1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2019 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static spinlock_t reg_indoor_lock; 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 138 { 139 return rcu_dereference_rtnl(cfg80211_regdomain); 140 } 141 142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 143 { 144 return rcu_dereference_rtnl(wiphy->regd); 145 } 146 147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 148 { 149 switch (dfs_region) { 150 case NL80211_DFS_UNSET: 151 return "unset"; 152 case NL80211_DFS_FCC: 153 return "FCC"; 154 case NL80211_DFS_ETSI: 155 return "ETSI"; 156 case NL80211_DFS_JP: 157 return "JP"; 158 } 159 return "Unknown"; 160 } 161 162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 163 { 164 const struct ieee80211_regdomain *regd = NULL; 165 const struct ieee80211_regdomain *wiphy_regd = NULL; 166 167 regd = get_cfg80211_regdom(); 168 if (!wiphy) 169 goto out; 170 171 wiphy_regd = get_wiphy_regdom(wiphy); 172 if (!wiphy_regd) 173 goto out; 174 175 if (wiphy_regd->dfs_region == regd->dfs_region) 176 goto out; 177 178 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 179 dev_name(&wiphy->dev), 180 reg_dfs_region_str(wiphy_regd->dfs_region), 181 reg_dfs_region_str(regd->dfs_region)); 182 183 out: 184 return regd->dfs_region; 185 } 186 187 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 188 { 189 if (!r) 190 return; 191 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 192 } 193 194 static struct regulatory_request *get_last_request(void) 195 { 196 return rcu_dereference_rtnl(last_request); 197 } 198 199 /* Used to queue up regulatory hints */ 200 static LIST_HEAD(reg_requests_list); 201 static spinlock_t reg_requests_lock; 202 203 /* Used to queue up beacon hints for review */ 204 static LIST_HEAD(reg_pending_beacons); 205 static spinlock_t reg_pending_beacons_lock; 206 207 /* Used to keep track of processed beacon hints */ 208 static LIST_HEAD(reg_beacon_list); 209 210 struct reg_beacon { 211 struct list_head list; 212 struct ieee80211_channel chan; 213 }; 214 215 static void reg_check_chans_work(struct work_struct *work); 216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 217 218 static void reg_todo(struct work_struct *work); 219 static DECLARE_WORK(reg_work, reg_todo); 220 221 /* We keep a static world regulatory domain in case of the absence of CRDA */ 222 static const struct ieee80211_regdomain world_regdom = { 223 .n_reg_rules = 8, 224 .alpha2 = "00", 225 .reg_rules = { 226 /* IEEE 802.11b/g, channels 1..11 */ 227 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 228 /* IEEE 802.11b/g, channels 12..13. */ 229 REG_RULE(2467-10, 2472+10, 20, 6, 20, 230 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 231 /* IEEE 802.11 channel 14 - Only JP enables 232 * this and for 802.11b only */ 233 REG_RULE(2484-10, 2484+10, 20, 6, 20, 234 NL80211_RRF_NO_IR | 235 NL80211_RRF_NO_OFDM), 236 /* IEEE 802.11a, channel 36..48 */ 237 REG_RULE(5180-10, 5240+10, 80, 6, 20, 238 NL80211_RRF_NO_IR | 239 NL80211_RRF_AUTO_BW), 240 241 /* IEEE 802.11a, channel 52..64 - DFS required */ 242 REG_RULE(5260-10, 5320+10, 80, 6, 20, 243 NL80211_RRF_NO_IR | 244 NL80211_RRF_AUTO_BW | 245 NL80211_RRF_DFS), 246 247 /* IEEE 802.11a, channel 100..144 - DFS required */ 248 REG_RULE(5500-10, 5720+10, 160, 6, 20, 249 NL80211_RRF_NO_IR | 250 NL80211_RRF_DFS), 251 252 /* IEEE 802.11a, channel 149..165 */ 253 REG_RULE(5745-10, 5825+10, 80, 6, 20, 254 NL80211_RRF_NO_IR), 255 256 /* IEEE 802.11ad (60GHz), channels 1..3 */ 257 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 258 } 259 }; 260 261 /* protected by RTNL */ 262 static const struct ieee80211_regdomain *cfg80211_world_regdom = 263 &world_regdom; 264 265 static char *ieee80211_regdom = "00"; 266 static char user_alpha2[2]; 267 static const struct ieee80211_regdomain *cfg80211_user_regdom; 268 269 module_param(ieee80211_regdom, charp, 0444); 270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 271 272 static void reg_free_request(struct regulatory_request *request) 273 { 274 if (request == &core_request_world) 275 return; 276 277 if (request != get_last_request()) 278 kfree(request); 279 } 280 281 static void reg_free_last_request(void) 282 { 283 struct regulatory_request *lr = get_last_request(); 284 285 if (lr != &core_request_world && lr) 286 kfree_rcu(lr, rcu_head); 287 } 288 289 static void reg_update_last_request(struct regulatory_request *request) 290 { 291 struct regulatory_request *lr; 292 293 lr = get_last_request(); 294 if (lr == request) 295 return; 296 297 reg_free_last_request(); 298 rcu_assign_pointer(last_request, request); 299 } 300 301 static void reset_regdomains(bool full_reset, 302 const struct ieee80211_regdomain *new_regdom) 303 { 304 const struct ieee80211_regdomain *r; 305 306 ASSERT_RTNL(); 307 308 r = get_cfg80211_regdom(); 309 310 /* avoid freeing static information or freeing something twice */ 311 if (r == cfg80211_world_regdom) 312 r = NULL; 313 if (cfg80211_world_regdom == &world_regdom) 314 cfg80211_world_regdom = NULL; 315 if (r == &world_regdom) 316 r = NULL; 317 318 rcu_free_regdom(r); 319 rcu_free_regdom(cfg80211_world_regdom); 320 321 cfg80211_world_regdom = &world_regdom; 322 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 323 324 if (!full_reset) 325 return; 326 327 reg_update_last_request(&core_request_world); 328 } 329 330 /* 331 * Dynamic world regulatory domain requested by the wireless 332 * core upon initialization 333 */ 334 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 335 { 336 struct regulatory_request *lr; 337 338 lr = get_last_request(); 339 340 WARN_ON(!lr); 341 342 reset_regdomains(false, rd); 343 344 cfg80211_world_regdom = rd; 345 } 346 347 bool is_world_regdom(const char *alpha2) 348 { 349 if (!alpha2) 350 return false; 351 return alpha2[0] == '0' && alpha2[1] == '0'; 352 } 353 354 static bool is_alpha2_set(const char *alpha2) 355 { 356 if (!alpha2) 357 return false; 358 return alpha2[0] && alpha2[1]; 359 } 360 361 static bool is_unknown_alpha2(const char *alpha2) 362 { 363 if (!alpha2) 364 return false; 365 /* 366 * Special case where regulatory domain was built by driver 367 * but a specific alpha2 cannot be determined 368 */ 369 return alpha2[0] == '9' && alpha2[1] == '9'; 370 } 371 372 static bool is_intersected_alpha2(const char *alpha2) 373 { 374 if (!alpha2) 375 return false; 376 /* 377 * Special case where regulatory domain is the 378 * result of an intersection between two regulatory domain 379 * structures 380 */ 381 return alpha2[0] == '9' && alpha2[1] == '8'; 382 } 383 384 static bool is_an_alpha2(const char *alpha2) 385 { 386 if (!alpha2) 387 return false; 388 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 389 } 390 391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 392 { 393 if (!alpha2_x || !alpha2_y) 394 return false; 395 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 396 } 397 398 static bool regdom_changes(const char *alpha2) 399 { 400 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 401 402 if (!r) 403 return true; 404 return !alpha2_equal(r->alpha2, alpha2); 405 } 406 407 /* 408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 410 * has ever been issued. 411 */ 412 static bool is_user_regdom_saved(void) 413 { 414 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 415 return false; 416 417 /* This would indicate a mistake on the design */ 418 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 419 "Unexpected user alpha2: %c%c\n", 420 user_alpha2[0], user_alpha2[1])) 421 return false; 422 423 return true; 424 } 425 426 static const struct ieee80211_regdomain * 427 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 428 { 429 struct ieee80211_regdomain *regd; 430 unsigned int i; 431 432 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 433 GFP_KERNEL); 434 if (!regd) 435 return ERR_PTR(-ENOMEM); 436 437 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 438 439 for (i = 0; i < src_regd->n_reg_rules; i++) 440 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 441 sizeof(struct ieee80211_reg_rule)); 442 443 return regd; 444 } 445 446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 447 { 448 ASSERT_RTNL(); 449 450 if (!IS_ERR(cfg80211_user_regdom)) 451 kfree(cfg80211_user_regdom); 452 cfg80211_user_regdom = reg_copy_regd(rd); 453 } 454 455 struct reg_regdb_apply_request { 456 struct list_head list; 457 const struct ieee80211_regdomain *regdom; 458 }; 459 460 static LIST_HEAD(reg_regdb_apply_list); 461 static DEFINE_MUTEX(reg_regdb_apply_mutex); 462 463 static void reg_regdb_apply(struct work_struct *work) 464 { 465 struct reg_regdb_apply_request *request; 466 467 rtnl_lock(); 468 469 mutex_lock(®_regdb_apply_mutex); 470 while (!list_empty(®_regdb_apply_list)) { 471 request = list_first_entry(®_regdb_apply_list, 472 struct reg_regdb_apply_request, 473 list); 474 list_del(&request->list); 475 476 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 477 kfree(request); 478 } 479 mutex_unlock(®_regdb_apply_mutex); 480 481 rtnl_unlock(); 482 } 483 484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 485 486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 487 { 488 struct reg_regdb_apply_request *request; 489 490 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 491 if (!request) { 492 kfree(regdom); 493 return -ENOMEM; 494 } 495 496 request->regdom = regdom; 497 498 mutex_lock(®_regdb_apply_mutex); 499 list_add_tail(&request->list, ®_regdb_apply_list); 500 mutex_unlock(®_regdb_apply_mutex); 501 502 schedule_work(®_regdb_work); 503 return 0; 504 } 505 506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 507 /* Max number of consecutive attempts to communicate with CRDA */ 508 #define REG_MAX_CRDA_TIMEOUTS 10 509 510 static u32 reg_crda_timeouts; 511 512 static void crda_timeout_work(struct work_struct *work); 513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 514 515 static void crda_timeout_work(struct work_struct *work) 516 { 517 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 518 rtnl_lock(); 519 reg_crda_timeouts++; 520 restore_regulatory_settings(true, false); 521 rtnl_unlock(); 522 } 523 524 static void cancel_crda_timeout(void) 525 { 526 cancel_delayed_work(&crda_timeout); 527 } 528 529 static void cancel_crda_timeout_sync(void) 530 { 531 cancel_delayed_work_sync(&crda_timeout); 532 } 533 534 static void reset_crda_timeouts(void) 535 { 536 reg_crda_timeouts = 0; 537 } 538 539 /* 540 * This lets us keep regulatory code which is updated on a regulatory 541 * basis in userspace. 542 */ 543 static int call_crda(const char *alpha2) 544 { 545 char country[12]; 546 char *env[] = { country, NULL }; 547 int ret; 548 549 snprintf(country, sizeof(country), "COUNTRY=%c%c", 550 alpha2[0], alpha2[1]); 551 552 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 553 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 554 return -EINVAL; 555 } 556 557 if (!is_world_regdom((char *) alpha2)) 558 pr_debug("Calling CRDA for country: %c%c\n", 559 alpha2[0], alpha2[1]); 560 else 561 pr_debug("Calling CRDA to update world regulatory domain\n"); 562 563 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 564 if (ret) 565 return ret; 566 567 queue_delayed_work(system_power_efficient_wq, 568 &crda_timeout, msecs_to_jiffies(3142)); 569 return 0; 570 } 571 #else 572 static inline void cancel_crda_timeout(void) {} 573 static inline void cancel_crda_timeout_sync(void) {} 574 static inline void reset_crda_timeouts(void) {} 575 static inline int call_crda(const char *alpha2) 576 { 577 return -ENODATA; 578 } 579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 580 581 /* code to directly load a firmware database through request_firmware */ 582 static const struct fwdb_header *regdb; 583 584 struct fwdb_country { 585 u8 alpha2[2]; 586 __be16 coll_ptr; 587 /* this struct cannot be extended */ 588 } __packed __aligned(4); 589 590 struct fwdb_collection { 591 u8 len; 592 u8 n_rules; 593 u8 dfs_region; 594 /* no optional data yet */ 595 /* aligned to 2, then followed by __be16 array of rule pointers */ 596 } __packed __aligned(4); 597 598 enum fwdb_flags { 599 FWDB_FLAG_NO_OFDM = BIT(0), 600 FWDB_FLAG_NO_OUTDOOR = BIT(1), 601 FWDB_FLAG_DFS = BIT(2), 602 FWDB_FLAG_NO_IR = BIT(3), 603 FWDB_FLAG_AUTO_BW = BIT(4), 604 }; 605 606 struct fwdb_wmm_ac { 607 u8 ecw; 608 u8 aifsn; 609 __be16 cot; 610 } __packed; 611 612 struct fwdb_wmm_rule { 613 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 614 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 615 } __packed; 616 617 struct fwdb_rule { 618 u8 len; 619 u8 flags; 620 __be16 max_eirp; 621 __be32 start, end, max_bw; 622 /* start of optional data */ 623 __be16 cac_timeout; 624 __be16 wmm_ptr; 625 } __packed __aligned(4); 626 627 #define FWDB_MAGIC 0x52474442 628 #define FWDB_VERSION 20 629 630 struct fwdb_header { 631 __be32 magic; 632 __be32 version; 633 struct fwdb_country country[]; 634 } __packed __aligned(4); 635 636 static int ecw2cw(int ecw) 637 { 638 return (1 << ecw) - 1; 639 } 640 641 static bool valid_wmm(struct fwdb_wmm_rule *rule) 642 { 643 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 644 int i; 645 646 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 647 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 648 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 649 u8 aifsn = ac[i].aifsn; 650 651 if (cw_min >= cw_max) 652 return false; 653 654 if (aifsn < 1) 655 return false; 656 } 657 658 return true; 659 } 660 661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 662 { 663 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 664 665 if ((u8 *)rule + sizeof(rule->len) > data + size) 666 return false; 667 668 /* mandatory fields */ 669 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 670 return false; 671 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 