xref: /linux/net/wireless/reg.c (revision e53b20598f394e37951d6355f1c88ae01165b53f)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2021 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137 
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140 	return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142 
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 	return rcu_dereference_check(wiphy->regd,
151 				     lockdep_is_held(&wiphy->mtx) ||
152 				     lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155 
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158 	switch (dfs_region) {
159 	case NL80211_DFS_UNSET:
160 		return "unset";
161 	case NL80211_DFS_FCC:
162 		return "FCC";
163 	case NL80211_DFS_ETSI:
164 		return "ETSI";
165 	case NL80211_DFS_JP:
166 		return "JP";
167 	}
168 	return "Unknown";
169 }
170 
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173 	const struct ieee80211_regdomain *regd = NULL;
174 	const struct ieee80211_regdomain *wiphy_regd = NULL;
175 	enum nl80211_dfs_regions dfs_region;
176 
177 	rcu_read_lock();
178 	regd = get_cfg80211_regdom();
179 	dfs_region = regd->dfs_region;
180 
181 	if (!wiphy)
182 		goto out;
183 
184 	wiphy_regd = get_wiphy_regdom(wiphy);
185 	if (!wiphy_regd)
186 		goto out;
187 
188 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 		dfs_region = wiphy_regd->dfs_region;
190 		goto out;
191 	}
192 
193 	if (wiphy_regd->dfs_region == regd->dfs_region)
194 		goto out;
195 
196 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 		 dev_name(&wiphy->dev),
198 		 reg_dfs_region_str(wiphy_regd->dfs_region),
199 		 reg_dfs_region_str(regd->dfs_region));
200 
201 out:
202 	rcu_read_unlock();
203 
204 	return dfs_region;
205 }
206 
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209 	if (!r)
210 		return;
211 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213 
214 static struct regulatory_request *get_last_request(void)
215 {
216 	return rcu_dereference_rtnl(last_request);
217 }
218 
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222 
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226 
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229 
230 struct reg_beacon {
231 	struct list_head list;
232 	struct ieee80211_channel chan;
233 };
234 
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237 
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240 
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243 	.n_reg_rules = 8,
244 	.alpha2 =  "00",
245 	.reg_rules = {
246 		/* IEEE 802.11b/g, channels 1..11 */
247 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 		/* IEEE 802.11b/g, channels 12..13. */
249 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 		/* IEEE 802.11 channel 14 - Only JP enables
252 		 * this and for 802.11b only */
253 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 			NL80211_RRF_NO_IR |
255 			NL80211_RRF_NO_OFDM),
256 		/* IEEE 802.11a, channel 36..48 */
257 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260 
261 		/* IEEE 802.11a, channel 52..64 - DFS required */
262 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 			NL80211_RRF_NO_IR |
264 			NL80211_RRF_AUTO_BW |
265 			NL80211_RRF_DFS),
266 
267 		/* IEEE 802.11a, channel 100..144 - DFS required */
268 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 			NL80211_RRF_NO_IR |
270 			NL80211_RRF_DFS),
271 
272 		/* IEEE 802.11a, channel 149..165 */
273 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 			NL80211_RRF_NO_IR),
275 
276 		/* IEEE 802.11ad (60GHz), channels 1..3 */
277 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 	}
279 };
280 
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 	&world_regdom;
284 
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288 
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291 
292 static void reg_free_request(struct regulatory_request *request)
293 {
294 	if (request == &core_request_world)
295 		return;
296 
297 	if (request != get_last_request())
298 		kfree(request);
299 }
300 
301 static void reg_free_last_request(void)
302 {
303 	struct regulatory_request *lr = get_last_request();
304 
305 	if (lr != &core_request_world && lr)
306 		kfree_rcu(lr, rcu_head);
307 }
308 
309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311 	struct regulatory_request *lr;
312 
313 	lr = get_last_request();
314 	if (lr == request)
315 		return;
316 
317 	reg_free_last_request();
318 	rcu_assign_pointer(last_request, request);
319 }
320 
321 static void reset_regdomains(bool full_reset,
322 			     const struct ieee80211_regdomain *new_regdom)
323 {
324 	const struct ieee80211_regdomain *r;
325 
326 	ASSERT_RTNL();
327 
328 	r = get_cfg80211_regdom();
329 
330 	/* avoid freeing static information or freeing something twice */
331 	if (r == cfg80211_world_regdom)
332 		r = NULL;
333 	if (cfg80211_world_regdom == &world_regdom)
334 		cfg80211_world_regdom = NULL;
335 	if (r == &world_regdom)
336 		r = NULL;
337 
338 	rcu_free_regdom(r);
339 	rcu_free_regdom(cfg80211_world_regdom);
340 
341 	cfg80211_world_regdom = &world_regdom;
342 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343 
344 	if (!full_reset)
345 		return;
346 
347 	reg_update_last_request(&core_request_world);
348 }
349 
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356 	struct regulatory_request *lr;
357 
358 	lr = get_last_request();
359 
360 	WARN_ON(!lr);
361 
362 	reset_regdomains(false, rd);
363 
364 	cfg80211_world_regdom = rd;
365 }
366 
367 bool is_world_regdom(const char *alpha2)
368 {
369 	if (!alpha2)
370 		return false;
371 	return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373 
374 static bool is_alpha2_set(const char *alpha2)
375 {
376 	if (!alpha2)
377 		return false;
378 	return alpha2[0] && alpha2[1];
379 }
380 
381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383 	if (!alpha2)
384 		return false;
385 	/*
386 	 * Special case where regulatory domain was built by driver
387 	 * but a specific alpha2 cannot be determined
388 	 */
389 	return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391 
392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394 	if (!alpha2)
395 		return false;
396 	/*
397 	 * Special case where regulatory domain is the
398 	 * result of an intersection between two regulatory domain
399 	 * structures
400 	 */
401 	return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403 
404 static bool is_an_alpha2(const char *alpha2)
405 {
406 	if (!alpha2)
407 		return false;
408 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410 
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413 	if (!alpha2_x || !alpha2_y)
414 		return false;
415 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417 
418 static bool regdom_changes(const char *alpha2)
419 {
420 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421 
422 	if (!r)
423 		return true;
424 	return !alpha2_equal(r->alpha2, alpha2);
425 }
426 
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
432 static bool is_user_regdom_saved(void)
433 {
434 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 		return false;
436 
437 	/* This would indicate a mistake on the design */
438 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 		 "Unexpected user alpha2: %c%c\n",
440 		 user_alpha2[0], user_alpha2[1]))
441 		return false;
442 
443 	return true;
444 }
445 
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449 	struct ieee80211_regdomain *regd;
450 	unsigned int i;
451 
452 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 		       GFP_KERNEL);
454 	if (!regd)
455 		return ERR_PTR(-ENOMEM);
456 
457 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458 
459 	for (i = 0; i < src_regd->n_reg_rules; i++)
460 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461 		       sizeof(struct ieee80211_reg_rule));
462 
463 	return regd;
464 }
465 
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468 	ASSERT_RTNL();
469 
470 	if (!IS_ERR(cfg80211_user_regdom))
471 		kfree(cfg80211_user_regdom);
472 	cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474 
475 struct reg_regdb_apply_request {
476 	struct list_head list;
477 	const struct ieee80211_regdomain *regdom;
478 };
479 
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482 
483 static void reg_regdb_apply(struct work_struct *work)
484 {
485 	struct reg_regdb_apply_request *request;
486 
487 	rtnl_lock();
488 
489 	mutex_lock(&reg_regdb_apply_mutex);
490 	while (!list_empty(&reg_regdb_apply_list)) {
491 		request = list_first_entry(&reg_regdb_apply_list,
492 					   struct reg_regdb_apply_request,
493 					   list);
494 		list_del(&request->list);
495 
496 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 		kfree(request);
498 	}
499 	mutex_unlock(&reg_regdb_apply_mutex);
500 
501 	rtnl_unlock();
502 }
503 
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505 
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508 	struct reg_regdb_apply_request *request;
509 
510 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 	if (!request) {
512 		kfree(regdom);
513 		return -ENOMEM;
514 	}
515 
516 	request->regdom = regdom;
517 
518 	mutex_lock(&reg_regdb_apply_mutex);
519 	list_add_tail(&request->list, &reg_regdb_apply_list);
520 	mutex_unlock(&reg_regdb_apply_mutex);
521 
522 	schedule_work(&reg_regdb_work);
523 	return 0;
524 }
525 
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529 
530 static u32 reg_crda_timeouts;
531 
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534 
535 static void crda_timeout_work(struct work_struct *work)
536 {
537 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 	rtnl_lock();
539 	reg_crda_timeouts++;
540 	restore_regulatory_settings(true, false);
541 	rtnl_unlock();
542 }
543 
544 static void cancel_crda_timeout(void)
545 {
546 	cancel_delayed_work(&crda_timeout);
547 }
548 
549 static void cancel_crda_timeout_sync(void)
550 {
551 	cancel_delayed_work_sync(&crda_timeout);
552 }
553 
554 static void reset_crda_timeouts(void)
555 {
556 	reg_crda_timeouts = 0;
557 }
558 
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565 	char country[12];
566 	char *env[] = { country, NULL };
567 	int ret;
568 
569 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 		 alpha2[0], alpha2[1]);
571 
572 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 		return -EINVAL;
575 	}
576 
577 	if (!is_world_regdom((char *) alpha2))
578 		pr_debug("Calling CRDA for country: %c%c\n",
579 			 alpha2[0], alpha2[1]);
580 	else
581 		pr_debug("Calling CRDA to update world regulatory domain\n");
582 
583 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584 	if (ret)
585 		return ret;
586 
587 	queue_delayed_work(system_power_efficient_wq,
588 			   &crda_timeout, msecs_to_jiffies(3142));
589 	return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597 	return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600 
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603 
604 struct fwdb_country {
605 	u8 alpha2[2];
606 	__be16 coll_ptr;
607 	/* this struct cannot be extended */
608 } __packed __aligned(4);
609 
610 struct fwdb_collection {
611 	u8 len;
612 	u8 n_rules;
613 	u8 dfs_region;
614 	/* no optional data yet */
615 	/* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617 
618 enum fwdb_flags {
619 	FWDB_FLAG_NO_OFDM	= BIT(0),
620 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
621 	FWDB_FLAG_DFS		= BIT(2),
622 	FWDB_FLAG_NO_IR		= BIT(3),
623 	FWDB_FLAG_AUTO_BW	= BIT(4),
624 };
625 
626 struct fwdb_wmm_ac {
627 	u8 ecw;
628 	u8 aifsn;
629 	__be16 cot;
630 } __packed;
631 
632 struct fwdb_wmm_rule {
633 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636 
637 struct fwdb_rule {
638 	u8 len;
639 	u8 flags;
640 	__be16 max_eirp;
641 	__be32 start, end, max_bw;
642 	/* start of optional data */
643 	__be16 cac_timeout;
644 	__be16 wmm_ptr;
645 } __packed __aligned(4);
646 
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649 
650 struct fwdb_header {
651 	__be32 magic;
652 	__be32 version;
653 	struct fwdb_country country[];
654 } __packed __aligned(4);
655 
656 static int ecw2cw(int ecw)
657 {
658 	return (1 << ecw) - 1;
659 }
660 
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 	int i;
665 
666 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 		u8 aifsn = ac[i].aifsn;
670 
671 		if (cw_min >= cw_max)
672 			return false;
673 
674 		if (aifsn < 1)
675 			return false;
676 	}
677 
678 	return true;
679 }
680 
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684 
685 	if ((u8 *)rule + sizeof(rule->len) > data + size)
686 		return false;
687 
688 	/* mandatory fields */
689 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 		return false;
691 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 		struct fwdb_wmm_rule *wmm;
694 
695 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 			return false;
697 
698 		wmm = (void *)(data + wmm_ptr);
699 
700 		if (!valid_wmm(wmm))
701 			return false;
702 	}
703 	return true;
704 }
705 
706 static bool valid_country(const u8 *data, unsigned int size,
707 			  const struct fwdb_country *country)
708 {
709 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 	struct fwdb_collection *coll = (void *)(data + ptr);
711 	__be16 *rules_ptr;
712 	unsigned int i;
713 
714 	/* make sure we can read len/n_rules */
715 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 		return false;
717 
718 	/* make sure base struct and all rules fit */
719 	if ((u8 *)coll + ALIGN(coll->len, 2) +
720 	    (coll->n_rules * 2) > data + size)
721 		return false;
722 
723 	/* mandatory fields must exist */
724 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 		return false;
726 
727 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728 
729 	for (i = 0; i < coll->n_rules; i++) {
730 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731 
732 		if (!valid_rule(data, size, rule_ptr))
733 			return false;
734 	}
735 
736 	return true;
737 }
738 
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 static struct key *builtin_regdb_keys;
741 
742 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
743 {
744 	const u8 *end = p + buflen;
745 	size_t plen;
746 	key_ref_t key;
747 
748 	while (p < end) {
749 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
750 		 * than 256 bytes in size.
