xref: /linux/net/wireless/reg.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45 
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62 
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...)			\
65 	printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69 
70 /*
71  * Grace period we give before making sure all current interfaces reside on
72  * channels allowed by the current regulatory domain.
73  */
74 #define REG_ENFORCE_GRACE_MS 60000
75 
76 /**
77  * enum reg_request_treatment - regulatory request treatment
78  *
79  * @REG_REQ_OK: continue processing the regulatory request
80  * @REG_REQ_IGNORE: ignore the regulatory request
81  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82  *	be intersected with the current one.
83  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84  *	regulatory settings, and no further processing is required.
85  * @REG_REQ_USER_HINT_HANDLED: a non alpha2  user hint was handled and no
86  *	further processing is required, i.e., not need to update last_request
87  *	etc. This should be used for user hints that do not provide an alpha2
88  *	but some other type of regulatory hint, i.e., indoor operation.
89  */
90 enum reg_request_treatment {
91 	REG_REQ_OK,
92 	REG_REQ_IGNORE,
93 	REG_REQ_INTERSECT,
94 	REG_REQ_ALREADY_SET,
95 	REG_REQ_USER_HINT_HANDLED,
96 };
97 
98 static struct regulatory_request core_request_world = {
99 	.initiator = NL80211_REGDOM_SET_BY_CORE,
100 	.alpha2[0] = '0',
101 	.alpha2[1] = '0',
102 	.intersect = false,
103 	.processed = true,
104 	.country_ie_env = ENVIRON_ANY,
105 };
106 
107 /*
108  * Receipt of information from last regulatory request,
109  * protected by RTNL (and can be accessed with RCU protection)
110  */
111 static struct regulatory_request __rcu *last_request =
112 	(void __force __rcu *)&core_request_world;
113 
114 /* To trigger userspace events */
115 static struct platform_device *reg_pdev;
116 
117 /*
118  * Central wireless core regulatory domains, we only need two,
119  * the current one and a world regulatory domain in case we have no
120  * information to give us an alpha2.
121  * (protected by RTNL, can be read under RCU)
122  */
123 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
124 
125 /*
126  * Number of devices that registered to the core
127  * that support cellular base station regulatory hints
128  * (protected by RTNL)
129  */
130 static int reg_num_devs_support_basehint;
131 
132 /*
133  * State variable indicating if the platform on which the devices
134  * are attached is operating in an indoor environment. The state variable
135  * is relevant for all registered devices.
136  * (protected by RTNL)
137  */
138 static bool reg_is_indoor;
139 
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142 	return rtnl_dereference(cfg80211_regdomain);
143 }
144 
145 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
146 {
147 	return rtnl_dereference(wiphy->regd);
148 }
149 
150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
151 {
152 	switch (dfs_region) {
153 	case NL80211_DFS_UNSET:
154 		return "unset";
155 	case NL80211_DFS_FCC:
156 		return "FCC";
157 	case NL80211_DFS_ETSI:
158 		return "ETSI";
159 	case NL80211_DFS_JP:
160 		return "JP";
161 	}
162 	return "Unknown";
163 }
164 
165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
166 {
167 	const struct ieee80211_regdomain *regd = NULL;
168 	const struct ieee80211_regdomain *wiphy_regd = NULL;
169 
170 	regd = get_cfg80211_regdom();
171 	if (!wiphy)
172 		goto out;
173 
174 	wiphy_regd = get_wiphy_regdom(wiphy);
175 	if (!wiphy_regd)
176 		goto out;
177 
178 	if (wiphy_regd->dfs_region == regd->dfs_region)
179 		goto out;
180 
181 	REG_DBG_PRINT("%s: device specific dfs_region "
182 		      "(%s) disagrees with cfg80211's "
183 		      "central dfs_region (%s)\n",
184 		      dev_name(&wiphy->dev),
185 		      reg_dfs_region_str(wiphy_regd->dfs_region),
186 		      reg_dfs_region_str(regd->dfs_region));
187 
188 out:
189 	return regd->dfs_region;
190 }
191 
192 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193 {
194 	if (!r)
195 		return;
196 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197 }
198 
199 static struct regulatory_request *get_last_request(void)
200 {
201 	return rcu_dereference_rtnl(last_request);
202 }
203 
204 /* Used to queue up regulatory hints */
205 static LIST_HEAD(reg_requests_list);
206 static spinlock_t reg_requests_lock;
207 
208 /* Used to queue up beacon hints for review */
209 static LIST_HEAD(reg_pending_beacons);
210 static spinlock_t reg_pending_beacons_lock;
211 
212 /* Used to keep track of processed beacon hints */
213 static LIST_HEAD(reg_beacon_list);
214 
215 struct reg_beacon {
216 	struct list_head list;
217 	struct ieee80211_channel chan;
218 };
219 
220 static void reg_check_chans_work(struct work_struct *work);
221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222 
223 static void reg_todo(struct work_struct *work);
224 static DECLARE_WORK(reg_work, reg_todo);
225 
226 static void reg_timeout_work(struct work_struct *work);
227 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
228 
229 /* We keep a static world regulatory domain in case of the absence of CRDA */
230 static const struct ieee80211_regdomain world_regdom = {
231 	.n_reg_rules = 8,
232 	.alpha2 =  "00",
233 	.reg_rules = {
234 		/* IEEE 802.11b/g, channels 1..11 */
235 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
236 		/* IEEE 802.11b/g, channels 12..13. */
237 		REG_RULE(2467-10, 2472+10, 40, 6, 20,
238 			NL80211_RRF_NO_IR),
239 		/* IEEE 802.11 channel 14 - Only JP enables
240 		 * this and for 802.11b only */
241 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
242 			NL80211_RRF_NO_IR |
243 			NL80211_RRF_NO_OFDM),
244 		/* IEEE 802.11a, channel 36..48 */
245 		REG_RULE(5180-10, 5240+10, 160, 6, 20,
246                         NL80211_RRF_NO_IR),
247 
248 		/* IEEE 802.11a, channel 52..64 - DFS required */
249 		REG_RULE(5260-10, 5320+10, 160, 6, 20,
250 			NL80211_RRF_NO_IR |
251 			NL80211_RRF_DFS),
252 
253 		/* IEEE 802.11a, channel 100..144 - DFS required */
254 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
255 			NL80211_RRF_NO_IR |
256 			NL80211_RRF_DFS),
257 
258 		/* IEEE 802.11a, channel 149..165 */
259 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
260 			NL80211_RRF_NO_IR),
261 
262 		/* IEEE 802.11ad (60gHz), channels 1..3 */
263 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
264 	}
265 };
266 
267 /* protected by RTNL */
268 static const struct ieee80211_regdomain *cfg80211_world_regdom =
269 	&world_regdom;
270 
271 static char *ieee80211_regdom = "00";
272 static char user_alpha2[2];
273 
274 module_param(ieee80211_regdom, charp, 0444);
275 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
276 
277 static void reg_free_request(struct regulatory_request *request)
278 {
279 	if (request != get_last_request())
280 		kfree(request);
281 }
282 
283 static void reg_free_last_request(void)
284 {
285 	struct regulatory_request *lr = get_last_request();
286 
287 	if (lr != &core_request_world && lr)
288 		kfree_rcu(lr, rcu_head);
289 }
290 
291 static void reg_update_last_request(struct regulatory_request *request)
292 {
293 	struct regulatory_request *lr;
294 
295 	lr = get_last_request();
296 	if (lr == request)
297 		return;
298 
299 	reg_free_last_request();
300 	rcu_assign_pointer(last_request, request);
301 }
302 
303 static void reset_regdomains(bool full_reset,
304 			     const struct ieee80211_regdomain *new_regdom)
305 {
306 	const struct ieee80211_regdomain *r;
307 
308 	ASSERT_RTNL();
309 
310 	r = get_cfg80211_regdom();
311 
312 	/* avoid freeing static information or freeing something twice */
313 	if (r == cfg80211_world_regdom)
314 		r = NULL;
315 	if (cfg80211_world_regdom == &world_regdom)
316 		cfg80211_world_regdom = NULL;
317 	if (r == &world_regdom)
318 		r = NULL;
319 
320 	rcu_free_regdom(r);
321 	rcu_free_regdom(cfg80211_world_regdom);
322 
323 	cfg80211_world_regdom = &world_regdom;
324 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
325 
326 	if (!full_reset)
327 		return;
328 
329 	reg_update_last_request(&core_request_world);
330 }
331 
332 /*
333  * Dynamic world regulatory domain requested by the wireless
334  * core upon initialization
335  */
336 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
337 {
338 	struct regulatory_request *lr;
339 
340 	lr = get_last_request();
341 
342 	WARN_ON(!lr);
343 
344 	reset_regdomains(false, rd);
345 
346 	cfg80211_world_regdom = rd;
347 }
348 
349 bool is_world_regdom(const char *alpha2)
350 {
351 	if (!alpha2)
352 		return false;
353 	return alpha2[0] == '0' && alpha2[1] == '0';
354 }
355 
356 static bool is_alpha2_set(const char *alpha2)
357 {
358 	if (!alpha2)
359 		return false;
360 	return alpha2[0] && alpha2[1];
361 }
362 
363 static bool is_unknown_alpha2(const char *alpha2)
364 {
365 	if (!alpha2)
366 		return false;
367 	/*
368 	 * Special case where regulatory domain was built by driver
369 	 * but a specific alpha2 cannot be determined
370 	 */
371 	return alpha2[0] == '9' && alpha2[1] == '9';
372 }
373 
374 static bool is_intersected_alpha2(const char *alpha2)
375 {
376 	if (!alpha2)
377 		return false;
378 	/*
379 	 * Special case where regulatory domain is the
380 	 * result of an intersection between two regulatory domain
381 	 * structures
382 	 */
383 	return alpha2[0] == '9' && alpha2[1] == '8';
384 }
385 
386 static bool is_an_alpha2(const char *alpha2)
387 {
388 	if (!alpha2)
389 		return false;
390 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
391 }
392 
393 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
394 {
395 	if (!alpha2_x || !alpha2_y)
396 		return false;
397 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
398 }
399 
400 static bool regdom_changes(const char *alpha2)
401 {
402 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
403 
404 	if (!r)
405 		return true;
406 	return !alpha2_equal(r->alpha2, alpha2);
407 }
408 
409 /*
410  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
411  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
412  * has ever been issued.
