1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2025 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <linux/units.h> 61 62 #include <net/cfg80211.h> 63 #include "core.h" 64 #include "reg.h" 65 #include "rdev-ops.h" 66 #include "nl80211.h" 67 68 /* 69 * Grace period we give before making sure all current interfaces reside on 70 * channels allowed by the current regulatory domain. 71 */ 72 #define REG_ENFORCE_GRACE_MS 60000 73 74 /** 75 * enum reg_request_treatment - regulatory request treatment 76 * 77 * @REG_REQ_OK: continue processing the regulatory request 78 * @REG_REQ_IGNORE: ignore the regulatory request 79 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 80 * be intersected with the current one. 81 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 82 * regulatory settings, and no further processing is required. 83 */ 84 enum reg_request_treatment { 85 REG_REQ_OK, 86 REG_REQ_IGNORE, 87 REG_REQ_INTERSECT, 88 REG_REQ_ALREADY_SET, 89 }; 90 91 static struct regulatory_request core_request_world = { 92 .initiator = NL80211_REGDOM_SET_BY_CORE, 93 .alpha2[0] = '0', 94 .alpha2[1] = '0', 95 .intersect = false, 96 .processed = true, 97 .country_ie_env = ENVIRON_ANY, 98 }; 99 100 /* 101 * Receipt of information from last regulatory request, 102 * protected by RTNL (and can be accessed with RCU protection) 103 */ 104 static struct regulatory_request __rcu *last_request = 105 (void __force __rcu *)&core_request_world; 106 107 /* To trigger userspace events and load firmware */ 108 static struct platform_device *reg_pdev; 109 110 /* 111 * Central wireless core regulatory domains, we only need two, 112 * the current one and a world regulatory domain in case we have no 113 * information to give us an alpha2. 114 * (protected by RTNL, can be read under RCU) 115 */ 116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 117 118 /* 119 * Number of devices that registered to the core 120 * that support cellular base station regulatory hints 121 * (protected by RTNL) 122 */ 123 static int reg_num_devs_support_basehint; 124 125 /* 126 * State variable indicating if the platform on which the devices 127 * are attached is operating in an indoor environment. The state variable 128 * is relevant for all registered devices. 129 */ 130 static bool reg_is_indoor; 131 static DEFINE_SPINLOCK(reg_indoor_lock); 132 133 /* Used to track the userspace process controlling the indoor setting */ 134 static u32 reg_is_indoor_portid; 135 136 static void restore_regulatory_settings(bool reset_user, bool cached); 137 static void print_regdomain(const struct ieee80211_regdomain *rd); 138 static void reg_process_hint(struct regulatory_request *reg_request); 139 140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 141 { 142 return rcu_dereference_rtnl(cfg80211_regdomain); 143 } 144 145 /* 146 * Returns the regulatory domain associated with the wiphy. 147 * 148 * Requires any of RTNL, wiphy mutex or RCU protection. 149 */ 150 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 151 { 152 return rcu_dereference_check(wiphy->regd, 153 lockdep_is_held(&wiphy->mtx) || 154 lockdep_rtnl_is_held()); 155 } 156 EXPORT_SYMBOL(get_wiphy_regdom); 157 158 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 159 { 160 switch (dfs_region) { 161 case NL80211_DFS_UNSET: 162 return "unset"; 163 case NL80211_DFS_FCC: 164 return "FCC"; 165 case NL80211_DFS_ETSI: 166 return "ETSI"; 167 case NL80211_DFS_JP: 168 return "JP"; 169 } 170 return "Unknown"; 171 } 172 173 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 174 { 175 const struct ieee80211_regdomain *regd = NULL; 176 const struct ieee80211_regdomain *wiphy_regd = NULL; 177 enum nl80211_dfs_regions dfs_region; 178 179 rcu_read_lock(); 180 regd = get_cfg80211_regdom(); 181 dfs_region = regd->dfs_region; 182 183 if (!wiphy) 184 goto out; 185 186 wiphy_regd = get_wiphy_regdom(wiphy); 187 if (!wiphy_regd) 188 goto out; 189 190 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 191 dfs_region = wiphy_regd->dfs_region; 192 goto out; 193 } 194 195 if (wiphy_regd->dfs_region == regd->dfs_region) 196 goto out; 197 198 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 199 dev_name(&wiphy->dev), 200 reg_dfs_region_str(wiphy_regd->dfs_region), 201 reg_dfs_region_str(regd->dfs_region)); 202 203 out: 204 rcu_read_unlock(); 205 206 return dfs_region; 207 } 208 209 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 210 { 211 if (!r) 212 return; 213 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 214 } 215 216 static struct regulatory_request *get_last_request(void) 217 { 218 return rcu_dereference_rtnl(last_request); 219 } 220 221 /* Used to queue up regulatory hints */ 222 static LIST_HEAD(reg_requests_list); 223 static DEFINE_SPINLOCK(reg_requests_lock); 224 225 /* Used to queue up beacon hints for review */ 226 static LIST_HEAD(reg_pending_beacons); 227 static DEFINE_SPINLOCK(reg_pending_beacons_lock); 228 229 /* Used to keep track of processed beacon hints */ 230 static LIST_HEAD(reg_beacon_list); 231 232 struct reg_beacon { 233 struct list_head list; 234 struct ieee80211_channel chan; 235 }; 236 237 static void reg_check_chans_work(struct work_struct *work); 238 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 239 240 static void reg_todo(struct work_struct *work); 241 static DECLARE_WORK(reg_work, reg_todo); 242 243 /* We keep a static world regulatory domain in case of the absence of CRDA */ 244 static const struct ieee80211_regdomain world_regdom = { 245 .n_reg_rules = 8, 246 .alpha2 = "00", 247 .reg_rules = { 248 /* IEEE 802.11b/g, channels 1..11 */ 249 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 250 /* IEEE 802.11b/g, channels 12..13. */ 251 REG_RULE(2467-10, 2472+10, 20, 6, 20, 252 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 253 /* IEEE 802.11 channel 14 - Only JP enables 254 * this and for 802.11b only */ 255 REG_RULE(2484-10, 2484+10, 20, 6, 20, 256 NL80211_RRF_NO_IR | 257 NL80211_RRF_NO_OFDM), 258 /* IEEE 802.11a, channel 36..48 */ 259 REG_RULE(5180-10, 5240+10, 80, 6, 20, 260 NL80211_RRF_NO_IR | 261 NL80211_RRF_AUTO_BW), 262 263 /* IEEE 802.11a, channel 52..64 - DFS required */ 264 REG_RULE(5260-10, 5320+10, 80, 6, 20, 265 NL80211_RRF_NO_IR | 266 NL80211_RRF_AUTO_BW | 267 NL80211_RRF_DFS), 268 269 /* IEEE 802.11a, channel 100..144 - DFS required */ 270 REG_RULE(5500-10, 5720+10, 160, 6, 20, 271 NL80211_RRF_NO_IR | 272 NL80211_RRF_DFS), 273 274 /* IEEE 802.11a, channel 149..165 */ 275 REG_RULE(5745-10, 5825+10, 80, 6, 20, 276 NL80211_RRF_NO_IR), 277 278 /* IEEE 802.11ad (60GHz), channels 1..3 */ 279 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 280 } 281 }; 282 283 /* protected by RTNL */ 284 static const struct ieee80211_regdomain *cfg80211_world_regdom = 285 &world_regdom; 286 287 static char *ieee80211_regdom = "00"; 288 static char user_alpha2[2]; 289 static const struct ieee80211_regdomain *cfg80211_user_regdom; 290 291 module_param(ieee80211_regdom, charp, 0444); 292 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 293 294 static void reg_free_request(struct regulatory_request *request) 295 { 296 if (request == &core_request_world) 297 return; 298 299 if (request != get_last_request()) 300 kfree(request); 301 } 302 303 static void reg_free_last_request(void) 304 { 305 struct regulatory_request *lr = get_last_request(); 306 307 if (lr != &core_request_world && lr) 308 kfree_rcu(lr, rcu_head); 309 } 310 311 static void reg_update_last_request(struct regulatory_request *request) 312 { 313 struct regulatory_request *lr; 314 315 lr = get_last_request(); 316 if (lr == request) 317 return; 318 319 reg_free_last_request(); 320 rcu_assign_pointer(last_request, request); 321 } 322 323 static void reset_regdomains(bool full_reset, 324 const struct ieee80211_regdomain *new_regdom) 325 { 326 const struct ieee80211_regdomain *r; 327 328 ASSERT_RTNL(); 329 330 r = get_cfg80211_regdom(); 331 332 /* avoid freeing static information or freeing something twice */ 333 if (r == cfg80211_world_regdom) 334 r = NULL; 335 if (cfg80211_world_regdom == &world_regdom) 336 cfg80211_world_regdom = NULL; 337 if (r == &world_regdom) 338 r = NULL; 339 340 rcu_free_regdom(r); 341 rcu_free_regdom(cfg80211_world_regdom); 342 343 cfg80211_world_regdom = &world_regdom; 344 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 345 346 if (!full_reset) 347 return; 348 349 reg_update_last_request(&core_request_world); 350 } 351 352 /* 353 * Dynamic world regulatory domain requested by the wireless 354 * core upon initialization 355 */ 356 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 357 { 358 struct regulatory_request *lr; 359 360 lr = get_last_request(); 361 362 WARN_ON(!lr); 363 364 reset_regdomains(false, rd); 365 366 cfg80211_world_regdom = rd; 367 } 368 369 bool is_world_regdom(const char *alpha2) 370 { 371 if (!alpha2) 372 return false; 373 return alpha2[0] == '0' && alpha2[1] == '0'; 374 } 375 376 static bool is_alpha2_set(const char *alpha2) 377 { 378 if (!alpha2) 379 return false; 380 return alpha2[0] && alpha2[1]; 381 } 382 383 static bool is_unknown_alpha2(const char *alpha2) 384 { 385 if (!alpha2) 386 return false; 387 /* 388 * Special case where regulatory domain was built by driver 389 * but a specific alpha2 cannot be determined 390 */ 391 return alpha2[0] == '9' && alpha2[1] == '9'; 392 } 393 394 static bool is_intersected_alpha2(const char *alpha2) 395 { 396 if (!alpha2) 397 return false; 398 /* 399 * Special case where regulatory domain is the 400 * result of an intersection between two regulatory domain 401 * structures 402 */ 403 return alpha2[0] == '9' && alpha2[1] == '8'; 404 } 405 406 static bool is_an_alpha2(const char *alpha2) 407 { 408 if (!alpha2) 409 return false; 410 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 411 } 412 413 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 414 { 415 if (!alpha2_x || !alpha2_y) 416 return false; 417 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 418 } 419 420 static bool regdom_changes(const char *alpha2) 421 { 422 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 423 424 if (!r) 425 return true; 426 return !alpha2_equal(r->alpha2, alpha2); 427 } 428 429 /* 430 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 431 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 432 * has ever been issued. 433 */ 434 static bool is_user_regdom_saved(void) 435 { 436 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 437 return false; 438 439 /* This would indicate a mistake on the design */ 440 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 441 "Unexpected user alpha2: %c%c\n", 442 user_alpha2[0], user_alpha2[1])) 443 return false; 444 445 return true; 446 } 447 448 static const struct ieee80211_regdomain * 449 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 450 { 451 struct ieee80211_regdomain *regd; 452 unsigned int i; 453 454 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 455 GFP_KERNEL); 456 if (!regd) 457 return ERR_PTR(-ENOMEM); 458 459 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 460 461 for (i = 0; i < src_regd->n_reg_rules; i++) 462 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 463 sizeof(struct ieee80211_reg_rule)); 464 465 return regd; 466 } 467 468 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 469 { 470 ASSERT_RTNL(); 471 472 if (!IS_ERR(cfg80211_user_regdom)) 473 kfree(cfg80211_user_regdom); 474 cfg80211_user_regdom = reg_copy_regd(rd); 475 } 476 477 struct reg_regdb_apply_request { 478 struct list_head list; 479 const struct ieee80211_regdomain *regdom; 480 }; 481 482 static LIST_HEAD(reg_regdb_apply_list); 483 static DEFINE_MUTEX(reg_regdb_apply_mutex); 484 485 static void reg_regdb_apply(struct work_struct *work) 486 { 487 struct reg_regdb_apply_request *request; 488 489 rtnl_lock(); 490 491 mutex_lock(®_regdb_apply_mutex); 492 while (!list_empty(®_regdb_apply_list)) { 493 request = list_first_entry(®_regdb_apply_list, 494 struct reg_regdb_apply_request, 495 list); 496 list_del(&request->list); 497 498 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 499 kfree(request); 500 } 501 mutex_unlock(®_regdb_apply_mutex); 502 503 rtnl_unlock(); 504 } 505 506 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 507 508 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 509 { 510 struct reg_regdb_apply_request *request; 511 512 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 513 if (!request) { 514 kfree(regdom); 515 return -ENOMEM; 516 } 517 518 request->regdom = regdom; 519 520 mutex_lock(®_regdb_apply_mutex); 521 list_add_tail(&request->list, ®_regdb_apply_list); 522 mutex_unlock(®_regdb_apply_mutex); 523 524 schedule_work(®_regdb_work); 525 return 0; 526 } 527 528 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 529 /* Max number of consecutive attempts to communicate with CRDA */ 530 #define REG_MAX_CRDA_TIMEOUTS 10 531 532 static u32 reg_crda_timeouts; 533 534 static void crda_timeout_work(struct work_struct *work); 535 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 536 537 static void crda_timeout_work(struct work_struct *work) 538 { 539 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 540 rtnl_lock(); 541 reg_crda_timeouts++; 542 restore_regulatory_settings(true, false); 543 rtnl_unlock(); 544 } 545 546 static void cancel_crda_timeout(void) 547 { 548 cancel_delayed_work(&crda_timeout); 549 } 550 551 static void cancel_crda_timeout_sync(void) 552 { 553 cancel_delayed_work_sync(&crda_timeout); 554 } 555 556 static void reset_crda_timeouts(void) 557 { 558 reg_crda_timeouts = 0; 559 } 560 561 /* 562 * This lets us keep regulatory code which is updated on a regulatory 563 * basis in userspace. 