751 		 */
752 		if (end - p < 4)
753 			goto dodgy_cert;
754 		if (p[0] != 0x30 &&
755 		    p[1] != 0x82)
756 			goto dodgy_cert;
757 		plen = (p[2] << 8) | p[3];
758 		plen += 4;
759 		if (plen > end - p)
760 			goto dodgy_cert;
761 
762 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
763 					   "asymmetric", NULL, p, plen,
764 					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 					    KEY_USR_VIEW | KEY_USR_READ),
766 					   KEY_ALLOC_NOT_IN_QUOTA |
767 					   KEY_ALLOC_BUILT_IN |
768 					   KEY_ALLOC_BYPASS_RESTRICTION);
769 		if (IS_ERR(key)) {
770 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
771 			       PTR_ERR(key));
772 		} else {
773 			pr_notice("Loaded X.509 cert '%s'\n",
774 				  key_ref_to_ptr(key)->description);
775 			key_ref_put(key);
776 		}
777 		p += plen;
778 	}
779 
780 	return;
781 
782 dodgy_cert:
783 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
784 }
785 
786 static int __init load_builtin_regdb_keys(void)
787 {
788 	builtin_regdb_keys =
789 		keyring_alloc(".builtin_regdb_keys",
790 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
791 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
792 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
793 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
794 	if (IS_ERR(builtin_regdb_keys))
795 		return PTR_ERR(builtin_regdb_keys);
796 
797 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
798 
799 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
800 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
801 #endif
802 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
803 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
804 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
805 #endif
806 
807 	return 0;
808 }
809 
810 MODULE_FIRMWARE("regulatory.db.p7s");
811 
812 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
813 {
814 	const struct firmware *sig;
815 	bool result;
816 
817 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
818 		return false;
819 
820 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
821 					builtin_regdb_keys,
822 					VERIFYING_UNSPECIFIED_SIGNATURE,
823 					NULL, NULL) == 0;
824 
825 	release_firmware(sig);
826 
827 	return result;
828 }
829 
830 static void free_regdb_keyring(void)
831 {
832 	key_put(builtin_regdb_keys);
833 }
834 #else
835 static int load_builtin_regdb_keys(void)
836 {
837 	return 0;
838 }
839 
840 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
841 {
842 	return true;
843 }
844 
845 static void free_regdb_keyring(void)
846 {
847 }
848 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
849 
850 static bool valid_regdb(const u8 *data, unsigned int size)
851 {
852 	const struct fwdb_header *hdr = (void *)data;
853 	const struct fwdb_country *country;
854 
855 	if (size < sizeof(*hdr))
856 		return false;
857 
858 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
859 		return false;
860 
861 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
862 		return false;
863 
864 	if (!regdb_has_valid_signature(data, size))
865 		return false;
866 
867 	country = &hdr->country[0];
868 	while ((u8 *)(country + 1) <= data + size) {
869 		if (!country->coll_ptr)
870 			break;
871 		if (!valid_country(data, size, country))
872 			return false;
873 		country++;
874 	}
875 
876 	return true;
877 }
878 
879 static void set_wmm_rule(const struct fwdb_header *db,
880 			 const struct fwdb_country *country,
881 			 const struct fwdb_rule *rule,
882 			 struct ieee80211_reg_rule *rrule)
883 {
884 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
885 	struct fwdb_wmm_rule *wmm;
886 	unsigned int i, wmm_ptr;
887 
888 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
889 	wmm = (void *)((u8 *)db + wmm_ptr);
890 
891 	if (!valid_wmm(wmm)) {
892 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
893 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
894 		       country->alpha2[0], country->alpha2[1]);
895 		return;
896 	}
897 
898 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
899 		wmm_rule->client[i].cw_min =
900 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
901 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
902 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
903 		wmm_rule->client[i].cot =
904 			1000 * be16_to_cpu(wmm->client[i].cot);
905 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
906 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
907 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
908 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
909 	}
910 
911 	rrule->has_wmm = true;
912 }
913 
914 static int __regdb_query_wmm(const struct fwdb_header *db,
915 			     const struct fwdb_country *country, int freq,
916 			     struct ieee80211_reg_rule *rrule)
917 {
918 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
919 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
920 	int i;
921 
922 	for (i = 0; i < coll->n_rules; i++) {
923 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
924 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
925 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
926 
927 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
928 			continue;
929 
930 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
931 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
932 			set_wmm_rule(db, country, rule, rrule);
933 			return 0;
934 		}
935 	}
936 
937 	return -ENODATA;
938 }
939 
940 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
941 {
942 	const struct fwdb_header *hdr = regdb;
943 	const struct fwdb_country *country;
944 
945 	if (!regdb)
946 		return -ENODATA;
947 
948 	if (IS_ERR(regdb))
949 		return PTR_ERR(regdb);
950 
951 	country = &hdr->country[0];
952 	while (country->coll_ptr) {
953 		if (alpha2_equal(alpha2, country->alpha2))
954 			return __regdb_query_wmm(regdb, country, freq, rule);
955 
956 		country++;
957 	}
958 
959 	return -ENODATA;
960 }
961 EXPORT_SYMBOL(reg_query_regdb_wmm);
962 
963 static int regdb_query_country(const struct fwdb_header *db,
964 			       const struct fwdb_country *country)
965 {
966 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
967 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
968 	struct ieee80211_regdomain *regdom;
969 	unsigned int i;
970 
971 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
972 			 GFP_KERNEL);
973 	if (!regdom)
974 		return -ENOMEM;
975 
976 	regdom->n_reg_rules = coll->n_rules;
977 	regdom->alpha2[0] = country->alpha2[0];
978 	regdom->alpha2[1] = country->alpha2[1];
979 	regdom->dfs_region = coll->dfs_region;
980 
981 	for (i = 0; i < regdom->n_reg_rules; i++) {
982 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
983 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
984 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
985 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
986 
987 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
988 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
989 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
990 
991 		rrule->power_rule.max_antenna_gain = 0;
992 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
993 
994 		rrule->flags = 0;
995 		if (rule->flags & FWDB_FLAG_NO_OFDM)
996 			rrule->flags |= NL80211_RRF_NO_OFDM;
997 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
998 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
999 		if (rule->flags & FWDB_FLAG_DFS)
1000 			rrule->flags |= NL80211_RRF_DFS;
1001 		if (rule->flags & FWDB_FLAG_NO_IR)
1002 			rrule->flags |= NL80211_RRF_NO_IR;
1003 		if (rule->flags & FWDB_FLAG_AUTO_BW)
1004 			rrule->flags |= NL80211_RRF_AUTO_BW;
1005 
1006 		rrule->dfs_cac_ms = 0;
1007 
1008 		/* handle optional data */
1009 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1010 			rrule->dfs_cac_ms =
1011 				1000 * be16_to_cpu(rule->cac_timeout);
1012 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1013 			set_wmm_rule(db, country, rule, rrule);
1014 	}
1015 
1016 	return reg_schedule_apply(regdom);
1017 }
1018 
1019 static int query_regdb(const char *alpha2)
1020 {
1021 	const struct fwdb_header *hdr = regdb;
1022 	const struct fwdb_country *country;
1023 
1024 	ASSERT_RTNL();
1025 
1026 	if (IS_ERR(regdb))
1027 		return PTR_ERR(regdb);
1028 
1029 	country = &hdr->country[0];
1030 	while (country->coll_ptr) {
1031 		if (alpha2_equal(alpha2, country->alpha2))
1032 			return regdb_query_country(regdb, country);
1033 		country++;
1034 	}
1035 
1036 	return -ENODATA;
1037 }
1038 
1039 static void regdb_fw_cb(const struct firmware *fw, void *context)
1040 {
1041 	int set_error = 0;
1042 	bool restore = true;
1043 	void *db;
1044 
1045 	if (!fw) {
1046 		pr_info("failed to load regulatory.db\n");
1047 		set_error = -ENODATA;
1048 	} else if (!valid_regdb(fw->data, fw->size)) {
1049 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1050 		set_error = -EINVAL;
1051 	}
1052 
1053 	rtnl_lock();
1054 	if (regdb && !IS_ERR(regdb)) {
1055 		/* negative case - a bug
1056 		 * positive case - can happen due to race in case of multiple cb's in
1057 		 * queue, due to usage of asynchronous callback
1058 		 *
1059 		 * Either case, just restore and free new db.
1060 		 */
1061 	} else if (set_error) {
1062 		regdb = ERR_PTR(set_error);
1063 	} else if (fw) {
1064 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1065 		if (db) {
1066 			regdb = db;
1067 			restore = context && query_regdb(context);
1068 		} else {
1069 			restore = true;
1070 		}
1071 	}
1072 
1073 	if (restore)
1074 		restore_regulatory_settings(true, false);
1075 
1076 	rtnl_unlock();
1077 
1078 	kfree(context);
1079 
1080 	release_firmware(fw);
1081 }
1082 
1083 MODULE_FIRMWARE("regulatory.db");
1084 
1085 static int query_regdb_file(const char *alpha2)
1086 {
1087 	ASSERT_RTNL();
1088 
1089 	if (regdb)
1090 		return query_regdb(alpha2);
1091 
1092 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1093 	if (!alpha2)
1094 		return -ENOMEM;
1095 
1096 	return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1097 				       &reg_pdev->dev, GFP_KERNEL,
1098 				       (void *)alpha2, regdb_fw_cb);
1099 }
1100 
1101 int reg_reload_regdb(void)
1102 {
1103 	const struct firmware *fw;
1104 	void *db;
1105 	int err;
1106 	const struct ieee80211_regdomain *current_regdomain;
1107 	struct regulatory_request *request;
1108 
1109 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1110 	if (err)
1111 		return err;
1112 
1113 	if (!valid_regdb(fw->data, fw->size)) {
1114 		err = -ENODATA;
1115 		goto out;
1116 	}
1117 
1118 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1119 	if (!db) {
1120 		err = -ENOMEM;
1121 		goto out;
1122 	}
1123 
1124 	rtnl_lock();
1125 	if (!IS_ERR_OR_NULL(regdb))
1126 		kfree(regdb);
1127 	regdb = db;
1128 
1129 	/* reset regulatory domain */
1130 	current_regdomain = get_cfg80211_regdom();
1131 
1132 	request = kzalloc(sizeof(*request), GFP_KERNEL);
1133 	if (!request) {
1134 		err = -ENOMEM;
1135 		goto out_unlock;
1136 	}
1137 
1138 	request->wiphy_idx = WIPHY_IDX_INVALID;
1139 	request->alpha2[0] = current_regdomain->alpha2[0];
1140 	request->alpha2[1] = current_regdomain->alpha2[1];
1141 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1142 	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1143 
1144 	reg_process_hint(request);
1145 
1146 out_unlock:
1147 	rtnl_unlock();
1148  out:
1149 	release_firmware(fw);
1150 	return err;
1151 }
1152 
1153 static bool reg_query_database(struct regulatory_request *request)
1154 {
1155 	if (query_regdb_file(request->alpha2) == 0)
1156 		return true;
1157 
1158 	if (call_crda(request->alpha2) == 0)
1159 		return true;
1160 
1161 	return false;
1162 }
1163 
1164 bool reg_is_valid_request(const char *alpha2)
1165 {
1166 	struct regulatory_request *lr = get_last_request();
1167 
1168 	if (!lr || lr->processed)
1169 		return false;
1170 
1171 	return alpha2_equal(lr->alpha2, alpha2);
1172 }
1173 
1174 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1175 {
1176 	struct regulatory_request *lr = get_last_request();
1177 
1178 	/*
1179 	 * Follow the driver's regulatory domain, if present, unless a country
1180 	 * IE has been processed or a user wants to help complaince further
1181 	 */
1182 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1183 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1184 	    wiphy->regd)
1185 		return get_wiphy_regdom(wiphy);
1186 
1187 	return get_cfg80211_regdom();
1188 }
1189 
1190 static unsigned int
1191 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1192 				 const struct ieee80211_reg_rule *rule)
1193 {
1194 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1195 	const struct ieee80211_freq_range *freq_range_tmp;
1196 	const struct ieee80211_reg_rule *tmp;
1197 	u32 start_freq, end_freq, idx, no;
1198 
1199 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1200 		if (rule == &rd->reg_rules[idx])
1201 			break;
1202 
1203 	if (idx == rd->n_reg_rules)
1204 		return 0;
1205 
1206 	/* get start_freq */
1207 	no = idx;
1208 
1209 	while (no) {
1210 		tmp = &rd->reg_rules[--no];
1211 		freq_range_tmp = &tmp->freq_range;
1212 
1213 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1214 			break;
1215 
1216 		freq_range = freq_range_tmp;
1217 	}
1218 
1219 	start_freq = freq_range->start_freq_khz;
1220 
1221 	/* get end_freq */
1222 	freq_range = &rule->freq_range;
1223 	no = idx;
1224 
1225 	while (no < rd->n_reg_rules - 1) {
1226 		tmp = &rd->reg_rules[++no];
1227 		freq_range_tmp = &tmp->freq_range;
1228 
1229 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1230 			break;
1231 
1232 		freq_range = freq_range_tmp;
1233 	}
1234 
1235 	end_freq = freq_range->end_freq_khz;
1236 
1237 	return end_freq - start_freq;
1238 }
1239 
1240 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1241 				   const struct ieee80211_reg_rule *rule)
1242 {
1243 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1244 
1245 	if (rule->flags & NL80211_RRF_NO_320MHZ)
1246 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1247 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1248 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1249 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1250 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1251 
1252 	/*
1253 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1254 	 * are not allowed.
1255 	 */
1256 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1257 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1258 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1259 
1260 	return bw;
1261 }
1262 
1263 /* Sanity check on a regulatory rule */
1264 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1265 {
1266 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1267 	u32 freq_diff;
1268 
1269 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1270 		return false;
1271 
1272 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1273 		return false;
1274 
1275 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1276 
1277 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1278 	    freq_range->max_bandwidth_khz > freq_diff)
1279 		return false;
1280 
1281 	return true;
1282 }
1283 
1284 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1285 {
1286 	const struct ieee80211_reg_rule *reg_rule = NULL;
1287 	unsigned int i;
1288 
1289 	if (!rd->n_reg_rules)
1290 		return false;
1291 
1292 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1293 		return false;
1294 
1295 	for (i = 0; i < rd->n_reg_rules; i++) {
1296 		reg_rule = &rd->reg_rules[i];
1297 		if (!is_valid_reg_rule(reg_rule))
1298 			return false;
1299 	}
1300 
1301 	return true;
1302 }
1303 
1304 /**
1305  * freq_in_rule_band - tells us if a frequency is in a frequency band
1306  * @freq_range: frequency rule we want to query
1307  * @freq_khz: frequency we are inquiring about
1308  *
1309  * This lets us know if a specific frequency rule is or is not relevant to
1310  * a specific frequency's band. Bands are device specific and artificial
1311  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1312  * however it is safe for now to assume that a frequency rule should not be
1313  * part of a frequency's band if the start freq or end freq are off by more
1314  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1315  * 60 GHz band.
1316  * This resolution can be lowered and should be considered as we add
1317  * regulatory rule support for other "bands".
1318  **/
1319 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1320 			      u32 freq_khz)
1321 {
1322 #define ONE_GHZ_IN_KHZ	1000000
1323 	/*
1324 	 * From 802.11ad: directional multi-gigabit (DMG):
1325 	 * Pertaining to operation in a frequency band containing a channel
1326 	 * with the Channel starting frequency above 45 GHz.
1327 	 */
1328 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1329 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1330 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1331 		return true;
1332 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1333 		return true;
1334 	return false;
1335 #undef ONE_GHZ_IN_KHZ
1336 }
1337 
1338 /*
1339  * Later on we can perhaps use the more restrictive DFS
1340  * region but we don't have information for that yet so
1341  * for now simply disallow conflicts.
1342  */
1343 static enum nl80211_dfs_regions
1344 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1345 			 const enum nl80211_dfs_regions dfs_region2)
1346 {
1347 	if (dfs_region1 != dfs_region2)
1348 		return NL80211_DFS_UNSET;
1349 	return dfs_region1;
1350 }
1351 
1352 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1353 				    const struct ieee80211_wmm_ac *wmm_ac2,
1354 				    struct ieee80211_wmm_ac *intersect)
1355 {
1356 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1357 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1358 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1359 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1360 }
1361 
1362 /*
1363  * Helper for regdom_intersect(), this does the real
1364  * mathematical intersection fun
1365  */
1366 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1367 			       const struct ieee80211_regdomain *rd2,
1368 			       const struct ieee80211_reg_rule *rule1,
1369 			       const struct ieee80211_reg_rule *rule2,
1370 			       struct ieee80211_reg_rule *intersected_rule)
1371 {
1372 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1373 	struct ieee80211_freq_range *freq_range;
1374 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1375 	struct ieee80211_power_rule *power_rule;
1376 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1377 	struct ieee80211_wmm_rule *wmm_rule;
1378 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1379 
1380 	freq_range1 = &rule1->freq_range;
1381 	freq_range2 = &rule2->freq_range;
1382 	freq_range = &intersected_rule->freq_range;
1383 
1384 	power_rule1 = &rule1->power_rule;
1385 	power_rule2 = &rule2->power_rule;
1386 	power_rule = &intersected_rule->power_rule;
1387 
1388 	wmm_rule1 = &rule1->wmm_rule;
1389 	wmm_rule2 = &rule2->wmm_rule;
1390 	wmm_rule = &intersected_rule->wmm_rule;
1391 
1392 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1393 					 freq_range2->start_freq_khz);
1394 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1395 				       freq_range2->end_freq_khz);
1396 
1397 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1398 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1399 
1400 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1401 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1402 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1403 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1404 
1405 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1406 
1407 	intersected_rule->flags = rule1->flags | rule2->flags;
1408 
1409 	/*
1410 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1411 	 * set AUTO_BW in intersected rule also. Next we will
1412 	 * calculate BW correctly in handle_channel function.