413  */
414 static bool is_user_regdom_saved(void)
415 {
416 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
417 		return false;
418 
419 	/* This would indicate a mistake on the design */
420 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
421 		 "Unexpected user alpha2: %c%c\n",
422 		 user_alpha2[0], user_alpha2[1]))
423 		return false;
424 
425 	return true;
426 }
427 
428 static const struct ieee80211_regdomain *
429 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
430 {
431 	struct ieee80211_regdomain *regd;
432 	int size_of_regd;
433 	unsigned int i;
434 
435 	size_of_regd =
436 		sizeof(struct ieee80211_regdomain) +
437 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
438 
439 	regd = kzalloc(size_of_regd, GFP_KERNEL);
440 	if (!regd)
441 		return ERR_PTR(-ENOMEM);
442 
443 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
444 
445 	for (i = 0; i < src_regd->n_reg_rules; i++)
446 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
447 		       sizeof(struct ieee80211_reg_rule));
448 
449 	return regd;
450 }
451 
452 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
453 struct reg_regdb_search_request {
454 	char alpha2[2];
455 	struct list_head list;
456 };
457 
458 static LIST_HEAD(reg_regdb_search_list);
459 static DEFINE_MUTEX(reg_regdb_search_mutex);
460 
461 static void reg_regdb_search(struct work_struct *work)
462 {
463 	struct reg_regdb_search_request *request;
464 	const struct ieee80211_regdomain *curdom, *regdom = NULL;
465 	int i;
466 
467 	rtnl_lock();
468 
469 	mutex_lock(&reg_regdb_search_mutex);
470 	while (!list_empty(&reg_regdb_search_list)) {
471 		request = list_first_entry(&reg_regdb_search_list,
472 					   struct reg_regdb_search_request,
473 					   list);
474 		list_del(&request->list);
475 
476 		for (i = 0; i < reg_regdb_size; i++) {
477 			curdom = reg_regdb[i];
478 
479 			if (alpha2_equal(request->alpha2, curdom->alpha2)) {
480 				regdom = reg_copy_regd(curdom);
481 				break;
482 			}
483 		}
484 
485 		kfree(request);
486 	}
487 	mutex_unlock(&reg_regdb_search_mutex);
488 
489 	if (!IS_ERR_OR_NULL(regdom))
490 		set_regdom(regdom);
491 
492 	rtnl_unlock();
493 }
494 
495 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
496 
497 static void reg_regdb_query(const char *alpha2)
498 {
499 	struct reg_regdb_search_request *request;
500 
501 	if (!alpha2)
502 		return;
503 
504 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
505 	if (!request)
506 		return;
507 
508 	memcpy(request->alpha2, alpha2, 2);
509 
510 	mutex_lock(&reg_regdb_search_mutex);
511 	list_add_tail(&request->list, &reg_regdb_search_list);
512 	mutex_unlock(&reg_regdb_search_mutex);
513 
514 	schedule_work(&reg_regdb_work);
515 }
516 
517 /* Feel free to add any other sanity checks here */
518 static void reg_regdb_size_check(void)
519 {
520 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
521 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
522 }
523 #else
524 static inline void reg_regdb_size_check(void) {}
525 static inline void reg_regdb_query(const char *alpha2) {}
526 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
527 
528 /*
529  * This lets us keep regulatory code which is updated on a regulatory
530  * basis in userspace.
531  */
532 static int call_crda(const char *alpha2)
533 {
534 	char country[12];
535 	char *env[] = { country, NULL };
536 
537 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
538 		 alpha2[0], alpha2[1]);
539 
540 	if (!is_world_regdom((char *) alpha2))
541 		pr_info("Calling CRDA for country: %c%c\n",
542 			alpha2[0], alpha2[1]);
543 	else
544 		pr_info("Calling CRDA to update world regulatory domain\n");
545 
546 	/* query internal regulatory database (if it exists) */
547 	reg_regdb_query(alpha2);
548 
549 	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
550 }
551 
552 static enum reg_request_treatment
553 reg_call_crda(struct regulatory_request *request)
554 {
555 	if (call_crda(request->alpha2))
556 		return REG_REQ_IGNORE;
557 	return REG_REQ_OK;
558 }
559 
560 bool reg_is_valid_request(const char *alpha2)
561 {
562 	struct regulatory_request *lr = get_last_request();
563 
564 	if (!lr || lr->processed)
565 		return false;
566 
567 	return alpha2_equal(lr->alpha2, alpha2);
568 }
569 
570 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
571 {
572 	struct regulatory_request *lr = get_last_request();
573 
574 	/*
575 	 * Follow the driver's regulatory domain, if present, unless a country
576 	 * IE has been processed or a user wants to help complaince further
577 	 */
578 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
579 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
580 	    wiphy->regd)
581 		return get_wiphy_regdom(wiphy);
582 
583 	return get_cfg80211_regdom();
584 }
585 
586 static unsigned int
587 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
588 				 const struct ieee80211_reg_rule *rule)
589 {
590 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
591 	const struct ieee80211_freq_range *freq_range_tmp;
592 	const struct ieee80211_reg_rule *tmp;
593 	u32 start_freq, end_freq, idx, no;
594 
595 	for (idx = 0; idx < rd->n_reg_rules; idx++)
596 		if (rule == &rd->reg_rules[idx])
597 			break;
598 
599 	if (idx == rd->n_reg_rules)
600 		return 0;
601 
602 	/* get start_freq */
603 	no = idx;
604 
605 	while (no) {
606 		tmp = &rd->reg_rules[--no];
607 		freq_range_tmp = &tmp->freq_range;
608 
609 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
610 			break;
611 
612 		freq_range = freq_range_tmp;
613 	}
614 
615 	start_freq = freq_range->start_freq_khz;
616 
617 	/* get end_freq */
618 	freq_range = &rule->freq_range;
619 	no = idx;
620 
621 	while (no < rd->n_reg_rules - 1) {
622 		tmp = &rd->reg_rules[++no];
623 		freq_range_tmp = &tmp->freq_range;
624 
625 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
626 			break;
627 
628 		freq_range = freq_range_tmp;
629 	}
630 
631 	end_freq = freq_range->end_freq_khz;
632 
633 	return end_freq - start_freq;
634 }
635 
636 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
637 				   const struct ieee80211_reg_rule *rule)
638 {
639 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
640 
641 	if (rule->flags & NL80211_RRF_NO_160MHZ)
642 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
643 	if (rule->flags & NL80211_RRF_NO_80MHZ)
644 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
645 
646 	/*
647 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
648 	 * are not allowed.
649 	 */
650 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
651 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
652 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
653 
654 	return bw;
655 }
656 
657 /* Sanity check on a regulatory rule */
658 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
659 {
660 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
661 	u32 freq_diff;
662 
663 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
664 		return false;
665 
666 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
667 		return false;
668 
669 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
670 
671 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
672 	    freq_range->max_bandwidth_khz > freq_diff)
673 		return false;
674 
675 	return true;
676 }
677 
678 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
679 {
680 	const struct ieee80211_reg_rule *reg_rule = NULL;
681 	unsigned int i;
682 
683 	if (!rd->n_reg_rules)
684 		return false;
685 
686 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
687 		return false;
688 
689 	for (i = 0; i < rd->n_reg_rules; i++) {
690 		reg_rule = &rd->reg_rules[i];
691 		if (!is_valid_reg_rule(reg_rule))
692 			return false;
693 	}
694 
695 	return true;
696 }
697 
698 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
699 			    u32 center_freq_khz, u32 bw_khz)
700 {
701 	u32 start_freq_khz, end_freq_khz;
702 
703 	start_freq_khz = center_freq_khz - (bw_khz/2);
704 	end_freq_khz = center_freq_khz + (bw_khz/2);
705 
706 	if (start_freq_khz >= freq_range->start_freq_khz &&
707 	    end_freq_khz <= freq_range->end_freq_khz)
708 		return true;
709 
710 	return false;
711 }
712 
713 /**
714  * freq_in_rule_band - tells us if a frequency is in a frequency band
715  * @freq_range: frequency rule we want to query
716  * @freq_khz: frequency we are inquiring about
717  *
718  * This lets us know if a specific frequency rule is or is not relevant to
719  * a specific frequency's band. Bands are device specific and artificial
720  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
721  * however it is safe for now to assume that a frequency rule should not be
722  * part of a frequency's band if the start freq or end freq are off by more
723  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
724  * 60 GHz band.
725  * This resolution can be lowered and should be considered as we add
726  * regulatory rule support for other "bands".
727  **/
728 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
729 			      u32 freq_khz)
730 {
731 #define ONE_GHZ_IN_KHZ	1000000
732 	/*
733 	 * From 802.11ad: directional multi-gigabit (DMG):
734 	 * Pertaining to operation in a frequency band containing a channel
735 	 * with the Channel starting frequency above 45 GHz.
736 	 */
737 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
738 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
739 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
740 		return true;
741 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
742 		return true;
743 	return false;
744 #undef ONE_GHZ_IN_KHZ
745 }
746 
747 /*
748  * Later on we can perhaps use the more restrictive DFS
749  * region but we don't have information for that yet so
750  * for now simply disallow conflicts.
751  */
752 static enum nl80211_dfs_regions
753 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
754 			 const enum nl80211_dfs_regions dfs_region2)
755 {
756 	if (dfs_region1 != dfs_region2)
757 		return NL80211_DFS_UNSET;
758 	return dfs_region1;
759 }
760 
761 /*
762  * Helper for regdom_intersect(), this does the real
763  * mathematical intersection fun
764  */
765 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
766 			       const struct ieee80211_regdomain *rd2,
767 			       const struct ieee80211_reg_rule *rule1,
768 			       const struct ieee80211_reg_rule *rule2,
769 			       struct ieee80211_reg_rule *intersected_rule)
770 {
771 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
772 	struct ieee80211_freq_range *freq_range;
773 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
774 	struct ieee80211_power_rule *power_rule;
775 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
776 
777 	freq_range1 = &rule1->freq_range;
778 	freq_range2 = &rule2->freq_range;
779 	freq_range = &intersected_rule->freq_range;
780 
781 	power_rule1 = &rule1->power_rule;
782 	power_rule2 = &rule2->power_rule;
783 	power_rule = &intersected_rule->power_rule;
784 
785 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
786 					 freq_range2->start_freq_khz);
787 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
788 				       freq_range2->end_freq_khz);
789 
790 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
791 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
792 
793 	if (rule1->flags & NL80211_RRF_AUTO_BW)
794 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
795 	if (rule2->flags & NL80211_RRF_AUTO_BW)
796 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
797 
798 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
799 
800 	intersected_rule->flags = rule1->flags | rule2->flags;
801 
802 	/*
803 	 * In case NL80211_RRF_AUTO_BW requested for both rules
804 	 * set AUTO_BW in intersected rule also. Next we will
805 	 * calculate BW correctly in handle_channel function.
806 	 * In other case remove AUTO_BW flag while we calculate
807 	 * maximum bandwidth correctly and auto calculation is
808 	 * not required.
809 	 */
810 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
811 	    (rule2->flags & NL80211_RRF_AUTO_BW))
812 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
813 	else
814 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
815 
816 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
817 	if (freq_range->max_bandwidth_khz > freq_diff)
818 		freq_range->max_bandwidth_khz = freq_diff;
819 
820 	power_rule->max_eirp = min(power_rule1->max_eirp,
821 		power_rule2->max_eirp);
822 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
823 		power_rule2->max_antenna_gain);
824 
825 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
826 					   rule2->dfs_cac_ms);
827 
828 	if (!is_valid_reg_rule(intersected_rule))
829 		return -EINVAL;
830 
831 	return 0;
832 }
833 
834 /* check whether old rule contains new rule */
835 static bool rule_contains(struct ieee80211_reg_rule *r1,
836 			  struct ieee80211_reg_rule *r2)
837 {
838 	/* for simplicity, currently consider only same flags */
839 	if (r1->flags != r2->flags)
840 		return false;
841 
842 	/* verify r1 is more restrictive */
843 	if ((r1->power_rule.max_antenna_gain >
844 	     r2->power_rule.max_antenna_gain) ||
845 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
846 		return false;
847 
848 	/* make sure r2's range is contained within r1 */
849 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
850 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
851 		return false;
852 
853 	/* and finally verify that r1.max_bw >= r2.max_bw */
854 	if (r1->freq_range.max_bandwidth_khz <
855 	    r2->freq_range.max_bandwidth_khz)
856 		return false;
857 
858 	return true;
859 }
860 
861 /* add or extend current rules. do nothing if rule is already contained */
862 static void add_rule(struct ieee80211_reg_rule *rule,
863 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
864 {
865 	struct ieee80211_reg_rule *tmp_rule;
866 	int i;
867 
868 	for (i = 0; i < *n_rules; i++) {
869 		tmp_rule = &reg_rules[i];
870 		/* rule is already contained - do nothing */
871 		if (rule_contains(tmp_rule, rule))
872 			return;
873 
874 		/* extend rule if possible */
875 		if (rule_contains(rule, tmp_rule)) {
876 			memcpy(tmp_rule, rule, sizeof(*rule));
877 			return;
878 		}
879 	}
880 
881 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
882 	(*n_rules)++;
883 }
884 
885 /**
886  * regdom_intersect - do the intersection between two regulatory domains
887  * @rd1: first regulatory domain
888  * @rd2: second regulatory domain
889  *
890  * Use this function to get the intersection between two regulatory domains.
