xref: /linux/net/wireless/reg.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2024 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <linux/units.h>
61 
62 #include <net/cfg80211.h>
63 #include "core.h"
64 #include "reg.h"
65 #include "rdev-ops.h"
66 #include "nl80211.h"
67 
68 /*
69  * Grace period we give before making sure all current interfaces reside on
70  * channels allowed by the current regulatory domain.
71  */
72 #define REG_ENFORCE_GRACE_MS 60000
73 
74 /**
75  * enum reg_request_treatment - regulatory request treatment
76  *
77  * @REG_REQ_OK: continue processing the regulatory request
78  * @REG_REQ_IGNORE: ignore the regulatory request
79  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
80  *	be intersected with the current one.
81  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
82  *	regulatory settings, and no further processing is required.
83  */
84 enum reg_request_treatment {
85 	REG_REQ_OK,
86 	REG_REQ_IGNORE,
87 	REG_REQ_INTERSECT,
88 	REG_REQ_ALREADY_SET,
89 };
90 
91 static struct regulatory_request core_request_world = {
92 	.initiator = NL80211_REGDOM_SET_BY_CORE,
93 	.alpha2[0] = '0',
94 	.alpha2[1] = '0',
95 	.intersect = false,
96 	.processed = true,
97 	.country_ie_env = ENVIRON_ANY,
98 };
99 
100 /*
101  * Receipt of information from last regulatory request,
102  * protected by RTNL (and can be accessed with RCU protection)
103  */
104 static struct regulatory_request __rcu *last_request =
105 	(void __force __rcu *)&core_request_world;
106 
107 /* To trigger userspace events and load firmware */
108 static struct platform_device *reg_pdev;
109 
110 /*
111  * Central wireless core regulatory domains, we only need two,
112  * the current one and a world regulatory domain in case we have no
113  * information to give us an alpha2.
114  * (protected by RTNL, can be read under RCU)
115  */
116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117 
118 /*
119  * Number of devices that registered to the core
120  * that support cellular base station regulatory hints
121  * (protected by RTNL)
122  */
123 static int reg_num_devs_support_basehint;
124 
125 /*
126  * State variable indicating if the platform on which the devices
127  * are attached is operating in an indoor environment. The state variable
128  * is relevant for all registered devices.
129  */
130 static bool reg_is_indoor;
131 static DEFINE_SPINLOCK(reg_indoor_lock);
132 
133 /* Used to track the userspace process controlling the indoor setting */
134 static u32 reg_is_indoor_portid;
135 
136 static void restore_regulatory_settings(bool reset_user, bool cached);
137 static void print_regdomain(const struct ieee80211_regdomain *rd);
138 static void reg_process_hint(struct regulatory_request *reg_request);
139 
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142 	return rcu_dereference_rtnl(cfg80211_regdomain);
143 }
144 
145 /*
146  * Returns the regulatory domain associated with the wiphy.
147  *
148  * Requires any of RTNL, wiphy mutex or RCU protection.
149  */
150 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
151 {
152 	return rcu_dereference_check(wiphy->regd,
153 				     lockdep_is_held(&wiphy->mtx) ||
154 				     lockdep_rtnl_is_held());
155 }
156 EXPORT_SYMBOL(get_wiphy_regdom);
157 
158 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
159 {
160 	switch (dfs_region) {
161 	case NL80211_DFS_UNSET:
162 		return "unset";
163 	case NL80211_DFS_FCC:
164 		return "FCC";
165 	case NL80211_DFS_ETSI:
166 		return "ETSI";
167 	case NL80211_DFS_JP:
168 		return "JP";
169 	}
170 	return "Unknown";
171 }
172 
173 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
174 {
175 	const struct ieee80211_regdomain *regd = NULL;
176 	const struct ieee80211_regdomain *wiphy_regd = NULL;
177 	enum nl80211_dfs_regions dfs_region;
178 
179 	rcu_read_lock();
180 	regd = get_cfg80211_regdom();
181 	dfs_region = regd->dfs_region;
182 
183 	if (!wiphy)
184 		goto out;
185 
186 	wiphy_regd = get_wiphy_regdom(wiphy);
187 	if (!wiphy_regd)
188 		goto out;
189 
190 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
191 		dfs_region = wiphy_regd->dfs_region;
192 		goto out;
193 	}
194 
195 	if (wiphy_regd->dfs_region == regd->dfs_region)
196 		goto out;
197 
198 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
199 		 dev_name(&wiphy->dev),
200 		 reg_dfs_region_str(wiphy_regd->dfs_region),
201 		 reg_dfs_region_str(regd->dfs_region));
202 
203 out:
204 	rcu_read_unlock();
205 
206 	return dfs_region;
207 }
208 
209 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
210 {
211 	if (!r)
212 		return;
213 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
214 }
215 
216 static struct regulatory_request *get_last_request(void)
217 {
218 	return rcu_dereference_rtnl(last_request);
219 }
220 
221 /* Used to queue up regulatory hints */
222 static LIST_HEAD(reg_requests_list);
223 static DEFINE_SPINLOCK(reg_requests_lock);
224 
225 /* Used to queue up beacon hints for review */
226 static LIST_HEAD(reg_pending_beacons);
227 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
228 
229 /* Used to keep track of processed beacon hints */
230 static LIST_HEAD(reg_beacon_list);
231 
232 struct reg_beacon {
233 	struct list_head list;
234 	struct ieee80211_channel chan;
235 };
236 
237 static void reg_check_chans_work(struct work_struct *work);
238 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
239 
240 static void reg_todo(struct work_struct *work);
241 static DECLARE_WORK(reg_work, reg_todo);
242 
243 /* We keep a static world regulatory domain in case of the absence of CRDA */
244 static const struct ieee80211_regdomain world_regdom = {
245 	.n_reg_rules = 8,
246 	.alpha2 =  "00",
247 	.reg_rules = {
248 		/* IEEE 802.11b/g, channels 1..11 */
249 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
250 		/* IEEE 802.11b/g, channels 12..13. */
251 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
252 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
253 		/* IEEE 802.11 channel 14 - Only JP enables
254 		 * this and for 802.11b only */
255 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
256 			NL80211_RRF_NO_IR |
257 			NL80211_RRF_NO_OFDM),
258 		/* IEEE 802.11a, channel 36..48 */
259 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
260                         NL80211_RRF_NO_IR |
261                         NL80211_RRF_AUTO_BW),
262 
263 		/* IEEE 802.11a, channel 52..64 - DFS required */
264 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
265 			NL80211_RRF_NO_IR |
266 			NL80211_RRF_AUTO_BW |
267 			NL80211_RRF_DFS),
268 
269 		/* IEEE 802.11a, channel 100..144 - DFS required */
270 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
271 			NL80211_RRF_NO_IR |
272 			NL80211_RRF_DFS),
273 
274 		/* IEEE 802.11a, channel 149..165 */
275 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
276 			NL80211_RRF_NO_IR),
277 
278 		/* IEEE 802.11ad (60GHz), channels 1..3 */
279 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
280 	}
281 };
282 
283 /* protected by RTNL */
284 static const struct ieee80211_regdomain *cfg80211_world_regdom =
285 	&world_regdom;
286 
287 static char *ieee80211_regdom = "00";
288 static char user_alpha2[2];
289 static const struct ieee80211_regdomain *cfg80211_user_regdom;
290 
291 module_param(ieee80211_regdom, charp, 0444);
292 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
293 
294 static void reg_free_request(struct regulatory_request *request)
295 {
296 	if (request == &core_request_world)
297 		return;
298 
299 	if (request != get_last_request())
300 		kfree(request);
301 }
302 
303 static void reg_free_last_request(void)
304 {
305 	struct regulatory_request *lr = get_last_request();
306 
307 	if (lr != &core_request_world && lr)
308 		kfree_rcu(lr, rcu_head);
309 }
310 
311 static void reg_update_last_request(struct regulatory_request *request)
312 {
313 	struct regulatory_request *lr;
314 
315 	lr = get_last_request();
316 	if (lr == request)
317 		return;
318 
319 	reg_free_last_request();
320 	rcu_assign_pointer(last_request, request);
321 }
322 
323 static void reset_regdomains(bool full_reset,
324 			     const struct ieee80211_regdomain *new_regdom)
325 {
326 	const struct ieee80211_regdomain *r;
327 
328 	ASSERT_RTNL();
329 
330 	r = get_cfg80211_regdom();
331 
332 	/* avoid freeing static information or freeing something twice */
333 	if (r == cfg80211_world_regdom)
334 		r = NULL;
335 	if (cfg80211_world_regdom == &world_regdom)
336 		cfg80211_world_regdom = NULL;
337 	if (r == &world_regdom)
338 		r = NULL;
339 
340 	rcu_free_regdom(r);
341 	rcu_free_regdom(cfg80211_world_regdom);
342 
343 	cfg80211_world_regdom = &world_regdom;
344 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
345 
346 	if (!full_reset)
347 		return;
348 
349 	reg_update_last_request(&core_request_world);
350 }
351 
352 /*
353  * Dynamic world regulatory domain requested by the wireless
354  * core upon initialization
355  */
356 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
357 {
358 	struct regulatory_request *lr;
359 
360 	lr = get_last_request();
361 
362 	WARN_ON(!lr);
363 
364 	reset_regdomains(false, rd);
365 
366 	cfg80211_world_regdom = rd;
367 }
368 
369 bool is_world_regdom(const char *alpha2)
370 {
371 	if (!alpha2)
372 		return false;
373 	return alpha2[0] == '0' && alpha2[1] == '0';
374 }
375 
376 static bool is_alpha2_set(const char *alpha2)
377 {
378 	if (!alpha2)
379 		return false;
380 	return alpha2[0] && alpha2[1];
381 }
382 
383 static bool is_unknown_alpha2(const char *alpha2)
384 {
385 	if (!alpha2)
386 		return false;
387 	/*
388 	 * Special case where regulatory domain was built by driver
389 	 * but a specific alpha2 cannot be determined
390 	 */
391 	return alpha2[0] == '9' && alpha2[1] == '9';
392 }
393 
394 static bool is_intersected_alpha2(const char *alpha2)
395 {
396 	if (!alpha2)
397 		return false;
398 	/*
399 	 * Special case where regulatory domain is the
400 	 * result of an intersection between two regulatory domain
401 	 * structures
402 	 */
403 	return alpha2[0] == '9' && alpha2[1] == '8';
404 }
405 
406 static bool is_an_alpha2(const char *alpha2)
407 {
408 	if (!alpha2)
409 		return false;
410 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
411 }
412 
413 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
414 {
415 	if (!alpha2_x || !alpha2_y)
416 		return false;
417 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
418 }
419 
420 static bool regdom_changes(const char *alpha2)
421 {
422 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
423 
424 	if (!r)
425 		return true;
426 	return !alpha2_equal(r->alpha2, alpha2);
427 }
428 
429 /*
430  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
431  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
432  * has ever been issued.
433  */
434 static bool is_user_regdom_saved(void)
435 {
436 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
437 		return false;
438 
439 	/* This would indicate a mistake on the design */
440 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
441 		 "Unexpected user alpha2: %c%c\n",
442 		 user_alpha2[0], user_alpha2[1]))
443 		return false;
444 
445 	return true;
446 }
447 
448 static const struct ieee80211_regdomain *
449 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
450 {
451 	struct ieee80211_regdomain *regd;
452 	unsigned int i;
453 
454 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
455 		       GFP_KERNEL);
456 	if (!regd)
457 		return ERR_PTR(-ENOMEM);
458 
459 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
460 
461 	for (i = 0; i < src_regd->n_reg_rules; i++)
462 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
463 		       sizeof(struct ieee80211_reg_rule));
464 
465 	return regd;
466 }
467 
468 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
469 {
470 	ASSERT_RTNL();
471 
472 	if (!IS_ERR(cfg80211_user_regdom))
473 		kfree(cfg80211_user_regdom);
474 	cfg80211_user_regdom = reg_copy_regd(rd);
475 }
476 
477 struct reg_regdb_apply_request {
478 	struct list_head list;
479 	const struct ieee80211_regdomain *regdom;
480 };
481 
482 static LIST_HEAD(reg_regdb_apply_list);
483 static DEFINE_MUTEX(reg_regdb_apply_mutex);
484 
485 static void reg_regdb_apply(struct work_struct *work)
486 {
487 	struct reg_regdb_apply_request *request;
488 
489 	rtnl_lock();
490 
491 	mutex_lock(&reg_regdb_apply_mutex);
492 	while (!list_empty(&reg_regdb_apply_list)) {
493 		request = list_first_entry(&reg_regdb_apply_list,
494 					   struct reg_regdb_apply_request,
495 					   list);
496 		list_del(&request->list);
497 
498 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
499 		kfree(request);
500 	}
501 	mutex_unlock(&reg_regdb_apply_mutex);
502 
503 	rtnl_unlock();
504 }
505 
506 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
507 
508 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
509 {
510 	struct reg_regdb_apply_request *request;
511 
512 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
513 	if (!request) {
514 		kfree(regdom);
515 		return -ENOMEM;
516 	}
517 
518 	request->regdom = regdom;
519 
520 	mutex_lock(&reg_regdb_apply_mutex);
521 	list_add_tail(&request->list, &reg_regdb_apply_list);
522 	mutex_unlock(&reg_regdb_apply_mutex);
523 
524 	schedule_work(&reg_regdb_work);
525 	return 0;
526 }
527 
528 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
529 /* Max number of consecutive attempts to communicate with CRDA  */
530 #define REG_MAX_CRDA_TIMEOUTS 10
531 
532 static u32 reg_crda_timeouts;
533 
534 static void crda_timeout_work(struct work_struct *work);
535 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
536 
537 static void crda_timeout_work(struct work_struct *work)
538 {
539 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
540 	rtnl_lock();
541 	reg_crda_timeouts++;
542 	restore_regulatory_settings(true, false);
543 	rtnl_unlock();
544 }
545 
546 static void cancel_crda_timeout(void)
547 {
548 	cancel_delayed_work(&crda_timeout);
549 }
550 
551 static void cancel_crda_timeout_sync(void)
552 {
553 	cancel_delayed_work_sync(&crda_timeout);
554 }
555 
556 static void reset_crda_timeouts(void)
557 {
558 	reg_crda_timeouts = 0;
559 }
560 
561 /*
562  * This lets us keep regulatory code which is updated on a regulatory
563  * basis in userspace.