1413 	 * In other case remove AUTO_BW flag while we calculate
1414 	 * maximum bandwidth correctly and auto calculation is
1415 	 * not required.
1416 	 */
1417 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1418 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1419 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1420 	else
1421 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1422 
1423 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1424 	if (freq_range->max_bandwidth_khz > freq_diff)
1425 		freq_range->max_bandwidth_khz = freq_diff;
1426 
1427 	power_rule->max_eirp = min(power_rule1->max_eirp,
1428 		power_rule2->max_eirp);
1429 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1430 		power_rule2->max_antenna_gain);
1431 
1432 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1433 					   rule2->dfs_cac_ms);
1434 
1435 	if (rule1->has_wmm && rule2->has_wmm) {
1436 		u8 ac;
1437 
1438 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1439 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1440 						&wmm_rule2->client[ac],
1441 						&wmm_rule->client[ac]);
1442 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1443 						&wmm_rule2->ap[ac],
1444 						&wmm_rule->ap[ac]);
1445 		}
1446 
1447 		intersected_rule->has_wmm = true;
1448 	} else if (rule1->has_wmm) {
1449 		*wmm_rule = *wmm_rule1;
1450 		intersected_rule->has_wmm = true;
1451 	} else if (rule2->has_wmm) {
1452 		*wmm_rule = *wmm_rule2;
1453 		intersected_rule->has_wmm = true;
1454 	} else {
1455 		intersected_rule->has_wmm = false;
1456 	}
1457 
1458 	if (!is_valid_reg_rule(intersected_rule))
1459 		return -EINVAL;
1460 
1461 	return 0;
1462 }
1463 
1464 /* check whether old rule contains new rule */
1465 static bool rule_contains(struct ieee80211_reg_rule *r1,
1466 			  struct ieee80211_reg_rule *r2)
1467 {
1468 	/* for simplicity, currently consider only same flags */
1469 	if (r1->flags != r2->flags)
1470 		return false;
1471 
1472 	/* verify r1 is more restrictive */
1473 	if ((r1->power_rule.max_antenna_gain >
1474 	     r2->power_rule.max_antenna_gain) ||
1475 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1476 		return false;
1477 
1478 	/* make sure r2's range is contained within r1 */
1479 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1480 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1481 		return false;
1482 
1483 	/* and finally verify that r1.max_bw >= r2.max_bw */
1484 	if (r1->freq_range.max_bandwidth_khz <
1485 	    r2->freq_range.max_bandwidth_khz)
1486 		return false;
1487 
1488 	return true;
1489 }
1490 
1491 /* add or extend current rules. do nothing if rule is already contained */
1492 static void add_rule(struct ieee80211_reg_rule *rule,
1493 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1494 {
1495 	struct ieee80211_reg_rule *tmp_rule;
1496 	int i;
1497 
1498 	for (i = 0; i < *n_rules; i++) {
1499 		tmp_rule = &reg_rules[i];
1500 		/* rule is already contained - do nothing */
1501 		if (rule_contains(tmp_rule, rule))
1502 			return;
1503 
1504 		/* extend rule if possible */
1505 		if (rule_contains(rule, tmp_rule)) {
1506 			memcpy(tmp_rule, rule, sizeof(*rule));
1507 			return;
1508 		}
1509 	}
1510 
1511 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1512 	(*n_rules)++;
1513 }
1514 
1515 /**
1516  * regdom_intersect - do the intersection between two regulatory domains
1517  * @rd1: first regulatory domain
1518  * @rd2: second regulatory domain
1519  *
1520  * Use this function to get the intersection between two regulatory domains.
1521  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1522  * as no one single alpha2 can represent this regulatory domain.
1523  *
1524  * Returns a pointer to the regulatory domain structure which will hold the
1525  * resulting intersection of rules between rd1 and rd2. We will
1526  * kzalloc() this structure for you.
1527  */
1528 static struct ieee80211_regdomain *
1529 regdom_intersect(const struct ieee80211_regdomain *rd1,
1530 		 const struct ieee80211_regdomain *rd2)
1531 {
1532 	int r;
1533 	unsigned int x, y;
1534 	unsigned int num_rules = 0;
1535 	const struct ieee80211_reg_rule *rule1, *rule2;
1536 	struct ieee80211_reg_rule intersected_rule;
1537 	struct ieee80211_regdomain *rd;
1538 
1539 	if (!rd1 || !rd2)
1540 		return NULL;
1541 
1542 	/*
1543 	 * First we get a count of the rules we'll need, then we actually
1544 	 * build them. This is to so we can malloc() and free() a
1545 	 * regdomain once. The reason we use reg_rules_intersect() here
1546 	 * is it will return -EINVAL if the rule computed makes no sense.
1547 	 * All rules that do check out OK are valid.
1548 	 */
1549 
1550 	for (x = 0; x < rd1->n_reg_rules; x++) {
1551 		rule1 = &rd1->reg_rules[x];
1552 		for (y = 0; y < rd2->n_reg_rules; y++) {
1553 			rule2 = &rd2->reg_rules[y];
1554 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1555 						 &intersected_rule))
1556 				num_rules++;
1557 		}
1558 	}
1559 
1560 	if (!num_rules)
1561 		return NULL;
1562 
1563 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1564 	if (!rd)
1565 		return NULL;
1566 
1567 	for (x = 0; x < rd1->n_reg_rules; x++) {
1568 		rule1 = &rd1->reg_rules[x];
1569 		for (y = 0; y < rd2->n_reg_rules; y++) {
1570 			rule2 = &rd2->reg_rules[y];
1571 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1572 						&intersected_rule);
1573 			/*
1574 			 * No need to memset here the intersected rule here as
1575 			 * we're not using the stack anymore
1576 			 */
1577 			if (r)
1578 				continue;
1579 
1580 			add_rule(&intersected_rule, rd->reg_rules,
1581 				 &rd->n_reg_rules);
1582 		}
1583 	}
1584 
1585 	rd->alpha2[0] = '9';
1586 	rd->alpha2[1] = '8';
1587 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1588 						  rd2->dfs_region);
1589 
1590 	return rd;
1591 }
1592 
1593 /*
1594  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1595  * want to just have the channel structure use these
1596  */
1597 static u32 map_regdom_flags(u32 rd_flags)
1598 {
1599 	u32 channel_flags = 0;
1600 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1601 		channel_flags |= IEEE80211_CHAN_NO_IR;
1602 	if (rd_flags & NL80211_RRF_DFS)
1603 		channel_flags |= IEEE80211_CHAN_RADAR;
1604 	if (rd_flags & NL80211_RRF_NO_OFDM)
1605 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1606 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1607 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1608 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1609 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1610 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1611 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1612 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1613 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1614 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1615 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1616 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1617 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1618 	if (rd_flags & NL80211_RRF_NO_HE)
1619 		channel_flags |= IEEE80211_CHAN_NO_HE;
1620 	if (rd_flags & NL80211_RRF_NO_320MHZ)
1621 		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1622 	return channel_flags;
1623 }
1624 
1625 static const struct ieee80211_reg_rule *
1626 freq_reg_info_regd(u32 center_freq,
1627 		   const struct ieee80211_regdomain *regd, u32 bw)
1628 {
1629 	int i;
1630 	bool band_rule_found = false;
1631 	bool bw_fits = false;
1632 
1633 	if (!regd)
1634 		return ERR_PTR(-EINVAL);
1635 
1636 	for (i = 0; i < regd->n_reg_rules; i++) {
1637 		const struct ieee80211_reg_rule *rr;
1638 		const struct ieee80211_freq_range *fr = NULL;
1639 
1640 		rr = &regd->reg_rules[i];
1641 		fr = &rr->freq_range;
1642 
1643 		/*
1644 		 * We only need to know if one frequency rule was
1645 		 * in center_freq's band, that's enough, so let's
1646 		 * not overwrite it once found
1647 		 */
1648 		if (!band_rule_found)
1649 			band_rule_found = freq_in_rule_band(fr, center_freq);
1650 
1651 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1652 
1653 		if (band_rule_found && bw_fits)
1654 			return rr;
1655 	}
1656 
1657 	if (!band_rule_found)
1658 		return ERR_PTR(-ERANGE);
1659 
1660 	return ERR_PTR(-EINVAL);
1661 }
1662 
1663 static const struct ieee80211_reg_rule *
1664 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1665 {
1666 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1667 	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1668 	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1669 	int i = ARRAY_SIZE(bws) - 1;
1670 	u32 bw;
1671 
1672 	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1673 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1674 		if (!IS_ERR(reg_rule))
1675 			return reg_rule;
1676 	}
1677 
1678 	return reg_rule;
1679 }
1680 
1681 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1682 					       u32 center_freq)
1683 {
1684 	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1685 
1686 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1687 }
1688 EXPORT_SYMBOL(freq_reg_info);
1689 
1690 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1691 {
1692 	switch (initiator) {
1693 	case NL80211_REGDOM_SET_BY_CORE:
1694 		return "core";
1695 	case NL80211_REGDOM_SET_BY_USER:
1696 		return "user";
1697 	case NL80211_REGDOM_SET_BY_DRIVER:
1698 		return "driver";
1699 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1700 		return "country element";
1701 	default:
1702 		WARN_ON(1);
1703 		return "bug";
1704 	}
1705 }
1706 EXPORT_SYMBOL(reg_initiator_name);
1707 
1708 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1709 					  const struct ieee80211_reg_rule *reg_rule,
1710 					  const struct ieee80211_channel *chan)
1711 {
1712 	const struct ieee80211_freq_range *freq_range = NULL;
1713 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1714 	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1715 
1716 	freq_range = &reg_rule->freq_range;
1717 
1718 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1719 	center_freq_khz = ieee80211_channel_to_khz(chan);
1720 	/* Check if auto calculation requested */
1721 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1722 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1723 
1724 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1725 	if (!cfg80211_does_bw_fit_range(freq_range,
1726 					center_freq_khz,
1727 					MHZ_TO_KHZ(10)))
1728 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1729 	if (!cfg80211_does_bw_fit_range(freq_range,
1730 					center_freq_khz,
1731 					MHZ_TO_KHZ(20)))
1732 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1733 
1734 	if (is_s1g) {
1735 		/* S1G is strict about non overlapping channels. We can
1736 		 * calculate which bandwidth is allowed per channel by finding
1737 		 * the largest bandwidth which cleanly divides the freq_range.
1738 		 */
1739 		int edge_offset;
1740 		int ch_bw = max_bandwidth_khz;
1741 
1742 		while (ch_bw) {
1743 			edge_offset = (center_freq_khz - ch_bw / 2) -
1744 				      freq_range->start_freq_khz;
1745 			if (edge_offset % ch_bw == 0) {
1746 				switch (KHZ_TO_MHZ(ch_bw)) {
1747 				case 1:
1748 					bw_flags |= IEEE80211_CHAN_1MHZ;
1749 					break;
1750 				case 2:
1751 					bw_flags |= IEEE80211_CHAN_2MHZ;
1752 					break;
1753 				case 4:
1754 					bw_flags |= IEEE80211_CHAN_4MHZ;
1755 					break;
1756 				case 8:
1757 					bw_flags |= IEEE80211_CHAN_8MHZ;
1758 					break;
1759 				case 16:
1760 					bw_flags |= IEEE80211_CHAN_16MHZ;
1761 					break;
1762 				default:
1763 					/* If we got here, no bandwidths fit on
1764 					 * this frequency, ie. band edge.
1765 					 */
1766 					bw_flags |= IEEE80211_CHAN_DISABLED;
1767 					break;
1768 				}
1769 				break;
1770 			}
1771 			ch_bw /= 2;
1772 		}
1773 	} else {
1774 		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1775 			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1776 		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1777 			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1778 		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1779 			bw_flags |= IEEE80211_CHAN_NO_HT40;
1780 		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1781 			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1782 		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1783 			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1784 		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1785 			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1786 	}
1787 	return bw_flags;
1788 }
1789 
1790 static void handle_channel_single_rule(struct wiphy *wiphy,
1791 				       enum nl80211_reg_initiator initiator,
1792 				       struct ieee80211_channel *chan,
1793 				       u32 flags,
1794 				       struct regulatory_request *lr,
1795 				       struct wiphy *request_wiphy,
1796 				       const struct ieee80211_reg_rule *reg_rule)
1797 {
1798 	u32 bw_flags = 0;
1799 	const struct ieee80211_power_rule *power_rule = NULL;
1800 	const struct ieee80211_regdomain *regd;
1801 
1802 	regd = reg_get_regdomain(wiphy);
1803 
1804 	power_rule = &reg_rule->power_rule;
1805 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1806 
1807 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1808 	    request_wiphy && request_wiphy == wiphy &&
1809 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1810 		/*
1811 		 * This guarantees the driver's requested regulatory domain
1812 		 * will always be used as a base for further regulatory
1813 		 * settings
1814 		 */
1815 		chan->flags = chan->orig_flags =
1816 			map_regdom_flags(reg_rule->flags) | bw_flags;
1817 		chan->max_antenna_gain = chan->orig_mag =
1818 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1819 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1820 			(int) MBM_TO_DBM(power_rule->max_eirp);
1821 
1822 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1823 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1824 			if (reg_rule->dfs_cac_ms)
1825 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1826 		}
1827 
1828 		return;
1829 	}
1830 
1831 	chan->dfs_state = NL80211_DFS_USABLE;
1832 	chan->dfs_state_entered = jiffies;
1833 
1834 	chan->beacon_found = false;
1835 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1836 	chan->max_antenna_gain =
1837 		min_t(int, chan->orig_mag,
1838 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1839 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1840 
1841 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1842 		if (reg_rule->dfs_cac_ms)
1843 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1844 		else
1845 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1846 	}
1847 
1848 	if (chan->orig_mpwr) {
1849 		/*
1850 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1851 		 * will always follow the passed country IE power settings.