672 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 673 struct fwdb_wmm_rule *wmm; 674 675 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 676 return false; 677 678 wmm = (void *)(data + wmm_ptr); 679 680 if (!valid_wmm(wmm)) 681 return false; 682 } 683 return true; 684 } 685 686 static bool valid_country(const u8 *data, unsigned int size, 687 const struct fwdb_country *country) 688 { 689 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 690 struct fwdb_collection *coll = (void *)(data + ptr); 691 __be16 *rules_ptr; 692 unsigned int i; 693 694 /* make sure we can read len/n_rules */ 695 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 696 return false; 697 698 /* make sure base struct and all rules fit */ 699 if ((u8 *)coll + ALIGN(coll->len, 2) + 700 (coll->n_rules * 2) > data + size) 701 return false; 702 703 /* mandatory fields must exist */ 704 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 705 return false; 706 707 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 708 709 for (i = 0; i < coll->n_rules; i++) { 710 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 711 712 if (!valid_rule(data, size, rule_ptr)) 713 return false; 714 } 715 716 return true; 717 } 718 719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 720 static struct key *builtin_regdb_keys; 721 722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 723 { 724 const u8 *end = p + buflen; 725 size_t plen; 726 key_ref_t key; 727 728 while (p < end) { 729 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 730 * than 256 bytes in size. 731 */ 732 if (end - p < 4) 733 goto dodgy_cert; 734 if (p[0] != 0x30 && 735 p[1] != 0x82) 736 goto dodgy_cert; 737 plen = (p[2] << 8) | p[3]; 738 plen += 4; 739 if (plen > end - p) 740 goto dodgy_cert; 741 742 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 743 "asymmetric", NULL, p, plen, 744 &internal_key_acl, 745 KEY_ALLOC_NOT_IN_QUOTA | 746 KEY_ALLOC_BUILT_IN | 747 KEY_ALLOC_BYPASS_RESTRICTION); 748 if (IS_ERR(key)) { 749 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 750 PTR_ERR(key)); 751 } else { 752 pr_notice("Loaded X.509 cert '%s'\n", 753 key_ref_to_ptr(key)->description); 754 key_ref_put(key); 755 } 756 p += plen; 757 } 758 759 return; 760 761 dodgy_cert: 762 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 763 } 764 765 static int __init load_builtin_regdb_keys(void) 766 { 767 builtin_regdb_keys = 768 keyring_alloc(".builtin_regdb_keys", 769 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 770 &internal_keyring_acl, 771 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 772 if (IS_ERR(builtin_regdb_keys)) 773 return PTR_ERR(builtin_regdb_keys); 774 775 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 776 777 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 778 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 779 #endif 780 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 781 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 782 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 783 #endif 784 785 return 0; 786 } 787 788 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 789 { 790 const struct firmware *sig; 791 bool result; 792 793 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 794 return false; 795 796 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 797 builtin_regdb_keys, 798 VERIFYING_UNSPECIFIED_SIGNATURE, 799 NULL, NULL) == 0; 800 801 release_firmware(sig); 802 803 return result; 804 } 805 806 static void free_regdb_keyring(void) 807 { 808 key_put(builtin_regdb_keys); 809 } 810 #else 811 static int load_builtin_regdb_keys(void) 812 { 813 return 0; 814 } 815 816 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 817 { 818 return true; 819 } 820 821 static void free_regdb_keyring(void) 822 { 823 } 824 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 825 826 static bool valid_regdb(const u8 *data, unsigned int size) 827 { 828 const struct fwdb_header *hdr = (void *)data; 829 const struct fwdb_country *country; 830 831 if (size < sizeof(*hdr)) 832 return false; 833 834 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 835 return false; 836 837 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 838 return false; 839 840 if (!regdb_has_valid_signature(data, size)) 841 return false; 842 843 country = &hdr->country[0]; 844 while ((u8 *)(country + 1) <= data + size) { 845 if (!country->coll_ptr) 846 break; 847 if (!valid_country(data, size, country)) 848 return false; 849 country++; 850 } 851 852 return true; 853 } 854 855 static void set_wmm_rule(const struct fwdb_header *db, 856 const struct fwdb_country *country, 857 const struct fwdb_rule *rule, 858 struct ieee80211_reg_rule *rrule) 859 { 860 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 861 struct fwdb_wmm_rule *wmm; 862 unsigned int i, wmm_ptr; 863 864 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 865 wmm = (void *)((u8 *)db + wmm_ptr); 866 867 if (!valid_wmm(wmm)) { 868 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 869 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 870 country->alpha2[0], country->alpha2[1]); 871 return; 872 } 873 874 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 875 wmm_rule->client[i].cw_min = 876 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 877 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 878 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 879 wmm_rule->client[i].cot = 880 1000 * be16_to_cpu(wmm->client[i].cot); 881 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 882 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 883 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 884 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 885 } 886 887 rrule->has_wmm = true; 888 } 889 890 static int __regdb_query_wmm(const struct fwdb_header *db, 891 const struct fwdb_country *country, int freq, 892 struct ieee80211_reg_rule *rrule) 893 { 894 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 895 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 896 int i; 897 898 for (i = 0; i < coll->n_rules; i++) { 899 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 900 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 901 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 902 903 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 904 continue; 905 906 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 907 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 908 set_wmm_rule(db, country, rule, rrule); 909 return 0; 910 } 911 } 912 913 return -ENODATA; 914 } 915 916 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 917 { 918 const struct fwdb_header *hdr = regdb; 919 const struct fwdb_country *country; 920 921 if (!regdb) 922 return -ENODATA; 923 924 if (IS_ERR(regdb)) 925 return PTR_ERR(regdb); 926 927 country = &hdr->country[0]; 928 while (country->coll_ptr) { 929 if (alpha2_equal(alpha2, country->alpha2)) 930 return __regdb_query_wmm(regdb, country, freq, rule); 931 932 country++; 933 } 934 935 return -ENODATA; 936 } 937 EXPORT_SYMBOL(reg_query_regdb_wmm); 938 939 static int regdb_query_country(const struct fwdb_header *db, 940 const struct fwdb_country *country) 941 { 942 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 943 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 944 struct ieee80211_regdomain *regdom; 945 unsigned int i; 946 947 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 948 GFP_KERNEL); 949 if (!regdom) 950 return -ENOMEM; 951 952 regdom->n_reg_rules = coll->n_rules; 953 regdom->alpha2[0] = country->alpha2[0]; 954 regdom->alpha2[1] = country->alpha2[1]; 955 regdom->dfs_region = coll->dfs_region; 956 957 for (i = 0; i < regdom->n_reg_rules; i++) { 958 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 959 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 960 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 961 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 962 963 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 964 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 965 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 966 967 rrule->power_rule.max_antenna_gain = 0; 968 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 969 970 rrule->flags = 0; 971 if (rule->flags & FWDB_FLAG_NO_OFDM) 972 rrule->flags |= NL80211_RRF_NO_OFDM; 973 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 974 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 975 if (rule->flags & FWDB_FLAG_DFS) 976 rrule->flags |= NL80211_RRF_DFS; 977 if (rule->flags & FWDB_FLAG_NO_IR) 978 rrule->flags |= NL80211_RRF_NO_IR; 979 if (rule->flags & FWDB_FLAG_AUTO_BW) 980 rrule->flags |= NL80211_RRF_AUTO_BW; 981 982 rrule->dfs_cac_ms = 0; 983 984 /* handle optional data */ 985 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 986 rrule->dfs_cac_ms = 987 1000 * be16_to_cpu(rule->cac_timeout); 988 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 989 set_wmm_rule(db, country, rule, rrule); 990 } 991 992 return reg_schedule_apply(regdom); 993 } 994 995 static int query_regdb(const char *alpha2) 996 { 997 const struct fwdb_header *hdr = regdb; 998 const struct fwdb_country *country; 999 1000 ASSERT_RTNL(); 1001 1002 if (IS_ERR(regdb)) 1003 return PTR_ERR(regdb); 1004 1005 country = &hdr->country[0]; 1006 while (country->coll_ptr) { 1007 if (alpha2_equal(alpha2, country->alpha2)) 1008 return regdb_query_country(regdb, country); 1009 country++; 1010 } 1011 1012 return -ENODATA; 1013 } 1014 1015 static void regdb_fw_cb(const struct firmware *fw, void *context) 1016 { 1017 int set_error = 0; 1018 bool restore = true; 1019 void *db; 1020 1021 if (!fw) { 1022 pr_info("failed to load regulatory.db\n"); 1023 set_error = -ENODATA; 1024 } else if (!valid_regdb(fw->data, fw->size)) { 1025 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1026 set_error = -EINVAL; 1027 } 1028 1029 rtnl_lock(); 1030 if (regdb && !IS_ERR(regdb)) { 1031 /* negative case - a bug 1032 * positive case - can happen due to race in case of multiple cb's in 1033 * queue, due to usage of asynchronous callback 1034 * 1035 * Either case, just restore and free new db. 1036 */ 1037 } else if (set_error) { 1038 regdb = ERR_PTR(set_error); 1039 } else if (fw) { 1040 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1041 if (db) { 1042 regdb = db; 1043 restore = context && query_regdb(context); 1044 } else { 1045 restore = true; 1046 } 1047 } 1048 1049 if (restore) 1050 restore_regulatory_settings(true, false); 1051 1052 rtnl_unlock(); 1053 1054 kfree(context); 1055 1056 release_firmware(fw); 1057 } 1058 1059 static int query_regdb_file(const char *alpha2) 1060 { 1061 ASSERT_RTNL(); 1062 1063 if (regdb) 1064 return query_regdb(alpha2); 1065 1066 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1067 if (!alpha2) 1068 return -ENOMEM; 1069 1070 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1071 ®_pdev->dev, GFP_KERNEL, 1072 (void *)alpha2, regdb_fw_cb); 1073 } 1074 1075 int reg_reload_regdb(void) 1076 { 1077 const struct firmware *fw; 1078 void *db; 1079 int err; 1080 1081 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1082 if (err) 1083 return err; 1084 1085 if (!valid_regdb(fw->data, fw->size)) { 1086 err = -ENODATA; 1087 goto out; 1088 } 1089 1090 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1091 if (!db) { 1092 err = -ENOMEM; 1093 goto out; 1094 } 1095 1096 rtnl_lock(); 1097 if (!IS_ERR_OR_NULL(regdb)) 1098 kfree(regdb); 1099 regdb = db; 1100 rtnl_unlock(); 1101 1102 out: 1103 release_firmware(fw); 1104 return err; 1105 } 1106 1107 static bool reg_query_database(struct regulatory_request *request) 1108 { 1109 if (query_regdb_file(request->alpha2) == 0) 1110 return true; 1111 1112 if (call_crda(request->alpha2) == 0) 1113 return true; 1114 1115 return false; 1116 } 1117 1118 bool reg_is_valid_request(const char *alpha2) 1119 { 1120 struct regulatory_request *lr = get_last_request(); 1121 1122 if (!lr || lr->processed) 1123 return false; 1124 1125 return alpha2_equal(lr->alpha2, alpha2); 1126 } 1127 1128 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1129 { 1130 struct regulatory_request *lr = get_last_request(); 1131 1132 /* 1133 * Follow the driver's regulatory domain, if present, unless a country 1134 * IE has been processed or a user wants to help complaince further 1135 */ 1136 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1137 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1138 wiphy->regd) 1139 return get_wiphy_regdom(wiphy); 1140 1141 return get_cfg80211_regdom(); 1142 } 1143 1144 static unsigned int 1145 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1146 const struct ieee80211_reg_rule *rule) 1147 { 1148 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1149 const struct ieee80211_freq_range *freq_range_tmp; 1150 const struct ieee80211_reg_rule *tmp; 1151 u32 start_freq, end_freq, idx, no; 1152 1153 for (idx = 0; idx < rd->n_reg_rules; idx++) 1154 if (rule == &rd->reg_rules[idx]) 1155 break; 1156 1157 if (idx == rd->n_reg_rules) 1158 return 0; 1159 1160 /* get start_freq */ 1161 no = idx; 1162 1163 while (no) { 1164 tmp = &rd->reg_rules[--no]; 1165 freq_range_tmp = &tmp->freq_range; 1166 1167 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1168 break; 1169 1170 freq_range = freq_range_tmp; 1171 } 1172 1173 start_freq = freq_range->start_freq_khz; 1174 1175 /* get end_freq */ 1176 freq_range = &rule->freq_range; 1177 no = idx; 1178 1179 while (no < rd->n_reg_rules - 1) { 1180 tmp = &rd->reg_rules[++no]; 1181 freq_range_tmp = &tmp->freq_range; 1182 1183 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1184 break; 1185 1186 freq_range = freq_range_tmp; 1187 } 1188 1189 end_freq = freq_range->end_freq_khz; 1190 1191 return end_freq - start_freq; 1192 } 1193 1194 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1195 const struct ieee80211_reg_rule *rule) 1196 { 1197 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1198 1199 if (rule->flags & NL80211_RRF_NO_160MHZ) 1200 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1201 if (rule->flags & NL80211_RRF_NO_80MHZ) 1202 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1203 1204 /* 1205 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1206 * are not allowed. 