564  */
565 static int call_crda(const char *alpha2)
566 {
567 	char country[12];
568 	char *env[] = { country, NULL };
569 	int ret;
570 
571 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
572 		 alpha2[0], alpha2[1]);
573 
574 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
575 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
576 		return -EINVAL;
577 	}
578 
579 	if (!is_world_regdom((char *) alpha2))
580 		pr_debug("Calling CRDA for country: %c%c\n",
581 			 alpha2[0], alpha2[1]);
582 	else
583 		pr_debug("Calling CRDA to update world regulatory domain\n");
584 
585 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
586 	if (ret)
587 		return ret;
588 
589 	queue_delayed_work(system_power_efficient_wq,
590 			   &crda_timeout, msecs_to_jiffies(3142));
591 	return 0;
592 }
593 #else
594 static inline void cancel_crda_timeout(void) {}
595 static inline void cancel_crda_timeout_sync(void) {}
596 static inline void reset_crda_timeouts(void) {}
597 static inline int call_crda(const char *alpha2)
598 {
599 	return -ENODATA;
600 }
601 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
602 
603 /* code to directly load a firmware database through request_firmware */
604 static const struct fwdb_header *regdb;
605 
606 struct fwdb_country {
607 	u8 alpha2[2];
608 	__be16 coll_ptr;
609 	/* this struct cannot be extended */
610 } __packed __aligned(4);
611 
612 struct fwdb_collection {
613 	u8 len;
614 	u8 n_rules;
615 	u8 dfs_region;
616 	/* no optional data yet */
617 	/* aligned to 2, then followed by __be16 array of rule pointers */
618 } __packed __aligned(4);
619 
620 enum fwdb_flags {
621 	FWDB_FLAG_NO_OFDM	= BIT(0),
622 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
623 	FWDB_FLAG_DFS		= BIT(2),
624 	FWDB_FLAG_NO_IR		= BIT(3),
625 	FWDB_FLAG_AUTO_BW	= BIT(4),
626 };
627 
628 struct fwdb_wmm_ac {
629 	u8 ecw;
630 	u8 aifsn;
631 	__be16 cot;
632 } __packed;
633 
634 struct fwdb_wmm_rule {
635 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
636 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
637 } __packed;
638 
639 struct fwdb_rule {
640 	u8 len;
641 	u8 flags;
642 	__be16 max_eirp;
643 	__be32 start, end, max_bw;
644 	/* start of optional data */
645 	__be16 cac_timeout;
646 	__be16 wmm_ptr;
647 } __packed __aligned(4);
648 
649 #define FWDB_MAGIC 0x52474442
650 #define FWDB_VERSION 20
651 
652 struct fwdb_header {
653 	__be32 magic;
654 	__be32 version;
655 	struct fwdb_country country[];
656 } __packed __aligned(4);
657 
658 static int ecw2cw(int ecw)
659 {
660 	return (1 << ecw) - 1;
661 }
662 
663 static bool valid_wmm(struct fwdb_wmm_rule *rule)
664 {
665 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
666 	int i;
667 
668 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
669 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
670 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
671 		u8 aifsn = ac[i].aifsn;
672 
673 		if (cw_min >= cw_max)
674 			return false;
675 
676 		if (aifsn < 1)
677 			return false;
678 	}
679 
680 	return true;
681 }
682 
683 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
684 {
685 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
686 
687 	if ((u8 *)rule + sizeof(rule->len) > data + size)
688 		return false;
689 
690 	/* mandatory fields */
691 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
692 		return false;
693 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
694 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
695 		struct fwdb_wmm_rule *wmm;
696 
697 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
698 			return false;
699 
700 		wmm = (void *)(data + wmm_ptr);
701 
702 		if (!valid_wmm(wmm))
703 			return false;
704 	}
705 	return true;
706 }
707 
708 static bool valid_country(const u8 *data, unsigned int size,
709 			  const struct fwdb_country *country)
710 {
711 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
712 	struct fwdb_collection *coll = (void *)(data + ptr);
713 	__be16 *rules_ptr;
714 	unsigned int i;
715 
716 	/* make sure we can read len/n_rules */
717 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
718 		return false;
719 
720 	/* make sure base struct and all rules fit */
721 	if ((u8 *)coll + ALIGN(coll->len, 2) +
722 	    (coll->n_rules * 2) > data + size)
723 		return false;
724 
725 	/* mandatory fields must exist */
726 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
727 		return false;
728 
729 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
730 
731 	for (i = 0; i < coll->n_rules; i++) {
732 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
733 
734 		if (!valid_rule(data, size, rule_ptr))
735 			return false;
736 	}
737 
738 	return true;
739 }
740 
741 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
742 #include <keys/asymmetric-type.h>
743 
744 static struct key *builtin_regdb_keys;
745 
746 static int __init load_builtin_regdb_keys(void)
747 {
748 	builtin_regdb_keys =
749 		keyring_alloc(".builtin_regdb_keys",
750 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
751 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
752 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
753 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
754 	if (IS_ERR(builtin_regdb_keys))
755 		return PTR_ERR(builtin_regdb_keys);
756 
757 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
758 
759 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
760 	x509_load_certificate_list(shipped_regdb_certs,
761 				   shipped_regdb_certs_len,
762 				   builtin_regdb_keys);
763 #endif
764 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
765 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
766 		x509_load_certificate_list(extra_regdb_certs,
767 					   extra_regdb_certs_len,
768 					   builtin_regdb_keys);
769 #endif
770 
771 	return 0;
772 }
773 
774 MODULE_FIRMWARE("regulatory.db.p7s");
775 
776 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
777 {
778 	const struct firmware *sig;
779 	bool result;
780 
781 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
782 		return false;
783 
784 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
785 					builtin_regdb_keys,
786 					VERIFYING_UNSPECIFIED_SIGNATURE,
787 					NULL, NULL) == 0;
788 
789 	release_firmware(sig);
790 
791 	return result;
792 }
793 
794 static void free_regdb_keyring(void)
795 {
796 	key_put(builtin_regdb_keys);
797 }
798 #else
799 static int load_builtin_regdb_keys(void)
800 {
801 	return 0;
802 }
803 
804 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
805 {
806 	return true;
807 }
808 
809 static void free_regdb_keyring(void)
810 {
811 }
812 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
813 
814 static bool valid_regdb(const u8 *data, unsigned int size)
815 {
816 	const struct fwdb_header *hdr = (void *)data;
817 	const struct fwdb_country *country;
818 
819 	if (size < sizeof(*hdr))
820 		return false;
821 
822 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
823 		return false;
824 
825 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
826 		return false;
827 
828 	if (!regdb_has_valid_signature(data, size))
829 		return false;
830 
831 	country = &hdr->country[0];
832 	while ((u8 *)(country + 1) <= data + size) {
833 		if (!country->coll_ptr)
834 			break;
835 		if (!valid_country(data, size, country))
836 			return false;
837 		country++;
838 	}
839 
840 	return true;
841 }
842 
843 static void set_wmm_rule(const struct fwdb_header *db,
844 			 const struct fwdb_country *country,
845 			 const struct fwdb_rule *rule,
846 			 struct ieee80211_reg_rule *rrule)
847 {
848 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
849 	struct fwdb_wmm_rule *wmm;
850 	unsigned int i, wmm_ptr;
851 
852 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
853 	wmm = (void *)((u8 *)db + wmm_ptr);
854 
855 	if (!valid_wmm(wmm)) {
856 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
857 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
858 		       country->alpha2[0], country->alpha2[1]);
859 		return;
860 	}
861 
862 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
863 		wmm_rule->client[i].cw_min =
864 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
865 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
866 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
867 		wmm_rule->client[i].cot =
868 			1000 * be16_to_cpu(wmm->client[i].cot);
869 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
870 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
871 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
872 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
873 	}
874 
875 	rrule->has_wmm = true;
876 }
877 
878 static int __regdb_query_wmm(const struct fwdb_header *db,
879 			     const struct fwdb_country *country, int freq,
880 			     struct ieee80211_reg_rule *rrule)
881 {
882 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
883 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
884 	int i;
885 
886 	for (i = 0; i < coll->n_rules; i++) {
887 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
888 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
889 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
890 
891 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
892 			continue;
893 
894 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
895 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
896 			set_wmm_rule(db, country, rule, rrule);
897 			return 0;
898 		}
899 	}
900 
901 	return -ENODATA;
902 }
903 
904 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
905 {
906 	const struct fwdb_header *hdr = regdb;
907 	const struct fwdb_country *country;
908 
909 	if (!regdb)
910 		return -ENODATA;
911 
912 	if (IS_ERR(regdb))
913 		return PTR_ERR(regdb);
914 
915 	country = &hdr->country[0];
916 	while (country->coll_ptr) {
917 		if (alpha2_equal(alpha2, country->alpha2))
918 			return __regdb_query_wmm(regdb, country, freq, rule);
919 
920 		country++;
921 	}
922 
923 	return -ENODATA;
924 }
925 EXPORT_SYMBOL(reg_query_regdb_wmm);
926 
927 static int regdb_query_country(const struct fwdb_header *db,
928 			       const struct fwdb_country *country)
929 {
930 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
931 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
932 	struct ieee80211_regdomain *regdom;
933 	unsigned int i;
934 
935 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
936 			 GFP_KERNEL);
937 	if (!regdom)
938 		return -ENOMEM;
939 
940 	regdom->n_reg_rules = coll->n_rules;
941 	regdom->alpha2[0] = country->alpha2[0];
942 	regdom->alpha2[1] = country->alpha2[1];
943 	regdom->dfs_region = coll->dfs_region;
944 
945 	for (i = 0; i < regdom->n_reg_rules; i++) {
946 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
947 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
948 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
949 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
950 
951 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
952 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
953 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
954 
955 		rrule->power_rule.max_antenna_gain = 0;
956 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
957 
958 		rrule->flags = 0;
959 		if (rule->flags & FWDB_FLAG_NO_OFDM)
960 			rrule->flags |= NL80211_RRF_NO_OFDM;
961 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
962 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
963 		if (rule->flags & FWDB_FLAG_DFS)
964 			rrule->flags |= NL80211_RRF_DFS;
965 		if (rule->flags & FWDB_FLAG_NO_IR)
966 			rrule->flags |= NL80211_RRF_NO_IR;
967 		if (rule->flags & FWDB_FLAG_AUTO_BW)
968 			rrule->flags |= NL80211_RRF_AUTO_BW;
969 
970 		rrule->dfs_cac_ms = 0;
971 
972 		/* handle optional data */
973 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
974 			rrule->dfs_cac_ms =
975 				1000 * be16_to_cpu(rule->cac_timeout);
976 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
977 			set_wmm_rule(db, country, rule, rrule);
978 	}
979 
980 	return reg_schedule_apply(regdom);
981 }
982 
983 static int query_regdb(const char *alpha2)
984 {
985 	const struct fwdb_header *hdr = regdb;
986 	const struct fwdb_country *country;
987 
988 	ASSERT_RTNL();
989 
990 	if (IS_ERR(regdb))
991 		return PTR_ERR(regdb);
992 
993 	country = &hdr->country[0];
994 	while (country->coll_ptr) {
995 		if (alpha2_equal(alpha2, country->alpha2))
996 			return regdb_query_country(regdb, country);
997 		country++;
998 	}
999 
1000 	return -ENODATA;
1001 }
1002 
1003 static void regdb_fw_cb(const struct firmware *fw, void *context)
1004 {
1005 	int set_error = 0;
1006 	bool restore = true;
1007 	void *db;
1008 
1009 	if (!fw) {
1010 		pr_info("failed to load regulatory.db\n");
1011 		set_error = -ENODATA;
1012 	} else if (!valid_regdb(fw->data, fw->size)) {
1013 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1014 		set_error = -EINVAL;
1015 	}
1016 
1017 	rtnl_lock();
1018 	if (regdb && !IS_ERR(regdb)) {
1019 		/* negative case - a bug
1020 		 * positive case - can happen due to race in case of multiple cb's in
1021 		 * queue, due to usage of asynchronous callback
1022 		 *
1023 		 * Either case, just restore and free new db.
1024 		 */
1025 	} else if (set_error) {
1026 		regdb = ERR_PTR(set_error);
1027 	} else if (fw) {
1028 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1029 		if (db) {
1030 			regdb = db;
1031 			restore = context && query_regdb(context);
1032 		} else {
1033 			restore = true;
1034 		}
1035 	}
1036 
1037 	if (restore)
1038 		restore_regulatory_settings(true, false);
1039 
1040 	rtnl_unlock();
1041 
1042 	kfree(context);
1043 
1044 	release_firmware(fw);
1045 }
1046 
1047 MODULE_FIRMWARE("regulatory.db");
1048 
1049 static int query_regdb_file(const char *alpha2)
1050 {
1051 	int err;
1052 
1053 	ASSERT_RTNL();
1054 
1055 	if (regdb)
1056 		return query_regdb(alpha2);
1057 
1058 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1059 	if (!alpha2)
1060 		return -ENOMEM;
1061 
1062 	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1063 				      &reg_pdev->dev, GFP_KERNEL,
1064 				      (void *)alpha2, regdb_fw_cb);
1065 	if (err)
1066 		kfree(alpha2);
1067 
1068 	return err;
1069 }
1070 
1071 int reg_reload_regdb(void)
1072 {
1073 	const struct firmware *fw;
1074 	void *db;
1075 	int err;
1076 	const struct ieee80211_regdomain *current_regdomain;
1077 	struct regulatory_request *request;
1078 
1079 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1080 	if (err)
1081 		return err;
1082 
1083 	if (!valid_regdb(fw->data, fw->size)) {
1084 		err = -ENODATA;
1085 		goto out;
1086 	}
1087 
1088 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1089 	if (!db) {
1090 		err = -ENOMEM;
1091 		goto out;
1092 	}
1093 
1094 	rtnl_lock();
1095 	if (!IS_ERR_OR_NULL(regdb))
1096 		kfree(regdb);
1097 	regdb = db;
1098 
1099 	/* reset regulatory domain */
1100 	current_regdomain = get_cfg80211_regdom();
1101 
1102 	request = kzalloc(sizeof(*request), GFP_KERNEL);
1103 	if (!request) {
1104 		err = -ENOMEM;
1105 		goto out_unlock;
1106 	}
1107 
1108 	request->wiphy_idx = WIPHY_IDX_INVALID;
1109 	request->alpha2[0] = current_regdomain->alpha2[0];
1110 	request->alpha2[1] = current_regdomain->alpha2[1];
1111 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1112 	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1113 
1114 	reg_process_hint(request);
1115 
1116 out_unlock:
1117 	rtnl_unlock();
1118  out:
1119 	release_firmware(fw);
1120 	return err;
1121 }
1122 
1123 static bool reg_query_database(struct regulatory_request *request)
1124 {
1125 	if (query_regdb_file(request->alpha2) == 0)
1126 		return true;
1127 
1128 	if (call_crda(request->alpha2) == 0)
1129 		return true;
1130 
1131 	return false;
1132 }
1133 
1134 bool reg_is_valid_request(const char *alpha2)
1135 {
1136 	struct regulatory_request *lr = get_last_request();
1137 
1138 	if (!lr || lr->processed)
1139 		return false;
1140 
1141 	return alpha2_equal(lr->alpha2, alpha2);
1142 }
1143 
1144 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1145 {
1146 	struct regulatory_request *lr = get_last_request();
1147 
1148 	/*
1149 	 * Follow the driver's regulatory domain, if present, unless a country
1150 	 * IE has been processed or a user wants to help complaince further
1151 	 */
1152 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1153 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1154 	    wiphy->regd)
1155 		return get_wiphy_regdom(wiphy);
1156 
1157 	return get_cfg80211_regdom();
1158 }
1159 
1160 static unsigned int
1161 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1162 				 const struct ieee80211_reg_rule *rule)
1163 {
1164 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1165 	const struct ieee80211_freq_range *freq_range_tmp;
1166 	const struct ieee80211_reg_rule *tmp;
1167 	u32 start_freq, end_freq, idx, no;
1168 
1169 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1170 		if (rule == &rd->reg_rules[idx])
1171 			break;
1172 
1173 	if (idx == rd->n_reg_rules)
1174 		return 0;
1175 
1176 	/* get start_freq */
1177 	no = idx;
1178 
1179 	while (no) {
1180 		tmp = &rd->reg_rules[--no];
1181 		freq_range_tmp = &tmp->freq_range;
1182 
1183 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1184 			break;
1185 
1186 		freq_range = freq_range_tmp;
1187 	}
1188 
1189 	start_freq = freq_range->start_freq_khz;
1190 
1191 	/* get end_freq */
1192 	freq_range = &rule->freq_range;
1193 	no = idx;
1194 
1195 	while (no < rd->n_reg_rules - 1) {
1196 		tmp = &rd->reg_rules[++no];
1197 		freq_range_tmp = &tmp->freq_range;
1198 
1199 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1200 			break;
1201 
1202 		freq_range = freq_range_tmp;
1203 	}
1204 
1205 	end_freq = freq_range->end_freq_khz;
1206 
1207 	return end_freq - start_freq;
1208 }
1209 
1210 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1211 				   const struct ieee80211_reg_rule *rule)
1212 {
1213 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1214 
1215 	if (rule->flags & NL80211_RRF_NO_320MHZ)
1216 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1217 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1218 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1219 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1220 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1221 
1222 	/*
1223 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1224 	 * are not allowed.
1225 	 */
1226 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1227 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1228 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1229 
1230 	return bw;
1231 }
1232 
1233 /* Sanity check on a regulatory rule */
1234 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1235 {
1236 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1237 	u32 freq_diff;
1238 
1239 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1240 		return false;
1241 
1242 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1243 		return false;
1244 
1245 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1246 
1247 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1248 	    freq_range->max_bandwidth_khz > freq_diff)
1249 		return false;
1250 
1251 	return true;
1252 }
1253 
1254 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1255 {
1256 	const struct ieee80211_reg_rule *reg_rule = NULL;
1257 	unsigned int i;
1258 
1259 	if (!rd->n_reg_rules)
1260 		return false;
1261 
1262 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1263 		return false;
1264 
1265 	for (i = 0; i < rd->n_reg_rules; i++) {
1266 		reg_rule = &rd->reg_rules[i];
1267 		if (!is_valid_reg_rule(reg_rule))
1268 			return false;
1269 	}
1270 
1271 	return true;
1272 }
1273 
1274 /**
1275  * freq_in_rule_band - tells us if a frequency is in a frequency band
1276  * @freq_range: frequency rule we want to query
1277  * @freq_khz: frequency we are inquiring about
1278  *
1279  * This lets us know if a specific frequency rule is or is not relevant to
1280  * a specific frequency's band. Bands are device specific and artificial
1281  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1282  * however it is safe for now to assume that a frequency rule should not be
1283  * part of a frequency's band if the start freq or end freq are off by more
1284  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1285  * 60 GHz band.