1852 		 */
1853 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1854 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1855 			chan->max_power = chan->max_reg_power;
1856 		else
1857 			chan->max_power = min(chan->orig_mpwr,
1858 					      chan->max_reg_power);
1859 	} else
1860 		chan->max_power = chan->max_reg_power;
1861 }
1862 
1863 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1864 					  enum nl80211_reg_initiator initiator,
1865 					  struct ieee80211_channel *chan,
1866 					  u32 flags,
1867 					  struct regulatory_request *lr,
1868 					  struct wiphy *request_wiphy,
1869 					  const struct ieee80211_reg_rule *rrule1,
1870 					  const struct ieee80211_reg_rule *rrule2,
1871 					  struct ieee80211_freq_range *comb_range)
1872 {
1873 	u32 bw_flags1 = 0;
1874 	u32 bw_flags2 = 0;
1875 	const struct ieee80211_power_rule *power_rule1 = NULL;
1876 	const struct ieee80211_power_rule *power_rule2 = NULL;
1877 	const struct ieee80211_regdomain *regd;
1878 
1879 	regd = reg_get_regdomain(wiphy);
1880 
1881 	power_rule1 = &rrule1->power_rule;
1882 	power_rule2 = &rrule2->power_rule;
1883 	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1884 	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1885 
1886 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1887 	    request_wiphy && request_wiphy == wiphy &&
1888 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1889 		/* This guarantees the driver's requested regulatory domain
1890 		 * will always be used as a base for further regulatory
1891 		 * settings
1892 		 */
1893 		chan->flags =
1894 			map_regdom_flags(rrule1->flags) |
1895 			map_regdom_flags(rrule2->flags) |
1896 			bw_flags1 |
1897 			bw_flags2;
1898 		chan->orig_flags = chan->flags;
1899 		chan->max_antenna_gain =
1900 			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1901 			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1902 		chan->orig_mag = chan->max_antenna_gain;
1903 		chan->max_reg_power =
1904 			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1905 			      MBM_TO_DBM(power_rule2->max_eirp));
1906 		chan->max_power = chan->max_reg_power;
1907 		chan->orig_mpwr = chan->max_reg_power;
1908 
1909 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1910 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1911 			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1912 				chan->dfs_cac_ms = max_t(unsigned int,
1913 							 rrule1->dfs_cac_ms,
1914 							 rrule2->dfs_cac_ms);
1915 		}
1916 
1917 		return;
1918 	}
1919 
1920 	chan->dfs_state = NL80211_DFS_USABLE;
1921 	chan->dfs_state_entered = jiffies;
1922 
1923 	chan->beacon_found = false;
1924 	chan->flags = flags | bw_flags1 | bw_flags2 |
1925 		      map_regdom_flags(rrule1->flags) |
1926 		      map_regdom_flags(rrule2->flags);
1927 
1928 	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1929 	 * (otherwise no adj. rule case), recheck therefore
1930 	 */
1931 	if (cfg80211_does_bw_fit_range(comb_range,
1932 				       ieee80211_channel_to_khz(chan),
1933 				       MHZ_TO_KHZ(10)))
1934 		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1935 	if (cfg80211_does_bw_fit_range(comb_range,
1936 				       ieee80211_channel_to_khz(chan),
1937 				       MHZ_TO_KHZ(20)))
1938 		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1939 
1940 	chan->max_antenna_gain =
1941 		min_t(int, chan->orig_mag,
1942 		      min_t(int,
1943 			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1944 			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1945 	chan->max_reg_power = min_t(int,
1946 				    MBM_TO_DBM(power_rule1->max_eirp),
1947 				    MBM_TO_DBM(power_rule2->max_eirp));
1948 
1949 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1950 		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1951 			chan->dfs_cac_ms = max_t(unsigned int,
1952 						 rrule1->dfs_cac_ms,
1953 						 rrule2->dfs_cac_ms);
1954 		else
1955 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1956 	}
1957 
1958 	if (chan->orig_mpwr) {
1959 		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1960 		 * will always follow the passed country IE power settings.
1961 		 */
1962 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1963 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1964 			chan->max_power = chan->max_reg_power;
1965 		else
1966 			chan->max_power = min(chan->orig_mpwr,
1967 					      chan->max_reg_power);
1968 	} else {
1969 		chan->max_power = chan->max_reg_power;
1970 	}
1971 }
1972 
1973 /* Note that right now we assume the desired channel bandwidth
1974  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1975  * per channel, the primary and the extension channel).
1976  */
1977 static void handle_channel(struct wiphy *wiphy,
1978 			   enum nl80211_reg_initiator initiator,
1979 			   struct ieee80211_channel *chan)
1980 {
1981 	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1982 	struct regulatory_request *lr = get_last_request();
1983 	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1984 	const struct ieee80211_reg_rule *rrule = NULL;
1985 	const struct ieee80211_reg_rule *rrule1 = NULL;
1986 	const struct ieee80211_reg_rule *rrule2 = NULL;
1987 
1988 	u32 flags = chan->orig_flags;
1989 
1990 	rrule = freq_reg_info(wiphy, orig_chan_freq);
1991 	if (IS_ERR(rrule)) {
1992 		/* check for adjacent match, therefore get rules for
1993 		 * chan - 20 MHz and chan + 20 MHz and test
1994 		 * if reg rules are adjacent
1995 		 */
1996 		rrule1 = freq_reg_info(wiphy,
1997 				       orig_chan_freq - MHZ_TO_KHZ(20));
1998 		rrule2 = freq_reg_info(wiphy,
1999 				       orig_chan_freq + MHZ_TO_KHZ(20));
2000 		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
2001 			struct ieee80211_freq_range comb_range;
2002 
2003 			if (rrule1->freq_range.end_freq_khz !=
2004 			    rrule2->freq_range.start_freq_khz)
2005 				goto disable_chan;
2006 
2007 			comb_range.start_freq_khz =
2008 				rrule1->freq_range.start_freq_khz;
2009 			comb_range.end_freq_khz =
2010 				rrule2->freq_range.end_freq_khz;
2011 			comb_range.max_bandwidth_khz =
2012 				min_t(u32,
2013 				      rrule1->freq_range.max_bandwidth_khz,
2014 				      rrule2->freq_range.max_bandwidth_khz);
2015 
2016 			if (!cfg80211_does_bw_fit_range(&comb_range,
2017 							orig_chan_freq,
2018 							MHZ_TO_KHZ(20)))
2019 				goto disable_chan;
2020 
2021 			handle_channel_adjacent_rules(wiphy, initiator, chan,
2022 						      flags, lr, request_wiphy,
2023 						      rrule1, rrule2,
2024 						      &comb_range);
2025 			return;
2026 		}
2027 
2028 disable_chan:
2029 		/* We will disable all channels that do not match our
2030 		 * received regulatory rule unless the hint is coming
2031 		 * from a Country IE and the Country IE had no information
2032 		 * about a band. The IEEE 802.11 spec allows for an AP
2033 		 * to send only a subset of the regulatory rules allowed,
2034 		 * so an AP in the US that only supports 2.4 GHz may only send
2035 		 * a country IE with information for the 2.4 GHz band
2036 		 * while 5 GHz is still supported.
2037 		 */
2038 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2039 		    PTR_ERR(rrule) == -ERANGE)
2040 			return;
2041 
2042 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2043 		    request_wiphy && request_wiphy == wiphy &&
2044 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2045 			pr_debug("Disabling freq %d.%03d MHz for good\n",
2046 				 chan->center_freq, chan->freq_offset);
2047 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2048 			chan->flags = chan->orig_flags;
2049 		} else {
2050 			pr_debug("Disabling freq %d.%03d MHz\n",
2051 				 chan->center_freq, chan->freq_offset);
2052 			chan->flags |= IEEE80211_CHAN_DISABLED;
2053 		}
2054 		return;
2055 	}
2056 
2057 	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2058 				   request_wiphy, rrule);
2059 }
2060 
2061 static void handle_band(struct wiphy *wiphy,
2062 			enum nl80211_reg_initiator initiator,
2063 			struct ieee80211_supported_band *sband)
2064 {
2065 	unsigned int i;
2066 
2067 	if (!sband)
2068 		return;
2069 
2070 	for (i = 0; i < sband->n_channels; i++)
2071 		handle_channel(wiphy, initiator, &sband->channels[i]);
2072 }
2073 
2074 static bool reg_request_cell_base(struct regulatory_request *request)
2075 {
2076 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2077 		return false;
2078 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2079 }
2080 
2081 bool reg_last_request_cell_base(void)
2082 {
2083 	return reg_request_cell_base(get_last_request());
2084 }
2085 
2086 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2087 /* Core specific check */
2088 static enum reg_request_treatment
2089 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2090 {
2091 	struct regulatory_request *lr = get_last_request();
2092 
2093 	if (!reg_num_devs_support_basehint)
2094 		return REG_REQ_IGNORE;
2095 
2096 	if (reg_request_cell_base(lr) &&
2097 	    !regdom_changes(pending_request->alpha2))
2098 		return REG_REQ_ALREADY_SET;
2099 
2100 	return REG_REQ_OK;
2101 }
2102 
2103 /* Device specific check */
2104 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2105 {
2106 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2107 }
2108 #else
2109 static enum reg_request_treatment
2110 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2111 {
2112 	return REG_REQ_IGNORE;
2113 }
2114 
2115 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2116 {
2117 	return true;
2118 }
2119 #endif
2120 
2121 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2122 {
2123 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2124 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2125 		return true;
2126 	return false;
2127 }
2128 
2129 static bool ignore_reg_update(struct wiphy *wiphy,
2130 			      enum nl80211_reg_initiator initiator)
2131 {
2132 	struct regulatory_request *lr = get_last_request();
2133 
2134 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2135 		return true;
2136 
2137 	if (!lr) {
2138 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2139 			 reg_initiator_name(initiator));
2140 		return true;
2141 	}
2142 
2143 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2144 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2145 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2146 			 reg_initiator_name(initiator));
2147 		return true;
2148 	}
2149 
2150 	/*
2151 	 * wiphy->regd will be set once the device has its own
2152 	 * desired regulatory domain set
2153 	 */
2154 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2155 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2156 	    !is_world_regdom(lr->alpha2)) {
2157 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2158 			 reg_initiator_name(initiator));
2159 		return true;
2160 	}
2161 
2162 	if (reg_request_cell_base(lr))
2163 		return reg_dev_ignore_cell_hint(wiphy);
2164 
2165 	return false;
2166 }
2167 
2168 static bool reg_is_world_roaming(struct wiphy *wiphy)
2169 {
2170 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2171 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2172 	struct regulatory_request *lr = get_last_request();
2173 
2174 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2175 		return true;
2176 
2177 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2178 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2179 		return true;
2180 
2181 	return false;
2182 }
2183 
2184 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2185 			      struct reg_beacon *reg_beacon)
2186 {
2187 	struct ieee80211_supported_band *sband;
2188 	struct ieee80211_channel *chan;
2189 	bool channel_changed = false;
2190 	struct ieee80211_channel chan_before;
2191 
2192 	sband = wiphy->bands[reg_beacon->chan.band];
2193 	chan = &sband->channels[chan_idx];
2194 
2195 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2196 		return;
2197 
2198 	if (chan->beacon_found)
2199 		return;
2200 
2201 	chan->beacon_found = true;
2202 
2203 	if (!reg_is_world_roaming(wiphy))
2204 		return;
2205 
2206 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2207 		return;
2208 
2209 	chan_before = *chan;
2210 
2211 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2212 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2213 		channel_changed = true;
2214 	}
2215 
2216 	if (channel_changed)
2217 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2218 }
2219 
2220 /*
2221  * Called when a scan on a wiphy finds a beacon on
2222  * new channel
2223  */
2224 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2225 				    struct reg_beacon *reg_beacon)
2226 {
2227 	unsigned int i;
2228 	struct ieee80211_supported_band *sband;
2229 
2230 	if (!wiphy->bands[reg_beacon->chan.band])
2231 		return;
2232 
2233 	sband = wiphy->bands[reg_beacon->chan.band];
2234 
2235 	for (i = 0; i < sband->n_channels; i++)
2236 		handle_reg_beacon(wiphy, i, reg_beacon);
2237 }
2238 
2239 /*
2240  * Called upon reg changes or a new wiphy is added
2241  */
2242 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2243 {
2244 	unsigned int i;
2245 	struct ieee80211_supported_band *sband;
2246 	struct reg_beacon *reg_beacon;
2247 
2248 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2249 		if (!wiphy->bands[reg_beacon->chan.band])
2250 			continue;
2251 		sband = wiphy->bands[reg_beacon->chan.band];
2252 		for (i = 0; i < sband->n_channels; i++)
2253 			handle_reg_beacon(wiphy, i, reg_beacon);
2254 	}
2255 }
2256 
2257 /* Reap the advantages of previously found beacons */
2258 static void reg_process_beacons(struct wiphy *wiphy)
2259 {
2260 	/*
2261 	 * Means we are just firing up cfg80211, so no beacons would
2262 	 * have been processed yet.
2263 	 */
2264 	if (!last_request)
2265 		return;
2266 	wiphy_update_beacon_reg(wiphy);
2267 }
2268 
2269 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2270 {
2271 	if (!chan)
2272 		return false;
2273 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2274 		return false;
2275 	/* This would happen when regulatory rules disallow HT40 completely */
2276 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2277 		return false;
2278 	return true;
2279 }
2280 
2281 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2282 					 struct ieee80211_channel *channel)
2283 {
2284 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2285 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2286 	const struct ieee80211_regdomain *regd;
2287 	unsigned int i;
2288 	u32 flags;
2289 
2290 	if (!is_ht40_allowed(channel)) {
2291 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2292 		return;
2293 	}
2294 
2295 	/*
2296 	 * We need to ensure the extension channels exist to
2297 	 * be able to use HT40- or HT40+, this finds them (or not)
2298 	 */
2299 	for (i = 0; i < sband->n_channels; i++) {
2300 		struct ieee80211_channel *c = &sband->channels[i];
2301 
2302 		if (c->center_freq == (channel->center_freq - 20))
2303 			channel_before = c;
2304 		if (c->center_freq == (channel->center_freq + 20))
2305 			channel_after = c;
2306 	}
2307 
2308 	flags = 0;
2309 	regd = get_wiphy_regdom(wiphy);
2310 	if (regd) {
2311 		const struct ieee80211_reg_rule *reg_rule =
2312 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2313 					   regd, MHZ_TO_KHZ(20));
2314 
2315 		if (!IS_ERR(reg_rule))
2316 			flags = reg_rule->flags;
2317 	}
2318 
2319 	/*
2320 	 * Please note that this assumes target bandwidth is 20 MHz,
2321 	 * if that ever changes we also need to change the below logic
2322 	 * to include that as well.