1207 */ 1208 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1209 rule->flags & NL80211_RRF_NO_HT40PLUS) 1210 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1211 1212 return bw; 1213 } 1214 1215 /* Sanity check on a regulatory rule */ 1216 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1217 { 1218 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1219 u32 freq_diff; 1220 1221 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1222 return false; 1223 1224 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1225 return false; 1226 1227 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1228 1229 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1230 freq_range->max_bandwidth_khz > freq_diff) 1231 return false; 1232 1233 return true; 1234 } 1235 1236 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1237 { 1238 const struct ieee80211_reg_rule *reg_rule = NULL; 1239 unsigned int i; 1240 1241 if (!rd->n_reg_rules) 1242 return false; 1243 1244 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1245 return false; 1246 1247 for (i = 0; i < rd->n_reg_rules; i++) { 1248 reg_rule = &rd->reg_rules[i]; 1249 if (!is_valid_reg_rule(reg_rule)) 1250 return false; 1251 } 1252 1253 return true; 1254 } 1255 1256 /** 1257 * freq_in_rule_band - tells us if a frequency is in a frequency band 1258 * @freq_range: frequency rule we want to query 1259 * @freq_khz: frequency we are inquiring about 1260 * 1261 * This lets us know if a specific frequency rule is or is not relevant to 1262 * a specific frequency's band. Bands are device specific and artificial 1263 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1264 * however it is safe for now to assume that a frequency rule should not be 1265 * part of a frequency's band if the start freq or end freq are off by more 1266 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1267 * 60 GHz band. 1268 * This resolution can be lowered and should be considered as we add 1269 * regulatory rule support for other "bands". 1270 **/ 1271 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1272 u32 freq_khz) 1273 { 1274 #define ONE_GHZ_IN_KHZ 1000000 1275 /* 1276 * From 802.11ad: directional multi-gigabit (DMG): 1277 * Pertaining to operation in a frequency band containing a channel 1278 * with the Channel starting frequency above 45 GHz. 1279 */ 1280 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1281 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1282 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1283 return true; 1284 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1285 return true; 1286 return false; 1287 #undef ONE_GHZ_IN_KHZ 1288 } 1289 1290 /* 1291 * Later on we can perhaps use the more restrictive DFS 1292 * region but we don't have information for that yet so 1293 * for now simply disallow conflicts. 1294 */ 1295 static enum nl80211_dfs_regions 1296 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1297 const enum nl80211_dfs_regions dfs_region2) 1298 { 1299 if (dfs_region1 != dfs_region2) 1300 return NL80211_DFS_UNSET; 1301 return dfs_region1; 1302 } 1303 1304 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1305 const struct ieee80211_wmm_ac *wmm_ac2, 1306 struct ieee80211_wmm_ac *intersect) 1307 { 1308 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1309 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1310 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1311 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1312 } 1313 1314 /* 1315 * Helper for regdom_intersect(), this does the real 1316 * mathematical intersection fun 1317 */ 1318 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1319 const struct ieee80211_regdomain *rd2, 1320 const struct ieee80211_reg_rule *rule1, 1321 const struct ieee80211_reg_rule *rule2, 1322 struct ieee80211_reg_rule *intersected_rule) 1323 { 1324 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1325 struct ieee80211_freq_range *freq_range; 1326 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1327 struct ieee80211_power_rule *power_rule; 1328 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1329 struct ieee80211_wmm_rule *wmm_rule; 1330 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1331 1332 freq_range1 = &rule1->freq_range; 1333 freq_range2 = &rule2->freq_range; 1334 freq_range = &intersected_rule->freq_range; 1335 1336 power_rule1 = &rule1->power_rule; 1337 power_rule2 = &rule2->power_rule; 1338 power_rule = &intersected_rule->power_rule; 1339 1340 wmm_rule1 = &rule1->wmm_rule; 1341 wmm_rule2 = &rule2->wmm_rule; 1342 wmm_rule = &intersected_rule->wmm_rule; 1343 1344 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1345 freq_range2->start_freq_khz); 1346 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1347 freq_range2->end_freq_khz); 1348 1349 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1350 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1351 1352 if (rule1->flags & NL80211_RRF_AUTO_BW) 1353 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1354 if (rule2->flags & NL80211_RRF_AUTO_BW) 1355 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1356 1357 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1358 1359 intersected_rule->flags = rule1->flags | rule2->flags; 1360 1361 /* 1362 * In case NL80211_RRF_AUTO_BW requested for both rules 1363 * set AUTO_BW in intersected rule also. Next we will 1364 * calculate BW correctly in handle_channel function. 1365 * In other case remove AUTO_BW flag while we calculate 1366 * maximum bandwidth correctly and auto calculation is 1367 * not required. 1368 */ 1369 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1370 (rule2->flags & NL80211_RRF_AUTO_BW)) 1371 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1372 else 1373 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1374 1375 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1376 if (freq_range->max_bandwidth_khz > freq_diff) 1377 freq_range->max_bandwidth_khz = freq_diff; 1378 1379 power_rule->max_eirp = min(power_rule1->max_eirp, 1380 power_rule2->max_eirp); 1381 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1382 power_rule2->max_antenna_gain); 1383 1384 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1385 rule2->dfs_cac_ms); 1386 1387 if (rule1->has_wmm && rule2->has_wmm) { 1388 u8 ac; 1389 1390 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1391 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1392 &wmm_rule2->client[ac], 1393 &wmm_rule->client[ac]); 1394 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1395 &wmm_rule2->ap[ac], 1396 &wmm_rule->ap[ac]); 1397 } 1398 1399 intersected_rule->has_wmm = true; 1400 } else if (rule1->has_wmm) { 1401 *wmm_rule = *wmm_rule1; 1402 intersected_rule->has_wmm = true; 1403 } else if (rule2->has_wmm) { 1404 *wmm_rule = *wmm_rule2; 1405 intersected_rule->has_wmm = true; 1406 } else { 1407 intersected_rule->has_wmm = false; 1408 } 1409 1410 if (!is_valid_reg_rule(intersected_rule)) 1411 return -EINVAL; 1412 1413 return 0; 1414 } 1415 1416 /* check whether old rule contains new rule */ 1417 static bool rule_contains(struct ieee80211_reg_rule *r1, 1418 struct ieee80211_reg_rule *r2) 1419 { 1420 /* for simplicity, currently consider only same flags */ 1421 if (r1->flags != r2->flags) 1422 return false; 1423 1424 /* verify r1 is more restrictive */ 1425 if ((r1->power_rule.max_antenna_gain > 1426 r2->power_rule.max_antenna_gain) || 1427 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1428 return false; 1429 1430 /* make sure r2's range is contained within r1 */ 1431 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1432 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1433 return false; 1434 1435 /* and finally verify that r1.max_bw >= r2.max_bw */ 1436 if (r1->freq_range.max_bandwidth_khz < 1437 r2->freq_range.max_bandwidth_khz) 1438 return false; 1439 1440 return true; 1441 } 1442 1443 /* add or extend current rules. do nothing if rule is already contained */ 1444 static void add_rule(struct ieee80211_reg_rule *rule, 1445 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1446 { 1447 struct ieee80211_reg_rule *tmp_rule; 1448 int i; 1449 1450 for (i = 0; i < *n_rules; i++) { 1451 tmp_rule = ®_rules[i]; 1452 /* rule is already contained - do nothing */ 1453 if (rule_contains(tmp_rule, rule)) 1454 return; 1455 1456 /* extend rule if possible */ 1457 if (rule_contains(rule, tmp_rule)) { 1458 memcpy(tmp_rule, rule, sizeof(*rule)); 1459 return; 1460 } 1461 } 1462 1463 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1464 (*n_rules)++; 1465 } 1466 1467 /** 1468 * regdom_intersect - do the intersection between two regulatory domains 1469 * @rd1: first regulatory domain 1470 * @rd2: second regulatory domain 1471 * 1472 * Use this function to get the intersection between two regulatory domains. 1473 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1474 * as no one single alpha2 can represent this regulatory domain. 1475 * 1476 * Returns a pointer to the regulatory domain structure which will hold the 1477 * resulting intersection of rules between rd1 and rd2. We will 1478 * kzalloc() this structure for you. 1479 */ 1480 static struct ieee80211_regdomain * 1481 regdom_intersect(const struct ieee80211_regdomain *rd1, 1482 const struct ieee80211_regdomain *rd2) 1483 { 1484 int r; 1485 unsigned int x, y; 1486 unsigned int num_rules = 0; 1487 const struct ieee80211_reg_rule *rule1, *rule2; 1488 struct ieee80211_reg_rule intersected_rule; 1489 struct ieee80211_regdomain *rd; 1490 1491 if (!rd1 || !rd2) 1492 return NULL; 1493 1494 /* 1495 * First we get a count of the rules we'll need, then we actually 1496 * build them. This is to so we can malloc() and free() a 1497 * regdomain once. The reason we use reg_rules_intersect() here 1498 * is it will return -EINVAL if the rule computed makes no sense. 1499 * All rules that do check out OK are valid. 1500 */ 1501 1502 for (x = 0; x < rd1->n_reg_rules; x++) { 1503 rule1 = &rd1->reg_rules[x]; 1504 for (y = 0; y < rd2->n_reg_rules; y++) { 1505 rule2 = &rd2->reg_rules[y]; 1506 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1507 &intersected_rule)) 1508 num_rules++; 1509 } 1510 } 1511 1512 if (!num_rules) 1513 return NULL; 1514 1515 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1516 if (!rd) 1517 return NULL; 1518 1519 for (x = 0; x < rd1->n_reg_rules; x++) { 1520 rule1 = &rd1->reg_rules[x]; 1521 for (y = 0; y < rd2->n_reg_rules; y++) { 1522 rule2 = &rd2->reg_rules[y]; 1523 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1524 &intersected_rule); 1525 /* 1526 * No need to memset here the intersected rule here as 1527 * we're not using the stack anymore 1528 */ 1529 if (r) 1530 continue; 1531 1532 add_rule(&intersected_rule, rd->reg_rules, 1533 &rd->n_reg_rules); 1534 } 1535 } 1536 1537 rd->alpha2[0] = '9'; 1538 rd->alpha2[1] = '8'; 1539 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1540 rd2->dfs_region); 1541 1542 return rd; 1543 } 1544 1545 /* 1546 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1547 * want to just have the channel structure use these 1548 */ 1549 static u32 map_regdom_flags(u32 rd_flags) 1550 { 1551 u32 channel_flags = 0; 1552 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1553 channel_flags |= IEEE80211_CHAN_NO_IR; 1554 if (rd_flags & NL80211_RRF_DFS) 1555 channel_flags |= IEEE80211_CHAN_RADAR; 1556 if (rd_flags & NL80211_RRF_NO_OFDM) 1557 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1558 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1559 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1560 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1561 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1562 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1563 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1564 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1565 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1566 if (rd_flags & NL80211_RRF_NO_80MHZ) 1567 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1568 if (rd_flags & NL80211_RRF_NO_160MHZ) 1569 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1570 return channel_flags; 1571 } 1572 1573 static const struct ieee80211_reg_rule * 1574 freq_reg_info_regd(u32 center_freq, 1575 const struct ieee80211_regdomain *regd, u32 bw) 1576 { 1577 int i; 1578 bool band_rule_found = false; 1579 bool bw_fits = false; 1580 1581 if (!regd) 1582 return ERR_PTR(-EINVAL); 1583 1584 for (i = 0; i < regd->n_reg_rules; i++) { 1585 const struct ieee80211_reg_rule *rr; 1586 const struct ieee80211_freq_range *fr = NULL; 1587 1588 rr = ®d->reg_rules[i]; 1589 fr = &rr->freq_range; 1590 1591 /* 1592 * We only need to know if one frequency rule was 1593 * was in center_freq's band, that's enough, so lets 1594 * not overwrite it once found 1595 */ 1596 if (!band_rule_found) 1597 band_rule_found = freq_in_rule_band(fr, center_freq); 1598 1599 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1600 1601 if (band_rule_found && bw_fits) 1602 return rr; 1603 } 1604 1605 if (!band_rule_found) 1606 return ERR_PTR(-ERANGE); 1607 1608 return ERR_PTR(-EINVAL); 1609 } 1610 1611 static const struct ieee80211_reg_rule * 1612 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1613 { 1614 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1615 const struct ieee80211_reg_rule *reg_rule = NULL; 1616 u32 bw; 1617 1618 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 1619 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1620 