1286  * This resolution can be lowered and should be considered as we add
1287  * regulatory rule support for other "bands".
1288  *
1289  * Returns: whether or not the frequency is in the range
1290  */
1291 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1292 			      u32 freq_khz)
1293 {
1294 	/*
1295 	 * From 802.11ad: directional multi-gigabit (DMG):
1296 	 * Pertaining to operation in a frequency band containing a channel
1297 	 * with the Channel starting frequency above 45 GHz.
1298 	 */
1299 	u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ;
1300 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1301 		return true;
1302 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303 		return true;
1304 	return false;
1305 }
1306 
1307 /*
1308  * Later on we can perhaps use the more restrictive DFS
1309  * region but we don't have information for that yet so
1310  * for now simply disallow conflicts.
1311  */
1312 static enum nl80211_dfs_regions
1313 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1314 			 const enum nl80211_dfs_regions dfs_region2)
1315 {
1316 	if (dfs_region1 != dfs_region2)
1317 		return NL80211_DFS_UNSET;
1318 	return dfs_region1;
1319 }
1320 
1321 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1322 				    const struct ieee80211_wmm_ac *wmm_ac2,
1323 				    struct ieee80211_wmm_ac *intersect)
1324 {
1325 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1326 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1327 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1328 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1329 }
1330 
1331 /*
1332  * Helper for regdom_intersect(), this does the real
1333  * mathematical intersection fun
1334  */
1335 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1336 			       const struct ieee80211_regdomain *rd2,
1337 			       const struct ieee80211_reg_rule *rule1,
1338 			       const struct ieee80211_reg_rule *rule2,
1339 			       struct ieee80211_reg_rule *intersected_rule)
1340 {
1341 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1342 	struct ieee80211_freq_range *freq_range;
1343 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1344 	struct ieee80211_power_rule *power_rule;
1345 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1346 	struct ieee80211_wmm_rule *wmm_rule;
1347 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1348 
1349 	freq_range1 = &rule1->freq_range;
1350 	freq_range2 = &rule2->freq_range;
1351 	freq_range = &intersected_rule->freq_range;
1352 
1353 	power_rule1 = &rule1->power_rule;
1354 	power_rule2 = &rule2->power_rule;
1355 	power_rule = &intersected_rule->power_rule;
1356 
1357 	wmm_rule1 = &rule1->wmm_rule;
1358 	wmm_rule2 = &rule2->wmm_rule;
1359 	wmm_rule = &intersected_rule->wmm_rule;
1360 
1361 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1362 					 freq_range2->start_freq_khz);
1363 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1364 				       freq_range2->end_freq_khz);
1365 
1366 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1367 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1368 
1369 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1370 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1371 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1372 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1373 
1374 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1375 
1376 	intersected_rule->flags = rule1->flags | rule2->flags;
1377 
1378 	/*
1379 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1380 	 * set AUTO_BW in intersected rule also. Next we will
1381 	 * calculate BW correctly in handle_channel function.
1382 	 * In other case remove AUTO_BW flag while we calculate
1383 	 * maximum bandwidth correctly and auto calculation is
1384 	 * not required.
1385 	 */
1386 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1387 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1388 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1389 	else
1390 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1391 
1392 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1393 	if (freq_range->max_bandwidth_khz > freq_diff)
1394 		freq_range->max_bandwidth_khz = freq_diff;
1395 
1396 	power_rule->max_eirp = min(power_rule1->max_eirp,
1397 		power_rule2->max_eirp);
1398 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1399 		power_rule2->max_antenna_gain);
1400 
1401 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1402 					   rule2->dfs_cac_ms);
1403 
1404 	if (rule1->has_wmm && rule2->has_wmm) {
1405 		u8 ac;
1406 
1407 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1408 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1409 						&wmm_rule2->client[ac],
1410 						&wmm_rule->client[ac]);
1411 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1412 						&wmm_rule2->ap[ac],
1413 						&wmm_rule->ap[ac]);
1414 		}
1415 
1416 		intersected_rule->has_wmm = true;
1417 	} else if (rule1->has_wmm) {
1418 		*wmm_rule = *wmm_rule1;
1419 		intersected_rule->has_wmm = true;
1420 	} else if (rule2->has_wmm) {
1421 		*wmm_rule = *wmm_rule2;
1422 		intersected_rule->has_wmm = true;
1423 	} else {
1424 		intersected_rule->has_wmm = false;
1425 	}
1426 
1427 	if (!is_valid_reg_rule(intersected_rule))
1428 		return -EINVAL;
1429 
1430 	return 0;
1431 }
1432 
1433 /* check whether old rule contains new rule */
1434 static bool rule_contains(struct ieee80211_reg_rule *r1,
1435 			  struct ieee80211_reg_rule *r2)
1436 {
1437 	/* for simplicity, currently consider only same flags */
1438 	if (r1->flags != r2->flags)
1439 		return false;
1440 
1441 	/* verify r1 is more restrictive */
1442 	if ((r1->power_rule.max_antenna_gain >
1443 	     r2->power_rule.max_antenna_gain) ||
1444 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1445 		return false;
1446 
1447 	/* make sure r2's range is contained within r1 */
1448 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1449 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1450 		return false;
1451 
1452 	/* and finally verify that r1.max_bw >= r2.max_bw */
1453 	if (r1->freq_range.max_bandwidth_khz <
1454 	    r2->freq_range.max_bandwidth_khz)
1455 		return false;
1456 
1457 	return true;
1458 }
1459 
1460 /* add or extend current rules. do nothing if rule is already contained */
1461 static void add_rule(struct ieee80211_reg_rule *rule,
1462 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1463 {
1464 	struct ieee80211_reg_rule *tmp_rule;
1465 	int i;
1466 
1467 	for (i = 0; i < *n_rules; i++) {
1468 		tmp_rule = &reg_rules[i];
1469 		/* rule is already contained - do nothing */
1470 		if (rule_contains(tmp_rule, rule))
1471 			return;
1472 
1473 		/* extend rule if possible */
1474 		if (rule_contains(rule, tmp_rule)) {
1475 			memcpy(tmp_rule, rule, sizeof(*rule));
1476 			return;
1477 		}
1478 	}
1479 
1480 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1481 	(*n_rules)++;
1482 }
1483 
1484 /**
1485  * regdom_intersect - do the intersection between two regulatory domains
1486  * @rd1: first regulatory domain
1487  * @rd2: second regulatory domain
1488  *
1489  * Use this function to get the intersection between two regulatory domains.
1490  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1491  * as no one single alpha2 can represent this regulatory domain.
1492  *
1493  * Returns a pointer to the regulatory domain structure which will hold the
1494  * resulting intersection of rules between rd1 and rd2. We will
1495  * kzalloc() this structure for you.
1496  *
1497  * Returns: the intersected regdomain
1498  */
1499 static struct ieee80211_regdomain *
1500 regdom_intersect(const struct ieee80211_regdomain *rd1,
1501 		 const struct ieee80211_regdomain *rd2)
1502 {
1503 	int r;
1504 	unsigned int x, y;
1505 	unsigned int num_rules = 0;
1506 	const struct ieee80211_reg_rule *rule1, *rule2;
1507 	struct ieee80211_reg_rule intersected_rule;
1508 	struct ieee80211_regdomain *rd;
1509 
1510 	if (!rd1 || !rd2)
1511 		return NULL;
1512 
1513 	/*
1514 	 * First we get a count of the rules we'll need, then we actually
1515 	 * build them. This is to so we can malloc() and free() a
1516 	 * regdomain once. The reason we use reg_rules_intersect() here
1517 	 * is it will return -EINVAL if the rule computed makes no sense.
1518 	 * All rules that do check out OK are valid.
1519 	 */
1520 
1521 	for (x = 0; x < rd1->n_reg_rules; x++) {
1522 		rule1 = &rd1->reg_rules[x];
1523 		for (y = 0; y < rd2->n_reg_rules; y++) {
1524 			rule2 = &rd2->reg_rules[y];
1525 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1526 						 &intersected_rule))
1527 				num_rules++;
1528 		}
1529 	}
1530 
1531 	if (!num_rules)
1532 		return NULL;
1533 
1534 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1535 	if (!rd)
1536 		return NULL;
1537 
1538 	for (x = 0; x < rd1->n_reg_rules; x++) {
1539 		rule1 = &rd1->reg_rules[x];
1540 		for (y = 0; y < rd2->n_reg_rules; y++) {
1541 			rule2 = &rd2->reg_rules[y];
1542 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1543 						&intersected_rule);
1544 			/*
1545 			 * No need to memset here the intersected rule here as
1546 			 * we're not using the stack anymore
1547 			 */
1548 			if (r)
1549 				continue;
1550 
1551 			add_rule(&intersected_rule, rd->reg_rules,
1552 				 &rd->n_reg_rules);
1553 		}
1554 	}
1555 
1556 	rd->alpha2[0] = '9';
1557 	rd->alpha2[1] = '8';
1558 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1559 						  rd2->dfs_region);
1560 
1561 	return rd;
1562 }
1563 
1564 /*
1565  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1566  * want to just have the channel structure use these
1567  */
1568 static u32 map_regdom_flags(u32 rd_flags)
1569 {
1570 	u32 channel_flags = 0;
1571 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1572 		channel_flags |= IEEE80211_CHAN_NO_IR;
1573 	if (rd_flags & NL80211_RRF_DFS)
1574 		channel_flags |= IEEE80211_CHAN_RADAR;
1575 	if (rd_flags & NL80211_RRF_NO_OFDM)
1576 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1577 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1578 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1579 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1580 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1581 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1582 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1583 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1584 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1585 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1586 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1587 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1588 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1589 	if (rd_flags & NL80211_RRF_NO_HE)
1590 		channel_flags |= IEEE80211_CHAN_NO_HE;
1591 	if (rd_flags & NL80211_RRF_NO_320MHZ)
1592 		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1593 	if (rd_flags & NL80211_RRF_NO_EHT)
1594 		channel_flags |= IEEE80211_CHAN_NO_EHT;
1595 	if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1596 		channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1597 	if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT)
1598 		channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
1599 	if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT)
1600 		channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
1601 	if (rd_flags & NL80211_RRF_PSD)
1602 		channel_flags |= IEEE80211_CHAN_PSD;
1603 	return channel_flags;
1604 }
1605 
1606 static const struct ieee80211_reg_rule *
1607 freq_reg_info_regd(u32 center_freq,
1608 		   const struct ieee80211_regdomain *regd, u32 bw)
1609 {
1610 	int i;
1611 	bool band_rule_found = false;
1612 	bool bw_fits = false;
1613 
1614 	if (!regd)
1615 		return ERR_PTR(-EINVAL);
1616 
1617 	for (i = 0; i < regd->n_reg_rules; i++) {
1618 		const struct ieee80211_reg_rule *rr;
1619 		const struct ieee80211_freq_range *fr = NULL;
1620 
1621 		rr = &regd->reg_rules[i];
1622 		fr = &rr->freq_range;
1623 
1624 		/*
1625 		 * We only need to know if one frequency rule was
1626 		 * in center_freq's band, that's enough, so let's
1627 		 * not overwrite it once found
1628 		 */
1629 		if (!band_rule_found)
1630 			band_rule_found = freq_in_rule_band(fr, center_freq);
1631 
1632 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1633 
1634 		if (band_rule_found && bw_fits)
1635 			return rr;
1636 	}
1637 
1638 	if (!band_rule_found)
1639 		return ERR_PTR(-ERANGE);
1640 
1641 	return ERR_PTR(-EINVAL);
1642 }
1643 
1644 static const struct ieee80211_reg_rule *
1645 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1646 {
1647 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1648 	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1649 	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1650 	int i = ARRAY_SIZE(bws) - 1;
1651 	u32 bw;
1652 
1653 	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1654 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1655 		if (!IS_ERR(reg_rule))
1656 			return reg_rule;
1657 	}
1658 
1659 	return reg_rule;
1660 }
1661 
1662 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1663 					       u32 center_freq)
1664 {
1665 	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1666 
1667 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1668 }
1669 EXPORT_SYMBOL(freq_reg_info);
1670 
1671 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1672 {
1673 	switch (initiator) {
1674 	case NL80211_REGDOM_SET_BY_CORE:
1675 		return "core";
1676 	case NL80211_REGDOM_SET_BY_USER:
1677 		return "user";
1678 	case NL80211_REGDOM_SET_BY_DRIVER:
1679 		return "driver";
1680 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1681 		return "country element";
1682 	default:
1683 		WARN_ON(1);
1684 		return "bug";
1685 	}
1686 }
1687 EXPORT_SYMBOL(reg_initiator_name);
1688 
1689 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1690 					  const struct ieee80211_reg_rule *reg_rule,
1691 					  const struct ieee80211_channel *chan)
1692 {
1693 	const struct ieee80211_freq_range *freq_range = NULL;
1694 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1695 	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1696 
1697 	freq_range = &reg_rule->freq_range;
1698 
1699 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1700 	center_freq_khz = ieee80211_channel_to_khz(chan);
1701 	/* Check if auto calculation requested */
1702 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1703 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1704 
1705 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1706 	if (!cfg80211_does_bw_fit_range(freq_range,
1707 					center_freq_khz,
1708 					MHZ_TO_KHZ(10)))
1709 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1710 	if (!cfg80211_does_bw_fit_range(freq_range,
1711 					center_freq_khz,
1712 					MHZ_TO_KHZ(20)))
1713 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1714 
1715 	if (is_s1g) {
1716 		/* S1G is strict about non overlapping channels. We can
1717 		 * calculate which bandwidth is allowed per channel by finding
1718 		 * the largest bandwidth which cleanly divides the freq_range.
1719 		 */
1720 		int edge_offset;
1721 		int ch_bw = max_bandwidth_khz;
1722 
1723 		while (ch_bw) {
1724 			edge_offset = (center_freq_khz - ch_bw / 2) -
1725 				      freq_range->start_freq_khz;
1726 			if (edge_offset % ch_bw == 0) {
1727 				switch (KHZ_TO_MHZ(ch_bw)) {
1728 				case 1:
1729 					bw_flags |= IEEE80211_CHAN_1MHZ;
1730 					break;
1731 				case 2:
1732 					bw_flags |= IEEE80211_CHAN_2MHZ;
1733 					break;
1734 				case 4:
1735 					bw_flags |= IEEE80211_CHAN_4MHZ;
1736 					break;
1737 				case 8:
1738 					bw_flags |= IEEE80211_CHAN_8MHZ;
1739 					break;
1740 				case 16:
1741 					bw_flags |= IEEE80211_CHAN_16MHZ;
1742 					break;
1743 				default:
1744 					/* If we got here, no bandwidths fit on
1745 					 * this frequency, ie. band edge.
1746 					 */
1747 					bw_flags |= IEEE80211_CHAN_DISABLED;
1748 					break;
1749 				}
1750 				break;
1751 			}
1752 			ch_bw /= 2;
1753 		}
1754 	} else {
1755 		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1756 			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1757 		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1758 			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1759 		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1760 			bw_flags |= IEEE80211_CHAN_NO_HT40;
1761 		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1762 			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1763 		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1764 			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1765 		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1766 			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1767 	}
1768 	return bw_flags;
1769 }
1770 
1771 static void handle_channel_single_rule(struct wiphy *wiphy,
1772 				       enum nl80211_reg_initiator initiator,
1773 				       struct ieee80211_channel *chan,
1774 				       u32 flags,
1775 				       struct regulatory_request *lr,
1776 				       struct wiphy *request_wiphy,
1777 				       const struct ieee80211_reg_rule *reg_rule)
1778 {
1779 	u32 bw_flags = 0;
1780 	const struct ieee80211_power_rule *power_rule = NULL;
1781 	const struct ieee80211_regdomain *regd;
1782 
1783 	regd = reg_get_regdomain(wiphy);
1784 
1785 	power_rule = &reg_rule->power_rule;
1786 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1787 
1788 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1789 	    request_wiphy && request_wiphy == wiphy &&
1790 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1791 		/*
1792 		 * This guarantees the driver's requested regulatory domain
1793 		 * will always be used as a base for further regulatory
1794 		 * settings
1795 		 */
1796 		chan->flags = chan->orig_flags =
1797 			map_regdom_flags(reg_rule->flags) | bw_flags;
1798 		chan->max_antenna_gain = chan->orig_mag =
1799 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1800 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1801 			(int) MBM_TO_DBM(power_rule->max_eirp);
1802 
1803 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1804 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1805 			if (reg_rule->dfs_cac_ms)
1806 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1807 		}
1808 
1809 		if (chan->flags & IEEE80211_CHAN_PSD)
1810 			chan->psd = reg_rule->psd;
1811 
1812 		return;
1813 	}
1814 
1815 	chan->dfs_state = NL80211_DFS_USABLE;
1816 	chan->dfs_state_entered = jiffies;
1817 
1818 	chan->beacon_found = false;
1819 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1820 	chan->max_antenna_gain =
1821 		min_t(int, chan->orig_mag,
1822 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1823 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1824 
1825 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1826 		if (reg_rule->dfs_cac_ms)
1827 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1828 		else
1829 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1830 	}
1831 
1832 	if (chan->flags & IEEE80211_CHAN_PSD)
1833 		chan->psd = reg_rule->psd;
1834 
1835 	if (chan->orig_mpwr) {
1836 		/*
1837 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1838 		 * will always follow the passed country IE power settings.