2323 	 */
2324 	if (!is_ht40_allowed(channel_before) ||
2325 	    flags & NL80211_RRF_NO_HT40MINUS)
2326 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2327 	else
2328 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2329 
2330 	if (!is_ht40_allowed(channel_after) ||
2331 	    flags & NL80211_RRF_NO_HT40PLUS)
2332 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2333 	else
2334 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2335 }
2336 
2337 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2338 				      struct ieee80211_supported_band *sband)
2339 {
2340 	unsigned int i;
2341 
2342 	if (!sband)
2343 		return;
2344 
2345 	for (i = 0; i < sband->n_channels; i++)
2346 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2347 }
2348 
2349 static void reg_process_ht_flags(struct wiphy *wiphy)
2350 {
2351 	enum nl80211_band band;
2352 
2353 	if (!wiphy)
2354 		return;
2355 
2356 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2357 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2358 }
2359 
2360 static void reg_call_notifier(struct wiphy *wiphy,
2361 			      struct regulatory_request *request)
2362 {
2363 	if (wiphy->reg_notifier)
2364 		wiphy->reg_notifier(wiphy, request);
2365 }
2366 
2367 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2368 {
2369 	struct cfg80211_chan_def chandef = {};
2370 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2371 	enum nl80211_iftype iftype;
2372 	bool ret;
2373 
2374 	wdev_lock(wdev);
2375 	iftype = wdev->iftype;
2376 
2377 	/* make sure the interface is active */
2378 	if (!wdev->netdev || !netif_running(wdev->netdev))
2379 		goto wdev_inactive_unlock;
2380 
2381 	switch (iftype) {
2382 	case NL80211_IFTYPE_AP:
2383 	case NL80211_IFTYPE_P2P_GO:
2384 	case NL80211_IFTYPE_MESH_POINT:
2385 		if (!wdev->beacon_interval)
2386 			goto wdev_inactive_unlock;
2387 		chandef = wdev->chandef;
2388 		break;
2389 	case NL80211_IFTYPE_ADHOC:
2390 		if (!wdev->ssid_len)
2391 			goto wdev_inactive_unlock;
2392 		chandef = wdev->chandef;
2393 		break;
2394 	case NL80211_IFTYPE_STATION:
2395 	case NL80211_IFTYPE_P2P_CLIENT:
2396 		if (!wdev->current_bss ||
2397 		    !wdev->current_bss->pub.channel)
2398 			goto wdev_inactive_unlock;
2399 
2400 		if (!rdev->ops->get_channel ||
2401 		    rdev_get_channel(rdev, wdev, &chandef))
2402 			cfg80211_chandef_create(&chandef,
2403 						wdev->current_bss->pub.channel,
2404 						NL80211_CHAN_NO_HT);
2405 		break;
2406 	case NL80211_IFTYPE_MONITOR:
2407 	case NL80211_IFTYPE_AP_VLAN:
2408 	case NL80211_IFTYPE_P2P_DEVICE:
2409 		/* no enforcement required */
2410 		break;
2411 	default:
2412 		/* others not implemented for now */
2413 		WARN_ON(1);
2414 		break;
2415 	}
2416 
2417 	wdev_unlock(wdev);
2418 
2419 	switch (iftype) {
2420 	case NL80211_IFTYPE_AP:
2421 	case NL80211_IFTYPE_P2P_GO:
2422 	case NL80211_IFTYPE_ADHOC:
2423 	case NL80211_IFTYPE_MESH_POINT:
2424 		wiphy_lock(wiphy);
2425 		ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2426 		wiphy_unlock(wiphy);
2427 
2428 		return ret;
2429 	case NL80211_IFTYPE_STATION:
2430 	case NL80211_IFTYPE_P2P_CLIENT:
2431 		return cfg80211_chandef_usable(wiphy, &chandef,
2432 					       IEEE80211_CHAN_DISABLED);
2433 	default:
2434 		break;
2435 	}
2436 
2437 	return true;
2438 
2439 wdev_inactive_unlock:
2440 	wdev_unlock(wdev);
2441 	return true;
2442 }
2443 
2444 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2445 {
2446 	struct wireless_dev *wdev;
2447 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2448 
2449 	ASSERT_RTNL();
2450 
2451 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2452 		if (!reg_wdev_chan_valid(wiphy, wdev))
2453 			cfg80211_leave(rdev, wdev);
2454 }
2455 
2456 static void reg_check_chans_work(struct work_struct *work)
2457 {
2458 	struct cfg80211_registered_device *rdev;
2459 
2460 	pr_debug("Verifying active interfaces after reg change\n");
2461 	rtnl_lock();
2462 
2463 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2464 		if (!(rdev->wiphy.regulatory_flags &
2465 		      REGULATORY_IGNORE_STALE_KICKOFF))
2466 			reg_leave_invalid_chans(&rdev->wiphy);
2467 
2468 	rtnl_unlock();
2469 }
2470 
2471 static void reg_check_channels(void)
2472 {
2473 	/*
2474 	 * Give usermode a chance to do something nicer (move to another
2475 	 * channel, orderly disconnection), before forcing a disconnection.
2476 	 */
2477 	mod_delayed_work(system_power_efficient_wq,
2478 			 &reg_check_chans,
2479 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2480 }
2481 
2482 static void wiphy_update_regulatory(struct wiphy *wiphy,
2483 				    enum nl80211_reg_initiator initiator)
2484 {
2485 	enum nl80211_band band;
2486 	struct regulatory_request *lr = get_last_request();
2487 
2488 	if (ignore_reg_update(wiphy, initiator)) {
2489 		/*
2490 		 * Regulatory updates set by CORE are ignored for custom
2491 		 * regulatory cards. Let us notify the changes to the driver,
2492 		 * as some drivers used this to restore its orig_* reg domain.
2493 		 */
2494 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2495 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2496 		    !(wiphy->regulatory_flags &
2497 		      REGULATORY_WIPHY_SELF_MANAGED))
2498 			reg_call_notifier(wiphy, lr);
2499 		return;
2500 	}
2501 
2502 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2503 
2504 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2505 		handle_band(wiphy, initiator, wiphy->bands[band]);
2506 
2507 	reg_process_beacons(wiphy);
2508 	reg_process_ht_flags(wiphy);
2509 	reg_call_notifier(wiphy, lr);
2510 }
2511 
2512 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2513 {
2514 	struct cfg80211_registered_device *rdev;
2515 	struct wiphy *wiphy;
2516 
2517 	ASSERT_RTNL();
2518 
2519 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2520 		wiphy = &rdev->wiphy;
2521 		wiphy_update_regulatory(wiphy, initiator);
2522 	}
2523 
2524 	reg_check_channels();
2525 }
2526 
2527 static void handle_channel_custom(struct wiphy *wiphy,
2528 				  struct ieee80211_channel *chan,
2529 				  const struct ieee80211_regdomain *regd,
2530 				  u32 min_bw)
2531 {
2532 	u32 bw_flags = 0;
2533 	const struct ieee80211_reg_rule *reg_rule = NULL;
2534 	const struct ieee80211_power_rule *power_rule = NULL;
2535 	u32 bw, center_freq_khz;
2536 
2537 	center_freq_khz = ieee80211_channel_to_khz(chan);
2538 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2539 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2540 		if (!IS_ERR(reg_rule))
2541 			break;
2542 	}
2543 
2544 	if (IS_ERR_OR_NULL(reg_rule)) {
2545 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2546 			 chan->center_freq, chan->freq_offset);
2547 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2548 			chan->flags |= IEEE80211_CHAN_DISABLED;
2549 		} else {
2550 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2551 			chan->flags = chan->orig_flags;
2552 		}
2553 		return;
2554 	}
2555 
2556 	power_rule = &reg_rule->power_rule;
2557 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2558 
2559 	chan->dfs_state_entered = jiffies;
2560 	chan->dfs_state = NL80211_DFS_USABLE;
2561 
2562 	chan->beacon_found = false;
2563 
2564 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2565 		chan->flags = chan->orig_flags | bw_flags |
2566 			      map_regdom_flags(reg_rule->flags);
2567 	else
2568 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2569 
2570 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2571 	chan->max_reg_power = chan->max_power =
2572 		(int) MBM_TO_DBM(power_rule->max_eirp);
2573 
2574 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2575 		if (reg_rule->dfs_cac_ms)
2576 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2577 		else
2578 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2579 	}
2580 
2581 	chan->max_power = chan->max_reg_power;
2582 }
2583 
2584 static void handle_band_custom(struct wiphy *wiphy,
2585 			       struct ieee80211_supported_band *sband,
2586 			       const struct ieee80211_regdomain *regd)
2587 {
2588 	unsigned int i;
2589 
2590 	if (!sband)
2591 		return;
2592 
2593 	/*
2594 	 * We currently assume that you always want at least 20 MHz,
2595 	 * otherwise channel 12 might get enabled if this rule is
2596 	 * compatible to US, which permits 2402 - 2472 MHz.
2597 	 */
2598 	for (i = 0; i < sband->n_channels; i++)
2599 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2600 				      MHZ_TO_KHZ(20));
2601 }
2602 
2603 /* Used by drivers prior to wiphy registration */
2604 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2605 				   const struct ieee80211_regdomain *regd)
2606 {
2607 	const struct ieee80211_regdomain *new_regd, *tmp;
2608 	enum nl80211_band band;
2609 	unsigned int bands_set = 0;
2610 
2611 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2612 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2613 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2614 
2615 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2616 		if (!wiphy->bands[band])
2617 			continue;
2618 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2619 		bands_set++;
2620 	}
2621 
2622 	/*
2623 	 * no point in calling this if it won't have any effect
2624 	 * on your device's supported bands.
2625 	 */
2626 	WARN_ON(!bands_set);
2627 	new_regd = reg_copy_regd(regd);
2628 	if (IS_ERR(new_regd))
2629 		return;
2630 
2631 	rtnl_lock();
2632 	wiphy_lock(wiphy);
2633 
2634 	tmp = get_wiphy_regdom(wiphy);
2635 	rcu_assign_pointer(wiphy->regd, new_regd);
2636 	rcu_free_regdom(tmp);
2637 
2638 	wiphy_unlock(wiphy);
2639 	rtnl_unlock();
2640 }
2641 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2642 
2643 static void reg_set_request_processed(void)
2644 {
2645 	bool need_more_processing = false;
2646 	struct regulatory_request *lr = get_last_request();
2647 
2648 	lr->processed = true;
2649 
2650 	spin_lock(&reg_requests_lock);
2651 	if (!list_empty(&reg_requests_list))
2652 		need_more_processing = true;
2653 	spin_unlock(&reg_requests_lock);
2654 
2655 	cancel_crda_timeout();
2656 
2657 	if (need_more_processing)
2658 		schedule_work(&reg_work);
2659 }
2660 
2661 /**
2662  * reg_process_hint_core - process core regulatory requests
2663  * @core_request: a pending core regulatory request
2664  *
2665  * The wireless subsystem can use this function to process
2666  * a regulatory request issued by the regulatory core.
2667  */
2668 static enum reg_request_treatment
2669 reg_process_hint_core(struct regulatory_request *core_request)
2670 {
2671 	if (reg_query_database(core_request)) {
2672 		core_request->intersect = false;
2673 		core_request->processed = false;
2674 		reg_update_last_request(core_request);
2675 		return REG_REQ_OK;
2676 	}
2677 
2678 	return REG_REQ_IGNORE;
2679 }
2680 
2681 static enum reg_request_treatment
2682 __reg_process_hint_user(struct regulatory_request *user_request)
2683 {
2684 	struct regulatory_request *lr = get_last_request();
2685 
2686 	if (reg_request_cell_base(user_request))
2687 		return reg_ignore_cell_hint(user_request);
2688 
2689 	if (reg_request_cell_base(lr))
2690 		return REG_REQ_IGNORE;
2691 
2692 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2693 		return REG_REQ_INTERSECT;
2694 	/*
2695 	 * If the user knows better the user should set the regdom
2696 	 * to their country before the IE is picked up
2697 	 */
2698 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2699 	    lr->intersect)
2700 		return REG_REQ_IGNORE;
2701 	/*
2702 	 * Process user requests only after previous user/driver/core
2703 	 * requests have been processed
2704 	 */
2705 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2706 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2707 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2708 	    regdom_changes(lr->alpha2))
2709 		return REG_REQ_IGNORE;
2710 
2711 	if (!regdom_changes(user_request->alpha2))
2712 		return REG_REQ_ALREADY_SET;
2713 
2714 	return REG_REQ_OK;
2715 }
2716 
2717 /**
2718  * reg_process_hint_user - process user regulatory requests
2719  * @user_request: a pending user regulatory request
2720  *
2721  * The wireless subsystem can use this function to process
2722  * a regulatory request initiated by userspace.
2723  */
2724 static enum reg_request_treatment
2725 reg_process_hint_user(struct regulatory_request *user_request)
2726 {
2727 	enum reg_request_treatment treatment;
2728 
2729 	treatment = __reg_process_hint_user(user_request);
2730 	if (treatment == REG_REQ_IGNORE ||
2731 	    treatment == REG_REQ_ALREADY_SET)
2732 		return REG_REQ_IGNORE;
2733 
2734 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2735 	user_request->processed = false;
2736 
2737 	if (reg_query_database(user_request)) {
2738 		reg_update_last_request(user_request);
2739 		user_alpha2[0] = user_request->alpha2[0];
2740 		user_alpha2[1] = user_request->alpha2[1];
2741 		return REG_REQ_OK;
2742 	}
2743 
2744 	return REG_REQ_IGNORE;
2745 }
2746 
2747 static enum reg_request_treatment
2748 __reg_process_hint_driver(struct regulatory_request *driver_request)
2749 {
2750 	struct regulatory_request *lr = get_last_request();
2751 
2752 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2753 		if (regdom_changes(driver_request->alpha2))
2754 			return REG_REQ_OK;
2755 		return REG_REQ_ALREADY_SET;
2756 	}
2757 
2758 	/*
2759 	 * This would happen if you unplug and plug your card
2760 	 * back in or if you add a new device for which the previously
2761 	 * loaded card also agrees on the regulatory domain.
2762 	 */
2763 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2764 	    !regdom_changes(driver_request->alpha2))
2765 		return REG_REQ_ALREADY_SET;
2766 
2767 	return REG_REQ_INTERSECT;
2768 }
2769 
2770 /**
2771  * reg_process_hint_driver - process driver regulatory requests
2772  * @wiphy: the wireless device for the regulatory request
2773  * @driver_request: a pending driver regulatory request
2774  *
2775  * The wireless subsystem can use this function to process
2776  * a regulatory request issued by an 802.11 driver.
2777  *
2778  * Returns one of the different reg request treatment values.
2779  */
2780 static enum reg_request_treatment
2781 reg_process_hint_driver(struct wiphy *wiphy,
2782 			struct regulatory_request *driver_request)
2783 {
2784 	const struct ieee80211_regdomain *regd, *tmp;
2785 	enum reg_request_treatment treatment;
2786 
2787 	treatment = __reg_process_hint_driver(driver_request);
2788 
2789 	switch (treatment) {
2790 	case REG_REQ_OK:
2791 		break;
2792 	case REG_REQ_IGNORE:
2793 		return REG_REQ_IGNORE;
2794 	case REG_REQ_INTERSECT:
2795 	case REG_REQ_ALREADY_SET:
2796 		regd = reg_copy_regd(get_cfg80211_regdom());
2797 		if (IS_ERR(regd))
2798 			return REG_REQ_IGNORE;
2799 
2800 		tmp = get_wiphy_regdom(wiphy);
2801 		ASSERT_RTNL();
2802 		wiphy_lock(wiphy);
2803 		rcu_assign_pointer(wiphy->regd, regd);
2804 		wiphy_unlock(wiphy);
2805 		rcu_free_regdom(tmp);
2806 	}
2807 
2808 
2809 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2810 	driver_request->processed = false;
2811 
2812 	/*
2813 	 * Since CRDA will not be called in this case as we already
2814 	 * have applied the requested regulatory domain before we just
2815 	 * inform userspace we have processed the request
2816 	 */
2817 	if (treatment == REG_REQ_ALREADY_SET) {
2818 		nl80211_send_reg_change_event(driver_request);
2819 		reg_update_last_request(driver_request);
2820 		reg_set_request_processed();
2821 		return REG_REQ_ALREADY_SET;
2822 	}
2823 
2824 	if (reg_query_database(driver_request)) {
2825 		reg_update_last_request(driver_request);
2826 		return REG_REQ_OK;
2827 	}
2828 
2829 	return REG_REQ_IGNORE;
2830 }
2831 
2832 static enum reg_request_treatment
2833 __reg_process_hint_country_ie(struct wiphy *wiphy,
2834 			      struct regulatory_request *country_ie_request)
2835 {
2836 	struct wiphy *last_wiphy = NULL;
2837 	struct regulatory_request *lr = get_last_request();
2838 
2839 	if (reg_request_cell_base(lr)) {
2840 		/* Trust a Cell base station over the AP's country IE */
2841 		if (regdom_changes(country_ie_request->alpha2))
2842 			return REG_REQ_IGNORE;
2843 		return REG_REQ_ALREADY_SET;
2844 	} else {
2845 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2846 			return REG_REQ_IGNORE;
2847 	}
2848 
2849 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2850 		return -EINVAL;
2851 
2852 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2853 		return REG_REQ_OK;
2854 
2855 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2856 
2857 	if (last_wiphy != wiphy) {
2858 		/*
2859 		 * Two cards with two APs claiming different
2860 		 * Country IE alpha2s. We could
2861 		 * intersect them, but that seems unlikely
2862 		 * to be correct. Reject second one for now.