564 */ 565 static int call_crda(const char *alpha2) 566 { 567 char country[12]; 568 char *env[] = { country, NULL }; 569 int ret; 570 571 snprintf(country, sizeof(country), "COUNTRY=%c%c", 572 alpha2[0], alpha2[1]); 573 574 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 575 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 576 return -EINVAL; 577 } 578 579 if (!is_world_regdom((char *) alpha2)) 580 pr_debug("Calling CRDA for country: %c%c\n", 581 alpha2[0], alpha2[1]); 582 else 583 pr_debug("Calling CRDA to update world regulatory domain\n"); 584 585 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 586 if (ret) 587 return ret; 588 589 queue_delayed_work(system_power_efficient_wq, 590 &crda_timeout, msecs_to_jiffies(3142)); 591 return 0; 592 } 593 #else 594 static inline void cancel_crda_timeout(void) {} 595 static inline void cancel_crda_timeout_sync(void) {} 596 static inline void reset_crda_timeouts(void) {} 597 static inline int call_crda(const char *alpha2) 598 { 599 return -ENODATA; 600 } 601 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 602 603 /* code to directly load a firmware database through request_firmware */ 604 static const struct fwdb_header *regdb; 605 606 struct fwdb_country { 607 u8 alpha2[2]; 608 __be16 coll_ptr; 609 /* this struct cannot be extended */ 610 } __packed __aligned(4); 611 612 struct fwdb_collection { 613 u8 len; 614 u8 n_rules; 615 u8 dfs_region; 616 /* no optional data yet */ 617 /* aligned to 2, then followed by __be16 array of rule pointers */ 618 } __packed __aligned(4); 619 620 enum fwdb_flags { 621 FWDB_FLAG_NO_OFDM = BIT(0), 622 FWDB_FLAG_NO_OUTDOOR = BIT(1), 623 FWDB_FLAG_DFS = BIT(2), 624 FWDB_FLAG_NO_IR = BIT(3), 625 FWDB_FLAG_AUTO_BW = BIT(4), 626 }; 627 628 struct fwdb_wmm_ac { 629 u8 ecw; 630 u8 aifsn; 631 __be16 cot; 632 } __packed; 633 634 struct fwdb_wmm_rule { 635 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 636 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 637 } __packed; 638 639 struct fwdb_rule { 640 u8 len; 641 u8 flags; 642 __be16 max_eirp; 643 __be32 start, end, max_bw; 644 /* start of optional data */ 645 __be16 cac_timeout; 646 __be16 wmm_ptr; 647 } __packed __aligned(4); 648 649 #define FWDB_MAGIC 0x52474442 650 #define FWDB_VERSION 20 651 652 struct fwdb_header { 653 __be32 magic; 654 __be32 version; 655 struct fwdb_country country[]; 656 } __packed __aligned(4); 657 658 static int ecw2cw(int ecw) 659 { 660 return (1 << ecw) - 1; 661 } 662 663 static bool valid_wmm(struct fwdb_wmm_rule *rule) 664 { 665 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 666 int i; 667 668 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 669 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 670 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 671 u8 aifsn = ac[i].aifsn; 672 673 if (cw_min >= cw_max) 674 return false; 675 676 if (aifsn < 1) 677 return false; 678 } 679 680 return true; 681 } 682 683 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 684 { 685 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 686 687 if ((u8 *)rule + sizeof(rule->len) > data + size) 688 return false; 689 690 /* mandatory fields */ 691 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 692 return false; 693 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 694 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 695 struct fwdb_wmm_rule *wmm; 696 697 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 698 return false; 699 700 wmm = (void *)(data + wmm_ptr); 701 702 if (!valid_wmm(wmm)) 703 return false; 704 } 705 return true; 706 } 707 708 static bool valid_country(const u8 *data, unsigned int size, 709 const struct fwdb_country *country) 710 { 711 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 712 struct fwdb_collection *coll = (void *)(data + ptr); 713 __be16 *rules_ptr; 714 unsigned int i; 715 716 /* make sure we can read len/n_rules */ 717 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 718 return false; 719 720 /* make sure base struct and all rules fit */ 721 if ((u8 *)coll + ALIGN(coll->len, 2) + 722 (coll->n_rules * 2) > data + size) 723 return false; 724 725 /* mandatory fields must exist */ 726 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 727 return false; 728 729 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 730 731 for (i = 0; i < coll->n_rules; i++) { 732 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 733 734 if (!valid_rule(data, size, rule_ptr)) 735 return false; 736 } 737 738 return true; 739 } 740 741 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 742 #include <keys/asymmetric-type.h> 743 744 static struct key *builtin_regdb_keys; 745 746 static int __init load_builtin_regdb_keys(void) 747 { 748 builtin_regdb_keys = 749 keyring_alloc(".builtin_regdb_keys", 750 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 751 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 752 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 753 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 754 if (IS_ERR(builtin_regdb_keys)) 755 return PTR_ERR(builtin_regdb_keys); 756 757 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 758 759 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 760 x509_load_certificate_list(shipped_regdb_certs, 761 shipped_regdb_certs_len, 762 builtin_regdb_keys); 763 #endif 764 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 765 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 766 x509_load_certificate_list(extra_regdb_certs, 767 extra_regdb_certs_len, 768 builtin_regdb_keys); 769 #endif 770 771 return 0; 772 } 773 774 MODULE_FIRMWARE("regulatory.db.p7s"); 775 776 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 777 { 778 const struct firmware *sig; 779 bool result; 780 781 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 782 return false; 783 784 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 785 builtin_regdb_keys, 786 VERIFYING_UNSPECIFIED_SIGNATURE, 787 NULL, NULL) == 0; 788 789 release_firmware(sig); 790 791 return result; 792 } 793 794 static void free_regdb_keyring(void) 795 { 796 key_put(builtin_regdb_keys); 797 } 798 #else 799 static int load_builtin_regdb_keys(void) 800 { 801 return 0; 802 } 803 804 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 805 { 806 return true; 807 } 808 809 static void free_regdb_keyring(void) 810 { 811 } 812 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 813 814 static bool valid_regdb(const u8 *data, unsigned int size) 815 { 816 const struct fwdb_header *hdr = (void *)data; 817 const struct fwdb_country *country; 818 819 if (size < sizeof(*hdr)) 820 return false; 821 822 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 823 return false; 824 825 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 826 return false; 827 828 if (!regdb_has_valid_signature(data, size)) 829 return false; 830 831 country = &hdr->country[0]; 832 while ((u8 *)(country + 1) <= data + size) { 833 if (!country->coll_ptr) 834 break; 835 if (!valid_country(data, size, country)) 836 return false; 837 country++; 838 } 839 840 return true; 841 } 842 843 static void set_wmm_rule(const struct fwdb_header *db, 844 const struct fwdb_country *country, 845 const struct fwdb_rule *rule, 846 struct ieee80211_reg_rule *rrule) 847 { 848 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 849 struct fwdb_wmm_rule *wmm; 850 unsigned int i, wmm_ptr; 851 852 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 853 wmm = (void *)((u8 *)db + wmm_ptr); 854 855 if (!valid_wmm(wmm)) { 856 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 857 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 858 country->alpha2[0], country->alpha2[1]); 859 return; 860 } 861 862 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 863 wmm_rule->client[i].cw_min = 864 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 865 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 866 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 867 wmm_rule->client[i].cot = 868 1000 * be16_to_cpu(wmm->client[i].cot); 869 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 870 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 871 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 872 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 873 } 874 875 rrule->has_wmm = true; 876 } 877 878 static int __regdb_query_wmm(const struct fwdb_header *db, 879 const struct fwdb_country *country, int freq, 880 struct ieee80211_reg_rule *rrule) 881 { 882 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 883 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 884 int i; 885 886 for (i = 0; i < coll->n_rules; i++) { 887 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 888 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 889 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 890 891 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 892 continue; 893 894 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 895 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 896 set_wmm_rule(db, country, rule, rrule); 897 return 0; 898 } 899 } 900 901 return -ENODATA; 902 } 903 904 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 905 { 906 const struct fwdb_header *hdr = regdb; 907 const struct fwdb_country *country; 908 909 if (!regdb) 910 return -ENODATA; 911 912 if (IS_ERR(regdb)) 913 return PTR_ERR(regdb); 914 915 country = &hdr->country[0]; 916 while (country->coll_ptr) { 917 if (alpha2_equal(alpha2, country->alpha2)) 918 return __regdb_query_wmm(regdb, country, freq, rule); 919 920 country++; 921 } 922 923 return -ENODATA; 924 } 925 EXPORT_SYMBOL(reg_query_regdb_wmm); 926 927 static int regdb_query_country(const struct fwdb_header *db, 928 const struct fwdb_country *country) 929 { 930 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 931 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 932 struct ieee80211_regdomain *regdom; 933 unsigned int i; 934 935 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 936 GFP_KERNEL); 937 if (!regdom) 938 return -ENOMEM; 939 940 regdom->n_reg_rules = coll->n_rules; 941 regdom->alpha2[0] = country->alpha2[0]; 942 regdom->alpha2[1] = country->alpha2[1]; 943 regdom->dfs_region = coll->dfs_region; 944 945 for (i = 0; i < regdom->n_reg_rules; i++) { 946 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 947 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 948 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 949 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 950 951 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 952 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 953 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 954 955 rrule->power_rule.max_antenna_gain = 0; 956 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 957 958 rrule->flags = 0; 959 if (rule->flags & FWDB_FLAG_NO_OFDM) 960 rrule->flags |= NL80211_RRF_NO_OFDM; 961 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 962 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 963 if (rule->flags & FWDB_FLAG_DFS) 964 rrule->flags |= NL80211_RRF_DFS; 965 if (rule->flags & FWDB_FLAG_NO_IR) 966 rrule->flags |= NL80211_RRF_NO_IR; 967 if (rule->flags & FWDB_FLAG_AUTO_BW) 968 rrule->flags |= NL80211_RRF_AUTO_BW; 969 970 rrule->dfs_cac_ms = 0; 971 972 /* handle optional data */ 973 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 974 rrule->dfs_cac_ms = 975 1000 * be16_to_cpu(rule->cac_timeout); 976 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 977 set_wmm_rule(db, country, rule, rrule); 978 } 979 980 return reg_schedule_apply(regdom); 981 } 982 983 static int query_regdb(const char *alpha2) 984 { 985 const struct fwdb_header *hdr = regdb; 986 const struct fwdb_country *country; 987 988 ASSERT_RTNL(); 989 990 if (IS_ERR(regdb)) 991 return PTR_ERR(regdb); 992 993 country = &hdr->country[0]; 994 while (country->coll_ptr) { 995 if (alpha2_equal(alpha2, country->alpha2)) 996 return regdb_query_country(regdb, country); 997 country++; 998 } 999 1000 return -ENODATA; 1001 } 1002 1003 static void regdb_fw_cb(const struct firmware *fw, void *context) 1004 { 1005 int set_error = 0; 1006 bool restore = true; 1007 void *db; 1008 1009 if (!fw) { 1010 pr_info("failed to load regulatory.db\n"); 1011 set_error = -ENODATA; 1012 } else if (!valid_regdb(fw->data, fw->size)) { 1013 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1014 set_error = -EINVAL; 1015 } 1016 1017 rtnl_lock(); 1018 if (regdb && !IS_ERR(regdb)) { 1019 /* negative case - a bug 1020 * positive case - can happen due to race in case of multiple cb's in 1021 * queue, due to usage of asynchronous callback 1022 * 1023 * Either case, just restore and free new db. 1024 */ 1025 } else if (set_error) { 1026 regdb = ERR_PTR(set_error); 1027 } else if (fw) { 1028 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1029 if (db) { 1030 regdb = db; 1031 restore = context && query_regdb(context); 1032 } else { 1033 restore = true; 1034 } 1035 } 1036 1037 if (restore) 1038 restore_regulatory_settings(true, false); 1039 1040 rtnl_unlock(); 1041 1042 kfree(context); 1043 1044 release_firmware(fw); 1045 } 1046 1047 MODULE_FIRMWARE("regulatory.db"); 1048 1049 static int query_regdb_file(const char *alpha2) 1050 { 1051 int err; 1052 1053 ASSERT_RTNL(); 1054 1055 if (regdb) 1056 return query_regdb(alpha2); 1057 1058 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1059 if (!alpha2) 1060 return -ENOMEM; 1061 1062 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1063 ®_pdev->dev, GFP_KERNEL, 1064 (void *)alpha2, regdb_fw_cb); 1065 if (err) 1066 kfree(alpha2); 1067 1068 return err; 1069 } 1070 1071 int reg_reload_regdb(void) 1072 { 1073 const struct firmware *fw; 1074 void *db; 1075 int err; 1076 const struct ieee80211_regdomain *current_regdomain; 1077 struct regulatory_request *request; 1078 1079 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1080 if (err) 1081 return err; 1082 1083 if (!valid_regdb(fw->data, fw->size)) { 1084 err = -ENODATA; 1085 goto out; 1086 } 1087 1088 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1089 if (!db) { 1090 err = -ENOMEM; 1091 goto out; 1092 } 1093 1094 rtnl_lock(); 1095 if (!IS_ERR_OR_NULL(regdb)) 1096 kfree(regdb); 1097 regdb = db; 1098 1099 /* reset regulatory domain */ 1100 current_regdomain = get_cfg80211_regdom(); 1101 1102 request = kzalloc(sizeof(*request), GFP_KERNEL); 1103 if (!request) { 1104 err = -ENOMEM; 1105 goto out_unlock; 1106 } 1107 1108 request->wiphy_idx = WIPHY_IDX_INVALID; 1109 request->alpha2[0] = current_regdomain->alpha2[0]; 1110 request->alpha2[1] = current_regdomain->alpha2[1]; 1111 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1112 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER; 1113 1114 reg_process_hint(request); 1115 1116 out_unlock: 1117 rtnl_unlock(); 1118 out: 1119 release_firmware(fw); 1120 return err; 1121 } 1122 1123 static bool reg_query_database(struct regulatory_request *request) 1124 { 1125 if (query_regdb_file(request->alpha2) == 0) 1126 return true; 1127 1128 if (call_crda(request->alpha2) == 0) 1129 return true; 1130 1131 return false; 1132 } 1133 1134 bool reg_is_valid_request(const char *alpha2) 1135 { 1136 struct regulatory_request *lr = get_last_request(); 1137 1138 if (!lr || lr->processed) 1139 return false; 1140 1141 return alpha2_equal(lr->alpha2, alpha2); 1142 } 1143 1144 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1145 { 1146 struct regulatory_request *lr = get_last_request(); 1147 1148 /* 1149 * Follow the driver's regulatory domain, if present, unless a country 1150 * IE has been processed or a user wants to help compliance further 1151 */ 1152 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1153 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1154 wiphy->regd) 1155 return get_wiphy_regdom(wiphy); 1156 1157 return get_cfg80211_regdom(); 1158 } 1159 1160 static unsigned int 1161 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1162 const struct ieee80211_reg_rule *rule) 1163 { 1164 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1165 const struct ieee80211_freq_range *freq_range_tmp; 1166 const struct ieee80211_reg_rule *tmp; 1167 u32 start_freq, end_freq, idx, no; 1168 1169 for (idx = 0; idx < rd->n_reg_rules; idx++) 1170 if (rule == &rd->reg_rules[idx]) 1171 break; 1172 1173 if (idx == rd->n_reg_rules) 1174 return 0; 1175 1176 /* get start_freq */ 1177 no = idx; 1178 1179 while (no) { 1180 tmp = &rd->reg_rules[--no]; 1181 freq_range_tmp = &tmp->freq_range; 1182 1183 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1184 break; 1185 1186 freq_range = freq_range_tmp; 1187 } 1188 1189 start_freq = freq_range->start_freq_khz; 1190 1191 /* get end_freq */ 1192 freq_range = &rule->freq_range; 1193 no = idx; 1194 1195 while (no < rd->n_reg_rules - 1) { 1196 tmp = &rd->reg_rules[++no]; 1197 freq_range_tmp = &tmp->freq_range; 1198 1199 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1200 break; 1201 1202 freq_range = freq_range_tmp; 1203 } 1204 1205 end_freq = freq_range->end_freq_khz; 1206 1207 return end_freq - start_freq; 1208 } 1209 1210 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1211 const struct ieee80211_reg_rule *rule) 1212 { 1213 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1214 1215 if (rule->flags & NL80211_RRF_NO_320MHZ) 1216 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160)); 1217 if (rule->flags & NL80211_RRF_NO_160MHZ) 1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1219 if (rule->flags & NL80211_RRF_NO_80MHZ) 1220 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1221 1222 /* 1223 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1224 * are not allowed. 