1839 		 */
1840 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1841 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1842 			chan->max_power = chan->max_reg_power;
1843 		else
1844 			chan->max_power = min(chan->orig_mpwr,
1845 					      chan->max_reg_power);
1846 	} else
1847 		chan->max_power = chan->max_reg_power;
1848 }
1849 
1850 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1851 					  enum nl80211_reg_initiator initiator,
1852 					  struct ieee80211_channel *chan,
1853 					  u32 flags,
1854 					  struct regulatory_request *lr,
1855 					  struct wiphy *request_wiphy,
1856 					  const struct ieee80211_reg_rule *rrule1,
1857 					  const struct ieee80211_reg_rule *rrule2,
1858 					  struct ieee80211_freq_range *comb_range)
1859 {
1860 	u32 bw_flags1 = 0;
1861 	u32 bw_flags2 = 0;
1862 	const struct ieee80211_power_rule *power_rule1 = NULL;
1863 	const struct ieee80211_power_rule *power_rule2 = NULL;
1864 	const struct ieee80211_regdomain *regd;
1865 
1866 	regd = reg_get_regdomain(wiphy);
1867 
1868 	power_rule1 = &rrule1->power_rule;
1869 	power_rule2 = &rrule2->power_rule;
1870 	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1871 	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1872 
1873 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1874 	    request_wiphy && request_wiphy == wiphy &&
1875 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1876 		/* This guarantees the driver's requested regulatory domain
1877 		 * will always be used as a base for further regulatory
1878 		 * settings
1879 		 */
1880 		chan->flags =
1881 			map_regdom_flags(rrule1->flags) |
1882 			map_regdom_flags(rrule2->flags) |
1883 			bw_flags1 |
1884 			bw_flags2;
1885 		chan->orig_flags = chan->flags;
1886 		chan->max_antenna_gain =
1887 			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1888 			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1889 		chan->orig_mag = chan->max_antenna_gain;
1890 		chan->max_reg_power =
1891 			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1892 			      MBM_TO_DBM(power_rule2->max_eirp));
1893 		chan->max_power = chan->max_reg_power;
1894 		chan->orig_mpwr = chan->max_reg_power;
1895 
1896 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1897 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1898 			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1899 				chan->dfs_cac_ms = max_t(unsigned int,
1900 							 rrule1->dfs_cac_ms,
1901 							 rrule2->dfs_cac_ms);
1902 		}
1903 
1904 		if ((rrule1->flags & NL80211_RRF_PSD) &&
1905 		    (rrule2->flags & NL80211_RRF_PSD))
1906 			chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1907 		else
1908 			chan->flags &= ~NL80211_RRF_PSD;
1909 
1910 		return;
1911 	}
1912 
1913 	chan->dfs_state = NL80211_DFS_USABLE;
1914 	chan->dfs_state_entered = jiffies;
1915 
1916 	chan->beacon_found = false;
1917 	chan->flags = flags | bw_flags1 | bw_flags2 |
1918 		      map_regdom_flags(rrule1->flags) |
1919 		      map_regdom_flags(rrule2->flags);
1920 
1921 	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1922 	 * (otherwise no adj. rule case), recheck therefore
1923 	 */
1924 	if (cfg80211_does_bw_fit_range(comb_range,
1925 				       ieee80211_channel_to_khz(chan),
1926 				       MHZ_TO_KHZ(10)))
1927 		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1928 	if (cfg80211_does_bw_fit_range(comb_range,
1929 				       ieee80211_channel_to_khz(chan),
1930 				       MHZ_TO_KHZ(20)))
1931 		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1932 
1933 	chan->max_antenna_gain =
1934 		min_t(int, chan->orig_mag,
1935 		      min_t(int,
1936 			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1937 			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1938 	chan->max_reg_power = min_t(int,
1939 				    MBM_TO_DBM(power_rule1->max_eirp),
1940 				    MBM_TO_DBM(power_rule2->max_eirp));
1941 
1942 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1943 		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1944 			chan->dfs_cac_ms = max_t(unsigned int,
1945 						 rrule1->dfs_cac_ms,
1946 						 rrule2->dfs_cac_ms);
1947 		else
1948 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1949 	}
1950 
1951 	if (chan->orig_mpwr) {
1952 		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1953 		 * will always follow the passed country IE power settings.
1954 		 */
1955 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1956 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1957 			chan->max_power = chan->max_reg_power;
1958 		else
1959 			chan->max_power = min(chan->orig_mpwr,
1960 					      chan->max_reg_power);
1961 	} else {
1962 		chan->max_power = chan->max_reg_power;
1963 	}
1964 }
1965 
1966 /* Note that right now we assume the desired channel bandwidth
1967  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1968  * per channel, the primary and the extension channel).
1969  */
1970 static void handle_channel(struct wiphy *wiphy,
1971 			   enum nl80211_reg_initiator initiator,
1972 			   struct ieee80211_channel *chan)
1973 {
1974 	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1975 	struct regulatory_request *lr = get_last_request();
1976 	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1977 	const struct ieee80211_reg_rule *rrule = NULL;
1978 	const struct ieee80211_reg_rule *rrule1 = NULL;
1979 	const struct ieee80211_reg_rule *rrule2 = NULL;
1980 
1981 	u32 flags = chan->orig_flags;
1982 
1983 	rrule = freq_reg_info(wiphy, orig_chan_freq);
1984 	if (IS_ERR(rrule)) {
1985 		/* check for adjacent match, therefore get rules for
1986 		 * chan - 20 MHz and chan + 20 MHz and test
1987 		 * if reg rules are adjacent
1988 		 */
1989 		rrule1 = freq_reg_info(wiphy,
1990 				       orig_chan_freq - MHZ_TO_KHZ(20));
1991 		rrule2 = freq_reg_info(wiphy,
1992 				       orig_chan_freq + MHZ_TO_KHZ(20));
1993 		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1994 			struct ieee80211_freq_range comb_range;
1995 
1996 			if (rrule1->freq_range.end_freq_khz !=
1997 			    rrule2->freq_range.start_freq_khz)
1998 				goto disable_chan;
1999 
2000 			comb_range.start_freq_khz =
2001 				rrule1->freq_range.start_freq_khz;
2002 			comb_range.end_freq_khz =
2003 				rrule2->freq_range.end_freq_khz;
2004 			comb_range.max_bandwidth_khz =
2005 				min_t(u32,
2006 				      rrule1->freq_range.max_bandwidth_khz,
2007 				      rrule2->freq_range.max_bandwidth_khz);
2008 
2009 			if (!cfg80211_does_bw_fit_range(&comb_range,
2010 							orig_chan_freq,
2011 							MHZ_TO_KHZ(20)))
2012 				goto disable_chan;
2013 
2014 			handle_channel_adjacent_rules(wiphy, initiator, chan,
2015 						      flags, lr, request_wiphy,
2016 						      rrule1, rrule2,
2017 						      &comb_range);
2018 			return;
2019 		}
2020 
2021 disable_chan:
2022 		/* We will disable all channels that do not match our
2023 		 * received regulatory rule unless the hint is coming
2024 		 * from a Country IE and the Country IE had no information
2025 		 * about a band. The IEEE 802.11 spec allows for an AP
2026 		 * to send only a subset of the regulatory rules allowed,
2027 		 * so an AP in the US that only supports 2.4 GHz may only send
2028 		 * a country IE with information for the 2.4 GHz band
2029 		 * while 5 GHz is still supported.
2030 		 */
2031 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2032 		    PTR_ERR(rrule) == -ERANGE)
2033 			return;
2034 
2035 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2036 		    request_wiphy && request_wiphy == wiphy &&
2037 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2038 			pr_debug("Disabling freq %d.%03d MHz for good\n",
2039 				 chan->center_freq, chan->freq_offset);
2040 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2041 			chan->flags = chan->orig_flags;
2042 		} else {
2043 			pr_debug("Disabling freq %d.%03d MHz\n",
2044 				 chan->center_freq, chan->freq_offset);
2045 			chan->flags |= IEEE80211_CHAN_DISABLED;
2046 		}
2047 		return;
2048 	}
2049 
2050 	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2051 				   request_wiphy, rrule);
2052 }
2053 
2054 static void handle_band(struct wiphy *wiphy,
2055 			enum nl80211_reg_initiator initiator,
2056 			struct ieee80211_supported_band *sband)
2057 {
2058 	unsigned int i;
2059 
2060 	if (!sband)
2061 		return;
2062 
2063 	for (i = 0; i < sband->n_channels; i++)
2064 		handle_channel(wiphy, initiator, &sband->channels[i]);
2065 }
2066 
2067 static bool reg_request_cell_base(struct regulatory_request *request)
2068 {
2069 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2070 		return false;
2071 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2072 }
2073 
2074 bool reg_last_request_cell_base(void)
2075 {
2076 	return reg_request_cell_base(get_last_request());
2077 }
2078 
2079 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2080 /* Core specific check */
2081 static enum reg_request_treatment
2082 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2083 {
2084 	struct regulatory_request *lr = get_last_request();
2085 
2086 	if (!reg_num_devs_support_basehint)
2087 		return REG_REQ_IGNORE;
2088 
2089 	if (reg_request_cell_base(lr) &&
2090 	    !regdom_changes(pending_request->alpha2))
2091 		return REG_REQ_ALREADY_SET;
2092 
2093 	return REG_REQ_OK;
2094 }
2095 
2096 /* Device specific check */
2097 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2098 {
2099 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2100 }
2101 #else
2102 static enum reg_request_treatment
2103 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2104 {
2105 	return REG_REQ_IGNORE;
2106 }
2107 
2108 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2109 {
2110 	return true;
2111 }
2112 #endif
2113 
2114 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2115 {
2116 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2117 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2118 		return true;
2119 	return false;
2120 }
2121 
2122 static bool ignore_reg_update(struct wiphy *wiphy,
2123 			      enum nl80211_reg_initiator initiator)
2124 {
2125 	struct regulatory_request *lr = get_last_request();
2126 
2127 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2128 		return true;
2129 
2130 	if (!lr) {
2131 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2132 			 reg_initiator_name(initiator));
2133 		return true;
2134 	}
2135 
2136 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2137 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2138 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2139 			 reg_initiator_name(initiator));
2140 		return true;
2141 	}
2142 
2143 	/*
2144 	 * wiphy->regd will be set once the device has its own
2145 	 * desired regulatory domain set
2146 	 */
2147 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2148 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2149 	    !is_world_regdom(lr->alpha2)) {
2150 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2151 			 reg_initiator_name(initiator));
2152 		return true;
2153 	}
2154 
2155 	if (reg_request_cell_base(lr))
2156 		return reg_dev_ignore_cell_hint(wiphy);
2157 
2158 	return false;
2159 }
2160 
2161 static bool reg_is_world_roaming(struct wiphy *wiphy)
2162 {
2163 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2164 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2165 	struct regulatory_request *lr = get_last_request();
2166 
2167 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2168 		return true;
2169 
2170 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2171 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2172 		return true;
2173 
2174 	return false;
2175 }
2176 
2177 static void reg_call_notifier(struct wiphy *wiphy,
2178 			      struct regulatory_request *request)
2179 {
2180 	if (wiphy->reg_notifier)
2181 		wiphy->reg_notifier(wiphy, request);
2182 }
2183 
2184 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2185 			      struct reg_beacon *reg_beacon)
2186 {
2187 	struct ieee80211_supported_band *sband;
2188 	struct ieee80211_channel *chan;
2189 	bool channel_changed = false;
2190 	struct ieee80211_channel chan_before;
2191 	struct regulatory_request *lr = get_last_request();
2192 
2193 	sband = wiphy->bands[reg_beacon->chan.band];
2194 	chan = &sband->channels[chan_idx];
2195 
2196 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2197 		return;
2198 
2199 	if (chan->beacon_found)
2200 		return;
2201 
2202 	chan->beacon_found = true;
2203 
2204 	if (!reg_is_world_roaming(wiphy))
2205 		return;
2206 
2207 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2208 		return;
2209 
2210 	chan_before = *chan;
2211 
2212 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2213 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2214 		channel_changed = true;
2215 	}
2216 
2217 	if (channel_changed) {
2218 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2219 		if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2220 			reg_call_notifier(wiphy, lr);
2221 	}
2222 }
2223 
2224 /*
2225  * Called when a scan on a wiphy finds a beacon on
2226  * new channel
2227  */
2228 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2229 				    struct reg_beacon *reg_beacon)
2230 {
2231 	unsigned int i;
2232 	struct ieee80211_supported_band *sband;
2233 
2234 	if (!wiphy->bands[reg_beacon->chan.band])
2235 		return;
2236 
2237 	sband = wiphy->bands[reg_beacon->chan.band];
2238 
2239 	for (i = 0; i < sband->n_channels; i++)
2240 		handle_reg_beacon(wiphy, i, reg_beacon);
2241 }
2242 
2243 /*
2244  * Called upon reg changes or a new wiphy is added
2245  */
2246 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2247 {
2248 	unsigned int i;
2249 	struct ieee80211_supported_band *sband;
2250 	struct reg_beacon *reg_beacon;
2251 
2252 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2253 		if (!wiphy->bands[reg_beacon->chan.band])
2254 			continue;
2255 		sband = wiphy->bands[reg_beacon->chan.band];
2256 		for (i = 0; i < sband->n_channels; i++)
2257 			handle_reg_beacon(wiphy, i, reg_beacon);
2258 	}
2259 }
2260 
2261 /* Reap the advantages of previously found beacons */
2262 static void reg_process_beacons(struct wiphy *wiphy)
2263 {
2264 	/*
2265 	 * Means we are just firing up cfg80211, so no beacons would
2266 	 * have been processed yet.
2267 	 */
2268 	if (!last_request)
2269 		return;
2270 	wiphy_update_beacon_reg(wiphy);
2271 }
2272 
2273 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2274 {
2275 	if (!chan)
2276 		return false;
2277 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2278 		return false;
2279 	/* This would happen when regulatory rules disallow HT40 completely */
2280 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2281 		return false;
2282 	return true;
2283 }
2284 
2285 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2286 					 struct ieee80211_channel *channel)
2287 {
2288 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2289 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2290 	const struct ieee80211_regdomain *regd;
2291 	unsigned int i;
2292 	u32 flags;
2293 
2294 	if (!is_ht40_allowed(channel)) {
2295 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2296 		return;
2297 	}
2298 
2299 	/*
2300 	 * We need to ensure the extension channels exist to
2301 	 * be able to use HT40- or HT40+, this finds them (or not)
2302 	 */
2303 	for (i = 0; i < sband->n_channels; i++) {
2304 		struct ieee80211_channel *c = &sband->channels[i];
2305 
2306 		if (c->center_freq == (channel->center_freq - 20))
2307 			channel_before = c;
2308 		if (c->center_freq == (channel->center_freq + 20))
2309 			channel_after = c;
2310 	}
2311 
2312 	flags = 0;
2313 	regd = get_wiphy_regdom(wiphy);
2314 	if (regd) {
2315 		const struct ieee80211_reg_rule *reg_rule =
2316 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2317 					   regd, MHZ_TO_KHZ(20));
2318 
2319 		if (!IS_ERR(reg_rule))
2320 			flags = reg_rule->flags;
2321 	}
2322 
2323 	/*
2324 	 * Please note that this assumes target bandwidth is 20 MHz,
2325 	 * if that ever changes we also need to change the below logic
2326 	 * to include that as well.
