_RTNL(); 2534 2535 for_each_rdev(rdev) { 2536 wiphy = &rdev->wiphy; 2537 wiphy_update_regulatory(wiphy, initiator); 2538 } 2539 2540 reg_check_channels(); 2541 } 2542 2543 static void handle_channel_custom(struct wiphy *wiphy, 2544 struct ieee80211_channel *chan, 2545 const struct ieee80211_regdomain *regd, 2546 u32 min_bw) 2547 { 2548 u32 bw_flags = 0; 2549 const struct ieee80211_reg_rule *reg_rule = NULL; 2550 const struct ieee80211_power_rule *power_rule = NULL; 2551 u32 bw, center_freq_khz; 2552 2553 center_freq_khz = ieee80211_channel_to_khz(chan); 2554 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2555 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2556 if (!IS_ERR(reg_rule)) 2557 break; 2558 } 2559 2560 if (IS_ERR_OR_NULL(reg_rule)) { 2561 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2562 chan->center_freq, chan->freq_offset); 2563 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2564 chan->flags |= IEEE80211_CHAN_DISABLED; 2565 } else { 2566 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2567 chan->flags = chan->orig_flags; 2568 } 2569 return; 2570 } 2571 2572 power_rule = ®_rule->power_rule; 2573 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2574 2575 chan->dfs_state_entered = jiffies; 2576 chan->dfs_state = NL80211_DFS_USABLE; 2577 2578 chan->beacon_found = false; 2579 2580 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2581 chan->flags = chan->orig_flags | bw_flags | 2582 map_regdom_flags(reg_rule->flags); 2583 else 2584 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2585 2586 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2587 chan->max_reg_power = chan->max_power = 2588 (int) MBM_TO_DBM(power_rule->max_eirp); 2589 2590 if (chan->flags & IEEE80211_CHAN_RADAR) { 2591 if (reg_rule->dfs_cac_ms) 2592 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2593 else 2594 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2595 } 2596 2597 if (chan->flags & IEEE80211_CHAN_PSD) 2598 chan->psd = reg_rule->psd; 2599 2600 chan->max_power = chan->max_reg_power; 2601 } 2602 2603 static void handle_band_custom(struct wiphy *wiphy, 2604 struct ieee80211_supported_band *sband, 2605 const struct ieee80211_regdomain *regd) 2606 { 2607 unsigned int i; 2608 2609 if (!sband) 2610 return; 2611 2612 /* 2613 * We currently assume that you always want at least 20 MHz, 2614 * otherwise channel 12 might get enabled if this rule is 2615 * compatible to US, which permits 2402 - 2472 MHz. 2616 */ 2617 for (i = 0; i < sband->n_channels; i++) 2618 handle_channel_custom(wiphy, &sband->channels[i], regd, 2619 MHZ_TO_KHZ(20)); 2620 } 2621 2622 /* Used by drivers prior to wiphy registration */ 2623 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2624 const struct ieee80211_regdomain *regd) 2625 { 2626 const struct ieee80211_regdomain *new_regd, *tmp; 2627 enum nl80211_band band; 2628 unsigned int bands_set = 0; 2629 2630 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2631 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2632 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2633 2634 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2635 if (!wiphy->bands[band]) 2636 continue; 2637 handle_band_custom(wiphy, wiphy->bands[band], regd); 2638 bands_set++; 2639 } 2640 2641 /* 2642 * no point in calling this if it won't have any effect 2643 * on your device's supported bands. 2644 */ 2645 WARN_ON(!bands_set); 2646 new_regd = reg_copy_regd(regd); 2647 if (IS_ERR(new_regd)) 2648 return; 2649 2650 rtnl_lock(); 2651 wiphy_lock(wiphy); 2652 2653 tmp = get_wiphy_regdom(wiphy); 2654 rcu_assign_pointer(wiphy->regd, new_regd); 2655 rcu_free_regdom(tmp); 2656 2657 wiphy_unlock(wiphy); 2658 rtnl_unlock(); 2659 } 2660 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2661 2662 static void reg_set_request_processed(void) 2663 { 2664 bool need_more_processing = false; 2665 struct regulatory_request *lr = get_last_request(); 2666 2667 lr->processed = true; 2668 2669 spin_lock(®_requests_lock); 2670 if (!list_empty(®_requests_list)) 2671 need_more_processing = true; 2672 spin_unlock(®_requests_lock); 2673 2674 cancel_crda_timeout(); 2675 2676 if (need_more_processing) 2677 schedule_work(®_work); 2678 } 2679 2680 /** 2681 * reg_process_hint_core - process core regulatory requests 2682 * @core_request: a pending core regulatory request 2683 * 2684 * The wireless subsystem can use this function to process 2685 * a regulatory request issued by the regulatory core. 2686 * 2687 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the 2688 * hint was processed or ignored 2689 */ 2690 static enum reg_request_treatment 2691 reg_process_hint_core(struct regulatory_request *core_request) 2692 { 2693 if (reg_query_database(core_request)) { 2694 core_request->intersect = false; 2695 core_request->processed = false; 2696 reg_update_last_request(core_request); 2697 return REG_REQ_OK; 2698 } 2699 2700 return REG_REQ_IGNORE; 2701 } 2702 2703 static enum reg_request_treatment 2704 __reg_process_hint_user(struct regulatory_request *user_request) 2705 { 2706 struct regulatory_request *lr = get_last_request(); 2707 2708 if (reg_request_cell_base(user_request)) 2709 return reg_ignore_cell_hint(user_request); 2710 2711 if (reg_request_cell_base(lr)) 2712 return REG_REQ_IGNORE; 2713 2714 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2715 return REG_REQ_INTERSECT; 2716 /* 2717 * If the user knows better the user should set the regdom 2718 * to their country before the IE is picked up 2719 */ 2720 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2721 lr->intersect) 2722 return REG_REQ_IGNORE; 2723 /* 2724 * Process user requests only after previous user/driver/core 2725 * requests have been processed 2726 */ 2727 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2728 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2729 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2730 regdom_changes(lr->alpha2)) 2731 return REG_REQ_IGNORE; 2732 2733 if (!regdom_changes(user_request->alpha2)) 2734 return REG_REQ_ALREADY_SET; 2735 2736 return REG_REQ_OK; 2737 } 2738 2739 /** 2740 * reg_process_hint_user - process user regulatory requests 2741 * @user_request: a pending user regulatory request 2742 * 2743 * The wireless subsystem can use this function to process 2744 * a regulatory request initiated by userspace. 