xref: /linux/net/wireless/reg.c (revision e9a83bd2322035ed9d7dcf35753d3f984d76c6a5)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2019 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 
137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139 	return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141 
142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143 {
144 	return rcu_dereference_rtnl(wiphy->regd);
145 }
146 
147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148 {
149 	switch (dfs_region) {
150 	case NL80211_DFS_UNSET:
151 		return "unset";
152 	case NL80211_DFS_FCC:
153 		return "FCC";
154 	case NL80211_DFS_ETSI:
155 		return "ETSI";
156 	case NL80211_DFS_JP:
157 		return "JP";
158 	}
159 	return "Unknown";
160 }
161 
162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163 {
164 	const struct ieee80211_regdomain *regd = NULL;
165 	const struct ieee80211_regdomain *wiphy_regd = NULL;
166 
167 	regd = get_cfg80211_regdom();
168 	if (!wiphy)
169 		goto out;
170 
171 	wiphy_regd = get_wiphy_regdom(wiphy);
172 	if (!wiphy_regd)
173 		goto out;
174 
175 	if (wiphy_regd->dfs_region == regd->dfs_region)
176 		goto out;
177 
178 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179 		 dev_name(&wiphy->dev),
180 		 reg_dfs_region_str(wiphy_regd->dfs_region),
181 		 reg_dfs_region_str(regd->dfs_region));
182 
183 out:
184 	return regd->dfs_region;
185 }
186 
187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188 {
189 	if (!r)
190 		return;
191 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192 }
193 
194 static struct regulatory_request *get_last_request(void)
195 {
196 	return rcu_dereference_rtnl(last_request);
197 }
198 
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list);
201 static spinlock_t reg_requests_lock;
202 
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons);
205 static spinlock_t reg_pending_beacons_lock;
206 
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list);
209 
210 struct reg_beacon {
211 	struct list_head list;
212 	struct ieee80211_channel chan;
213 };
214 
215 static void reg_check_chans_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217 
218 static void reg_todo(struct work_struct *work);
219 static DECLARE_WORK(reg_work, reg_todo);
220 
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom = {
223 	.n_reg_rules = 8,
224 	.alpha2 =  "00",
225 	.reg_rules = {
226 		/* IEEE 802.11b/g, channels 1..11 */
227 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228 		/* IEEE 802.11b/g, channels 12..13. */
229 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
230 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231 		/* IEEE 802.11 channel 14 - Only JP enables
232 		 * this and for 802.11b only */
233 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
234 			NL80211_RRF_NO_IR |
235 			NL80211_RRF_NO_OFDM),
236 		/* IEEE 802.11a, channel 36..48 */
237 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
238                         NL80211_RRF_NO_IR |
239                         NL80211_RRF_AUTO_BW),
240 
241 		/* IEEE 802.11a, channel 52..64 - DFS required */
242 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
243 			NL80211_RRF_NO_IR |
244 			NL80211_RRF_AUTO_BW |
245 			NL80211_RRF_DFS),
246 
247 		/* IEEE 802.11a, channel 100..144 - DFS required */
248 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
249 			NL80211_RRF_NO_IR |
250 			NL80211_RRF_DFS),
251 
252 		/* IEEE 802.11a, channel 149..165 */
253 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
254 			NL80211_RRF_NO_IR),
255 
256 		/* IEEE 802.11ad (60GHz), channels 1..3 */
257 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258 	}
259 };
260 
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
263 	&world_regdom;
264 
265 static char *ieee80211_regdom = "00";
266 static char user_alpha2[2];
267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
268 
269 module_param(ieee80211_regdom, charp, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271 
272 static void reg_free_request(struct regulatory_request *request)
273 {
274 	if (request == &core_request_world)
275 		return;
276 
277 	if (request != get_last_request())
278 		kfree(request);
279 }
280 
281 static void reg_free_last_request(void)
282 {
283 	struct regulatory_request *lr = get_last_request();
284 
285 	if (lr != &core_request_world && lr)
286 		kfree_rcu(lr, rcu_head);
287 }
288 
289 static void reg_update_last_request(struct regulatory_request *request)
290 {
291 	struct regulatory_request *lr;
292 
293 	lr = get_last_request();
294 	if (lr == request)
295 		return;
296 
297 	reg_free_last_request();
298 	rcu_assign_pointer(last_request, request);
299 }
300 
301 static void reset_regdomains(bool full_reset,
302 			     const struct ieee80211_regdomain *new_regdom)
303 {
304 	const struct ieee80211_regdomain *r;
305 
306 	ASSERT_RTNL();
307 
308 	r = get_cfg80211_regdom();
309 
310 	/* avoid freeing static information or freeing something twice */
311 	if (r == cfg80211_world_regdom)
312 		r = NULL;
313 	if (cfg80211_world_regdom == &world_regdom)
314 		cfg80211_world_regdom = NULL;
315 	if (r == &world_regdom)
316 		r = NULL;
317 
318 	rcu_free_regdom(r);
319 	rcu_free_regdom(cfg80211_world_regdom);
320 
321 	cfg80211_world_regdom = &world_regdom;
322 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323 
324 	if (!full_reset)
325 		return;
326 
327 	reg_update_last_request(&core_request_world);
328 }
329 
330 /*
331  * Dynamic world regulatory domain requested by the wireless
332  * core upon initialization
333  */
334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335 {
336 	struct regulatory_request *lr;
337 
338 	lr = get_last_request();
339 
340 	WARN_ON(!lr);
341 
342 	reset_regdomains(false, rd);
343 
344 	cfg80211_world_regdom = rd;
345 }
346 
347 bool is_world_regdom(const char *alpha2)
348 {
349 	if (!alpha2)
350 		return false;
351 	return alpha2[0] == '0' && alpha2[1] == '0';
352 }
353 
354 static bool is_alpha2_set(const char *alpha2)
355 {
356 	if (!alpha2)
357 		return false;
358 	return alpha2[0] && alpha2[1];
359 }
360 
361 static bool is_unknown_alpha2(const char *alpha2)
362 {
363 	if (!alpha2)
364 		return false;
365 	/*
366 	 * Special case where regulatory domain was built by driver
367 	 * but a specific alpha2 cannot be determined
368 	 */
369 	return alpha2[0] == '9' && alpha2[1] == '9';
370 }
371 
372 static bool is_intersected_alpha2(const char *alpha2)
373 {
374 	if (!alpha2)
375 		return false;
376 	/*
377 	 * Special case where regulatory domain is the
378 	 * result of an intersection between two regulatory domain
379 	 * structures
380 	 */
381 	return alpha2[0] == '9' && alpha2[1] == '8';
382 }
383 
384 static bool is_an_alpha2(const char *alpha2)
385 {
386 	if (!alpha2)
387 		return false;
388 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389 }
390 
391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392 {
393 	if (!alpha2_x || !alpha2_y)
394 		return false;
395 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396 }
397 
398 static bool regdom_changes(const char *alpha2)
399 {
400 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401 
402 	if (!r)
403 		return true;
404 	return !alpha2_equal(r->alpha2, alpha2);
405 }
406 
407 /*
408  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410  * has ever been issued.
411  */
412 static bool is_user_regdom_saved(void)
413 {
414 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415 		return false;
416 
417 	/* This would indicate a mistake on the design */
418 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419 		 "Unexpected user alpha2: %c%c\n",
420 		 user_alpha2[0], user_alpha2[1]))
421 		return false;
422 
423 	return true;
424 }
425 
426 static const struct ieee80211_regdomain *
427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428 {
429 	struct ieee80211_regdomain *regd;
430 	unsigned int i;
431 
432 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
433 		       GFP_KERNEL);
434 	if (!regd)
435 		return ERR_PTR(-ENOMEM);
436 
437 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
438 
439 	for (i = 0; i < src_regd->n_reg_rules; i++)
440 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
441 		       sizeof(struct ieee80211_reg_rule));
442 
443 	return regd;
444 }
445 
446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
447 {
448 	ASSERT_RTNL();
449 
450 	if (!IS_ERR(cfg80211_user_regdom))
451 		kfree(cfg80211_user_regdom);
452 	cfg80211_user_regdom = reg_copy_regd(rd);
453 }
454 
455 struct reg_regdb_apply_request {
456 	struct list_head list;
457 	const struct ieee80211_regdomain *regdom;
458 };
459 
460 static LIST_HEAD(reg_regdb_apply_list);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex);
462 
463 static void reg_regdb_apply(struct work_struct *work)
464 {
465 	struct reg_regdb_apply_request *request;
466 
467 	rtnl_lock();
468 
469 	mutex_lock(&reg_regdb_apply_mutex);
470 	while (!list_empty(&reg_regdb_apply_list)) {
471 		request = list_first_entry(&reg_regdb_apply_list,
472 					   struct reg_regdb_apply_request,
473 					   list);
474 		list_del(&request->list);
475 
476 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477 		kfree(request);
478 	}
479 	mutex_unlock(&reg_regdb_apply_mutex);
480 
481 	rtnl_unlock();
482 }
483 
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
485 
486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
487 {
488 	struct reg_regdb_apply_request *request;
489 
490 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
491 	if (!request) {
492 		kfree(regdom);
493 		return -ENOMEM;
494 	}
495 
496 	request->regdom = regdom;
497 
498 	mutex_lock(&reg_regdb_apply_mutex);
499 	list_add_tail(&request->list, &reg_regdb_apply_list);
500 	mutex_unlock(&reg_regdb_apply_mutex);
501 
502 	schedule_work(&reg_regdb_work);
503 	return 0;
504 }
505 
506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
507 /* Max number of consecutive attempts to communicate with CRDA  */
508 #define REG_MAX_CRDA_TIMEOUTS 10
509 
510 static u32 reg_crda_timeouts;
511 
512 static void crda_timeout_work(struct work_struct *work);
513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
514 
515 static void crda_timeout_work(struct work_struct *work)
516 {
517 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
518 	rtnl_lock();
519 	reg_crda_timeouts++;
520 	restore_regulatory_settings(true, false);
521 	rtnl_unlock();
522 }
523 
524 static void cancel_crda_timeout(void)
525 {
526 	cancel_delayed_work(&crda_timeout);
527 }
528 
529 static void cancel_crda_timeout_sync(void)
530 {
531 	cancel_delayed_work_sync(&crda_timeout);
532 }
533 
534 static void reset_crda_timeouts(void)
535 {
536 	reg_crda_timeouts = 0;
537 }
538 
539 /*
540  * This lets us keep regulatory code which is updated on a regulatory
541  * basis in userspace.
542  */
543 static int call_crda(const char *alpha2)
544 {
545 	char country[12];
546 	char *env[] = { country, NULL };
547 	int ret;
548 
549 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
550 		 alpha2[0], alpha2[1]);
551 
552 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
553 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
554 		return -EINVAL;
555 	}
556 
557 	if (!is_world_regdom((char *) alpha2))
558 		pr_debug("Calling CRDA for country: %c%c\n",
559 			 alpha2[0], alpha2[1]);
560 	else
561 		pr_debug("Calling CRDA to update world regulatory domain\n");
562 
563 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
564 	if (ret)
565 		return ret;
566 
567 	queue_delayed_work(system_power_efficient_wq,
568 			   &crda_timeout, msecs_to_jiffies(3142));
569 	return 0;
570 }
571 #else
572 static inline void cancel_crda_timeout(void) {}
573 static inline void cancel_crda_timeout_sync(void) {}
574 static inline void reset_crda_timeouts(void) {}
575 static inline int call_crda(const char *alpha2)
576 {
577 	return -ENODATA;
578 }
579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
580 
581 /* code to directly load a firmware database through request_firmware */
582 static const struct fwdb_header *regdb;
583 
584 struct fwdb_country {
585 	u8 alpha2[2];
586 	__be16 coll_ptr;
587 	/* this struct cannot be extended */
588 } __packed __aligned(4);
589 
590 struct fwdb_collection {
591 	u8 len;
592 	u8 n_rules;
593 	u8 dfs_region;
594 	/* no optional data yet */
595 	/* aligned to 2, then followed by __be16 array of rule pointers */
596 } __packed __aligned(4);
597 
598 enum fwdb_flags {
599 	FWDB_FLAG_NO_OFDM	= BIT(0),
600 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
601 	FWDB_FLAG_DFS		= BIT(2),
602 	FWDB_FLAG_NO_IR		= BIT(3),
603 	FWDB_FLAG_AUTO_BW	= BIT(4),
604 };
605 
606 struct fwdb_wmm_ac {
607 	u8 ecw;
608 	u8 aifsn;
609 	__be16 cot;
610 } __packed;
611 
612 struct fwdb_wmm_rule {
613 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
614 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
615 } __packed;
616 
617 struct fwdb_rule {
618 	u8 len;
619 	u8 flags;
620 	__be16 max_eirp;
621 	__be32 start, end, max_bw;
622 	/* start of optional data */
623 	__be16 cac_timeout;
624 	__be16 wmm_ptr;
625 } __packed __aligned(4);
626 
627 #define FWDB_MAGIC 0x52474442
628 #define FWDB_VERSION 20
629 
630 struct fwdb_header {
631 	__be32 magic;
632 	__be32 version;
633 	struct fwdb_country country[];
634 } __packed __aligned(4);
635 
636 static int ecw2cw(int ecw)
637 {
638 	return (1 << ecw) - 1;
639 }
640 
641 static bool valid_wmm(struct fwdb_wmm_rule *rule)
642 {
643 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
644 	int i;
645 
646 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
647 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
648 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
649 		u8 aifsn = ac[i].aifsn;
650 
651 		if (cw_min >= cw_max)
652 			return false;
653 
654 		if (aifsn < 1)
655 			return false;
656 	}
657 
658 	return true;
659 }
660 
661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
662 {
663 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
664 
665 	if ((u8 *)rule + sizeof(rule->len) > data + size)
666 		return false;
667 
668 	/* mandatory fields */
669 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
670 		return false;
671 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
672 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
673 		struct fwdb_wmm_rule *wmm;
674 
675 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
676 			return false;
677 
678 		wmm = (void *)(data + wmm_ptr);
679 
680 		if (!valid_wmm(wmm))
681 			return false;
682 	}
683 	return true;
684 }
685 
686 static bool valid_country(const u8 *data, unsigned int size,
687 			  const struct fwdb_country *country)
688 {
689 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
690 	struct fwdb_collection *coll = (void *)(data + ptr);
691 	__be16 *rules_ptr;
692 	unsigned int i;
693 
694 	/* make sure we can read len/n_rules */
695 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
696 		return false;
697 
698 	/* make sure base struct and all rules fit */
699 	if ((u8 *)coll + ALIGN(coll->len, 2) +
700 	    (coll->n_rules * 2) > data + size)
701 		return false;
702 
703 	/* mandatory fields must exist */
704 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
705 		return false;
706 
707 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
708 
709 	for (i = 0; i < coll->n_rules; i++) {
710 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
711 
712 		if (!valid_rule(data, size, rule_ptr))
713 			return false;
714 	}
715 
716 	return true;
717 }
718 
719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
720 static struct key *builtin_regdb_keys;
721 
722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
723 {
724 	const u8 *end = p + buflen;
725 	size_t plen;
726 	key_ref_t key;
727 
728 	while (p < end) {
729 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
730 		 * than 256 bytes in size.