if (!IS_ERR(reg_rule)) 1621 return reg_rule; 1622 } 1623 1624 return reg_rule; 1625 } 1626 1627 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1628 u32 center_freq) 1629 { 1630 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); 1631 } 1632 EXPORT_SYMBOL(freq_reg_info); 1633 1634 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1635 { 1636 switch (initiator) { 1637 case NL80211_REGDOM_SET_BY_CORE: 1638 return "core"; 1639 case NL80211_REGDOM_SET_BY_USER: 1640 return "user"; 1641 case NL80211_REGDOM_SET_BY_DRIVER: 1642 return "driver"; 1643 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1644 return "country element"; 1645 default: 1646 WARN_ON(1); 1647 return "bug"; 1648 } 1649 } 1650 EXPORT_SYMBOL(reg_initiator_name); 1651 1652 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1653 const struct ieee80211_reg_rule *reg_rule, 1654 const struct ieee80211_channel *chan) 1655 { 1656 const struct ieee80211_freq_range *freq_range = NULL; 1657 u32 max_bandwidth_khz, bw_flags = 0; 1658 1659 freq_range = ®_rule->freq_range; 1660 1661 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1662 /* Check if auto calculation requested */ 1663 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1664 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1665 1666 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1667 if (!cfg80211_does_bw_fit_range(freq_range, 1668 MHZ_TO_KHZ(chan->center_freq), 1669 MHZ_TO_KHZ(10))) 1670 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1671 if (!cfg80211_does_bw_fit_range(freq_range, 1672 MHZ_TO_KHZ(chan->center_freq), 1673 MHZ_TO_KHZ(20))) 1674 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1675 1676 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1677 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1678 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1679 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1680 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1681 bw_flags |= IEEE80211_CHAN_NO_HT40; 1682 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1683 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1684 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1685 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1686 return bw_flags; 1687 } 1688 1689 /* 1690 * Note that right now we assume the desired channel bandwidth 1691 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1692 * per channel, the primary and the extension channel). 1693 */ 1694 static void handle_channel(struct wiphy *wiphy, 1695 enum nl80211_reg_initiator initiator, 1696 struct ieee80211_channel *chan) 1697 { 1698 u32 flags, bw_flags = 0; 1699 const struct ieee80211_reg_rule *reg_rule = NULL; 1700 const struct ieee80211_power_rule *power_rule = NULL; 1701 struct wiphy *request_wiphy = NULL; 1702 struct regulatory_request *lr = get_last_request(); 1703 const struct ieee80211_regdomain *regd; 1704 1705 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1706 1707 flags = chan->orig_flags; 1708 1709 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1710 if (IS_ERR(reg_rule)) { 1711 /* 1712 * We will disable all channels that do not match our 1713 * received regulatory rule unless the hint is coming 1714 * from a Country IE and the Country IE had no information 1715 * about a band. The IEEE 802.11 spec allows for an AP 1716 * to send only a subset of the regulatory rules allowed, 1717 * so an AP in the US that only supports 2.4 GHz may only send 1718 * a country IE with information for the 2.4 GHz band 1719 * while 5 GHz is still supported. 1720 */ 1721 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1722 PTR_ERR(reg_rule) == -ERANGE) 1723 return; 1724 1725 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1726 request_wiphy && request_wiphy == wiphy && 1727 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1728 pr_debug("Disabling freq %d MHz for good\n", 1729 chan->center_freq); 1730 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1731 chan->flags = chan->orig_flags; 1732 } else { 1733 pr_debug("Disabling freq %d MHz\n", 1734 chan->center_freq); 1735 chan->flags |= IEEE80211_CHAN_DISABLED; 1736 } 1737 return; 1738 } 1739 1740 regd = reg_get_regdomain(wiphy); 1741 1742 power_rule = ®_rule->power_rule; 1743 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1744 1745 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1746 request_wiphy && request_wiphy == wiphy && 1747 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1748 /* 1749 * This guarantees the driver's requested regulatory domain 1750 * will always be used as a base for further regulatory 1751 * settings 1752 */ 1753 chan->flags = chan->orig_flags = 1754 map_regdom_flags(reg_rule->flags) | bw_flags; 1755 chan->max_antenna_gain = chan->orig_mag = 1756 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1757 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1758 (int) MBM_TO_DBM(power_rule->max_eirp); 1759 1760 if (chan->flags & IEEE80211_CHAN_RADAR) { 1761 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1762 if (reg_rule->dfs_cac_ms) 1763 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1764 } 1765 1766 return; 1767 } 1768 1769 chan->dfs_state = NL80211_DFS_USABLE; 1770 chan->dfs_state_entered = jiffies; 1771 1772 chan->beacon_found = false; 1773 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1774 chan->max_antenna_gain = 1775 min_t(int, chan->orig_mag, 1776 MBI_TO_DBI(power_rule->max_antenna_gain)); 1777 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1778 1779 if (chan->flags & IEEE80211_CHAN_RADAR) { 1780 if (reg_rule->dfs_cac_ms) 1781 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1782 else 1783 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1784 } 1785 1786 if (chan->orig_mpwr) { 1787 /* 1788 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1789 * will always follow the passed country IE power settings. 1790 */ 1791 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1792 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1793 chan->max_power = chan->max_reg_power; 1794 else 1795 chan->max_power = min(chan->orig_mpwr, 1796 chan->max_reg_power); 1797 } else 1798 chan->max_power = chan->max_reg_power; 1799 } 1800 1801 static void handle_band(struct wiphy *wiphy, 1802 enum nl80211_reg_initiator initiator, 1803 struct ieee80211_supported_band *sband) 1804 { 1805 unsigned int i; 1806 1807 if (!sband) 1808 return; 1809 1810 for (i = 0; i < sband->n_channels; i++) 1811 handle_channel(wiphy, initiator, &sband->channels[i]); 1812 } 1813 1814 static bool reg_request_cell_base(struct regulatory_request *request) 1815 { 1816 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1817 return false; 1818 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1819 } 1820 1821 bool reg_last_request_cell_base(void) 1822 { 1823 return reg_request_cell_base(get_last_request()); 1824 } 1825 1826 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1827 /* Core specific check */ 1828 static enum reg_request_treatment 1829 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1830 { 1831 struct regulatory_request *lr = get_last_request(); 1832 1833 if (!reg_num_devs_support_basehint) 1834 return REG_REQ_IGNORE; 1835 1836 if (reg_request_cell_base(lr) && 1837 !regdom_changes(pending_request->alpha2)) 1838 return REG_REQ_ALREADY_SET; 1839 1840 return REG_REQ_OK; 1841 } 1842 1843 /* Device specific check */ 1844 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1845 { 1846 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1847 } 1848 #else 1849 static enum reg_request_treatment 1850 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1851 { 1852 return REG_REQ_IGNORE; 1853 } 1854 1855 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1856 { 1857 return true; 1858 } 1859 #endif 1860 1861 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1862 { 1863 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1864 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1865 return true; 1866 return false; 1867 } 1868 1869 static bool ignore_reg_update(struct wiphy *wiphy, 1870 enum nl80211_reg_initiator initiator) 1871 { 1872 struct regulatory_request *lr = get_last_request(); 1873 1874 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1875 return true; 1876 1877 if (!lr) { 1878 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 1879 reg_initiator_name(initiator)); 1880 return true; 1881 } 1882 1883 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1884 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1885 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 1886 reg_initiator_name(initiator)); 1887 return true; 1888 } 1889 1890 /* 1891 * wiphy->regd will be set once the device has its own 1892 * desired regulatory domain set 1893 */ 1894 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1895 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1896 !is_world_regdom(lr->alpha2)) { 1897 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 1898 reg_initiator_name(initiator)); 1899 return true; 1900 } 1901 1902 if (reg_request_cell_base(lr)) 1903 return reg_dev_ignore_cell_hint(wiphy); 1904 1905 return false; 1906 } 1907 1908 static bool reg_is_world_roaming(struct wiphy *wiphy) 1909 { 1910 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1911 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1912 struct regulatory_request *lr = get_last_request(); 1913 1914 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1915 return true; 1916 1917 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1918 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1919 return true; 1920 1921 return false; 1922 } 1923 1924 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1925 struct reg_beacon *reg_beacon) 1926 { 1927 struct ieee80211_supported_band *sband; 1928 struct ieee80211_channel *chan; 1929 bool channel_changed = false; 1930 struct ieee80211_channel chan_before; 1931 1932 sband = wiphy->bands[reg_beacon->chan.band]; 1933 chan = &sband->channels[chan_idx]; 1934 1935 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1936 return; 1937 1938 if (chan->beacon_found) 1939 return; 1940 1941 chan->beacon_found = true; 1942 1943 if (!reg_is_world_roaming(wiphy)) 1944 return; 1945 1946 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1947 return; 1948 1949 chan_before = *chan; 1950 1951 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1952 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1953 channel_changed = true; 1954 } 1955 1956 if (channel_changed) 1957 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1958 } 1959 1960 /* 1961 * Called when a scan on a wiphy finds a beacon on 1962 * new channel 1963 */ 1964 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1965 struct reg_beacon *reg_beacon) 1966 { 1967 unsigned int i; 1968 struct ieee80211_supported_band *sband; 1969 1970 if (!wiphy->bands[reg_beacon->chan.band]) 1971 return; 1972 1973 sband = wiphy->bands[reg_beacon->chan.band]; 1974 1975 for (i = 0; i < sband->n_channels; i++) 1976 handle_reg_beacon(wiphy, i, reg_beacon); 1977 } 1978 1979 /* 1980 * Called upon reg changes or a new wiphy is added 1981 */ 1982 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1983 { 1984 unsigned int i; 1985 struct ieee80211_supported_band *sband; 1986 struct reg_beacon *reg_beacon; 1987 1988 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1989 if (!wiphy->bands[reg_beacon->chan.band]) 1990 continue; 1991 sband = wiphy->bands[reg_beacon->chan.band]; 1992 for (i = 0; i < sband->n_channels; i++) 1993 handle_reg_beacon(wiphy, i, reg_beacon); 1994 } 1995 } 1996 1997 /* Reap the advantages of previously found beacons */ 1998 static void reg_process_beacons(struct wiphy *wiphy) 1999 { 2000 /* 2001 * Means we are just firing up cfg80211, so no beacons would 2002 * have been processed yet. 2003 */ 2004 if (!last_request) 2005 return; 2006 wiphy_update_beacon_reg(wiphy); 2007 } 2008 2009 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2010 { 2011 if (!chan) 2012 return false; 2013 if (chan->flags & IEEE80211_CHAN_DISABLED) 2014 return false; 2015 /* This would happen when regulatory rules disallow HT40 completely */ 2016 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2017 return false; 2018 return true; 2019 } 2020 2021 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2022 struct ieee80211_channel *channel) 2023 { 2024 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2025 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2026 const struct ieee80211_regdomain *regd; 2027 unsigned int i; 2028 u32 flags; 2029 2030 if (!is_ht40_allowed(channel)) { 2031 channel->flags |= IEEE80211_CHAN_NO_HT40; 2032 return; 2033 } 2034 2035 /* 2036 * We need to ensure the extension channels exist to 2037 * be able to use HT40- or HT40+, this finds them (or not) 2038 */ 2039 for (i = 0; i < sband->n_channels; i++) { 2040 struct ieee80211_channel *c = &sband->channels[i]; 2041 2042 if (c->center_freq == (channel->center_freq - 20)) 2043 channel_before = c; 2044 if (c->center_freq == (channel->center_freq + 20)) 2045 channel_after = c; 2046 } 2047 2048 flags = 0; 2049 regd = get_wiphy_regdom(wiphy); 2050 if (regd) { 2051 const struct ieee80211_reg_rule *reg_rule = 2052 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2053 regd, MHZ_TO_KHZ(20)); 2054 2055 if (!IS_ERR(reg_rule)) 2056 flags = reg_rule->flags; 2057 } 2058 2059 /* 2060 * Please note that this assumes target bandwidth is 20 MHz, 2061 * if that ever changes we also need to change the below logic 2062 * to include that as well. 2063 */ 2064 if (!is_ht40_allowed(channel_before) || 2065 flags & NL80211_RRF_NO_HT40MINUS) 2066 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2067 else 2068 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2069 2070 if (!is_ht40_allowed(channel_after) || 