1225 */ 1226 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1227 rule->flags & NL80211_RRF_NO_HT40PLUS) 1228 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1229 1230 return bw; 1231 } 1232 1233 /* Sanity check on a regulatory rule */ 1234 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1235 { 1236 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1237 u32 freq_diff; 1238 1239 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1240 return false; 1241 1242 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1243 return false; 1244 1245 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1246 1247 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1248 freq_range->max_bandwidth_khz > freq_diff) 1249 return false; 1250 1251 return true; 1252 } 1253 1254 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1255 { 1256 const struct ieee80211_reg_rule *reg_rule = NULL; 1257 unsigned int i; 1258 1259 if (!rd->n_reg_rules) 1260 return false; 1261 1262 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1263 return false; 1264 1265 for (i = 0; i < rd->n_reg_rules; i++) { 1266 reg_rule = &rd->reg_rules[i]; 1267 if (!is_valid_reg_rule(reg_rule)) 1268 return false; 1269 } 1270 1271 return true; 1272 } 1273 1274 /** 1275 * freq_in_rule_band - tells us if a frequency is in a frequency band 1276 * @freq_range: frequency rule we want to query 1277 * @freq_khz: frequency we are inquiring about 1278 * 1279 * This lets us know if a specific frequency rule is or is not relevant to 1280 * a specific frequency's band. Bands are device specific and artificial 1281 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1282 * however it is safe for now to assume that a frequency rule should not be 1283 * part of a frequency's band if the start freq or end freq are off by more 1284 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1285 * 60 GHz band. 1286 * This resolution can be lowered and should be considered as we add 1287 * regulatory rule support for other "bands". 1288 * 1289 * Returns: whether or not the frequency is in the range 1290 */ 1291 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1292 u32 freq_khz) 1293 { 1294 /* 1295 * From 802.11ad: directional multi-gigabit (DMG): 1296 * Pertaining to operation in a frequency band containing a channel 1297 * with the Channel starting frequency above 45 GHz. 1298 */ 1299 u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ; 1300 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1301 return true; 1302 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1303 return true; 1304 return false; 1305 } 1306 1307 /* 1308 * Later on we can perhaps use the more restrictive DFS 1309 * region but we don't have information for that yet so 1310 * for now simply disallow conflicts. 1311 */ 1312 static enum nl80211_dfs_regions 1313 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1314 const enum nl80211_dfs_regions dfs_region2) 1315 { 1316 if (dfs_region1 != dfs_region2) 1317 return NL80211_DFS_UNSET; 1318 return dfs_region1; 1319 } 1320 1321 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1322 const struct ieee80211_wmm_ac *wmm_ac2, 1323 struct ieee80211_wmm_ac *intersect) 1324 { 1325 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1326 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1327 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1328 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1329 } 1330 1331 /* 1332 * Helper for regdom_intersect(), this does the real 1333 * mathematical intersection fun 1334 */ 1335 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1336 const struct ieee80211_regdomain *rd2, 1337 const struct ieee80211_reg_rule *rule1, 1338 const struct ieee80211_reg_rule *rule2, 1339 struct ieee80211_reg_rule *intersected_rule) 1340 { 1341 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1342 struct ieee80211_freq_range *freq_range; 1343 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1344 struct ieee80211_power_rule *power_rule; 1345 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1346 struct ieee80211_wmm_rule *wmm_rule; 1347 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1348 1349 freq_range1 = &rule1->freq_range; 1350 freq_range2 = &rule2->freq_range; 1351 freq_range = &intersected_rule->freq_range; 1352 1353 power_rule1 = &rule1->power_rule; 1354 power_rule2 = &rule2->power_rule; 1355 power_rule = &intersected_rule->power_rule; 1356 1357 wmm_rule1 = &rule1->wmm_rule; 1358 wmm_rule2 = &rule2->wmm_rule; 1359 wmm_rule = &intersected_rule->wmm_rule; 1360 1361 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1362 freq_range2->start_freq_khz); 1363 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1364 freq_range2->end_freq_khz); 1365 1366 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1367 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1368 1369 if (rule1->flags & NL80211_RRF_AUTO_BW) 1370 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1371 if (rule2->flags & NL80211_RRF_AUTO_BW) 1372 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1373 1374 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1375 1376 intersected_rule->flags = rule1->flags | rule2->flags; 1377 1378 /* 1379 * In case NL80211_RRF_AUTO_BW requested for both rules 1380 * set AUTO_BW in intersected rule also. Next we will 1381 * calculate BW correctly in handle_channel function. 1382 * In other case remove AUTO_BW flag while we calculate 1383 * maximum bandwidth correctly and auto calculation is 1384 * not required. 1385 */ 1386 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1387 (rule2->flags & NL80211_RRF_AUTO_BW)) 1388 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1389 else 1390 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1391 1392 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1393 if (freq_range->max_bandwidth_khz > freq_diff) 1394 freq_range->max_bandwidth_khz = freq_diff; 1395 1396 power_rule->max_eirp = min(power_rule1->max_eirp, 1397 power_rule2->max_eirp); 1398 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1399 power_rule2->max_antenna_gain); 1400 1401 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1402 rule2->dfs_cac_ms); 1403 1404 if (rule1->has_wmm && rule2->has_wmm) { 1405 u8 ac; 1406 1407 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1408 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1409 &wmm_rule2->client[ac], 1410 &wmm_rule->client[ac]); 1411 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1412 &wmm_rule2->ap[ac], 1413 &wmm_rule->ap[ac]); 1414 } 1415 1416 intersected_rule->has_wmm = true; 1417 } else if (rule1->has_wmm) { 1418 *wmm_rule = *wmm_rule1; 1419 intersected_rule->has_wmm = true; 1420 } else if (rule2->has_wmm) { 1421 *wmm_rule = *wmm_rule2; 1422 intersected_rule->has_wmm = true; 1423 } else { 1424 intersected_rule->has_wmm = false; 1425 } 1426 1427 if (!is_valid_reg_rule(intersected_rule)) 1428 return -EINVAL; 1429 1430 return 0; 1431 } 1432 1433 /* check whether old rule contains new rule */ 1434 static bool rule_contains(struct ieee80211_reg_rule *r1, 1435 struct ieee80211_reg_rule *r2) 1436 { 1437 /* for simplicity, currently consider only same flags */ 1438 if (r1->flags != r2->flags) 1439 return false; 1440 1441 /* verify r1 is more restrictive */ 1442 if ((r1->power_rule.max_antenna_gain > 1443 r2->power_rule.max_antenna_gain) || 1444 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1445 return false; 1446 1447 /* make sure r2's range is contained within r1 */ 1448 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1449 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1450 return false; 1451 1452 /* and finally verify that r1.max_bw >= r2.max_bw */ 1453 if (r1->freq_range.max_bandwidth_khz < 1454 r2->freq_range.max_bandwidth_khz) 1455 return false; 1456 1457 return true; 1458 } 1459 1460 /* add or extend current rules. do nothing if rule is already contained */ 1461 static void add_rule(struct ieee80211_reg_rule *rule, 1462 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1463 { 1464 struct ieee80211_reg_rule *tmp_rule; 1465 int i; 1466 1467 for (i = 0; i < *n_rules; i++) { 1468 tmp_rule = ®_rules[i]; 1469 /* rule is already contained - do nothing */ 1470 if (rule_contains(tmp_rule, rule)) 1471 return; 1472 1473 /* extend rule if possible */ 1474 if (rule_contains(rule, tmp_rule)) { 1475 memcpy(tmp_rule, rule, sizeof(*rule)); 1476 return; 1477 } 1478 } 1479 1480 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1481 (*n_rules)++; 1482 } 1483 1484 /** 1485 * regdom_intersect - do the intersection between two regulatory domains 1486 * @rd1: first regulatory domain 1487 * @rd2: second regulatory domain 1488 * 1489 * Use this function to get the intersection between two regulatory domains. 1490 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1491 * as no one single alpha2 can represent this regulatory domain. 1492 * 1493 * Returns a pointer to the regulatory domain structure which will hold the 1494 * resulting intersection of rules between rd1 and rd2. We will 1495 * kzalloc() this structure for you. 1496 * 1497 * Returns: the intersected regdomain 1498 */ 1499 static struct ieee80211_regdomain * 1500 regdom_intersect(const struct ieee80211_regdomain *rd1, 1501 const struct ieee80211_regdomain *rd2) 1502 { 1503 int r; 1504 unsigned int x, y; 1505 unsigned int num_rules = 0; 1506 const struct ieee80211_reg_rule *rule1, *rule2; 1507 struct ieee80211_reg_rule intersected_rule; 1508 struct ieee80211_regdomain *rd; 1509 1510 if (!rd1 || !rd2) 1511 return NULL; 1512 1513 /* 1514 * First we get a count of the rules we'll need, then we actually 1515 * build them. This is to so we can malloc() and free() a 1516 * regdomain once. The reason we use reg_rules_intersect() here 1517 * is it will return -EINVAL if the rule computed makes no sense. 1518 * All rules that do check out OK are valid. 1519 */ 1520 1521 for (x = 0; x < rd1->n_reg_rules; x++) { 1522 rule1 = &rd1->reg_rules[x]; 1523 for (y = 0; y < rd2->n_reg_rules; y++) { 1524 rule2 = &rd2->reg_rules[y]; 1525 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1526 &intersected_rule)) 1527 num_rules++; 1528 } 1529 } 1530 1531 if (!num_rules) 1532 return NULL; 1533 1534 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1535 if (!rd) 1536 return NULL; 1537 1538 for (x = 0; x < rd1->n_reg_rules; x++) { 1539 rule1 = &rd1->reg_rules[x]; 1540 for (y = 0; y < rd2->n_reg_rules; y++) { 1541 rule2 = &rd2->reg_rules[y]; 1542 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1543 &intersected_rule); 1544 /* 1545 * No need to memset here the intersected rule here as 1546 * we're not using the stack anymore 1547 */ 1548 if (r) 1549 continue; 1550 1551 add_rule(&intersected_rule, rd->reg_rules, 1552 &rd->n_reg_rules); 1553 } 1554 } 1555 1556 rd->alpha2[0] = '9'; 1557 rd->alpha2[1] = '8'; 1558 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1559 rd2->dfs_region); 1560 1561 return rd; 1562 } 1563 1564 /* 1565 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1566 * want to just have the channel structure use these 1567 */ 1568 static u32 map_regdom_flags(u32 rd_flags) 1569 { 1570 u32 channel_flags = 0; 1571 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1572 channel_flags |= IEEE80211_CHAN_NO_IR; 1573 if (rd_flags & NL80211_RRF_DFS) 1574 channel_flags |= IEEE80211_CHAN_RADAR; 1575 if (rd_flags & NL80211_RRF_NO_OFDM) 1576 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1577 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1578 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1579 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1580 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1581 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1582 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1583 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1584 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1585 if (rd_flags & NL80211_RRF_NO_80MHZ) 1586 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1587 if (rd_flags & NL80211_RRF_NO_160MHZ) 1588 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1589 if (rd_flags & NL80211_RRF_NO_HE) 1590 channel_flags |= IEEE80211_CHAN_NO_HE; 1591 if (rd_flags & NL80211_RRF_NO_320MHZ) 1592 channel_flags |= IEEE80211_CHAN_NO_320MHZ; 1593 if (rd_flags & NL80211_RRF_NO_EHT) 1594 channel_flags |= IEEE80211_CHAN_NO_EHT; 1595 if (rd_flags & NL80211_RRF_DFS_CONCURRENT) 1596 channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT; 1597 if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT) 1598 channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT; 1599 if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT) 1600 channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT; 1601 if (rd_flags & NL80211_RRF_PSD) 1602 channel_flags |= IEEE80211_CHAN_PSD; 1603 if (rd_flags & NL80211_RRF_ALLOW_6GHZ_VLP_AP) 1604 channel_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP; 1605 if (rd_flags & NL80211_RRF_ALLOW_20MHZ_ACTIVITY) 1606 channel_flags |= IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY; 1607 return channel_flags; 1608 } 1609 1610 static const struct ieee80211_reg_rule * 1611 freq_reg_info_regd(u32 center_freq, 1612 const struct ieee80211_regdomain *regd, u32 bw) 1613 { 1614 int i; 1615 bool band_rule_found = false; 1616 bool bw_fits = false; 1617 1618 if (!regd) 1619 return ERR_PTR(-EINVAL); 1620 1621 for (i = 0; i < regd->n_reg_rules; i++) { 1622 const struct ieee80211_reg_rule *rr; 1623 const struct ieee80211_freq_range *fr = NULL; 1624 1625 rr = ®d->reg_rules[i]; 1626 fr = &rr->freq_range; 1627 1628 /* 1629 * We only need to know if one frequency rule was 1630 * in center_freq's band, that's enough, so let's 1631 * not overwrite it once found 1632 */ 1633 if (!band_rule_found) 1634 band_rule_found = freq_in_rule_band(fr, center_freq); 1635 1636 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1637 1638 if (band_rule_found && bw_fits) 1639 return rr; 1640 } 1641 1642 if (!band_rule_found) 1643 return ERR_PTR(-ERANGE); 1644 1645 return ERR_PTR(-EINVAL); 1646 } 1647 1648 static const struct ieee80211_reg_rule * 1649 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1650 { 1651 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1652 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1653 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE); 1654 int i = ARRAY_SIZE(bws) - 1; 1655 u32 bw; 1656 1657 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1658 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1659 if (!IS_ERR(reg_rule)) 1660 return reg_rule; 1661 } 1662 1663 return reg_rule; 1664 } 1665 1666 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1667 u32 center_freq) 1668 { 1669 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1670 1671 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1672 } 1673 EXPORT_SYMBOL(freq_reg_info); 1674 1675 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1676 { 1677 switch (initiator) { 1678 case NL80211_REGDOM_SET_BY_CORE: 1679 return "core"; 1680 case NL80211_REGDOM_SET_BY_USER: 1681 return "user"; 1682 case NL80211_REGDOM_SET_BY_DRIVER: 1683 return "driver"; 1684 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1685 return "country element"; 1686 default: 1687 WARN_ON(1); 1688 return "bug"; 1689 } 1690 } 1691 EXPORT_SYMBOL(reg_initiator_name); 1692 1693 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1694 const struct ieee80211_reg_rule *reg_rule, 1695 const struct ieee80211_channel *chan) 1696 { 1697 const struct ieee80211_freq_range *freq_range = NULL; 1698 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1699 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1700 1701 freq_range = ®_rule->freq_range; 1702 1703 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1704 center_freq_khz = ieee80211_channel_to_khz(chan); 1705 /* Check if auto calculation requested */ 1706 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1707 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1708 1709 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1710 if (!cfg80211_does_bw_fit_range(freq_range, 1711 center_freq_khz, 1712 MHZ_TO_KHZ(10))) 1713 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1714 if (!cfg80211_does_bw_fit_range(freq_range, 1715 center_freq_khz, 1716 MHZ_TO_KHZ(20))) 1717 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1718 1719 if (is_s1g) { 1720 /* S1G is strict about non overlapping channels. We can 1721 * calculate which bandwidth is allowed per channel by finding 1722 * the largest bandwidth which cleanly divides the freq_range. 