2327 	 */
2328 	if (!is_ht40_allowed(channel_before) ||
2329 	    flags & NL80211_RRF_NO_HT40MINUS)
2330 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2331 	else
2332 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2333 
2334 	if (!is_ht40_allowed(channel_after) ||
2335 	    flags & NL80211_RRF_NO_HT40PLUS)
2336 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2337 	else
2338 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2339 }
2340 
2341 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2342 				      struct ieee80211_supported_band *sband)
2343 {
2344 	unsigned int i;
2345 
2346 	if (!sband)
2347 		return;
2348 
2349 	for (i = 0; i < sband->n_channels; i++)
2350 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2351 }
2352 
2353 static void reg_process_ht_flags(struct wiphy *wiphy)
2354 {
2355 	enum nl80211_band band;
2356 
2357 	if (!wiphy)
2358 		return;
2359 
2360 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2361 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2362 }
2363 
2364 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2365 {
2366 	struct cfg80211_chan_def chandef = {};
2367 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2368 	enum nl80211_iftype iftype;
2369 	bool ret;
2370 	int link;
2371 
2372 	iftype = wdev->iftype;
2373 
2374 	/* make sure the interface is active */
2375 	if (!wdev->netdev || !netif_running(wdev->netdev))
2376 		return true;
2377 
2378 	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2379 		struct ieee80211_channel *chan;
2380 
2381 		if (!wdev->valid_links && link > 0)
2382 			break;
2383 		if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2384 			continue;
2385 		switch (iftype) {
2386 		case NL80211_IFTYPE_AP:
2387 		case NL80211_IFTYPE_P2P_GO:
2388 			if (!wdev->links[link].ap.beacon_interval)
2389 				continue;
2390 			chandef = wdev->links[link].ap.chandef;
2391 			break;
2392 		case NL80211_IFTYPE_MESH_POINT:
2393 			if (!wdev->u.mesh.beacon_interval)
2394 				continue;
2395 			chandef = wdev->u.mesh.chandef;
2396 			break;
2397 		case NL80211_IFTYPE_ADHOC:
2398 			if (!wdev->u.ibss.ssid_len)
2399 				continue;
2400 			chandef = wdev->u.ibss.chandef;
2401 			break;
2402 		case NL80211_IFTYPE_STATION:
2403 		case NL80211_IFTYPE_P2P_CLIENT:
2404 			/* Maybe we could consider disabling that link only? */
2405 			if (!wdev->links[link].client.current_bss)
2406 				continue;
2407 
2408 			chan = wdev->links[link].client.current_bss->pub.channel;
2409 			if (!chan)
2410 				continue;
2411 
2412 			if (!rdev->ops->get_channel ||
2413 			    rdev_get_channel(rdev, wdev, link, &chandef))
2414 				cfg80211_chandef_create(&chandef, chan,
2415 							NL80211_CHAN_NO_HT);
2416 			break;
2417 		case NL80211_IFTYPE_MONITOR:
2418 		case NL80211_IFTYPE_AP_VLAN:
2419 		case NL80211_IFTYPE_P2P_DEVICE:
2420 			/* no enforcement required */
2421 			break;
2422 		case NL80211_IFTYPE_OCB:
2423 			if (!wdev->u.ocb.chandef.chan)
2424 				continue;
2425 			chandef = wdev->u.ocb.chandef;
2426 			break;
2427 		case NL80211_IFTYPE_NAN:
2428 			/* we have no info, but NAN is also pretty universal */
2429 			continue;
2430 		default:
2431 			/* others not implemented for now */
2432 			WARN_ON_ONCE(1);
2433 			break;
2434 		}
2435 
2436 		switch (iftype) {
2437 		case NL80211_IFTYPE_AP:
2438 		case NL80211_IFTYPE_P2P_GO:
2439 		case NL80211_IFTYPE_ADHOC:
2440 		case NL80211_IFTYPE_MESH_POINT:
2441 			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2442 							    iftype);
2443 			if (!ret)
2444 				return ret;
2445 			break;
2446 		case NL80211_IFTYPE_STATION:
2447 		case NL80211_IFTYPE_P2P_CLIENT:
2448 			ret = cfg80211_chandef_usable(wiphy, &chandef,
2449 						      IEEE80211_CHAN_DISABLED);
2450 			if (!ret)
2451 				return ret;
2452 			break;
2453 		default:
2454 			break;
2455 		}
2456 	}
2457 
2458 	return true;
2459 }
2460 
2461 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2462 {
2463 	struct wireless_dev *wdev;
2464 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2465 
2466 	wiphy_lock(wiphy);
2467 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2468 		if (!reg_wdev_chan_valid(wiphy, wdev))
2469 			cfg80211_leave(rdev, wdev);
2470 	wiphy_unlock(wiphy);
2471 }
2472 
2473 static void reg_check_chans_work(struct work_struct *work)
2474 {
2475 	struct cfg80211_registered_device *rdev;
2476 
2477 	pr_debug("Verifying active interfaces after reg change\n");
2478 	rtnl_lock();
2479 
2480 	for_each_rdev(rdev)
2481 		reg_leave_invalid_chans(&rdev->wiphy);
2482 
2483 	rtnl_unlock();
2484 }
2485 
2486 void reg_check_channels(void)
2487 {
2488 	/*
2489 	 * Give usermode a chance to do something nicer (move to another
2490 	 * channel, orderly disconnection), before forcing a disconnection.
2491 	 */
2492 	mod_delayed_work(system_power_efficient_wq,
2493 			 &reg_check_chans,
2494 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2495 }
2496 
2497 static void wiphy_update_regulatory(struct wiphy *wiphy,
2498 				    enum nl80211_reg_initiator initiator)
2499 {
2500 	enum nl80211_band band;
2501 	struct regulatory_request *lr = get_last_request();
2502 
2503 	if (ignore_reg_update(wiphy, initiator)) {
2504 		/*
2505 		 * Regulatory updates set by CORE are ignored for custom
2506 		 * regulatory cards. Let us notify the changes to the driver,
2507 		 * as some drivers used this to restore its orig_* reg domain.
2508 		 */
2509 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2510 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2511 		    !(wiphy->regulatory_flags &
2512 		      REGULATORY_WIPHY_SELF_MANAGED))
2513 			reg_call_notifier(wiphy, lr);
2514 		return;
2515 	}
2516 
2517 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2518 
2519 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2520 		handle_band(wiphy, initiator, wiphy->bands[band]);
2521 
2522 	reg_process_beacons(wiphy);
2523 	reg_process_ht_flags(wiphy);
2524 	reg_call_notifier(wiphy, lr);
2525 }
2526 
2527 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2528 {
2529 	struct cfg80211_registered_device *rdev;
2530 	struct wiphy *wiphy;
2531 
2532 	ASSERT_RTNL();
2533 
2534 	for_each_rdev(rdev) {
2535 		wiphy = &rdev->wiphy;
2536 		wiphy_update_regulatory(wiphy, initiator);
2537 	}
2538 
2539 	reg_check_channels();
2540 }
2541 
2542 static void handle_channel_custom(struct wiphy *wiphy,
2543 				  struct ieee80211_channel *chan,
2544 				  const struct ieee80211_regdomain *regd,
2545 				  u32 min_bw)
2546 {
2547 	u32 bw_flags = 0;
2548 	const struct ieee80211_reg_rule *reg_rule = NULL;
2549 	const struct ieee80211_power_rule *power_rule = NULL;
2550 	u32 bw, center_freq_khz;
2551 
2552 	center_freq_khz = ieee80211_channel_to_khz(chan);
2553 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2554 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2555 		if (!IS_ERR(reg_rule))
2556 			break;
2557 	}
2558 
2559 	if (IS_ERR_OR_NULL(reg_rule)) {
2560 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2561 			 chan->center_freq, chan->freq_offset);
2562 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2563 			chan->flags |= IEEE80211_CHAN_DISABLED;
2564 		} else {
2565 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2566 			chan->flags = chan->orig_flags;
2567 		}
2568 		return;
2569 	}
2570 
2571 	power_rule = &reg_rule->power_rule;
2572 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2573 
2574 	chan->dfs_state_entered = jiffies;
2575 	chan->dfs_state = NL80211_DFS_USABLE;
2576 
2577 	chan->beacon_found = false;
2578 
2579 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2580 		chan->flags = chan->orig_flags | bw_flags |
2581 			      map_regdom_flags(reg_rule->flags);
2582 	else
2583 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2584 
2585 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2586 	chan->max_reg_power = chan->max_power =
2587 		(int) MBM_TO_DBM(power_rule->max_eirp);
2588 
2589 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2590 		if (reg_rule->dfs_cac_ms)
2591 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2592 		else
2593 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2594 	}
2595 
2596 	if (chan->flags & IEEE80211_CHAN_PSD)
2597 		chan->psd = reg_rule->psd;
2598 
2599 	chan->max_power = chan->max_reg_power;
2600 }
2601 
2602 static void handle_band_custom(struct wiphy *wiphy,
2603 			       struct ieee80211_supported_band *sband,
2604 			       const struct ieee80211_regdomain *regd)
2605 {
2606 	unsigned int i;
2607 
2608 	if (!sband)
2609 		return;
2610 
2611 	/*
2612 	 * We currently assume that you always want at least 20 MHz,
2613 	 * otherwise channel 12 might get enabled if this rule is
2614 	 * compatible to US, which permits 2402 - 2472 MHz.
2615 	 */
2616 	for (i = 0; i < sband->n_channels; i++)
2617 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2618 				      MHZ_TO_KHZ(20));
2619 }
2620 
2621 /* Used by drivers prior to wiphy registration */
2622 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2623 				   const struct ieee80211_regdomain *regd)
2624 {
2625 	const struct ieee80211_regdomain *new_regd, *tmp;
2626 	enum nl80211_band band;
2627 	unsigned int bands_set = 0;
2628 
2629 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2630 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2631 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2632 
2633 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2634 		if (!wiphy->bands[band])
2635 			continue;
2636 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2637 		bands_set++;
2638 	}
2639 
2640 	/*
2641 	 * no point in calling this if it won't have any effect
2642 	 * on your device's supported bands.
2643 	 */
2644 	WARN_ON(!bands_set);
2645 	new_regd = reg_copy_regd(regd);
2646 	if (IS_ERR(new_regd))
2647 		return;
2648 
2649 	rtnl_lock();
2650 	wiphy_lock(wiphy);
2651 
2652 	tmp = get_wiphy_regdom(wiphy);
2653 	rcu_assign_pointer(wiphy->regd, new_regd);
2654 	rcu_free_regdom(tmp);
2655 
2656 	wiphy_unlock(wiphy);
2657 	rtnl_unlock();
2658 }
2659 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2660 
2661 static void reg_set_request_processed(void)
2662 {
2663 	bool need_more_processing = false;
2664 	struct regulatory_request *lr = get_last_request();
2665 
2666 	lr->processed = true;
2667 
2668 	spin_lock(&reg_requests_lock);
2669 	if (!list_empty(&reg_requests_list))
2670 		need_more_processing = true;
2671 	spin_unlock(&reg_requests_lock);
2672 
2673 	cancel_crda_timeout();
2674 
2675 	if (need_more_processing)
2676 		schedule_work(&reg_work);
2677 }
2678 
2679 /**
2680  * reg_process_hint_core - process core regulatory requests
2681  * @core_request: a pending core regulatory request
2682  *
2683  * The wireless subsystem can use this function to process
2684  * a regulatory request issued by the regulatory core.
2685  *
2686  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2687  *	hint was processed or ignored
2688  */
2689 static enum reg_request_treatment
2690 reg_process_hint_core(struct regulatory_request *core_request)
2691 {
2692 	if (reg_query_database(core_request)) {
2693 		core_request->intersect = false;
2694 		core_request->processed = false;
2695 		reg_update_last_request(core_request);
2696 		return REG_REQ_OK;
2697 	}
2698 
2699 	return REG_REQ_IGNORE;
2700 }
2701 
2702 static enum reg_request_treatment
2703 __reg_process_hint_user(struct regulatory_request *user_request)
2704 {
2705 	struct regulatory_request *lr = get_last_request();
2706 
2707 	if (reg_request_cell_base(user_request))
2708 		return reg_ignore_cell_hint(user_request);
2709 
2710 	if (reg_request_cell_base(lr))
2711 		return REG_REQ_IGNORE;
2712 
2713 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2714 		return REG_REQ_INTERSECT;
2715 	/*
2716 	 * If the user knows better the user should set the regdom
2717 	 * to their country before the IE is picked up
2718 	 */
2719 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2720 	    lr->intersect)
2721 		return REG_REQ_IGNORE;
2722 	/*
2723 	 * Process user requests only after previous user/driver/core
2724 	 * requests have been processed
2725 	 */
2726 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2727 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2728 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2729 	    regdom_changes(lr->alpha2))
2730 		return REG_REQ_IGNORE;
2731 
2732 	if (!regdom_changes(user_request->alpha2))
2733 		return REG_REQ_ALREADY_SET;
2734 
2735 	return REG_REQ_OK;
2736 }
2737 
2738 /**
2739  * reg_process_hint_user - process user regulatory requests
2740  * @user_request: a pending user regulatory request
2741  *
2742  * The wireless subsystem can use this function to process
2743  * a regulatory request initiated by userspace.
2744  *
2745  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2746  *	hint was processed or ignored
2747  */
2748 static enum reg_request_treatment
2749 reg_process_hint_user(struct regulatory_request *user_request)
2750 {
2751 	enum reg_request_treatment treatment;
2752 
2753 	treatment = __reg_process_hint_user(user_request);
2754 	if (treatment == REG_REQ_IGNORE ||
2755 	    treatment == REG_REQ_ALREADY_SET)
2756 		return REG_REQ_IGNORE;
2757 
2758 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2759 	user_request->processed = false;
2760 
2761 	if (reg_query_database(user_request)) {
2762 		reg_update_last_request(user_request);
2763 		user_alpha2[0] = user_request->alpha2[0];
2764 		user_alpha2[1] = user_request->alpha2[1];
2765 		return REG_REQ_OK;
2766 	}
2767 
2768 	return REG_REQ_IGNORE;
2769 }
2770 
2771 static enum reg_request_treatment
2772 __reg_process_hint_driver(struct regulatory_request *driver_request)
2773 {
2774 	struct regulatory_request *lr = get_last_request();
2775 
2776 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2777 		if (regdom_changes(driver_request->alpha2))
2778 			return REG_REQ_OK;
2779 		return REG_REQ_ALREADY_SET;
2780 	}
2781 
2782 	/*
2783 	 * This would happen if you unplug and plug your card
2784 	 * back in or if you add a new device for which the previously
2785 	 * loaded card also agrees on the regulatory domain.
2786 	 */
2787 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2788 	    !regdom_changes(driver_request->alpha2))
2789 		return REG_REQ_ALREADY_SET;
2790 
2791 	return REG_REQ_INTERSECT;
2792 }
2793 
2794 /**
2795  * reg_process_hint_driver - process driver regulatory requests
2796  * @wiphy: the wireless device for the regulatory request
2797  * @driver_request: a pending driver regulatory request
2798  *
2799  * The wireless subsystem can use this function to process
2800  * a regulatory request issued by an 802.11 driver.
2801  *
2802  * Returns: one of the different reg request treatment values.