2071 flags & NL80211_RRF_NO_HT40PLUS) 2072 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2073 else 2074 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2075 } 2076 2077 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2078 struct ieee80211_supported_band *sband) 2079 { 2080 unsigned int i; 2081 2082 if (!sband) 2083 return; 2084 2085 for (i = 0; i < sband->n_channels; i++) 2086 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2087 } 2088 2089 static void reg_process_ht_flags(struct wiphy *wiphy) 2090 { 2091 enum nl80211_band band; 2092 2093 if (!wiphy) 2094 return; 2095 2096 for (band = 0; band < NUM_NL80211_BANDS; band++) 2097 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2098 } 2099 2100 static void reg_call_notifier(struct wiphy *wiphy, 2101 struct regulatory_request *request) 2102 { 2103 if (wiphy->reg_notifier) 2104 wiphy->reg_notifier(wiphy, request); 2105 } 2106 2107 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2108 { 2109 struct cfg80211_chan_def chandef; 2110 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2111 enum nl80211_iftype iftype; 2112 2113 wdev_lock(wdev); 2114 iftype = wdev->iftype; 2115 2116 /* make sure the interface is active */ 2117 if (!wdev->netdev || !netif_running(wdev->netdev)) 2118 goto wdev_inactive_unlock; 2119 2120 switch (iftype) { 2121 case NL80211_IFTYPE_AP: 2122 case NL80211_IFTYPE_P2P_GO: 2123 if (!wdev->beacon_interval) 2124 goto wdev_inactive_unlock; 2125 chandef = wdev->chandef; 2126 break; 2127 case NL80211_IFTYPE_ADHOC: 2128 if (!wdev->ssid_len) 2129 goto wdev_inactive_unlock; 2130 chandef = wdev->chandef; 2131 break; 2132 case NL80211_IFTYPE_STATION: 2133 case NL80211_IFTYPE_P2P_CLIENT: 2134 if (!wdev->current_bss || 2135 !wdev->current_bss->pub.channel) 2136 goto wdev_inactive_unlock; 2137 2138 if (!rdev->ops->get_channel || 2139 rdev_get_channel(rdev, wdev, &chandef)) 2140 cfg80211_chandef_create(&chandef, 2141 wdev->current_bss->pub.channel, 2142 NL80211_CHAN_NO_HT); 2143 break; 2144 case NL80211_IFTYPE_MONITOR: 2145 case NL80211_IFTYPE_AP_VLAN: 2146 case NL80211_IFTYPE_P2P_DEVICE: 2147 /* no enforcement required */ 2148 break; 2149 default: 2150 /* others not implemented for now */ 2151 WARN_ON(1); 2152 break; 2153 } 2154 2155 wdev_unlock(wdev); 2156 2157 switch (iftype) { 2158 case NL80211_IFTYPE_AP: 2159 case NL80211_IFTYPE_P2P_GO: 2160 case NL80211_IFTYPE_ADHOC: 2161 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 2162 case NL80211_IFTYPE_STATION: 2163 case NL80211_IFTYPE_P2P_CLIENT: 2164 return cfg80211_chandef_usable(wiphy, &chandef, 2165 IEEE80211_CHAN_DISABLED); 2166 default: 2167 break; 2168 } 2169 2170 return true; 2171 2172 wdev_inactive_unlock: 2173 wdev_unlock(wdev); 2174 return true; 2175 } 2176 2177 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2178 { 2179 struct wireless_dev *wdev; 2180 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2181 2182 ASSERT_RTNL(); 2183 2184 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2185 if (!reg_wdev_chan_valid(wiphy, wdev)) 2186 cfg80211_leave(rdev, wdev); 2187 } 2188 2189 static void reg_check_chans_work(struct work_struct *work) 2190 { 2191 struct cfg80211_registered_device *rdev; 2192 2193 pr_debug("Verifying active interfaces after reg change\n"); 2194 rtnl_lock(); 2195 2196 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2197 if (!(rdev->wiphy.regulatory_flags & 2198 REGULATORY_IGNORE_STALE_KICKOFF)) 2199 reg_leave_invalid_chans(&rdev->wiphy); 2200 2201 rtnl_unlock(); 2202 } 2203 2204 static void reg_check_channels(void) 2205 { 2206 /* 2207 * Give usermode a chance to do something nicer (move to another 2208 * channel, orderly disconnection), before forcing a disconnection. 2209 */ 2210 mod_delayed_work(system_power_efficient_wq, 2211 ®_check_chans, 2212 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2213 } 2214 2215 static void wiphy_update_regulatory(struct wiphy *wiphy, 2216 enum nl80211_reg_initiator initiator) 2217 { 2218 enum nl80211_band band; 2219 struct regulatory_request *lr = get_last_request(); 2220 2221 if (ignore_reg_update(wiphy, initiator)) { 2222 /* 2223 * Regulatory updates set by CORE are ignored for custom 2224 * regulatory cards. Let us notify the changes to the driver, 2225 * as some drivers used this to restore its orig_* reg domain. 2226 */ 2227 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2228 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2229 !(wiphy->regulatory_flags & 2230 REGULATORY_WIPHY_SELF_MANAGED)) 2231 reg_call_notifier(wiphy, lr); 2232 return; 2233 } 2234 2235 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2236 2237 for (band = 0; band < NUM_NL80211_BANDS; band++) 2238 handle_band(wiphy, initiator, wiphy->bands[band]); 2239 2240 reg_process_beacons(wiphy); 2241 reg_process_ht_flags(wiphy); 2242 reg_call_notifier(wiphy, lr); 2243 } 2244 2245 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2246 { 2247 struct cfg80211_registered_device *rdev; 2248 struct wiphy *wiphy; 2249 2250 ASSERT_RTNL(); 2251 2252 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2253 wiphy = &rdev->wiphy; 2254 wiphy_update_regulatory(wiphy, initiator); 2255 } 2256 2257 reg_check_channels(); 2258 } 2259 2260 static void handle_channel_custom(struct wiphy *wiphy, 2261 struct ieee80211_channel *chan, 2262 const struct ieee80211_regdomain *regd) 2263 { 2264 u32 bw_flags = 0; 2265 const struct ieee80211_reg_rule *reg_rule = NULL; 2266 const struct ieee80211_power_rule *power_rule = NULL; 2267 u32 bw; 2268 2269 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) { 2270 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq), 2271 regd, bw); 2272 if (!IS_ERR(reg_rule)) 2273 break; 2274 } 2275 2276 if (IS_ERR(reg_rule)) { 2277 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n", 2278 chan->center_freq); 2279 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2280 chan->flags |= IEEE80211_CHAN_DISABLED; 2281 } else { 2282 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2283 chan->flags = chan->orig_flags; 2284 } 2285 return; 2286 } 2287 2288 power_rule = ®_rule->power_rule; 2289 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2290 2291 chan->dfs_state_entered = jiffies; 2292 chan->dfs_state = NL80211_DFS_USABLE; 2293 2294 chan->beacon_found = false; 2295 2296 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2297 chan->flags = chan->orig_flags | bw_flags | 2298 map_regdom_flags(reg_rule->flags); 2299 else 2300 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2301 2302 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2303 chan->max_reg_power = chan->max_power = 2304 (int) MBM_TO_DBM(power_rule->max_eirp); 2305 2306 if (chan->flags & IEEE80211_CHAN_RADAR) { 2307 if (reg_rule->dfs_cac_ms) 2308 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2309 else 2310 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2311 } 2312 2313 chan->max_power = chan->max_reg_power; 2314 } 2315 2316 static void handle_band_custom(struct wiphy *wiphy, 2317 struct ieee80211_supported_band *sband, 2318 const struct ieee80211_regdomain *regd) 2319 { 2320 unsigned int i; 2321 2322 if (!sband) 2323 return; 2324 2325 for (i = 0; i < sband->n_channels; i++) 2326 handle_channel_custom(wiphy, &sband->channels[i], regd); 2327 } 2328 2329 /* Used by drivers prior to wiphy registration */ 2330 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2331 const struct ieee80211_regdomain *regd) 2332 { 2333 enum nl80211_band band; 2334 unsigned int bands_set = 0; 2335 2336 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2337 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2338 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2339 2340 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2341 if (!wiphy->bands[band]) 2342 continue; 2343 handle_band_custom(wiphy, wiphy->bands[band], regd); 2344 bands_set++; 2345 } 2346 2347 /* 2348 * no point in calling this if it won't have any effect 2349 * on your device's supported bands. 2350 */ 2351 WARN_ON(!bands_set); 2352 } 2353 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2354 2355 static void reg_set_request_processed(void) 2356 { 2357 bool need_more_processing = false; 2358 struct regulatory_request *lr = get_last_request(); 2359 2360 lr->processed = true; 2361 2362 spin_lock(®_requests_lock); 2363 if (!list_empty(®_requests_list)) 2364 need_more_processing = true; 2365 spin_unlock(®_requests_lock); 2366 2367 cancel_crda_timeout(); 2368 2369 if (need_more_processing) 2370 schedule_work(®_work); 2371 } 2372 2373 /** 2374 * reg_process_hint_core - process core regulatory requests 2375 * @pending_request: a pending core regulatory request 2376 * 2377 * The wireless subsystem can use this function to process 2378 * a regulatory request issued by the regulatory core. 2379 */ 2380 static enum reg_request_treatment 2381 reg_process_hint_core(struct regulatory_request *core_request) 2382 { 2383 if (reg_query_database(core_request)) { 2384 core_request->intersect = false; 2385 core_request->processed = false; 2386 reg_update_last_request(core_request); 2387 return REG_REQ_OK; 2388 } 2389 2390 return REG_REQ_IGNORE; 2391 } 2392 2393 static enum reg_request_treatment 2394 __reg_process_hint_user(struct regulatory_request *user_request) 2395 { 2396 struct regulatory_request *lr = get_last_request(); 2397 2398 if (reg_request_cell_base(user_request)) 2399 return reg_ignore_cell_hint(user_request); 2400 2401 if (reg_request_cell_base(lr)) 2402 return REG_REQ_IGNORE; 2403 2404 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2405 return REG_REQ_INTERSECT; 2406 /* 2407 * If the user knows better the user should set the regdom 2408 * to their country before the IE is picked up 2409 */ 2410 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2411 lr->intersect) 2412 return REG_REQ_IGNORE; 2413 /* 2414 * Process user requests only after previous user/driver/core 2415 * requests have been processed 2416 */ 2417 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2418 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2419 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2420 regdom_changes(lr->alpha2)) 2421 return REG_REQ_IGNORE; 2422 2423 if (!regdom_changes(user_request->alpha2)) 2424 return REG_REQ_ALREADY_SET; 2425 2426 return REG_REQ_OK; 2427 } 2428 2429 /** 2430 * reg_process_hint_user - process user regulatory requests 2431 * @user_request: a pending user regulatory request 2432 * 2433 * The wireless subsystem can use this function to process 2434 * a regulatory request initiated by userspace. 2435 */ 2436 static enum reg_request_treatment 2437 reg_process_hint_user(struct regulatory_request *user_request) 2438 { 2439 enum reg_request_treatment treatment; 2440 2441 treatment = __reg_process_hint_user(user_request); 2442 if (treatment == REG_REQ_IGNORE || 2443 treatment == REG_REQ_ALREADY_SET) 2444 return REG_REQ_IGNORE; 2445 2446 user_request->intersect = treatment == REG_REQ_INTERSECT; 2447 user_request->processed = false; 2448 2449 if (reg_query_database(user_request)) { 2450 reg_update_last_request(user_request); 2451 user_alpha2[0] = user_request->alpha2[0]; 2452 user_alpha2[1] = user_request->alpha2[1]; 2453 return REG_REQ_OK; 2454 } 2455 2456 return REG_REQ_IGNORE; 2457 } 2458 2459 static enum reg_request_treatment 2460 __reg_process_hint_driver(struct regulatory_request *driver_request) 2461 { 2462 struct regulatory_request *lr = get_last_request(); 2463 2464 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2465 if (regdom_changes(driver_request->alpha2)) 2466 return REG_REQ_OK; 2467 return REG_REQ_ALREADY_SET; 2468 } 2469 2470 /* 2471 * This would happen if you unplug and plug your card 2472 * back in or if you add a new device for which the previously 2473 * loaded card also agrees on the regulatory domain. 2474 */ 2475 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2476 !regdom_changes(driver_request->alpha2)) 2477 return REG_REQ_ALREADY_SET; 2478 2479 return REG_REQ_INTERSECT; 2480 } 2481 2482 /** 2483 * reg_process_hint_driver - process driver regulatory requests 2484 * @driver_request: a pending driver regulatory request 2485 * 2486 * The wireless subsystem can use this function to process 2487 * a regulatory request issued by an 802.11 driver. 2488 * 2489 * Returns one of the different reg request treatment values. 2490 */ 2491 static enum reg_request_treatment 2492 reg_process_hint_driver(struct wiphy *wiphy, 2493 struct regulatory_request *driver_request) 2494 { 2495 const struct ieee80211_regdomain *regd, *tmp; 2496 enum reg_request_treatment treatment; 2497 2498 treatment = __reg_process_hint_driver(driver_request); 2499 2500 switch (treatment) { 2501 case REG_REQ_OK: 2502 break; 2503 case REG_REQ_IGNORE: 2504 return REG_REQ_IGNORE; 2505 case REG_REQ_INTERSECT: 2506 case REG_REQ_ALREADY_SET: 2507 regd = reg_copy_regd(get_cfg80211_regdom()); 2508 if (IS_ERR(regd)) 2509 return REG_REQ_IGNORE; 2510 2511 tmp = get_wiphy_regdom(wiphy); 2512 rcu_assign_pointer(wiphy->regd, regd); 2513 rcu_free_regdom(tmp); 2514 } 2515 2516 2517 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2518 driver_request->processed = false; 2519 2520 /* 2521 * Since CRDA will not be called in this case as we already 2522 * have applied the requested regulatory domain before we just 2523 * inform userspace we have processed the request 2524 */ 2525 if (treatment == REG_REQ_ALREADY_SET) { 2526 nl80211_send_reg_change_event(driver_request); 2527 reg_update_last_request(driver_request); 2528 reg_set_request_processed(); 2529 return REG_REQ_ALREADY_SET; 2530 } 2531 2532 if (reg_query_database(driver_request)) { 2533 reg_update_last_request(driver_request); 2534 return REG_REQ_OK; 2535 } 2536 2537 return REG_REQ_IGNORE; 2538 } 2539 2540 static enum reg_request_treatment 2541 __reg_process_hint_country_ie(struct wiphy *wiphy, 2542 struct regulatory_request *country_ie_request) 2543 { 2544 struct wiphy *last_wiphy = NULL; 2545 struct regulatory_request *lr = get_last_request(); 2546 2547 if (reg_request_cell_base(lr)) { 2548 /* Trust a Cell base station over the AP's country IE */ 2549 if (regdom_changes(country_ie_request->alpha2)) 2550 return REG_REQ_IGNORE; 2551 return REG_REQ_ALREADY_SET; 2552 } else { 2553 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2554 return REG_REQ_IGNORE; 2555 } 2556 2557 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2558 return -EINVAL; 2559 2560 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2561 return REG_REQ_OK; 2562 2563 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2564 2565 if (last_wiphy != wiphy) { 2566 /* 2567 * Two cards with two APs claiming different 2568 * Country IE alpha2s. We could 2569 * intersect them, but that seems unlikely 2570 * to be correct. Reject second one for now. 2571 */ 2572 if (regdom_changes(country_ie_request->alpha2)) 2573 return REG_REQ_IGNORE; 2574 return REG_REQ_ALREADY_SET; 2575 } 2576 2577 if (regdom_changes(country_ie_request->alpha2)) 2578 return REG_REQ_OK; 2579 return REG_REQ_ALREADY_SET; 2580 } 2581 2582 /** 2583 * reg_process_hint_country_ie - process regulatory requests from country IEs 2584 * @country_ie_request: a regulatory request from a country IE 2585 * 2586 * The wireless subsystem can use this function to process 2587 * a regulatory request issued by a country Information Element. 