731 		 */
732 		if (end - p < 4)
733 			goto dodgy_cert;
734 		if (p[0] != 0x30 &&
735 		    p[1] != 0x82)
736 			goto dodgy_cert;
737 		plen = (p[2] << 8) | p[3];
738 		plen += 4;
739 		if (plen > end - p)
740 			goto dodgy_cert;
741 
742 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
743 					   "asymmetric", NULL, p, plen,
744 					   &internal_key_acl,
745 					   KEY_ALLOC_NOT_IN_QUOTA |
746 					   KEY_ALLOC_BUILT_IN |
747 					   KEY_ALLOC_BYPASS_RESTRICTION);
748 		if (IS_ERR(key)) {
749 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
750 			       PTR_ERR(key));
751 		} else {
752 			pr_notice("Loaded X.509 cert '%s'\n",
753 				  key_ref_to_ptr(key)->description);
754 			key_ref_put(key);
755 		}
756 		p += plen;
757 	}
758 
759 	return;
760 
761 dodgy_cert:
762 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
763 }
764 
765 static int __init load_builtin_regdb_keys(void)
766 {
767 	builtin_regdb_keys =
768 		keyring_alloc(".builtin_regdb_keys",
769 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
770 			      &internal_keyring_acl,
771 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
772 	if (IS_ERR(builtin_regdb_keys))
773 		return PTR_ERR(builtin_regdb_keys);
774 
775 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
776 
777 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
778 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
779 #endif
780 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
781 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
782 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
783 #endif
784 
785 	return 0;
786 }
787 
788 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
789 {
790 	const struct firmware *sig;
791 	bool result;
792 
793 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
794 		return false;
795 
796 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
797 					builtin_regdb_keys,
798 					VERIFYING_UNSPECIFIED_SIGNATURE,
799 					NULL, NULL) == 0;
800 
801 	release_firmware(sig);
802 
803 	return result;
804 }
805 
806 static void free_regdb_keyring(void)
807 {
808 	key_put(builtin_regdb_keys);
809 }
810 #else
811 static int load_builtin_regdb_keys(void)
812 {
813 	return 0;
814 }
815 
816 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
817 {
818 	return true;
819 }
820 
821 static void free_regdb_keyring(void)
822 {
823 }
824 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
825 
826 static bool valid_regdb(const u8 *data, unsigned int size)
827 {
828 	const struct fwdb_header *hdr = (void *)data;
829 	const struct fwdb_country *country;
830 
831 	if (size < sizeof(*hdr))
832 		return false;
833 
834 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
835 		return false;
836 
837 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
838 		return false;
839 
840 	if (!regdb_has_valid_signature(data, size))
841 		return false;
842 
843 	country = &hdr->country[0];
844 	while ((u8 *)(country + 1) <= data + size) {
845 		if (!country->coll_ptr)
846 			break;
847 		if (!valid_country(data, size, country))
848 			return false;
849 		country++;
850 	}
851 
852 	return true;
853 }
854 
855 static void set_wmm_rule(const struct fwdb_header *db,
856 			 const struct fwdb_country *country,
857 			 const struct fwdb_rule *rule,
858 			 struct ieee80211_reg_rule *rrule)
859 {
860 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
861 	struct fwdb_wmm_rule *wmm;
862 	unsigned int i, wmm_ptr;
863 
864 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
865 	wmm = (void *)((u8 *)db + wmm_ptr);
866 
867 	if (!valid_wmm(wmm)) {
868 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
869 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
870 		       country->alpha2[0], country->alpha2[1]);
871 		return;
872 	}
873 
874 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
875 		wmm_rule->client[i].cw_min =
876 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
877 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
878 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
879 		wmm_rule->client[i].cot =
880 			1000 * be16_to_cpu(wmm->client[i].cot);
881 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
882 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
883 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
884 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
885 	}
886 
887 	rrule->has_wmm = true;
888 }
889 
890 static int __regdb_query_wmm(const struct fwdb_header *db,
891 			     const struct fwdb_country *country, int freq,
892 			     struct ieee80211_reg_rule *rrule)
893 {
894 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
895 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
896 	int i;
897 
898 	for (i = 0; i < coll->n_rules; i++) {
899 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
900 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
901 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
902 
903 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
904 			continue;
905 
906 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
907 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
908 			set_wmm_rule(db, country, rule, rrule);
909 			return 0;
910 		}
911 	}
912 
913 	return -ENODATA;
914 }
915 
916 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
917 {
918 	const struct fwdb_header *hdr = regdb;
919 	const struct fwdb_country *country;
920 
921 	if (!regdb)
922 		return -ENODATA;
923 
924 	if (IS_ERR(regdb))
925 		return PTR_ERR(regdb);
926 
927 	country = &hdr->country[0];
928 	while (country->coll_ptr) {
929 		if (alpha2_equal(alpha2, country->alpha2))
930 			return __regdb_query_wmm(regdb, country, freq, rule);
931 
932 		country++;
933 	}
934 
935 	return -ENODATA;
936 }
937 EXPORT_SYMBOL(reg_query_regdb_wmm);
938 
939 static int regdb_query_country(const struct fwdb_header *db,
940 			       const struct fwdb_country *country)
941 {
942 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
943 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
944 	struct ieee80211_regdomain *regdom;
945 	unsigned int i;
946 
947 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
948 			 GFP_KERNEL);
949 	if (!regdom)
950 		return -ENOMEM;
951 
952 	regdom->n_reg_rules = coll->n_rules;
953 	regdom->alpha2[0] = country->alpha2[0];
954 	regdom->alpha2[1] = country->alpha2[1];
955 	regdom->dfs_region = coll->dfs_region;
956 
957 	for (i = 0; i < regdom->n_reg_rules; i++) {
958 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
959 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
960 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
961 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
962 
963 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
964 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
965 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
966 
967 		rrule->power_rule.max_antenna_gain = 0;
968 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
969 
970 		rrule->flags = 0;
971 		if (rule->flags & FWDB_FLAG_NO_OFDM)
972 			rrule->flags |= NL80211_RRF_NO_OFDM;
973 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
974 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
975 		if (rule->flags & FWDB_FLAG_DFS)
976 			rrule->flags |= NL80211_RRF_DFS;
977 		if (rule->flags & FWDB_FLAG_NO_IR)
978 			rrule->flags |= NL80211_RRF_NO_IR;
979 		if (rule->flags & FWDB_FLAG_AUTO_BW)
980 			rrule->flags |= NL80211_RRF_AUTO_BW;
981 
982 		rrule->dfs_cac_ms = 0;
983 
984 		/* handle optional data */
985 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
986 			rrule->dfs_cac_ms =
987 				1000 * be16_to_cpu(rule->cac_timeout);
988 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
989 			set_wmm_rule(db, country, rule, rrule);
990 	}
991 
992 	return reg_schedule_apply(regdom);
993 }
994 
995 static int query_regdb(const char *alpha2)
996 {
997 	const struct fwdb_header *hdr = regdb;
998 	const struct fwdb_country *country;
999 
1000 	ASSERT_RTNL();
1001 
1002 	if (IS_ERR(regdb))
1003 		return PTR_ERR(regdb);
1004 
1005 	country = &hdr->country[0];
1006 	while (country->coll_ptr) {
1007 		if (alpha2_equal(alpha2, country->alpha2))
1008 			return regdb_query_country(regdb, country);
1009 		country++;
1010 	}
1011 
1012 	return -ENODATA;
1013 }
1014 
1015 static void regdb_fw_cb(const struct firmware *fw, void *context)
1016 {
1017 	int set_error = 0;
1018 	bool restore = true;
1019 	void *db;
1020 
1021 	if (!fw) {
1022 		pr_info("failed to load regulatory.db\n");
1023 		set_error = -ENODATA;
1024 	} else if (!valid_regdb(fw->data, fw->size)) {
1025 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1026 		set_error = -EINVAL;
1027 	}
1028 
1029 	rtnl_lock();
1030 	if (regdb && !IS_ERR(regdb)) {
1031 		/* negative case - a bug
1032 		 * positive case - can happen due to race in case of multiple cb's in
1033 		 * queue, due to usage of asynchronous callback
1034 		 *
1035 		 * Either case, just restore and free new db.
1036 		 */
1037 	} else if (set_error) {
1038 		regdb = ERR_PTR(set_error);
1039 	} else if (fw) {
1040 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1041 		if (db) {
1042 			regdb = db;
1043 			restore = context && query_regdb(context);
1044 		} else {
1045 			restore = true;
1046 		}
1047 	}
1048 
1049 	if (restore)
1050 		restore_regulatory_settings(true, false);
1051 
1052 	rtnl_unlock();
1053 
1054 	kfree(context);
1055 
1056 	release_firmware(fw);
1057 }
1058 
1059 static int query_regdb_file(const char *alpha2)
1060 {
1061 	ASSERT_RTNL();
1062 
1063 	if (regdb)
1064 		return query_regdb(alpha2);
1065 
1066 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1067 	if (!alpha2)
1068 		return -ENOMEM;
1069 
1070 	return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1071 				       &reg_pdev->dev, GFP_KERNEL,
1072 				       (void *)alpha2, regdb_fw_cb);
1073 }
1074 
1075 int reg_reload_regdb(void)
1076 {
1077 	const struct firmware *fw;
1078 	void *db;
1079 	int err;
1080 
1081 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1082 	if (err)
1083 		return err;
1084 
1085 	if (!valid_regdb(fw->data, fw->size)) {
1086 		err = -ENODATA;
1087 		goto out;
1088 	}
1089 
1090 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1091 	if (!db) {
1092 		err = -ENOMEM;
1093 		goto out;
1094 	}
1095 
1096 	rtnl_lock();
1097 	if (!IS_ERR_OR_NULL(regdb))
1098 		kfree(regdb);
1099 	regdb = db;
1100 	rtnl_unlock();
1101 
1102  out:
1103 	release_firmware(fw);
1104 	return err;
1105 }
1106 
1107 static bool reg_query_database(struct regulatory_request *request)
1108 {
1109 	if (query_regdb_file(request->alpha2) == 0)
1110 		return true;
1111 
1112 	if (call_crda(request->alpha2) == 0)
1113 		return true;
1114 
1115 	return false;
1116 }
1117 
1118 bool reg_is_valid_request(const char *alpha2)
1119 {
1120 	struct regulatory_request *lr = get_last_request();
1121 
1122 	if (!lr || lr->processed)
1123 		return false;
1124 
1125 	return alpha2_equal(lr->alpha2, alpha2);
1126 }
1127 
1128 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1129 {
1130 	struct regulatory_request *lr = get_last_request();
1131 
1132 	/*
1133 	 * Follow the driver's regulatory domain, if present, unless a country
1134 	 * IE has been processed or a user wants to help complaince further
1135 	 */
1136 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1137 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1138 	    wiphy->regd)
1139 		return get_wiphy_regdom(wiphy);
1140 
1141 	return get_cfg80211_regdom();
1142 }
1143 
1144 static unsigned int
1145 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1146 				 const struct ieee80211_reg_rule *rule)
1147 {
1148 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1149 	const struct ieee80211_freq_range *freq_range_tmp;
1150 	const struct ieee80211_reg_rule *tmp;
1151 	u32 start_freq, end_freq, idx, no;
1152 
1153 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1154 		if (rule == &rd->reg_rules[idx])
1155 			break;
1156 
1157 	if (idx == rd->n_reg_rules)
1158 		return 0;
1159 
1160 	/* get start_freq */
1161 	no = idx;
1162 
1163 	while (no) {
1164 		tmp = &rd->reg_rules[--no];
1165 		freq_range_tmp = &tmp->freq_range;
1166 
1167 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1168 			break;
1169 
1170 		freq_range = freq_range_tmp;
1171 	}
1172 
1173 	start_freq = freq_range->start_freq_khz;
1174 
1175 	/* get end_freq */
1176 	freq_range = &rule->freq_range;
1177 	no = idx;
1178 
1179 	while (no < rd->n_reg_rules - 1) {
1180 		tmp = &rd->reg_rules[++no];
1181 		freq_range_tmp = &tmp->freq_range;
1182 
1183 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1184 			break;
1185 
1186 		freq_range = freq_range_tmp;
1187 	}
1188 
1189 	end_freq = freq_range->end_freq_khz;
1190 
1191 	return end_freq - start_freq;
1192 }
1193 
1194 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1195 				   const struct ieee80211_reg_rule *rule)
1196 {
1197 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1198 
1199 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1200 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1201 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1202 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1203 
1204 	/*
1205 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1206 	 * are not allowed.