891  * Once completed we will mark the alpha2 for the rd as intersected, "98",
892  * as no one single alpha2 can represent this regulatory domain.
893  *
894  * Returns a pointer to the regulatory domain structure which will hold the
895  * resulting intersection of rules between rd1 and rd2. We will
896  * kzalloc() this structure for you.
897  */
898 static struct ieee80211_regdomain *
899 regdom_intersect(const struct ieee80211_regdomain *rd1,
900 		 const struct ieee80211_regdomain *rd2)
901 {
902 	int r, size_of_regd;
903 	unsigned int x, y;
904 	unsigned int num_rules = 0;
905 	const struct ieee80211_reg_rule *rule1, *rule2;
906 	struct ieee80211_reg_rule intersected_rule;
907 	struct ieee80211_regdomain *rd;
908 
909 	if (!rd1 || !rd2)
910 		return NULL;
911 
912 	/*
913 	 * First we get a count of the rules we'll need, then we actually
914 	 * build them. This is to so we can malloc() and free() a
915 	 * regdomain once. The reason we use reg_rules_intersect() here
916 	 * is it will return -EINVAL if the rule computed makes no sense.
917 	 * All rules that do check out OK are valid.
918 	 */
919 
920 	for (x = 0; x < rd1->n_reg_rules; x++) {
921 		rule1 = &rd1->reg_rules[x];
922 		for (y = 0; y < rd2->n_reg_rules; y++) {
923 			rule2 = &rd2->reg_rules[y];
924 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
925 						 &intersected_rule))
926 				num_rules++;
927 		}
928 	}
929 
930 	if (!num_rules)
931 		return NULL;
932 
933 	size_of_regd = sizeof(struct ieee80211_regdomain) +
934 		       num_rules * sizeof(struct ieee80211_reg_rule);
935 
936 	rd = kzalloc(size_of_regd, GFP_KERNEL);
937 	if (!rd)
938 		return NULL;
939 
940 	for (x = 0; x < rd1->n_reg_rules; x++) {
941 		rule1 = &rd1->reg_rules[x];
942 		for (y = 0; y < rd2->n_reg_rules; y++) {
943 			rule2 = &rd2->reg_rules[y];
944 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
945 						&intersected_rule);
946 			/*
947 			 * No need to memset here the intersected rule here as
948 			 * we're not using the stack anymore
949 			 */
950 			if (r)
951 				continue;
952 
953 			add_rule(&intersected_rule, rd->reg_rules,
954 				 &rd->n_reg_rules);
955 		}
956 	}
957 
958 	rd->alpha2[0] = '9';
959 	rd->alpha2[1] = '8';
960 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
961 						  rd2->dfs_region);
962 
963 	return rd;
964 }
965 
966 /*
967  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
968  * want to just have the channel structure use these
969  */
970 static u32 map_regdom_flags(u32 rd_flags)
971 {
972 	u32 channel_flags = 0;
973 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
974 		channel_flags |= IEEE80211_CHAN_NO_IR;
975 	if (rd_flags & NL80211_RRF_DFS)
976 		channel_flags |= IEEE80211_CHAN_RADAR;
977 	if (rd_flags & NL80211_RRF_NO_OFDM)
978 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
979 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
980 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
981 	if (rd_flags & NL80211_RRF_GO_CONCURRENT)
982 		channel_flags |= IEEE80211_CHAN_GO_CONCURRENT;
983 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
984 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
985 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
986 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
987 	if (rd_flags & NL80211_RRF_NO_80MHZ)
988 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
989 	if (rd_flags & NL80211_RRF_NO_160MHZ)
990 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
991 	return channel_flags;
992 }
993 
994 static const struct ieee80211_reg_rule *
995 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
996 		   const struct ieee80211_regdomain *regd)
997 {
998 	int i;
999 	bool band_rule_found = false;
1000 	bool bw_fits = false;
1001 
1002 	if (!regd)
1003 		return ERR_PTR(-EINVAL);
1004 
1005 	for (i = 0; i < regd->n_reg_rules; i++) {
1006 		const struct ieee80211_reg_rule *rr;
1007 		const struct ieee80211_freq_range *fr = NULL;
1008 
1009 		rr = &regd->reg_rules[i];
1010 		fr = &rr->freq_range;
1011 
1012 		/*
1013 		 * We only need to know if one frequency rule was
1014 		 * was in center_freq's band, that's enough, so lets
1015 		 * not overwrite it once found
1016 		 */
1017 		if (!band_rule_found)
1018 			band_rule_found = freq_in_rule_band(fr, center_freq);
1019 
1020 		bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
1021 
1022 		if (band_rule_found && bw_fits)
1023 			return rr;
1024 	}
1025 
1026 	if (!band_rule_found)
1027 		return ERR_PTR(-ERANGE);
1028 
1029 	return ERR_PTR(-EINVAL);
1030 }
1031 
1032 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1033 					       u32 center_freq)
1034 {
1035 	const struct ieee80211_regdomain *regd;
1036 
1037 	regd = reg_get_regdomain(wiphy);
1038 
1039 	return freq_reg_info_regd(wiphy, center_freq, regd);
1040 }
1041 EXPORT_SYMBOL(freq_reg_info);
1042 
1043 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1044 {
1045 	switch (initiator) {
1046 	case NL80211_REGDOM_SET_BY_CORE:
1047 		return "core";
1048 	case NL80211_REGDOM_SET_BY_USER:
1049 		return "user";
1050 	case NL80211_REGDOM_SET_BY_DRIVER:
1051 		return "driver";
1052 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1053 		return "country IE";
1054 	default:
1055 		WARN_ON(1);
1056 		return "bug";
1057 	}
1058 }
1059 EXPORT_SYMBOL(reg_initiator_name);
1060 
1061 #ifdef CONFIG_CFG80211_REG_DEBUG
1062 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1063 				    struct ieee80211_channel *chan,
1064 				    const struct ieee80211_reg_rule *reg_rule)
1065 {
1066 	const struct ieee80211_power_rule *power_rule;
1067 	const struct ieee80211_freq_range *freq_range;
1068 	char max_antenna_gain[32], bw[32];
1069 
1070 	power_rule = &reg_rule->power_rule;
1071 	freq_range = &reg_rule->freq_range;
1072 
1073 	if (!power_rule->max_antenna_gain)
1074 		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1075 	else
1076 		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1077 			 power_rule->max_antenna_gain);
1078 
1079 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1080 		snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1081 			 freq_range->max_bandwidth_khz,
1082 			 reg_get_max_bandwidth(regd, reg_rule));
1083 	else
1084 		snprintf(bw, sizeof(bw), "%d KHz",
1085 			 freq_range->max_bandwidth_khz);
1086 
1087 	REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1088 		      chan->center_freq);
1089 
1090 	REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1091 		      freq_range->start_freq_khz, freq_range->end_freq_khz,
1092 		      bw, max_antenna_gain,
1093 		      power_rule->max_eirp);
1094 }
1095 #else
1096 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1097 				    struct ieee80211_channel *chan,
1098 				    const struct ieee80211_reg_rule *reg_rule)
1099 {
1100 	return;
1101 }
1102 #endif
1103 
1104 /*
1105  * Note that right now we assume the desired channel bandwidth
1106  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1107  * per channel, the primary and the extension channel).
1108  */
1109 static void handle_channel(struct wiphy *wiphy,
1110 			   enum nl80211_reg_initiator initiator,
1111 			   struct ieee80211_channel *chan)
1112 {
1113 	u32 flags, bw_flags = 0;
1114 	const struct ieee80211_reg_rule *reg_rule = NULL;
1115 	const struct ieee80211_power_rule *power_rule = NULL;
1116 	const struct ieee80211_freq_range *freq_range = NULL;
1117 	struct wiphy *request_wiphy = NULL;
1118 	struct regulatory_request *lr = get_last_request();
1119 	const struct ieee80211_regdomain *regd;
1120 	u32 max_bandwidth_khz;
1121 
1122 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1123 
1124 	flags = chan->orig_flags;
1125 
1126 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1127 	if (IS_ERR(reg_rule)) {
1128 		/*
1129 		 * We will disable all channels that do not match our
1130 		 * received regulatory rule unless the hint is coming
1131 		 * from a Country IE and the Country IE had no information
1132 		 * about a band. The IEEE 802.11 spec allows for an AP
1133 		 * to send only a subset of the regulatory rules allowed,
1134 		 * so an AP in the US that only supports 2.4 GHz may only send
1135 		 * a country IE with information for the 2.4 GHz band
1136 		 * while 5 GHz is still supported.
1137 		 */
1138 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139 		    PTR_ERR(reg_rule) == -ERANGE)
1140 			return;
1141 
1142 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1143 		    request_wiphy && request_wiphy == wiphy &&
1144 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1145 			REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1146 				      chan->center_freq);
1147 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1148 			chan->flags = chan->orig_flags;
1149 		} else {
1150 			REG_DBG_PRINT("Disabling freq %d MHz\n",
1151 				      chan->center_freq);
1152 			chan->flags |= IEEE80211_CHAN_DISABLED;
1153 		}
1154 		return;
1155 	}
1156 
1157 	regd = reg_get_regdomain(wiphy);
1158 	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1159 
1160 	power_rule = &reg_rule->power_rule;
1161 	freq_range = &reg_rule->freq_range;
1162 
1163 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1164 	/* Check if auto calculation requested */
1165 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1166 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1167 
1168 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1169 		bw_flags = IEEE80211_CHAN_NO_HT40;
1170 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1171 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1172 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1173 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1174 
1175 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1176 	    request_wiphy && request_wiphy == wiphy &&
1177 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1178 		/*
1179 		 * This guarantees the driver's requested regulatory domain
1180 		 * will always be used as a base for further regulatory
1181 		 * settings
1182 		 */
1183 		chan->flags = chan->orig_flags =
1184 			map_regdom_flags(reg_rule->flags) | bw_flags;
1185 		chan->max_antenna_gain = chan->orig_mag =
1186 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1187 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1188 			(int) MBM_TO_DBM(power_rule->max_eirp);
1189 
1190 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1191 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1192 			if (reg_rule->dfs_cac_ms)
1193 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1194 		}
1195 
1196 		return;
1197 	}
1198 
1199 	chan->dfs_state = NL80211_DFS_USABLE;
1200 	chan->dfs_state_entered = jiffies;
1201 
1202 	chan->beacon_found = false;
1203 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1204 	chan->max_antenna_gain =
1205 		min_t(int, chan->orig_mag,
1206 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1207 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1208 
1209 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1210 		if (reg_rule->dfs_cac_ms)
1211 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1212 		else
1213 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1214 	}
1215 
1216 	if (chan->orig_mpwr) {
1217 		/*
1218 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1219 		 * will always follow the passed country IE power settings.