1723 */ 1724 int edge_offset; 1725 int ch_bw = max_bandwidth_khz; 1726 1727 while (ch_bw) { 1728 edge_offset = (center_freq_khz - ch_bw / 2) - 1729 freq_range->start_freq_khz; 1730 if (edge_offset % ch_bw == 0) { 1731 switch (KHZ_TO_MHZ(ch_bw)) { 1732 case 1: 1733 bw_flags |= IEEE80211_CHAN_1MHZ; 1734 break; 1735 case 2: 1736 bw_flags |= IEEE80211_CHAN_2MHZ; 1737 break; 1738 case 4: 1739 bw_flags |= IEEE80211_CHAN_4MHZ; 1740 break; 1741 case 8: 1742 bw_flags |= IEEE80211_CHAN_8MHZ; 1743 break; 1744 case 16: 1745 bw_flags |= IEEE80211_CHAN_16MHZ; 1746 break; 1747 default: 1748 /* If we got here, no bandwidths fit on 1749 * this frequency, ie. band edge. 1750 */ 1751 bw_flags |= IEEE80211_CHAN_DISABLED; 1752 break; 1753 } 1754 break; 1755 } 1756 ch_bw /= 2; 1757 } 1758 } else { 1759 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1760 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1761 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1762 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1763 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1764 bw_flags |= IEEE80211_CHAN_NO_HT40; 1765 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1766 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1767 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1768 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1769 if (max_bandwidth_khz < MHZ_TO_KHZ(320)) 1770 bw_flags |= IEEE80211_CHAN_NO_320MHZ; 1771 } 1772 return bw_flags; 1773 } 1774 1775 static void handle_channel_single_rule(struct wiphy *wiphy, 1776 enum nl80211_reg_initiator initiator, 1777 struct ieee80211_channel *chan, 1778 u32 flags, 1779 struct regulatory_request *lr, 1780 struct wiphy *request_wiphy, 1781 const struct ieee80211_reg_rule *reg_rule) 1782 { 1783 u32 bw_flags = 0; 1784 const struct ieee80211_power_rule *power_rule = NULL; 1785 const struct ieee80211_regdomain *regd; 1786 1787 regd = reg_get_regdomain(wiphy); 1788 1789 power_rule = ®_rule->power_rule; 1790 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1791 1792 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1793 request_wiphy && request_wiphy == wiphy && 1794 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1795 /* 1796 * This guarantees the driver's requested regulatory domain 1797 * will always be used as a base for further regulatory 1798 * settings 1799 */ 1800 chan->flags = chan->orig_flags = 1801 map_regdom_flags(reg_rule->flags) | bw_flags; 1802 chan->max_antenna_gain = chan->orig_mag = 1803 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1804 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1805 (int) MBM_TO_DBM(power_rule->max_eirp); 1806 1807 if (chan->flags & IEEE80211_CHAN_RADAR) { 1808 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1809 if (reg_rule->dfs_cac_ms) 1810 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1811 } 1812 1813 if (chan->flags & IEEE80211_CHAN_PSD) 1814 chan->psd = reg_rule->psd; 1815 1816 return; 1817 } 1818 1819 chan->dfs_state = NL80211_DFS_USABLE; 1820 chan->dfs_state_entered = jiffies; 1821 1822 chan->beacon_found = false; 1823 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1824 chan->max_antenna_gain = 1825 min_t(int, chan->orig_mag, 1826 MBI_TO_DBI(power_rule->max_antenna_gain)); 1827 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1828 1829 if (chan->flags & IEEE80211_CHAN_RADAR) { 1830 if (reg_rule->dfs_cac_ms) 1831 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1832 else 1833 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1834 } 1835 1836 if (chan->flags & IEEE80211_CHAN_PSD) 1837 chan->psd = reg_rule->psd; 1838 1839 if (chan->orig_mpwr) { 1840 /* 1841 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1842 * will always follow the passed country IE power settings. 1843 */ 1844 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1845 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1846 chan->max_power = chan->max_reg_power; 1847 else 1848 chan->max_power = min(chan->orig_mpwr, 1849 chan->max_reg_power); 1850 } else 1851 chan->max_power = chan->max_reg_power; 1852 } 1853 1854 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1855 enum nl80211_reg_initiator initiator, 1856 struct ieee80211_channel *chan, 1857 u32 flags, 1858 struct regulatory_request *lr, 1859 struct wiphy *request_wiphy, 1860 const struct ieee80211_reg_rule *rrule1, 1861 const struct ieee80211_reg_rule *rrule2, 1862 struct ieee80211_freq_range *comb_range) 1863 { 1864 u32 bw_flags1 = 0; 1865 u32 bw_flags2 = 0; 1866 const struct ieee80211_power_rule *power_rule1 = NULL; 1867 const struct ieee80211_power_rule *power_rule2 = NULL; 1868 const struct ieee80211_regdomain *regd; 1869 1870 regd = reg_get_regdomain(wiphy); 1871 1872 power_rule1 = &rrule1->power_rule; 1873 power_rule2 = &rrule2->power_rule; 1874 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1875 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1876 1877 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1878 request_wiphy && request_wiphy == wiphy && 1879 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1880 /* This guarantees the driver's requested regulatory domain 1881 * will always be used as a base for further regulatory 1882 * settings 1883 */ 1884 chan->flags = 1885 map_regdom_flags(rrule1->flags) | 1886 map_regdom_flags(rrule2->flags) | 1887 bw_flags1 | 1888 bw_flags2; 1889 chan->orig_flags = chan->flags; 1890 chan->max_antenna_gain = 1891 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1892 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1893 chan->orig_mag = chan->max_antenna_gain; 1894 chan->max_reg_power = 1895 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1896 MBM_TO_DBM(power_rule2->max_eirp)); 1897 chan->max_power = chan->max_reg_power; 1898 chan->orig_mpwr = chan->max_reg_power; 1899 1900 if (chan->flags & IEEE80211_CHAN_RADAR) { 1901 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1902 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1903 chan->dfs_cac_ms = max_t(unsigned int, 1904 rrule1->dfs_cac_ms, 1905 rrule2->dfs_cac_ms); 1906 } 1907 1908 if ((rrule1->flags & NL80211_RRF_PSD) && 1909 (rrule2->flags & NL80211_RRF_PSD)) 1910 chan->psd = min_t(s8, rrule1->psd, rrule2->psd); 1911 else 1912 chan->flags &= ~NL80211_RRF_PSD; 1913 1914 return; 1915 } 1916 1917 chan->dfs_state = NL80211_DFS_USABLE; 1918 chan->dfs_state_entered = jiffies; 1919 1920 chan->beacon_found = false; 1921 chan->flags = flags | bw_flags1 | bw_flags2 | 1922 map_regdom_flags(rrule1->flags) | 1923 map_regdom_flags(rrule2->flags); 1924 1925 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1926 * (otherwise no adj. rule case), recheck therefore 1927 */ 1928 if (cfg80211_does_bw_fit_range(comb_range, 1929 ieee80211_channel_to_khz(chan), 1930 MHZ_TO_KHZ(10))) 1931 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1932 if (cfg80211_does_bw_fit_range(comb_range, 1933 ieee80211_channel_to_khz(chan), 1934 MHZ_TO_KHZ(20))) 1935 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1936 1937 chan->max_antenna_gain = 1938 min_t(int, chan->orig_mag, 1939 min_t(int, 1940 MBI_TO_DBI(power_rule1->max_antenna_gain), 1941 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1942 chan->max_reg_power = min_t(int, 1943 MBM_TO_DBM(power_rule1->max_eirp), 1944 MBM_TO_DBM(power_rule2->max_eirp)); 1945 1946 if (chan->flags & IEEE80211_CHAN_RADAR) { 1947 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1948 chan->dfs_cac_ms = max_t(unsigned int, 1949 rrule1->dfs_cac_ms, 1950 rrule2->dfs_cac_ms); 1951 else 1952 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1953 } 1954 1955 if (chan->orig_mpwr) { 1956 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1957 * will always follow the passed country IE power settings. 1958 */ 1959 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1960 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1961 chan->max_power = chan->max_reg_power; 1962 else 1963 chan->max_power = min(chan->orig_mpwr, 1964 chan->max_reg_power); 1965 } else { 1966 chan->max_power = chan->max_reg_power; 1967 } 1968 } 1969 1970 /* Note that right now we assume the desired channel bandwidth 1971 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1972 * per channel, the primary and the extension channel). 1973 */ 1974 static void handle_channel(struct wiphy *wiphy, 1975 enum nl80211_reg_initiator initiator, 1976 struct ieee80211_channel *chan) 1977 { 1978 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1979 struct regulatory_request *lr = get_last_request(); 1980 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1981 const struct ieee80211_reg_rule *rrule = NULL; 1982 const struct ieee80211_reg_rule *rrule1 = NULL; 1983 const struct ieee80211_reg_rule *rrule2 = NULL; 1984 1985 u32 flags = chan->orig_flags; 1986 1987 rrule = freq_reg_info(wiphy, orig_chan_freq); 1988 if (IS_ERR(rrule)) { 1989 /* check for adjacent match, therefore get rules for 1990 * chan - 20 MHz and chan + 20 MHz and test 1991 * if reg rules are adjacent 1992 */ 1993 rrule1 = freq_reg_info(wiphy, 1994 orig_chan_freq - MHZ_TO_KHZ(20)); 1995 rrule2 = freq_reg_info(wiphy, 1996 orig_chan_freq + MHZ_TO_KHZ(20)); 1997 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 1998 struct ieee80211_freq_range comb_range; 1999 2000 if (rrule1->freq_range.end_freq_khz != 2001 rrule2->freq_range.start_freq_khz) 2002 goto disable_chan; 2003 2004 comb_range.start_freq_khz = 2005 rrule1->freq_range.start_freq_khz; 2006 comb_range.end_freq_khz = 2007 rrule2->freq_range.end_freq_khz; 2008 comb_range.max_bandwidth_khz = 2009 min_t(u32, 2010 rrule1->freq_range.max_bandwidth_khz, 2011 rrule2->freq_range.max_bandwidth_khz); 2012 2013 if (!cfg80211_does_bw_fit_range(&comb_range, 2014 orig_chan_freq, 2015 MHZ_TO_KHZ(20))) 2016 goto disable_chan; 2017 2018 handle_channel_adjacent_rules(wiphy, initiator, chan, 2019 flags, lr, request_wiphy, 2020 rrule1, rrule2, 2021 &comb_range); 2022 return; 2023 } 2024 2025 disable_chan: 2026 /* We will disable all channels that do not match our 2027 * received regulatory rule unless the hint is coming 2028 * from a Country IE and the Country IE had no information 2029 * about a band. The IEEE 802.11 spec allows for an AP 2030 * to send only a subset of the regulatory rules allowed, 2031 * so an AP in the US that only supports 2.4 GHz may only send 2032 * a country IE with information for the 2.4 GHz band 2033 * while 5 GHz is still supported. 2034 */ 2035 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2036 PTR_ERR(rrule) == -ERANGE) 2037 return; 2038 2039 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2040 request_wiphy && request_wiphy == wiphy && 2041 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2042 pr_debug("Disabling freq %d.%03d MHz for good\n", 2043 chan->center_freq, chan->freq_offset); 2044 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2045 chan->flags = chan->orig_flags; 2046 } else { 2047 pr_debug("Disabling freq %d.%03d MHz\n", 2048 chan->center_freq, chan->freq_offset); 2049 chan->flags |= IEEE80211_CHAN_DISABLED; 2050 } 2051 return; 2052 } 2053 2054 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2055 request_wiphy, rrule); 2056 } 2057 2058 static void handle_band(struct wiphy *wiphy, 2059 enum nl80211_reg_initiator initiator, 2060 struct ieee80211_supported_band *sband) 2061 { 2062 unsigned int i; 2063 2064 if (!sband) 2065 return; 2066 2067 for (i = 0; i < sband->n_channels; i++) 2068 handle_channel(wiphy, initiator, &sband->channels[i]); 2069 } 2070 2071 static bool reg_request_cell_base(struct regulatory_request *request) 2072 { 2073 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2074 return false; 2075 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2076 } 2077 2078 bool reg_last_request_cell_base(void) 2079 { 2080 return reg_request_cell_base(get_last_request()); 2081 } 2082 2083 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2084 /* Core specific check */ 2085 static enum reg_request_treatment 2086 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2087 { 2088 struct regulatory_request *lr = get_last_request(); 2089 2090 if (!reg_num_devs_support_basehint) 2091 return REG_REQ_IGNORE; 2092 2093 if (reg_request_cell_base(lr) && 2094 !regdom_changes(pending_request->alpha2)) 2095 return REG_REQ_ALREADY_SET; 2096 2097 return REG_REQ_OK; 2098 } 2099 2100 /* Device specific check */ 2101 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2102 { 2103 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2104 } 2105 #else 2106 static enum reg_request_treatment 2107 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2108 { 2109 return REG_REQ_IGNORE; 2110 } 2111 2112 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2113 { 2114 return true; 2115 } 2116 #endif 2117 2118 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2119 { 2120 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2121 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2122 return true; 2123 return false; 2124 } 2125 2126 static bool ignore_reg_update(struct wiphy *wiphy, 2127 enum nl80211_reg_initiator initiator) 2128 { 2129 struct regulatory_request *lr = get_last_request(); 2130 2131 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2132 return true; 2133 2134 if (!lr) { 2135 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2136 reg_initiator_name(initiator)); 2137 return true; 2138 } 2139 2140 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2141 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2142 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2143 reg_initiator_name(initiator)); 2144 return true; 2145 } 2146 2147 /* 2148 * wiphy->regd will be set once the device has its own 2149 * desired regulatory domain set 2150 */ 2151 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2152 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2153 !is_world_regdom(lr->alpha2)) { 2154 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2155 reg_initiator_name(initiator)); 2156 return true; 2157 } 2158 2159 if (reg_request_cell_base(lr)) 2160 return reg_dev_ignore_cell_hint(wiphy); 2161 2162 return false; 2163 } 2164 2165 static bool reg_is_world_roaming(struct wiphy *wiphy) 2166 { 2167 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2168 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2169 struct regulatory_request *lr = get_last_request(); 2170 2171 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2172 return true; 2173 2174 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2175 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2176 return true; 2177 2178 return false; 2179 } 2180 2181 static void reg_call_notifier(struct wiphy *wiphy, 2182 struct regulatory_request *request) 2183 { 2184 if (wiphy->reg_notifier) 2185 wiphy->reg_notifier(wiphy, request); 2186 } 2187 2188 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2189 struct reg_beacon *reg_beacon) 2190 { 2191 struct ieee80211_supported_band *sband; 2192 struct ieee80211_channel *chan; 2193 bool channel_changed = false; 