2745 * 2746 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the 2747 * hint was processed or ignored 2748 */ 2749 static enum reg_request_treatment 2750 reg_process_hint_user(struct regulatory_request *user_request) 2751 { 2752 enum reg_request_treatment treatment; 2753 2754 treatment = __reg_process_hint_user(user_request); 2755 if (treatment == REG_REQ_IGNORE || 2756 treatment == REG_REQ_ALREADY_SET) 2757 return REG_REQ_IGNORE; 2758 2759 user_request->intersect = treatment == REG_REQ_INTERSECT; 2760 user_request->processed = false; 2761 2762 if (reg_query_database(user_request)) { 2763 reg_update_last_request(user_request); 2764 user_alpha2[0] = user_request->alpha2[0]; 2765 user_alpha2[1] = user_request->alpha2[1]; 2766 return REG_REQ_OK; 2767 } 2768 2769 return REG_REQ_IGNORE; 2770 } 2771 2772 static enum reg_request_treatment 2773 __reg_process_hint_driver(struct regulatory_request *driver_request) 2774 { 2775 struct regulatory_request *lr = get_last_request(); 2776 2777 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2778 if (regdom_changes(driver_request->alpha2)) 2779 return REG_REQ_OK; 2780 return REG_REQ_ALREADY_SET; 2781 } 2782 2783 /* 2784 * This would happen if you unplug and plug your card 2785 * back in or if you add a new device for which the previously 2786 * loaded card also agrees on the regulatory domain. 2787 */ 2788 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2789 !regdom_changes(driver_request->alpha2)) 2790 return REG_REQ_ALREADY_SET; 2791 2792 return REG_REQ_INTERSECT; 2793 } 2794 2795 /** 2796 * reg_process_hint_driver - process driver regulatory requests 2797 * @wiphy: the wireless device for the regulatory request 2798 * @driver_request: a pending driver regulatory request 2799 * 2800 * The wireless subsystem can use this function to process 2801 * a regulatory request issued by an 802.11 driver. 2802 * 2803 * Returns: one of the different reg request treatment values. 2804 */ 2805 static enum reg_request_treatment 2806 reg_process_hint_driver(struct wiphy *wiphy, 2807 struct regulatory_request *driver_request) 2808 { 2809 const struct ieee80211_regdomain *regd, *tmp; 2810 enum reg_request_treatment treatment; 2811 2812 treatment = __reg_process_hint_driver(driver_request); 2813 2814 switch (treatment) { 2815 case REG_REQ_OK: 2816 break; 2817 case REG_REQ_IGNORE: 2818 return REG_REQ_IGNORE; 2819 case REG_REQ_INTERSECT: 2820 case REG_REQ_ALREADY_SET: 2821 regd = reg_copy_regd(get_cfg80211_regdom()); 2822 if (IS_ERR(regd)) 2823 return REG_REQ_IGNORE; 2824 2825 tmp = get_wiphy_regdom(wiphy); 2826 ASSERT_RTNL(); 2827 wiphy_lock(wiphy); 2828 rcu_assign_pointer(wiphy->regd, regd); 2829 wiphy_unlock(wiphy); 2830 rcu_free_regdom(tmp); 2831 } 2832 2833 2834 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2835 driver_request->processed = false; 2836 2837 /* 2838 * Since CRDA will not be called in this case as we already 2839 * have applied the requested regulatory domain before we just 2840 * inform userspace we have processed the request 2841 */ 2842 if (treatment == REG_REQ_ALREADY_SET) { 2843 nl80211_send_reg_change_event(driver_request); 2844 reg_update_last_request(driver_request); 2845 reg_set_request_processed(); 2846 return REG_REQ_ALREADY_SET; 2847 } 2848 2849 if (reg_query_database(driver_request)) { 2850 reg_update_last_request(driver_request); 2851 return REG_REQ_OK; 2852 } 2853 2854 return REG_REQ_IGNORE; 2855 } 2856 2857 static enum reg_request_treatment 2858 __reg_process_hint_country_ie(struct wiphy *wiphy, 2859 struct regulatory_request *country_ie_request) 2860 { 2861 struct wiphy *last_wiphy = NULL; 2862 struct regulatory_request *lr = get_last_request(); 2863 2864 if (reg_request_cell_base(lr)) { 2865 /* Trust a Cell base station over the AP's country IE */ 2866 if (regdom_changes(country_ie_request->alpha2)) 2867 return REG_REQ_IGNORE; 2868 return REG_REQ_ALREADY_SET; 2869 } else { 2870 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2871 return REG_REQ_IGNORE; 2872 } 2873 2874 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2875 return -EINVAL; 2876 2877 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2878 return REG_REQ_OK; 2879 2880 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2881 2882 if (last_wiphy != wiphy) { 2883 /* 2884 * Two cards with two APs claiming different 2885 * Country IE alpha2s. We could 2886 * intersect them, but that seems unlikely 2887 * to be correct. Reject second one for now. 2888 */ 2889 if (regdom_changes(country_ie_request->alpha2)) 2890 return REG_REQ_IGNORE; 2891 return REG_REQ_ALREADY_SET; 2892 } 2893 2894 if (regdom_changes(country_ie_request->alpha2)) 2895 return REG_REQ_OK; 2896 return REG_REQ_ALREADY_SET; 2897 } 2898 2899 /** 2900 * reg_process_hint_country_ie - process regulatory requests from country IEs 2901 * @wiphy: the wireless device for the regulatory request 2902 * @country_ie_request: a regulatory request from a country IE 2903 * 2904 * The wireless subsystem can use this function to process 2905 * a regulatory request issued by a country Information Element. 2906 * 2907 * Returns: one of the different reg request treatment values. 2908 */ 2909 static enum reg_request_treatment 2910 reg_process_hint_country_ie(struct wiphy *wiphy, 2911 struct regulatory_request *country_ie_request) 2912 { 2913 enum reg_request_treatment treatment; 2914 2915 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2916 2917 switch (treatment) { 2918 case REG_REQ_OK: 2919 break; 2920 case REG_REQ_IGNORE: 2921 return REG_REQ_IGNORE; 2922 case REG_REQ_ALREADY_SET: 2923 reg_free_request(country_ie_request); 2924 return REG_REQ_ALREADY_SET; 2925 case REG_REQ_INTERSECT: 2926 /* 2927 * This doesn't happen yet, not sure we 2928 * ever want to support it for this case. 2929 */ 2930 WARN_ONCE(1, "Unexpected intersection for country elements"); 2931 return REG_REQ_IGNORE; 2932 } 2933 2934 country_ie_request->intersect = false; 2935 country_ie_request->processed = false; 2936 2937 if (reg_query_database(country_ie_request)) { 2938 reg_update_last_request(country_ie_request); 2939 return REG_REQ_OK; 2940 } 2941 2942 return REG_REQ_IGNORE; 2943 } 2944 2945 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2946 { 2947 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2948 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2949 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2950 bool dfs_domain_same; 2951 2952 rcu_read_lock(); 2953 2954 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2955 wiphy1_regd = rcu_dereference(wiphy1->regd); 2956 if (!wiphy1_regd) 2957 wiphy1_regd = cfg80211_regd; 2958 2959 wiphy2_regd = rcu_dereference(wiphy2->regd); 2960 if (!wiphy2_regd) 2961 wiphy2_regd = cfg80211_regd; 2962 2963 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2964 2965 rcu_read_unlock(); 2966 2967 return dfs_domain_same; 2968 } 2969 2970 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2971 struct ieee80211_channel *src_chan) 2972 { 2973 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2974 