1220 		 */
1221 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1222 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1223 			chan->max_power = chan->max_reg_power;
1224 		else
1225 			chan->max_power = min(chan->orig_mpwr,
1226 					      chan->max_reg_power);
1227 	} else
1228 		chan->max_power = chan->max_reg_power;
1229 }
1230 
1231 static void handle_band(struct wiphy *wiphy,
1232 			enum nl80211_reg_initiator initiator,
1233 			struct ieee80211_supported_band *sband)
1234 {
1235 	unsigned int i;
1236 
1237 	if (!sband)
1238 		return;
1239 
1240 	for (i = 0; i < sband->n_channels; i++)
1241 		handle_channel(wiphy, initiator, &sband->channels[i]);
1242 }
1243 
1244 static bool reg_request_cell_base(struct regulatory_request *request)
1245 {
1246 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1247 		return false;
1248 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1249 }
1250 
1251 static bool reg_request_indoor(struct regulatory_request *request)
1252 {
1253 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1254 		return false;
1255 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1256 }
1257 
1258 bool reg_last_request_cell_base(void)
1259 {
1260 	return reg_request_cell_base(get_last_request());
1261 }
1262 
1263 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1264 /* Core specific check */
1265 static enum reg_request_treatment
1266 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1267 {
1268 	struct regulatory_request *lr = get_last_request();
1269 
1270 	if (!reg_num_devs_support_basehint)
1271 		return REG_REQ_IGNORE;
1272 
1273 	if (reg_request_cell_base(lr) &&
1274 	    !regdom_changes(pending_request->alpha2))
1275 		return REG_REQ_ALREADY_SET;
1276 
1277 	return REG_REQ_OK;
1278 }
1279 
1280 /* Device specific check */
1281 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1282 {
1283 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1284 }
1285 #else
1286 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1287 {
1288 	return REG_REQ_IGNORE;
1289 }
1290 
1291 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1292 {
1293 	return true;
1294 }
1295 #endif
1296 
1297 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1298 {
1299 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1300 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1301 		return true;
1302 	return false;
1303 }
1304 
1305 static bool ignore_reg_update(struct wiphy *wiphy,
1306 			      enum nl80211_reg_initiator initiator)
1307 {
1308 	struct regulatory_request *lr = get_last_request();
1309 
1310 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1311 		return true;
1312 
1313 	if (!lr) {
1314 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1315 			      "since last_request is not set\n",
1316 			      reg_initiator_name(initiator));
1317 		return true;
1318 	}
1319 
1320 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1321 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1322 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1323 			      "since the driver uses its own custom "
1324 			      "regulatory domain\n",
1325 			      reg_initiator_name(initiator));
1326 		return true;
1327 	}
1328 
1329 	/*
1330 	 * wiphy->regd will be set once the device has its own
1331 	 * desired regulatory domain set
1332 	 */
1333 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1334 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1335 	    !is_world_regdom(lr->alpha2)) {
1336 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1337 			      "since the driver requires its own regulatory "
1338 			      "domain to be set first\n",
1339 			      reg_initiator_name(initiator));
1340 		return true;
1341 	}
1342 
1343 	if (reg_request_cell_base(lr))
1344 		return reg_dev_ignore_cell_hint(wiphy);
1345 
1346 	return false;
1347 }
1348 
1349 static bool reg_is_world_roaming(struct wiphy *wiphy)
1350 {
1351 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1352 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1353 	struct regulatory_request *lr = get_last_request();
1354 
1355 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1356 		return true;
1357 
1358 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1359 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1360 		return true;
1361 
1362 	return false;
1363 }
1364 
1365 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1366 			      struct reg_beacon *reg_beacon)
1367 {
1368 	struct ieee80211_supported_band *sband;
1369 	struct ieee80211_channel *chan;
1370 	bool channel_changed = false;
1371 	struct ieee80211_channel chan_before;
1372 
1373 	sband = wiphy->bands[reg_beacon->chan.band];
1374 	chan = &sband->channels[chan_idx];
1375 
1376 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1377 		return;
1378 
1379 	if (chan->beacon_found)
1380 		return;
1381 
1382 	chan->beacon_found = true;
1383 
1384 	if (!reg_is_world_roaming(wiphy))
1385 		return;
1386 
1387 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1388 		return;
1389 
1390 	chan_before.center_freq = chan->center_freq;
1391 	chan_before.flags = chan->flags;
1392 
1393 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1394 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1395 		channel_changed = true;
1396 	}
1397 
1398 	if (channel_changed)
1399 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1400 }
1401 
1402 /*
1403  * Called when a scan on a wiphy finds a beacon on
1404  * new channel
1405  */
1406 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1407 				    struct reg_beacon *reg_beacon)
1408 {
1409 	unsigned int i;
1410 	struct ieee80211_supported_band *sband;
1411 
1412 	if (!wiphy->bands[reg_beacon->chan.band])
1413 		return;
1414 
1415 	sband = wiphy->bands[reg_beacon->chan.band];
1416 
1417 	for (i = 0; i < sband->n_channels; i++)
1418 		handle_reg_beacon(wiphy, i, reg_beacon);
1419 }
1420 
1421 /*
1422  * Called upon reg changes or a new wiphy is added
1423  */
1424 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1425 {
1426 	unsigned int i;
1427 	struct ieee80211_supported_band *sband;
1428 	struct reg_beacon *reg_beacon;
1429 
1430 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1431 		if (!wiphy->bands[reg_beacon->chan.band])
1432 			continue;
1433 		sband = wiphy->bands[reg_beacon->chan.band];
1434 		for (i = 0; i < sband->n_channels; i++)
1435 			handle_reg_beacon(wiphy, i, reg_beacon);
1436 	}
1437 }
1438 
1439 /* Reap the advantages of previously found beacons */
1440 static void reg_process_beacons(struct wiphy *wiphy)
1441 {
1442 	/*
1443 	 * Means we are just firing up cfg80211, so no beacons would
1444 	 * have been processed yet.
1445 	 */
1446 	if (!last_request)
1447 		return;
1448 	wiphy_update_beacon_reg(wiphy);
1449 }
1450 
1451 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1452 {
1453 	if (!chan)
1454 		return false;
1455 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1456 		return false;
1457 	/* This would happen when regulatory rules disallow HT40 completely */
1458 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1459 		return false;
1460 	return true;
1461 }
1462 
1463 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1464 					 struct ieee80211_channel *channel)
1465 {
1466 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1467 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1468 	unsigned int i;
1469 
1470 	if (!is_ht40_allowed(channel)) {
1471 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1472 		return;
1473 	}
1474 
1475 	/*
1476 	 * We need to ensure the extension channels exist to
1477 	 * be able to use HT40- or HT40+, this finds them (or not)
1478 	 */
1479 	for (i = 0; i < sband->n_channels; i++) {
1480 		struct ieee80211_channel *c = &sband->channels[i];
1481 
1482 		if (c->center_freq == (channel->center_freq - 20))
1483 			channel_before = c;
1484 		if (c->center_freq == (channel->center_freq + 20))
1485 			channel_after = c;
1486 	}
1487 
1488 	/*
1489 	 * Please note that this assumes target bandwidth is 20 MHz,
1490 	 * if that ever changes we also need to change the below logic
1491 	 * to include that as well.
1492 	 */
1493 	if (!is_ht40_allowed(channel_before))
1494 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1495 	else
1496 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1497 
1498 	if (!is_ht40_allowed(channel_after))
1499 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1500 	else
1501 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1502 }
1503 
1504 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1505 				      struct ieee80211_supported_band *sband)
1506 {
1507 	unsigned int i;
1508 
1509 	if (!sband)
1510 		return;
1511 
1512 	for (i = 0; i < sband->n_channels; i++)
1513 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1514 }
1515 
1516 static void reg_process_ht_flags(struct wiphy *wiphy)
1517 {
1518 	enum ieee80211_band band;
1519 
1520 	if (!wiphy)
1521 		return;
1522 
1523 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1524 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1525 }
1526 
1527 static void reg_call_notifier(struct wiphy *wiphy,
1528 			      struct regulatory_request *request)
1529 {
1530 	if (wiphy->reg_notifier)
1531 		wiphy->reg_notifier(wiphy, request);
1532 }
1533 
1534 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1535 {
1536 	struct cfg80211_chan_def chandef;
1537 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1538 	enum nl80211_iftype iftype;
1539 
1540 	wdev_lock(wdev);
1541 	iftype = wdev->iftype;
1542 
1543 	/* make sure the interface is active */
1544 	if (!wdev->netdev || !netif_running(wdev->netdev))
1545 		goto wdev_inactive_unlock;
1546 
1547 	switch (iftype) {
1548 	case NL80211_IFTYPE_AP:
1549 	case NL80211_IFTYPE_P2P_GO:
1550 		if (!wdev->beacon_interval)
1551 			goto wdev_inactive_unlock;
1552 		chandef = wdev->chandef;
1553 		break;
1554 	case NL80211_IFTYPE_ADHOC:
1555 		if (!wdev->ssid_len)
1556 			goto wdev_inactive_unlock;
1557 		chandef = wdev->chandef;
1558 		break;
1559 	case NL80211_IFTYPE_STATION:
1560 	case NL80211_IFTYPE_P2P_CLIENT:
1561 		if (!wdev->current_bss ||
1562 		    !wdev->current_bss->pub.channel)
1563 			goto wdev_inactive_unlock;
1564 
1565 		if (!rdev->ops->get_channel ||
1566 		    rdev_get_channel(rdev, wdev, &chandef))
1567 			cfg80211_chandef_create(&chandef,
1568 						wdev->current_bss->pub.channel,
1569 						NL80211_CHAN_NO_HT);
1570 		break;
1571 	case NL80211_IFTYPE_MONITOR:
1572 	case NL80211_IFTYPE_AP_VLAN:
1573 	case NL80211_IFTYPE_P2P_DEVICE:
1574 		/* no enforcement required */
1575 		break;
1576 	default:
1577 		/* others not implemented for now */
1578 		WARN_ON(1);
1579 		break;
1580 	}
1581 
1582 	wdev_unlock(wdev);
1583 
1584 	switch (iftype) {
1585 	case NL80211_IFTYPE_AP:
1586 	case NL80211_IFTYPE_P2P_GO:
1587 	case NL80211_IFTYPE_ADHOC:
1588 		return cfg80211_reg_can_beacon(wiphy, &chandef, iftype);
1589 	case NL80211_IFTYPE_STATION:
1590 	case NL80211_IFTYPE_P2P_CLIENT:
1591 		return cfg80211_chandef_usable(wiphy, &chandef,
1592 					       IEEE80211_CHAN_DISABLED);
1593 	default:
1594 		break;
1595 	}
1596 
1597 	return true;
1598 
1599 wdev_inactive_unlock:
1600 	wdev_unlock(wdev);
1601 	return true;
1602 }
1603 
1604 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1605 {
1606 	struct wireless_dev *wdev;
1607 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1608 
1609 	ASSERT_RTNL();
1610 
1611 	list_for_each_entry(wdev, &rdev->wdev_list, list)
1612 		if (!reg_wdev_chan_valid(wiphy, wdev))
1613 			cfg80211_leave(rdev, wdev);
1614 }
1615 
1616 static void reg_check_chans_work(struct work_struct *work)
1617 {
1618 	struct cfg80211_registered_device *rdev;
1619 
1620 	REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1621 	rtnl_lock();
1622 
1623 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1624 		if (!(rdev->wiphy.regulatory_flags &
1625 		      REGULATORY_IGNORE_STALE_KICKOFF))
1626 			reg_leave_invalid_chans(&rdev->wiphy);
1627 
1628 	rtnl_unlock();
1629 }
1630 
1631 static void reg_check_channels(void)
1632 {
1633 	/*
1634 	 * Give usermode a chance to do something nicer (move to another
1635 	 * channel, orderly disconnection), before forcing a disconnection.
1636 	 */
1637 	mod_delayed_work(system_power_efficient_wq,
1638 			 &reg_check_chans,
1639 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1640 }
1641 
1642 static void wiphy_update_regulatory(struct wiphy *wiphy,
1643 				    enum nl80211_reg_initiator initiator)
1644 {
1645 	enum ieee80211_band band;
1646 	struct regulatory_request *lr = get_last_request();
1647 
1648 	if (ignore_reg_update(wiphy, initiator)) {
1649 		/*
1650 		 * Regulatory updates set by CORE are ignored for custom
1651 		 * regulatory cards. Let us notify the changes to the driver,
1652 		 * as some drivers used this to restore its orig_* reg domain.