2863 		 */
2864 		if (regdom_changes(country_ie_request->alpha2))
2865 			return REG_REQ_IGNORE;
2866 		return REG_REQ_ALREADY_SET;
2867 	}
2868 
2869 	if (regdom_changes(country_ie_request->alpha2))
2870 		return REG_REQ_OK;
2871 	return REG_REQ_ALREADY_SET;
2872 }
2873 
2874 /**
2875  * reg_process_hint_country_ie - process regulatory requests from country IEs
2876  * @wiphy: the wireless device for the regulatory request
2877  * @country_ie_request: a regulatory request from a country IE
2878  *
2879  * The wireless subsystem can use this function to process
2880  * a regulatory request issued by a country Information Element.
2881  *
2882  * Returns one of the different reg request treatment values.
2883  */
2884 static enum reg_request_treatment
2885 reg_process_hint_country_ie(struct wiphy *wiphy,
2886 			    struct regulatory_request *country_ie_request)
2887 {
2888 	enum reg_request_treatment treatment;
2889 
2890 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2891 
2892 	switch (treatment) {
2893 	case REG_REQ_OK:
2894 		break;
2895 	case REG_REQ_IGNORE:
2896 		return REG_REQ_IGNORE;
2897 	case REG_REQ_ALREADY_SET:
2898 		reg_free_request(country_ie_request);
2899 		return REG_REQ_ALREADY_SET;
2900 	case REG_REQ_INTERSECT:
2901 		/*
2902 		 * This doesn't happen yet, not sure we
2903 		 * ever want to support it for this case.
2904 		 */
2905 		WARN_ONCE(1, "Unexpected intersection for country elements");
2906 		return REG_REQ_IGNORE;
2907 	}
2908 
2909 	country_ie_request->intersect = false;
2910 	country_ie_request->processed = false;
2911 
2912 	if (reg_query_database(country_ie_request)) {
2913 		reg_update_last_request(country_ie_request);
2914 		return REG_REQ_OK;
2915 	}
2916 
2917 	return REG_REQ_IGNORE;
2918 }
2919 
2920 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2921 {
2922 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2923 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2924 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2925 	bool dfs_domain_same;
2926 
2927 	rcu_read_lock();
2928 
2929 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2930 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2931 	if (!wiphy1_regd)
2932 		wiphy1_regd = cfg80211_regd;
2933 
2934 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2935 	if (!wiphy2_regd)
2936 		wiphy2_regd = cfg80211_regd;
2937 
2938 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2939 
2940 	rcu_read_unlock();
2941 
2942 	return dfs_domain_same;
2943 }
2944 
2945 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2946 				    struct ieee80211_channel *src_chan)
2947 {
2948 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2949 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2950 		return;
2951 
2952 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2953 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2954 		return;
2955 
2956 	if (src_chan->center_freq == dst_chan->center_freq &&
2957 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2958 		dst_chan->dfs_state = src_chan->dfs_state;
2959 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2960 	}
2961 }
2962 
2963 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2964 				       struct wiphy *src_wiphy)
2965 {
2966 	struct ieee80211_supported_band *src_sband, *dst_sband;
2967 	struct ieee80211_channel *src_chan, *dst_chan;
2968 	int i, j, band;
2969 
2970 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2971 		return;
2972 
2973 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2974 		dst_sband = dst_wiphy->bands[band];
2975 		src_sband = src_wiphy->bands[band];
2976 		if (!dst_sband || !src_sband)
2977 			continue;
2978 
2979 		for (i = 0; i < dst_sband->n_channels; i++) {
2980 			dst_chan = &dst_sband->channels[i];
2981 			for (j = 0; j < src_sband->n_channels; j++) {
2982 				src_chan = &src_sband->channels[j];
2983 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2984 			}
2985 		}
2986 	}
2987 }
2988 
2989 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2990 {
2991 	struct cfg80211_registered_device *rdev;
2992 
2993 	ASSERT_RTNL();
2994 
2995 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2996 		if (wiphy == &rdev->wiphy)
2997 			continue;
2998 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2999 	}
3000 }
3001 
3002 /* This processes *all* regulatory hints */
3003 static void reg_process_hint(struct regulatory_request *reg_request)
3004 {
3005 	struct wiphy *wiphy = NULL;
3006 	enum reg_request_treatment treatment;
3007 	enum nl80211_reg_initiator initiator = reg_request->initiator;
3008 
3009 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3010 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3011 
3012 	switch (initiator) {
3013 	case NL80211_REGDOM_SET_BY_CORE:
3014 		treatment = reg_process_hint_core(reg_request);
3015 		break;
3016 	case NL80211_REGDOM_SET_BY_USER:
3017 		treatment = reg_process_hint_user(reg_request);
3018 		break;
3019 	case NL80211_REGDOM_SET_BY_DRIVER:
3020 		if (!wiphy)
3021 			goto out_free;
3022 		treatment = reg_process_hint_driver(wiphy, reg_request);
3023 		break;
3024 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3025 		if (!wiphy)
3026 			goto out_free;
3027 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3028 		break;
3029 	default:
3030 		WARN(1, "invalid initiator %d\n", initiator);
3031 		goto out_free;
3032 	}
3033 
3034 	if (treatment == REG_REQ_IGNORE)
3035 		goto out_free;
3036 
3037 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3038 	     "unexpected treatment value %d\n", treatment);
3039 
3040 	/* This is required so that the orig_* parameters are saved.
3041 	 * NOTE: treatment must be set for any case that reaches here!
3042 	 */
3043 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3044 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3045 		wiphy_update_regulatory(wiphy, initiator);
3046 		wiphy_all_share_dfs_chan_state(wiphy);
3047 		reg_check_channels();
3048 	}
3049 
3050 	return;
3051 
3052 out_free:
3053 	reg_free_request(reg_request);
3054 }
3055 
3056 static void notify_self_managed_wiphys(struct regulatory_request *request)
3057 {
3058 	struct cfg80211_registered_device *rdev;
3059 	struct wiphy *wiphy;
3060 
3061 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3062 		wiphy = &rdev->wiphy;
3063 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3064 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3065 			reg_call_notifier(wiphy, request);
3066 	}
3067 }
3068 
3069 /*
3070  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3071  * Regulatory hints come on a first come first serve basis and we
3072  * must process each one atomically.
3073  */
3074 static void reg_process_pending_hints(void)
3075 {
3076 	struct regulatory_request *reg_request, *lr;
3077 
3078 	lr = get_last_request();
3079 
3080 	/* When last_request->processed becomes true this will be rescheduled */
3081 	if (lr && !lr->processed) {
3082 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3083 		return;
3084 	}
3085 
3086 	spin_lock(&reg_requests_lock);
3087 
3088 	if (list_empty(&reg_requests_list)) {
3089 		spin_unlock(&reg_requests_lock);
3090 		return;
3091 	}
3092 
3093 	reg_request = list_first_entry(&reg_requests_list,
3094 				       struct regulatory_request,
3095 				       list);
3096 	list_del_init(&reg_request->list);
3097 
3098 	spin_unlock(&reg_requests_lock);
3099 
3100 	notify_self_managed_wiphys(reg_request);
3101 
3102 	reg_process_hint(reg_request);
3103 
3104 	lr = get_last_request();
3105 
3106 	spin_lock(&reg_requests_lock);
3107 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3108 		schedule_work(&reg_work);
3109 	spin_unlock(&reg_requests_lock);
3110 }
3111 
3112 /* Processes beacon hints -- this has nothing to do with country IEs */
3113 static void reg_process_pending_beacon_hints(void)
3114 {
3115 	struct cfg80211_registered_device *rdev;
3116 	struct reg_beacon *pending_beacon, *tmp;
3117 
3118 	/* This goes through the _pending_ beacon list */
3119 	spin_lock_bh(&reg_pending_beacons_lock);
3120 
3121 	list_for_each_entry_safe(pending_beacon, tmp,
3122 				 &reg_pending_beacons, list) {
3123 		list_del_init(&pending_beacon->list);
3124 
3125 		/* Applies the beacon hint to current wiphys */
3126 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3127 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3128 
3129 		/* Remembers the beacon hint for new wiphys or reg changes */
3130 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3131 	}
3132 
3133 	spin_unlock_bh(&reg_pending_beacons_lock);
3134 }
3135 
3136 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3137 {
3138 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3139 	const struct ieee80211_regdomain *tmp;
3140 	const struct ieee80211_regdomain *regd;
3141 	enum nl80211_band band;
3142 	struct regulatory_request request = {};
3143 
3144 	ASSERT_RTNL();
3145 	lockdep_assert_wiphy(wiphy);
3146 
3147 	spin_lock(&reg_requests_lock);
3148 	regd = rdev->requested_regd;
3149 	rdev->requested_regd = NULL;
3150 	spin_unlock(&reg_requests_lock);
3151 
3152 	if (!regd)
3153 		return;
3154 
3155 	tmp = get_wiphy_regdom(wiphy);
3156 	rcu_assign_pointer(wiphy->regd, regd);
3157 	rcu_free_regdom(tmp);
3158 
3159 	for (band = 0; band < NUM_NL80211_BANDS; band++)
3160 		handle_band_custom(wiphy, wiphy->bands[band], regd);
3161 
3162 	reg_process_ht_flags(wiphy);
3163 
3164 	request.wiphy_idx = get_wiphy_idx(wiphy);
3165 	request.alpha2[0] = regd->alpha2[0];
3166 	request.alpha2[1] = regd->alpha2[1];
3167 	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3168 
3169 	nl80211_send_wiphy_reg_change_event(&request);
3170 }
3171 
3172 static void reg_process_self_managed_hints(void)
3173 {
3174 	struct cfg80211_registered_device *rdev;
3175 
3176 	ASSERT_RTNL();
3177 
3178 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3179 		wiphy_lock(&rdev->wiphy);
3180 		reg_process_self_managed_hint(&rdev->wiphy);
3181 		wiphy_unlock(&rdev->wiphy);
3182 	}
3183 
3184 	reg_check_channels();
3185 }
3186 
3187 static void reg_todo(struct work_struct *work)
3188 {
3189 	rtnl_lock();
3190 	reg_process_pending_hints();
3191 	reg_process_pending_beacon_hints();
3192 	reg_process_self_managed_hints();
3193 	rtnl_unlock();
3194 }
3195 
3196 static void queue_regulatory_request(struct regulatory_request *request)
3197 {
3198 	request->alpha2[0] = toupper(request->alpha2[0]);
3199 	request->alpha2[1] = toupper(request->alpha2[1]);
3200 
3201 	spin_lock(&reg_requests_lock);
3202 	list_add_tail(&request->list, &reg_requests_list);
3203 	spin_unlock(&reg_requests_lock);
3204 
3205 	schedule_work(&reg_work);
3206 }
3207 
3208 /*
3209  * Core regulatory hint -- happens during cfg80211_init()
3210  * and when we restore regulatory settings.
3211  */
3212 static int regulatory_hint_core(const char *alpha2)
3213 {
3214 	struct regulatory_request *request;
3215 
3216 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3217 	if (!request)
3218 		return -ENOMEM;
3219 
3220 	request->alpha2[0] = alpha2[0];
3221 	request->alpha2[1] = alpha2[1];
3222 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3223 	request->wiphy_idx = WIPHY_IDX_INVALID;
3224 
3225 	queue_regulatory_request(request);
3226 
3227 	return 0;
3228 }
3229 
3230 /* User hints */
3231 int regulatory_hint_user(const char *alpha2,
3232 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3233 {
3234 	struct regulatory_request *request;
3235 
3236 	if (WARN_ON(!alpha2))
3237 		return -EINVAL;
3238 
3239 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3240 		return -EINVAL;
3241 
3242 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3243 	if (!request)
3244 		return -ENOMEM;
3245 
3246 	request->wiphy_idx = WIPHY_IDX_INVALID;
3247 	request->alpha2[0] = alpha2[0];
3248 	request->alpha2[1] = alpha2[1];
3249 	request->initiator = NL80211_REGDOM_SET_BY_USER;
3250 	request->user_reg_hint_type = user_reg_hint_type;
3251 
3252 	/* Allow calling CRDA again */
3253 	reset_crda_timeouts();
3254 
3255 	queue_regulatory_request(request);
3256 
3257 	return 0;
3258 }
3259 
3260 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3261 {
3262 	spin_lock(&reg_indoor_lock);
3263 
3264 	/* It is possible that more than one user space process is trying to
3265 	 * configure the indoor setting. To handle such cases, clear the indoor
3266 	 * setting in case that some process does not think that the device
3267 	 * is operating in an indoor environment. In addition, if a user space
3268 	 * process indicates that it is controlling the indoor setting, save its
3269 	 * portid, i.e., make it the owner.
3270 	 */
3271 	reg_is_indoor = is_indoor;
3272 	if (reg_is_indoor) {
3273 		if (!reg_is_indoor_portid)
3274 			reg_is_indoor_portid = portid;
3275 	} else {
3276 		reg_is_indoor_portid = 0;
3277 	}
3278 
3279 	spin_unlock(&reg_indoor_lock);
3280 
3281 	if (!is_indoor)
3282 		reg_check_channels();
3283 
3284 	return 0;
3285 }
3286 
3287 void regulatory_netlink_notify(u32 portid)
3288 {
3289 	spin_lock(&reg_indoor_lock);
3290 
3291 	if (reg_is_indoor_portid != portid) {
3292 		spin_unlock(&reg_indoor_lock);
3293 		return;
3294 	}
3295 
3296 	reg_is_indoor = false;
3297 	reg_is_indoor_portid = 0;
3298 
3299 	spin_unlock(&reg_indoor_lock);
3300 
3301 	reg_check_channels();
3302 }
3303 
3304 /* Driver hints */
3305 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3306 {
3307 	struct regulatory_request *request;
3308 
3309 	if (WARN_ON(!alpha2 || !wiphy))
3310 		return -EINVAL;
3311 
3312 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3313 
3314 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3315 	if (!request)
3316 		return -ENOMEM;
3317 
3318 	request->wiphy_idx = get_wiphy_idx(wiphy);
3319 
3320 	request->alpha2[0] = alpha2[0];
3321 	request->alpha2[1] = alpha2[1];
3322 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3323 
3324 	/* Allow calling CRDA again */
3325 	reset_crda_timeouts();
3326 
3327 	queue_regulatory_request(request);
3328 
3329 	return 0;
3330 }
3331 EXPORT_SYMBOL(regulatory_hint);
3332 
3333 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3334 				const u8 *country_ie, u8 country_ie_len)
3335 {
3336 	char alpha2[2];
3337 	enum environment_cap env = ENVIRON_ANY;
3338 	struct regulatory_request *request = NULL, *lr;
3339 
3340 	/* IE len must be evenly divisible by 2 */
3341 	if (country_ie_len & 0x01)
3342 		return;
3343 
3344 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3345 		return;
3346 
3347 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3348 	if (!request)
3349 		return;
3350 
3351 	alpha2[0] = country_ie[0];
3352 	alpha2[1] = country_ie[1];
3353 
3354 	if (country_ie[2] == 'I')
3355 		env = ENVIRON_INDOOR;
3356 	else if (country_ie[2] == 'O')
3357 		env = ENVIRON_OUTDOOR;
3358 
3359 	rcu_read_lock();
3360 	lr = get_last_request();
3361 
3362 	if (unlikely(!lr))
3363 		goto out;
3364 
3365 	/*
3366 	 * We will run this only upon a successful connection on cfg80211.
3367 	 * We leave conflict resolution to the workqueue, where can hold
3368 	 * the RTNL.