2803  */
2804 static enum reg_request_treatment
2805 reg_process_hint_driver(struct wiphy *wiphy,
2806 			struct regulatory_request *driver_request)
2807 {
2808 	const struct ieee80211_regdomain *regd, *tmp;
2809 	enum reg_request_treatment treatment;
2810 
2811 	treatment = __reg_process_hint_driver(driver_request);
2812 
2813 	switch (treatment) {
2814 	case REG_REQ_OK:
2815 		break;
2816 	case REG_REQ_IGNORE:
2817 		return REG_REQ_IGNORE;
2818 	case REG_REQ_INTERSECT:
2819 	case REG_REQ_ALREADY_SET:
2820 		regd = reg_copy_regd(get_cfg80211_regdom());
2821 		if (IS_ERR(regd))
2822 			return REG_REQ_IGNORE;
2823 
2824 		tmp = get_wiphy_regdom(wiphy);
2825 		ASSERT_RTNL();
2826 		wiphy_lock(wiphy);
2827 		rcu_assign_pointer(wiphy->regd, regd);
2828 		wiphy_unlock(wiphy);
2829 		rcu_free_regdom(tmp);
2830 	}
2831 
2832 
2833 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2834 	driver_request->processed = false;
2835 
2836 	/*
2837 	 * Since CRDA will not be called in this case as we already
2838 	 * have applied the requested regulatory domain before we just
2839 	 * inform userspace we have processed the request
2840 	 */
2841 	if (treatment == REG_REQ_ALREADY_SET) {
2842 		nl80211_send_reg_change_event(driver_request);
2843 		reg_update_last_request(driver_request);
2844 		reg_set_request_processed();
2845 		return REG_REQ_ALREADY_SET;
2846 	}
2847 
2848 	if (reg_query_database(driver_request)) {
2849 		reg_update_last_request(driver_request);
2850 		return REG_REQ_OK;
2851 	}
2852 
2853 	return REG_REQ_IGNORE;
2854 }
2855 
2856 static enum reg_request_treatment
2857 __reg_process_hint_country_ie(struct wiphy *wiphy,
2858 			      struct regulatory_request *country_ie_request)
2859 {
2860 	struct wiphy *last_wiphy = NULL;
2861 	struct regulatory_request *lr = get_last_request();
2862 
2863 	if (reg_request_cell_base(lr)) {
2864 		/* Trust a Cell base station over the AP's country IE */
2865 		if (regdom_changes(country_ie_request->alpha2))
2866 			return REG_REQ_IGNORE;
2867 		return REG_REQ_ALREADY_SET;
2868 	} else {
2869 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2870 			return REG_REQ_IGNORE;
2871 	}
2872 
2873 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2874 		return -EINVAL;
2875 
2876 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2877 		return REG_REQ_OK;
2878 
2879 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2880 
2881 	if (last_wiphy != wiphy) {
2882 		/*
2883 		 * Two cards with two APs claiming different
2884 		 * Country IE alpha2s. We could
2885 		 * intersect them, but that seems unlikely
2886 		 * to be correct. Reject second one for now.
2887 		 */
2888 		if (regdom_changes(country_ie_request->alpha2))
2889 			return REG_REQ_IGNORE;
2890 		return REG_REQ_ALREADY_SET;
2891 	}
2892 
2893 	if (regdom_changes(country_ie_request->alpha2))
2894 		return REG_REQ_OK;
2895 	return REG_REQ_ALREADY_SET;
2896 }
2897 
2898 /**
2899  * reg_process_hint_country_ie - process regulatory requests from country IEs
2900  * @wiphy: the wireless device for the regulatory request
2901  * @country_ie_request: a regulatory request from a country IE
2902  *
2903  * The wireless subsystem can use this function to process
2904  * a regulatory request issued by a country Information Element.
2905  *
2906  * Returns: one of the different reg request treatment values.
2907  */
2908 static enum reg_request_treatment
2909 reg_process_hint_country_ie(struct wiphy *wiphy,
2910 			    struct regulatory_request *country_ie_request)
2911 {
2912 	enum reg_request_treatment treatment;
2913 
2914 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2915 
2916 	switch (treatment) {
2917 	case REG_REQ_OK:
2918 		break;
2919 	case REG_REQ_IGNORE:
2920 		return REG_REQ_IGNORE;
2921 	case REG_REQ_ALREADY_SET:
2922 		reg_free_request(country_ie_request);
2923 		return REG_REQ_ALREADY_SET;
2924 	case REG_REQ_INTERSECT:
2925 		/*
2926 		 * This doesn't happen yet, not sure we
2927 		 * ever want to support it for this case.
2928 		 */
2929 		WARN_ONCE(1, "Unexpected intersection for country elements");
2930 		return REG_REQ_IGNORE;
2931 	}
2932 
2933 	country_ie_request->intersect = false;
2934 	country_ie_request->processed = false;
2935 
2936 	if (reg_query_database(country_ie_request)) {
2937 		reg_update_last_request(country_ie_request);
2938 		return REG_REQ_OK;
2939 	}
2940 
2941 	return REG_REQ_IGNORE;
2942 }
2943 
2944 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2945 {
2946 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2947 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2948 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2949 	bool dfs_domain_same;
2950 
2951 	rcu_read_lock();
2952 
2953 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2954 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2955 	if (!wiphy1_regd)
2956 		wiphy1_regd = cfg80211_regd;
2957 
2958 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2959 	if (!wiphy2_regd)
2960 		wiphy2_regd = cfg80211_regd;
2961 
2962 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2963 
2964 	rcu_read_unlock();
2965 
2966 	return dfs_domain_same;
2967 }
2968 
2969 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2970 				    struct ieee80211_channel *src_chan)
2971 {
2972 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2973 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2974 		return;
2975 
2976 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2977 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2978 		return;
2979 
2980 	if (src_chan->center_freq == dst_chan->center_freq &&
2981 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2982 		dst_chan->dfs_state = src_chan->dfs_state;
2983 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2984 	}
2985 }
2986 
2987 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2988 				       struct wiphy *src_wiphy)
2989 {
2990 	struct ieee80211_supported_band *src_sband, *dst_sband;
2991 	struct ieee80211_channel *src_chan, *dst_chan;
2992 	int i, j, band;
2993 
2994 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2995 		return;
2996 
2997 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2998 		dst_sband = dst_wiphy->bands[band];
2999 		src_sband = src_wiphy->bands[band];
3000 		if (!dst_sband || !src_sband)
3001 			continue;
3002 
3003 		for (i = 0; i < dst_sband->n_channels; i++) {
3004 			dst_chan = &dst_sband->channels[i];
3005 			for (j = 0; j < src_sband->n_channels; j++) {
3006 				src_chan = &src_sband->channels[j];
3007 				reg_copy_dfs_chan_state(dst_chan, src_chan);
3008 			}
3009 		}
3010 	}
3011 }
3012 
3013 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3014 {
3015 	struct cfg80211_registered_device *rdev;
3016 
3017 	ASSERT_RTNL();
3018 
3019 	for_each_rdev(rdev) {
3020 		if (wiphy == &rdev->wiphy)
3021 			continue;
3022 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3023 	}
3024 }
3025 
3026 /* This processes *all* regulatory hints */
3027 static void reg_process_hint(struct regulatory_request *reg_request)
3028 {
3029 	struct wiphy *wiphy = NULL;
3030 	enum reg_request_treatment treatment;
3031 	enum nl80211_reg_initiator initiator = reg_request->initiator;
3032 
3033 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3034 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3035 
3036 	switch (initiator) {
3037 	case NL80211_REGDOM_SET_BY_CORE:
3038 		treatment = reg_process_hint_core(reg_request);
3039 		break;
3040 	case NL80211_REGDOM_SET_BY_USER:
3041 		treatment = reg_process_hint_user(reg_request);
3042 		break;
3043 	case NL80211_REGDOM_SET_BY_DRIVER:
3044 		if (!wiphy)
3045 			goto out_free;
3046 		treatment = reg_process_hint_driver(wiphy, reg_request);
3047 		break;
3048 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3049 		if (!wiphy)
3050 			goto out_free;
3051 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3052 		break;
3053 	default:
3054 		WARN(1, "invalid initiator %d\n", initiator);
3055 		goto out_free;
3056 	}
3057 
3058 	if (treatment == REG_REQ_IGNORE)
3059 		goto out_free;
3060 
3061 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3062 	     "unexpected treatment value %d\n", treatment);
3063 
3064 	/* This is required so that the orig_* parameters are saved.
3065 	 * NOTE: treatment must be set for any case that reaches here!
3066 	 */
3067 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3068 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3069 		wiphy_update_regulatory(wiphy, initiator);
3070 		wiphy_all_share_dfs_chan_state(wiphy);
3071 		reg_check_channels();
3072 	}
3073 
3074 	return;
3075 
3076 out_free:
3077 	reg_free_request(reg_request);
3078 }
3079 
3080 static void notify_self_managed_wiphys(struct regulatory_request *request)
3081 {
3082 	struct cfg80211_registered_device *rdev;
3083 	struct wiphy *wiphy;
3084 
3085 	for_each_rdev(rdev) {
3086 		wiphy = &rdev->wiphy;
3087 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3088 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3089 			reg_call_notifier(wiphy, request);
3090 	}
3091 }
3092 
3093 /*
3094  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3095  * Regulatory hints come on a first come first serve basis and we
3096  * must process each one atomically.
3097  */
3098 static void reg_process_pending_hints(void)
3099 {
3100 	struct regulatory_request *reg_request, *lr;
3101 
3102 	lr = get_last_request();
3103 
3104 	/* When last_request->processed becomes true this will be rescheduled */
3105 	if (lr && !lr->processed) {
3106 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3107 		return;
3108 	}
3109 
3110 	spin_lock(&reg_requests_lock);
3111 
3112 	if (list_empty(&reg_requests_list)) {
3113 		spin_unlock(&reg_requests_lock);
3114 		return;
3115 	}
3116 
3117 	reg_request = list_first_entry(&reg_requests_list,
3118 				       struct regulatory_request,
3119 				       list);
3120 	list_del_init(&reg_request->list);
3121 
3122 	spin_unlock(&reg_requests_lock);
3123 
3124 	notify_self_managed_wiphys(reg_request);
3125 
3126 	reg_process_hint(reg_request);
3127 
3128 	lr = get_last_request();
3129 
3130 	spin_lock(&reg_requests_lock);
3131 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3132 		schedule_work(&reg_work);
3133 	spin_unlock(&reg_requests_lock);
3134 }
3135 
3136 /* Processes beacon hints -- this has nothing to do with country IEs */
3137 static void reg_process_pending_beacon_hints(void)
3138 {
3139 	struct cfg80211_registered_device *rdev;
3140 	struct reg_beacon *pending_beacon, *tmp;
3141 
3142 	/* This goes through the _pending_ beacon list */
3143 	spin_lock_bh(&reg_pending_beacons_lock);
3144 
3145 	list_for_each_entry_safe(pending_beacon, tmp,
3146 				 &reg_pending_beacons, list) {
3147 		list_del_init(&pending_beacon->list);
3148 
3149 		/* Applies the beacon hint to current wiphys */
3150 		for_each_rdev(rdev)
3151 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3152 
3153 		/* Remembers the beacon hint for new wiphys or reg changes */
3154 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3155 	}
3156 
3157 	spin_unlock_bh(&reg_pending_beacons_lock);
3158 }
3159 
3160 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3161 {
3162 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3163 	const struct ieee80211_regdomain *tmp;
3164 	const struct ieee80211_regdomain *regd;
3165 	enum nl80211_band band;
3166 	struct regulatory_request request = {};
3167 
3168 	ASSERT_RTNL();
3169 	lockdep_assert_wiphy(wiphy);
3170 
3171 	spin_lock(&reg_requests_lock);
3172 	regd = rdev->requested_regd;
3173 	rdev->requested_regd = NULL;
3174 	spin_unlock(&reg_requests_lock);
3175 
3176 	if (!regd)
3177 		return;
3178 
3179 	tmp = get_wiphy_regdom(wiphy);
3180 	rcu_assign_pointer(wiphy->regd, regd);
3181 	rcu_free_regdom(tmp);
3182 
3183 	for (band = 0; band < NUM_NL80211_BANDS; band++)
3184 		handle_band_custom(wiphy, wiphy->bands[band], regd);
3185 
3186 	reg_process_ht_flags(wiphy);
3187 
3188 	request.wiphy_idx = get_wiphy_idx(wiphy);
3189 	request.alpha2[0] = regd->alpha2[0];
3190 	request.alpha2[1] = regd->alpha2[1];
3191 	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3192 
3193 	if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3194 		reg_call_notifier(wiphy, &request);
3195 
3196 	nl80211_send_wiphy_reg_change_event(&request);
3197 }
3198 
3199 static void reg_process_self_managed_hints(void)
3200 {
3201 	struct cfg80211_registered_device *rdev;
3202 
3203 	ASSERT_RTNL();
3204 
3205 	for_each_rdev(rdev) {
3206 		wiphy_lock(&rdev->wiphy);
3207 		reg_process_self_managed_hint(&rdev->wiphy);
3208 		wiphy_unlock(&rdev->wiphy);
3209 	}
3210 
3211 	reg_check_channels();
3212 }
3213 
3214 static void reg_todo(struct work_struct *work)
3215 {
3216 	rtnl_lock();
3217 	reg_process_pending_hints();
3218 	reg_process_pending_beacon_hints();
3219 	reg_process_self_managed_hints();
3220 	rtnl_unlock();
3221 }
3222 
3223 static void queue_regulatory_request(struct regulatory_request *request)
3224 {
3225 	request->alpha2[0] = toupper(request->alpha2[0]);
3226 	request->alpha2[1] = toupper(request->alpha2[1]);
3227 
3228 	spin_lock(&reg_requests_lock);
3229 	list_add_tail(&request->list, &reg_requests_list);
3230 	spin_unlock(&reg_requests_lock);
3231 
3232 	schedule_work(&reg_work);
3233 }
3234 
3235 /*
3236  * Core regulatory hint -- happens during cfg80211_init()
3237  * and when we restore regulatory settings.
3238  */
3239 static int regulatory_hint_core(const char *alpha2)
3240 {
3241 	struct regulatory_request *request;
3242 
3243 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3244 	if (!request)
3245 		return -ENOMEM;
3246 
3247 	request->alpha2[0] = alpha2[0];
3248 	request->alpha2[1] = alpha2[1];
3249 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3250 	request->wiphy_idx = WIPHY_IDX_INVALID;
3251 
3252 	queue_regulatory_request(request);
3253 
3254 	return 0;
3255 }
3256 
3257 /* User hints */
3258 int regulatory_hint_user(const char *alpha2,
3259 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3260 {
3261 	struct regulatory_request *request;
3262 
3263 	if (WARN_ON(!alpha2))
3264 		return -EINVAL;
3265 
3266 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3267 		return -EINVAL;
3268 
3269 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3270 	if (!request)
3271 		return -ENOMEM;
3272 
3273 	request->wiphy_idx = WIPHY_IDX_INVALID;
3274 	request->alpha2[0] = alpha2[0];
3275 	request->alpha2[1] = alpha2[1];
3276 	request->initiator = NL80211_REGDOM_SET_BY_USER;
3277 	request->user_reg_hint_type = user_reg_hint_type;
3278 
3279 	/* Allow calling CRDA again */
3280 	reset_crda_timeouts();
3281 
3282 	queue_regulatory_request(request);
3283 
3284 	return 0;
3285 }
3286 
3287 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3288 {
3289 	spin_lock(&reg_indoor_lock);
3290 
3291 	/* It is possible that more than one user space process is trying to
3292 	 * configure the indoor setting. To handle such cases, clear the indoor
3293 	 * setting in case that some process does not think that the device
3294 	 * is operating in an indoor environment. In addition, if a user space
3295 	 * process indicates that it is controlling the indoor setting, save its
3296 	 * portid, i.e., make it the owner.
3297 	 */
3298 	reg_is_indoor = is_indoor;
3299 	if (reg_is_indoor) {
3300 		if (!reg_is_indoor_portid)
3301 			reg_is_indoor_portid = portid;
3302 	} else {
3303 		reg_is_indoor_portid = 0;
3304 	}
3305 
3306 	spin_unlock(&reg_indoor_lock);
3307 
3308 	if (!is_indoor)
3309 		reg_check_channels();
3310 
3311 	return 0;
3312 }
3313 
3314 void regulatory_netlink_notify(u32 portid)
3315 {
3316 	spin_lock(&reg_indoor_lock);
3317 
3318 	if (reg_is_indoor_portid != portid) {
3319 		spin_unlock(&reg_indoor_lock);
3320 		return;
3321 	}
3322 
3323 	reg_is_indoor = false;
3324 	reg_is_indoor_portid = 0;
3325 
3326 	spin_unlock(&reg_indoor_lock);
3327 
3328 	reg_check_channels();
3329 }
3330 
3331 /* Driver hints */
3332 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3333 {
3334 	struct regulatory_request *request;
3335 
3336 	if (WARN_ON(!alpha2 || !wiphy))
3337 		return -EINVAL;
3338 
3339 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3340 
3341 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3342 	if (!request)
3343 		return -ENOMEM;
3344 
3345 	request->wiphy_idx = get_wiphy_idx(wiphy);
3346 
3347 	request->alpha2[0] = alpha2[0];
3348 	request->alpha2[1] = alpha2[1];
3349 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3350 
3351 	/* Allow calling CRDA again */
3352 	reset_crda_timeouts();
3353 
3354 	queue_regulatory_request(request);
3355 
3356 	return 0;
3357 }
3358 EXPORT_SYMBOL(regulatory_hint);
3359 
3360 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3361 				const u8 *country_ie, u8 country_ie_len)
3362 {
3363 	char alpha2[2];
3364 	enum environment_cap env = ENVIRON_ANY;
3365 	struct regulatory_request *request = NULL, *lr;
3366 
3367 	/* IE len must be evenly divisible by 2 */
3368 	if (country_ie_len & 0x01)
3369 		return;
3370 
3371 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3372 		return;
3373 
3374 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3375 	if (!request)
3376 		return;
3377 
3378 	alpha2[0] = country_ie[0];
3379 	alpha2[1] = country_ie[1];
3380 
3381 	if (country_ie[2] == 'I')
3382 		env = ENVIRON_INDOOR;
3383 	else if (country_ie[2] == 'O')
3384 		env = ENVIRON_OUTDOOR;
3385 
3386 	rcu_read_lock();
3387 	lr = get_last_request();
3388 
3389 	if (unlikely(!lr))
3390 		goto out;
3391 
3392 	/*
3393 	 * We will run this only upon a successful connection on cfg80211.