1653 		 */
1654 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1655 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1656 			reg_call_notifier(wiphy, lr);
1657 		return;
1658 	}
1659 
1660 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1661 
1662 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1663 		handle_band(wiphy, initiator, wiphy->bands[band]);
1664 
1665 	reg_process_beacons(wiphy);
1666 	reg_process_ht_flags(wiphy);
1667 	reg_call_notifier(wiphy, lr);
1668 }
1669 
1670 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1671 {
1672 	struct cfg80211_registered_device *rdev;
1673 	struct wiphy *wiphy;
1674 
1675 	ASSERT_RTNL();
1676 
1677 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1678 		wiphy = &rdev->wiphy;
1679 		wiphy_update_regulatory(wiphy, initiator);
1680 	}
1681 
1682 	reg_check_channels();
1683 }
1684 
1685 static void handle_channel_custom(struct wiphy *wiphy,
1686 				  struct ieee80211_channel *chan,
1687 				  const struct ieee80211_regdomain *regd)
1688 {
1689 	u32 bw_flags = 0;
1690 	const struct ieee80211_reg_rule *reg_rule = NULL;
1691 	const struct ieee80211_power_rule *power_rule = NULL;
1692 	const struct ieee80211_freq_range *freq_range = NULL;
1693 	u32 max_bandwidth_khz;
1694 
1695 	reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1696 				      regd);
1697 
1698 	if (IS_ERR(reg_rule)) {
1699 		REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1700 			      chan->center_freq);
1701 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1702 			chan->flags |= IEEE80211_CHAN_DISABLED;
1703 		} else {
1704 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1705 			chan->flags = chan->orig_flags;
1706 		}
1707 		return;
1708 	}
1709 
1710 	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1711 
1712 	power_rule = &reg_rule->power_rule;
1713 	freq_range = &reg_rule->freq_range;
1714 
1715 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1716 	/* Check if auto calculation requested */
1717 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1718 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1719 
1720 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1721 		bw_flags = IEEE80211_CHAN_NO_HT40;
1722 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1723 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1724 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1725 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1726 
1727 	chan->dfs_state_entered = jiffies;
1728 	chan->dfs_state = NL80211_DFS_USABLE;
1729 
1730 	chan->beacon_found = false;
1731 
1732 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1733 		chan->flags = chan->orig_flags | bw_flags |
1734 			      map_regdom_flags(reg_rule->flags);
1735 	else
1736 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1737 
1738 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1739 	chan->max_reg_power = chan->max_power =
1740 		(int) MBM_TO_DBM(power_rule->max_eirp);
1741 
1742 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1743 		if (reg_rule->dfs_cac_ms)
1744 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1745 		else
1746 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1747 	}
1748 
1749 	chan->max_power = chan->max_reg_power;
1750 }
1751 
1752 static void handle_band_custom(struct wiphy *wiphy,
1753 			       struct ieee80211_supported_band *sband,
1754 			       const struct ieee80211_regdomain *regd)
1755 {
1756 	unsigned int i;
1757 
1758 	if (!sband)
1759 		return;
1760 
1761 	for (i = 0; i < sband->n_channels; i++)
1762 		handle_channel_custom(wiphy, &sband->channels[i], regd);
1763 }
1764 
1765 /* Used by drivers prior to wiphy registration */
1766 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1767 				   const struct ieee80211_regdomain *regd)
1768 {
1769 	enum ieee80211_band band;
1770 	unsigned int bands_set = 0;
1771 
1772 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1773 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
1774 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1775 
1776 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1777 		if (!wiphy->bands[band])
1778 			continue;
1779 		handle_band_custom(wiphy, wiphy->bands[band], regd);
1780 		bands_set++;
1781 	}
1782 
1783 	/*
1784 	 * no point in calling this if it won't have any effect
1785 	 * on your device's supported bands.
1786 	 */
1787 	WARN_ON(!bands_set);
1788 }
1789 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1790 
1791 static void reg_set_request_processed(void)
1792 {
1793 	bool need_more_processing = false;
1794 	struct regulatory_request *lr = get_last_request();
1795 
1796 	lr->processed = true;
1797 
1798 	spin_lock(&reg_requests_lock);
1799 	if (!list_empty(&reg_requests_list))
1800 		need_more_processing = true;
1801 	spin_unlock(&reg_requests_lock);
1802 
1803 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1804 		cancel_delayed_work(&reg_timeout);
1805 
1806 	if (need_more_processing)
1807 		schedule_work(&reg_work);
1808 }
1809 
1810 /**
1811  * reg_process_hint_core - process core regulatory requests
1812  * @pending_request: a pending core regulatory request
1813  *
1814  * The wireless subsystem can use this function to process
1815  * a regulatory request issued by the regulatory core.
1816  *
1817  * Returns one of the different reg request treatment values.
1818  */
1819 static enum reg_request_treatment
1820 reg_process_hint_core(struct regulatory_request *core_request)
1821 {
1822 
1823 	core_request->intersect = false;
1824 	core_request->processed = false;
1825 
1826 	reg_update_last_request(core_request);
1827 
1828 	return reg_call_crda(core_request);
1829 }
1830 
1831 static enum reg_request_treatment
1832 __reg_process_hint_user(struct regulatory_request *user_request)
1833 {
1834 	struct regulatory_request *lr = get_last_request();
1835 
1836 	if (reg_request_indoor(user_request)) {
1837 		reg_is_indoor = true;
1838 		return REG_REQ_USER_HINT_HANDLED;
1839 	}
1840 
1841 	if (reg_request_cell_base(user_request))
1842 		return reg_ignore_cell_hint(user_request);
1843 
1844 	if (reg_request_cell_base(lr))
1845 		return REG_REQ_IGNORE;
1846 
1847 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1848 		return REG_REQ_INTERSECT;
1849 	/*
1850 	 * If the user knows better the user should set the regdom
1851 	 * to their country before the IE is picked up
1852 	 */
1853 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1854 	    lr->intersect)
1855 		return REG_REQ_IGNORE;
1856 	/*
1857 	 * Process user requests only after previous user/driver/core
1858 	 * requests have been processed
1859 	 */
1860 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1861 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1862 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1863 	    regdom_changes(lr->alpha2))
1864 		return REG_REQ_IGNORE;
1865 
1866 	if (!regdom_changes(user_request->alpha2))
1867 		return REG_REQ_ALREADY_SET;
1868 
1869 	return REG_REQ_OK;
1870 }
1871 
1872 /**
1873  * reg_process_hint_user - process user regulatory requests
1874  * @user_request: a pending user regulatory request
1875  *
1876  * The wireless subsystem can use this function to process
1877  * a regulatory request initiated by userspace.
1878  *
1879  * Returns one of the different reg request treatment values.
1880  */
1881 static enum reg_request_treatment
1882 reg_process_hint_user(struct regulatory_request *user_request)
1883 {
1884 	enum reg_request_treatment treatment;
1885 
1886 	treatment = __reg_process_hint_user(user_request);
1887 	if (treatment == REG_REQ_IGNORE ||
1888 	    treatment == REG_REQ_ALREADY_SET ||
1889 	    treatment == REG_REQ_USER_HINT_HANDLED) {
1890 		reg_free_request(user_request);
1891 		return treatment;
1892 	}
1893 
1894 	user_request->intersect = treatment == REG_REQ_INTERSECT;
1895 	user_request->processed = false;
1896 
1897 	reg_update_last_request(user_request);
1898 
1899 	user_alpha2[0] = user_request->alpha2[0];
1900 	user_alpha2[1] = user_request->alpha2[1];
1901 
1902 	return reg_call_crda(user_request);
1903 }
1904 
1905 static enum reg_request_treatment
1906 __reg_process_hint_driver(struct regulatory_request *driver_request)
1907 {
1908 	struct regulatory_request *lr = get_last_request();
1909 
1910 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1911 		if (regdom_changes(driver_request->alpha2))
1912 			return REG_REQ_OK;
1913 		return REG_REQ_ALREADY_SET;
1914 	}
1915 
1916 	/*
1917 	 * This would happen if you unplug and plug your card
1918 	 * back in or if you add a new device for which the previously
1919 	 * loaded card also agrees on the regulatory domain.
1920 	 */
1921 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1922 	    !regdom_changes(driver_request->alpha2))
1923 		return REG_REQ_ALREADY_SET;
1924 
1925 	return REG_REQ_INTERSECT;
1926 }
1927 
1928 /**
1929  * reg_process_hint_driver - process driver regulatory requests
1930  * @driver_request: a pending driver regulatory request
1931  *
1932  * The wireless subsystem can use this function to process
1933  * a regulatory request issued by an 802.11 driver.
1934  *
1935  * Returns one of the different reg request treatment values.
1936  */
1937 static enum reg_request_treatment
1938 reg_process_hint_driver(struct wiphy *wiphy,
1939 			struct regulatory_request *driver_request)
1940 {
1941 	const struct ieee80211_regdomain *regd, *tmp;
1942 	enum reg_request_treatment treatment;
1943 
1944 	treatment = __reg_process_hint_driver(driver_request);
1945 
1946 	switch (treatment) {
1947 	case REG_REQ_OK:
1948 		break;
1949 	case REG_REQ_IGNORE:
1950 	case REG_REQ_USER_HINT_HANDLED:
1951 		reg_free_request(driver_request);
1952 		return treatment;
1953 	case REG_REQ_INTERSECT:
1954 		/* fall through */
1955 	case REG_REQ_ALREADY_SET:
1956 		regd = reg_copy_regd(get_cfg80211_regdom());
1957 		if (IS_ERR(regd)) {
1958 			reg_free_request(driver_request);
1959 			return REG_REQ_IGNORE;
1960 		}
1961 
1962 		tmp = get_wiphy_regdom(wiphy);
1963 		rcu_assign_pointer(wiphy->regd, regd);
1964 		rcu_free_regdom(tmp);
1965 	}
1966 
1967 
1968 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
1969 	driver_request->processed = false;
1970 
1971 	reg_update_last_request(driver_request);
1972 
1973 	/*
1974 	 * Since CRDA will not be called in this case as we already
1975 	 * have applied the requested regulatory domain before we just
1976 	 * inform userspace we have processed the request
1977 	 */
1978 	if (treatment == REG_REQ_ALREADY_SET) {
1979 		nl80211_send_reg_change_event(driver_request);
1980 		reg_set_request_processed();
1981 		return treatment;
1982 	}
1983 
1984 	return reg_call_crda(driver_request);
1985 }
1986 
1987 static enum reg_request_treatment
1988 __reg_process_hint_country_ie(struct wiphy *wiphy,
1989 			      struct regulatory_request *country_ie_request)
1990 {
1991 	struct wiphy *last_wiphy = NULL;
1992 	struct regulatory_request *lr = get_last_request();
1993 
1994 	if (reg_request_cell_base(lr)) {
1995 		/* Trust a Cell base station over the AP's country IE */
1996 		if (regdom_changes(country_ie_request->alpha2))
1997 			return REG_REQ_IGNORE;
1998 		return REG_REQ_ALREADY_SET;
1999 	} else {
2000 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2001 			return REG_REQ_IGNORE;
2002 	}
2003 
2004 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2005 		return -EINVAL;
2006 
2007 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2008 		return REG_REQ_OK;
2009 
2010 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2011 
2012 	if (last_wiphy != wiphy) {
2013 		/*
2014 		 * Two cards with two APs claiming different
2015 		 * Country IE alpha2s. We could
2016 		 * intersect them, but that seems unlikely
2017 		 * to be correct. Reject second one for now.