3369 	 */
3370 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3371 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3372 		goto out;
3373 
3374 	request->wiphy_idx = get_wiphy_idx(wiphy);
3375 	request->alpha2[0] = alpha2[0];
3376 	request->alpha2[1] = alpha2[1];
3377 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3378 	request->country_ie_env = env;
3379 
3380 	/* Allow calling CRDA again */
3381 	reset_crda_timeouts();
3382 
3383 	queue_regulatory_request(request);
3384 	request = NULL;
3385 out:
3386 	kfree(request);
3387 	rcu_read_unlock();
3388 }
3389 
3390 static void restore_alpha2(char *alpha2, bool reset_user)
3391 {
3392 	/* indicates there is no alpha2 to consider for restoration */
3393 	alpha2[0] = '9';
3394 	alpha2[1] = '7';
3395 
3396 	/* The user setting has precedence over the module parameter */
3397 	if (is_user_regdom_saved()) {
3398 		/* Unless we're asked to ignore it and reset it */
3399 		if (reset_user) {
3400 			pr_debug("Restoring regulatory settings including user preference\n");
3401 			user_alpha2[0] = '9';
3402 			user_alpha2[1] = '7';
3403 
3404 			/*
3405 			 * If we're ignoring user settings, we still need to
3406 			 * check the module parameter to ensure we put things
3407 			 * back as they were for a full restore.
3408 			 */
3409 			if (!is_world_regdom(ieee80211_regdom)) {
3410 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3411 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3412 				alpha2[0] = ieee80211_regdom[0];
3413 				alpha2[1] = ieee80211_regdom[1];
3414 			}
3415 		} else {
3416 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3417 				 user_alpha2[0], user_alpha2[1]);
3418 			alpha2[0] = user_alpha2[0];
3419 			alpha2[1] = user_alpha2[1];
3420 		}
3421 	} else if (!is_world_regdom(ieee80211_regdom)) {
3422 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3423 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3424 		alpha2[0] = ieee80211_regdom[0];
3425 		alpha2[1] = ieee80211_regdom[1];
3426 	} else
3427 		pr_debug("Restoring regulatory settings\n");
3428 }
3429 
3430 static void restore_custom_reg_settings(struct wiphy *wiphy)
3431 {
3432 	struct ieee80211_supported_band *sband;
3433 	enum nl80211_band band;
3434 	struct ieee80211_channel *chan;
3435 	int i;
3436 
3437 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3438 		sband = wiphy->bands[band];
3439 		if (!sband)
3440 			continue;
3441 		for (i = 0; i < sband->n_channels; i++) {
3442 			chan = &sband->channels[i];
3443 			chan->flags = chan->orig_flags;
3444 			chan->max_antenna_gain = chan->orig_mag;
3445 			chan->max_power = chan->orig_mpwr;
3446 			chan->beacon_found = false;
3447 		}
3448 	}
3449 }
3450 
3451 /*
3452  * Restoring regulatory settings involves ignoring any
3453  * possibly stale country IE information and user regulatory
3454  * settings if so desired, this includes any beacon hints
3455  * learned as we could have traveled outside to another country
3456  * after disconnection. To restore regulatory settings we do
3457  * exactly what we did at bootup:
3458  *
3459  *   - send a core regulatory hint
3460  *   - send a user regulatory hint if applicable
3461  *
3462  * Device drivers that send a regulatory hint for a specific country
3463  * keep their own regulatory domain on wiphy->regd so that does
3464  * not need to be remembered.
3465  */
3466 static void restore_regulatory_settings(bool reset_user, bool cached)
3467 {
3468 	char alpha2[2];
3469 	char world_alpha2[2];
3470 	struct reg_beacon *reg_beacon, *btmp;
3471 	LIST_HEAD(tmp_reg_req_list);
3472 	struct cfg80211_registered_device *rdev;
3473 
3474 	ASSERT_RTNL();
3475 
3476 	/*
3477 	 * Clear the indoor setting in case that it is not controlled by user
3478 	 * space, as otherwise there is no guarantee that the device is still
3479 	 * operating in an indoor environment.
3480 	 */
3481 	spin_lock(&reg_indoor_lock);
3482 	if (reg_is_indoor && !reg_is_indoor_portid) {
3483 		reg_is_indoor = false;
3484 		reg_check_channels();
3485 	}
3486 	spin_unlock(&reg_indoor_lock);
3487 
3488 	reset_regdomains(true, &world_regdom);
3489 	restore_alpha2(alpha2, reset_user);
3490 
3491 	/*
3492 	 * If there's any pending requests we simply
3493 	 * stash them to a temporary pending queue and
3494 	 * add then after we've restored regulatory
3495 	 * settings.
3496 	 */
3497 	spin_lock(&reg_requests_lock);
3498 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3499 	spin_unlock(&reg_requests_lock);
3500 
3501 	/* Clear beacon hints */
3502 	spin_lock_bh(&reg_pending_beacons_lock);
3503 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3504 		list_del(&reg_beacon->list);
3505 		kfree(reg_beacon);
3506 	}
3507 	spin_unlock_bh(&reg_pending_beacons_lock);
3508 
3509 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3510 		list_del(&reg_beacon->list);
3511 		kfree(reg_beacon);
3512 	}
3513 
3514 	/* First restore to the basic regulatory settings */
3515 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3516 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3517 
3518 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3519 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3520 			continue;
3521 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3522 			restore_custom_reg_settings(&rdev->wiphy);
3523 	}
3524 
3525 	if (cached && (!is_an_alpha2(alpha2) ||
3526 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3527 		reset_regdomains(false, cfg80211_world_regdom);
3528 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3529 		print_regdomain(get_cfg80211_regdom());
3530 		nl80211_send_reg_change_event(&core_request_world);
3531 		reg_set_request_processed();
3532 
3533 		if (is_an_alpha2(alpha2) &&
3534 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3535 			struct regulatory_request *ureq;
3536 
3537 			spin_lock(&reg_requests_lock);
3538 			ureq = list_last_entry(&reg_requests_list,
3539 					       struct regulatory_request,
3540 					       list);
3541 			list_del(&ureq->list);
3542 			spin_unlock(&reg_requests_lock);
3543 
3544 			notify_self_managed_wiphys(ureq);
3545 			reg_update_last_request(ureq);
3546 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3547 				   REGD_SOURCE_CACHED);
3548 		}
3549 	} else {
3550 		regulatory_hint_core(world_alpha2);
3551 
3552 		/*
3553 		 * This restores the ieee80211_regdom module parameter
3554 		 * preference or the last user requested regulatory
3555 		 * settings, user regulatory settings takes precedence.
3556 		 */
3557 		if (is_an_alpha2(alpha2))
3558 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3559 	}
3560 
3561 	spin_lock(&reg_requests_lock);
3562 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3563 	spin_unlock(&reg_requests_lock);
3564 
3565 	pr_debug("Kicking the queue\n");
3566 
3567 	schedule_work(&reg_work);
3568 }
3569 
3570 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3571 {
3572 	struct cfg80211_registered_device *rdev;
3573 	struct wireless_dev *wdev;
3574 
3575 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3576 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3577 			wdev_lock(wdev);
3578 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3579 				wdev_unlock(wdev);
3580 				return false;
3581 			}
3582 			wdev_unlock(wdev);
3583 		}
3584 	}
3585 
3586 	return true;
3587 }
3588 
3589 void regulatory_hint_disconnect(void)
3590 {
3591 	/* Restore of regulatory settings is not required when wiphy(s)
3592 	 * ignore IE from connected access point but clearance of beacon hints
3593 	 * is required when wiphy(s) supports beacon hints.
3594 	 */
3595 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3596 		struct reg_beacon *reg_beacon, *btmp;
3597 
3598 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3599 			return;
3600 
3601 		spin_lock_bh(&reg_pending_beacons_lock);
3602 		list_for_each_entry_safe(reg_beacon, btmp,
3603 					 &reg_pending_beacons, list) {
3604 			list_del(&reg_beacon->list);
3605 			kfree(reg_beacon);
3606 		}
3607 		spin_unlock_bh(&reg_pending_beacons_lock);
3608 
3609 		list_for_each_entry_safe(reg_beacon, btmp,
3610 					 &reg_beacon_list, list) {
3611 			list_del(&reg_beacon->list);
3612 			kfree(reg_beacon);
3613 		}
3614 
3615 		return;
3616 	}
3617 
3618 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3619 	restore_regulatory_settings(false, true);
3620 }
3621 
3622 static bool freq_is_chan_12_13_14(u32 freq)
3623 {
3624 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3625 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3626 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3627 		return true;
3628 	return false;
3629 }
3630 
3631 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3632 {
3633 	struct reg_beacon *pending_beacon;
3634 
3635 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3636 		if (ieee80211_channel_equal(beacon_chan,
3637 					    &pending_beacon->chan))
3638 			return true;
3639 	return false;
3640 }
3641 
3642 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3643 				 struct ieee80211_channel *beacon_chan,
3644 				 gfp_t gfp)
3645 {
3646 	struct reg_beacon *reg_beacon;
3647 	bool processing;
3648 
3649 	if (beacon_chan->beacon_found ||
3650 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3651 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3652 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3653 		return 0;
3654 
3655 	spin_lock_bh(&reg_pending_beacons_lock);
3656 	processing = pending_reg_beacon(beacon_chan);
3657 	spin_unlock_bh(&reg_pending_beacons_lock);
3658 
3659 	if (processing)
3660 		return 0;
3661 
3662 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3663 	if (!reg_beacon)
3664 		return -ENOMEM;
3665 
3666 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3667 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3668 		 ieee80211_freq_khz_to_channel(
3669 			 ieee80211_channel_to_khz(beacon_chan)),
3670 		 wiphy_name(wiphy));
3671 
3672 	memcpy(&reg_beacon->chan, beacon_chan,
3673 	       sizeof(struct ieee80211_channel));
3674 
3675 	/*
3676 	 * Since we can be called from BH or and non-BH context
3677 	 * we must use spin_lock_bh()
3678 	 */
3679 	spin_lock_bh(&reg_pending_beacons_lock);
3680 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3681 	spin_unlock_bh(&reg_pending_beacons_lock);
3682 
3683 	schedule_work(&reg_work);
3684 
3685 	return 0;
3686 }
3687 
3688 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3689 {
3690 	unsigned int i;
3691 	const struct ieee80211_reg_rule *reg_rule = NULL;
3692 	const struct ieee80211_freq_range *freq_range = NULL;
3693 	const struct ieee80211_power_rule *power_rule = NULL;
3694 	char bw[32], cac_time[32];
3695 
3696 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3697 
3698 	for (i = 0; i < rd->n_reg_rules; i++) {
3699 		reg_rule = &rd->reg_rules[i];
3700 		freq_range = &reg_rule->freq_range;
3701 		power_rule = &reg_rule->power_rule;
3702 
3703 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3704 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3705 				 freq_range->max_bandwidth_khz,
3706 				 reg_get_max_bandwidth(rd, reg_rule));
3707 		else
3708 			snprintf(bw, sizeof(bw), "%d KHz",
3709 				 freq_range->max_bandwidth_khz);
3710 
3711 		if (reg_rule->flags & NL80211_RRF_DFS)
3712 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3713 				  reg_rule->dfs_cac_ms/1000);
3714 		else
3715 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3716 
3717 
3718 		/*
3719 		 * There may not be documentation for max antenna gain
3720 		 * in certain regions
3721 		 */
3722 		if (power_rule->max_antenna_gain)
3723 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3724 				freq_range->start_freq_khz,
3725 				freq_range->end_freq_khz,
3726 				bw,
3727 				power_rule->max_antenna_gain,
3728 				power_rule->max_eirp,
3729 				cac_time);
3730 		else
3731 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3732 				freq_range->start_freq_khz,
3733 				freq_range->end_freq_khz,
3734 				bw,
3735 				power_rule->max_eirp,
3736 				cac_time);
3737 	}
3738 }
3739 
3740 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3741 {
3742 	switch (dfs_region) {
3743 	case NL80211_DFS_UNSET:
3744 	case NL80211_DFS_FCC:
3745 	case NL80211_DFS_ETSI:
3746 	case NL80211_DFS_JP:
3747 		return true;
3748 	default:
3749 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3750 		return false;
3751 	}
3752 }
3753 
3754 static void print_regdomain(const struct ieee80211_regdomain *rd)
3755 {
3756 	struct regulatory_request *lr = get_last_request();
3757 
3758 	if (is_intersected_alpha2(rd->alpha2)) {
3759 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3760 			struct cfg80211_registered_device *rdev;
3761 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3762 			if (rdev) {
3763 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3764 					rdev->country_ie_alpha2[0],
3765 					rdev->country_ie_alpha2[1]);
3766 			} else
3767 				pr_debug("Current regulatory domain intersected:\n");
3768 		} else
3769 			pr_debug("Current regulatory domain intersected:\n");
3770 	} else if (is_world_regdom(rd->alpha2)) {
3771 		pr_debug("World regulatory domain updated:\n");
3772 	} else {
3773 		if (is_unknown_alpha2(rd->alpha2))
3774 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3775 		else {
3776 			if (reg_request_cell_base(lr))
3777 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3778 					rd->alpha2[0], rd->alpha2[1]);
3779 			else
3780 				pr_debug("Regulatory domain changed to country: %c%c\n",
3781 					rd->alpha2[0], rd->alpha2[1]);
3782 		}
3783 	}
3784 
3785 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3786 	print_rd_rules(rd);
3787 }
3788 
3789 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3790 {
3791 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3792 	print_rd_rules(rd);
3793 }
3794 
3795 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3796 {
3797 	if (!is_world_regdom(rd->alpha2))
3798 		return -EINVAL;
3799 	update_world_regdomain(rd);
3800 	return 0;
3801 }
3802 
3803 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3804 			   struct regulatory_request *user_request)
3805 {
3806 	const struct ieee80211_regdomain *intersected_rd = NULL;
3807 
3808 	if (!regdom_changes(rd->alpha2))
3809 		return -EALREADY;
3810 
3811 	if (!is_valid_rd(rd)) {
3812 		pr_err("Invalid regulatory domain detected: %c%c\n",
3813 		       rd->alpha2[0], rd->alpha2[1]);
3814 		print_regdomain_info(rd);
3815 		return -EINVAL;
3816 	}
3817 
3818 	if (!user_request->intersect) {
3819 		reset_regdomains(false, rd);
3820 		return 0;
3821 	}
3822 
3823 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3824 	if (!intersected_rd)
3825 		return -EINVAL;
3826 
3827 	kfree(rd);
3828 	rd = NULL;
3829 	reset_regdomains(false, intersected_rd);
3830 
3831 	return 0;
3832 }
3833 
3834 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3835 			     struct regulatory_request *driver_request)
3836 {
3837 	const struct ieee80211_regdomain *regd;
3838 	const struct ieee80211_regdomain *intersected_rd = NULL;
3839 	const struct ieee80211_regdomain *tmp;
3840 	struct wiphy *request_wiphy;
3841 
3842 	if (is_world_regdom(rd->alpha2))
3843 		return -EINVAL;
3844 
3845 	if (!regdom_changes(rd->alpha2))
3846 		return -EALREADY;
3847 
3848 	if (!is_valid_rd(rd)) {
3849 		pr_err("Invalid regulatory domain detected: %c%c\n",
3850 		       rd->alpha2[0], rd->alpha2[1]);
3851 		print_regdomain_info(rd);
3852 		return -EINVAL;
3853 	}
3854 
3855 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3856 	if (!request_wiphy)
3857 		return -ENODEV;
3858 
3859 	if (!driver_request->intersect) {
3860 		ASSERT_RTNL();
3861 		wiphy_lock(request_wiphy);
3862 		if (request_wiphy->regd) {
3863 			wiphy_unlock(request_wiphy);
3864 			return -EALREADY;
3865 		}
3866 
3867 		regd = reg_copy_regd(rd);
3868 		if (IS_ERR(regd)) {
3869 			wiphy_unlock(request_wiphy);
3870 			return PTR_ERR(regd);
3871 		}
3872 
3873 		rcu_assign_pointer(request_wiphy->regd, regd);
3874 		wiphy_unlock(request_wiphy);
3875 		reset_regdomains(false, rd);
3876 		return 0;
3877 	}
3878 
3879 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3880 	if (!intersected_rd)
3881 		return -EINVAL;
3882 
3883 	/*
3884 	 * We can trash what CRDA provided now.