2194 struct ieee80211_channel chan_before; 2195 struct regulatory_request *lr = get_last_request(); 2196 2197 sband = wiphy->bands[reg_beacon->chan.band]; 2198 chan = &sband->channels[chan_idx]; 2199 2200 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2201 return; 2202 2203 if (chan->beacon_found) 2204 return; 2205 2206 chan->beacon_found = true; 2207 2208 if (!reg_is_world_roaming(wiphy)) 2209 return; 2210 2211 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2212 return; 2213 2214 chan_before = *chan; 2215 2216 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2217 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2218 channel_changed = true; 2219 } 2220 2221 if (channel_changed) { 2222 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2223 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON) 2224 reg_call_notifier(wiphy, lr); 2225 } 2226 } 2227 2228 /* 2229 * Called when a scan on a wiphy finds a beacon on 2230 * new channel 2231 */ 2232 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2233 struct reg_beacon *reg_beacon) 2234 { 2235 unsigned int i; 2236 struct ieee80211_supported_band *sband; 2237 2238 if (!wiphy->bands[reg_beacon->chan.band]) 2239 return; 2240 2241 sband = wiphy->bands[reg_beacon->chan.band]; 2242 2243 for (i = 0; i < sband->n_channels; i++) 2244 handle_reg_beacon(wiphy, i, reg_beacon); 2245 } 2246 2247 /* 2248 * Called upon reg changes or a new wiphy is added 2249 */ 2250 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2251 { 2252 unsigned int i; 2253 struct ieee80211_supported_band *sband; 2254 struct reg_beacon *reg_beacon; 2255 2256 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2257 if (!wiphy->bands[reg_beacon->chan.band]) 2258 continue; 2259 sband = wiphy->bands[reg_beacon->chan.band]; 2260 for (i = 0; i < sband->n_channels; i++) 2261 handle_reg_beacon(wiphy, i, reg_beacon); 2262 } 2263 } 2264 2265 /* Reap the advantages of previously found beacons */ 2266 static void reg_process_beacons(struct wiphy *wiphy) 2267 { 2268 /* 2269 * Means we are just firing up cfg80211, so no beacons would 2270 * have been processed yet. 2271 */ 2272 if (!last_request) 2273 return; 2274 wiphy_update_beacon_reg(wiphy); 2275 } 2276 2277 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2278 { 2279 if (!chan) 2280 return false; 2281 if (chan->flags & IEEE80211_CHAN_DISABLED) 2282 return false; 2283 /* This would happen when regulatory rules disallow HT40 completely */ 2284 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2285 return false; 2286 return true; 2287 } 2288 2289 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2290 struct ieee80211_channel *channel) 2291 { 2292 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2293 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2294 const struct ieee80211_regdomain *regd; 2295 unsigned int i; 2296 u32 flags; 2297 2298 if (!is_ht40_allowed(channel)) { 2299 channel->flags |= IEEE80211_CHAN_NO_HT40; 2300 return; 2301 } 2302 2303 /* 2304 * We need to ensure the extension channels exist to 2305 * be able to use HT40- or HT40+, this finds them (or not) 2306 */ 2307 for (i = 0; i < sband->n_channels; i++) { 2308 struct ieee80211_channel *c = &sband->channels[i]; 2309 2310 if (c->center_freq == (channel->center_freq - 20)) 2311 channel_before = c; 2312 if (c->center_freq == (channel->center_freq + 20)) 2313 channel_after = c; 2314 } 2315 2316 flags = 0; 2317 regd = get_wiphy_regdom(wiphy); 2318 if (regd) { 2319 const struct ieee80211_reg_rule *reg_rule = 2320 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2321 regd, MHZ_TO_KHZ(20)); 2322 2323 if (!IS_ERR(reg_rule)) 2324 flags = reg_rule->flags; 2325 } 2326 2327 /* 2328 * Please note that this assumes target bandwidth is 20 MHz, 2329 * if that ever changes we also need to change the below logic 2330 * to include that as well. 2331 */ 2332 if (!is_ht40_allowed(channel_before) || 2333 flags & NL80211_RRF_NO_HT40MINUS) 2334 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2335 else 2336 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2337 2338 if (!is_ht40_allowed(channel_after) || 2339 flags & NL80211_RRF_NO_HT40PLUS) 2340 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2341 else 2342 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2343 } 2344 2345 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2346 struct ieee80211_supported_band *sband) 2347 { 2348 unsigned int i; 2349 2350 if (!sband) 2351 return; 2352 2353 for (i = 0; i < sband->n_channels; i++) 2354 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2355 } 2356 2357 static void reg_process_ht_flags(struct wiphy *wiphy) 2358 { 2359 enum nl80211_band band; 2360 2361 if (!wiphy) 2362 return; 2363 2364 for (band = 0; band < NUM_NL80211_BANDS; band++) 2365 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2366 } 2367 2368 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2369 { 2370 struct cfg80211_chan_def chandef = {}; 2371 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2372 enum nl80211_iftype iftype; 2373 bool ret; 2374 int link; 2375 2376 iftype = wdev->iftype; 2377 2378 /* make sure the interface is active */ 2379 if (!wdev->netdev || !netif_running(wdev->netdev)) 2380 return true; 2381 2382 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) { 2383 struct ieee80211_channel *chan; 2384 2385 if (!wdev->valid_links && link > 0) 2386 break; 2387 if (wdev->valid_links && !(wdev->valid_links & BIT(link))) 2388 continue; 2389 switch (iftype) { 2390 case NL80211_IFTYPE_AP: 2391 case NL80211_IFTYPE_P2P_GO: 2392 if (!wdev->links[link].ap.beacon_interval) 2393 continue; 2394 chandef = wdev->links[link].ap.chandef; 2395 break; 2396 case NL80211_IFTYPE_MESH_POINT: 2397 if (!wdev->u.mesh.beacon_interval) 2398 continue; 2399 chandef = wdev->u.mesh.chandef; 2400 break; 2401 case NL80211_IFTYPE_ADHOC: 2402 if (!wdev->u.ibss.ssid_len) 2403 continue; 2404 chandef = wdev->u.ibss.chandef; 2405 break; 2406 case NL80211_IFTYPE_STATION: 2407 case NL80211_IFTYPE_P2P_CLIENT: 2408 /* Maybe we could consider disabling that link only? */ 2409 if (!wdev->links[link].client.current_bss) 2410 continue; 2411 2412 chan = wdev->links[link].client.current_bss->pub.channel; 2413 if (!chan) 2414 continue; 2415 2416 if (!rdev->ops->get_channel || 2417 rdev_get_channel(rdev, wdev, link, &chandef)) 2418 cfg80211_chandef_create(&chandef, chan, 2419 NL80211_CHAN_NO_HT); 2420 break; 2421 case NL80211_IFTYPE_MONITOR: 2422 case NL80211_IFTYPE_AP_VLAN: 2423 case NL80211_IFTYPE_P2P_DEVICE: 2424 /* no enforcement required */ 2425 break; 2426 case NL80211_IFTYPE_OCB: 2427 if (!wdev->u.ocb.chandef.chan) 2428 continue; 2429 chandef = wdev->u.ocb.chandef; 2430 break; 2431 case NL80211_IFTYPE_NAN: 2432 /* we have no info, but NAN is also pretty universal */ 2433 continue; 2434 default: 2435 /* others not implemented for now */ 2436 WARN_ON_ONCE(1); 2437 break; 2438 } 2439 2440 switch (iftype) { 2441 case NL80211_IFTYPE_AP: 2442 case NL80211_IFTYPE_P2P_GO: 2443 case NL80211_IFTYPE_ADHOC: 2444 case NL80211_IFTYPE_MESH_POINT: 2445 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, 2446 iftype); 2447 if (!ret) 2448 return ret; 2449 break; 2450 case NL80211_IFTYPE_STATION: 2451 case NL80211_IFTYPE_P2P_CLIENT: 2452 ret = cfg80211_chandef_usable(wiphy, &chandef, 2453 IEEE80211_CHAN_DISABLED); 2454 if (!ret) 2455 return ret; 2456 break; 2457 default: 2458 break; 2459 } 2460 } 2461 2462 return true; 2463 } 2464 2465 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2466 { 2467 struct wireless_dev *wdev; 2468 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2469 2470 guard(wiphy)(wiphy); 2471 2472 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2473 if (!reg_wdev_chan_valid(wiphy, wdev)) 2474 cfg80211_leave(rdev, wdev); 2475 } 2476 2477 static void reg_check_chans_work(struct work_struct *work) 2478 { 2479 struct cfg80211_registered_device *rdev; 2480 2481 pr_debug("Verifying active interfaces after reg change\n"); 2482 rtnl_lock(); 2483 2484 for_each_rdev(rdev) 2485 reg_leave_invalid_chans(&rdev->wiphy); 2486 2487 rtnl_unlock(); 2488 } 2489 2490 void reg_check_channels(void) 2491 { 2492 /* 2493 * Give usermode a chance to do something nicer (move to another 2494 * channel, orderly disconnection), before forcing a disconnection. 2495 */ 2496 mod_delayed_work(system_power_efficient_wq, 2497 ®_check_chans, 2498 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2499 } 2500 2501 static void wiphy_update_regulatory(struct wiphy *wiphy, 2502 enum nl80211_reg_initiator initiator) 2503 { 2504 enum nl80211_band band; 2505 struct regulatory_request *lr = get_last_request(); 2506 2507 if (ignore_reg_update(wiphy, initiator)) { 2508 /* 2509 * Regulatory updates set by CORE are ignored for custom 2510 * regulatory cards. Let us notify the changes to the driver, 2511 * as some drivers used this to restore its orig_* reg domain. 2512 */ 2513 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2514 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2515 !(wiphy->regulatory_flags & 2516 REGULATORY_WIPHY_SELF_MANAGED)) 2517 reg_call_notifier(wiphy, lr); 2518 return; 2519 } 2520 2521 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2522 2523 for (band = 0; band < NUM_NL80211_BANDS; band++) 2524 handle_band(wiphy, initiator, wiphy->bands[band]); 2525 2526 reg_process_beacons(wiphy); 2527 reg_process_ht_flags(wiphy); 2528 reg_call_notifier(wiphy, lr); 2529 } 2530 2531 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2532 { 2533 struct cfg80211_registered_device *rdev; 2534 struct wiphy *wiphy; 2535 2536 ASSERT_RTNL(); 2537 2538 for_each_rdev(rdev) { 2539 wiphy = &rdev->wiphy; 2540 wiphy_update_regulatory(wiphy, initiator); 2541 } 2542 2543 reg_check_channels(); 2544 } 2545 2546 static void handle_channel_custom(struct wiphy *wiphy, 2547 struct ieee80211_channel *chan, 2548 const struct ieee80211_regdomain *regd, 2549 u32 min_bw) 2550 { 2551 u32 bw_flags = 0; 2552 const struct ieee80211_reg_rule *reg_rule = NULL; 2553 const struct ieee80211_power_rule *power_rule = NULL; 2554 u32 bw, center_freq_khz; 2555 2556 center_freq_khz = ieee80211_channel_to_khz(chan); 2557 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2558 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2559 if (!IS_ERR(reg_rule)) 2560 break; 2561 } 2562 2563 if (IS_ERR_OR_NULL(reg_rule)) { 2564 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2565 chan->center_freq, chan->freq_offset); 2566 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2567 chan->flags |= IEEE80211_CHAN_DISABLED; 2568 } else { 2569 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2570 chan->flags = chan->orig_flags; 2571 } 2572 return; 2573 } 2574 2575 power_rule = ®_rule->power_rule; 2576 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2577 2578 chan->dfs_state_entered = jiffies; 2579 chan->dfs_state = NL80211_DFS_USABLE; 2580 2581 chan->beacon_found = false; 2582 2583 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2584 chan->flags = chan->orig_flags | bw_flags | 2585 map_regdom_flags(reg_rule->flags); 2586 else 2587 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2588 2589 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2590 chan->max_reg_power = chan->max_power = 2591 (int) MBM_TO_DBM(power_rule->max_eirp); 2592 2593 if (chan->flags & IEEE80211_CHAN_RADAR) { 2594 if (reg_rule->dfs_cac_ms) 2595 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2596 else 2597 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2598 } 2599 2600 if (chan->flags & IEEE80211_CHAN_PSD) 2601 chan->psd = reg_rule->psd; 2602 2603 chan->max_power = chan->max_reg_power; 2604 } 2605 2606 static void handle_band_custom(struct wiphy *wiphy, 2607 struct ieee80211_supported_band *sband, 2608 const struct ieee80211_regdomain *regd) 2609 { 2610 unsigned int i; 2611 2612 if (!sband) 2613 return; 2614 2615 /* 2616 * We currently assume that you always want at least 20 MHz, 2617 * otherwise channel 12 might get enabled if this rule is 2618 * compatible to US, which permits 2402 - 2472 MHz. 2619 */ 2620 for (i = 0; i < sband->n_channels; i++) 2621 handle_channel_custom(wiphy, &sband->channels[i], regd, 2622 MHZ_TO_KHZ(20)); 2623 } 2624 2625 /* Used by drivers prior to wiphy registration */ 2626 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2627 const struct ieee80211_regdomain *regd) 2628 { 2629 const struct ieee80211_regdomain *new_regd, *tmp; 2630 enum nl80211_band band; 2631 unsigned int bands_set = 0; 2632 2633 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2634 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2635 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2636 2637 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2638 if (!wiphy->bands[band]) 2639 continue; 2640 handle_band_custom(wiphy, wiphy->bands[band], regd); 2641 bands_set++; 2642 } 2643 2644 /* 2645 * no point in calling this if it won't have any effect 2646 * on your device's supported bands. 2647 */ 2648 WARN_ON(!bands_set); 2649 new_regd = reg_copy_regd(regd); 2650 if (IS_ERR(new_regd)) 2651 return; 2652 2653 rtnl_lock(); 2654 scoped_guard(wiphy, wiphy) { 2655 tmp = get_wiphy_regdom(wiphy); 2656 rcu_assign_pointer(wiphy->regd, new_regd); 2657 rcu_free_regdom(tmp); 2658 } 2659 rtnl_unlock(); 2660 } 2661 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2662 2663 static void reg_set_request_processed(void) 2664 { 2665 bool need_more_processing = false; 2666 struct regulatory_request *lr = get_last_request(); 2667 2668 lr->processed = true; 2669 2670 spin_lock(®_requests_lock); 2671 if (!list_empty(®_requests_list)) 2672 need_more_processing = true; 2673 spin_unlock(®_requests_lock); 2674 2675 cancel_crda_timeout(); 2676 2677 if (need_more_processing) 2678 schedule_work(®_work); 2679 } 2680 2681 /** 2682 * reg_process_hint_core - process core regulatory requests 2683 * @core_request: a pending core regulatory request 2684 * 2685 * The wireless subsystem can use this function to process 2686 * a regulatory request issued by the regulatory core. 2687 * 2688 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the 2689 * hint was processed or ignored 2690 */ 2691 static enum reg_request_treatment 2692 reg_process_hint_core(struct regulatory_request *core_request) 2693 { 2694 if (reg_query_database(core_request)) { 2695 core_request->intersect = false; 2696 core_request->processed = false; 2697 reg_update_last_request(core_request); 2698 return REG_REQ_OK; 2699 } 2700 2701 return REG_REQ_IGNORE; 2702 } 2703 2704 static enum reg_request_treatment 2705 __reg_process_hint_user(struct regulatory_request *user_request) 2706 { 2707 struct regulatory_request *lr = get_last_request(); 2708 2709 if (reg_request_cell_base(user_request)) 2710 return reg_ignore_cell_hint(user_request); 2711 2712 if (reg_request_cell_base(lr)) 2713 return REG_REQ_IGNORE; 2714 2715 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2716 return REG_REQ_INTERSECT; 2717 /* 2718 * If the user knows better the user should set the regdom 2719 * to their country before the IE is picked up 2720 */ 2721 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2722 lr->intersect) 2723 return REG_REQ_IGNORE; 2724 /* 2725 * Process user requests only after previous user/driver/core 2726 * requests have been processed 2727 */ 2728 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2729 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2730 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2731 regdom_changes(lr->alpha2)) 2732 return REG_REQ_IGNORE; 2733 2734 if (!regdom_changes(user_request->alpha2)) 2735 return REG_REQ_ALREADY_SET; 2736 2737 return REG_REQ_OK; 2738 } 2739 2740 /** 2741 * reg_process_hint_user - process user regulatory requests 2742 * @user_request: a pending user regulatory request 2743 * 2744 * The wireless subsystem can use this function to process 2745 * a regulatory request initiated by userspace. 