2018 		 */
2019 		if (regdom_changes(country_ie_request->alpha2))
2020 			return REG_REQ_IGNORE;
2021 		return REG_REQ_ALREADY_SET;
2022 	}
2023 
2024 	if (regdom_changes(country_ie_request->alpha2))
2025 		return REG_REQ_OK;
2026 	return REG_REQ_ALREADY_SET;
2027 }
2028 
2029 /**
2030  * reg_process_hint_country_ie - process regulatory requests from country IEs
2031  * @country_ie_request: a regulatory request from a country IE
2032  *
2033  * The wireless subsystem can use this function to process
2034  * a regulatory request issued by a country Information Element.
2035  *
2036  * Returns one of the different reg request treatment values.
2037  */
2038 static enum reg_request_treatment
2039 reg_process_hint_country_ie(struct wiphy *wiphy,
2040 			    struct regulatory_request *country_ie_request)
2041 {
2042 	enum reg_request_treatment treatment;
2043 
2044 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2045 
2046 	switch (treatment) {
2047 	case REG_REQ_OK:
2048 		break;
2049 	case REG_REQ_IGNORE:
2050 	case REG_REQ_USER_HINT_HANDLED:
2051 		/* fall through */
2052 	case REG_REQ_ALREADY_SET:
2053 		reg_free_request(country_ie_request);
2054 		return treatment;
2055 	case REG_REQ_INTERSECT:
2056 		reg_free_request(country_ie_request);
2057 		/*
2058 		 * This doesn't happen yet, not sure we
2059 		 * ever want to support it for this case.
2060 		 */
2061 		WARN_ONCE(1, "Unexpected intersection for country IEs");
2062 		return REG_REQ_IGNORE;
2063 	}
2064 
2065 	country_ie_request->intersect = false;
2066 	country_ie_request->processed = false;
2067 
2068 	reg_update_last_request(country_ie_request);
2069 
2070 	return reg_call_crda(country_ie_request);
2071 }
2072 
2073 /* This processes *all* regulatory hints */
2074 static void reg_process_hint(struct regulatory_request *reg_request)
2075 {
2076 	struct wiphy *wiphy = NULL;
2077 	enum reg_request_treatment treatment;
2078 
2079 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2080 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2081 
2082 	switch (reg_request->initiator) {
2083 	case NL80211_REGDOM_SET_BY_CORE:
2084 		reg_process_hint_core(reg_request);
2085 		return;
2086 	case NL80211_REGDOM_SET_BY_USER:
2087 		treatment = reg_process_hint_user(reg_request);
2088 		if (treatment == REG_REQ_IGNORE ||
2089 		    treatment == REG_REQ_ALREADY_SET ||
2090 		    treatment == REG_REQ_USER_HINT_HANDLED)
2091 			return;
2092 		queue_delayed_work(system_power_efficient_wq,
2093 				   &reg_timeout, msecs_to_jiffies(3142));
2094 		return;
2095 	case NL80211_REGDOM_SET_BY_DRIVER:
2096 		if (!wiphy)
2097 			goto out_free;
2098 		treatment = reg_process_hint_driver(wiphy, reg_request);
2099 		break;
2100 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2101 		if (!wiphy)
2102 			goto out_free;
2103 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2104 		break;
2105 	default:
2106 		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2107 		goto out_free;
2108 	}
2109 
2110 	/* This is required so that the orig_* parameters are saved */
2111 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2112 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2113 		wiphy_update_regulatory(wiphy, reg_request->initiator);
2114 		reg_check_channels();
2115 	}
2116 
2117 	return;
2118 
2119 out_free:
2120 	reg_free_request(reg_request);
2121 }
2122 
2123 static bool reg_only_self_managed_wiphys(void)
2124 {
2125 	struct cfg80211_registered_device *rdev;
2126 	struct wiphy *wiphy;
2127 	bool self_managed_found = false;
2128 
2129 	ASSERT_RTNL();
2130 
2131 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2132 		wiphy = &rdev->wiphy;
2133 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2134 			self_managed_found = true;
2135 		else
2136 			return false;
2137 	}
2138 
2139 	/* make sure at least one self-managed wiphy exists */
2140 	return self_managed_found;
2141 }
2142 
2143 /*
2144  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2145  * Regulatory hints come on a first come first serve basis and we
2146  * must process each one atomically.
2147  */
2148 static void reg_process_pending_hints(void)
2149 {
2150 	struct regulatory_request *reg_request, *lr;
2151 
2152 	lr = get_last_request();
2153 
2154 	/* When last_request->processed becomes true this will be rescheduled */
2155 	if (lr && !lr->processed) {
2156 		reg_process_hint(lr);
2157 		return;
2158 	}
2159 
2160 	spin_lock(&reg_requests_lock);
2161 
2162 	if (list_empty(&reg_requests_list)) {
2163 		spin_unlock(&reg_requests_lock);
2164 		return;
2165 	}
2166 
2167 	reg_request = list_first_entry(&reg_requests_list,
2168 				       struct regulatory_request,
2169 				       list);
2170 	list_del_init(&reg_request->list);
2171 
2172 	spin_unlock(&reg_requests_lock);
2173 
2174 	if (reg_only_self_managed_wiphys()) {
2175 		reg_free_request(reg_request);
2176 		return;
2177 	}
2178 
2179 	reg_process_hint(reg_request);
2180 }
2181 
2182 /* Processes beacon hints -- this has nothing to do with country IEs */
2183 static void reg_process_pending_beacon_hints(void)
2184 {
2185 	struct cfg80211_registered_device *rdev;
2186 	struct reg_beacon *pending_beacon, *tmp;
2187 
2188 	/* This goes through the _pending_ beacon list */
2189 	spin_lock_bh(&reg_pending_beacons_lock);
2190 
2191 	list_for_each_entry_safe(pending_beacon, tmp,
2192 				 &reg_pending_beacons, list) {
2193 		list_del_init(&pending_beacon->list);
2194 
2195 		/* Applies the beacon hint to current wiphys */
2196 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2197 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2198 
2199 		/* Remembers the beacon hint for new wiphys or reg changes */
2200 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2201 	}
2202 
2203 	spin_unlock_bh(&reg_pending_beacons_lock);
2204 }
2205 
2206 static void reg_process_self_managed_hints(void)
2207 {
2208 	struct cfg80211_registered_device *rdev;
2209 	struct wiphy *wiphy;
2210 	const struct ieee80211_regdomain *tmp;
2211 	const struct ieee80211_regdomain *regd;
2212 	enum ieee80211_band band;
2213 	struct regulatory_request request = {};
2214 
2215 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2216 		wiphy = &rdev->wiphy;
2217 
2218 		spin_lock(&reg_requests_lock);
2219 		regd = rdev->requested_regd;
2220 		rdev->requested_regd = NULL;
2221 		spin_unlock(&reg_requests_lock);
2222 
2223 		if (regd == NULL)
2224 			continue;
2225 
2226 		tmp = get_wiphy_regdom(wiphy);
2227 		rcu_assign_pointer(wiphy->regd, regd);
2228 		rcu_free_regdom(tmp);
2229 
2230 		for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2231 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2232 
2233 		reg_process_ht_flags(wiphy);
2234 
2235 		request.wiphy_idx = get_wiphy_idx(wiphy);
2236 		request.alpha2[0] = regd->alpha2[0];
2237 		request.alpha2[1] = regd->alpha2[1];
2238 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2239 
2240 		nl80211_send_wiphy_reg_change_event(&request);
2241 	}
2242 
2243 	reg_check_channels();
2244 }
2245 
2246 static void reg_todo(struct work_struct *work)
2247 {
2248 	rtnl_lock();
2249 	reg_process_pending_hints();
2250 	reg_process_pending_beacon_hints();
2251 	reg_process_self_managed_hints();
2252 	rtnl_unlock();
2253 }
2254 
2255 static void queue_regulatory_request(struct regulatory_request *request)
2256 {
2257 	request->alpha2[0] = toupper(request->alpha2[0]);
2258 	request->alpha2[1] = toupper(request->alpha2[1]);
2259 
2260 	spin_lock(&reg_requests_lock);
2261 	list_add_tail(&request->list, &reg_requests_list);
2262 	spin_unlock(&reg_requests_lock);
2263 
2264 	schedule_work(&reg_work);
2265 }
2266 
2267 /*
2268  * Core regulatory hint -- happens during cfg80211_init()
2269  * and when we restore regulatory settings.
2270  */
2271 static int regulatory_hint_core(const char *alpha2)
2272 {
2273 	struct regulatory_request *request;
2274 
2275 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2276 	if (!request)
2277 		return -ENOMEM;
2278 
2279 	request->alpha2[0] = alpha2[0];
2280 	request->alpha2[1] = alpha2[1];
2281 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2282 
2283 	queue_regulatory_request(request);
2284 
2285 	return 0;
2286 }
2287 
2288 /* User hints */
2289 int regulatory_hint_user(const char *alpha2,
2290 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2291 {
2292 	struct regulatory_request *request;
2293 
2294 	if (WARN_ON(!alpha2))
2295 		return -EINVAL;
2296 
2297 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2298 	if (!request)
2299 		return -ENOMEM;
2300 
2301 	request->wiphy_idx = WIPHY_IDX_INVALID;
2302 	request->alpha2[0] = alpha2[0];
2303 	request->alpha2[1] = alpha2[1];
2304 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2305 	request->user_reg_hint_type = user_reg_hint_type;
2306 
2307 	queue_regulatory_request(request);
2308 
2309 	return 0;
2310 }
2311 
2312 int regulatory_hint_indoor_user(void)
2313 {
2314 	struct regulatory_request *request;
2315 
2316 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2317 	if (!request)
2318 		return -ENOMEM;
2319 
2320 	request->wiphy_idx = WIPHY_IDX_INVALID;
2321 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2322 	request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2323 	queue_regulatory_request(request);
2324 
2325 	return 0;
2326 }
2327 
2328 /* Driver hints */
2329 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2330 {
2331 	struct regulatory_request *request;
2332 
2333 	if (WARN_ON(!alpha2 || !wiphy))
2334 		return -EINVAL;
2335 
2336 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2337 
2338 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2339 	if (!request)
2340 		return -ENOMEM;
2341 
2342 	request->wiphy_idx = get_wiphy_idx(wiphy);
2343 
2344 	request->alpha2[0] = alpha2[0];
2345 	request->alpha2[1] = alpha2[1];
2346 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2347 
2348 	queue_regulatory_request(request);
2349 
2350 	return 0;
2351 }
2352 EXPORT_SYMBOL(regulatory_hint);
2353 
2354 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2355 				const u8 *country_ie, u8 country_ie_len)
2356 {
2357 	char alpha2[2];
2358 	enum environment_cap env = ENVIRON_ANY;
2359 	struct regulatory_request *request = NULL, *lr;
2360 
2361 	/* IE len must be evenly divisible by 2 */
2362 	if (country_ie_len & 0x01)
2363 		return;
2364 
2365 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2366 		return;
2367 
2368 	request = kzalloc(sizeof(*request), GFP_KERNEL);
2369 	if (!request)
2370 		return;
2371 
2372 	alpha2[0] = country_ie[0];
2373 	alpha2[1] = country_ie[1];
2374 
2375 	if (country_ie[2] == 'I')
2376 		env = ENVIRON_INDOOR;
2377 	else if (country_ie[2] == 'O')
2378 		env = ENVIRON_OUTDOOR;
2379 
2380 	rcu_read_lock();
2381 	lr = get_last_request();
2382 
2383 	if (unlikely(!lr))
2384 		goto out;
2385 
2386 	/*
2387 	 * We will run this only upon a successful connection on cfg80211.
2388 	 * We leave conflict resolution to the workqueue, where can hold
2389 	 * the RTNL.