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2975 return; 2976 2977 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2978 src_chan->flags & IEEE80211_CHAN_DISABLED) 2979 return; 2980 2981 if (src_chan->center_freq == dst_chan->center_freq && 2982 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2983 dst_chan->dfs_state = src_chan->dfs_state; 2984 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2985 } 2986 } 2987 2988 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2989 struct wiphy *src_wiphy) 2990 { 2991 struct ieee80211_supported_band *src_sband, *dst_sband; 2992 struct ieee80211_channel *src_chan, *dst_chan; 2993 int i, j, band; 2994 2995 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2996 return; 2997 2998 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2999 dst_sband = dst_wiphy->bands[band]; 3000 src_sband = src_wiphy->bands[band]; 3001 if (!dst_sband || !src_sband) 3002 continue; 3003 3004 for (i = 0; i < dst_sband->n_channels; i++) { 3005 dst_chan = &dst_sband->channels[i]; 3006 for (j = 0; j < src_sband->n_channels; j++) { 3007 src_chan = &src_sband->channels[j]; 3008 reg_copy_dfs_chan_state(dst_chan, src_chan); 3009 } 3010 } 3011 } 3012 } 3013 3014 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 3015 { 3016 struct cfg80211_registered_device *rdev; 3017 3018 ASSERT_RTNL(); 3019 3020 for_each_rdev(rdev) { 3021 if (wiphy == &rdev->wiphy) 3022 continue; 3023 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 3024 } 3025 } 3026 3027 /* This processes *all* regulatory hints */ 3028 static void reg_process_hint(struct regulatory_request *reg_request) 3029 { 3030 struct wiphy *wiphy = NULL; 3031 enum reg_request_treatment treatment; 3032 enum nl80211_reg_initiator initiator = reg_request->initiator; 3033 3034 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 3035 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 3036 3037 switch (initiator) { 3038 case NL80211_REGDOM_SET_BY_CORE: 3039 treatment = reg_process_hint_core(reg_request); 3040 break; 3041 case NL80211_REGDOM_SET_BY_USER: 3042 treatment = reg_process_hint_user(reg_request); 3043 break; 3044 case NL80211_REGDOM_SET_BY_DRIVER: 3045 if (!wiphy) 3046 goto out_free; 3047 treatment = reg_process_hint_driver(wiphy, reg_request); 3048 break; 3049 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3050 if (!wiphy) 3051 goto out_free; 3052 treatment = reg_process_hint_country_ie(wiphy, reg_request); 3053 break; 3054 default: 3055 WARN(1, "invalid initiator %d\n", initiator); 3056 goto out_free; 3057 } 3058 3059 if (treatment == REG_REQ_IGNORE) 3060 goto out_free; 3061 3062 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 3063 "unexpected treatment value %d\n", treatment); 3064 3065 /* This is required so that the orig_* parameters are saved. 3066 * NOTE: treatment must be set for any case that reaches here! 3067 */ 3068 if (treatment == REG_REQ_ALREADY_SET && wiphy && 3069 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 3070 wiphy_update_regulatory(wiphy, initiator); 3071 wiphy_all_share_dfs_chan_state(wiphy); 3072 reg_check_channels(); 3073 } 3074 3075 return; 3076 3077 out_free: 3078 reg_free_request(reg_request); 3079 } 3080 3081 static void notify_self_managed_wiphys(struct regulatory_request *request) 3082 { 3083 struct cfg80211_registered_device *rdev; 3084 struct wiphy *wiphy; 3085 3086 for_each_rdev(rdev) { 3087 wiphy = &rdev->wiphy; 3088 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 3089 request->initiator == NL80211_REGDOM_SET_BY_USER) 3090 reg_call_notifier(wiphy, request); 3091 } 3092 } 3093 3094 /* 3095 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 3096 * Regulatory hints come on a first come first serve basis and we 3097 * must process each one atomically. 3098 */ 3099 static void reg_process_pending_hints(void) 3100 { 3101 struct regulatory_request *reg_request, *lr; 3102 3103 lr = get_last_request(); 3104 3105 /* When last_request->processed becomes true this will be rescheduled */ 3106 if (lr && !lr->processed) { 3107 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3108 return; 3109 } 3110 3111 spin_lock(®_requests_lock); 3112 3113 if (list_empty(®_requests_list)) { 3114 spin_unlock(®_requests_lock); 3115 return; 3116 } 3117 3118 reg_request = list_first_entry(®_requests_list, 3119 struct regulatory_request, 3120 list); 3121 list_del_init(®_request->list); 3122 3123 spin_unlock(®_requests_lock); 3124 3125 notify_self_managed_wiphys(reg_request); 3126 3127 reg_process_hint(reg_request); 3128 3129 lr = get_last_request(); 3130 3131 spin_lock(®_requests_lock); 3132 if (!list_empty(®_requests_list) && lr && lr->processed) 3133 schedule_work(®_work); 3134 spin_unlock(®_requests_lock); 3135 } 3136 3137 /* Processes beacon hints -- this has nothing to do with country IEs */ 3138 static void reg_process_pending_beacon_hints(void) 3139 { 3140 struct cfg80211_registered_device *rdev; 3141 struct reg_beacon *pending_beacon, *tmp; 3142 3143 /* This goes through the _pending_ beacon list */ 3144 spin_lock_bh(®_pending_beacons_lock); 3145 3146 list_for_each_entry_safe(pending_beacon, tmp, 3147 ®_pending_beacons, list) { 3148 list_del_init(&pending_beacon->list); 3149 3150 /* Applies the beacon hint to current wiphys */ 3151 for_each_rdev(rdev) 3152 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3153 3154 /* Remembers the beacon hint for new wiphys or reg changes */ 3155 list_add_tail(&pending_beacon->list, ®_beacon_list); 3156 } 3157 3158 spin_unlock_bh(®_pending_beacons_lock); 3159 } 3160 3161 static void reg_process_self_managed_hint(struct wiphy *wiphy) 3162 { 3163 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3164 const struct ieee80211_regdomain *tmp; 3165 const struct ieee80211_regdomain *regd; 3166 enum nl80211_band band; 3167 struct regulatory_request request = {}; 3168 3169 ASSERT_RTNL(); 3170 lockdep_assert_wiphy(wiphy); 3171 3172 spin_lock(®_requests_lock); 3173 regd = rdev->requested_regd; 3174 rdev->requested_regd = NULL; 3175 spin_unlock(®_requests_lock); 3176 3177 if (!regd) 3178 return; 3179 3180 tmp = get_wiphy_regdom(wiphy); 3181 rcu_assign_pointer(wiphy->regd, regd); 3182 rcu_free_regdom(tmp); 3183 3184 for (band = 0; band < NUM_NL80211_BANDS; band++) 3185 handle_band_custom(wiphy, wiphy->bands[band], regd); 3186 3187 reg_process_ht_flags(wiphy); 3188 3189 request.wiphy_idx = get_wiphy_idx(wiphy); 3190 request.alpha2[0] = regd->alpha2[0]; 3191 request.alpha2[1] = regd->alpha2[1]; 3192 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3193 3194 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER) 3195 reg_call_notifier(wiphy, &request); 3196 3197 nl80211_send_wiphy_reg_change_event(&request); 3198 } 