1207 	 */
1208 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1209 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1210 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1211 
1212 	return bw;
1213 }
1214 
1215 /* Sanity check on a regulatory rule */
1216 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1217 {
1218 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1219 	u32 freq_diff;
1220 
1221 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1222 		return false;
1223 
1224 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1225 		return false;
1226 
1227 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1228 
1229 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1230 	    freq_range->max_bandwidth_khz > freq_diff)
1231 		return false;
1232 
1233 	return true;
1234 }
1235 
1236 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1237 {
1238 	const struct ieee80211_reg_rule *reg_rule = NULL;
1239 	unsigned int i;
1240 
1241 	if (!rd->n_reg_rules)
1242 		return false;
1243 
1244 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1245 		return false;
1246 
1247 	for (i = 0; i < rd->n_reg_rules; i++) {
1248 		reg_rule = &rd->reg_rules[i];
1249 		if (!is_valid_reg_rule(reg_rule))
1250 			return false;
1251 	}
1252 
1253 	return true;
1254 }
1255 
1256 /**
1257  * freq_in_rule_band - tells us if a frequency is in a frequency band
1258  * @freq_range: frequency rule we want to query
1259  * @freq_khz: frequency we are inquiring about
1260  *
1261  * This lets us know if a specific frequency rule is or is not relevant to
1262  * a specific frequency's band. Bands are device specific and artificial
1263  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1264  * however it is safe for now to assume that a frequency rule should not be
1265  * part of a frequency's band if the start freq or end freq are off by more
1266  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1267  * 60 GHz band.
1268  * This resolution can be lowered and should be considered as we add
1269  * regulatory rule support for other "bands".
1270  **/
1271 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1272 			      u32 freq_khz)
1273 {
1274 #define ONE_GHZ_IN_KHZ	1000000
1275 	/*
1276 	 * From 802.11ad: directional multi-gigabit (DMG):
1277 	 * Pertaining to operation in a frequency band containing a channel
1278 	 * with the Channel starting frequency above 45 GHz.
1279 	 */
1280 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1281 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1282 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1283 		return true;
1284 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1285 		return true;
1286 	return false;
1287 #undef ONE_GHZ_IN_KHZ
1288 }
1289 
1290 /*
1291  * Later on we can perhaps use the more restrictive DFS
1292  * region but we don't have information for that yet so
1293  * for now simply disallow conflicts.
1294  */
1295 static enum nl80211_dfs_regions
1296 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1297 			 const enum nl80211_dfs_regions dfs_region2)
1298 {
1299 	if (dfs_region1 != dfs_region2)
1300 		return NL80211_DFS_UNSET;
1301 	return dfs_region1;
1302 }
1303 
1304 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1305 				    const struct ieee80211_wmm_ac *wmm_ac2,
1306 				    struct ieee80211_wmm_ac *intersect)
1307 {
1308 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1309 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1310 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1311 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1312 }
1313 
1314 /*
1315  * Helper for regdom_intersect(), this does the real
1316  * mathematical intersection fun
1317  */
1318 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1319 			       const struct ieee80211_regdomain *rd2,
1320 			       const struct ieee80211_reg_rule *rule1,
1321 			       const struct ieee80211_reg_rule *rule2,
1322 			       struct ieee80211_reg_rule *intersected_rule)
1323 {
1324 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1325 	struct ieee80211_freq_range *freq_range;
1326 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1327 	struct ieee80211_power_rule *power_rule;
1328 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1329 	struct ieee80211_wmm_rule *wmm_rule;
1330 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1331 
1332 	freq_range1 = &rule1->freq_range;
1333 	freq_range2 = &rule2->freq_range;
1334 	freq_range = &intersected_rule->freq_range;
1335 
1336 	power_rule1 = &rule1->power_rule;
1337 	power_rule2 = &rule2->power_rule;
1338 	power_rule = &intersected_rule->power_rule;
1339 
1340 	wmm_rule1 = &rule1->wmm_rule;
1341 	wmm_rule2 = &rule2->wmm_rule;
1342 	wmm_rule = &intersected_rule->wmm_rule;
1343 
1344 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1345 					 freq_range2->start_freq_khz);
1346 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1347 				       freq_range2->end_freq_khz);
1348 
1349 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1350 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1351 
1352 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1353 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1354 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1355 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1356 
1357 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1358 
1359 	intersected_rule->flags = rule1->flags | rule2->flags;
1360 
1361 	/*
1362 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1363 	 * set AUTO_BW in intersected rule also. Next we will
1364 	 * calculate BW correctly in handle_channel function.
1365 	 * In other case remove AUTO_BW flag while we calculate
1366 	 * maximum bandwidth correctly and auto calculation is
1367 	 * not required.
1368 	 */
1369 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1370 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1371 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1372 	else
1373 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1374 
1375 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1376 	if (freq_range->max_bandwidth_khz > freq_diff)
1377 		freq_range->max_bandwidth_khz = freq_diff;
1378 
1379 	power_rule->max_eirp = min(power_rule1->max_eirp,
1380 		power_rule2->max_eirp);
1381 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1382 		power_rule2->max_antenna_gain);
1383 
1384 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1385 					   rule2->dfs_cac_ms);
1386 
1387 	if (rule1->has_wmm && rule2->has_wmm) {
1388 		u8 ac;
1389 
1390 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1391 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1392 						&wmm_rule2->client[ac],
1393 						&wmm_rule->client[ac]);
1394 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1395 						&wmm_rule2->ap[ac],
1396 						&wmm_rule->ap[ac]);
1397 		}
1398 
1399 		intersected_rule->has_wmm = true;
1400 	} else if (rule1->has_wmm) {
1401 		*wmm_rule = *wmm_rule1;
1402 		intersected_rule->has_wmm = true;
1403 	} else if (rule2->has_wmm) {
1404 		*wmm_rule = *wmm_rule2;
1405 		intersected_rule->has_wmm = true;
1406 	} else {
1407 		intersected_rule->has_wmm = false;
1408 	}
1409 
1410 	if (!is_valid_reg_rule(intersected_rule))
1411 		return -EINVAL;
1412 
1413 	return 0;
1414 }
1415 
1416 /* check whether old rule contains new rule */
1417 static bool rule_contains(struct ieee80211_reg_rule *r1,
1418 			  struct ieee80211_reg_rule *r2)
1419 {
1420 	/* for simplicity, currently consider only same flags */
1421 	if (r1->flags != r2->flags)
1422 		return false;
1423 
1424 	/* verify r1 is more restrictive */
1425 	if ((r1->power_rule.max_antenna_gain >
1426 	     r2->power_rule.max_antenna_gain) ||
1427 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1428 		return false;
1429 
1430 	/* make sure r2's range is contained within r1 */
1431 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1432 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1433 		return false;
1434 
1435 	/* and finally verify that r1.max_bw >= r2.max_bw */
1436 	if (r1->freq_range.max_bandwidth_khz <
1437 	    r2->freq_range.max_bandwidth_khz)
1438 		return false;
1439 
1440 	return true;
1441 }
1442 
1443 /* add or extend current rules. do nothing if rule is already contained */
1444 static void add_rule(struct ieee80211_reg_rule *rule,
1445 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1446 {
1447 	struct ieee80211_reg_rule *tmp_rule;
1448 	int i;
1449 
1450 	for (i = 0; i < *n_rules; i++) {
1451 		tmp_rule = &reg_rules[i];
1452 		/* rule is already contained - do nothing */
1453 		if (rule_contains(tmp_rule, rule))
1454 			return;
1455 
1456 		/* extend rule if possible */
1457 		if (rule_contains(rule, tmp_rule)) {
1458 			memcpy(tmp_rule, rule, sizeof(*rule));
1459 			return;
1460 		}
1461 	}
1462 
1463 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1464 	(*n_rules)++;
1465 }
1466 
1467 /**
1468  * regdom_intersect - do the intersection between two regulatory domains
1469  * @rd1: first regulatory domain
1470  * @rd2: second regulatory domain
1471  *
1472  * Use this function to get the intersection between two regulatory domains.
1473  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1474  * as no one single alpha2 can represent this regulatory domain.
1475  *
1476  * Returns a pointer to the regulatory domain structure which will hold the
1477  * resulting intersection of rules between rd1 and rd2. We will
1478  * kzalloc() this structure for you.
1479  */
1480 static struct ieee80211_regdomain *
1481 regdom_intersect(const struct ieee80211_regdomain *rd1,
1482 		 const struct ieee80211_regdomain *rd2)
1483 {
1484 	int r;
1485 	unsigned int x, y;
1486 	unsigned int num_rules = 0;
1487 	const struct ieee80211_reg_rule *rule1, *rule2;
1488 	struct ieee80211_reg_rule intersected_rule;
1489 	struct ieee80211_regdomain *rd;
1490 
1491 	if (!rd1 || !rd2)
1492 		return NULL;
1493 
1494 	/*
1495 	 * First we get a count of the rules we'll need, then we actually
1496 	 * build them. This is to so we can malloc() and free() a
1497 	 * regdomain once. The reason we use reg_rules_intersect() here
1498 	 * is it will return -EINVAL if the rule computed makes no sense.
1499 	 * All rules that do check out OK are valid.
1500 	 */
1501 
1502 	for (x = 0; x < rd1->n_reg_rules; x++) {
1503 		rule1 = &rd1->reg_rules[x];
1504 		for (y = 0; y < rd2->n_reg_rules; y++) {
1505 			rule2 = &rd2->reg_rules[y];
1506 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1507 						 &intersected_rule))
1508 				num_rules++;
1509 		}
1510 	}
1511 
1512 	if (!num_rules)
1513 		return NULL;
1514 
1515 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1516 	if (!rd)
1517 		return NULL;
1518 
1519 	for (x = 0; x < rd1->n_reg_rules; x++) {
1520 		rule1 = &rd1->reg_rules[x];
1521 		for (y = 0; y < rd2->n_reg_rules; y++) {
1522 			rule2 = &rd2->reg_rules[y];
1523 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1524 						&intersected_rule);
1525 			/*
1526 			 * No need to memset here the intersected rule here as
1527 			 * we're not using the stack anymore
1528 			 */
1529 			if (r)
1530 				continue;
1531 
1532 			add_rule(&intersected_rule, rd->reg_rules,
1533 				 &rd->n_reg_rules);
1534 		}
1535 	}
1536 
1537 	rd->alpha2[0] = '9';
1538 	rd->alpha2[1] = '8';
1539 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1540 						  rd2->dfs_region);
1541 
1542 	return rd;
1543 }
1544 
1545 /*
1546  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1547  * want to just have the channel structure use these
1548  */
1549 static u32 map_regdom_flags(u32 rd_flags)
1550 {
1551 	u32 channel_flags = 0;
1552 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1553 		channel_flags |= IEEE80211_CHAN_NO_IR;
1554 	if (rd_flags & NL80211_RRF_DFS)
1555 		channel_flags |= IEEE80211_CHAN_RADAR;
1556 	if (rd_flags & NL80211_RRF_NO_OFDM)
1557 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1558 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1559 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1560 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1561 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1562 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1563 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1564 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1565 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1566 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1567 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1568 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1569 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1570 	return channel_flags;
1571 }
1572 
1573 static const struct ieee80211_reg_rule *
1574 freq_reg_info_regd(u32 center_freq,
1575 		   const struct ieee80211_regdomain *regd, u32 bw)
1576 {
1577 	int i;
1578 	bool band_rule_found = false;
1579 	bool bw_fits = false;
1580 
1581 	if (!regd)
1582 		return ERR_PTR(-EINVAL);
1583 
1584 	for (i = 0; i < regd->n_reg_rules; i++) {
1585 		const struct ieee80211_reg_rule *rr;
1586 		const struct ieee80211_freq_range *fr = NULL;
1587 
1588 		rr = &regd->reg_rules[i];
1589 		fr = &rr->freq_range;
1590 
1591 		/*
1592 		 * We only need to know if one frequency rule was
1593 		 * was in center_freq's band, that's enough, so lets
1594 		 * not overwrite it once found
1595 		 */
1596 		if (!band_rule_found)
1597 			band_rule_found = freq_in_rule_band(fr, center_freq);
1598 
1599 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1600 
1601 		if (band_rule_found && bw_fits)
1602 			return rr;
1603 	}
1604 
1605 	if (!band_rule_found)
1606 		return ERR_PTR(-ERANGE);
1607 
1608 	return ERR_PTR(-EINVAL);
1609 }
1610 
1611 static const struct ieee80211_reg_rule *
1612 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1613 {
1614 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1615 	const struct ieee80211_reg_rule *reg_rule = NULL;
1616 	u32 bw;
1617 
1618 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1619 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1620 		if (!IS_ERR(reg_rule))
1621 			return reg_rule;
1622 	}
1623 
1624 	return reg_rule;
1625 }
1626 
1627 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1628 					       u32 center_freq)
1629 {
1630 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1631 }
1632 EXPORT_SYMBOL(freq_reg_info);
1633 
1634 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1635 {
1636 	switch (initiator) {
1637 	case NL80211_REGDOM_SET_BY_CORE:
1638 		return "core";
1639 	case NL80211_REGDOM_SET_BY_USER:
1640 		return "user";
1641 	case NL80211_REGDOM_SET_BY_DRIVER:
1642 		return "driver";
1643 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1644 		return "country element";
1645 	default:
1646 		WARN_ON(1);
1647 		return "bug";
1648 	}
1649 }
1650 EXPORT_SYMBOL(reg_initiator_name);
1651 
1652 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1653 					  const struct ieee80211_reg_rule *reg_rule,
1654 					  const struct ieee80211_channel *chan)
1655 {
1656 	const struct ieee80211_freq_range *freq_range = NULL;
1657 	u32 max_bandwidth_khz, bw_flags = 0;
1658 
1659 	freq_range = &reg_rule->freq_range;
1660 
1661 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1662 	/* Check if auto calculation requested */
1663 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1664 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1665 
1666 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1667 	if (!cfg80211_does_bw_fit_range(freq_range,
1668 					MHZ_TO_KHZ(chan->center_freq),
1669 					MHZ_TO_KHZ(10)))
1670 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1671 	if (!cfg80211_does_bw_fit_range(freq_range,
1672 					MHZ_TO_KHZ(chan->center_freq),
1673 					MHZ_TO_KHZ(20)))
1674 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1675 
1676 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1677 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1678 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1679 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1680 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1681 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1682 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1683 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1684 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1685 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1686 	return bw_flags;
1687 }
1688 
1689 /*
1690  * Note that right now we assume the desired channel bandwidth
1691  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1692  * per channel, the primary and the extension channel).