2746 * 2747 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the 2748 * hint was processed or ignored 2749 */ 2750 static enum reg_request_treatment 2751 reg_process_hint_user(struct regulatory_request *user_request) 2752 { 2753 enum reg_request_treatment treatment; 2754 2755 treatment = __reg_process_hint_user(user_request); 2756 if (treatment == REG_REQ_IGNORE || 2757 treatment == REG_REQ_ALREADY_SET) 2758 return REG_REQ_IGNORE; 2759 2760 user_request->intersect = treatment == REG_REQ_INTERSECT; 2761 user_request->processed = false; 2762 2763 if (reg_query_database(user_request)) { 2764 reg_update_last_request(user_request); 2765 user_alpha2[0] = user_request->alpha2[0]; 2766 user_alpha2[1] = user_request->alpha2[1]; 2767 return REG_REQ_OK; 2768 } 2769 2770 return REG_REQ_IGNORE; 2771 } 2772 2773 static enum reg_request_treatment 2774 __reg_process_hint_driver(struct regulatory_request *driver_request) 2775 { 2776 struct regulatory_request *lr = get_last_request(); 2777 2778 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2779 if (regdom_changes(driver_request->alpha2)) 2780 return REG_REQ_OK; 2781 return REG_REQ_ALREADY_SET; 2782 } 2783 2784 /* 2785 * This would happen if you unplug and plug your card 2786 * back in or if you add a new device for which the previously 2787 * loaded card also agrees on the regulatory domain. 2788 */ 2789 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2790 !regdom_changes(driver_request->alpha2)) 2791 return REG_REQ_ALREADY_SET; 2792 2793 return REG_REQ_INTERSECT; 2794 } 2795 2796 /** 2797 * reg_process_hint_driver - process driver regulatory requests 2798 * @wiphy: the wireless device for the regulatory request 2799 * @driver_request: a pending driver regulatory request 2800 * 2801 * The wireless subsystem can use this function to process 2802 * a regulatory request issued by an 802.11 driver. 2803 * 2804 * Returns: one of the different reg request treatment values. 2805 */ 2806 static enum reg_request_treatment 2807 reg_process_hint_driver(struct wiphy *wiphy, 2808 struct regulatory_request *driver_request) 2809 { 2810 const struct ieee80211_regdomain *regd, *tmp; 2811 enum reg_request_treatment treatment; 2812 2813 treatment = __reg_process_hint_driver(driver_request); 2814 2815 switch (treatment) { 2816 case REG_REQ_OK: 2817 break; 2818 case REG_REQ_IGNORE: 2819 return REG_REQ_IGNORE; 2820 case REG_REQ_INTERSECT: 2821 case REG_REQ_ALREADY_SET: 2822 regd = reg_copy_regd(get_cfg80211_regdom()); 2823 if (IS_ERR(regd)) 2824 return REG_REQ_IGNORE; 2825 2826 tmp = get_wiphy_regdom(wiphy); 2827 ASSERT_RTNL(); 2828 scoped_guard(wiphy, wiphy) { 2829 rcu_assign_pointer(wiphy->regd, regd); 2830 } 2831 rcu_free_regdom(tmp); 2832 } 2833 2834 2835 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2836 driver_request->processed = false; 2837 2838 /* 2839 * Since CRDA will not be called in this case as we already 2840 * have applied the requested regulatory domain before we just 2841 * inform userspace we have processed the request 2842 */ 2843 if (treatment == REG_REQ_ALREADY_SET) { 2844 nl80211_send_reg_change_event(driver_request); 2845 reg_update_last_request(driver_request); 2846 reg_set_request_processed(); 2847 return REG_REQ_ALREADY_SET; 2848 } 2849 2850 if (reg_query_database(driver_request)) { 2851 reg_update_last_request(driver_request); 2852 return REG_REQ_OK; 2853 } 2854 2855 return REG_REQ_IGNORE; 2856 } 2857 2858 static enum reg_request_treatment 2859 __reg_process_hint_country_ie(struct wiphy *wiphy, 2860 struct regulatory_request *country_ie_request) 2861 { 2862 struct wiphy *last_wiphy = NULL; 2863 struct regulatory_request *lr = get_last_request(); 2864 2865 if (reg_request_cell_base(lr)) { 2866 /* Trust a Cell base station over the AP's country IE */ 2867 if (regdom_changes(country_ie_request->alpha2)) 2868 return REG_REQ_IGNORE; 2869 return REG_REQ_ALREADY_SET; 2870 } else { 2871 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2872 return REG_REQ_IGNORE; 2873 } 2874 2875 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2876 return -EINVAL; 2877 2878 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2879 return REG_REQ_OK; 2880 2881 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2882 2883 if (last_wiphy != wiphy) { 2884 /* 2885 * Two cards with two APs claiming different 2886 * Country IE alpha2s. We could 2887 * intersect them, but that seems unlikely 2888 * to be correct. Reject second one for now. 2889 */ 2890 if (regdom_changes(country_ie_request->alpha2)) 2891 return REG_REQ_IGNORE; 2892 return REG_REQ_ALREADY_SET; 2893 } 2894 2895 if (regdom_changes(country_ie_request->alpha2)) 2896 return REG_REQ_OK; 2897 return REG_REQ_ALREADY_SET; 2898 } 2899 2900 /** 2901 * reg_process_hint_country_ie - process regulatory requests from country IEs 2902 * @wiphy: the wireless device for the regulatory request 2903 * @country_ie_request: a regulatory request from a country IE 2904 * 2905 * The wireless subsystem can use this function to process 2906 * a regulatory request issued by a country Information Element. 2907 * 2908 * Returns: one of the different reg request treatment values. 2909 */ 2910 static enum reg_request_treatment 2911 reg_process_hint_country_ie(struct wiphy *wiphy, 2912 struct regulatory_request *country_ie_request) 2913 { 2914 enum reg_request_treatment treatment; 2915 2916 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2917 2918 switch (treatment) { 2919 case REG_REQ_OK: 2920 break; 2921 case REG_REQ_IGNORE: 2922 return REG_REQ_IGNORE; 2923 case REG_REQ_ALREADY_SET: 2924 reg_free_request(country_ie_request); 2925 return REG_REQ_ALREADY_SET; 2926 case REG_REQ_INTERSECT: 2927 /* 2928 * This doesn't happen yet, not sure we 2929 * ever want to support it for this case. 2930 */ 2931 WARN_ONCE(1, "Unexpected intersection for country elements"); 2932 return REG_REQ_IGNORE; 2933 } 2934 2935 country_ie_request->intersect = false; 2936 country_ie_request->processed = false; 2937 2938 if (reg_query_database(country_ie_request)) { 2939 reg_update_last_request(country_ie_request); 2940 return REG_REQ_OK; 2941 } 2942 2943 return REG_REQ_IGNORE; 2944 } 2945 2946 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2947 { 2948 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2949 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2950 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2951 bool dfs_domain_same; 2952 2953 rcu_read_lock(); 2954 2955 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2956 wiphy1_regd = rcu_dereference(wiphy1->regd); 2957 if (!wiphy1_regd) 2958 wiphy1_regd = cfg80211_regd; 2959 2960 wiphy2_regd = rcu_dereference(wiphy2->regd); 2961 if (!wiphy2_regd) 2962 wiphy2_regd = cfg80211_regd; 2963 2964 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2965 2966 rcu_read_unlock(); 2967 2968 return dfs_domain_same; 2969 } 2970 2971 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2972 struct ieee80211_channel *src_chan) 2973 { 2974 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2975 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2976 return; 2977 2978 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2979 src_chan->flags & IEEE80211_CHAN_DISABLED) 2980 return; 2981 2982 if (src_chan->center_freq == dst_chan->center_freq && 2983 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2984 dst_chan->dfs_state = src_chan->dfs_state; 2985 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2986 } 2987 } 2988 2989 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2990 struct wiphy *src_wiphy) 2991 { 2992 struct ieee80211_supported_band *src_sband, *dst_sband; 2993 struct ieee80211_channel *src_chan, *dst_chan; 2994 int i, j, band; 2995 2996 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2997 return; 2998 2999 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3000 dst_sband = dst_wiphy->bands[band]; 3001 src_sband = src_wiphy->bands[band]; 3002 if (!dst_sband || !src_sband) 3003 continue; 3004 3005 for (i = 0; i < dst_sband->n_channels; i++) { 3006 dst_chan = &dst_sband->channels[i]; 3007 for (j = 0; j < src_sband->n_channels; j++) { 3008 src_chan = &src_sband->channels[j]; 3009 reg_copy_dfs_chan_state(dst_chan, src_chan); 3010 } 3011 } 3012 } 3013 } 3014 3015 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 3016 { 3017 struct cfg80211_registered_device *rdev; 3018 3019 ASSERT_RTNL(); 3020 3021 for_each_rdev(rdev) { 3022 if (wiphy == &rdev->wiphy) 3023 continue; 3024 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 3025 } 3026 } 3027 3028 /* This processes *all* regulatory hints */ 3029 static void reg_process_hint(struct regulatory_request *reg_request) 3030 { 3031 struct wiphy *wiphy = NULL; 3032 enum reg_request_treatment treatment; 3033 enum nl80211_reg_initiator initiator = reg_request->initiator; 3034 3035 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 3036 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 3037 3038 switch (initiator) { 3039 case NL80211_REGDOM_SET_BY_CORE: 3040 treatment = reg_process_hint_core(reg_request); 3041 break; 3042 case NL80211_REGDOM_SET_BY_USER: 3043 treatment = reg_process_hint_user(reg_request); 3044 break; 3045 case NL80211_REGDOM_SET_BY_DRIVER: 3046 if (!wiphy) 3047 goto out_free; 3048 treatment = reg_process_hint_driver(wiphy, reg_request); 3049 break; 3050 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3051 if (!wiphy) 3052 goto out_free; 3053 treatment = reg_process_hint_country_ie(wiphy, reg_request); 3054 break; 3055 default: 3056 WARN(1, "invalid initiator %d\n", initiator); 3057 goto out_free; 3058 } 3059 3060 if (treatment == REG_REQ_IGNORE) 3061 goto out_free; 3062 3063 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 3064 "unexpected treatment value %d\n", treatment); 3065 3066 /* This is required so that the orig_* parameters are saved. 3067 * NOTE: treatment must be set for any case that reaches here! 3068 */ 3069 if (treatment == REG_REQ_ALREADY_SET && wiphy && 3070 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 3071 wiphy_update_regulatory(wiphy, initiator); 3072 wiphy_all_share_dfs_chan_state(wiphy); 3073 reg_check_channels(); 3074 } 3075 3076 return; 3077 3078 out_free: 3079 reg_free_request(reg_request); 3080 } 3081 3082 static void notify_self_managed_wiphys(struct regulatory_request *request) 3083 { 3084 struct cfg80211_registered_device *rdev; 3085 struct wiphy *wiphy; 3086 3087 for_each_rdev(rdev) { 3088 wiphy = &rdev->wiphy; 3089 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 3090 request->initiator == NL80211_REGDOM_SET_BY_USER) 3091 reg_call_notifier(wiphy, request); 3092 } 3093 } 3094 3095 /* 3096 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 3097 * Regulatory hints come on a first come first serve basis and we 3098 * must process each one atomically. 3099 */ 3100 static void reg_process_pending_hints(void) 3101 { 3102 struct regulatory_request *reg_request, *lr; 3103 3104 lr = get_last_request(); 3105 3106 /* When last_request->processed becomes true this will be rescheduled */ 3107 if (lr && !lr->processed) { 3108 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3109 return; 3110 } 3111 3112 spin_lock(®_requests_lock); 3113 3114 if (list_empty(®_requests_list)) { 3115 spin_unlock(®_requests_lock); 3116 return; 3117 } 3118 3119 reg_request = list_first_entry(®_requests_list, 3120 struct regulatory_request, 3121 list); 3122 list_del_init(®_request->list); 3123 3124 spin_unlock(®_requests_lock); 3125 3126 notify_self_managed_wiphys(reg_request); 3127 3128 reg_process_hint(reg_request); 3129 3130 lr = get_last_request(); 3131 3132 spin_lock(®_requests_lock); 3133 if (!list_empty(®_requests_list) && lr && lr->processed) 3134 schedule_work(®_work); 3135 spin_unlock(®_requests_lock); 3136 } 3137 3138 /* Processes beacon hints -- this has nothing to do with country IEs */ 3139 static void reg_process_pending_beacon_hints(void) 3140 { 3141 struct cfg80211_registered_device *rdev; 3142 struct reg_beacon *pending_beacon, *tmp; 3143 3144 /* This goes through the _pending_ beacon list */ 3145 spin_lock_bh(®_pending_beacons_lock); 3146 3147 list_for_each_entry_safe(pending_beacon, tmp, 3148 ®_pending_beacons, list) { 3149 list_del_init(&pending_beacon->list); 3150 3151 /* Applies the beacon hint to current wiphys */ 3152 for_each_rdev(rdev) 3153 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3154 3155 /* Remembers the beacon hint for new wiphys or reg changes */ 3156 list_add_tail(&pending_beacon->list, ®_beacon_list); 3157 } 3158 3159 spin_unlock_bh(®_pending_beacons_lock); 3160 } 3161 3162 static void reg_process_self_managed_hint(struct wiphy *wiphy) 3163 { 3164 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3165 const struct ieee80211_regdomain *tmp; 3166 const struct ieee80211_regdomain *regd; 3167 enum nl80211_band band; 3168 struct regulatory_request request = {}; 3169 3170 ASSERT_RTNL(); 3171 lockdep_assert_wiphy(wiphy); 3172 3173 spin_lock(®_requests_lock); 3174 regd = rdev->requested_regd; 3175 rdev->requested_regd = NULL; 3176 spin_unlock(®_requests_lock); 3177 3178 if (!regd) 3179 return; 3180 3181 tmp = get_wiphy_regdom(wiphy); 3182 rcu_assign_pointer(wiphy->regd, regd); 3183 rcu_free_regdom(tmp); 3184 3185 for (band = 0; band < NUM_NL80211_BANDS; band++) 3186 handle_band_custom(wiphy, wiphy->bands[band], regd); 3187 3188 reg_process_ht_flags(wiphy); 3189 3190 request.wiphy_idx = get_wiphy_idx(wiphy); 3191 request.alpha2[0] = regd->alpha2[0]; 3192 request.alpha2[1] = regd->alpha2[1]; 3193 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3194 3195 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER) 3196 reg_call_notifier(wiphy, &request); 3197 3198 nl80211_send_wiphy_reg_change_event(&request); 3199 } 3200 3201 static void reg_process_self_managed_hints(void) 3202 { 3203 struct cfg80211_registered_device *rdev; 3204 3205 ASSERT_RTNL(); 3206 3207 for_each_rdev(rdev) { 3208 guard(wiphy)(&rdev->wiphy); 3209 3210 reg_process_self_managed_hint(&rdev->wiphy); 3211 } 3212 3213 reg_check_channels(); 3214 } 3215 3216 static void reg_todo(struct work_struct *work) 3217 { 3218 rtnl_lock(); 3219 reg_process_pending_hints(); 3220 reg_process_pending_beacon_hints(); 3221 reg_process_self_managed_hints(); 3222 rtnl_unlock(); 3223 } 3224 3225 static void queue_regulatory_request(struct regulatory_request *request) 3226 { 3227 request->alpha2[0] = toupper(request->alpha2[0]); 3228 request->alpha2[1] = toupper(request->alpha2[1]); 3229 3230 spin_lock(®_requests_lock); 3231 list_add_tail(&request->list, ®_requests_list); 3232 spin_unlock(®_requests_lock); 3233 3234 schedule_work(®_work); 3235 } 3236 3237 /* 3238 * Core regulatory hint -- happens during cfg80211_init() 3239 * and when we restore regulatory settings. 