2588 * 2589 * Returns one of the different reg request treatment values. 2590 */ 2591 static enum reg_request_treatment 2592 reg_process_hint_country_ie(struct wiphy *wiphy, 2593 struct regulatory_request *country_ie_request) 2594 { 2595 enum reg_request_treatment treatment; 2596 2597 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2598 2599 switch (treatment) { 2600 case REG_REQ_OK: 2601 break; 2602 case REG_REQ_IGNORE: 2603 return REG_REQ_IGNORE; 2604 case REG_REQ_ALREADY_SET: 2605 reg_free_request(country_ie_request); 2606 return REG_REQ_ALREADY_SET; 2607 case REG_REQ_INTERSECT: 2608 /* 2609 * This doesn't happen yet, not sure we 2610 * ever want to support it for this case. 2611 */ 2612 WARN_ONCE(1, "Unexpected intersection for country elements"); 2613 return REG_REQ_IGNORE; 2614 } 2615 2616 country_ie_request->intersect = false; 2617 country_ie_request->processed = false; 2618 2619 if (reg_query_database(country_ie_request)) { 2620 reg_update_last_request(country_ie_request); 2621 return REG_REQ_OK; 2622 } 2623 2624 return REG_REQ_IGNORE; 2625 } 2626 2627 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2628 { 2629 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2630 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2631 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2632 bool dfs_domain_same; 2633 2634 rcu_read_lock(); 2635 2636 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2637 wiphy1_regd = rcu_dereference(wiphy1->regd); 2638 if (!wiphy1_regd) 2639 wiphy1_regd = cfg80211_regd; 2640 2641 wiphy2_regd = rcu_dereference(wiphy2->regd); 2642 if (!wiphy2_regd) 2643 wiphy2_regd = cfg80211_regd; 2644 2645 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2646 2647 rcu_read_unlock(); 2648 2649 return dfs_domain_same; 2650 } 2651 2652 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2653 struct ieee80211_channel *src_chan) 2654 { 2655 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2656 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2657 return; 2658 2659 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2660 src_chan->flags & IEEE80211_CHAN_DISABLED) 2661 return; 2662 2663 if (src_chan->center_freq == dst_chan->center_freq && 2664 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2665 dst_chan->dfs_state = src_chan->dfs_state; 2666 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2667 } 2668 } 2669 2670 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2671 struct wiphy *src_wiphy) 2672 { 2673 struct ieee80211_supported_band *src_sband, *dst_sband; 2674 struct ieee80211_channel *src_chan, *dst_chan; 2675 int i, j, band; 2676 2677 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2678 return; 2679 2680 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2681 dst_sband = dst_wiphy->bands[band]; 2682 src_sband = src_wiphy->bands[band]; 2683 if (!dst_sband || !src_sband) 2684 continue; 2685 2686 for (i = 0; i < dst_sband->n_channels; i++) { 2687 dst_chan = &dst_sband->channels[i]; 2688 for (j = 0; j < src_sband->n_channels; j++) { 2689 src_chan = &src_sband->channels[j]; 2690 reg_copy_dfs_chan_state(dst_chan, src_chan); 2691 } 2692 } 2693 } 2694 } 2695 2696 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2697 { 2698 struct cfg80211_registered_device *rdev; 2699 2700 ASSERT_RTNL(); 2701 2702 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2703 if (wiphy == &rdev->wiphy) 2704 continue; 2705 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2706 } 2707 } 2708 2709 /* This processes *all* regulatory hints */ 2710 static void reg_process_hint(struct regulatory_request *reg_request) 2711 { 2712 struct wiphy *wiphy = NULL; 2713 enum reg_request_treatment treatment; 2714 enum nl80211_reg_initiator initiator = reg_request->initiator; 2715 2716 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2717 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2718 2719 switch (initiator) { 2720 case NL80211_REGDOM_SET_BY_CORE: 2721 treatment = reg_process_hint_core(reg_request); 2722 break; 2723 case NL80211_REGDOM_SET_BY_USER: 2724 treatment = reg_process_hint_user(reg_request); 2725 break; 2726 case NL80211_REGDOM_SET_BY_DRIVER: 2727 if (!wiphy) 2728 goto out_free; 2729 treatment = reg_process_hint_driver(wiphy, reg_request); 2730 break; 2731 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2732 if (!wiphy) 2733 goto out_free; 2734 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2735 break; 2736 default: 2737 WARN(1, "invalid initiator %d\n", initiator); 2738 goto out_free; 2739 } 2740 2741 if (treatment == REG_REQ_IGNORE) 2742 goto out_free; 2743 2744 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2745 "unexpected treatment value %d\n", treatment); 2746 2747 /* This is required so that the orig_* parameters are saved. 2748 * NOTE: treatment must be set for any case that reaches here! 2749 */ 2750 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2751 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2752 wiphy_update_regulatory(wiphy, initiator); 2753 wiphy_all_share_dfs_chan_state(wiphy); 2754 reg_check_channels(); 2755 } 2756 2757 return; 2758 2759 out_free: 2760 reg_free_request(reg_request); 2761 } 2762 2763 static void notify_self_managed_wiphys(struct regulatory_request *request) 2764 { 2765 struct cfg80211_registered_device *rdev; 2766 struct wiphy *wiphy; 2767 2768 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2769 wiphy = &rdev->wiphy; 2770 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 2771 request->initiator == NL80211_REGDOM_SET_BY_USER) 2772 reg_call_notifier(wiphy, request); 2773 } 2774 } 2775 2776 /* 2777 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2778 * Regulatory hints come on a first come first serve basis and we 2779 * must process each one atomically. 2780 */ 2781 static void reg_process_pending_hints(void) 2782 { 2783 struct regulatory_request *reg_request, *lr; 2784 2785 lr = get_last_request(); 2786 2787 /* When last_request->processed becomes true this will be rescheduled */ 2788 if (lr && !lr->processed) { 2789 reg_process_hint(lr); 2790 return; 2791 } 2792 2793 spin_lock(®_requests_lock); 2794 2795 if (list_empty(®_requests_list)) { 2796 spin_unlock(®_requests_lock); 2797 return; 2798 } 2799 2800 reg_request = list_first_entry(®_requests_list, 2801 struct regulatory_request, 2802 list); 2803 list_del_init(®_request->list); 2804 2805 spin_unlock(®_requests_lock); 2806 2807 notify_self_managed_wiphys(reg_request); 2808 2809 reg_process_hint(reg_request); 2810 2811 lr = get_last_request(); 2812 2813 spin_lock(®_requests_lock); 2814 if (!list_empty(®_requests_list) && lr && lr->processed) 2815 schedule_work(®_work); 2816 spin_unlock(®_requests_lock); 2817 } 2818 2819 /* Processes beacon hints -- this has nothing to do with country IEs */ 2820 static void reg_process_pending_beacon_hints(void) 2821 { 2822 struct cfg80211_registered_device *rdev; 2823 struct reg_beacon *pending_beacon, *tmp; 2824 2825 /* This goes through the _pending_ beacon list */ 2826 spin_lock_bh(®_pending_beacons_lock); 2827 2828 list_for_each_entry_safe(pending_beacon, tmp, 2829 ®_pending_beacons, list) { 2830 list_del_init(&pending_beacon->list); 2831 2832 /* Applies the beacon hint to current wiphys */ 2833 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2834 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 2835 2836 /* Remembers the beacon hint for new wiphys or reg changes */ 2837 list_add_tail(&pending_beacon->list, ®_beacon_list); 2838 } 2839 2840 spin_unlock_bh(®_pending_beacons_lock); 2841 } 2842 2843 static void reg_process_self_managed_hints(void) 2844 { 2845 struct cfg80211_registered_device *rdev; 2846 struct wiphy *wiphy; 2847 const struct ieee80211_regdomain *tmp; 2848 const struct ieee80211_regdomain *regd; 2849 enum nl80211_band band; 2850 struct regulatory_request request = {}; 2851 2852 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2853 wiphy = &rdev->wiphy; 2854 2855 spin_lock(®_requests_lock); 2856 regd = rdev->requested_regd; 2857 rdev->requested_regd = NULL; 2858 spin_unlock(®_requests_lock); 2859 2860 if (regd == NULL) 2861 continue; 2862 2863 tmp = get_wiphy_regdom(wiphy); 2864 rcu_assign_pointer(wiphy->regd, regd); 2865 rcu_free_regdom(tmp); 2866 2867 for (band = 0; band < NUM_NL80211_BANDS; band++) 2868 handle_band_custom(wiphy, wiphy->bands[band], regd); 2869 2870 reg_process_ht_flags(wiphy); 2871 2872 request.wiphy_idx = get_wiphy_idx(wiphy); 2873 request.alpha2[0] = regd->alpha2[0]; 2874 request.alpha2[1] = regd->alpha2[1]; 2875 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 2876 2877 nl80211_send_wiphy_reg_change_event(&request); 2878 } 2879 2880 reg_check_channels(); 2881 } 2882 2883 static void reg_todo(struct work_struct *work) 2884 { 2885 rtnl_lock(); 2886 reg_process_pending_hints(); 2887 reg_process_pending_beacon_hints(); 2888 reg_process_self_managed_hints(); 2889 rtnl_unlock(); 2890 } 2891 2892 static void queue_regulatory_request(struct regulatory_request *request) 2893 { 2894 request->alpha2[0] = toupper(request->alpha2[0]); 2895 request->alpha2[1] = toupper(request->alpha2[1]); 2896 2897 spin_lock(®_requests_lock); 2898 list_add_tail(&request->list, ®_requests_list); 2899 spin_unlock(®_requests_lock); 2900 2901 schedule_work(®_work); 2902 } 2903 2904 /* 2905 * Core regulatory hint -- happens during cfg80211_init() 2906 * and when we restore regulatory settings. 2907 */ 2908 static int regulatory_hint_core(const char *alpha2) 2909 { 2910 struct regulatory_request *request; 2911 2912 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2913 if (!request) 2914 return -ENOMEM; 2915 2916 request->alpha2[0] = alpha2[0]; 2917 request->alpha2[1] = alpha2[1]; 2918 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2919 request->wiphy_idx = WIPHY_IDX_INVALID; 2920 2921 queue_regulatory_request(request); 2922 2923 return 0; 2924 } 2925 2926 /* User hints */ 2927 int regulatory_hint_user(const char *alpha2, 2928 enum nl80211_user_reg_hint_type user_reg_hint_type) 2929 { 2930 struct regulatory_request *request; 2931 2932 if (WARN_ON(!alpha2)) 2933 return -EINVAL; 2934 2935 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2936 if (!request) 2937 return -ENOMEM; 2938 2939 request->wiphy_idx = WIPHY_IDX_INVALID; 2940 request->alpha2[0] = alpha2[0]; 2941 request->alpha2[1] = alpha2[1]; 2942 request->initiator = NL80211_REGDOM_SET_BY_USER; 2943 request->user_reg_hint_type = user_reg_hint_type; 2944 2945 /* Allow calling CRDA again */ 2946 reset_crda_timeouts(); 2947 2948 queue_regulatory_request(request); 2949 2950 return 0; 2951 } 2952 2953 int regulatory_hint_indoor(bool is_indoor, u32 portid) 2954 { 2955 spin_lock(®_indoor_lock); 2956 2957 /* It is possible that more than one user space process is trying to 2958 * configure the indoor setting. To handle such cases, clear the indoor 2959 * setting in case that some process does not think that the device 2960 * is operating in an indoor environment. In addition, if a user space 2961 * process indicates that it is controlling the indoor setting, save its 2962 * portid, i.e., make it the owner. 2963 */ 2964 reg_is_indoor = is_indoor; 2965 if (reg_is_indoor) { 2966 if (!reg_is_indoor_portid) 2967 reg_is_indoor_portid = portid; 2968 } else { 2969 reg_is_indoor_portid = 0; 2970 } 2971 2972 spin_unlock(®_indoor_lock); 2973 2974 if (!is_indoor) 2975 reg_check_channels(); 2976 2977 return 0; 2978 } 2979 2980 void regulatory_netlink_notify(u32 portid) 2981 { 2982 spin_lock(®_indoor_lock); 2983 2984 if (reg_is_indoor_portid != portid) { 2985 spin_unlock(®_indoor_lock); 2986 return; 2987 } 2988 2989 reg_is_indoor = false; 2990 reg_is_indoor_portid = 0; 2991 2992 spin_unlock(®_indoor_lock); 2993 2994 reg_check_channels(); 2995 } 2996 2997 /* Driver hints */ 2998 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 2999 { 3000 struct regulatory_request *request; 3001 3002 if (WARN_ON(!alpha2 || !wiphy)) 3003 return -EINVAL; 3004 3005 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3006 3007 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3008 if (!request) 3009 return -ENOMEM; 3010 3011 request->wiphy_idx = get_wiphy_idx(wiphy); 3012 3013 request->alpha2[0] = alpha2[0]; 3014 request->alpha2[1] = alpha2[1]; 3015 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3016 3017 /* Allow calling CRDA again */ 3018 reset_crda_timeouts(); 3019 3020 queue_regulatory_request(request); 3021 3022 return 0; 3023 } 3024 EXPORT_SYMBOL(regulatory_hint); 3025 3026 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3027 const u8 *country_ie, u8 country_ie_len) 3028 { 3029 char alpha2[2]; 3030 enum environment_cap env = ENVIRON_ANY; 3031 struct regulatory_request *request = NULL, *lr; 3032 3033 /* IE len must be evenly divisible by 2 */ 3034 if (country_ie_len & 0x01) 3035 return; 3036 3037 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3038 return; 3039 3040 request = kzalloc(sizeof(*request), GFP_KERNEL); 3041 if (!request) 3042 return; 3043 3044 alpha2[0] = country_ie[0]; 3045 alpha2[1] = country_ie[1]; 3046 3047 if (country_ie[2] == 'I') 3048 env = ENVIRON_INDOOR; 3049 else if (country_ie[2] == 'O') 3050 env = ENVIRON_OUTDOOR; 3051 3052 rcu_read_lock(); 3053 lr = get_last_request(); 3054 3055 if (unlikely(!lr)) 3056 goto out; 3057 3058 /* 3059 * We will run this only upon a successful connection on cfg80211. 