1693  */
1694 static void handle_channel(struct wiphy *wiphy,
1695 			   enum nl80211_reg_initiator initiator,
1696 			   struct ieee80211_channel *chan)
1697 {
1698 	u32 flags, bw_flags = 0;
1699 	const struct ieee80211_reg_rule *reg_rule = NULL;
1700 	const struct ieee80211_power_rule *power_rule = NULL;
1701 	struct wiphy *request_wiphy = NULL;
1702 	struct regulatory_request *lr = get_last_request();
1703 	const struct ieee80211_regdomain *regd;
1704 
1705 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1706 
1707 	flags = chan->orig_flags;
1708 
1709 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1710 	if (IS_ERR(reg_rule)) {
1711 		/*
1712 		 * We will disable all channels that do not match our
1713 		 * received regulatory rule unless the hint is coming
1714 		 * from a Country IE and the Country IE had no information
1715 		 * about a band. The IEEE 802.11 spec allows for an AP
1716 		 * to send only a subset of the regulatory rules allowed,
1717 		 * so an AP in the US that only supports 2.4 GHz may only send
1718 		 * a country IE with information for the 2.4 GHz band
1719 		 * while 5 GHz is still supported.
1720 		 */
1721 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1722 		    PTR_ERR(reg_rule) == -ERANGE)
1723 			return;
1724 
1725 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1726 		    request_wiphy && request_wiphy == wiphy &&
1727 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1728 			pr_debug("Disabling freq %d MHz for good\n",
1729 				 chan->center_freq);
1730 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1731 			chan->flags = chan->orig_flags;
1732 		} else {
1733 			pr_debug("Disabling freq %d MHz\n",
1734 				 chan->center_freq);
1735 			chan->flags |= IEEE80211_CHAN_DISABLED;
1736 		}
1737 		return;
1738 	}
1739 
1740 	regd = reg_get_regdomain(wiphy);
1741 
1742 	power_rule = &reg_rule->power_rule;
1743 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1744 
1745 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1746 	    request_wiphy && request_wiphy == wiphy &&
1747 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1748 		/*
1749 		 * This guarantees the driver's requested regulatory domain
1750 		 * will always be used as a base for further regulatory
1751 		 * settings
1752 		 */
1753 		chan->flags = chan->orig_flags =
1754 			map_regdom_flags(reg_rule->flags) | bw_flags;
1755 		chan->max_antenna_gain = chan->orig_mag =
1756 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1757 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1758 			(int) MBM_TO_DBM(power_rule->max_eirp);
1759 
1760 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1761 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1762 			if (reg_rule->dfs_cac_ms)
1763 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1764 		}
1765 
1766 		return;
1767 	}
1768 
1769 	chan->dfs_state = NL80211_DFS_USABLE;
1770 	chan->dfs_state_entered = jiffies;
1771 
1772 	chan->beacon_found = false;
1773 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1774 	chan->max_antenna_gain =
1775 		min_t(int, chan->orig_mag,
1776 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1777 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1778 
1779 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1780 		if (reg_rule->dfs_cac_ms)
1781 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1782 		else
1783 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1784 	}
1785 
1786 	if (chan->orig_mpwr) {
1787 		/*
1788 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1789 		 * will always follow the passed country IE power settings.
1790 		 */
1791 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1792 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1793 			chan->max_power = chan->max_reg_power;
1794 		else
1795 			chan->max_power = min(chan->orig_mpwr,
1796 					      chan->max_reg_power);
1797 	} else
1798 		chan->max_power = chan->max_reg_power;
1799 }
1800 
1801 static void handle_band(struct wiphy *wiphy,
1802 			enum nl80211_reg_initiator initiator,
1803 			struct ieee80211_supported_band *sband)
1804 {
1805 	unsigned int i;
1806 
1807 	if (!sband)
1808 		return;
1809 
1810 	for (i = 0; i < sband->n_channels; i++)
1811 		handle_channel(wiphy, initiator, &sband->channels[i]);
1812 }
1813 
1814 static bool reg_request_cell_base(struct regulatory_request *request)
1815 {
1816 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1817 		return false;
1818 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1819 }
1820 
1821 bool reg_last_request_cell_base(void)
1822 {
1823 	return reg_request_cell_base(get_last_request());
1824 }
1825 
1826 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1827 /* Core specific check */
1828 static enum reg_request_treatment
1829 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1830 {
1831 	struct regulatory_request *lr = get_last_request();
1832 
1833 	if (!reg_num_devs_support_basehint)
1834 		return REG_REQ_IGNORE;
1835 
1836 	if (reg_request_cell_base(lr) &&
1837 	    !regdom_changes(pending_request->alpha2))
1838 		return REG_REQ_ALREADY_SET;
1839 
1840 	return REG_REQ_OK;
1841 }
1842 
1843 /* Device specific check */
1844 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1845 {
1846 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1847 }
1848 #else
1849 static enum reg_request_treatment
1850 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1851 {
1852 	return REG_REQ_IGNORE;
1853 }
1854 
1855 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1856 {
1857 	return true;
1858 }
1859 #endif
1860 
1861 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1862 {
1863 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1864 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1865 		return true;
1866 	return false;
1867 }
1868 
1869 static bool ignore_reg_update(struct wiphy *wiphy,
1870 			      enum nl80211_reg_initiator initiator)
1871 {
1872 	struct regulatory_request *lr = get_last_request();
1873 
1874 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1875 		return true;
1876 
1877 	if (!lr) {
1878 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1879 			 reg_initiator_name(initiator));
1880 		return true;
1881 	}
1882 
1883 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1884 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1885 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1886 			 reg_initiator_name(initiator));
1887 		return true;
1888 	}
1889 
1890 	/*
1891 	 * wiphy->regd will be set once the device has its own
1892 	 * desired regulatory domain set
1893 	 */
1894 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1895 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1896 	    !is_world_regdom(lr->alpha2)) {
1897 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1898 			 reg_initiator_name(initiator));
1899 		return true;
1900 	}
1901 
1902 	if (reg_request_cell_base(lr))
1903 		return reg_dev_ignore_cell_hint(wiphy);
1904 
1905 	return false;
1906 }
1907 
1908 static bool reg_is_world_roaming(struct wiphy *wiphy)
1909 {
1910 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1911 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1912 	struct regulatory_request *lr = get_last_request();
1913 
1914 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1915 		return true;
1916 
1917 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1918 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1919 		return true;
1920 
1921 	return false;
1922 }
1923 
1924 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1925 			      struct reg_beacon *reg_beacon)
1926 {
1927 	struct ieee80211_supported_band *sband;
1928 	struct ieee80211_channel *chan;
1929 	bool channel_changed = false;
1930 	struct ieee80211_channel chan_before;
1931 
1932 	sband = wiphy->bands[reg_beacon->chan.band];
1933 	chan = &sband->channels[chan_idx];
1934 
1935 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1936 		return;
1937 
1938 	if (chan->beacon_found)
1939 		return;
1940 
1941 	chan->beacon_found = true;
1942 
1943 	if (!reg_is_world_roaming(wiphy))
1944 		return;
1945 
1946 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1947 		return;
1948 
1949 	chan_before = *chan;
1950 
1951 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1952 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1953 		channel_changed = true;
1954 	}
1955 
1956 	if (channel_changed)
1957 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1958 }
1959 
1960 /*
1961  * Called when a scan on a wiphy finds a beacon on
1962  * new channel
1963  */
1964 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1965 				    struct reg_beacon *reg_beacon)
1966 {
1967 	unsigned int i;
1968 	struct ieee80211_supported_band *sband;
1969 
1970 	if (!wiphy->bands[reg_beacon->chan.band])
1971 		return;
1972 
1973 	sband = wiphy->bands[reg_beacon->chan.band];
1974 
1975 	for (i = 0; i < sband->n_channels; i++)
1976 		handle_reg_beacon(wiphy, i, reg_beacon);
1977 }
1978 
1979 /*
1980  * Called upon reg changes or a new wiphy is added
1981  */
1982 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1983 {
1984 	unsigned int i;
1985 	struct ieee80211_supported_band *sband;
1986 	struct reg_beacon *reg_beacon;
1987 
1988 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1989 		if (!wiphy->bands[reg_beacon->chan.band])
1990 			continue;
1991 		sband = wiphy->bands[reg_beacon->chan.band];
1992 		for (i = 0; i < sband->n_channels; i++)
1993 			handle_reg_beacon(wiphy, i, reg_beacon);
1994 	}
1995 }
1996 
1997 /* Reap the advantages of previously found beacons */
1998 static void reg_process_beacons(struct wiphy *wiphy)
1999 {
2000 	/*
2001 	 * Means we are just firing up cfg80211, so no beacons would
2002 	 * have been processed yet.
2003 	 */
2004 	if (!last_request)
2005 		return;
2006 	wiphy_update_beacon_reg(wiphy);
2007 }
2008 
2009 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2010 {
2011 	if (!chan)
2012 		return false;
2013 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2014 		return false;
2015 	/* This would happen when regulatory rules disallow HT40 completely */
2016 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2017 		return false;
2018 	return true;
2019 }
2020 
2021 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2022 					 struct ieee80211_channel *channel)
2023 {
2024 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2025 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2026 	const struct ieee80211_regdomain *regd;
2027 	unsigned int i;
2028 	u32 flags;
2029 
2030 	if (!is_ht40_allowed(channel)) {
2031 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2032 		return;
2033 	}
2034 
2035 	/*
2036 	 * We need to ensure the extension channels exist to
2037 	 * be able to use HT40- or HT40+, this finds them (or not)
2038 	 */
2039 	for (i = 0; i < sband->n_channels; i++) {
2040 		struct ieee80211_channel *c = &sband->channels[i];
2041 
2042 		if (c->center_freq == (channel->center_freq - 20))
2043 			channel_before = c;
2044 		if (c->center_freq == (channel->center_freq + 20))
2045 			channel_after = c;
2046 	}
2047 
2048 	flags = 0;
2049 	regd = get_wiphy_regdom(wiphy);
2050 	if (regd) {
2051 		const struct ieee80211_reg_rule *reg_rule =
2052 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2053 					   regd, MHZ_TO_KHZ(20));
2054 
2055 		if (!IS_ERR(reg_rule))
2056 			flags = reg_rule->flags;
2057 	}
2058 
2059 	/*
2060 	 * Please note that this assumes target bandwidth is 20 MHz,
2061 	 * if that ever changes we also need to change the below logic
2062 	 * to include that as well.
2063 	 */
2064 	if (!is_ht40_allowed(channel_before) ||
2065 	    flags & NL80211_RRF_NO_HT40MINUS)
2066 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2067 	else
2068 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2069 
2070 	if (!is_ht40_allowed(channel_after) ||
2071 	    flags & NL80211_RRF_NO_HT40PLUS)
2072 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2073 	else
2074 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2075 }
2076 
2077 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2078 				      struct ieee80211_supported_band *sband)
2079 {
2080 	unsigned int i;
2081 
2082 	if (!sband)
2083 		return;
2084 
2085 	for (i = 0; i < sband->n_channels; i++)
2086 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2087 }
2088 
2089 static void reg_process_ht_flags(struct wiphy *wiphy)
2090 {
2091 	enum nl80211_band band;
2092 
2093 	if (!wiphy)
2094 		return;
2095 
2096 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2097 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2098 }
2099 
2100 static void reg_call_notifier(struct wiphy *wiphy,
2101 			      struct regulatory_request *request)
2102 {
2103 	if (wiphy->reg_notifier)
2104 		wiphy->reg_notifier(wiphy, request);
2105 }
2106 
2107 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2108 {
2109 	struct cfg80211_chan_def chandef;
2110 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2111 	enum nl80211_iftype iftype;
2112 
2113 	wdev_lock(wdev);
2114 	iftype = wdev->iftype;
2115 
2116 	/* make sure the interface is active */
2117 	if (!wdev->netdev || !netif_running(wdev->netdev))
2118 		goto wdev_inactive_unlock;
2119 
2120 	switch (iftype) {
2121 	case NL80211_IFTYPE_AP:
2122 	case NL80211_IFTYPE_P2P_GO:
2123 		if (!wdev->beacon_interval)
2124 			goto wdev_inactive_unlock;
2125 		chandef = wdev->chandef;
2126 		break;
2127 	case NL80211_IFTYPE_ADHOC:
2128 		if (!wdev->ssid_len)
2129 			goto wdev_inactive_unlock;
2130 		chandef = wdev->chandef;
2131 		break;
2132 	case NL80211_IFTYPE_STATION:
2133 	case NL80211_IFTYPE_P2P_CLIENT:
2134 		if (!wdev->current_bss ||
2135 		    !wdev->current_bss->pub.channel)
2136 			goto wdev_inactive_unlock;
2137 
2138 		if (!rdev->ops->get_channel ||
2139 		    rdev_get_channel(rdev, wdev, &chandef))
2140 			cfg80211_chandef_create(&chandef,
2141 						wdev->current_bss->pub.channel,
2142 						NL80211_CHAN_NO_HT);
2143 		break;
2144 	case NL80211_IFTYPE_MONITOR:
2145 	case NL80211_IFTYPE_AP_VLAN:
2146 	case NL80211_IFTYPE_P2P_DEVICE:
2147 		/* no enforcement required */
2148 		break;
2149 	default:
2150 		/* others not implemented for now */
2151 		WARN_ON(1);
2152 		break;
2153 	}
2154 
2155 	wdev_unlock(wdev);
2156 
2157 	switch (iftype) {
2158 	case NL80211_IFTYPE_AP:
2159 	case NL80211_IFTYPE_P2P_GO:
2160 	case NL80211_IFTYPE_ADHOC:
2161 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2162 	case NL80211_IFTYPE_STATION:
2163 	case NL80211_IFTYPE_P2P_CLIENT:
2164 		return cfg80211_chandef_usable(wiphy, &chandef,
2165 					       IEEE80211_CHAN_DISABLED);
2166 	default:
2167 		break;
2168 	}
2169 
2170 	return true;
2171 
2172 wdev_inactive_unlock:
2173 	wdev_unlock(wdev);
2174 	return true;
2175 }
2176 
2177 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2178 {
2179 	struct wireless_dev *wdev;
2180 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2181 
2182 	ASSERT_RTNL();
2183 
2184 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2185 		if (!reg_wdev_chan_valid(wiphy, wdev))
2186 			cfg80211_leave(rdev, wdev);
2187 }
2188 
2189 static void reg_check_chans_work(struct work_struct *work)
2190 {
2191 	struct cfg80211_registered_device *rdev;
2192 
2193 	pr_debug("Verifying active interfaces after reg change\n");
2194 	rtnl_lock();
2195 
2196 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2197 		if (!(rdev->wiphy.regulatory_flags &
2198 		      REGULATORY_IGNORE_STALE_KICKOFF))
2199 			reg_leave_invalid_chans(&rdev->wiphy);
2200 
2201 	rtnl_unlock();
2202 }
2203 
2204 static void reg_check_channels(void)
2205 {
2206 	/*
2207 	 * Give usermode a chance to do something nicer (move to another
2208 	 * channel, orderly disconnection), before forcing a disconnection.