3199 3200 static void reg_process_self_managed_hints(void) 3201 { 3202 struct cfg80211_registered_device *rdev; 3203 3204 ASSERT_RTNL(); 3205 3206 for_each_rdev(rdev) { 3207 wiphy_lock(&rdev->wiphy); 3208 reg_process_self_managed_hint(&rdev->wiphy); 3209 wiphy_unlock(&rdev->wiphy); 3210 } 3211 3212 reg_check_channels(); 3213 } 3214 3215 static void reg_todo(struct work_struct *work) 3216 { 3217 rtnl_lock(); 3218 reg_process_pending_hints(); 3219 reg_process_pending_beacon_hints(); 3220 reg_process_self_managed_hints(); 3221 rtnl_unlock(); 3222 } 3223 3224 static void queue_regulatory_request(struct regulatory_request *request) 3225 { 3226 request->alpha2[0] = toupper(request->alpha2[0]); 3227 request->alpha2[1] = toupper(request->alpha2[1]); 3228 3229 spin_lock(®_requests_lock); 3230 list_add_tail(&request->list, ®_requests_list); 3231 spin_unlock(®_requests_lock); 3232 3233 schedule_work(®_work); 3234 } 3235 3236 /* 3237 * Core regulatory hint -- happens during cfg80211_init() 3238 * and when we restore regulatory settings. 3239 */ 3240 static int regulatory_hint_core(const char *alpha2) 3241 { 3242 struct regulatory_request *request; 3243 3244 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3245 if (!request) 3246 return -ENOMEM; 3247 3248 request->alpha2[0] = alpha2[0]; 3249 request->alpha2[1] = alpha2[1]; 3250 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3251 request->wiphy_idx = WIPHY_IDX_INVALID; 3252 3253 queue_regulatory_request(request); 3254 3255 return 0; 3256 } 3257 3258 /* User hints */ 3259 int regulatory_hint_user(const char *alpha2, 3260 enum nl80211_user_reg_hint_type user_reg_hint_type) 3261 { 3262 struct regulatory_request *request; 3263 3264 if (WARN_ON(!alpha2)) 3265 return -EINVAL; 3266 3267 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3268 return -EINVAL; 3269 3270 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3271 if (!request) 3272 return -ENOMEM; 3273 3274 request->wiphy_idx = WIPHY_IDX_INVALID; 3275 request->alpha2[0] = alpha2[0]; 3276 request->alpha2[1] = alpha2[1]; 3277 request->initiator = NL80211_REGDOM_SET_BY_USER; 3278 request->user_reg_hint_type = user_reg_hint_type; 3279 3280 /* Allow calling CRDA again */ 3281 reset_crda_timeouts(); 3282 3283 queue_regulatory_request(request); 3284 3285 return 0; 3286 } 3287 3288 int regulatory_hint_indoor(bool is_indoor, u32 portid) 3289 { 3290 spin_lock(®_indoor_lock); 3291 3292 /* It is possible that more than one user space process is trying to 3293 * configure the indoor setting. To handle such cases, clear the indoor 3294 * setting in case that some process does not think that the device 3295 * is operating in an indoor environment. In addition, if a user space 3296 * process indicates that it is controlling the indoor setting, save its 3297 * portid, i.e., make it the owner. 3298 */ 3299 reg_is_indoor = is_indoor; 3300 if (reg_is_indoor) { 3301 if (!reg_is_indoor_portid) 3302 reg_is_indoor_portid = portid; 3303 } else { 3304 reg_is_indoor_portid = 0; 3305 } 3306 3307 spin_unlock(®_indoor_lock); 3308 3309 if (!is_indoor) 3310 reg_check_channels(); 3311 3312 return 0; 3313 } 3314 3315 void regulatory_netlink_notify(u32 portid) 3316 { 3317 spin_lock(®_indoor_lock); 3318 3319 if (reg_is_indoor_portid != portid) { 3320 spin_unlock(®_indoor_lock); 3321 return; 3322 } 3323 3324 reg_is_indoor = false; 3325 reg_is_indoor_portid = 0; 3326 3327 spin_unlock(®_indoor_lock); 3328 3329 reg_check_channels(); 3330 } 3331 3332 /* Driver hints */ 3333 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3334 { 3335 struct regulatory_request *request; 3336 3337 if (WARN_ON(!alpha2 || !wiphy)) 3338 return -EINVAL; 3339 3340 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3341 3342 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3343 if (!request) 3344 return -ENOMEM; 3345 3346 request->wiphy_idx = get_wiphy_idx(wiphy); 3347 3348 request->alpha2[0] = alpha2[0]; 3349 request->alpha2[1] = alpha2[1]; 3350 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3351 3352 /* Allow calling CRDA again */ 3353 reset_crda_timeouts(); 3354 3355 queue_regulatory_request(request); 3356 3357 return 0; 3358 } 3359 EXPORT_SYMBOL(regulatory_hint); 3360 3361 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3362 const u8 *country_ie, u8 country_ie_len) 3363 { 3364 char alpha2[2]; 3365 enum environment_cap env = ENVIRON_ANY; 3366 struct regulatory_request *request = NULL, *lr; 3367 3368 /* IE len must be evenly divisible by 2 */ 3369 if (country_ie_len & 0x01) 3370 return; 3371 3372 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3373 return; 3374 3375 request = kzalloc(sizeof(*request), GFP_KERNEL); 3376 if (!request) 3377 return; 3378 3379 alpha2[0] = country_ie[0]; 3380 alpha2[1] = country_ie[1]; 3381 3382 if (country_ie[2] == 'I') 3383 env = ENVIRON_INDOOR; 3384 else if (country_ie[2] == 'O') 3385 env = ENVIRON_OUTDOOR; 3386 3387 rcu_read_lock(); 3388 lr = get_last_request(); 3389 3390 if (unlikely(!lr)) 3391 goto out; 3392 3393 /* 3394 * We will run this only upon a successful connection on cfg80211. 3395 * We leave conflict resolution to the workqueue, where can hold 3396 * the RTNL. 3397 */ 3398 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3399 lr->wiphy_idx != WIPHY_IDX_INVALID) 3400 goto out; 3401 3402 request->wiphy_idx = get_wiphy_idx(wiphy); 3403 request->alpha2[0] = alpha2[0]; 3404 request->alpha2[1] = alpha2[1]; 3405 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3406 request->country_ie_env = env; 3407 3408 /* Allow calling CRDA again */ 3409 reset_crda_timeouts(); 3410 3411 queue_regulatory_request(request); 3412 request = NULL; 3413 out: 3414 kfree(request); 3415 rcu_read_unlock(); 3416 } 3417 3418 static void restore_alpha2(char *alpha2, bool reset_user) 3419 { 3420 /* indicates there is no alpha2 to consider for restoration */ 3421 alpha2[0] = '9'; 3422 alpha2[1] = '7'; 3423 3424 /* The user setting has precedence over the module parameter */ 3425 if (is_user_regdom_saved()) { 3426 /* Unless we're asked to ignore it and reset it */ 3427 if (reset_user) { 3428 pr_debug("Restoring regulatory settings including user preference\n"); 3429 user_alpha2[0] = '9'; 3430 user_alpha2[1] = '7'; 3431 3432 /* 3433 * If we're ignoring user settings, we still need to 3434 * check the module parameter to ensure we put things 3435 * back as they were for a full restore. 