3060 * We leave conflict resolution to the workqueue, where can hold 3061 * the RTNL. 3062 */ 3063 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3064 lr->wiphy_idx != WIPHY_IDX_INVALID) 3065 goto out; 3066 3067 request->wiphy_idx = get_wiphy_idx(wiphy); 3068 request->alpha2[0] = alpha2[0]; 3069 request->alpha2[1] = alpha2[1]; 3070 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3071 request->country_ie_env = env; 3072 3073 /* Allow calling CRDA again */ 3074 reset_crda_timeouts(); 3075 3076 queue_regulatory_request(request); 3077 request = NULL; 3078 out: 3079 kfree(request); 3080 rcu_read_unlock(); 3081 } 3082 3083 static void restore_alpha2(char *alpha2, bool reset_user) 3084 { 3085 /* indicates there is no alpha2 to consider for restoration */ 3086 alpha2[0] = '9'; 3087 alpha2[1] = '7'; 3088 3089 /* The user setting has precedence over the module parameter */ 3090 if (is_user_regdom_saved()) { 3091 /* Unless we're asked to ignore it and reset it */ 3092 if (reset_user) { 3093 pr_debug("Restoring regulatory settings including user preference\n"); 3094 user_alpha2[0] = '9'; 3095 user_alpha2[1] = '7'; 3096 3097 /* 3098 * If we're ignoring user settings, we still need to 3099 * check the module parameter to ensure we put things 3100 * back as they were for a full restore. 3101 */ 3102 if (!is_world_regdom(ieee80211_regdom)) { 3103 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3104 ieee80211_regdom[0], ieee80211_regdom[1]); 3105 alpha2[0] = ieee80211_regdom[0]; 3106 alpha2[1] = ieee80211_regdom[1]; 3107 } 3108 } else { 3109 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3110 user_alpha2[0], user_alpha2[1]); 3111 alpha2[0] = user_alpha2[0]; 3112 alpha2[1] = user_alpha2[1]; 3113 } 3114 } else if (!is_world_regdom(ieee80211_regdom)) { 3115 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3116 ieee80211_regdom[0], ieee80211_regdom[1]); 3117 alpha2[0] = ieee80211_regdom[0]; 3118 alpha2[1] = ieee80211_regdom[1]; 3119 } else 3120 pr_debug("Restoring regulatory settings\n"); 3121 } 3122 3123 static void restore_custom_reg_settings(struct wiphy *wiphy) 3124 { 3125 struct ieee80211_supported_band *sband; 3126 enum nl80211_band band; 3127 struct ieee80211_channel *chan; 3128 int i; 3129 3130 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3131 sband = wiphy->bands[band]; 3132 if (!sband) 3133 continue; 3134 for (i = 0; i < sband->n_channels; i++) { 3135 chan = &sband->channels[i]; 3136 chan->flags = chan->orig_flags; 3137 chan->max_antenna_gain = chan->orig_mag; 3138 chan->max_power = chan->orig_mpwr; 3139 chan->beacon_found = false; 3140 } 3141 } 3142 } 3143 3144 /* 3145 * Restoring regulatory settings involves ingoring any 3146 * possibly stale country IE information and user regulatory 3147 * settings if so desired, this includes any beacon hints 3148 * learned as we could have traveled outside to another country 3149 * after disconnection. To restore regulatory settings we do 3150 * exactly what we did at bootup: 3151 * 3152 * - send a core regulatory hint 3153 * - send a user regulatory hint if applicable 3154 * 3155 * Device drivers that send a regulatory hint for a specific country 3156 * keep their own regulatory domain on wiphy->regd so that does does 3157 * not need to be remembered. 3158 */ 3159 static void restore_regulatory_settings(bool reset_user, bool cached) 3160 { 3161 char alpha2[2]; 3162 char world_alpha2[2]; 3163 struct reg_beacon *reg_beacon, *btmp; 3164 LIST_HEAD(tmp_reg_req_list); 3165 struct cfg80211_registered_device *rdev; 3166 3167 ASSERT_RTNL(); 3168 3169 /* 3170 * Clear the indoor setting in case that it is not controlled by user 3171 * space, as otherwise there is no guarantee that the device is still 3172 * operating in an indoor environment. 3173 */ 3174 spin_lock(®_indoor_lock); 3175 if (reg_is_indoor && !reg_is_indoor_portid) { 3176 reg_is_indoor = false; 3177 reg_check_channels(); 3178 } 3179 spin_unlock(®_indoor_lock); 3180 3181 reset_regdomains(true, &world_regdom); 3182 restore_alpha2(alpha2, reset_user); 3183 3184 /* 3185 * If there's any pending requests we simply 3186 * stash them to a temporary pending queue and 3187 * add then after we've restored regulatory 3188 * settings. 3189 */ 3190 spin_lock(®_requests_lock); 3191 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3192 spin_unlock(®_requests_lock); 3193 3194 /* Clear beacon hints */ 3195 spin_lock_bh(®_pending_beacons_lock); 3196 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3197 list_del(®_beacon->list); 3198 kfree(reg_beacon); 3199 } 3200 spin_unlock_bh(®_pending_beacons_lock); 3201 3202 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3203 list_del(®_beacon->list); 3204 kfree(reg_beacon); 3205 } 3206 3207 /* First restore to the basic regulatory settings */ 3208 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3209 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3210 3211 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3212 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3213 continue; 3214 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3215 restore_custom_reg_settings(&rdev->wiphy); 3216 } 3217 3218 if (cached && (!is_an_alpha2(alpha2) || 3219 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3220 reset_regdomains(false, cfg80211_world_regdom); 3221 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3222 print_regdomain(get_cfg80211_regdom()); 3223 nl80211_send_reg_change_event(&core_request_world); 3224 reg_set_request_processed(); 3225 3226 if (is_an_alpha2(alpha2) && 3227 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3228 struct regulatory_request *ureq; 3229 3230 spin_lock(®_requests_lock); 3231 ureq = list_last_entry(®_requests_list, 3232 struct regulatory_request, 3233 list); 3234 list_del(&ureq->list); 3235 spin_unlock(®_requests_lock); 3236 3237 notify_self_managed_wiphys(ureq); 3238 reg_update_last_request(ureq); 3239 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3240 REGD_SOURCE_CACHED); 3241 } 3242 } else { 3243 regulatory_hint_core(world_alpha2); 3244 3245 /* 3246 * This restores the ieee80211_regdom module parameter 3247 * preference or the last user requested regulatory 3248 * settings, user regulatory settings takes precedence. 3249 */ 3250 if (is_an_alpha2(alpha2)) 3251 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3252 } 3253 3254 spin_lock(®_requests_lock); 3255 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3256 spin_unlock(®_requests_lock); 3257 3258 pr_debug("Kicking the queue\n"); 3259 3260 schedule_work(®_work); 3261 } 3262 3263 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3264 { 3265 struct cfg80211_registered_device *rdev; 3266 struct wireless_dev *wdev; 3267 3268 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3269 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3270 wdev_lock(wdev); 3271 if (!(wdev->wiphy->regulatory_flags & flag)) { 3272 wdev_unlock(wdev); 3273 return false; 3274 } 3275 wdev_unlock(wdev); 3276 } 3277 } 3278 3279 return true; 3280 } 3281 3282 void regulatory_hint_disconnect(void) 3283 { 3284 /* Restore of regulatory settings is not required when wiphy(s) 3285 * ignore IE from connected access point but clearance of beacon hints 3286 * is required when wiphy(s) supports beacon hints. 3287 */ 3288 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3289 struct reg_beacon *reg_beacon, *btmp; 3290 3291 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3292 return; 3293 3294 spin_lock_bh(®_pending_beacons_lock); 3295 list_for_each_entry_safe(reg_beacon, btmp, 3296 ®_pending_beacons, list) { 3297 list_del(®_beacon->list); 3298 kfree(reg_beacon); 3299 } 3300 spin_unlock_bh(®_pending_beacons_lock); 3301 3302 list_for_each_entry_safe(reg_beacon, btmp, 3303 ®_beacon_list, list) { 3304 list_del(®_beacon->list); 3305 kfree(reg_beacon); 3306 } 3307 3308 return; 3309 } 3310 3311 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3312 restore_regulatory_settings(false, true); 3313 } 3314 3315 static bool freq_is_chan_12_13_14(u32 freq) 3316 { 3317 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3318 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3319 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3320 return true; 3321 return false; 3322 } 3323 3324 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3325 { 3326 struct reg_beacon *pending_beacon; 3327 3328 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3329 if (beacon_chan->center_freq == 3330 pending_beacon->chan.center_freq) 3331 return true; 3332 return false; 3333 } 3334 3335 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3336 struct ieee80211_channel *beacon_chan, 3337 gfp_t gfp) 3338 { 3339 struct reg_beacon *reg_beacon; 3340 bool processing; 3341 3342 if (beacon_chan->beacon_found || 3343 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3344 (beacon_chan->band == NL80211_BAND_2GHZ && 3345 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3346 return 0; 3347 3348 spin_lock_bh(®_pending_beacons_lock); 3349 processing = pending_reg_beacon(beacon_chan); 3350 spin_unlock_bh(®_pending_beacons_lock); 3351 3352 if (processing) 3353 return 0; 3354 3355 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3356 if (!reg_beacon) 3357 return -ENOMEM; 3358 3359 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 3360 beacon_chan->center_freq, 3361 ieee80211_frequency_to_channel(beacon_chan->center_freq), 3362 wiphy_name(wiphy)); 3363 3364 memcpy(®_beacon->chan, beacon_chan, 3365 sizeof(struct ieee80211_channel)); 3366 3367 /* 3368 * Since we can be called from BH or and non-BH context 3369 * we must use spin_lock_bh() 3370 */ 3371 spin_lock_bh(®_pending_beacons_lock); 3372 list_add_tail(®_beacon->list, ®_pending_beacons); 3373 spin_unlock_bh(®_pending_beacons_lock); 3374 3375 schedule_work(®_work); 3376 3377 return 0; 3378 } 3379 3380 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3381 { 3382 unsigned int i; 3383 const struct ieee80211_reg_rule *reg_rule = NULL; 3384 const struct ieee80211_freq_range *freq_range = NULL; 3385 const struct ieee80211_power_rule *power_rule = NULL; 3386 char bw[32], cac_time[32]; 3387 3388 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3389 3390 for (i = 0; i < rd->n_reg_rules; i++) { 3391 reg_rule = &rd->reg_rules[i]; 3392 freq_range = ®_rule->freq_range; 3393 power_rule = ®_rule->power_rule; 3394 3395 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3396 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 3397 freq_range->max_bandwidth_khz, 3398 reg_get_max_bandwidth(rd, reg_rule)); 3399 else 3400 snprintf(bw, sizeof(bw), "%d KHz", 3401 freq_range->max_bandwidth_khz); 3402 3403 if (reg_rule->flags & NL80211_RRF_DFS) 3404 scnprintf(cac_time, sizeof(cac_time), "%u s", 3405 reg_rule->dfs_cac_ms/1000); 3406 else 3407 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3408 3409 3410 /* 3411 * There may not be documentation for max antenna gain 3412 * in certain regions 3413 */ 3414 if (power_rule->max_antenna_gain) 3415 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3416 freq_range->start_freq_khz, 3417 freq_range->end_freq_khz, 3418 bw, 3419 power_rule->max_antenna_gain, 3420 power_rule->max_eirp, 3421 cac_time); 3422 else 3423 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3424 freq_range->start_freq_khz, 3425 freq_range->end_freq_khz, 3426 bw, 3427 power_rule->max_eirp, 3428 cac_time); 3429 } 3430 } 3431 3432 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3433 { 3434 switch (dfs_region) { 3435 case NL80211_DFS_UNSET: 3436 case NL80211_DFS_FCC: 3437 case NL80211_DFS_ETSI: 3438 case NL80211_DFS_JP: 3439 return true; 3440 default: 3441 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3442 return false; 3443 } 3444 } 3445 3446 static void print_regdomain(const struct ieee80211_regdomain *rd) 3447 { 3448 struct regulatory_request *lr = get_last_request(); 3449 3450 if (is_intersected_alpha2(rd->alpha2)) { 3451 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3452 struct cfg80211_registered_device *rdev; 3453 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3454 if (rdev) { 3455 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3456 rdev->country_ie_alpha2[0], 3457 rdev->country_ie_alpha2[1]); 3458 } else 3459 pr_debug("Current regulatory domain intersected:\n"); 3460 } else 3461 pr_debug("Current regulatory domain intersected:\n"); 3462 } else if (is_world_regdom(rd->alpha2)) { 3463 pr_debug("World regulatory domain updated:\n"); 3464 } else { 3465 if (is_unknown_alpha2(rd->alpha2)) 3466 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3467 else { 3468 if (reg_request_cell_base(lr)) 3469 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3470 rd->alpha2[0], rd->alpha2[1]); 3471 else 3472 pr_debug("Regulatory domain changed to country: %c%c\n", 3473 rd->alpha2[0], rd->alpha2[1]); 3474 } 3475 } 3476 3477 