2390 	 */
2391 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2392 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
2393 		goto out;
2394 
2395 	request->wiphy_idx = get_wiphy_idx(wiphy);
2396 	request->alpha2[0] = alpha2[0];
2397 	request->alpha2[1] = alpha2[1];
2398 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2399 	request->country_ie_env = env;
2400 
2401 	queue_regulatory_request(request);
2402 	request = NULL;
2403 out:
2404 	kfree(request);
2405 	rcu_read_unlock();
2406 }
2407 
2408 static void restore_alpha2(char *alpha2, bool reset_user)
2409 {
2410 	/* indicates there is no alpha2 to consider for restoration */
2411 	alpha2[0] = '9';
2412 	alpha2[1] = '7';
2413 
2414 	/* The user setting has precedence over the module parameter */
2415 	if (is_user_regdom_saved()) {
2416 		/* Unless we're asked to ignore it and reset it */
2417 		if (reset_user) {
2418 			REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2419 			user_alpha2[0] = '9';
2420 			user_alpha2[1] = '7';
2421 
2422 			/*
2423 			 * If we're ignoring user settings, we still need to
2424 			 * check the module parameter to ensure we put things
2425 			 * back as they were for a full restore.
2426 			 */
2427 			if (!is_world_regdom(ieee80211_regdom)) {
2428 				REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2429 					      ieee80211_regdom[0], ieee80211_regdom[1]);
2430 				alpha2[0] = ieee80211_regdom[0];
2431 				alpha2[1] = ieee80211_regdom[1];
2432 			}
2433 		} else {
2434 			REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2435 				      user_alpha2[0], user_alpha2[1]);
2436 			alpha2[0] = user_alpha2[0];
2437 			alpha2[1] = user_alpha2[1];
2438 		}
2439 	} else if (!is_world_regdom(ieee80211_regdom)) {
2440 		REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2441 			      ieee80211_regdom[0], ieee80211_regdom[1]);
2442 		alpha2[0] = ieee80211_regdom[0];
2443 		alpha2[1] = ieee80211_regdom[1];
2444 	} else
2445 		REG_DBG_PRINT("Restoring regulatory settings\n");
2446 }
2447 
2448 static void restore_custom_reg_settings(struct wiphy *wiphy)
2449 {
2450 	struct ieee80211_supported_band *sband;
2451 	enum ieee80211_band band;
2452 	struct ieee80211_channel *chan;
2453 	int i;
2454 
2455 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2456 		sband = wiphy->bands[band];
2457 		if (!sband)
2458 			continue;
2459 		for (i = 0; i < sband->n_channels; i++) {
2460 			chan = &sband->channels[i];
2461 			chan->flags = chan->orig_flags;
2462 			chan->max_antenna_gain = chan->orig_mag;
2463 			chan->max_power = chan->orig_mpwr;
2464 			chan->beacon_found = false;
2465 		}
2466 	}
2467 }
2468 
2469 /*
2470  * Restoring regulatory settings involves ingoring any
2471  * possibly stale country IE information and user regulatory
2472  * settings if so desired, this includes any beacon hints
2473  * learned as we could have traveled outside to another country
2474  * after disconnection. To restore regulatory settings we do
2475  * exactly what we did at bootup:
2476  *
2477  *   - send a core regulatory hint
2478  *   - send a user regulatory hint if applicable
2479  *
2480  * Device drivers that send a regulatory hint for a specific country
2481  * keep their own regulatory domain on wiphy->regd so that does does
2482  * not need to be remembered.
2483  */
2484 static void restore_regulatory_settings(bool reset_user)
2485 {
2486 	char alpha2[2];
2487 	char world_alpha2[2];
2488 	struct reg_beacon *reg_beacon, *btmp;
2489 	struct regulatory_request *reg_request, *tmp;
2490 	LIST_HEAD(tmp_reg_req_list);
2491 	struct cfg80211_registered_device *rdev;
2492 
2493 	ASSERT_RTNL();
2494 
2495 	reg_is_indoor = false;
2496 
2497 	reset_regdomains(true, &world_regdom);
2498 	restore_alpha2(alpha2, reset_user);
2499 
2500 	/*
2501 	 * If there's any pending requests we simply
2502 	 * stash them to a temporary pending queue and
2503 	 * add then after we've restored regulatory
2504 	 * settings.
2505 	 */
2506 	spin_lock(&reg_requests_lock);
2507 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2508 		if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2509 			continue;
2510 		list_move_tail(&reg_request->list, &tmp_reg_req_list);
2511 	}
2512 	spin_unlock(&reg_requests_lock);
2513 
2514 	/* Clear beacon hints */
2515 	spin_lock_bh(&reg_pending_beacons_lock);
2516 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2517 		list_del(&reg_beacon->list);
2518 		kfree(reg_beacon);
2519 	}
2520 	spin_unlock_bh(&reg_pending_beacons_lock);
2521 
2522 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2523 		list_del(&reg_beacon->list);
2524 		kfree(reg_beacon);
2525 	}
2526 
2527 	/* First restore to the basic regulatory settings */
2528 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2529 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2530 
2531 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2532 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2533 			continue;
2534 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2535 			restore_custom_reg_settings(&rdev->wiphy);
2536 	}
2537 
2538 	regulatory_hint_core(world_alpha2);
2539 
2540 	/*
2541 	 * This restores the ieee80211_regdom module parameter
2542 	 * preference or the last user requested regulatory
2543 	 * settings, user regulatory settings takes precedence.
2544 	 */
2545 	if (is_an_alpha2(alpha2))
2546 		regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2547 
2548 	spin_lock(&reg_requests_lock);
2549 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2550 	spin_unlock(&reg_requests_lock);
2551 
2552 	REG_DBG_PRINT("Kicking the queue\n");
2553 
2554 	schedule_work(&reg_work);
2555 }
2556 
2557 void regulatory_hint_disconnect(void)
2558 {
2559 	REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2560 	restore_regulatory_settings(false);
2561 }
2562 
2563 static bool freq_is_chan_12_13_14(u16 freq)
2564 {
2565 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2566 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2567 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2568 		return true;
2569 	return false;
2570 }
2571 
2572 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2573 {
2574 	struct reg_beacon *pending_beacon;
2575 
2576 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2577 		if (beacon_chan->center_freq ==
2578 		    pending_beacon->chan.center_freq)
2579 			return true;
2580 	return false;
2581 }
2582 
2583 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2584 				 struct ieee80211_channel *beacon_chan,
2585 				 gfp_t gfp)
2586 {
2587 	struct reg_beacon *reg_beacon;
2588 	bool processing;
2589 
2590 	if (beacon_chan->beacon_found ||
2591 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2592 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2593 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2594 		return 0;
2595 
2596 	spin_lock_bh(&reg_pending_beacons_lock);
2597 	processing = pending_reg_beacon(beacon_chan);
2598 	spin_unlock_bh(&reg_pending_beacons_lock);
2599 
2600 	if (processing)
2601 		return 0;
2602 
2603 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2604 	if (!reg_beacon)
2605 		return -ENOMEM;
2606 
2607 	REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2608 		      beacon_chan->center_freq,
2609 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
2610 		      wiphy_name(wiphy));
2611 
2612 	memcpy(&reg_beacon->chan, beacon_chan,
2613 	       sizeof(struct ieee80211_channel));
2614 
2615 	/*
2616 	 * Since we can be called from BH or and non-BH context
2617 	 * we must use spin_lock_bh()
2618 	 */
2619 	spin_lock_bh(&reg_pending_beacons_lock);
2620 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2621 	spin_unlock_bh(&reg_pending_beacons_lock);
2622 
2623 	schedule_work(&reg_work);
2624 
2625 	return 0;
2626 }
2627 
2628 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2629 {
2630 	unsigned int i;
2631 	const struct ieee80211_reg_rule *reg_rule = NULL;
2632 	const struct ieee80211_freq_range *freq_range = NULL;
2633 	const struct ieee80211_power_rule *power_rule = NULL;
2634 	char bw[32], cac_time[32];
2635 
2636 	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2637 
2638 	for (i = 0; i < rd->n_reg_rules; i++) {
2639 		reg_rule = &rd->reg_rules[i];
2640 		freq_range = &reg_rule->freq_range;
2641 		power_rule = &reg_rule->power_rule;
2642 
2643 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2644 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2645 				 freq_range->max_bandwidth_khz,
2646 				 reg_get_max_bandwidth(rd, reg_rule));
2647 		else
2648 			snprintf(bw, sizeof(bw), "%d KHz",
2649 				 freq_range->max_bandwidth_khz);
2650 
2651 		if (reg_rule->flags & NL80211_RRF_DFS)
2652 			scnprintf(cac_time, sizeof(cac_time), "%u s",
2653 				  reg_rule->dfs_cac_ms/1000);
2654 		else
2655 			scnprintf(cac_time, sizeof(cac_time), "N/A");
2656 
2657 
2658 		/*
2659 		 * There may not be documentation for max antenna gain
2660 		 * in certain regions
2661 		 */
2662 		if (power_rule->max_antenna_gain)
2663 			pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2664 				freq_range->start_freq_khz,
2665 				freq_range->end_freq_khz,
2666 				bw,
2667 				power_rule->max_antenna_gain,
2668 				power_rule->max_eirp,
2669 				cac_time);
2670 		else
2671 			pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2672 				freq_range->start_freq_khz,
2673 				freq_range->end_freq_khz,
2674 				bw,
2675 				power_rule->max_eirp,
2676 				cac_time);
2677 	}
2678 }
2679 
2680 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2681 {
2682 	switch (dfs_region) {
2683 	case NL80211_DFS_UNSET:
2684 	case NL80211_DFS_FCC:
2685 	case NL80211_DFS_ETSI:
2686 	case NL80211_DFS_JP:
2687 		return true;
2688 	default:
2689 		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2690 			      dfs_region);
2691 		return false;
2692 	}
2693 }
2694 
2695 static void print_regdomain(const struct ieee80211_regdomain *rd)
2696 {
2697 	struct regulatory_request *lr = get_last_request();
2698 
2699 	if (is_intersected_alpha2(rd->alpha2)) {
2700 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2701 			struct cfg80211_registered_device *rdev;
2702 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2703 			if (rdev) {
2704 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2705 					rdev->country_ie_alpha2[0],
2706 					rdev->country_ie_alpha2[1]);
2707 			} else
2708 				pr_info("Current regulatory domain intersected:\n");
2709 		} else
2710 			pr_info("Current regulatory domain intersected:\n");
2711 	} else if (is_world_regdom(rd->alpha2)) {
2712 		pr_info("World regulatory domain updated:\n");
2713 	} else {
2714 		if (is_unknown_alpha2(rd->alpha2))
2715 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2716 		else {
2717 			if (reg_request_cell_base(lr))
2718 				pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2719 					rd->alpha2[0], rd->alpha2[1]);
2720 			else
2721 				pr_info("Regulatory domain changed to country: %c%c\n",
2722 					rd->alpha2[0], rd->alpha2[1]);
2723 		}
2724 	}
2725 
2726 	pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2727 	print_rd_rules(rd);
2728 }
2729 
2730 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2731 {
2732 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2733 	print_rd_rules(rd);
2734 }
2735 
2736 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2737 {
2738 	if (!is_world_regdom(rd->alpha2))
2739 		return -EINVAL;
2740 	update_world_regdomain(rd);
2741 	return 0;
2742 }
2743 
2744 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2745 			   struct regulatory_request *user_request)
2746 {
2747 	const struct ieee80211_regdomain *intersected_rd = NULL;
2748 
2749 	if (!regdom_changes(rd->alpha2))
2750 		return -EALREADY;
2751 
2752 	if (!is_valid_rd(rd)) {
2753 		pr_err("Invalid regulatory domain detected:\n");
2754 		print_regdomain_info(rd);
2755 		return -EINVAL;
2756 	}
2757 
2758 	if (!user_request->intersect) {
2759 		reset_regdomains(false, rd);
2760 		return 0;
2761 	}
2762 
2763 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2764 	if (!intersected_rd)
2765 		return -EINVAL;
2766 
2767 	kfree(rd);
2768 	rd = NULL;
2769 	reset_regdomains(false, intersected_rd);
2770 
2771 	return 0;
2772 }
2773 
2774 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2775 			     struct regulatory_request *driver_request)
2776 {
2777 	const struct ieee80211_regdomain *regd;
2778 	const struct ieee80211_regdomain *intersected_rd = NULL;
2779 	const struct ieee80211_regdomain *tmp;
2780 	struct wiphy *request_wiphy;
2781 
2782 	if (is_world_regdom(rd->alpha2))
2783 		return -EINVAL;
2784 
2785 	if (!regdom_changes(rd->alpha2))
2786 		return -EALREADY;
2787 
2788 	if (!is_valid_rd(rd)) {
2789 		pr_err("Invalid regulatory domain detected:\n");
2790 		print_regdomain_info(rd);
2791 		return -EINVAL;
2792 	}
2793 
2794 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2795 	if (!request_wiphy) {
2796 		queue_delayed_work(system_power_efficient_wq,
2797 				   &reg_timeout, 0);
2798 		return -ENODEV;
2799 	}
2800 
2801 	if (!driver_request->intersect) {
2802 		if (request_wiphy->regd)
2803 			return -EALREADY;
2804 
2805 		regd = reg_copy_regd(rd);
2806 		if (IS_ERR(regd))
2807 			return PTR_ERR(regd);
2808 
2809 		rcu_assign_pointer(request_wiphy->regd, regd);
2810 		reset_regdomains(false, rd);
2811 		return 0;
2812 	}
2813 
2814 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2815 	if (!intersected_rd)
2816 		return -EINVAL;
2817 
2818 	/*
2819 	 * We can trash what CRDA provided now.