3885 	 * However if a driver requested this specific regulatory
3886 	 * domain we keep it for its private use
3887 	 */
3888 	tmp = get_wiphy_regdom(request_wiphy);
3889 	rcu_assign_pointer(request_wiphy->regd, rd);
3890 	rcu_free_regdom(tmp);
3891 
3892 	rd = NULL;
3893 
3894 	reset_regdomains(false, intersected_rd);
3895 
3896 	return 0;
3897 }
3898 
3899 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3900 				 struct regulatory_request *country_ie_request)
3901 {
3902 	struct wiphy *request_wiphy;
3903 
3904 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3905 	    !is_unknown_alpha2(rd->alpha2))
3906 		return -EINVAL;
3907 
3908 	/*
3909 	 * Lets only bother proceeding on the same alpha2 if the current
3910 	 * rd is non static (it means CRDA was present and was used last)
3911 	 * and the pending request came in from a country IE
3912 	 */
3913 
3914 	if (!is_valid_rd(rd)) {
3915 		pr_err("Invalid regulatory domain detected: %c%c\n",
3916 		       rd->alpha2[0], rd->alpha2[1]);
3917 		print_regdomain_info(rd);
3918 		return -EINVAL;
3919 	}
3920 
3921 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3922 	if (!request_wiphy)
3923 		return -ENODEV;
3924 
3925 	if (country_ie_request->intersect)
3926 		return -EINVAL;
3927 
3928 	reset_regdomains(false, rd);
3929 	return 0;
3930 }
3931 
3932 /*
3933  * Use this call to set the current regulatory domain. Conflicts with
3934  * multiple drivers can be ironed out later. Caller must've already
3935  * kmalloc'd the rd structure.
3936  */
3937 int set_regdom(const struct ieee80211_regdomain *rd,
3938 	       enum ieee80211_regd_source regd_src)
3939 {
3940 	struct regulatory_request *lr;
3941 	bool user_reset = false;
3942 	int r;
3943 
3944 	if (IS_ERR_OR_NULL(rd))
3945 		return -ENODATA;
3946 
3947 	if (!reg_is_valid_request(rd->alpha2)) {
3948 		kfree(rd);
3949 		return -EINVAL;
3950 	}
3951 
3952 	if (regd_src == REGD_SOURCE_CRDA)
3953 		reset_crda_timeouts();
3954 
3955 	lr = get_last_request();
3956 
3957 	/* Note that this doesn't update the wiphys, this is done below */
3958 	switch (lr->initiator) {
3959 	case NL80211_REGDOM_SET_BY_CORE:
3960 		r = reg_set_rd_core(rd);
3961 		break;
3962 	case NL80211_REGDOM_SET_BY_USER:
3963 		cfg80211_save_user_regdom(rd);
3964 		r = reg_set_rd_user(rd, lr);
3965 		user_reset = true;
3966 		break;
3967 	case NL80211_REGDOM_SET_BY_DRIVER:
3968 		r = reg_set_rd_driver(rd, lr);
3969 		break;
3970 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3971 		r = reg_set_rd_country_ie(rd, lr);
3972 		break;
3973 	default:
3974 		WARN(1, "invalid initiator %d\n", lr->initiator);
3975 		kfree(rd);
3976 		return -EINVAL;
3977 	}
3978 
3979 	if (r) {
3980 		switch (r) {
3981 		case -EALREADY:
3982 			reg_set_request_processed();
3983 			break;
3984 		default:
3985 			/* Back to world regulatory in case of errors */
3986 			restore_regulatory_settings(user_reset, false);
3987 		}
3988 
3989 		kfree(rd);
3990 		return r;
3991 	}
3992 
3993 	/* This would make this whole thing pointless */
3994 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3995 		return -EINVAL;
3996 
3997 	/* update all wiphys now with the new established regulatory domain */
3998 	update_all_wiphy_regulatory(lr->initiator);
3999 
4000 	print_regdomain(get_cfg80211_regdom());
4001 
4002 	nl80211_send_reg_change_event(lr);
4003 
4004 	reg_set_request_processed();
4005 
4006 	return 0;
4007 }
4008 
4009 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4010 				       struct ieee80211_regdomain *rd)
4011 {
4012 	const struct ieee80211_regdomain *regd;
4013 	const struct ieee80211_regdomain *prev_regd;
4014 	struct cfg80211_registered_device *rdev;
4015 
4016 	if (WARN_ON(!wiphy || !rd))
4017 		return -EINVAL;
4018 
4019 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4020 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4021 		return -EPERM;
4022 
4023 	if (WARN(!is_valid_rd(rd),
4024 		 "Invalid regulatory domain detected: %c%c\n",
4025 		 rd->alpha2[0], rd->alpha2[1])) {
4026 		print_regdomain_info(rd);
4027 		return -EINVAL;
4028 	}
4029 
4030 	regd = reg_copy_regd(rd);
4031 	if (IS_ERR(regd))
4032 		return PTR_ERR(regd);
4033 
4034 	rdev = wiphy_to_rdev(wiphy);
4035 
4036 	spin_lock(&reg_requests_lock);
4037 	prev_regd = rdev->requested_regd;
4038 	rdev->requested_regd = regd;
4039 	spin_unlock(&reg_requests_lock);
4040 
4041 	kfree(prev_regd);
4042 	return 0;
4043 }
4044 
4045 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4046 			      struct ieee80211_regdomain *rd)
4047 {
4048 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4049 
4050 	if (ret)
4051 		return ret;
4052 
4053 	schedule_work(&reg_work);
4054 	return 0;
4055 }
4056 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4057 
4058 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4059 				   struct ieee80211_regdomain *rd)
4060 {
4061 	int ret;
4062 
4063 	ASSERT_RTNL();
4064 
4065 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4066 	if (ret)
4067 		return ret;
4068 
4069 	/* process the request immediately */
4070 	reg_process_self_managed_hint(wiphy);
4071 	reg_check_channels();
4072 	return 0;
4073 }
4074 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4075 
4076 void wiphy_regulatory_register(struct wiphy *wiphy)
4077 {
4078 	struct regulatory_request *lr = get_last_request();
4079 
4080 	/* self-managed devices ignore beacon hints and country IE */
4081 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4082 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4083 					   REGULATORY_COUNTRY_IE_IGNORE;
4084 
4085 		/*
4086 		 * The last request may have been received before this
4087 		 * registration call. Call the driver notifier if
4088 		 * initiator is USER.
4089 		 */
4090 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4091 			reg_call_notifier(wiphy, lr);
4092 	}
4093 
4094 	if (!reg_dev_ignore_cell_hint(wiphy))
4095 		reg_num_devs_support_basehint++;
4096 
4097 	wiphy_update_regulatory(wiphy, lr->initiator);
4098 	wiphy_all_share_dfs_chan_state(wiphy);
4099 	reg_process_self_managed_hints();
4100 }
4101 
4102 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4103 {
4104 	struct wiphy *request_wiphy = NULL;
4105 	struct regulatory_request *lr;
4106 
4107 	lr = get_last_request();
4108 
4109 	if (!reg_dev_ignore_cell_hint(wiphy))
4110 		reg_num_devs_support_basehint--;
4111 
4112 	rcu_free_regdom(get_wiphy_regdom(wiphy));
4113 	RCU_INIT_POINTER(wiphy->regd, NULL);
4114 
4115 	if (lr)
4116 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4117 
4118 	if (!request_wiphy || request_wiphy != wiphy)
4119 		return;
4120 
4121 	lr->wiphy_idx = WIPHY_IDX_INVALID;
4122 	lr->country_ie_env = ENVIRON_ANY;
4123 }
4124 
4125 /*
4126  * See FCC notices for UNII band definitions
4127  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4128  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4129  */
4130 int cfg80211_get_unii(int freq)
4131 {
4132 	/* UNII-1 */
4133 	if (freq >= 5150 && freq <= 5250)
4134 		return 0;
4135 
4136 	/* UNII-2A */
4137 	if (freq > 5250 && freq <= 5350)
4138 		return 1;
4139 
4140 	/* UNII-2B */
4141 	if (freq > 5350 && freq <= 5470)
4142 		return 2;
4143 
4144 	/* UNII-2C */
4145 	if (freq > 5470 && freq <= 5725)
4146 		return 3;
4147 
4148 	/* UNII-3 */
4149 	if (freq > 5725 && freq <= 5825)
4150 		return 4;
4151 
4152 	/* UNII-5 */
4153 	if (freq > 5925 && freq <= 6425)
4154 		return 5;
4155 
4156 	/* UNII-6 */
4157 	if (freq > 6425 && freq <= 6525)
4158 		return 6;
4159 
4160 	/* UNII-7 */
4161 	if (freq > 6525 && freq <= 6875)
4162 		return 7;
4163 
4164 	/* UNII-8 */
4165 	if (freq > 6875 && freq <= 7125)
4166 		return 8;
4167 
4168 	return -EINVAL;
4169 }
4170 
4171 bool regulatory_indoor_allowed(void)
4172 {
4173 	return reg_is_indoor;
4174 }
4175 
4176 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4177 {
4178 	const struct ieee80211_regdomain *regd = NULL;
4179 	const struct ieee80211_regdomain *wiphy_regd = NULL;
4180 	bool pre_cac_allowed = false;
4181 
4182 	rcu_read_lock();
4183 
4184 	regd = rcu_dereference(cfg80211_regdomain);
4185 	wiphy_regd = rcu_dereference(wiphy->regd);
4186 	if (!wiphy_regd) {
4187 		if (regd->dfs_region == NL80211_DFS_ETSI)
4188 			pre_cac_allowed = true;
4189 
4190 		rcu_read_unlock();
4191 
4192 		return pre_cac_allowed;
4193 	}
4194 
4195 	if (regd->dfs_region == wiphy_regd->dfs_region &&
4196 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4197 		pre_cac_allowed = true;
4198 
4199 	rcu_read_unlock();
4200 
4201 	return pre_cac_allowed;
4202 }
4203 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4204 
4205 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4206 {
4207 	struct wireless_dev *wdev;
4208 	/* If we finished CAC or received radar, we should end any
4209 	 * CAC running on the same channels.
4210 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4211 	 * either all channels are available - those the CAC_FINISHED
4212 	 * event has effected another wdev state, or there is a channel
4213 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4214 	 * event has effected another wdev state.
4215 	 * In both cases we should end the CAC on the wdev.
4216 	 */
4217 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4218 		if (wdev->cac_started &&
4219 		    !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4220 			rdev_end_cac(rdev, wdev->netdev);
4221 	}
4222 }
4223 
4224 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4225 				    struct cfg80211_chan_def *chandef,
4226 				    enum nl80211_dfs_state dfs_state,
4227 				    enum nl80211_radar_event event)
4228 {
4229 	struct cfg80211_registered_device *rdev;
4230 
4231 	ASSERT_RTNL();
4232 
4233 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4234 		return;
4235 
4236 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4237 		if (wiphy == &rdev->wiphy)
4238 			continue;
4239 
4240 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4241 			continue;
4242 
4243 		if (!ieee80211_get_channel(&rdev->wiphy,
4244 					   chandef->chan->center_freq))
4245 			continue;
4246 
4247 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4248 
4249 		if (event == NL80211_RADAR_DETECTED ||
4250 		    event == NL80211_RADAR_CAC_FINISHED) {
4251 			cfg80211_sched_dfs_chan_update(rdev);
4252 			cfg80211_check_and_end_cac(rdev);
4253 		}
4254 
4255 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4256 	}
4257 }
4258 
4259 static int __init regulatory_init_db(void)
4260 {
4261 	int err;
4262 
4263 	/*
4264 	 * It's possible that - due to other bugs/issues - cfg80211
4265 	 * never called regulatory_init() below, or that it failed;
4266 	 * in that case, don't try to do any further work here as
4267 	 * it's doomed to lead to crashes.
4268 	 */
4269 	if (IS_ERR_OR_NULL(reg_pdev))
4270 		return -EINVAL;
4271 
4272 	err = load_builtin_regdb_keys();
4273 	if (err)
4274 		return err;
4275 
4276 	/* We always try to get an update for the static regdomain */
4277 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4278 	if (err) {
4279 		if (err == -ENOMEM) {
4280 			platform_device_unregister(reg_pdev);
4281 			return err;
4282 		}
4283 		/*
4284 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4285 		 * memory which is handled and propagated appropriately above
4286 		 * but it can also fail during a netlink_broadcast() or during
4287 		 * early boot for call_usermodehelper(). For now treat these
4288 		 * errors as non-fatal.
4289 		 */
4290 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4291 	}
4292 
4293 	/*
4294 	 * Finally, if the user set the module parameter treat it
4295 	 * as a user hint.
4296 	 */
4297 	if (!is_world_regdom(ieee80211_regdom))
4298 		regulatory_hint_user(ieee80211_regdom,
4299 				     NL80211_USER_REG_HINT_USER);
4300 
4301 	return 0;
4302 }
4303 #ifndef MODULE
4304 late_initcall(regulatory_init_db);
4305 #endif
4306 
4307 int __init regulatory_init(void)
4308 {
4309 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4310 	if (IS_ERR(reg_pdev))
4311 		return PTR_ERR(reg_pdev);
4312 
4313 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4314 
4315 	user_alpha2[0] = '9';
4316 	user_alpha2[1] = '7';
4317 
4318 #ifdef MODULE
4319 	return regulatory_init_db();
4320 #else
4321 	return 0;
4322 #endif
4323 }
4324 
4325 void regulatory_exit(void)
4326 {
4327 	struct regulatory_request *reg_request, *tmp;
4328 	struct reg_beacon *reg_beacon, *btmp;
4329 
4330 	cancel_work_sync(&reg_work);
4331 	cancel_crda_timeout_sync();
4332 	cancel_delayed_work_sync(&reg_check_chans);
4333 
4334 	/* Lock to suppress warnings */
4335 	rtnl_lock();
4336 	reset_regdomains(true, NULL);
4337 	rtnl_unlock();
4338 
4339 	dev_set_uevent_suppress(&reg_pdev->dev, true);
4340 
4341 	platform_device_unregister(reg_pdev);
4342 
4343 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4344 		list_del(&reg_beacon->list);
4345 		kfree(reg_beacon);
4346 	}
4347 
4348 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4349 		list_del(&reg_beacon->list);
4350 		kfree(reg_beacon);
4351 	}
4352 
4353 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4354 		list_del(&reg_request->list);
4355 		kfree(reg_request);
4356 	}
4357 
4358 	if (!IS_ERR_OR_NULL(regdb))
4359 		kfree(regdb);
4360 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4361 		kfree(cfg80211_user_regdom);
4362 
4363 	free_regdb_keyring();
4364 }
4365