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3478 print_rd_rules(rd); 3479 } 3480 3481 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3482 { 3483 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3484 print_rd_rules(rd); 3485 } 3486 3487 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3488 { 3489 if (!is_world_regdom(rd->alpha2)) 3490 return -EINVAL; 3491 update_world_regdomain(rd); 3492 return 0; 3493 } 3494 3495 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3496 struct regulatory_request *user_request) 3497 { 3498 const struct ieee80211_regdomain *intersected_rd = NULL; 3499 3500 if (!regdom_changes(rd->alpha2)) 3501 return -EALREADY; 3502 3503 if (!is_valid_rd(rd)) { 3504 pr_err("Invalid regulatory domain detected: %c%c\n", 3505 rd->alpha2[0], rd->alpha2[1]); 3506 print_regdomain_info(rd); 3507 return -EINVAL; 3508 } 3509 3510 if (!user_request->intersect) { 3511 reset_regdomains(false, rd); 3512 return 0; 3513 } 3514 3515 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3516 if (!intersected_rd) 3517 return -EINVAL; 3518 3519 kfree(rd); 3520 rd = NULL; 3521 reset_regdomains(false, intersected_rd); 3522 3523 return 0; 3524 } 3525 3526 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3527 struct regulatory_request *driver_request) 3528 { 3529 const struct ieee80211_regdomain *regd; 3530 const struct ieee80211_regdomain *intersected_rd = NULL; 3531 const struct ieee80211_regdomain *tmp; 3532 struct wiphy *request_wiphy; 3533 3534 if (is_world_regdom(rd->alpha2)) 3535 return -EINVAL; 3536 3537 if (!regdom_changes(rd->alpha2)) 3538 return -EALREADY; 3539 3540 if (!is_valid_rd(rd)) { 3541 pr_err("Invalid regulatory domain detected: %c%c\n", 3542 rd->alpha2[0], rd->alpha2[1]); 3543 print_regdomain_info(rd); 3544 return -EINVAL; 3545 } 3546 3547 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3548 if (!request_wiphy) 3549 return -ENODEV; 3550 3551 if (!driver_request->intersect) { 3552 if (request_wiphy->regd) 3553 return -EALREADY; 3554 3555 regd = reg_copy_regd(rd); 3556 if (IS_ERR(regd)) 3557 return PTR_ERR(regd); 3558 3559 rcu_assign_pointer(request_wiphy->regd, regd); 3560 reset_regdomains(false, rd); 3561 return 0; 3562 } 3563 3564 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3565 if (!intersected_rd) 3566 return -EINVAL; 3567 3568 /* 3569 * We can trash what CRDA provided now. 3570 * However if a driver requested this specific regulatory 3571 * domain we keep it for its private use 3572 */ 3573 tmp = get_wiphy_regdom(request_wiphy); 3574 rcu_assign_pointer(request_wiphy->regd, rd); 3575 rcu_free_regdom(tmp); 3576 3577 rd = NULL; 3578 3579 reset_regdomains(false, intersected_rd); 3580 3581 return 0; 3582 } 3583 3584 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3585 struct regulatory_request *country_ie_request) 3586 { 3587 struct wiphy *request_wiphy; 3588 3589 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3590 !is_unknown_alpha2(rd->alpha2)) 3591 return -EINVAL; 3592 3593 /* 3594 * Lets only bother proceeding on the same alpha2 if the current 3595 * rd is non static (it means CRDA was present and was used last) 3596 * and the pending request came in from a country IE 3597 */ 3598 3599 if (!is_valid_rd(rd)) { 3600 pr_err("Invalid regulatory domain detected: %c%c\n", 3601 rd->alpha2[0], rd->alpha2[1]); 3602 print_regdomain_info(rd); 3603 return -EINVAL; 3604 } 3605 3606 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3607 if (!request_wiphy) 3608 return -ENODEV; 3609 3610 if (country_ie_request->intersect) 3611 return -EINVAL; 3612 3613 reset_regdomains(false, rd); 3614 return 0; 3615 } 3616 3617 /* 3618 * Use this call to set the current regulatory domain. Conflicts with 3619 * multiple drivers can be ironed out later. Caller must've already 3620 * kmalloc'd the rd structure. 3621 */ 3622 int set_regdom(const struct ieee80211_regdomain *rd, 3623 enum ieee80211_regd_source regd_src) 3624 { 3625 struct regulatory_request *lr; 3626 bool user_reset = false; 3627 int r; 3628 3629 if (IS_ERR_OR_NULL(rd)) 3630 return -ENODATA; 3631 3632 if (!reg_is_valid_request(rd->alpha2)) { 3633 kfree(rd); 3634 return -EINVAL; 3635 } 3636 3637 if (regd_src == REGD_SOURCE_CRDA) 3638 reset_crda_timeouts(); 3639 3640 lr = get_last_request(); 3641 3642 /* Note that this doesn't update the wiphys, this is done below */ 3643 switch (lr->initiator) { 3644 case NL80211_REGDOM_SET_BY_CORE: 3645 r = reg_set_rd_core(rd); 3646 break; 3647 case NL80211_REGDOM_SET_BY_USER: 3648 cfg80211_save_user_regdom(rd); 3649 r = reg_set_rd_user(rd, lr); 3650 user_reset = true; 3651 break; 3652 case NL80211_REGDOM_SET_BY_DRIVER: 3653 r = reg_set_rd_driver(rd, lr); 3654 break; 3655 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3656 r = reg_set_rd_country_ie(rd, lr); 3657 break; 3658 default: 3659 WARN(1, "invalid initiator %d\n", lr->initiator); 3660 kfree(rd); 3661 return -EINVAL; 3662 } 3663 3664 if (r) { 3665 switch (r) { 3666 case -EALREADY: 3667 reg_set_request_processed(); 3668 break; 3669 default: 3670 /* Back to world regulatory in case of errors */ 3671 restore_regulatory_settings(user_reset, false); 3672 } 3673 3674 kfree(rd); 3675 return r; 3676 } 3677 3678 /* This would make this whole thing pointless */ 3679 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3680 return -EINVAL; 3681 3682 /* update all wiphys now with the new established regulatory domain */ 3683 update_all_wiphy_regulatory(lr->initiator); 3684 3685 print_regdomain(get_cfg80211_regdom()); 3686 3687 nl80211_send_reg_change_event(lr); 3688 3689 reg_set_request_processed(); 3690 3691 return 0; 3692 } 3693 3694 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3695 struct ieee80211_regdomain *rd) 3696 { 3697 const struct ieee80211_regdomain *regd; 3698 const struct ieee80211_regdomain *prev_regd; 3699 struct cfg80211_registered_device *rdev; 3700 3701 if (WARN_ON(!wiphy || !rd)) 3702 return -EINVAL; 3703 3704 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3705 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3706 return -EPERM; 3707 3708 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3709 print_regdomain_info(rd); 3710 return -EINVAL; 3711 } 3712 3713 regd = reg_copy_regd(rd); 3714 if (IS_ERR(regd)) 3715 return PTR_ERR(regd); 3716 3717 rdev = wiphy_to_rdev(wiphy); 3718 3719 spin_lock(®_requests_lock); 3720 prev_regd = rdev->requested_regd; 3721 rdev->requested_regd = regd; 3722 spin_unlock(®_requests_lock); 3723 3724 kfree(prev_regd); 3725 return 0; 3726 } 3727 3728 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3729 struct ieee80211_regdomain *rd) 3730 { 3731 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3732 3733 if (ret) 3734 return ret; 3735 3736 schedule_work(®_work); 3737 return 0; 3738 } 3739 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3740 3741 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3742 struct ieee80211_regdomain *rd) 3743 { 3744 int ret; 3745 3746 ASSERT_RTNL(); 3747 3748 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3749 if (ret) 3750 return ret; 3751 3752 /* process the request immediately */ 3753 reg_process_self_managed_hints(); 3754 return 0; 3755 } 3756 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3757 3758 void wiphy_regulatory_register(struct wiphy *wiphy) 3759 { 3760 struct regulatory_request *lr = get_last_request(); 3761 3762 /* self-managed devices ignore beacon hints and country IE */ 3763 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 3764 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3765 REGULATORY_COUNTRY_IE_IGNORE; 3766 3767 /* 3768 * The last request may have been received before this 3769 * registration call. Call the driver notifier if 3770 * initiator is USER. 3771 */ 3772 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 3773 reg_call_notifier(wiphy, lr); 3774 } 3775 3776 if (!reg_dev_ignore_cell_hint(wiphy)) 3777 reg_num_devs_support_basehint++; 3778 3779 wiphy_update_regulatory(wiphy, lr->initiator); 3780 wiphy_all_share_dfs_chan_state(wiphy); 3781 } 3782 3783 void wiphy_regulatory_deregister(struct wiphy *wiphy) 3784 { 3785 struct wiphy *request_wiphy = NULL; 3786 struct regulatory_request *lr; 3787 3788 lr = get_last_request(); 3789 3790 if (!reg_dev_ignore_cell_hint(wiphy)) 3791 reg_num_devs_support_basehint--; 3792 3793 rcu_free_regdom(get_wiphy_regdom(wiphy)); 3794 RCU_INIT_POINTER(wiphy->regd, NULL); 3795 3796 if (lr) 3797 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 3798 3799 if (!request_wiphy || request_wiphy != wiphy) 3800 return; 3801 3802 lr->wiphy_idx = WIPHY_IDX_INVALID; 3803 lr->country_ie_env = ENVIRON_ANY; 3804 } 3805 3806 /* 3807 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for 3808 * UNII band definitions 3809 */ 3810 int cfg80211_get_unii(int freq) 3811 { 3812 /* UNII-1 */ 3813 if (freq >= 5150 && freq <= 5250) 3814 return 0; 3815 3816 /* UNII-2A */ 3817 if (freq > 5250 && freq <= 5350) 3818 return 1; 3819 3820 /* UNII-2B */ 3821 if (freq > 5350 && freq <= 5470) 3822 return 2; 3823 3824 /* UNII-2C */ 3825 if (freq > 5470 && freq <= 5725) 3826 return 3; 3827 3828 /* UNII-3 */ 3829 if (freq > 5725 && freq <= 5825) 3830 return 4; 3831 3832 return -EINVAL; 3833 } 3834 3835 bool regulatory_indoor_allowed(void) 3836 { 3837 return reg_is_indoor; 3838 } 3839 3840 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 3841 { 3842 const struct ieee80211_regdomain *regd = NULL; 3843 const struct ieee80211_regdomain *wiphy_regd = NULL; 3844 bool pre_cac_allowed = false; 3845 3846 rcu_read_lock(); 3847 3848 regd = rcu_dereference(cfg80211_regdomain); 3849 wiphy_regd = rcu_dereference(wiphy->regd); 3850 if (!wiphy_regd) { 3851 if (regd->dfs_region == NL80211_DFS_ETSI) 3852 pre_cac_allowed = true; 3853 3854 rcu_read_unlock(); 3855 3856 return pre_cac_allowed; 3857 } 3858 3859 if (regd->dfs_region == wiphy_regd->dfs_region && 3860 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 3861 pre_cac_allowed = true; 3862 3863 rcu_read_unlock(); 3864 3865 return pre_cac_allowed; 3866 } 3867 3868 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 3869 struct cfg80211_chan_def *chandef, 3870 enum nl80211_dfs_state dfs_state, 3871 enum nl80211_radar_event event) 3872 { 3873 struct cfg80211_registered_device *rdev; 3874 3875 ASSERT_RTNL(); 3876 3877 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 3878 return; 3879 3880 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3881 if (wiphy == &rdev->wiphy) 3882 continue; 3883 3884 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 3885 continue; 3886 3887 if (!ieee80211_get_channel(&rdev->wiphy, 3888 chandef->chan->center_freq)) 3889 continue; 3890 3891 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 3892 3893 if (event == NL80211_RADAR_DETECTED || 3894 event == NL80211_RADAR_CAC_FINISHED) 3895 cfg80211_sched_dfs_chan_update(rdev); 3896 3897 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 3898 } 3899 } 3900 3901 static int __init regulatory_init_db(void) 3902 { 3903 int err; 3904 3905 /* 3906 * It's possible that - due to other bugs/issues - cfg80211 3907 * never called regulatory_init() below, or that it failed; 3908 * in that case, don't try to do any further work here as 3909 * it's doomed to lead to crashes. 3910 */ 3911 if (IS_ERR_OR_NULL(reg_pdev)) 3912 return -EINVAL; 3913 3914 err = load_builtin_regdb_keys(); 3915 if (err) 3916 return err; 3917 3918 /* We always try to get an update for the static regdomain */ 3919 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 3920 if (err) { 3921 if (err == -ENOMEM) { 3922 platform_device_unregister(reg_pdev); 3923 return err; 3924 } 3925 /* 3926 * N.B. kobject_uevent_env() can fail mainly for when we're out 3927 * memory which is handled and propagated appropriately above 3928 * but it can also fail during a netlink_broadcast() or during 3929 * early boot for call_usermodehelper(). For now treat these 3930 * errors as non-fatal. 3931 */ 3932 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 3933 } 3934 3935 /* 3936 * Finally, if the user set the module parameter treat it 3937 * as a user hint. 3938 */ 3939 if (!is_world_regdom(ieee80211_regdom)) 3940 regulatory_hint_user(ieee80211_regdom, 3941 NL80211_USER_REG_HINT_USER); 3942 3943 return 0; 3944 } 3945 #ifndef MODULE 3946 late_initcall(regulatory_init_db); 3947 #endif 3948 3949 int __init regulatory_init(void) 3950 { 3951 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 3952 if (IS_ERR(reg_pdev)) 3953 return PTR_ERR(reg_pdev); 3954 3955 spin_lock_init(®_requests_lock); 3956 spin_lock_init(®_pending_beacons_lock); 3957 spin_lock_init(®_indoor_lock); 3958 3959 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 3960 3961 user_alpha2[0] = '9'; 3962 user_alpha2[1] = '7'; 3963 3964 #ifdef MODULE 3965 return regulatory_init_db(); 3966 #else 3967 return 0; 3968 #endif 3969 } 3970 3971 void regulatory_exit(void) 3972 { 3973 struct regulatory_request *reg_request, *tmp; 3974 struct reg_beacon *reg_beacon, *btmp; 3975 3976 cancel_work_sync(®_work); 3977 cancel_crda_timeout_sync(); 3978 cancel_delayed_work_sync(®_check_chans); 3979 3980 /* Lock to suppress warnings */ 3981 rtnl_lock(); 3982 reset_regdomains(true, NULL); 3983 rtnl_unlock(); 3984 3985 dev_set_uevent_suppress(®_pdev->dev, true); 3986 3987 platform_device_unregister(reg_pdev); 3988 3989 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3990 list_del(®_beacon->list); 3991 kfree(reg_beacon); 3992 } 3993 3994 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3995 list_del(®_beacon->list); 3996 kfree(reg_beacon); 3997 } 3998 3999 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4000 list_del(®_request->list); 4001 kfree(reg_request); 4002 } 4003 4004 if (!IS_ERR_OR_NULL(regdb)) 4005 kfree(regdb); 4006 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4007 kfree(cfg80211_user_regdom); 4008 4009 free_regdb_keyring(); 4010 } 4011