2209 	 */
2210 	mod_delayed_work(system_power_efficient_wq,
2211 			 &reg_check_chans,
2212 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2213 }
2214 
2215 static void wiphy_update_regulatory(struct wiphy *wiphy,
2216 				    enum nl80211_reg_initiator initiator)
2217 {
2218 	enum nl80211_band band;
2219 	struct regulatory_request *lr = get_last_request();
2220 
2221 	if (ignore_reg_update(wiphy, initiator)) {
2222 		/*
2223 		 * Regulatory updates set by CORE are ignored for custom
2224 		 * regulatory cards. Let us notify the changes to the driver,
2225 		 * as some drivers used this to restore its orig_* reg domain.
2226 		 */
2227 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2228 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2229 		    !(wiphy->regulatory_flags &
2230 		      REGULATORY_WIPHY_SELF_MANAGED))
2231 			reg_call_notifier(wiphy, lr);
2232 		return;
2233 	}
2234 
2235 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2236 
2237 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2238 		handle_band(wiphy, initiator, wiphy->bands[band]);
2239 
2240 	reg_process_beacons(wiphy);
2241 	reg_process_ht_flags(wiphy);
2242 	reg_call_notifier(wiphy, lr);
2243 }
2244 
2245 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2246 {
2247 	struct cfg80211_registered_device *rdev;
2248 	struct wiphy *wiphy;
2249 
2250 	ASSERT_RTNL();
2251 
2252 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2253 		wiphy = &rdev->wiphy;
2254 		wiphy_update_regulatory(wiphy, initiator);
2255 	}
2256 
2257 	reg_check_channels();
2258 }
2259 
2260 static void handle_channel_custom(struct wiphy *wiphy,
2261 				  struct ieee80211_channel *chan,
2262 				  const struct ieee80211_regdomain *regd)
2263 {
2264 	u32 bw_flags = 0;
2265 	const struct ieee80211_reg_rule *reg_rule = NULL;
2266 	const struct ieee80211_power_rule *power_rule = NULL;
2267 	u32 bw;
2268 
2269 	for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2270 		reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2271 					      regd, bw);
2272 		if (!IS_ERR(reg_rule))
2273 			break;
2274 	}
2275 
2276 	if (IS_ERR(reg_rule)) {
2277 		pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2278 			 chan->center_freq);
2279 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2280 			chan->flags |= IEEE80211_CHAN_DISABLED;
2281 		} else {
2282 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2283 			chan->flags = chan->orig_flags;
2284 		}
2285 		return;
2286 	}
2287 
2288 	power_rule = &reg_rule->power_rule;
2289 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2290 
2291 	chan->dfs_state_entered = jiffies;
2292 	chan->dfs_state = NL80211_DFS_USABLE;
2293 
2294 	chan->beacon_found = false;
2295 
2296 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2297 		chan->flags = chan->orig_flags | bw_flags |
2298 			      map_regdom_flags(reg_rule->flags);
2299 	else
2300 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2301 
2302 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2303 	chan->max_reg_power = chan->max_power =
2304 		(int) MBM_TO_DBM(power_rule->max_eirp);
2305 
2306 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2307 		if (reg_rule->dfs_cac_ms)
2308 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2309 		else
2310 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2311 	}
2312 
2313 	chan->max_power = chan->max_reg_power;
2314 }
2315 
2316 static void handle_band_custom(struct wiphy *wiphy,
2317 			       struct ieee80211_supported_band *sband,
2318 			       const struct ieee80211_regdomain *regd)
2319 {
2320 	unsigned int i;
2321 
2322 	if (!sband)
2323 		return;
2324 
2325 	for (i = 0; i < sband->n_channels; i++)
2326 		handle_channel_custom(wiphy, &sband->channels[i], regd);
2327 }
2328 
2329 /* Used by drivers prior to wiphy registration */
2330 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2331 				   const struct ieee80211_regdomain *regd)
2332 {
2333 	enum nl80211_band band;
2334 	unsigned int bands_set = 0;
2335 
2336 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2337 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2338 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2339 
2340 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2341 		if (!wiphy->bands[band])
2342 			continue;
2343 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2344 		bands_set++;
2345 	}
2346 
2347 	/*
2348 	 * no point in calling this if it won't have any effect
2349 	 * on your device's supported bands.
2350 	 */
2351 	WARN_ON(!bands_set);
2352 }
2353 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2354 
2355 static void reg_set_request_processed(void)
2356 {
2357 	bool need_more_processing = false;
2358 	struct regulatory_request *lr = get_last_request();
2359 
2360 	lr->processed = true;
2361 
2362 	spin_lock(&reg_requests_lock);
2363 	if (!list_empty(&reg_requests_list))
2364 		need_more_processing = true;
2365 	spin_unlock(&reg_requests_lock);
2366 
2367 	cancel_crda_timeout();
2368 
2369 	if (need_more_processing)
2370 		schedule_work(&reg_work);
2371 }
2372 
2373 /**
2374  * reg_process_hint_core - process core regulatory requests
2375  * @pending_request: a pending core regulatory request
2376  *
2377  * The wireless subsystem can use this function to process
2378  * a regulatory request issued by the regulatory core.
2379  */
2380 static enum reg_request_treatment
2381 reg_process_hint_core(struct regulatory_request *core_request)
2382 {
2383 	if (reg_query_database(core_request)) {
2384 		core_request->intersect = false;
2385 		core_request->processed = false;
2386 		reg_update_last_request(core_request);
2387 		return REG_REQ_OK;
2388 	}
2389 
2390 	return REG_REQ_IGNORE;
2391 }
2392 
2393 static enum reg_request_treatment
2394 __reg_process_hint_user(struct regulatory_request *user_request)
2395 {
2396 	struct regulatory_request *lr = get_last_request();
2397 
2398 	if (reg_request_cell_base(user_request))
2399 		return reg_ignore_cell_hint(user_request);
2400 
2401 	if (reg_request_cell_base(lr))
2402 		return REG_REQ_IGNORE;
2403 
2404 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2405 		return REG_REQ_INTERSECT;
2406 	/*
2407 	 * If the user knows better the user should set the regdom
2408 	 * to their country before the IE is picked up
2409 	 */
2410 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2411 	    lr->intersect)
2412 		return REG_REQ_IGNORE;
2413 	/*
2414 	 * Process user requests only after previous user/driver/core
2415 	 * requests have been processed
2416 	 */
2417 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2418 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2419 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2420 	    regdom_changes(lr->alpha2))
2421 		return REG_REQ_IGNORE;
2422 
2423 	if (!regdom_changes(user_request->alpha2))
2424 		return REG_REQ_ALREADY_SET;
2425 
2426 	return REG_REQ_OK;
2427 }
2428 
2429 /**
2430  * reg_process_hint_user - process user regulatory requests
2431  * @user_request: a pending user regulatory request
2432  *
2433  * The wireless subsystem can use this function to process
2434  * a regulatory request initiated by userspace.
2435  */
2436 static enum reg_request_treatment
2437 reg_process_hint_user(struct regulatory_request *user_request)
2438 {
2439 	enum reg_request_treatment treatment;
2440 
2441 	treatment = __reg_process_hint_user(user_request);
2442 	if (treatment == REG_REQ_IGNORE ||
2443 	    treatment == REG_REQ_ALREADY_SET)
2444 		return REG_REQ_IGNORE;
2445 
2446 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2447 	user_request->processed = false;
2448 
2449 	if (reg_query_database(user_request)) {
2450 		reg_update_last_request(user_request);
2451 		user_alpha2[0] = user_request->alpha2[0];
2452 		user_alpha2[1] = user_request->alpha2[1];
2453 		return REG_REQ_OK;
2454 	}
2455 
2456 	return REG_REQ_IGNORE;
2457 }
2458 
2459 static enum reg_request_treatment
2460 __reg_process_hint_driver(struct regulatory_request *driver_request)
2461 {
2462 	struct regulatory_request *lr = get_last_request();
2463 
2464 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2465 		if (regdom_changes(driver_request->alpha2))
2466 			return REG_REQ_OK;
2467 		return REG_REQ_ALREADY_SET;
2468 	}
2469 
2470 	/*
2471 	 * This would happen if you unplug and plug your card
2472 	 * back in or if you add a new device for which the previously
2473 	 * loaded card also agrees on the regulatory domain.
2474 	 */
2475 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2476 	    !regdom_changes(driver_request->alpha2))
2477 		return REG_REQ_ALREADY_SET;
2478 
2479 	return REG_REQ_INTERSECT;
2480 }
2481 
2482 /**
2483  * reg_process_hint_driver - process driver regulatory requests
2484  * @driver_request: a pending driver regulatory request
2485  *
2486  * The wireless subsystem can use this function to process
2487  * a regulatory request issued by an 802.11 driver.
2488  *
2489  * Returns one of the different reg request treatment values.
2490  */
2491 static enum reg_request_treatment
2492 reg_process_hint_driver(struct wiphy *wiphy,
2493 			struct regulatory_request *driver_request)
2494 {
2495 	const struct ieee80211_regdomain *regd, *tmp;
2496 	enum reg_request_treatment treatment;
2497 
2498 	treatment = __reg_process_hint_driver(driver_request);
2499 
2500 	switch (treatment) {
2501 	case REG_REQ_OK:
2502 		break;
2503 	case REG_REQ_IGNORE:
2504 		return REG_REQ_IGNORE;
2505 	case REG_REQ_INTERSECT:
2506 	case REG_REQ_ALREADY_SET:
2507 		regd = reg_copy_regd(get_cfg80211_regdom());
2508 		if (IS_ERR(regd))
2509 			return REG_REQ_IGNORE;
2510 
2511 		tmp = get_wiphy_regdom(wiphy);
2512 		rcu_assign_pointer(wiphy->regd, regd);
2513 		rcu_free_regdom(tmp);
2514 	}
2515 
2516 
2517 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2518 	driver_request->processed = false;
2519 
2520 	/*
2521 	 * Since CRDA will not be called in this case as we already
2522 	 * have applied the requested regulatory domain before we just
2523 	 * inform userspace we have processed the request
2524 	 */
2525 	if (treatment == REG_REQ_ALREADY_SET) {
2526 		nl80211_send_reg_change_event(driver_request);
2527 		reg_update_last_request(driver_request);
2528 		reg_set_request_processed();
2529 		return REG_REQ_ALREADY_SET;
2530 	}
2531 
2532 	if (reg_query_database(driver_request)) {
2533 		reg_update_last_request(driver_request);
2534 		return REG_REQ_OK;
2535 	}
2536 
2537 	return REG_REQ_IGNORE;
2538 }
2539 
2540 static enum reg_request_treatment
2541 __reg_process_hint_country_ie(struct wiphy *wiphy,
2542 			      struct regulatory_request *country_ie_request)
2543 {
2544 	struct wiphy *last_wiphy = NULL;
2545 	struct regulatory_request *lr = get_last_request();
2546 
2547 	if (reg_request_cell_base(lr)) {
2548 		/* Trust a Cell base station over the AP's country IE */
2549 		if (regdom_changes(country_ie_request->alpha2))
2550 			return REG_REQ_IGNORE;
2551 		return REG_REQ_ALREADY_SET;
2552 	} else {
2553 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2554 			return REG_REQ_IGNORE;
2555 	}
2556 
2557 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2558 		return -EINVAL;
2559 
2560 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2561 		return REG_REQ_OK;
2562 
2563 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2564 
2565 	if (last_wiphy != wiphy) {
2566 		/*
2567 		 * Two cards with two APs claiming different
2568 		 * Country IE alpha2s. We could
2569 		 * intersect them, but that seems unlikely
2570 		 * to be correct. Reject second one for now.
2571 		 */
2572 		if (regdom_changes(country_ie_request->alpha2))
2573 			return REG_REQ_IGNORE;
2574 		return REG_REQ_ALREADY_SET;
2575 	}
2576 
2577 	if (regdom_changes(country_ie_request->alpha2))
2578 		return REG_REQ_OK;
2579 	return REG_REQ_ALREADY_SET;
2580 }
2581 
2582 /**
2583  * reg_process_hint_country_ie - process regulatory requests from country IEs
2584  * @country_ie_request: a regulatory request from a country IE
2585  *
2586  * The wireless subsystem can use this function to process
2587  * a regulatory request issued by a country Information Element.
2588  *
2589  * Returns one of the different reg request treatment values.
2590  */
2591 static enum reg_request_treatment
2592 reg_process_hint_country_ie(struct wiphy *wiphy,
2593 			    struct regulatory_request *country_ie_request)
2594 {
2595 	enum reg_request_treatment treatment;
2596 
2597 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2598 
2599 	switch (treatment) {
2600 	case REG_REQ_OK:
2601 		break;
2602 	case REG_REQ_IGNORE:
2603 		return REG_REQ_IGNORE;
2604 	case REG_REQ_ALREADY_SET:
2605 		reg_free_request(country_ie_request);
2606 		return REG_REQ_ALREADY_SET;
2607 	case REG_REQ_INTERSECT:
2608 		/*
2609 		 * This doesn't happen yet, not sure we
2610 		 * ever want to support it for this case.