3436 */ 3437 if (!is_world_regdom(ieee80211_regdom)) { 3438 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3439 ieee80211_regdom[0], ieee80211_regdom[1]); 3440 alpha2[0] = ieee80211_regdom[0]; 3441 alpha2[1] = ieee80211_regdom[1]; 3442 } 3443 } else { 3444 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3445 user_alpha2[0], user_alpha2[1]); 3446 alpha2[0] = user_alpha2[0]; 3447 alpha2[1] = user_alpha2[1]; 3448 } 3449 } else if (!is_world_regdom(ieee80211_regdom)) { 3450 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3451 ieee80211_regdom[0], ieee80211_regdom[1]); 3452 alpha2[0] = ieee80211_regdom[0]; 3453 alpha2[1] = ieee80211_regdom[1]; 3454 } else 3455 pr_debug("Restoring regulatory settings\n"); 3456 } 3457 3458 static void restore_custom_reg_settings(struct wiphy *wiphy) 3459 { 3460 struct ieee80211_supported_band *sband; 3461 enum nl80211_band band; 3462 struct ieee80211_channel *chan; 3463 int i; 3464 3465 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3466 sband = wiphy->bands[band]; 3467 if (!sband) 3468 continue; 3469 for (i = 0; i < sband->n_channels; i++) { 3470 chan = &sband->channels[i]; 3471 chan->flags = chan->orig_flags; 3472 chan->max_antenna_gain = chan->orig_mag; 3473 chan->max_power = chan->orig_mpwr; 3474 chan->beacon_found = false; 3475 } 3476 } 3477 } 3478 3479 /* 3480 * Restoring regulatory settings involves ignoring any 3481 * possibly stale country IE information and user regulatory 3482 * settings if so desired, this includes any beacon hints 3483 * learned as we could have traveled outside to another country 3484 * after disconnection. To restore regulatory settings we do 3485 * exactly what we did at bootup: 3486 * 3487 * - send a core regulatory hint 3488 * - send a user regulatory hint if applicable 3489 * 3490 * Device drivers that send a regulatory hint for a specific country 3491 * keep their own regulatory domain on wiphy->regd so that does 3492 * not need to be remembered. 3493 */ 3494 static void restore_regulatory_settings(bool reset_user, bool cached) 3495 { 3496 char alpha2[2]; 3497 char world_alpha2[2]; 3498 struct reg_beacon *reg_beacon, *btmp; 3499 LIST_HEAD(tmp_reg_req_list); 3500 struct cfg80211_registered_device *rdev; 3501 3502 ASSERT_RTNL(); 3503 3504 /* 3505 * Clear the indoor setting in case that it is not controlled by user 3506 * space, as otherwise there is no guarantee that the device is still 3507 * operating in an indoor environment. 3508 */ 3509 spin_lock(®_indoor_lock); 3510 if (reg_is_indoor && !reg_is_indoor_portid) { 3511 reg_is_indoor = false; 3512 reg_check_channels(); 3513 } 3514 spin_unlock(®_indoor_lock); 3515 3516 reset_regdomains(true, &world_regdom); 3517 restore_alpha2(alpha2, reset_user); 3518 3519 /* 3520 * If there's any pending requests we simply 3521 * stash them to a temporary pending queue and 3522 * add then after we've restored regulatory 3523 * settings. 3524 */ 3525 spin_lock(®_requests_lock); 3526 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3527 spin_unlock(®_requests_lock); 3528 3529 /* Clear beacon hints */ 3530 spin_lock_bh(®_pending_beacons_lock); 3531 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3532 list_del(®_beacon->list); 3533 kfree(reg_beacon); 3534 } 3535 spin_unlock_bh(®_pending_beacons_lock); 3536 3537 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3538 list_del(®_beacon->list); 3539 kfree(reg_beacon); 3540 } 3541 3542 /* First restore to the basic regulatory settings */ 3543 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3544 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3545 3546 for_each_rdev(rdev) { 3547 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3548 continue; 3549 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3550 restore_custom_reg_settings(&rdev->wiphy); 3551 } 3552 3553 if (cached && (!is_an_alpha2(alpha2) || 3554 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3555 reset_regdomains(false, cfg80211_world_regdom); 3556 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3557 print_regdomain(get_cfg80211_regdom()); 3558 nl80211_send_reg_change_event(&core_request_world); 3559 reg_set_request_processed(); 3560 3561 if (is_an_alpha2(alpha2) && 3562 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3563 struct regulatory_request *ureq; 3564 3565 spin_lock(®_requests_lock); 3566 ureq = list_last_entry(®_requests_list, 3567 struct regulatory_request, 3568 list); 3569 list_del(&ureq->list); 3570 spin_unlock(®_requests_lock); 3571 3572 notify_self_managed_wiphys(ureq); 3573 reg_update_last_request(ureq); 3574 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3575 REGD_SOURCE_CACHED); 3576 } 3577 } else { 3578 regulatory_hint_core(world_alpha2); 3579 3580 /* 3581 * This restores the ieee80211_regdom module parameter 3582 * preference or the last user requested regulatory 3583 * settings, user regulatory settings takes precedence. 3584 */ 3585 if (is_an_alpha2(alpha2)) 3586 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3587 } 3588 3589 spin_lock(®_requests_lock); 3590 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3591 spin_unlock(®_requests_lock); 3592 3593 pr_debug("Kicking the queue\n"); 3594 3595 schedule_work(®_work); 3596 } 3597 3598 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3599 { 3600 struct cfg80211_registered_device *rdev; 3601 struct wireless_dev *wdev; 3602 3603 for_each_rdev(rdev) { 3604 wiphy_lock(&rdev->wiphy); 3605 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3606 if (!(wdev->wiphy->regulatory_flags & flag)) { 3607 wiphy_unlock(&rdev->wiphy); 3608 return false; 3609 } 3610 } 3611 wiphy_unlock(&rdev->wiphy); 3612 } 3613 3614 return true; 3615 } 3616 3617 void regulatory_hint_disconnect(void) 3618 { 3619 /* Restore of regulatory settings is not required when wiphy(s) 3620 * ignore IE from connected access point but clearance of beacon hints 3621 * is required when wiphy(s) supports beacon hints. 3622 */ 3623 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3624 struct reg_beacon *reg_beacon, *btmp; 3625 3626 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3627 return; 3628 3629 spin_lock_bh(®_pending_beacons_lock); 3630 list_for_each_entry_safe(reg_beacon, btmp, 3631 ®_pending_beacons, list) { 3632 list_del(®_beacon->list); 3633 kfree(reg_beacon); 3634 } 3635 spin_unlock_bh(®_pending_beacons_lock); 3636 3637 list_for_each_entry_safe(reg_beacon, btmp, 3638 ®_beacon_list, list) { 3639 list_del(®_beacon->list); 3640 kfree(reg_beacon); 3641 } 3642 3643 return; 3644 } 3645 3646 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3647 restore_regulatory_settings(false, true); 3648 } 3649 3650 static bool freq_is_chan_12_13_14(u32 freq) 3651 { 3652 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3653 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3654 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3655 return true; 3656 return false; 3657 } 3658 3659 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3660 { 3661 struct reg_beacon *pending_beacon; 3662 3663 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3664 if (ieee80211_channel_equal(beacon_chan, 3665 &pending_beacon->chan)) 3666 return true; 3667 return false; 3668 } 3669 3670 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3671 struct ieee80211_channel *beacon_chan, 3672 gfp_t gfp) 3673 { 3674 struct reg_beacon *reg_beacon; 3675 bool processing; 3676 3677 if (beacon_chan->beacon_found || 3678 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3679 (beacon_chan->band == NL80211_BAND_2GHZ && 3680 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3681 return 0; 3682 3683 spin_lock_bh(®_pending_beacons_lock); 3684 processing = pending_reg_beacon(beacon_chan); 3685 spin_unlock_bh(®_pending_beacons_lock); 3686 3687 if (processing) 3688 return 0; 3689 3690 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3691 if (!reg_beacon) 3692 return -ENOMEM; 3693 3694 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3695 beacon_chan->center_freq, beacon_chan->freq_offset, 3696 ieee80211_freq_khz_to_channel( 3697 ieee80211_channel_to_khz(beacon_chan)), 3698 wiphy_name(wiphy)); 3699 3700 memcpy(®_beacon->chan, beacon_chan, 3701 sizeof(struct ieee80211_channel)); 3702 3703 /* 3704 * Since we can be called from BH or and non-BH context 3705 * we must use spin_lock_bh() 3706 */ 3707 spin_lock_bh(®_pending_beacons_lock); 3708 list_add_tail(®_beacon->list, ®_pending_beacons); 3709 spin_unlock_bh(®_pending_beacons_lock); 3710 3711 schedule_work(®_work); 3712 3713 return 0; 3714 } 3715 3716 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3717 { 3718 unsigned int i; 3719 const struct ieee80211_reg_rule *reg_rule = NULL; 3720 const struct ieee80211_freq_range *freq_range = NULL; 3721 const struct ieee80211_power_rule *power_rule = NULL; 3722 char bw[32], cac_time[32]; 3723 3724 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3725 3726 for (i = 0; i < rd->n_reg_rules; i++) { 3727 reg_rule = &rd->reg_rules[i]; 3728 freq_range = ®_rule->freq_range; 3729 power_rule = ®_rule->power_rule; 3730 3731 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3732 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", 3733 freq_range->max_bandwidth_khz, 3734 reg_get_max_bandwidth(rd, reg_rule)); 3735 else 3736 snprintf(bw, sizeof(bw), "%d KHz", 3737 freq_range->max_bandwidth_khz); 3738 3739 if (reg_rule->flags & NL80211_RRF_DFS) 3740 scnprintf(cac_time, sizeof(cac_time), "%u s", 3741 reg_rule->dfs_cac_ms/1000); 3742 else 3743 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3744 3745 3746 /* 3747 * There may not be documentation for max antenna gain 3748 * in certain regions 3749 */ 3750 if (power_rule->max_antenna_gain) 3751 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3752 freq_range->start_freq_khz, 3753 freq_range->end_freq_khz, 3754 bw, 3755 power_rule->max_antenna_gain, 3756 power_rule->max_eirp, 3757 cac_time); 3758 else 3759 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3760 freq_range->start_freq_khz, 3761 freq_range->end_freq_khz, 3762 bw, 3763 power_rule->max_eirp, 3764 cac_time); 3765 } 3766 } 3767 3768 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3769 { 3770 switch (dfs_region) { 3771 case NL80211_DFS_UNSET: 3772 case NL80211_DFS_FCC: 3773 case NL80211_DFS_ETSI: 3774 case NL80211_DFS_JP: 3775 return true; 3776 default: 3777 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3778 return false; 3779 } 3780 } 3781 3782 static void print_regdomain(const struct ieee80211_regdomain *rd) 3783 { 3784 struct regulatory_request *lr = get_last_request(); 3785 3786 if (is_intersected_alpha2(rd->alpha2)) { 3787 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3788 struct cfg80211_registered_device *rdev; 3789 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3790 if (rdev) { 3791 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3792 rdev->country_ie_alpha2[0], 3793 rdev->country_ie_alpha2[1]); 3794 } else 3795 pr_debug("Current regulatory domain intersected:\n"); 3796 } else 3797 pr_debug("Current regulatory domain intersected:\n"); 3798 } else if (is_world_regdom(rd->alpha2)) { 3799 pr_debug("World regulatory domain updated:\n"); 3800 } else { 3801 if (is_unknown_alpha2(rd->alpha2)) 3802 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3803 else { 3804 if (reg_request_cell_base(lr)) 3805 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3806 rd->alpha2[0], rd->alpha2[1]); 3807 else 3808 pr_debug("Regulatory domain changed to country: %c%c\n", 3809 rd->alpha2[0], rd->alpha2[1]); 3810 } 3811 } 3812 3813 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3814 print_rd_rules(rd); 3815 } 3816 3817 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3818 { 3819 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3820 print_rd_rules(rd); 3821 } 3822 3823 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3824 { 3825 if (!is_world_regdom(rd->alpha2)) 3826 return -EINVAL; 3827 update_world_regdomain(rd); 3828 return 0; 3829 } 3830 3831 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3832 struct regulatory_request *user_request) 3833 { 3834 const struct ieee80211_regdomain *intersected_rd = NULL; 3835 3836 if (!regdom_changes(rd->alpha2)) 3837 return -EALREADY; 3838 3839 if (!is_valid_rd(rd)) { 3840 pr_err("Invalid regulatory domain detected: %c%c\n", 3841 rd->alpha2[0], rd->alpha2[1]); 3842 print_regdomain_info(rd); 3843 return -EINVAL; 3844 } 3845 3846 if (!user_request->intersect) { 3847 reset_regdomains(false, rd); 3848 return 0; 3849 } 3850 3851 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3852 if (!intersected_rd) 3853 return -EINVAL; 3854 3855 kfree(rd); 3856 rd = NULL; 3857 reset_regdomains(false, intersected_rd); 3858 3859 return 0; 3860 } 3861 3862 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3863 struct regulatory_request *driver_request) 3864 { 3865 const struct ieee80211_regdomain *regd; 3866 const struct ieee80211_regdomain *intersected_rd = NULL; 3867 const struct ieee80211_regdomain *tmp = NULL; 3868 struct wiphy *request_wiphy; 3869 3870 if (is_world_regdom(rd->alpha2)) 3871 return -EINVAL; 3872 3873 if (!regdom_changes(rd->alpha2)) 3874 return -EALREADY; 3875 3876 if (!is_valid_rd(rd)) { 3877 pr_err("Invalid regulatory domain detected: %c%c\n", 3878 rd->alpha2[0], rd->alpha2[1]); 3879 print_regdomain_info(rd); 3880 return -EINVAL; 3881 } 3882 3883 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3884 if (!request_wiphy) 3885 return -ENODEV; 3886 3887 if (!driver_request->intersect) { 3888 ASSERT_RTNL(); 3889 wiphy_lock(request_wiphy); 3890 if (request_wiphy->regd) 3891 tmp = get_wiphy_regdom(request_wiphy); 3892 3893 regd = reg_copy_regd(rd); 3894 if (IS_ERR(regd)) { 3895 