3394 	 * We leave conflict resolution to the workqueue, where can hold
3395 	 * the RTNL.
3396 	 */
3397 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3398 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3399 		goto out;
3400 
3401 	request->wiphy_idx = get_wiphy_idx(wiphy);
3402 	request->alpha2[0] = alpha2[0];
3403 	request->alpha2[1] = alpha2[1];
3404 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3405 	request->country_ie_env = env;
3406 
3407 	/* Allow calling CRDA again */
3408 	reset_crda_timeouts();
3409 
3410 	queue_regulatory_request(request);
3411 	request = NULL;
3412 out:
3413 	kfree(request);
3414 	rcu_read_unlock();
3415 }
3416 
3417 static void restore_alpha2(char *alpha2, bool reset_user)
3418 {
3419 	/* indicates there is no alpha2 to consider for restoration */
3420 	alpha2[0] = '9';
3421 	alpha2[1] = '7';
3422 
3423 	/* The user setting has precedence over the module parameter */
3424 	if (is_user_regdom_saved()) {
3425 		/* Unless we're asked to ignore it and reset it */
3426 		if (reset_user) {
3427 			pr_debug("Restoring regulatory settings including user preference\n");
3428 			user_alpha2[0] = '9';
3429 			user_alpha2[1] = '7';
3430 
3431 			/*
3432 			 * If we're ignoring user settings, we still need to
3433 			 * check the module parameter to ensure we put things
3434 			 * back as they were for a full restore.
3435 			 */
3436 			if (!is_world_regdom(ieee80211_regdom)) {
3437 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3438 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3439 				alpha2[0] = ieee80211_regdom[0];
3440 				alpha2[1] = ieee80211_regdom[1];
3441 			}
3442 		} else {
3443 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3444 				 user_alpha2[0], user_alpha2[1]);
3445 			alpha2[0] = user_alpha2[0];
3446 			alpha2[1] = user_alpha2[1];
3447 		}
3448 	} else if (!is_world_regdom(ieee80211_regdom)) {
3449 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3450 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3451 		alpha2[0] = ieee80211_regdom[0];
3452 		alpha2[1] = ieee80211_regdom[1];
3453 	} else
3454 		pr_debug("Restoring regulatory settings\n");
3455 }
3456 
3457 static void restore_custom_reg_settings(struct wiphy *wiphy)
3458 {
3459 	struct ieee80211_supported_band *sband;
3460 	enum nl80211_band band;
3461 	struct ieee80211_channel *chan;
3462 	int i;
3463 
3464 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3465 		sband = wiphy->bands[band];
3466 		if (!sband)
3467 			continue;
3468 		for (i = 0; i < sband->n_channels; i++) {
3469 			chan = &sband->channels[i];
3470 			chan->flags = chan->orig_flags;
3471 			chan->max_antenna_gain = chan->orig_mag;
3472 			chan->max_power = chan->orig_mpwr;
3473 			chan->beacon_found = false;
3474 		}
3475 	}
3476 }
3477 
3478 /*
3479  * Restoring regulatory settings involves ignoring any
3480  * possibly stale country IE information and user regulatory
3481  * settings if so desired, this includes any beacon hints
3482  * learned as we could have traveled outside to another country
3483  * after disconnection. To restore regulatory settings we do
3484  * exactly what we did at bootup:
3485  *
3486  *   - send a core regulatory hint
3487  *   - send a user regulatory hint if applicable
3488  *
3489  * Device drivers that send a regulatory hint for a specific country
3490  * keep their own regulatory domain on wiphy->regd so that does
3491  * not need to be remembered.
3492  */
3493 static void restore_regulatory_settings(bool reset_user, bool cached)
3494 {
3495 	char alpha2[2];
3496 	char world_alpha2[2];
3497 	struct reg_beacon *reg_beacon, *btmp;
3498 	LIST_HEAD(tmp_reg_req_list);
3499 	struct cfg80211_registered_device *rdev;
3500 
3501 	ASSERT_RTNL();
3502 
3503 	/*
3504 	 * Clear the indoor setting in case that it is not controlled by user
3505 	 * space, as otherwise there is no guarantee that the device is still
3506 	 * operating in an indoor environment.
3507 	 */
3508 	spin_lock(&reg_indoor_lock);
3509 	if (reg_is_indoor && !reg_is_indoor_portid) {
3510 		reg_is_indoor = false;
3511 		reg_check_channels();
3512 	}
3513 	spin_unlock(&reg_indoor_lock);
3514 
3515 	reset_regdomains(true, &world_regdom);
3516 	restore_alpha2(alpha2, reset_user);
3517 
3518 	/*
3519 	 * If there's any pending requests we simply
3520 	 * stash them to a temporary pending queue and
3521 	 * add then after we've restored regulatory
3522 	 * settings.
3523 	 */
3524 	spin_lock(&reg_requests_lock);
3525 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3526 	spin_unlock(&reg_requests_lock);
3527 
3528 	/* Clear beacon hints */
3529 	spin_lock_bh(&reg_pending_beacons_lock);
3530 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3531 		list_del(&reg_beacon->list);
3532 		kfree(reg_beacon);
3533 	}
3534 	spin_unlock_bh(&reg_pending_beacons_lock);
3535 
3536 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3537 		list_del(&reg_beacon->list);
3538 		kfree(reg_beacon);
3539 	}
3540 
3541 	/* First restore to the basic regulatory settings */
3542 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3543 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3544 
3545 	for_each_rdev(rdev) {
3546 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3547 			continue;
3548 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3549 			restore_custom_reg_settings(&rdev->wiphy);
3550 	}
3551 
3552 	if (cached && (!is_an_alpha2(alpha2) ||
3553 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3554 		reset_regdomains(false, cfg80211_world_regdom);
3555 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3556 		print_regdomain(get_cfg80211_regdom());
3557 		nl80211_send_reg_change_event(&core_request_world);
3558 		reg_set_request_processed();
3559 
3560 		if (is_an_alpha2(alpha2) &&
3561 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3562 			struct regulatory_request *ureq;
3563 
3564 			spin_lock(&reg_requests_lock);
3565 			ureq = list_last_entry(&reg_requests_list,
3566 					       struct regulatory_request,
3567 					       list);
3568 			list_del(&ureq->list);
3569 			spin_unlock(&reg_requests_lock);
3570 
3571 			notify_self_managed_wiphys(ureq);
3572 			reg_update_last_request(ureq);
3573 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3574 				   REGD_SOURCE_CACHED);
3575 		}
3576 	} else {
3577 		regulatory_hint_core(world_alpha2);
3578 
3579 		/*
3580 		 * This restores the ieee80211_regdom module parameter
3581 		 * preference or the last user requested regulatory
3582 		 * settings, user regulatory settings takes precedence.
3583 		 */
3584 		if (is_an_alpha2(alpha2))
3585 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3586 	}
3587 
3588 	spin_lock(&reg_requests_lock);
3589 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3590 	spin_unlock(&reg_requests_lock);
3591 
3592 	pr_debug("Kicking the queue\n");
3593 
3594 	schedule_work(&reg_work);
3595 }
3596 
3597 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3598 {
3599 	struct cfg80211_registered_device *rdev;
3600 	struct wireless_dev *wdev;
3601 
3602 	for_each_rdev(rdev) {
3603 		wiphy_lock(&rdev->wiphy);
3604 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3605 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3606 				wiphy_unlock(&rdev->wiphy);
3607 				return false;
3608 			}
3609 		}
3610 		wiphy_unlock(&rdev->wiphy);
3611 	}
3612 
3613 	return true;
3614 }
3615 
3616 void regulatory_hint_disconnect(void)
3617 {
3618 	/* Restore of regulatory settings is not required when wiphy(s)
3619 	 * ignore IE from connected access point but clearance of beacon hints
3620 	 * is required when wiphy(s) supports beacon hints.
3621 	 */
3622 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3623 		struct reg_beacon *reg_beacon, *btmp;
3624 
3625 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3626 			return;
3627 
3628 		spin_lock_bh(&reg_pending_beacons_lock);
3629 		list_for_each_entry_safe(reg_beacon, btmp,
3630 					 &reg_pending_beacons, list) {
3631 			list_del(&reg_beacon->list);
3632 			kfree(reg_beacon);
3633 		}
3634 		spin_unlock_bh(&reg_pending_beacons_lock);
3635 
3636 		list_for_each_entry_safe(reg_beacon, btmp,
3637 					 &reg_beacon_list, list) {
3638 			list_del(&reg_beacon->list);
3639 			kfree(reg_beacon);
3640 		}
3641 
3642 		return;
3643 	}
3644 
3645 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3646 	restore_regulatory_settings(false, true);
3647 }
3648 
3649 static bool freq_is_chan_12_13_14(u32 freq)
3650 {
3651 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3652 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3653 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3654 		return true;
3655 	return false;
3656 }
3657 
3658 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3659 {
3660 	struct reg_beacon *pending_beacon;
3661 
3662 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3663 		if (ieee80211_channel_equal(beacon_chan,
3664 					    &pending_beacon->chan))
3665 			return true;
3666 	return false;
3667 }
3668 
3669 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3670 				 struct ieee80211_channel *beacon_chan,
3671 				 gfp_t gfp)
3672 {
3673 	struct reg_beacon *reg_beacon;
3674 	bool processing;
3675 
3676 	if (beacon_chan->beacon_found ||
3677 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3678 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3679 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3680 		return 0;
3681 
3682 	spin_lock_bh(&reg_pending_beacons_lock);
3683 	processing = pending_reg_beacon(beacon_chan);
3684 	spin_unlock_bh(&reg_pending_beacons_lock);
3685 
3686 	if (processing)
3687 		return 0;
3688 
3689 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3690 	if (!reg_beacon)
3691 		return -ENOMEM;
3692 
3693 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3694 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3695 		 ieee80211_freq_khz_to_channel(
3696 			 ieee80211_channel_to_khz(beacon_chan)),
3697 		 wiphy_name(wiphy));
3698 
3699 	memcpy(&reg_beacon->chan, beacon_chan,
3700 	       sizeof(struct ieee80211_channel));
3701 
3702 	/*
3703 	 * Since we can be called from BH or and non-BH context
3704 	 * we must use spin_lock_bh()
3705 	 */
3706 	spin_lock_bh(&reg_pending_beacons_lock);
3707 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3708 	spin_unlock_bh(&reg_pending_beacons_lock);
3709 
3710 	schedule_work(&reg_work);
3711 
3712 	return 0;
3713 }
3714 
3715 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3716 {
3717 	unsigned int i;
3718 	const struct ieee80211_reg_rule *reg_rule = NULL;
3719 	const struct ieee80211_freq_range *freq_range = NULL;
3720 	const struct ieee80211_power_rule *power_rule = NULL;
3721 	char bw[32], cac_time[32];
3722 
3723 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3724 
3725 	for (i = 0; i < rd->n_reg_rules; i++) {
3726 		reg_rule = &rd->reg_rules[i];
3727 		freq_range = &reg_rule->freq_range;
3728 		power_rule = &reg_rule->power_rule;
3729 
3730 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3731 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3732 				 freq_range->max_bandwidth_khz,
3733 				 reg_get_max_bandwidth(rd, reg_rule));
3734 		else
3735 			snprintf(bw, sizeof(bw), "%d KHz",
3736 				 freq_range->max_bandwidth_khz);
3737 
3738 		if (reg_rule->flags & NL80211_RRF_DFS)
3739 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3740 				  reg_rule->dfs_cac_ms/1000);
3741 		else
3742 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3743 
3744 
3745 		/*
3746 		 * There may not be documentation for max antenna gain
3747 		 * in certain regions
3748 		 */
3749 		if (power_rule->max_antenna_gain)
3750 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3751 				freq_range->start_freq_khz,
3752 				freq_range->end_freq_khz,
3753 				bw,
3754 				power_rule->max_antenna_gain,
3755 				power_rule->max_eirp,
3756 				cac_time);
3757 		else
3758 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3759 				freq_range->start_freq_khz,
3760 				freq_range->end_freq_khz,
3761 				bw,
3762 				power_rule->max_eirp,
3763 				cac_time);
3764 	}
3765 }
3766 
3767 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3768 {
3769 	switch (dfs_region) {
3770 	case NL80211_DFS_UNSET:
3771 	case NL80211_DFS_FCC:
3772 	case NL80211_DFS_ETSI:
3773 	case NL80211_DFS_JP:
3774 		return true;
3775 	default:
3776 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3777 		return false;
3778 	}
3779 }
3780 
3781 static void print_regdomain(const struct ieee80211_regdomain *rd)
3782 {
3783 	struct regulatory_request *lr = get_last_request();
3784 
3785 	if (is_intersected_alpha2(rd->alpha2)) {
3786 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3787 			struct cfg80211_registered_device *rdev;
3788 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3789 			if (rdev) {
3790 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3791 					rdev->country_ie_alpha2[0],
3792 					rdev->country_ie_alpha2[1]);
3793 			} else
3794 				pr_debug("Current regulatory domain intersected:\n");
3795 		} else
3796 			pr_debug("Current regulatory domain intersected:\n");
3797 	} else if (is_world_regdom(rd->alpha2)) {
3798 		pr_debug("World regulatory domain updated:\n");
3799 	} else {
3800 		if (is_unknown_alpha2(rd->alpha2))
3801 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3802 		else {
3803 			if (reg_request_cell_base(lr))
3804 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3805 					rd->alpha2[0], rd->alpha2[1]);
3806 			else
3807 				pr_debug("Regulatory domain changed to country: %c%c\n",
3808 					rd->alpha2[0], rd->alpha2[1]);
3809 		}
3810 	}
3811 
3812 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3813 	print_rd_rules(rd);
3814 }
3815 
3816 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3817 {
3818 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3819 	print_rd_rules(rd);
3820 }
3821 
3822 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3823 {
3824 	if (!is_world_regdom(rd->alpha2))
3825 		return -EINVAL;
3826 	update_world_regdomain(rd);
3827 	return 0;
3828 }
3829 
3830 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3831 			   struct regulatory_request *user_request)
3832 {
3833 	const struct ieee80211_regdomain *intersected_rd = NULL;
3834 
3835 	if (!regdom_changes(rd->alpha2))
3836 		return -EALREADY;
3837 
3838 	if (!is_valid_rd(rd)) {
3839 		pr_err("Invalid regulatory domain detected: %c%c\n",
3840 		       rd->alpha2[0], rd->alpha2[1]);
3841 		print_regdomain_info(rd);
3842 		return -EINVAL;
3843 	}
3844 
3845 	if (!user_request->intersect) {
3846 		reset_regdomains(false, rd);
3847 		return 0;
3848 	}
3849 
3850 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3851 	if (!intersected_rd)
3852 		return -EINVAL;
3853 
3854 	kfree(rd);
3855 	rd = NULL;
3856 	reset_regdomains(false, intersected_rd);
3857 
3858 	return 0;
3859 }
3860 
3861 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3862 			     struct regulatory_request *driver_request)
3863 {
3864 	const struct ieee80211_regdomain *regd;
3865 	const struct ieee80211_regdomain *intersected_rd = NULL;
3866 	const struct ieee80211_regdomain *tmp = NULL;
3867 	struct wiphy *request_wiphy;
3868 
3869 	if (is_world_regdom(rd->alpha2))
3870 		return -EINVAL;
3871 
3872 	if (!regdom_changes(rd->alpha2))
3873 		return -EALREADY;
3874 
3875 	if (!is_valid_rd(rd)) {
3876 		pr_err("Invalid regulatory domain detected: %c%c\n",
3877 		       rd->alpha2[0], rd->alpha2[1]);
3878 		print_regdomain_info(rd);
3879 		return -EINVAL;
3880 	}
3881 
3882 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3883 	if (!request_wiphy)
3884 		return -ENODEV;
3885 
3886 	if (!driver_request->intersect) {
3887 		ASSERT_RTNL();
3888 		wiphy_lock(request_wiphy);
3889 		if (request_wiphy->regd)
3890 			tmp = get_wiphy_regdom(request_wiphy);
3891 
3892 		regd = reg_copy_regd(rd);
3893 		if (IS_ERR(regd)) {
3894 			wiphy_unlock(request_wiphy);
3895 			return PTR_ERR(regd);
3896 		}
3897 
3898 		rcu_assign_pointer(request_wiphy->regd, regd);
3899 		rcu_free_regdom(tmp);
3900 		wiphy_unlock(request_wiphy);
3901 		reset_regdomains(false, rd);
3902 		return 0;
3903 	}
3904 
3905 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3906 	if (!intersected_rd)
3907 		return -EINVAL;
3908 
3909 	/*
3910 	 * We can trash what CRDA provided now.