3240 */ 3241 static int regulatory_hint_core(const char *alpha2) 3242 { 3243 struct regulatory_request *request; 3244 3245 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3246 if (!request) 3247 return -ENOMEM; 3248 3249 request->alpha2[0] = alpha2[0]; 3250 request->alpha2[1] = alpha2[1]; 3251 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3252 request->wiphy_idx = WIPHY_IDX_INVALID; 3253 3254 queue_regulatory_request(request); 3255 3256 return 0; 3257 } 3258 3259 /* User hints */ 3260 int regulatory_hint_user(const char *alpha2, 3261 enum nl80211_user_reg_hint_type user_reg_hint_type) 3262 { 3263 struct regulatory_request *request; 3264 3265 if (WARN_ON(!alpha2)) 3266 return -EINVAL; 3267 3268 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3269 return -EINVAL; 3270 3271 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3272 if (!request) 3273 return -ENOMEM; 3274 3275 request->wiphy_idx = WIPHY_IDX_INVALID; 3276 request->alpha2[0] = alpha2[0]; 3277 request->alpha2[1] = alpha2[1]; 3278 request->initiator = NL80211_REGDOM_SET_BY_USER; 3279 request->user_reg_hint_type = user_reg_hint_type; 3280 3281 /* Allow calling CRDA again */ 3282 reset_crda_timeouts(); 3283 3284 queue_regulatory_request(request); 3285 3286 return 0; 3287 } 3288 3289 void regulatory_hint_indoor(bool is_indoor, u32 portid) 3290 { 3291 spin_lock(®_indoor_lock); 3292 3293 /* It is possible that more than one user space process is trying to 3294 * configure the indoor setting. To handle such cases, clear the indoor 3295 * setting in case that some process does not think that the device 3296 * is operating in an indoor environment. In addition, if a user space 3297 * process indicates that it is controlling the indoor setting, save its 3298 * portid, i.e., make it the owner. 3299 */ 3300 reg_is_indoor = is_indoor; 3301 if (reg_is_indoor) { 3302 if (!reg_is_indoor_portid) 3303 reg_is_indoor_portid = portid; 3304 } else { 3305 reg_is_indoor_portid = 0; 3306 } 3307 3308 spin_unlock(®_indoor_lock); 3309 3310 if (!is_indoor) 3311 reg_check_channels(); 3312 } 3313 3314 void regulatory_netlink_notify(u32 portid) 3315 { 3316 spin_lock(®_indoor_lock); 3317 3318 if (reg_is_indoor_portid != portid) { 3319 spin_unlock(®_indoor_lock); 3320 return; 3321 } 3322 3323 reg_is_indoor = false; 3324 reg_is_indoor_portid = 0; 3325 3326 spin_unlock(®_indoor_lock); 3327 3328 reg_check_channels(); 3329 } 3330 3331 /* Driver hints */ 3332 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3333 { 3334 struct regulatory_request *request; 3335 3336 if (WARN_ON(!alpha2 || !wiphy)) 3337 return -EINVAL; 3338 3339 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3340 3341 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3342 if (!request) 3343 return -ENOMEM; 3344 3345 request->wiphy_idx = get_wiphy_idx(wiphy); 3346 3347 request->alpha2[0] = alpha2[0]; 3348 request->alpha2[1] = alpha2[1]; 3349 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3350 3351 /* Allow calling CRDA again */ 3352 reset_crda_timeouts(); 3353 3354 queue_regulatory_request(request); 3355 3356 return 0; 3357 } 3358 EXPORT_SYMBOL(regulatory_hint); 3359 3360 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3361 const u8 *country_ie, u8 country_ie_len) 3362 { 3363 char alpha2[2]; 3364 enum environment_cap env = ENVIRON_ANY; 3365 struct regulatory_request *request = NULL, *lr; 3366 3367 /* IE len must be evenly divisible by 2 */ 3368 if (country_ie_len & 0x01) 3369 return; 3370 3371 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3372 return; 3373 3374 request = kzalloc(sizeof(*request), GFP_KERNEL); 3375 if (!request) 3376 return; 3377 3378 alpha2[0] = country_ie[0]; 3379 alpha2[1] = country_ie[1]; 3380 3381 if (country_ie[2] == 'I') 3382 env = ENVIRON_INDOOR; 3383 else if (country_ie[2] == 'O') 3384 env = ENVIRON_OUTDOOR; 3385 3386 rcu_read_lock(); 3387 lr = get_last_request(); 3388 3389 if (unlikely(!lr)) 3390 goto out; 3391 3392 /* 3393 * We will run this only upon a successful connection on cfg80211. 3394 * We leave conflict resolution to the workqueue, where can hold 3395 * the RTNL. 3396 */ 3397 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3398 lr->wiphy_idx != WIPHY_IDX_INVALID) 3399 goto out; 3400 3401 request->wiphy_idx = get_wiphy_idx(wiphy); 3402 request->alpha2[0] = alpha2[0]; 3403 request->alpha2[1] = alpha2[1]; 3404 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3405 request->country_ie_env = env; 3406 3407 /* Allow calling CRDA again */ 3408 reset_crda_timeouts(); 3409 3410 queue_regulatory_request(request); 3411 request = NULL; 3412 out: 3413 kfree(request); 3414 rcu_read_unlock(); 3415 } 3416 3417 static void restore_alpha2(char *alpha2, bool reset_user) 3418 { 3419 /* indicates there is no alpha2 to consider for restoration */ 3420 alpha2[0] = '9'; 3421 alpha2[1] = '7'; 3422 3423 /* The user setting has precedence over the module parameter */ 3424 if (is_user_regdom_saved()) { 3425 /* Unless we're asked to ignore it and reset it */ 3426 if (reset_user) { 3427 pr_debug("Restoring regulatory settings including user preference\n"); 3428 user_alpha2[0] = '9'; 3429 user_alpha2[1] = '7'; 3430 3431 /* 3432 * If we're ignoring user settings, we still need to 3433 * check the module parameter to ensure we put things 3434 * back as they were for a full restore. 3435 */ 3436 if (!is_world_regdom(ieee80211_regdom)) { 3437 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3438 ieee80211_regdom[0], ieee80211_regdom[1]); 3439 alpha2[0] = ieee80211_regdom[0]; 3440 alpha2[1] = ieee80211_regdom[1]; 3441 } 3442 } else { 3443 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3444 user_alpha2[0], user_alpha2[1]); 3445 alpha2[0] = user_alpha2[0]; 3446 alpha2[1] = user_alpha2[1]; 3447 } 3448 } else if (!is_world_regdom(ieee80211_regdom)) { 3449 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3450 ieee80211_regdom[0], ieee80211_regdom[1]); 3451 alpha2[0] = ieee80211_regdom[0]; 3452 alpha2[1] = ieee80211_regdom[1]; 3453 } else 3454 pr_debug("Restoring regulatory settings\n"); 3455 } 3456 3457 static void restore_custom_reg_settings(struct wiphy *wiphy) 3458 { 3459 struct ieee80211_supported_band *sband; 3460 enum nl80211_band band; 3461 struct ieee80211_channel *chan; 3462 int i; 3463 3464 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3465 sband = wiphy->bands[band]; 3466 if (!sband) 3467 continue; 3468 for (i = 0; i < sband->n_channels; i++) { 3469 chan = &sband->channels[i]; 3470 chan->flags = chan->orig_flags; 3471 chan->max_antenna_gain = chan->orig_mag; 3472 chan->max_power = chan->orig_mpwr; 3473 chan->beacon_found = false; 3474 } 3475 } 3476 } 3477 3478 /* 3479 * Restoring regulatory settings involves ignoring any 3480 * possibly stale country IE information and user regulatory 3481 * settings if so desired, this includes any beacon hints 3482 * learned as we could have traveled outside to another country 3483 * after disconnection. To restore regulatory settings we do 3484 * exactly what we did at bootup: 3485 * 3486 * - send a core regulatory hint 3487 * - send a user regulatory hint if applicable 3488 * 3489 * Device drivers that send a regulatory hint for a specific country 3490 * keep their own regulatory domain on wiphy->regd so that does 3491 * not need to be remembered. 3492 */ 3493 static void restore_regulatory_settings(bool reset_user, bool cached) 3494 { 3495 char alpha2[2]; 3496 char world_alpha2[2]; 3497 struct reg_beacon *reg_beacon, *btmp; 3498 LIST_HEAD(tmp_reg_req_list); 3499 struct cfg80211_registered_device *rdev; 3500 3501 ASSERT_RTNL(); 3502 3503 /* 3504 * Clear the indoor setting in case that it is not controlled by user 3505 * space, as otherwise there is no guarantee that the device is still 3506 * operating in an indoor environment. 3507 */ 3508 spin_lock(®_indoor_lock); 3509 if (reg_is_indoor && !reg_is_indoor_portid) { 3510 reg_is_indoor = false; 3511 reg_check_channels(); 3512 } 3513 spin_unlock(®_indoor_lock); 3514 3515 reset_regdomains(true, &world_regdom); 3516 restore_alpha2(alpha2, reset_user); 3517 3518 /* 3519 * If there's any pending requests we simply 3520 * stash them to a temporary pending queue and 3521 * add then after we've restored regulatory 3522 * settings. 3523 */ 3524 spin_lock(®_requests_lock); 3525 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3526 spin_unlock(®_requests_lock); 3527 3528 /* Clear beacon hints */ 3529 spin_lock_bh(®_pending_beacons_lock); 3530 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3531 list_del(®_beacon->list); 3532 kfree(reg_beacon); 3533 } 3534 spin_unlock_bh(®_pending_beacons_lock); 3535 3536 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3537 list_del(®_beacon->list); 3538 kfree(reg_beacon); 3539 } 3540 3541 /* First restore to the basic regulatory settings */ 3542 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3543 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3544 3545 for_each_rdev(rdev) { 3546 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3547 continue; 3548 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3549 restore_custom_reg_settings(&rdev->wiphy); 3550 } 3551 3552 if (cached && (!is_an_alpha2(alpha2) || 3553 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3554 reset_regdomains(false, cfg80211_world_regdom); 3555 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3556 print_regdomain(get_cfg80211_regdom()); 3557 nl80211_send_reg_change_event(&core_request_world); 3558 reg_set_request_processed(); 3559 3560 if (is_an_alpha2(alpha2) && 3561 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3562 struct regulatory_request *ureq; 3563 3564 spin_lock(®_requests_lock); 3565 ureq = list_last_entry(®_requests_list, 3566 struct regulatory_request, 3567 list); 3568 list_del(&ureq->list); 3569 spin_unlock(®_requests_lock); 3570 3571 notify_self_managed_wiphys(ureq); 3572 reg_update_last_request(ureq); 3573 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3574 REGD_SOURCE_CACHED); 3575 } 3576 } else { 3577 regulatory_hint_core(world_alpha2); 3578 3579 /* 3580 * This restores the ieee80211_regdom module parameter 3581 * preference or the last user requested regulatory 3582 * settings, user regulatory settings takes precedence. 3583 */ 3584 if (is_an_alpha2(alpha2)) 3585 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3586 } 3587 3588 spin_lock(®_requests_lock); 3589 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3590 spin_unlock(®_requests_lock); 3591 3592 pr_debug("Kicking the queue\n"); 3593 3594 schedule_work(®_work); 3595 } 3596 3597 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3598 { 3599 struct cfg80211_registered_device *rdev; 3600 struct wireless_dev *wdev; 3601 3602 for_each_rdev(rdev) { 3603 guard(wiphy)(&rdev->wiphy); 3604 3605 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3606 if (!(wdev->wiphy->regulatory_flags & flag)) 3607 return false; 3608 } 3609 } 3610 3611 return true; 3612 } 3613 3614 void regulatory_hint_disconnect(void) 3615 { 3616 /* Restore of regulatory settings is not required when wiphy(s) 3617 * ignore IE from connected access point but clearance of beacon hints 3618 * is required when wiphy(s) supports beacon hints. 3619 */ 3620 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3621 struct reg_beacon *reg_beacon, *btmp; 3622 3623 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3624 return; 3625 3626 spin_lock_bh(®_pending_beacons_lock); 3627 list_for_each_entry_safe(reg_beacon, btmp, 3628 ®_pending_beacons, list) { 3629 list_del(®_beacon->list); 3630 kfree(reg_beacon); 3631 } 3632 spin_unlock_bh(®_pending_beacons_lock); 3633 3634 list_for_each_entry_safe(reg_beacon, btmp, 3635 ®_beacon_list, list) { 3636 list_del(®_beacon->list); 3637 kfree(reg_beacon); 3638 } 3639 3640 return; 3641 } 3642 3643 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3644 restore_regulatory_settings(false, true); 3645 } 3646 3647 static bool freq_is_chan_12_13_14(u32 freq) 3648 { 3649 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3650 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3651 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3652 return true; 3653 return false; 3654 } 3655 3656 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3657 { 3658 struct reg_beacon *pending_beacon; 3659 3660 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3661 if (ieee80211_channel_equal(beacon_chan, 3662 &pending_beacon->chan)) 3663 return true; 3664 return false; 3665 } 3666 3667 void regulatory_hint_found_beacon(struct wiphy *wiphy, 3668 struct ieee80211_channel *beacon_chan, 3669 gfp_t gfp) 3670 { 3671 struct reg_beacon *reg_beacon; 3672 bool processing; 3673 3674 if (beacon_chan->beacon_found || 3675 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3676 (beacon_chan->band == NL80211_BAND_2GHZ && 3677 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3678 return; 3679 3680 spin_lock_bh(®_pending_beacons_lock); 3681 processing = pending_reg_beacon(beacon_chan); 3682 spin_unlock_bh(®_pending_beacons_lock); 3683 3684 if (processing) 3685 return; 3686 3687 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3688 if (!reg_beacon) 3689 return; 3690 3691 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3692 beacon_chan->center_freq, beacon_chan->freq_offset, 3693 ieee80211_freq_khz_to_channel( 3694 ieee80211_channel_to_khz(beacon_chan)), 3695 wiphy_name(wiphy)); 3696 3697 memcpy(®_beacon->chan, beacon_chan, 3698 sizeof(struct ieee80211_channel)); 3699 3700 /* 3701 * Since we can be called from BH or and non-BH context 3702 * we must use spin_lock_bh() 3703 */ 3704 spin_lock_bh(®_pending_beacons_lock); 3705 list_add_tail(®_beacon->list, ®_pending_beacons); 3706 spin_unlock_bh(®_pending_beacons_lock); 3707 3708 schedule_work(®_work); 3709 } 3710 3711 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3712 { 3713 unsigned int i; 3714 const struct ieee80211_reg_rule *reg_rule = NULL; 3715 const struct ieee80211_freq_range *freq_range = NULL; 3716 const struct ieee80211_power_rule *power_rule = NULL; 3717 char bw[32], cac_time[32]; 3718 3719 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3720 3721 for (i = 0; i < rd->n_reg_rules; i++) { 3722 reg_rule = &rd->reg_rules[i]; 3723 freq_range = ®_rule->freq_range; 3724 power_rule = ®_rule->power_rule; 3725 3726 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3727 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", 3728 freq_range->max_bandwidth_khz, 3729 reg_get_max_bandwidth(rd, reg_rule)); 3730 else 3731 snprintf(bw, sizeof(bw), "%d KHz", 3732 freq_range->max_bandwidth_khz); 3733 3734 if (reg_rule->flags & NL80211_RRF_DFS) 3735 scnprintf(cac_time, sizeof(cac_time), "%u s", 3736 reg_rule->dfs_cac_ms/1000); 3737 else 3738 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3739 3740 3741 /* 3742 * There may not be documentation for max antenna gain 3743 * in certain regions 3744 */ 3745 if (power_rule->max_antenna_gain) 3746 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3747 freq_range->start_freq_khz, 3748 freq_range->end_freq_khz, 3749 bw, 3750 power_rule->max_antenna_gain, 3751 power_rule->max_eirp, 3752 cac_time); 3753 else 3754 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3755 freq_range->start_freq_khz, 3756 freq_range->end_freq_khz, 3757 bw, 3758 power_rule->max_eirp, 3759 cac_time); 3760 } 3761 } 3762 3763 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3764 { 3765 switch (dfs_region) { 3766 case NL80211_DFS_UNSET: 3767 case NL80211_DFS_FCC: 3768 case NL80211_DFS_ETSI: 3769 case NL80211_DFS_JP: 3770 return true; 3771 default: 3772 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3773 return false; 3774 } 3775 } 3776 3777 static void print_regdomain(const struct ieee80211_regdomain *rd) 3778 { 3779 struct regulatory_request *lr = get_last_request(); 3780 3781 if (is_intersected_alpha2(rd->alpha2)) { 3782 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3783 struct cfg80211_registered_device *rdev; 3784 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3785 if (rdev) { 3786 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3787 rdev->country_ie_alpha2[0], 3788 rdev->country_ie_alpha2[1]); 3789 } else 3790 pr_debug("Current regulatory domain intersected:\n"); 3791 } else 3792 pr_debug("Current regulatory domain intersected:\n"); 3793 } else if (is_world_regdom(rd->alpha2)) { 3794 pr_debug("World regulatory domain updated:\n"); 3795 } else { 3796 if (is_unknown_alpha2(rd->alpha2)) 3797 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3798 else { 3799 if (reg_request_cell_base(lr)) 3800 