2820 	 * However if a driver requested this specific regulatory
2821 	 * domain we keep it for its private use
2822 	 */
2823 	tmp = get_wiphy_regdom(request_wiphy);
2824 	rcu_assign_pointer(request_wiphy->regd, rd);
2825 	rcu_free_regdom(tmp);
2826 
2827 	rd = NULL;
2828 
2829 	reset_regdomains(false, intersected_rd);
2830 
2831 	return 0;
2832 }
2833 
2834 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2835 				 struct regulatory_request *country_ie_request)
2836 {
2837 	struct wiphy *request_wiphy;
2838 
2839 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2840 	    !is_unknown_alpha2(rd->alpha2))
2841 		return -EINVAL;
2842 
2843 	/*
2844 	 * Lets only bother proceeding on the same alpha2 if the current
2845 	 * rd is non static (it means CRDA was present and was used last)
2846 	 * and the pending request came in from a country IE
2847 	 */
2848 
2849 	if (!is_valid_rd(rd)) {
2850 		pr_err("Invalid regulatory domain detected:\n");
2851 		print_regdomain_info(rd);
2852 		return -EINVAL;
2853 	}
2854 
2855 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2856 	if (!request_wiphy) {
2857 		queue_delayed_work(system_power_efficient_wq,
2858 				   &reg_timeout, 0);
2859 		return -ENODEV;
2860 	}
2861 
2862 	if (country_ie_request->intersect)
2863 		return -EINVAL;
2864 
2865 	reset_regdomains(false, rd);
2866 	return 0;
2867 }
2868 
2869 /*
2870  * Use this call to set the current regulatory domain. Conflicts with
2871  * multiple drivers can be ironed out later. Caller must've already
2872  * kmalloc'd the rd structure.
2873  */
2874 int set_regdom(const struct ieee80211_regdomain *rd)
2875 {
2876 	struct regulatory_request *lr;
2877 	bool user_reset = false;
2878 	int r;
2879 
2880 	if (!reg_is_valid_request(rd->alpha2)) {
2881 		kfree(rd);
2882 		return -EINVAL;
2883 	}
2884 
2885 	lr = get_last_request();
2886 
2887 	/* Note that this doesn't update the wiphys, this is done below */
2888 	switch (lr->initiator) {
2889 	case NL80211_REGDOM_SET_BY_CORE:
2890 		r = reg_set_rd_core(rd);
2891 		break;
2892 	case NL80211_REGDOM_SET_BY_USER:
2893 		r = reg_set_rd_user(rd, lr);
2894 		user_reset = true;
2895 		break;
2896 	case NL80211_REGDOM_SET_BY_DRIVER:
2897 		r = reg_set_rd_driver(rd, lr);
2898 		break;
2899 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2900 		r = reg_set_rd_country_ie(rd, lr);
2901 		break;
2902 	default:
2903 		WARN(1, "invalid initiator %d\n", lr->initiator);
2904 		return -EINVAL;
2905 	}
2906 
2907 	if (r) {
2908 		switch (r) {
2909 		case -EALREADY:
2910 			reg_set_request_processed();
2911 			break;
2912 		default:
2913 			/* Back to world regulatory in case of errors */
2914 			restore_regulatory_settings(user_reset);
2915 		}
2916 
2917 		kfree(rd);
2918 		return r;
2919 	}
2920 
2921 	/* This would make this whole thing pointless */
2922 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2923 		return -EINVAL;
2924 
2925 	/* update all wiphys now with the new established regulatory domain */
2926 	update_all_wiphy_regulatory(lr->initiator);
2927 
2928 	print_regdomain(get_cfg80211_regdom());
2929 
2930 	nl80211_send_reg_change_event(lr);
2931 
2932 	reg_set_request_processed();
2933 
2934 	return 0;
2935 }
2936 
2937 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
2938 				       struct ieee80211_regdomain *rd)
2939 {
2940 	const struct ieee80211_regdomain *regd;
2941 	const struct ieee80211_regdomain *prev_regd;
2942 	struct cfg80211_registered_device *rdev;
2943 
2944 	if (WARN_ON(!wiphy || !rd))
2945 		return -EINVAL;
2946 
2947 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
2948 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
2949 		return -EPERM;
2950 
2951 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
2952 		print_regdomain_info(rd);
2953 		return -EINVAL;
2954 	}
2955 
2956 	regd = reg_copy_regd(rd);
2957 	if (IS_ERR(regd))
2958 		return PTR_ERR(regd);
2959 
2960 	rdev = wiphy_to_rdev(wiphy);
2961 
2962 	spin_lock(&reg_requests_lock);
2963 	prev_regd = rdev->requested_regd;
2964 	rdev->requested_regd = regd;
2965 	spin_unlock(&reg_requests_lock);
2966 
2967 	kfree(prev_regd);
2968 	return 0;
2969 }
2970 
2971 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
2972 			      struct ieee80211_regdomain *rd)
2973 {
2974 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
2975 
2976 	if (ret)
2977 		return ret;
2978 
2979 	schedule_work(&reg_work);
2980 	return 0;
2981 }
2982 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
2983 
2984 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
2985 					struct ieee80211_regdomain *rd)
2986 {
2987 	int ret;
2988 
2989 	ASSERT_RTNL();
2990 
2991 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
2992 	if (ret)
2993 		return ret;
2994 
2995 	/* process the request immediately */
2996 	reg_process_self_managed_hints();
2997 	return 0;
2998 }
2999 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3000 
3001 void wiphy_regulatory_register(struct wiphy *wiphy)
3002 {
3003 	struct regulatory_request *lr;
3004 
3005 	/* self-managed devices ignore external hints */
3006 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3007 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3008 					   REGULATORY_COUNTRY_IE_IGNORE;
3009 
3010 	if (!reg_dev_ignore_cell_hint(wiphy))
3011 		reg_num_devs_support_basehint++;
3012 
3013 	lr = get_last_request();
3014 	wiphy_update_regulatory(wiphy, lr->initiator);
3015 }
3016 
3017 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3018 {
3019 	struct wiphy *request_wiphy = NULL;
3020 	struct regulatory_request *lr;
3021 
3022 	lr = get_last_request();
3023 
3024 	if (!reg_dev_ignore_cell_hint(wiphy))
3025 		reg_num_devs_support_basehint--;
3026 
3027 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3028 	RCU_INIT_POINTER(wiphy->regd, NULL);
3029 
3030 	if (lr)
3031 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3032 
3033 	if (!request_wiphy || request_wiphy != wiphy)
3034 		return;
3035 
3036 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3037 	lr->country_ie_env = ENVIRON_ANY;
3038 }
3039 
3040 static void reg_timeout_work(struct work_struct *work)
3041 {
3042 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
3043 	rtnl_lock();
3044 	restore_regulatory_settings(true);
3045 	rtnl_unlock();
3046 }
3047 
3048 /*
3049  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3050  * UNII band definitions
3051  */
3052 int cfg80211_get_unii(int freq)
3053 {
3054 	/* UNII-1 */
3055 	if (freq >= 5150 && freq <= 5250)
3056 		return 0;
3057 
3058 	/* UNII-2A */
3059 	if (freq > 5250 && freq <= 5350)
3060 		return 1;
3061 
3062 	/* UNII-2B */
3063 	if (freq > 5350 && freq <= 5470)
3064 		return 2;
3065 
3066 	/* UNII-2C */
3067 	if (freq > 5470 && freq <= 5725)
3068 		return 3;
3069 
3070 	/* UNII-3 */
3071 	if (freq > 5725 && freq <= 5825)
3072 		return 4;
3073 
3074 	return -EINVAL;
3075 }
3076 
3077 bool regulatory_indoor_allowed(void)
3078 {
3079 	return reg_is_indoor;
3080 }
3081 
3082 int __init regulatory_init(void)
3083 {
3084 	int err = 0;
3085 
3086 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3087 	if (IS_ERR(reg_pdev))
3088 		return PTR_ERR(reg_pdev);
3089 
3090 	spin_lock_init(&reg_requests_lock);
3091 	spin_lock_init(&reg_pending_beacons_lock);
3092 
3093 	reg_regdb_size_check();
3094 
3095 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3096 
3097 	user_alpha2[0] = '9';
3098 	user_alpha2[1] = '7';
3099 
3100 	/* We always try to get an update for the static regdomain */
3101 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3102 	if (err) {
3103 		if (err == -ENOMEM)
3104 			return err;
3105 		/*
3106 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3107 		 * memory which is handled and propagated appropriately above
3108 		 * but it can also fail during a netlink_broadcast() or during
3109 		 * early boot for call_usermodehelper(). For now treat these
3110 		 * errors as non-fatal.
3111 		 */
3112 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3113 	}
3114 
3115 	/*
3116 	 * Finally, if the user set the module parameter treat it
3117 	 * as a user hint.
3118 	 */
3119 	if (!is_world_regdom(ieee80211_regdom))
3120 		regulatory_hint_user(ieee80211_regdom,
3121 				     NL80211_USER_REG_HINT_USER);
3122 
3123 	return 0;
3124 }
3125 
3126 void regulatory_exit(void)
3127 {
3128 	struct regulatory_request *reg_request, *tmp;
3129 	struct reg_beacon *reg_beacon, *btmp;
3130 
3131 	cancel_work_sync(&reg_work);
3132 	cancel_delayed_work_sync(&reg_timeout);
3133 	cancel_delayed_work_sync(&reg_check_chans);
3134 
3135 	/* Lock to suppress warnings */
3136 	rtnl_lock();
3137 	reset_regdomains(true, NULL);
3138 	rtnl_unlock();
3139 
3140 	dev_set_uevent_suppress(&reg_pdev->dev, true);
3141 
3142 	platform_device_unregister(reg_pdev);
3143 
3144 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3145 		list_del(&reg_beacon->list);
3146 		kfree(reg_beacon);
3147 	}
3148 
3149 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3150 		list_del(&reg_beacon->list);
3151 		kfree(reg_beacon);
3152 	}
3153 
3154 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3155 		list_del(&reg_request->list);
3156 		kfree(reg_request);
3157 	}
3158 }
3159