2611 		 */
2612 		WARN_ONCE(1, "Unexpected intersection for country elements");
2613 		return REG_REQ_IGNORE;
2614 	}
2615 
2616 	country_ie_request->intersect = false;
2617 	country_ie_request->processed = false;
2618 
2619 	if (reg_query_database(country_ie_request)) {
2620 		reg_update_last_request(country_ie_request);
2621 		return REG_REQ_OK;
2622 	}
2623 
2624 	return REG_REQ_IGNORE;
2625 }
2626 
2627 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2628 {
2629 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2630 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2631 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2632 	bool dfs_domain_same;
2633 
2634 	rcu_read_lock();
2635 
2636 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2637 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2638 	if (!wiphy1_regd)
2639 		wiphy1_regd = cfg80211_regd;
2640 
2641 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2642 	if (!wiphy2_regd)
2643 		wiphy2_regd = cfg80211_regd;
2644 
2645 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2646 
2647 	rcu_read_unlock();
2648 
2649 	return dfs_domain_same;
2650 }
2651 
2652 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2653 				    struct ieee80211_channel *src_chan)
2654 {
2655 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2656 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2657 		return;
2658 
2659 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2660 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2661 		return;
2662 
2663 	if (src_chan->center_freq == dst_chan->center_freq &&
2664 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2665 		dst_chan->dfs_state = src_chan->dfs_state;
2666 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2667 	}
2668 }
2669 
2670 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2671 				       struct wiphy *src_wiphy)
2672 {
2673 	struct ieee80211_supported_band *src_sband, *dst_sband;
2674 	struct ieee80211_channel *src_chan, *dst_chan;
2675 	int i, j, band;
2676 
2677 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2678 		return;
2679 
2680 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2681 		dst_sband = dst_wiphy->bands[band];
2682 		src_sband = src_wiphy->bands[band];
2683 		if (!dst_sband || !src_sband)
2684 			continue;
2685 
2686 		for (i = 0; i < dst_sband->n_channels; i++) {
2687 			dst_chan = &dst_sband->channels[i];
2688 			for (j = 0; j < src_sband->n_channels; j++) {
2689 				src_chan = &src_sband->channels[j];
2690 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2691 			}
2692 		}
2693 	}
2694 }
2695 
2696 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2697 {
2698 	struct cfg80211_registered_device *rdev;
2699 
2700 	ASSERT_RTNL();
2701 
2702 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2703 		if (wiphy == &rdev->wiphy)
2704 			continue;
2705 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2706 	}
2707 }
2708 
2709 /* This processes *all* regulatory hints */
2710 static void reg_process_hint(struct regulatory_request *reg_request)
2711 {
2712 	struct wiphy *wiphy = NULL;
2713 	enum reg_request_treatment treatment;
2714 	enum nl80211_reg_initiator initiator = reg_request->initiator;
2715 
2716 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2717 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2718 
2719 	switch (initiator) {
2720 	case NL80211_REGDOM_SET_BY_CORE:
2721 		treatment = reg_process_hint_core(reg_request);
2722 		break;
2723 	case NL80211_REGDOM_SET_BY_USER:
2724 		treatment = reg_process_hint_user(reg_request);
2725 		break;
2726 	case NL80211_REGDOM_SET_BY_DRIVER:
2727 		if (!wiphy)
2728 			goto out_free;
2729 		treatment = reg_process_hint_driver(wiphy, reg_request);
2730 		break;
2731 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2732 		if (!wiphy)
2733 			goto out_free;
2734 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2735 		break;
2736 	default:
2737 		WARN(1, "invalid initiator %d\n", initiator);
2738 		goto out_free;
2739 	}
2740 
2741 	if (treatment == REG_REQ_IGNORE)
2742 		goto out_free;
2743 
2744 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2745 	     "unexpected treatment value %d\n", treatment);
2746 
2747 	/* This is required so that the orig_* parameters are saved.
2748 	 * NOTE: treatment must be set for any case that reaches here!
2749 	 */
2750 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2751 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2752 		wiphy_update_regulatory(wiphy, initiator);
2753 		wiphy_all_share_dfs_chan_state(wiphy);
2754 		reg_check_channels();
2755 	}
2756 
2757 	return;
2758 
2759 out_free:
2760 	reg_free_request(reg_request);
2761 }
2762 
2763 static void notify_self_managed_wiphys(struct regulatory_request *request)
2764 {
2765 	struct cfg80211_registered_device *rdev;
2766 	struct wiphy *wiphy;
2767 
2768 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2769 		wiphy = &rdev->wiphy;
2770 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2771 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
2772 			reg_call_notifier(wiphy, request);
2773 	}
2774 }
2775 
2776 /*
2777  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2778  * Regulatory hints come on a first come first serve basis and we
2779  * must process each one atomically.
2780  */
2781 static void reg_process_pending_hints(void)
2782 {
2783 	struct regulatory_request *reg_request, *lr;
2784 
2785 	lr = get_last_request();
2786 
2787 	/* When last_request->processed becomes true this will be rescheduled */
2788 	if (lr && !lr->processed) {
2789 		reg_process_hint(lr);
2790 		return;
2791 	}
2792 
2793 	spin_lock(&reg_requests_lock);
2794 
2795 	if (list_empty(&reg_requests_list)) {
2796 		spin_unlock(&reg_requests_lock);
2797 		return;
2798 	}
2799 
2800 	reg_request = list_first_entry(&reg_requests_list,
2801 				       struct regulatory_request,
2802 				       list);
2803 	list_del_init(&reg_request->list);
2804 
2805 	spin_unlock(&reg_requests_lock);
2806 
2807 	notify_self_managed_wiphys(reg_request);
2808 
2809 	reg_process_hint(reg_request);
2810 
2811 	lr = get_last_request();
2812 
2813 	spin_lock(&reg_requests_lock);
2814 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2815 		schedule_work(&reg_work);
2816 	spin_unlock(&reg_requests_lock);
2817 }
2818 
2819 /* Processes beacon hints -- this has nothing to do with country IEs */
2820 static void reg_process_pending_beacon_hints(void)
2821 {
2822 	struct cfg80211_registered_device *rdev;
2823 	struct reg_beacon *pending_beacon, *tmp;
2824 
2825 	/* This goes through the _pending_ beacon list */
2826 	spin_lock_bh(&reg_pending_beacons_lock);
2827 
2828 	list_for_each_entry_safe(pending_beacon, tmp,
2829 				 &reg_pending_beacons, list) {
2830 		list_del_init(&pending_beacon->list);
2831 
2832 		/* Applies the beacon hint to current wiphys */
2833 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2834 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2835 
2836 		/* Remembers the beacon hint for new wiphys or reg changes */
2837 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2838 	}
2839 
2840 	spin_unlock_bh(&reg_pending_beacons_lock);
2841 }
2842 
2843 static void reg_process_self_managed_hints(void)
2844 {
2845 	struct cfg80211_registered_device *rdev;
2846 	struct wiphy *wiphy;
2847 	const struct ieee80211_regdomain *tmp;
2848 	const struct ieee80211_regdomain *regd;
2849 	enum nl80211_band band;
2850 	struct regulatory_request request = {};
2851 
2852 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2853 		wiphy = &rdev->wiphy;
2854 
2855 		spin_lock(&reg_requests_lock);
2856 		regd = rdev->requested_regd;
2857 		rdev->requested_regd = NULL;
2858 		spin_unlock(&reg_requests_lock);
2859 
2860 		if (regd == NULL)
2861 			continue;
2862 
2863 		tmp = get_wiphy_regdom(wiphy);
2864 		rcu_assign_pointer(wiphy->regd, regd);
2865 		rcu_free_regdom(tmp);
2866 
2867 		for (band = 0; band < NUM_NL80211_BANDS; band++)
2868 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2869 
2870 		reg_process_ht_flags(wiphy);
2871 
2872 		request.wiphy_idx = get_wiphy_idx(wiphy);
2873 		request.alpha2[0] = regd->alpha2[0];
2874 		request.alpha2[1] = regd->alpha2[1];
2875 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2876 
2877 		nl80211_send_wiphy_reg_change_event(&request);
2878 	}
2879 
2880 	reg_check_channels();
2881 }
2882 
2883 static void reg_todo(struct work_struct *work)
2884 {
2885 	rtnl_lock();
2886 	reg_process_pending_hints();
2887 	reg_process_pending_beacon_hints();
2888 	reg_process_self_managed_hints();
2889 	rtnl_unlock();
2890 }
2891 
2892 static void queue_regulatory_request(struct regulatory_request *request)
2893 {
2894 	request->alpha2[0] = toupper(request->alpha2[0]);
2895 	request->alpha2[1] = toupper(request->alpha2[1]);
2896 
2897 	spin_lock(&reg_requests_lock);
2898 	list_add_tail(&request->list, &reg_requests_list);
2899 	spin_unlock(&reg_requests_lock);
2900 
2901 	schedule_work(&reg_work);
2902 }
2903 
2904 /*
2905  * Core regulatory hint -- happens during cfg80211_init()
2906  * and when we restore regulatory settings.
2907  */
2908 static int regulatory_hint_core(const char *alpha2)
2909 {
2910 	struct regulatory_request *request;
2911 
2912 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2913 	if (!request)
2914 		return -ENOMEM;
2915 
2916 	request->alpha2[0] = alpha2[0];
2917 	request->alpha2[1] = alpha2[1];
2918 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2919 	request->wiphy_idx = WIPHY_IDX_INVALID;
2920 
2921 	queue_regulatory_request(request);
2922 
2923 	return 0;
2924 }
2925 
2926 /* User hints */
2927 int regulatory_hint_user(const char *alpha2,
2928 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2929 {
2930 	struct regulatory_request *request;
2931 
2932 	if (WARN_ON(!alpha2))
2933 		return -EINVAL;
2934 
2935 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2936 	if (!request)
2937 		return -ENOMEM;
2938 
2939 	request->wiphy_idx = WIPHY_IDX_INVALID;
2940 	request->alpha2[0] = alpha2[0];
2941 	request->alpha2[1] = alpha2[1];
2942 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2943 	request->user_reg_hint_type = user_reg_hint_type;
2944 
2945 	/* Allow calling CRDA again */
2946 	reset_crda_timeouts();
2947 
2948 	queue_regulatory_request(request);
2949 
2950 	return 0;
2951 }
2952 
2953 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2954 {
2955 	spin_lock(&reg_indoor_lock);
2956 
2957 	/* It is possible that more than one user space process is trying to
2958 	 * configure the indoor setting. To handle such cases, clear the indoor
2959 	 * setting in case that some process does not think that the device
2960 	 * is operating in an indoor environment. In addition, if a user space
2961 	 * process indicates that it is controlling the indoor setting, save its
2962 	 * portid, i.e., make it the owner.
2963 	 */
2964 	reg_is_indoor = is_indoor;
2965 	if (reg_is_indoor) {
2966 		if (!reg_is_indoor_portid)
2967 			reg_is_indoor_portid = portid;
2968 	} else {
2969 		reg_is_indoor_portid = 0;
2970 	}
2971 
2972 	spin_unlock(&reg_indoor_lock);
2973 
2974 	if (!is_indoor)
2975 		reg_check_channels();
2976 
2977 	return 0;
2978 }
2979 
2980 void regulatory_netlink_notify(u32 portid)
2981 {
2982 	spin_lock(&reg_indoor_lock);
2983 
2984 	if (reg_is_indoor_portid != portid) {
2985 		spin_unlock(&reg_indoor_lock);
2986 		return;
2987 	}
2988 
2989 	reg_is_indoor = false;
2990 	reg_is_indoor_portid = 0;
2991 
2992 	spin_unlock(&reg_indoor_lock);
2993 
2994 	reg_check_channels();
2995 }
2996 
2997 /* Driver hints */
2998 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2999 {
3000 	struct regulatory_request *request;
3001 
3002 	if (WARN_ON(!alpha2 || !wiphy))
3003 		return -EINVAL;
3004 
3005 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3006 
3007 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3008 	if (!request)
3009 		return -ENOMEM;
3010 
3011 	request->wiphy_idx = get_wiphy_idx(wiphy);
3012 
3013 	request->alpha2[0] = alpha2[0];
3014 	request->alpha2[1] = alpha2[1];
3015 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3016 
3017 	/* Allow calling CRDA again */
3018 	reset_crda_timeouts();
3019 
3020 	queue_regulatory_request(request);
3021 
3022 	return 0;
3023 }
3024 EXPORT_SYMBOL(regulatory_hint);
3025 
3026 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3027 				const u8 *country_ie, u8 country_ie_len)
3028 {
3029 	char alpha2[2];
3030 	enum environment_cap env = ENVIRON_ANY;
3031 	struct regulatory_request *request = NULL, *lr;
3032 
3033 	/* IE len must be evenly divisible by 2 */
3034 	if (country_ie_len & 0x01)
3035 		return;
3036 
3037 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3038 		return;
3039 
3040 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3041 	if (!request)
3042 		return;
3043 
3044 	alpha2[0] = country_ie[0];
3045 	alpha2[1] = country_ie[1];
3046 
3047 	if (country_ie[2] == 'I')
3048 		env = ENVIRON_INDOOR;
3049 	else if (country_ie[2] == 'O')
3050 		env = ENVIRON_OUTDOOR;
3051 
3052 	rcu_read_lock();
3053 	lr = get_last_request();
3054 
3055 	if (unlikely(!lr))
3056 		goto out;
3057 
3058 	/*
3059 	 * We will run this only upon a successful connection on cfg80211.
3060 	 * We leave conflict resolution to the workqueue, where can hold
3061 	 * the RTNL.
3062 	 */
3063 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3064 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3065 		goto out;
3066 
3067 	request->wiphy_idx = get_wiphy_idx(wiphy);
3068 	request->alpha2[0] = alpha2[0];
3069 	request->alpha2[1] = alpha2[1];
3070 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3071 	request->country_ie_env = env;
3072 
3073 	/* Allow calling CRDA again */
3074 	reset_crda_timeouts();
3075 
3076 	queue_regulatory_request(request);
3077 	request = NULL;
3078 out:
3079 	kfree(request);
3080 	rcu_read_unlock();
3081 }
3082 
3083 static void restore_alpha2(char *alpha2, bool reset_user)
3084 {
3085 	/* indicates there is no alpha2 to consider for restoration */
3086 	alpha2[0] = '9';
3087 	alpha2[1] = '7';
3088 
3089 	/* The user setting has precedence over the module parameter */
3090 	if (is_user_regdom_saved()) {
3091 		/* Unless we're asked to ignore it and reset it */
3092 		if (reset_user) {
3093 			pr_debug("Restoring regulatory settings including user preference\n");
3094 			user_alpha2[0] = '9';
3095 			user_alpha2[1] = '7';
3096 
3097 			/*
3098 			 * If we're ignoring user settings, we still need to
3099 			 * check the module parameter to ensure we put things
3100 			 * back as they were for a full restore.