wiphy_unlock(request_wiphy); 3896 return PTR_ERR(regd); 3897 } 3898 3899 rcu_assign_pointer(request_wiphy->regd, regd); 3900 rcu_free_regdom(tmp); 3901 wiphy_unlock(request_wiphy); 3902 reset_regdomains(false, rd); 3903 return 0; 3904 } 3905 3906 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3907 if (!intersected_rd) 3908 return -EINVAL; 3909 3910 /* 3911 * We can trash what CRDA provided now. 3912 * However if a driver requested this specific regulatory 3913 * domain we keep it for its private use 3914 */ 3915 tmp = get_wiphy_regdom(request_wiphy); 3916 rcu_assign_pointer(request_wiphy->regd, rd); 3917 rcu_free_regdom(tmp); 3918 3919 rd = NULL; 3920 3921 reset_regdomains(false, intersected_rd); 3922 3923 return 0; 3924 } 3925 3926 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3927 struct regulatory_request *country_ie_request) 3928 { 3929 struct wiphy *request_wiphy; 3930 3931 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3932 !is_unknown_alpha2(rd->alpha2)) 3933 return -EINVAL; 3934 3935 /* 3936 * Lets only bother proceeding on the same alpha2 if the current 3937 * rd is non static (it means CRDA was present and was used last) 3938 * and the pending request came in from a country IE 3939 */ 3940 3941 if (!is_valid_rd(rd)) { 3942 pr_err("Invalid regulatory domain detected: %c%c\n", 3943 rd->alpha2[0], rd->alpha2[1]); 3944 print_regdomain_info(rd); 3945 return -EINVAL; 3946 } 3947 3948 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3949 if (!request_wiphy) 3950 return -ENODEV; 3951 3952 if (country_ie_request->intersect) 3953 return -EINVAL; 3954 3955 reset_regdomains(false, rd); 3956 return 0; 3957 } 3958 3959 /* 3960 * Use this call to set the current regulatory domain. Conflicts with 3961 * multiple drivers can be ironed out later. Caller must've already 3962 * kmalloc'd the rd structure. 3963 */ 3964 int set_regdom(const struct ieee80211_regdomain *rd, 3965 enum ieee80211_regd_source regd_src) 3966 { 3967 struct regulatory_request *lr; 3968 bool user_reset = false; 3969 int r; 3970 3971 if (IS_ERR_OR_NULL(rd)) 3972 return -ENODATA; 3973 3974 if (!reg_is_valid_request(rd->alpha2)) { 3975 kfree(rd); 3976 return -EINVAL; 3977 } 3978 3979 if (regd_src == REGD_SOURCE_CRDA) 3980 reset_crda_timeouts(); 3981 3982 lr = get_last_request(); 3983 3984 /* Note that this doesn't update the wiphys, this is done below */ 3985 switch (lr->initiator) { 3986 case NL80211_REGDOM_SET_BY_CORE: 3987 r = reg_set_rd_core(rd); 3988 break; 3989 case NL80211_REGDOM_SET_BY_USER: 3990 cfg80211_save_user_regdom(rd); 3991 r = reg_set_rd_user(rd, lr); 3992 user_reset = true; 3993 break; 3994 case NL80211_REGDOM_SET_BY_DRIVER: 3995 r = reg_set_rd_driver(rd, lr); 3996 break; 3997 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3998 r = reg_set_rd_country_ie(rd, lr); 3999 break; 4000 default: 4001 WARN(1, "invalid initiator %d\n", lr->initiator); 4002 kfree(rd); 4003 return -EINVAL; 4004 } 4005 4006 if (r) { 4007 switch (r) { 4008 case -EALREADY: 4009 reg_set_request_processed(); 4010 break; 4011 default: 4012 /* Back to world regulatory in case of errors */ 4013 restore_regulatory_settings(user_reset, false); 4014 } 4015 4016 kfree(rd); 4017 return r; 4018 } 4019 4020 /* This would make this whole thing pointless */ 4021 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 4022 return -EINVAL; 4023 4024 /* update all wiphys now with the new established regulatory domain */ 4025 update_all_wiphy_regulatory(lr->initiator); 4026 4027 print_regdomain(get_cfg80211_regdom()); 4028 4029 nl80211_send_reg_change_event(lr); 4030 4031 reg_set_request_processed(); 4032 4033 return 0; 4034 } 4035 4036 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 4037 struct ieee80211_regdomain *rd) 4038 { 4039 const struct ieee80211_regdomain *regd; 4040 const struct ieee80211_regdomain *prev_regd; 4041 struct cfg80211_registered_device *rdev; 4042 4043 if (WARN_ON(!wiphy || !rd)) 4044 return -EINVAL; 4045 4046 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 4047 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 4048 return -EPERM; 4049 4050 if (WARN(!is_valid_rd(rd), 4051 "Invalid regulatory domain detected: %c%c\n", 4052 rd->alpha2[0], rd->alpha2[1])) { 4053 print_regdomain_info(rd); 4054 return -EINVAL; 4055 } 4056 4057 regd = reg_copy_regd(rd); 4058 if (IS_ERR(regd)) 4059 return PTR_ERR(regd); 4060 4061 rdev = wiphy_to_rdev(wiphy); 4062 4063 spin_lock(®_requests_lock); 4064 prev_regd = rdev->requested_regd; 4065 rdev->requested_regd = regd; 4066 spin_unlock(®_requests_lock); 4067 4068 kfree(prev_regd); 4069 return 0; 4070 } 4071 4072 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 4073 struct ieee80211_regdomain *rd) 4074 { 4075 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 4076 4077 if (ret) 4078 return ret; 4079 4080 schedule_work(®_work); 4081 return 0; 4082 } 4083 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 4084 4085 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 4086 struct ieee80211_regdomain *rd) 4087 { 4088 int ret; 4089 4090 ASSERT_RTNL(); 4091 4092 ret = __regulatory_set_wiphy_regd(wiphy, rd); 4093 if (ret) 4094 return ret; 4095 4096 /* process the request immediately */ 4097 reg_process_self_managed_hint(wiphy); 4098 reg_check_channels(); 4099 return 0; 4100 } 4101 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync); 4102 4103 void wiphy_regulatory_register(struct wiphy *wiphy) 4104 { 4105 struct regulatory_request *lr = get_last_request(); 4106 4107 /* self-managed devices ignore beacon hints and country IE */ 4108 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 4109 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 4110 REGULATORY_COUNTRY_IE_IGNORE; 4111 4112 /* 4113 * The last request may have been received before this 4114 * registration call. Call the driver notifier if 4115 * initiator is USER. 4116 */ 4117 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 4118 reg_call_notifier(wiphy, lr); 4119 } 4120 4121 if (!reg_dev_ignore_cell_hint(wiphy)) 4122 reg_num_devs_support_basehint++; 4123 4124 wiphy_update_regulatory(wiphy, lr->initiator); 4125 wiphy_all_share_dfs_chan_state(wiphy); 4126 reg_process_self_managed_hints(); 4127 } 4128 4129 void wiphy_regulatory_deregister(struct wiphy *wiphy) 4130 { 4131 struct wiphy *request_wiphy = NULL; 4132 struct regulatory_request *lr; 4133 4134 lr = get_last_request(); 4135 4136 if (!reg_dev_ignore_cell_hint(wiphy)) 4137 reg_num_devs_support_basehint--; 4138 4139 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4140 RCU_INIT_POINTER(wiphy->regd, NULL); 4141 4142 if (lr) 4143 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4144 4145 if (!request_wiphy || request_wiphy != wiphy) 4146 return; 4147 4148 lr->wiphy_idx = WIPHY_IDX_INVALID; 4149 lr->country_ie_env = ENVIRON_ANY; 4150 } 4151 4152 /* 4153 * See FCC notices for UNII band definitions 4154 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4155 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4156 */ 4157 int cfg80211_get_unii(int freq) 4158 { 4159 /* UNII-1 */ 4160 if (freq >= 5150 && freq <= 5250) 4161 return 0; 4162 4163 /* UNII-2A */ 4164 if (freq > 5250 && freq <= 5350) 4165 return 1; 4166 4167 /* UNII-2B */ 4168 if (freq > 5350 && freq <= 5470) 4169 return 2; 4170 4171 /* UNII-2C */ 4172 if (freq > 5470 && freq <= 5725) 4173 return 3; 4174 4175 /* UNII-3 */ 4176 if (freq > 5725 && freq <= 5825) 4177 return 4; 4178 4179 /* UNII-5 */ 4180 if (freq > 5925 && freq <= 6425) 4181 return 5; 4182 4183 /* UNII-6 */ 4184 if (freq > 6425 && freq <= 6525) 4185 return 6; 4186 4187 /* UNII-7 */ 4188 if (freq > 6525 && freq <= 6875) 4189 return 7; 4190 4191 /* UNII-8 */ 4192 if (freq > 6875 && freq <= 7125) 4193 return 8; 4194 4195 return -EINVAL; 4196 } 4197 4198 bool regulatory_indoor_allowed(void) 4199 { 4200 return reg_is_indoor; 4201 } 4202 4203 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4204 { 4205 const struct ieee80211_regdomain *regd = NULL; 4206 const struct ieee80211_regdomain *wiphy_regd = NULL; 4207 bool pre_cac_allowed = false; 4208 4209 rcu_read_lock(); 4210 4211 regd = rcu_dereference(cfg80211_regdomain); 4212 wiphy_regd = rcu_dereference(wiphy->regd); 4213 if (!wiphy_regd) { 4214 if (regd->dfs_region == NL80211_DFS_ETSI) 4215 pre_cac_allowed = true; 4216 4217 rcu_read_unlock(); 4218 4219 return pre_cac_allowed; 4220 } 4221 4222 if (regd->dfs_region == wiphy_regd->dfs_region && 4223 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4224 pre_cac_allowed = true; 4225 4226 rcu_read_unlock(); 4227 4228 return pre_cac_allowed; 4229 } 4230 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4231 4232 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4233 { 4234 struct wireless_dev *wdev; 4235 /* If we finished CAC or received radar, we should end any 4236 * CAC running on the same channels. 4237 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4238 * either all channels are available - those the CAC_FINISHED 4239 * event has effected another wdev state, or there is a channel 4240 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4241 * event has effected another wdev state. 4242 * In both cases we should end the CAC on the wdev. 4243 */ 4244 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4245 struct cfg80211_chan_def *chandef; 4246 4247 if (!wdev->cac_started) 4248 continue; 4249 4250 /* FIXME: radar detection is tied to link 0 for now */ 4251 chandef = wdev_chandef(wdev, 0); 4252 if (!chandef) 4253 continue; 4254 4255 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef)) 4256 rdev_end_cac(rdev, wdev->netdev); 4257 } 4258 } 4259 4260 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4261 struct cfg80211_chan_def *chandef, 4262 enum nl80211_dfs_state dfs_state, 4263 enum nl80211_radar_event event) 4264 { 4265 struct cfg80211_registered_device *rdev; 4266 4267 ASSERT_RTNL(); 4268 4269 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4270 return; 4271 4272 for_each_rdev(rdev) { 4273 if (wiphy == &rdev->wiphy) 4274 continue; 4275 4276 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4277 continue; 4278 4279 if (!ieee80211_get_channel(&rdev->wiphy, 4280 chandef->chan->center_freq)) 4281 continue; 4282 4283 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4284 4285 if (event == NL80211_RADAR_DETECTED || 4286 event == NL80211_RADAR_CAC_FINISHED) { 4287 cfg80211_sched_dfs_chan_update(rdev); 4288 cfg80211_check_and_end_cac(rdev); 4289 } 4290 4291 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4292 } 4293 } 4294 4295 static int __init regulatory_init_db(void) 4296 { 4297 int err; 4298 4299 /* 4300 * It's possible that - due to other bugs/issues - cfg80211 4301 * never called regulatory_init() below, or that it failed; 4302 * in that case, don't try to do any further work here as 4303 * it's doomed to lead to crashes. 4304 */ 4305 if (IS_ERR_OR_NULL(reg_pdev)) 4306 return -EINVAL; 4307 4308 err = load_builtin_regdb_keys(); 4309 if (err) { 4310 platform_device_unregister(reg_pdev); 4311 return err; 4312 } 4313 4314 /* We always try to get an update for the static regdomain */ 4315 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4316 if (err) { 4317 if (err == -ENOMEM) { 4318 platform_device_unregister(reg_pdev); 4319 return err; 4320 } 4321 /* 4322 * N.B. kobject_uevent_env() can fail mainly for when we're out 4323 * memory which is handled and propagated appropriately above 4324 * but it can also fail during a netlink_broadcast() or during 4325 * early boot for call_usermodehelper(). For now treat these 4326 * errors as non-fatal. 4327 */ 4328 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4329 } 4330 4331 /* 4332 * Finally, if the user set the module parameter treat it 4333 * as a user hint. 4334 */ 4335 if (!is_world_regdom(ieee80211_regdom)) 4336 regulatory_hint_user(ieee80211_regdom, 4337 NL80211_USER_REG_HINT_USER); 4338 4339 return 0; 4340 } 4341 #ifndef MODULE 4342 late_initcall(regulatory_init_db); 4343 #endif 4344 4345 int __init regulatory_init(void) 4346 { 4347 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4348 if (IS_ERR(reg_pdev)) 4349 return PTR_ERR(reg_pdev); 4350 4351 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4352 4353 user_alpha2[0] = '9'; 4354 user_alpha2[1] = '7'; 4355 4356 #ifdef MODULE 4357 return regulatory_init_db(); 4358 #else 4359 return 0; 4360 #endif 4361 } 4362 4363 void regulatory_exit(void) 4364 { 4365 struct regulatory_request *reg_request, *tmp; 4366 struct reg_beacon *reg_beacon, *btmp; 4367 4368 cancel_work_sync(®_work); 4369 cancel_crda_timeout_sync(); 4370 cancel_delayed_work_sync(®_check_chans); 4371 4372 /* Lock to suppress warnings */ 4373 rtnl_lock(); 4374 reset_regdomains(true, NULL); 4375 rtnl_unlock(); 4376 4377 dev_set_uevent_suppress(®_pdev->dev, true); 4378 4379 platform_device_unregister(reg_pdev); 4380 4381 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4382 list_del(®_beacon->list); 4383 kfree(reg_beacon); 4384 } 4385 4386 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4387 list_del(®_beacon->list); 4388 kfree(reg_beacon); 4389 } 4390 4391 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4392 list_del(®_request->list); 4393 kfree(reg_request); 4394 } 4395 4396 if (!IS_ERR_OR_NULL(regdb)) 4397 kfree(regdb); 4398 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4399 kfree(cfg80211_user_regdom); 4400 4401 free_regdb_keyring(); 4402 } 4403