3911 	 * However if a driver requested this specific regulatory
3912 	 * domain we keep it for its private use
3913 	 */
3914 	tmp = get_wiphy_regdom(request_wiphy);
3915 	rcu_assign_pointer(request_wiphy->regd, rd);
3916 	rcu_free_regdom(tmp);
3917 
3918 	rd = NULL;
3919 
3920 	reset_regdomains(false, intersected_rd);
3921 
3922 	return 0;
3923 }
3924 
3925 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3926 				 struct regulatory_request *country_ie_request)
3927 {
3928 	struct wiphy *request_wiphy;
3929 
3930 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3931 	    !is_unknown_alpha2(rd->alpha2))
3932 		return -EINVAL;
3933 
3934 	/*
3935 	 * Lets only bother proceeding on the same alpha2 if the current
3936 	 * rd is non static (it means CRDA was present and was used last)
3937 	 * and the pending request came in from a country IE
3938 	 */
3939 
3940 	if (!is_valid_rd(rd)) {
3941 		pr_err("Invalid regulatory domain detected: %c%c\n",
3942 		       rd->alpha2[0], rd->alpha2[1]);
3943 		print_regdomain_info(rd);
3944 		return -EINVAL;
3945 	}
3946 
3947 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3948 	if (!request_wiphy)
3949 		return -ENODEV;
3950 
3951 	if (country_ie_request->intersect)
3952 		return -EINVAL;
3953 
3954 	reset_regdomains(false, rd);
3955 	return 0;
3956 }
3957 
3958 /*
3959  * Use this call to set the current regulatory domain. Conflicts with
3960  * multiple drivers can be ironed out later. Caller must've already
3961  * kmalloc'd the rd structure.
3962  */
3963 int set_regdom(const struct ieee80211_regdomain *rd,
3964 	       enum ieee80211_regd_source regd_src)
3965 {
3966 	struct regulatory_request *lr;
3967 	bool user_reset = false;
3968 	int r;
3969 
3970 	if (IS_ERR_OR_NULL(rd))
3971 		return -ENODATA;
3972 
3973 	if (!reg_is_valid_request(rd->alpha2)) {
3974 		kfree(rd);
3975 		return -EINVAL;
3976 	}
3977 
3978 	if (regd_src == REGD_SOURCE_CRDA)
3979 		reset_crda_timeouts();
3980 
3981 	lr = get_last_request();
3982 
3983 	/* Note that this doesn't update the wiphys, this is done below */
3984 	switch (lr->initiator) {
3985 	case NL80211_REGDOM_SET_BY_CORE:
3986 		r = reg_set_rd_core(rd);
3987 		break;
3988 	case NL80211_REGDOM_SET_BY_USER:
3989 		cfg80211_save_user_regdom(rd);
3990 		r = reg_set_rd_user(rd, lr);
3991 		user_reset = true;
3992 		break;
3993 	case NL80211_REGDOM_SET_BY_DRIVER:
3994 		r = reg_set_rd_driver(rd, lr);
3995 		break;
3996 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3997 		r = reg_set_rd_country_ie(rd, lr);
3998 		break;
3999 	default:
4000 		WARN(1, "invalid initiator %d\n", lr->initiator);
4001 		kfree(rd);
4002 		return -EINVAL;
4003 	}
4004 
4005 	if (r) {
4006 		switch (r) {
4007 		case -EALREADY:
4008 			reg_set_request_processed();
4009 			break;
4010 		default:
4011 			/* Back to world regulatory in case of errors */
4012 			restore_regulatory_settings(user_reset, false);
4013 		}
4014 
4015 		kfree(rd);
4016 		return r;
4017 	}
4018 
4019 	/* This would make this whole thing pointless */
4020 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4021 		return -EINVAL;
4022 
4023 	/* update all wiphys now with the new established regulatory domain */
4024 	update_all_wiphy_regulatory(lr->initiator);
4025 
4026 	print_regdomain(get_cfg80211_regdom());
4027 
4028 	nl80211_send_reg_change_event(lr);
4029 
4030 	reg_set_request_processed();
4031 
4032 	return 0;
4033 }
4034 
4035 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4036 				       struct ieee80211_regdomain *rd)
4037 {
4038 	const struct ieee80211_regdomain *regd;
4039 	const struct ieee80211_regdomain *prev_regd;
4040 	struct cfg80211_registered_device *rdev;
4041 
4042 	if (WARN_ON(!wiphy || !rd))
4043 		return -EINVAL;
4044 
4045 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4046 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4047 		return -EPERM;
4048 
4049 	if (WARN(!is_valid_rd(rd),
4050 		 "Invalid regulatory domain detected: %c%c\n",
4051 		 rd->alpha2[0], rd->alpha2[1])) {
4052 		print_regdomain_info(rd);
4053 		return -EINVAL;
4054 	}
4055 
4056 	regd = reg_copy_regd(rd);
4057 	if (IS_ERR(regd))
4058 		return PTR_ERR(regd);
4059 
4060 	rdev = wiphy_to_rdev(wiphy);
4061 
4062 	spin_lock(&reg_requests_lock);
4063 	prev_regd = rdev->requested_regd;
4064 	rdev->requested_regd = regd;
4065 	spin_unlock(&reg_requests_lock);
4066 
4067 	kfree(prev_regd);
4068 	return 0;
4069 }
4070 
4071 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4072 			      struct ieee80211_regdomain *rd)
4073 {
4074 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4075 
4076 	if (ret)
4077 		return ret;
4078 
4079 	schedule_work(&reg_work);
4080 	return 0;
4081 }
4082 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4083 
4084 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4085 				   struct ieee80211_regdomain *rd)
4086 {
4087 	int ret;
4088 
4089 	ASSERT_RTNL();
4090 
4091 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4092 	if (ret)
4093 		return ret;
4094 
4095 	/* process the request immediately */
4096 	reg_process_self_managed_hint(wiphy);
4097 	reg_check_channels();
4098 	return 0;
4099 }
4100 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4101 
4102 void wiphy_regulatory_register(struct wiphy *wiphy)
4103 {
4104 	struct regulatory_request *lr = get_last_request();
4105 
4106 	/* self-managed devices ignore beacon hints and country IE */
4107 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4108 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4109 					   REGULATORY_COUNTRY_IE_IGNORE;
4110 
4111 		/*
4112 		 * The last request may have been received before this
4113 		 * registration call. Call the driver notifier if
4114 		 * initiator is USER.
4115 		 */
4116 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4117 			reg_call_notifier(wiphy, lr);
4118 	}
4119 
4120 	if (!reg_dev_ignore_cell_hint(wiphy))
4121 		reg_num_devs_support_basehint++;
4122 
4123 	wiphy_update_regulatory(wiphy, lr->initiator);
4124 	wiphy_all_share_dfs_chan_state(wiphy);
4125 	reg_process_self_managed_hints();
4126 }
4127 
4128 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4129 {
4130 	struct wiphy *request_wiphy = NULL;
4131 	struct regulatory_request *lr;
4132 
4133 	lr = get_last_request();
4134 
4135 	if (!reg_dev_ignore_cell_hint(wiphy))
4136 		reg_num_devs_support_basehint--;
4137 
4138 	rcu_free_regdom(get_wiphy_regdom(wiphy));
4139 	RCU_INIT_POINTER(wiphy->regd, NULL);
4140 
4141 	if (lr)
4142 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4143 
4144 	if (!request_wiphy || request_wiphy != wiphy)
4145 		return;
4146 
4147 	lr->wiphy_idx = WIPHY_IDX_INVALID;
4148 	lr->country_ie_env = ENVIRON_ANY;
4149 }
4150 
4151 /*
4152  * See FCC notices for UNII band definitions
4153  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4154  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4155  */
4156 int cfg80211_get_unii(int freq)
4157 {
4158 	/* UNII-1 */
4159 	if (freq >= 5150 && freq <= 5250)
4160 		return 0;
4161 
4162 	/* UNII-2A */
4163 	if (freq > 5250 && freq <= 5350)
4164 		return 1;
4165 
4166 	/* UNII-2B */
4167 	if (freq > 5350 && freq <= 5470)
4168 		return 2;
4169 
4170 	/* UNII-2C */
4171 	if (freq > 5470 && freq <= 5725)
4172 		return 3;
4173 
4174 	/* UNII-3 */
4175 	if (freq > 5725 && freq <= 5825)
4176 		return 4;
4177 
4178 	/* UNII-5 */
4179 	if (freq > 5925 && freq <= 6425)
4180 		return 5;
4181 
4182 	/* UNII-6 */
4183 	if (freq > 6425 && freq <= 6525)
4184 		return 6;
4185 
4186 	/* UNII-7 */
4187 	if (freq > 6525 && freq <= 6875)
4188 		return 7;
4189 
4190 	/* UNII-8 */
4191 	if (freq > 6875 && freq <= 7125)
4192 		return 8;
4193 
4194 	return -EINVAL;
4195 }
4196 
4197 bool regulatory_indoor_allowed(void)
4198 {
4199 	return reg_is_indoor;
4200 }
4201 
4202 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4203 {
4204 	const struct ieee80211_regdomain *regd = NULL;
4205 	const struct ieee80211_regdomain *wiphy_regd = NULL;
4206 	bool pre_cac_allowed = false;
4207 
4208 	rcu_read_lock();
4209 
4210 	regd = rcu_dereference(cfg80211_regdomain);
4211 	wiphy_regd = rcu_dereference(wiphy->regd);
4212 	if (!wiphy_regd) {
4213 		if (regd->dfs_region == NL80211_DFS_ETSI)
4214 			pre_cac_allowed = true;
4215 
4216 		rcu_read_unlock();
4217 
4218 		return pre_cac_allowed;
4219 	}
4220 
4221 	if (regd->dfs_region == wiphy_regd->dfs_region &&
4222 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4223 		pre_cac_allowed = true;
4224 
4225 	rcu_read_unlock();
4226 
4227 	return pre_cac_allowed;
4228 }
4229 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4230 
4231 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4232 {
4233 	struct wireless_dev *wdev;
4234 	/* If we finished CAC or received radar, we should end any
4235 	 * CAC running on the same channels.
4236 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4237 	 * either all channels are available - those the CAC_FINISHED
4238 	 * event has effected another wdev state, or there is a channel
4239 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4240 	 * event has effected another wdev state.
4241 	 * In both cases we should end the CAC on the wdev.
4242 	 */
4243 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4244 		struct cfg80211_chan_def *chandef;
4245 
4246 		if (!wdev->cac_started)
4247 			continue;
4248 
4249 		/* FIXME: radar detection is tied to link 0 for now */
4250 		chandef = wdev_chandef(wdev, 0);
4251 		if (!chandef)
4252 			continue;
4253 
4254 		if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4255 			rdev_end_cac(rdev, wdev->netdev);
4256 	}
4257 }
4258 
4259 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4260 				    struct cfg80211_chan_def *chandef,
4261 				    enum nl80211_dfs_state dfs_state,
4262 				    enum nl80211_radar_event event)
4263 {
4264 	struct cfg80211_registered_device *rdev;
4265 
4266 	ASSERT_RTNL();
4267 
4268 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4269 		return;
4270 
4271 	for_each_rdev(rdev) {
4272 		if (wiphy == &rdev->wiphy)
4273 			continue;
4274 
4275 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4276 			continue;
4277 
4278 		if (!ieee80211_get_channel(&rdev->wiphy,
4279 					   chandef->chan->center_freq))
4280 			continue;
4281 
4282 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4283 
4284 		if (event == NL80211_RADAR_DETECTED ||
4285 		    event == NL80211_RADAR_CAC_FINISHED) {
4286 			cfg80211_sched_dfs_chan_update(rdev);
4287 			cfg80211_check_and_end_cac(rdev);
4288 		}
4289 
4290 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4291 	}
4292 }
4293 
4294 static int __init regulatory_init_db(void)
4295 {
4296 	int err;
4297 
4298 	/*
4299 	 * It's possible that - due to other bugs/issues - cfg80211
4300 	 * never called regulatory_init() below, or that it failed;
4301 	 * in that case, don't try to do any further work here as
4302 	 * it's doomed to lead to crashes.
4303 	 */
4304 	if (IS_ERR_OR_NULL(reg_pdev))
4305 		return -EINVAL;
4306 
4307 	err = load_builtin_regdb_keys();
4308 	if (err) {
4309 		platform_device_unregister(reg_pdev);
4310 		return err;
4311 	}
4312 
4313 	/* We always try to get an update for the static regdomain */
4314 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4315 	if (err) {
4316 		if (err == -ENOMEM) {
4317 			platform_device_unregister(reg_pdev);
4318 			return err;
4319 		}
4320 		/*
4321 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4322 		 * memory which is handled and propagated appropriately above
4323 		 * but it can also fail during a netlink_broadcast() or during
4324 		 * early boot for call_usermodehelper(). For now treat these
4325 		 * errors as non-fatal.
4326 		 */
4327 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4328 	}
4329 
4330 	/*
4331 	 * Finally, if the user set the module parameter treat it
4332 	 * as a user hint.
4333 	 */
4334 	if (!is_world_regdom(ieee80211_regdom))
4335 		regulatory_hint_user(ieee80211_regdom,
4336 				     NL80211_USER_REG_HINT_USER);
4337 
4338 	return 0;
4339 }
4340 #ifndef MODULE
4341 late_initcall(regulatory_init_db);
4342 #endif
4343 
4344 int __init regulatory_init(void)
4345 {
4346 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4347 	if (IS_ERR(reg_pdev))
4348 		return PTR_ERR(reg_pdev);
4349 
4350 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4351 
4352 	user_alpha2[0] = '9';
4353 	user_alpha2[1] = '7';
4354 
4355 #ifdef MODULE
4356 	return regulatory_init_db();
4357 #else
4358 	return 0;
4359 #endif
4360 }
4361 
4362 void regulatory_exit(void)
4363 {
4364 	struct regulatory_request *reg_request, *tmp;
4365 	struct reg_beacon *reg_beacon, *btmp;
4366 
4367 	cancel_work_sync(&reg_work);
4368 	cancel_crda_timeout_sync();
4369 	cancel_delayed_work_sync(&reg_check_chans);
4370 
4371 	/* Lock to suppress warnings */
4372 	rtnl_lock();
4373 	reset_regdomains(true, NULL);
4374 	rtnl_unlock();
4375 
4376 	dev_set_uevent_suppress(&reg_pdev->dev, true);
4377 
4378 	platform_device_unregister(reg_pdev);
4379 
4380 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4381 		list_del(&reg_beacon->list);
4382 		kfree(reg_beacon);
4383 	}
4384 
4385 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4386 		list_del(&reg_beacon->list);
4387 		kfree(reg_beacon);
4388 	}
4389 
4390 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4391 		list_del(&reg_request->list);
4392 		kfree(reg_request);
4393 	}
4394 
4395 	if (!IS_ERR_OR_NULL(regdb))
4396 		kfree(regdb);
4397 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4398 		kfree(cfg80211_user_regdom);
4399 
4400 	free_regdb_keyring();
4401 }
4402