3101 			 */
3102 			if (!is_world_regdom(ieee80211_regdom)) {
3103 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3104 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3105 				alpha2[0] = ieee80211_regdom[0];
3106 				alpha2[1] = ieee80211_regdom[1];
3107 			}
3108 		} else {
3109 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3110 				 user_alpha2[0], user_alpha2[1]);
3111 			alpha2[0] = user_alpha2[0];
3112 			alpha2[1] = user_alpha2[1];
3113 		}
3114 	} else if (!is_world_regdom(ieee80211_regdom)) {
3115 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3116 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3117 		alpha2[0] = ieee80211_regdom[0];
3118 		alpha2[1] = ieee80211_regdom[1];
3119 	} else
3120 		pr_debug("Restoring regulatory settings\n");
3121 }
3122 
3123 static void restore_custom_reg_settings(struct wiphy *wiphy)
3124 {
3125 	struct ieee80211_supported_band *sband;
3126 	enum nl80211_band band;
3127 	struct ieee80211_channel *chan;
3128 	int i;
3129 
3130 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3131 		sband = wiphy->bands[band];
3132 		if (!sband)
3133 			continue;
3134 		for (i = 0; i < sband->n_channels; i++) {
3135 			chan = &sband->channels[i];
3136 			chan->flags = chan->orig_flags;
3137 			chan->max_antenna_gain = chan->orig_mag;
3138 			chan->max_power = chan->orig_mpwr;
3139 			chan->beacon_found = false;
3140 		}
3141 	}
3142 }
3143 
3144 /*
3145  * Restoring regulatory settings involves ingoring any
3146  * possibly stale country IE information and user regulatory
3147  * settings if so desired, this includes any beacon hints
3148  * learned as we could have traveled outside to another country
3149  * after disconnection. To restore regulatory settings we do
3150  * exactly what we did at bootup:
3151  *
3152  *   - send a core regulatory hint
3153  *   - send a user regulatory hint if applicable
3154  *
3155  * Device drivers that send a regulatory hint for a specific country
3156  * keep their own regulatory domain on wiphy->regd so that does does
3157  * not need to be remembered.
3158  */
3159 static void restore_regulatory_settings(bool reset_user, bool cached)
3160 {
3161 	char alpha2[2];
3162 	char world_alpha2[2];
3163 	struct reg_beacon *reg_beacon, *btmp;
3164 	LIST_HEAD(tmp_reg_req_list);
3165 	struct cfg80211_registered_device *rdev;
3166 
3167 	ASSERT_RTNL();
3168 
3169 	/*
3170 	 * Clear the indoor setting in case that it is not controlled by user
3171 	 * space, as otherwise there is no guarantee that the device is still
3172 	 * operating in an indoor environment.
3173 	 */
3174 	spin_lock(&reg_indoor_lock);
3175 	if (reg_is_indoor && !reg_is_indoor_portid) {
3176 		reg_is_indoor = false;
3177 		reg_check_channels();
3178 	}
3179 	spin_unlock(&reg_indoor_lock);
3180 
3181 	reset_regdomains(true, &world_regdom);
3182 	restore_alpha2(alpha2, reset_user);
3183 
3184 	/*
3185 	 * If there's any pending requests we simply
3186 	 * stash them to a temporary pending queue and
3187 	 * add then after we've restored regulatory
3188 	 * settings.
3189 	 */
3190 	spin_lock(&reg_requests_lock);
3191 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3192 	spin_unlock(&reg_requests_lock);
3193 
3194 	/* Clear beacon hints */
3195 	spin_lock_bh(&reg_pending_beacons_lock);
3196 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3197 		list_del(&reg_beacon->list);
3198 		kfree(reg_beacon);
3199 	}
3200 	spin_unlock_bh(&reg_pending_beacons_lock);
3201 
3202 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3203 		list_del(&reg_beacon->list);
3204 		kfree(reg_beacon);
3205 	}
3206 
3207 	/* First restore to the basic regulatory settings */
3208 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3209 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3210 
3211 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3212 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3213 			continue;
3214 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3215 			restore_custom_reg_settings(&rdev->wiphy);
3216 	}
3217 
3218 	if (cached && (!is_an_alpha2(alpha2) ||
3219 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3220 		reset_regdomains(false, cfg80211_world_regdom);
3221 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3222 		print_regdomain(get_cfg80211_regdom());
3223 		nl80211_send_reg_change_event(&core_request_world);
3224 		reg_set_request_processed();
3225 
3226 		if (is_an_alpha2(alpha2) &&
3227 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3228 			struct regulatory_request *ureq;
3229 
3230 			spin_lock(&reg_requests_lock);
3231 			ureq = list_last_entry(&reg_requests_list,
3232 					       struct regulatory_request,
3233 					       list);
3234 			list_del(&ureq->list);
3235 			spin_unlock(&reg_requests_lock);
3236 
3237 			notify_self_managed_wiphys(ureq);
3238 			reg_update_last_request(ureq);
3239 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3240 				   REGD_SOURCE_CACHED);
3241 		}
3242 	} else {
3243 		regulatory_hint_core(world_alpha2);
3244 
3245 		/*
3246 		 * This restores the ieee80211_regdom module parameter
3247 		 * preference or the last user requested regulatory
3248 		 * settings, user regulatory settings takes precedence.
3249 		 */
3250 		if (is_an_alpha2(alpha2))
3251 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3252 	}
3253 
3254 	spin_lock(&reg_requests_lock);
3255 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3256 	spin_unlock(&reg_requests_lock);
3257 
3258 	pr_debug("Kicking the queue\n");
3259 
3260 	schedule_work(&reg_work);
3261 }
3262 
3263 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3264 {
3265 	struct cfg80211_registered_device *rdev;
3266 	struct wireless_dev *wdev;
3267 
3268 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3269 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3270 			wdev_lock(wdev);
3271 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3272 				wdev_unlock(wdev);
3273 				return false;
3274 			}
3275 			wdev_unlock(wdev);
3276 		}
3277 	}
3278 
3279 	return true;
3280 }
3281 
3282 void regulatory_hint_disconnect(void)
3283 {
3284 	/* Restore of regulatory settings is not required when wiphy(s)
3285 	 * ignore IE from connected access point but clearance of beacon hints
3286 	 * is required when wiphy(s) supports beacon hints.
3287 	 */
3288 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3289 		struct reg_beacon *reg_beacon, *btmp;
3290 
3291 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3292 			return;
3293 
3294 		spin_lock_bh(&reg_pending_beacons_lock);
3295 		list_for_each_entry_safe(reg_beacon, btmp,
3296 					 &reg_pending_beacons, list) {
3297 			list_del(&reg_beacon->list);
3298 			kfree(reg_beacon);
3299 		}
3300 		spin_unlock_bh(&reg_pending_beacons_lock);
3301 
3302 		list_for_each_entry_safe(reg_beacon, btmp,
3303 					 &reg_beacon_list, list) {
3304 			list_del(&reg_beacon->list);
3305 			kfree(reg_beacon);
3306 		}
3307 
3308 		return;
3309 	}
3310 
3311 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3312 	restore_regulatory_settings(false, true);
3313 }
3314 
3315 static bool freq_is_chan_12_13_14(u32 freq)
3316 {
3317 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3318 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3319 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3320 		return true;
3321 	return false;
3322 }
3323 
3324 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3325 {
3326 	struct reg_beacon *pending_beacon;
3327 
3328 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3329 		if (beacon_chan->center_freq ==
3330 		    pending_beacon->chan.center_freq)
3331 			return true;
3332 	return false;
3333 }
3334 
3335 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3336 				 struct ieee80211_channel *beacon_chan,
3337 				 gfp_t gfp)
3338 {
3339 	struct reg_beacon *reg_beacon;
3340 	bool processing;
3341 
3342 	if (beacon_chan->beacon_found ||
3343 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3344 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3345 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3346 		return 0;
3347 
3348 	spin_lock_bh(&reg_pending_beacons_lock);
3349 	processing = pending_reg_beacon(beacon_chan);
3350 	spin_unlock_bh(&reg_pending_beacons_lock);
3351 
3352 	if (processing)
3353 		return 0;
3354 
3355 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3356 	if (!reg_beacon)
3357 		return -ENOMEM;
3358 
3359 	pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3360 		 beacon_chan->center_freq,
3361 		 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3362 		 wiphy_name(wiphy));
3363 
3364 	memcpy(&reg_beacon->chan, beacon_chan,
3365 	       sizeof(struct ieee80211_channel));
3366 
3367 	/*
3368 	 * Since we can be called from BH or and non-BH context
3369 	 * we must use spin_lock_bh()
3370 	 */
3371 	spin_lock_bh(&reg_pending_beacons_lock);
3372 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3373 	spin_unlock_bh(&reg_pending_beacons_lock);
3374 
3375 	schedule_work(&reg_work);
3376 
3377 	return 0;
3378 }
3379 
3380 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3381 {
3382 	unsigned int i;
3383 	const struct ieee80211_reg_rule *reg_rule = NULL;
3384 	const struct ieee80211_freq_range *freq_range = NULL;
3385 	const struct ieee80211_power_rule *power_rule = NULL;
3386 	char bw[32], cac_time[32];
3387 
3388 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3389 
3390 	for (i = 0; i < rd->n_reg_rules; i++) {
3391 		reg_rule = &rd->reg_rules[i];
3392 		freq_range = &reg_rule->freq_range;
3393 		power_rule = &reg_rule->power_rule;
3394 
3395 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3396 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3397 				 freq_range->max_bandwidth_khz,
3398 				 reg_get_max_bandwidth(rd, reg_rule));
3399 		else
3400 			snprintf(bw, sizeof(bw), "%d KHz",
3401 				 freq_range->max_bandwidth_khz);
3402 
3403 		if (reg_rule->flags & NL80211_RRF_DFS)
3404 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3405 				  reg_rule->dfs_cac_ms/1000);
3406 		else
3407 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3408 
3409 
3410 		/*
3411 		 * There may not be documentation for max antenna gain
3412 		 * in certain regions
3413 		 */
3414 		if (power_rule->max_antenna_gain)
3415 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3416 				freq_range->start_freq_khz,
3417 				freq_range->end_freq_khz,
3418 				bw,
3419 				power_rule->max_antenna_gain,
3420 				power_rule->max_eirp,
3421 				cac_time);
3422 		else
3423 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3424 				freq_range->start_freq_khz,
3425 				freq_range->end_freq_khz,
3426 				bw,
3427 				power_rule->max_eirp,
3428 				cac_time);
3429 	}
3430 }
3431 
3432 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3433 {
3434 	switch (dfs_region) {
3435 	case NL80211_DFS_UNSET:
3436 	case NL80211_DFS_FCC:
3437 	case NL80211_DFS_ETSI:
3438 	case NL80211_DFS_JP:
3439 		return true;
3440 	default:
3441 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3442 		return false;
3443 	}
3444 }
3445 
3446 static void print_regdomain(const struct ieee80211_regdomain *rd)
3447 {
3448 	struct regulatory_request *lr = get_last_request();
3449 
3450 	if (is_intersected_alpha2(rd->alpha2)) {
3451 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3452 			struct cfg80211_registered_device *rdev;
3453 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3454 			if (rdev) {
3455 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3456 					rdev->country_ie_alpha2[0],
3457 					rdev->country_ie_alpha2[1]);
3458 			} else
3459 				pr_debug("Current regulatory domain intersected:\n");
3460 		} else
3461 			pr_debug("Current regulatory domain intersected:\n");
3462 	} else if (is_world_regdom(rd->alpha2)) {
3463 		pr_debug("World regulatory domain updated:\n");
3464 	} else {
3465 		if (is_unknown_alpha2(rd->alpha2))
3466 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3467 		else {
3468 			if (reg_request_cell_base(lr))
3469 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3470 					rd->alpha2[0], rd->alpha2[1]);
3471 			else
3472 				pr_debug("Regulatory domain changed to country: %c%c\n",
3473 					rd->alpha2[0], rd->alpha2[1]);
3474 		}
3475 	}
3476 
3477 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3478 	print_rd_rules(rd);
3479 }
3480 
3481 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3482 {
3483 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3484 	print_rd_rules(rd);
3485 }
3486 
3487 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3488 {
3489 	if (!is_world_regdom(rd->alpha2))
3490 		return -EINVAL;
3491 	update_world_regdomain(rd);
3492 	return 0;
3493 }
3494 
3495 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3496 			   struct regulatory_request *user_request)
3497 {
3498 	const struct ieee80211_regdomain *intersected_rd = NULL;
3499 
3500 	if (!regdom_changes(rd->alpha2))
3501 		return -EALREADY;
3502 
3503 	if (!is_valid_rd(rd)) {
3504 		pr_err("Invalid regulatory domain detected: %c%c\n",
3505 		       rd->alpha2[0], rd->alpha2[1]);
3506 		print_regdomain_info(rd);
3507 		return -EINVAL;
3508 	}
3509 
3510 	if (!user_request->intersect) {
3511 		reset_regdomains(false, rd);
3512 		return 0;
3513 	}
3514 
3515 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3516 	if (!intersected_rd)
3517 		return -EINVAL;
3518 
3519 	kfree(rd);
3520 	rd = NULL;
3521 	reset_regdomains(false, intersected_rd);
3522 
3523 	return 0;
3524 }
3525 
3526 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3527 			     struct regulatory_request *driver_request)
3528 {
3529 	const struct ieee80211_regdomain *regd;
3530 	const struct ieee80211_regdomain *intersected_rd = NULL;
3531 	const struct ieee80211_regdomain *tmp;
3532 	struct wiphy *request_wiphy;
3533 
3534 	if (is_world_regdom(rd->alpha2))
3535 		return -EINVAL;
3536 
3537 	if (!regdom_changes(rd->alpha2))
3538 		return -EALREADY;
3539 
3540 	if (!is_valid_rd(rd)) {
3541 		pr_err("Invalid regulatory domain detected: %c%c\n",
3542 		       rd->alpha2[0], rd->alpha2[1]);
3543 		print_regdomain_info(rd);
3544 		return -EINVAL;
3545 	}
3546 
3547 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3548 	if (!request_wiphy)
3549 		return -ENODEV;
3550 
3551 	if (!driver_request->intersect) {
3552 		if (request_wiphy->regd)
3553 			return -EALREADY;
3554 
3555 		regd = reg_copy_regd(rd);
3556 		if (IS_ERR(regd))
3557 			return PTR_ERR(regd);
3558 
3559 		rcu_assign_pointer(request_wiphy->regd, regd);
3560 		reset_regdomains(false, rd);
3561 		return 0;
3562 	}
3563 
3564 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3565 	if (!intersected_rd)
3566 		return -EINVAL;
3567 
3568 	/*
3569 	 * We can trash what CRDA provided now.