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3801 rd->alpha2[0], rd->alpha2[1]); 3802 else 3803 pr_debug("Regulatory domain changed to country: %c%c\n", 3804 rd->alpha2[0], rd->alpha2[1]); 3805 } 3806 } 3807 3808 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3809 print_rd_rules(rd); 3810 } 3811 3812 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3813 { 3814 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3815 print_rd_rules(rd); 3816 } 3817 3818 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3819 { 3820 if (!is_world_regdom(rd->alpha2)) 3821 return -EINVAL; 3822 update_world_regdomain(rd); 3823 return 0; 3824 } 3825 3826 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3827 struct regulatory_request *user_request) 3828 { 3829 const struct ieee80211_regdomain *intersected_rd = NULL; 3830 3831 if (!regdom_changes(rd->alpha2)) 3832 return -EALREADY; 3833 3834 if (!is_valid_rd(rd)) { 3835 pr_err("Invalid regulatory domain detected: %c%c\n", 3836 rd->alpha2[0], rd->alpha2[1]); 3837 print_regdomain_info(rd); 3838 return -EINVAL; 3839 } 3840 3841 if (!user_request->intersect) { 3842 reset_regdomains(false, rd); 3843 return 0; 3844 } 3845 3846 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3847 if (!intersected_rd) 3848 return -EINVAL; 3849 3850 kfree(rd); 3851 rd = NULL; 3852 reset_regdomains(false, intersected_rd); 3853 3854 return 0; 3855 } 3856 3857 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3858 struct regulatory_request *driver_request) 3859 { 3860 const struct ieee80211_regdomain *regd; 3861 const struct ieee80211_regdomain *intersected_rd = NULL; 3862 const struct ieee80211_regdomain *tmp = NULL; 3863 struct wiphy *request_wiphy; 3864 3865 if (is_world_regdom(rd->alpha2)) 3866 return -EINVAL; 3867 3868 if (!regdom_changes(rd->alpha2)) 3869 return -EALREADY; 3870 3871 if (!is_valid_rd(rd)) { 3872 pr_err("Invalid regulatory domain detected: %c%c\n", 3873 rd->alpha2[0], rd->alpha2[1]); 3874 print_regdomain_info(rd); 3875 return -EINVAL; 3876 } 3877 3878 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3879 if (!request_wiphy) 3880 return -ENODEV; 3881 3882 if (!driver_request->intersect) { 3883 ASSERT_RTNL(); 3884 scoped_guard(wiphy, request_wiphy) { 3885 if (request_wiphy->regd) 3886 tmp = get_wiphy_regdom(request_wiphy); 3887 3888 regd = reg_copy_regd(rd); 3889 if (IS_ERR(regd)) 3890 return PTR_ERR(regd); 3891 3892 rcu_assign_pointer(request_wiphy->regd, regd); 3893 rcu_free_regdom(tmp); 3894 } 3895 3896 reset_regdomains(false, rd); 3897 return 0; 3898 } 3899 3900 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3901 if (!intersected_rd) 3902 return -EINVAL; 3903 3904 /* 3905 * We can trash what CRDA provided now. 3906 * However if a driver requested this specific regulatory 3907 * domain we keep it for its private use 3908 */ 3909 tmp = get_wiphy_regdom(request_wiphy); 3910 rcu_assign_pointer(request_wiphy->regd, rd); 3911 rcu_free_regdom(tmp); 3912 3913 rd = NULL; 3914 3915 reset_regdomains(false, intersected_rd); 3916 3917 return 0; 3918 } 3919 3920 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3921 struct regulatory_request *country_ie_request) 3922 { 3923 struct wiphy *request_wiphy; 3924 3925 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3926 !is_unknown_alpha2(rd->alpha2)) 3927 return -EINVAL; 3928 3929 /* 3930 * Lets only bother proceeding on the same alpha2 if the current 3931 * rd is non static (it means CRDA was present and was used last) 3932 * and the pending request came in from a country IE 3933 */ 3934 3935 if (!is_valid_rd(rd)) { 3936 pr_err("Invalid regulatory domain detected: %c%c\n", 3937 rd->alpha2[0], rd->alpha2[1]); 3938 print_regdomain_info(rd); 3939 return -EINVAL; 3940 } 3941 3942 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3943 if (!request_wiphy) 3944 return -ENODEV; 3945 3946 if (country_ie_request->intersect) 3947 return -EINVAL; 3948 3949 reset_regdomains(false, rd); 3950 return 0; 3951 } 3952 3953 /* 3954 * Use this call to set the current regulatory domain. Conflicts with 3955 * multiple drivers can be ironed out later. Caller must've already 3956 * kmalloc'd the rd structure. 3957 */ 3958 int set_regdom(const struct ieee80211_regdomain *rd, 3959 enum ieee80211_regd_source regd_src) 3960 { 3961 struct regulatory_request *lr; 3962 bool user_reset = false; 3963 int r; 3964 3965 if (IS_ERR_OR_NULL(rd)) 3966 return -ENODATA; 3967 3968 if (!reg_is_valid_request(rd->alpha2)) { 3969 kfree(rd); 3970 return -EINVAL; 3971 } 3972 3973 if (regd_src == REGD_SOURCE_CRDA) 3974 reset_crda_timeouts(); 3975 3976 lr = get_last_request(); 3977 3978 /* Note that this doesn't update the wiphys, this is done below */ 3979 switch (lr->initiator) { 3980 case NL80211_REGDOM_SET_BY_CORE: 3981 r = reg_set_rd_core(rd); 3982 break; 3983 case NL80211_REGDOM_SET_BY_USER: 3984 cfg80211_save_user_regdom(rd); 3985 r = reg_set_rd_user(rd, lr); 3986 user_reset = true; 3987 break; 3988 case NL80211_REGDOM_SET_BY_DRIVER: 3989 r = reg_set_rd_driver(rd, lr); 3990 break; 3991 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3992 r = reg_set_rd_country_ie(rd, lr); 3993 break; 3994 default: 3995 WARN(1, "invalid initiator %d\n", lr->initiator); 3996 kfree(rd); 3997 return -EINVAL; 3998 } 3999 4000 if (r) { 4001 switch (r) { 4002 case -EALREADY: 4003 reg_set_request_processed(); 4004 break; 4005 default: 4006 /* Back to world regulatory in case of errors */ 4007 restore_regulatory_settings(user_reset, false); 4008 } 4009 4010 kfree(rd); 4011 return r; 4012 } 4013 4014 /* This would make this whole thing pointless */ 4015 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 4016 return -EINVAL; 4017 4018 /* update all wiphys now with the new established regulatory domain */ 4019 update_all_wiphy_regulatory(lr->initiator); 4020 4021 print_regdomain(get_cfg80211_regdom()); 4022 4023 nl80211_send_reg_change_event(lr); 4024 4025 reg_set_request_processed(); 4026 4027 return 0; 4028 } 4029 4030 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 4031 struct ieee80211_regdomain *rd) 4032 { 4033 const struct ieee80211_regdomain *regd; 4034 const struct ieee80211_regdomain *prev_regd; 4035 struct cfg80211_registered_device *rdev; 4036 4037 if (WARN_ON(!wiphy || !rd)) 4038 return -EINVAL; 4039 4040 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 4041 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 4042 return -EPERM; 4043 4044 if (WARN(!is_valid_rd(rd), 4045 "Invalid regulatory domain detected: %c%c\n", 4046 rd->alpha2[0], rd->alpha2[1])) { 4047 print_regdomain_info(rd); 4048 return -EINVAL; 4049 } 4050 4051 regd = reg_copy_regd(rd); 4052 if (IS_ERR(regd)) 4053 return PTR_ERR(regd); 4054 4055 rdev = wiphy_to_rdev(wiphy); 4056 4057 spin_lock(®_requests_lock); 4058 prev_regd = rdev->requested_regd; 4059 rdev->requested_regd = regd; 4060 spin_unlock(®_requests_lock); 4061 4062 kfree(prev_regd); 4063 return 0; 4064 } 4065 4066 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 4067 struct ieee80211_regdomain *rd) 4068 { 4069 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 4070 4071 if (ret) 4072 return ret; 4073 4074 schedule_work(®_work); 4075 return 0; 4076 } 4077 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 4078 4079 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 4080 struct ieee80211_regdomain *rd) 4081 { 4082 int ret; 4083 4084 ASSERT_RTNL(); 4085 4086 ret = __regulatory_set_wiphy_regd(wiphy, rd); 4087 if (ret) 4088 return ret; 4089 4090 /* process the request immediately */ 4091 reg_process_self_managed_hint(wiphy); 4092 reg_check_channels(); 4093 return 0; 4094 } 4095 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync); 4096 4097 void wiphy_regulatory_register(struct wiphy *wiphy) 4098 { 4099 struct regulatory_request *lr = get_last_request(); 4100 4101 /* self-managed devices ignore beacon hints and country IE */ 4102 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 4103 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 4104 REGULATORY_COUNTRY_IE_IGNORE; 4105 4106 /* 4107 * The last request may have been received before this 4108 * registration call. Call the driver notifier if 4109 * initiator is USER. 4110 */ 4111 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 4112 reg_call_notifier(wiphy, lr); 4113 } 4114 4115 if (!reg_dev_ignore_cell_hint(wiphy)) 4116 reg_num_devs_support_basehint++; 4117 4118 wiphy_update_regulatory(wiphy, lr->initiator); 4119 wiphy_all_share_dfs_chan_state(wiphy); 4120 reg_process_self_managed_hints(); 4121 } 4122 4123 void wiphy_regulatory_deregister(struct wiphy *wiphy) 4124 { 4125 struct wiphy *request_wiphy = NULL; 4126 struct regulatory_request *lr; 4127 4128 lr = get_last_request(); 4129 4130 if (!reg_dev_ignore_cell_hint(wiphy)) 4131 reg_num_devs_support_basehint--; 4132 4133 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4134 RCU_INIT_POINTER(wiphy->regd, NULL); 4135 4136 if (lr) 4137 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4138 4139 if (!request_wiphy || request_wiphy != wiphy) 4140 return; 4141 4142 lr->wiphy_idx = WIPHY_IDX_INVALID; 4143 lr->country_ie_env = ENVIRON_ANY; 4144 } 4145 4146 /* 4147 * See FCC notices for UNII band definitions 4148 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4149 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4150 */ 4151 int cfg80211_get_unii(int freq) 4152 { 4153 /* UNII-1 */ 4154 if (freq >= 5150 && freq <= 5250) 4155 return 0; 4156 4157 /* UNII-2A */ 4158 if (freq > 5250 && freq <= 5350) 4159 return 1; 4160 4161 /* UNII-2B */ 4162 if (freq > 5350 && freq <= 5470) 4163 return 2; 4164 4165 /* UNII-2C */ 4166 if (freq > 5470 && freq <= 5725) 4167 return 3; 4168 4169 /* UNII-3 */ 4170 if (freq > 5725 && freq <= 5825) 4171 return 4; 4172 4173 /* UNII-5 */ 4174 if (freq > 5925 && freq <= 6425) 4175 return 5; 4176 4177 /* UNII-6 */ 4178 if (freq > 6425 && freq <= 6525) 4179 return 6; 4180 4181 /* UNII-7 */ 4182 if (freq > 6525 && freq <= 6875) 4183 return 7; 4184 4185 /* UNII-8 */ 4186 if (freq > 6875 && freq <= 7125) 4187 return 8; 4188 4189 return -EINVAL; 4190 } 4191 4192 bool regulatory_indoor_allowed(void) 4193 { 4194 return reg_is_indoor; 4195 } 4196 4197 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4198 { 4199 const struct ieee80211_regdomain *regd = NULL; 4200 const struct ieee80211_regdomain *wiphy_regd = NULL; 4201 bool pre_cac_allowed = false; 4202 4203 rcu_read_lock(); 4204 4205 regd = rcu_dereference(cfg80211_regdomain); 4206 wiphy_regd = rcu_dereference(wiphy->regd); 4207 if (!wiphy_regd) { 4208 if (regd->dfs_region == NL80211_DFS_ETSI) 4209 pre_cac_allowed = true; 4210 4211 rcu_read_unlock(); 4212 4213 return pre_cac_allowed; 4214 } 4215 4216 if (regd->dfs_region == wiphy_regd->dfs_region && 4217 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4218 pre_cac_allowed = true; 4219 4220 rcu_read_unlock(); 4221 4222 return pre_cac_allowed; 4223 } 4224 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4225 4226 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4227 { 4228 struct wireless_dev *wdev; 4229 unsigned int link_id; 4230 4231 /* If we finished CAC or received radar, we should end any 4232 * CAC running on the same channels. 4233 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4234 * either all channels are available - those the CAC_FINISHED 4235 * event has effected another wdev state, or there is a channel 4236 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4237 * event has effected another wdev state. 4238 * In both cases we should end the CAC on the wdev. 4239 */ 4240 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4241 struct cfg80211_chan_def *chandef; 4242 4243 for_each_valid_link(wdev, link_id) { 4244 if (!wdev->links[link_id].cac_started) 4245 continue; 4246 4247 chandef = wdev_chandef(wdev, link_id); 4248 if (!chandef) 4249 continue; 4250 4251 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef)) 4252 rdev_end_cac(rdev, wdev->netdev, link_id); 4253 } 4254 } 4255 } 4256 4257 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4258 struct cfg80211_chan_def *chandef, 4259 enum nl80211_dfs_state dfs_state, 4260 enum nl80211_radar_event event) 4261 { 4262 struct cfg80211_registered_device *rdev; 4263 4264 ASSERT_RTNL(); 4265 4266 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4267 return; 4268 4269 for_each_rdev(rdev) { 4270 if (wiphy == &rdev->wiphy) 4271 continue; 4272 4273 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4274 continue; 4275 4276 if (!ieee80211_get_channel(&rdev->wiphy, 4277 chandef->chan->center_freq)) 4278 continue; 4279 4280 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4281 4282 if (event == NL80211_RADAR_DETECTED || 4283 event == NL80211_RADAR_CAC_FINISHED) { 4284 cfg80211_sched_dfs_chan_update(rdev); 4285 cfg80211_check_and_end_cac(rdev); 4286 } 4287 4288 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4289 } 4290 } 4291 4292 static int __init regulatory_init_db(void) 4293 { 4294 int err; 4295 4296 /* 4297 * It's possible that - due to other bugs/issues - cfg80211 4298 * never called regulatory_init() below, or that it failed; 4299 * in that case, don't try to do any further work here as 4300 * it's doomed to lead to crashes. 4301 */ 4302 if (IS_ERR_OR_NULL(reg_pdev)) 4303 return -EINVAL; 4304 4305 err = load_builtin_regdb_keys(); 4306 if (err) { 4307 platform_device_unregister(reg_pdev); 4308 return err; 4309 } 4310 4311 /* We always try to get an update for the static regdomain */ 4312 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4313 if (err) { 4314 if (err == -ENOMEM) { 4315 platform_device_unregister(reg_pdev); 4316 return err; 4317 } 4318 /* 4319 * N.B. kobject_uevent_env() can fail mainly for when we're out 4320 * memory which is handled and propagated appropriately above 4321 * but it can also fail during a netlink_broadcast() or during 4322 * early boot for call_usermodehelper(). For now treat these 4323 * errors as non-fatal. 4324 */ 4325 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4326 } 4327 4328 /* 4329 * Finally, if the user set the module parameter treat it 4330 * as a user hint. 4331 */ 4332 if (!is_world_regdom(ieee80211_regdom)) 4333 regulatory_hint_user(ieee80211_regdom, 4334 NL80211_USER_REG_HINT_USER); 4335 4336 return 0; 4337 } 4338 #ifndef MODULE 4339 late_initcall(regulatory_init_db); 4340 #endif 4341 4342 int __init regulatory_init(void) 4343 { 4344 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4345 if (IS_ERR(reg_pdev)) 4346 return PTR_ERR(reg_pdev); 4347 4348 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4349 4350 user_alpha2[0] = '9'; 4351 user_alpha2[1] = '7'; 4352 4353 #ifdef MODULE 4354 return regulatory_init_db(); 4355 #else 4356 return 0; 4357 #endif 4358 } 4359 4360 void regulatory_exit(void) 4361 { 4362 struct regulatory_request *reg_request, *tmp; 4363 struct reg_beacon *reg_beacon, *btmp; 4364 4365 cancel_work_sync(®_work); 4366 cancel_crda_timeout_sync(); 4367 cancel_delayed_work_sync(®_check_chans); 4368 4369 /* Lock to suppress warnings */ 4370 rtnl_lock(); 4371 reset_regdomains(true, NULL); 4372 rtnl_unlock(); 4373 4374 dev_set_uevent_suppress(®_pdev->dev, true); 4375 4376 platform_device_unregister(reg_pdev); 4377 4378 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4379 list_del(®_beacon->list); 4380 kfree(reg_beacon); 4381 } 4382 4383 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4384 list_del(®_beacon->list); 4385 kfree(reg_beacon); 4386 } 4387 4388 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4389 list_del(®_request->list); 4390 kfree(reg_request); 4391 } 4392 4393 if (!IS_ERR_OR_NULL(regdb)) 4394 kfree(regdb); 4395 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4396 kfree(cfg80211_user_regdom); 4397 4398 free_regdb_keyring(); 4399 } 4400