3570 	 * However if a driver requested this specific regulatory
3571 	 * domain we keep it for its private use
3572 	 */
3573 	tmp = get_wiphy_regdom(request_wiphy);
3574 	rcu_assign_pointer(request_wiphy->regd, rd);
3575 	rcu_free_regdom(tmp);
3576 
3577 	rd = NULL;
3578 
3579 	reset_regdomains(false, intersected_rd);
3580 
3581 	return 0;
3582 }
3583 
3584 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3585 				 struct regulatory_request *country_ie_request)
3586 {
3587 	struct wiphy *request_wiphy;
3588 
3589 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3590 	    !is_unknown_alpha2(rd->alpha2))
3591 		return -EINVAL;
3592 
3593 	/*
3594 	 * Lets only bother proceeding on the same alpha2 if the current
3595 	 * rd is non static (it means CRDA was present and was used last)
3596 	 * and the pending request came in from a country IE
3597 	 */
3598 
3599 	if (!is_valid_rd(rd)) {
3600 		pr_err("Invalid regulatory domain detected: %c%c\n",
3601 		       rd->alpha2[0], rd->alpha2[1]);
3602 		print_regdomain_info(rd);
3603 		return -EINVAL;
3604 	}
3605 
3606 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3607 	if (!request_wiphy)
3608 		return -ENODEV;
3609 
3610 	if (country_ie_request->intersect)
3611 		return -EINVAL;
3612 
3613 	reset_regdomains(false, rd);
3614 	return 0;
3615 }
3616 
3617 /*
3618  * Use this call to set the current regulatory domain. Conflicts with
3619  * multiple drivers can be ironed out later. Caller must've already
3620  * kmalloc'd the rd structure.
3621  */
3622 int set_regdom(const struct ieee80211_regdomain *rd,
3623 	       enum ieee80211_regd_source regd_src)
3624 {
3625 	struct regulatory_request *lr;
3626 	bool user_reset = false;
3627 	int r;
3628 
3629 	if (IS_ERR_OR_NULL(rd))
3630 		return -ENODATA;
3631 
3632 	if (!reg_is_valid_request(rd->alpha2)) {
3633 		kfree(rd);
3634 		return -EINVAL;
3635 	}
3636 
3637 	if (regd_src == REGD_SOURCE_CRDA)
3638 		reset_crda_timeouts();
3639 
3640 	lr = get_last_request();
3641 
3642 	/* Note that this doesn't update the wiphys, this is done below */
3643 	switch (lr->initiator) {
3644 	case NL80211_REGDOM_SET_BY_CORE:
3645 		r = reg_set_rd_core(rd);
3646 		break;
3647 	case NL80211_REGDOM_SET_BY_USER:
3648 		cfg80211_save_user_regdom(rd);
3649 		r = reg_set_rd_user(rd, lr);
3650 		user_reset = true;
3651 		break;
3652 	case NL80211_REGDOM_SET_BY_DRIVER:
3653 		r = reg_set_rd_driver(rd, lr);
3654 		break;
3655 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3656 		r = reg_set_rd_country_ie(rd, lr);
3657 		break;
3658 	default:
3659 		WARN(1, "invalid initiator %d\n", lr->initiator);
3660 		kfree(rd);
3661 		return -EINVAL;
3662 	}
3663 
3664 	if (r) {
3665 		switch (r) {
3666 		case -EALREADY:
3667 			reg_set_request_processed();
3668 			break;
3669 		default:
3670 			/* Back to world regulatory in case of errors */
3671 			restore_regulatory_settings(user_reset, false);
3672 		}
3673 
3674 		kfree(rd);
3675 		return r;
3676 	}
3677 
3678 	/* This would make this whole thing pointless */
3679 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3680 		return -EINVAL;
3681 
3682 	/* update all wiphys now with the new established regulatory domain */
3683 	update_all_wiphy_regulatory(lr->initiator);
3684 
3685 	print_regdomain(get_cfg80211_regdom());
3686 
3687 	nl80211_send_reg_change_event(lr);
3688 
3689 	reg_set_request_processed();
3690 
3691 	return 0;
3692 }
3693 
3694 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3695 				       struct ieee80211_regdomain *rd)
3696 {
3697 	const struct ieee80211_regdomain *regd;
3698 	const struct ieee80211_regdomain *prev_regd;
3699 	struct cfg80211_registered_device *rdev;
3700 
3701 	if (WARN_ON(!wiphy || !rd))
3702 		return -EINVAL;
3703 
3704 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3705 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3706 		return -EPERM;
3707 
3708 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3709 		print_regdomain_info(rd);
3710 		return -EINVAL;
3711 	}
3712 
3713 	regd = reg_copy_regd(rd);
3714 	if (IS_ERR(regd))
3715 		return PTR_ERR(regd);
3716 
3717 	rdev = wiphy_to_rdev(wiphy);
3718 
3719 	spin_lock(&reg_requests_lock);
3720 	prev_regd = rdev->requested_regd;
3721 	rdev->requested_regd = regd;
3722 	spin_unlock(&reg_requests_lock);
3723 
3724 	kfree(prev_regd);
3725 	return 0;
3726 }
3727 
3728 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3729 			      struct ieee80211_regdomain *rd)
3730 {
3731 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3732 
3733 	if (ret)
3734 		return ret;
3735 
3736 	schedule_work(&reg_work);
3737 	return 0;
3738 }
3739 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3740 
3741 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3742 					struct ieee80211_regdomain *rd)
3743 {
3744 	int ret;
3745 
3746 	ASSERT_RTNL();
3747 
3748 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3749 	if (ret)
3750 		return ret;
3751 
3752 	/* process the request immediately */
3753 	reg_process_self_managed_hints();
3754 	return 0;
3755 }
3756 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3757 
3758 void wiphy_regulatory_register(struct wiphy *wiphy)
3759 {
3760 	struct regulatory_request *lr = get_last_request();
3761 
3762 	/* self-managed devices ignore beacon hints and country IE */
3763 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3764 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3765 					   REGULATORY_COUNTRY_IE_IGNORE;
3766 
3767 		/*
3768 		 * The last request may have been received before this
3769 		 * registration call. Call the driver notifier if
3770 		 * initiator is USER.
3771 		 */
3772 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
3773 			reg_call_notifier(wiphy, lr);
3774 	}
3775 
3776 	if (!reg_dev_ignore_cell_hint(wiphy))
3777 		reg_num_devs_support_basehint++;
3778 
3779 	wiphy_update_regulatory(wiphy, lr->initiator);
3780 	wiphy_all_share_dfs_chan_state(wiphy);
3781 }
3782 
3783 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3784 {
3785 	struct wiphy *request_wiphy = NULL;
3786 	struct regulatory_request *lr;
3787 
3788 	lr = get_last_request();
3789 
3790 	if (!reg_dev_ignore_cell_hint(wiphy))
3791 		reg_num_devs_support_basehint--;
3792 
3793 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3794 	RCU_INIT_POINTER(wiphy->regd, NULL);
3795 
3796 	if (lr)
3797 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3798 
3799 	if (!request_wiphy || request_wiphy != wiphy)
3800 		return;
3801 
3802 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3803 	lr->country_ie_env = ENVIRON_ANY;
3804 }
3805 
3806 /*
3807  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3808  * UNII band definitions
3809  */
3810 int cfg80211_get_unii(int freq)
3811 {
3812 	/* UNII-1 */
3813 	if (freq >= 5150 && freq <= 5250)
3814 		return 0;
3815 
3816 	/* UNII-2A */
3817 	if (freq > 5250 && freq <= 5350)
3818 		return 1;
3819 
3820 	/* UNII-2B */
3821 	if (freq > 5350 && freq <= 5470)
3822 		return 2;
3823 
3824 	/* UNII-2C */
3825 	if (freq > 5470 && freq <= 5725)
3826 		return 3;
3827 
3828 	/* UNII-3 */
3829 	if (freq > 5725 && freq <= 5825)
3830 		return 4;
3831 
3832 	return -EINVAL;
3833 }
3834 
3835 bool regulatory_indoor_allowed(void)
3836 {
3837 	return reg_is_indoor;
3838 }
3839 
3840 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3841 {
3842 	const struct ieee80211_regdomain *regd = NULL;
3843 	const struct ieee80211_regdomain *wiphy_regd = NULL;
3844 	bool pre_cac_allowed = false;
3845 
3846 	rcu_read_lock();
3847 
3848 	regd = rcu_dereference(cfg80211_regdomain);
3849 	wiphy_regd = rcu_dereference(wiphy->regd);
3850 	if (!wiphy_regd) {
3851 		if (regd->dfs_region == NL80211_DFS_ETSI)
3852 			pre_cac_allowed = true;
3853 
3854 		rcu_read_unlock();
3855 
3856 		return pre_cac_allowed;
3857 	}
3858 
3859 	if (regd->dfs_region == wiphy_regd->dfs_region &&
3860 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3861 		pre_cac_allowed = true;
3862 
3863 	rcu_read_unlock();
3864 
3865 	return pre_cac_allowed;
3866 }
3867 
3868 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3869 				    struct cfg80211_chan_def *chandef,
3870 				    enum nl80211_dfs_state dfs_state,
3871 				    enum nl80211_radar_event event)
3872 {
3873 	struct cfg80211_registered_device *rdev;
3874 
3875 	ASSERT_RTNL();
3876 
3877 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3878 		return;
3879 
3880 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3881 		if (wiphy == &rdev->wiphy)
3882 			continue;
3883 
3884 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3885 			continue;
3886 
3887 		if (!ieee80211_get_channel(&rdev->wiphy,
3888 					   chandef->chan->center_freq))
3889 			continue;
3890 
3891 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3892 
3893 		if (event == NL80211_RADAR_DETECTED ||
3894 		    event == NL80211_RADAR_CAC_FINISHED)
3895 			cfg80211_sched_dfs_chan_update(rdev);
3896 
3897 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3898 	}
3899 }
3900 
3901 static int __init regulatory_init_db(void)
3902 {
3903 	int err;
3904 
3905 	/*
3906 	 * It's possible that - due to other bugs/issues - cfg80211
3907 	 * never called regulatory_init() below, or that it failed;
3908 	 * in that case, don't try to do any further work here as
3909 	 * it's doomed to lead to crashes.
3910 	 */
3911 	if (IS_ERR_OR_NULL(reg_pdev))
3912 		return -EINVAL;
3913 
3914 	err = load_builtin_regdb_keys();
3915 	if (err)
3916 		return err;
3917 
3918 	/* We always try to get an update for the static regdomain */
3919 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3920 	if (err) {
3921 		if (err == -ENOMEM) {
3922 			platform_device_unregister(reg_pdev);
3923 			return err;
3924 		}
3925 		/*
3926 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3927 		 * memory which is handled and propagated appropriately above
3928 		 * but it can also fail during a netlink_broadcast() or during
3929 		 * early boot for call_usermodehelper(). For now treat these
3930 		 * errors as non-fatal.
3931 		 */
3932 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3933 	}
3934 
3935 	/*
3936 	 * Finally, if the user set the module parameter treat it
3937 	 * as a user hint.
3938 	 */
3939 	if (!is_world_regdom(ieee80211_regdom))
3940 		regulatory_hint_user(ieee80211_regdom,
3941 				     NL80211_USER_REG_HINT_USER);
3942 
3943 	return 0;
3944 }
3945 #ifndef MODULE
3946 late_initcall(regulatory_init_db);
3947 #endif
3948 
3949 int __init regulatory_init(void)
3950 {
3951 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3952 	if (IS_ERR(reg_pdev))
3953 		return PTR_ERR(reg_pdev);
3954 
3955 	spin_lock_init(&reg_requests_lock);
3956 	spin_lock_init(&reg_pending_beacons_lock);
3957 	spin_lock_init(&reg_indoor_lock);
3958 
3959 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3960 
3961 	user_alpha2[0] = '9';
3962 	user_alpha2[1] = '7';
3963 
3964 #ifdef MODULE
3965 	return regulatory_init_db();
3966 #else
3967 	return 0;
3968 #endif
3969 }
3970 
3971 void regulatory_exit(void)
3972 {
3973 	struct regulatory_request *reg_request, *tmp;
3974 	struct reg_beacon *reg_beacon, *btmp;
3975 
3976 	cancel_work_sync(&reg_work);
3977 	cancel_crda_timeout_sync();
3978 	cancel_delayed_work_sync(&reg_check_chans);
3979 
3980 	/* Lock to suppress warnings */
3981 	rtnl_lock();
3982 	reset_regdomains(true, NULL);
3983 	rtnl_unlock();
3984 
3985 	dev_set_uevent_suppress(&reg_pdev->dev, true);
3986 
3987 	platform_device_unregister(reg_pdev);
3988 
3989 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3990 		list_del(&reg_beacon->list);
3991 		kfree(reg_beacon);
3992 	}
3993 
3994 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3995 		list_del(&reg_beacon->list);
3996 		kfree(reg_beacon);
3997 	}
3998 
3999 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4000 		list_del(&reg_request->list);
4001 		kfree(reg_request);
4002 	}
4003 
4004 	if (!IS_ERR_OR_NULL(regdb))
4005 		kfree(regdb);
4006 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4007 		kfree(cfg80211_user_regdom);
4008 
4009 	free_regdb_keyring();
4010 }
4011