1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 /** 13 * DOC: Wireless regulatory infrastructure 14 * 15 * The usual implementation is for a driver to read a device EEPROM to 16 * determine which regulatory domain it should be operating under, then 17 * looking up the allowable channels in a driver-local table and finally 18 * registering those channels in the wiphy structure. 19 * 20 * Another set of compliance enforcement is for drivers to use their 21 * own compliance limits which can be stored on the EEPROM. The host 22 * driver or firmware may ensure these are used. 23 * 24 * In addition to all this we provide an extra layer of regulatory 25 * conformance. For drivers which do not have any regulatory 26 * information CRDA provides the complete regulatory solution. 27 * For others it provides a community effort on further restrictions 28 * to enhance compliance. 29 * 30 * Note: When number of rules --> infinity we will not be able to 31 * index on alpha2 any more, instead we'll probably have to 32 * rely on some SHA1 checksum of the regdomain for example. 33 * 34 */ 35 #include <linux/kernel.h> 36 #include <linux/slab.h> 37 #include <linux/list.h> 38 #include <linux/random.h> 39 #include <linux/nl80211.h> 40 #include <linux/platform_device.h> 41 #include <net/cfg80211.h> 42 #include "core.h" 43 #include "reg.h" 44 #include "regdb.h" 45 #include "nl80211.h" 46 47 #ifdef CONFIG_CFG80211_REG_DEBUG 48 #define REG_DBG_PRINT(format, args...) \ 49 do { \ 50 printk(KERN_DEBUG format , ## args); \ 51 } while (0) 52 #else 53 #define REG_DBG_PRINT(args...) 54 #endif 55 56 /* Receipt of information from last regulatory request */ 57 static struct regulatory_request *last_request; 58 59 /* To trigger userspace events */ 60 static struct platform_device *reg_pdev; 61 62 /* 63 * Central wireless core regulatory domains, we only need two, 64 * the current one and a world regulatory domain in case we have no 65 * information to give us an alpha2 66 */ 67 const struct ieee80211_regdomain *cfg80211_regdomain; 68 69 /* 70 * Protects static reg.c components: 71 * - cfg80211_world_regdom 72 * - cfg80211_regdom 73 * - last_request 74 */ 75 static DEFINE_MUTEX(reg_mutex); 76 #define assert_reg_lock() WARN_ON(!mutex_is_locked(®_mutex)) 77 78 /* Used to queue up regulatory hints */ 79 static LIST_HEAD(reg_requests_list); 80 static spinlock_t reg_requests_lock; 81 82 /* Used to queue up beacon hints for review */ 83 static LIST_HEAD(reg_pending_beacons); 84 static spinlock_t reg_pending_beacons_lock; 85 86 /* Used to keep track of processed beacon hints */ 87 static LIST_HEAD(reg_beacon_list); 88 89 struct reg_beacon { 90 struct list_head list; 91 struct ieee80211_channel chan; 92 }; 93 94 /* We keep a static world regulatory domain in case of the absence of CRDA */ 95 static const struct ieee80211_regdomain world_regdom = { 96 .n_reg_rules = 5, 97 .alpha2 = "00", 98 .reg_rules = { 99 /* IEEE 802.11b/g, channels 1..11 */ 100 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 101 /* IEEE 802.11b/g, channels 12..13. No HT40 102 * channel fits here. */ 103 REG_RULE(2467-10, 2472+10, 20, 6, 20, 104 NL80211_RRF_PASSIVE_SCAN | 105 NL80211_RRF_NO_IBSS), 106 /* IEEE 802.11 channel 14 - Only JP enables 107 * this and for 802.11b only */ 108 REG_RULE(2484-10, 2484+10, 20, 6, 20, 109 NL80211_RRF_PASSIVE_SCAN | 110 NL80211_RRF_NO_IBSS | 111 NL80211_RRF_NO_OFDM), 112 /* IEEE 802.11a, channel 36..48 */ 113 REG_RULE(5180-10, 5240+10, 40, 6, 20, 114 NL80211_RRF_PASSIVE_SCAN | 115 NL80211_RRF_NO_IBSS), 116 117 /* NB: 5260 MHz - 5700 MHz requies DFS */ 118 119 /* IEEE 802.11a, channel 149..165 */ 120 REG_RULE(5745-10, 5825+10, 40, 6, 20, 121 NL80211_RRF_PASSIVE_SCAN | 122 NL80211_RRF_NO_IBSS), 123 } 124 }; 125 126 static const struct ieee80211_regdomain *cfg80211_world_regdom = 127 &world_regdom; 128 129 static char *ieee80211_regdom = "00"; 130 static char user_alpha2[2]; 131 132 module_param(ieee80211_regdom, charp, 0444); 133 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 134 135 static void reset_regdomains(void) 136 { 137 /* avoid freeing static information or freeing something twice */ 138 if (cfg80211_regdomain == cfg80211_world_regdom) 139 cfg80211_regdomain = NULL; 140 if (cfg80211_world_regdom == &world_regdom) 141 cfg80211_world_regdom = NULL; 142 if (cfg80211_regdomain == &world_regdom) 143 cfg80211_regdomain = NULL; 144 145 kfree(cfg80211_regdomain); 146 kfree(cfg80211_world_regdom); 147 148 cfg80211_world_regdom = &world_regdom; 149 cfg80211_regdomain = NULL; 150 } 151 152 /* 153 * Dynamic world regulatory domain requested by the wireless 154 * core upon initialization 155 */ 156 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 157 { 158 BUG_ON(!last_request); 159 160 reset_regdomains(); 161 162 cfg80211_world_regdom = rd; 163 cfg80211_regdomain = rd; 164 } 165 166 bool is_world_regdom(const char *alpha2) 167 { 168 if (!alpha2) 169 return false; 170 if (alpha2[0] == '0' && alpha2[1] == '0') 171 return true; 172 return false; 173 } 174 175 static bool is_alpha2_set(const char *alpha2) 176 { 177 if (!alpha2) 178 return false; 179 if (alpha2[0] != 0 && alpha2[1] != 0) 180 return true; 181 return false; 182 } 183 184 static bool is_alpha_upper(char letter) 185 { 186 /* ASCII A - Z */ 187 if (letter >= 65 && letter <= 90) 188 return true; 189 return false; 190 } 191 192 static bool is_unknown_alpha2(const char *alpha2) 193 { 194 if (!alpha2) 195 return false; 196 /* 197 * Special case where regulatory domain was built by driver 198 * but a specific alpha2 cannot be determined 199 */ 200 if (alpha2[0] == '9' && alpha2[1] == '9') 201 return true; 202 return false; 203 } 204 205 static bool is_intersected_alpha2(const char *alpha2) 206 { 207 if (!alpha2) 208 return false; 209 /* 210 * Special case where regulatory domain is the 211 * result of an intersection between two regulatory domain 212 * structures 213 */ 214 if (alpha2[0] == '9' && alpha2[1] == '8') 215 return true; 216 return false; 217 } 218 219 static bool is_an_alpha2(const char *alpha2) 220 { 221 if (!alpha2) 222 return false; 223 if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1])) 224 return true; 225 return false; 226 } 227 228 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 229 { 230 if (!alpha2_x || !alpha2_y) 231 return false; 232 if (alpha2_x[0] == alpha2_y[0] && 233 alpha2_x[1] == alpha2_y[1]) 234 return true; 235 return false; 236 } 237 238 static bool regdom_changes(const char *alpha2) 239 { 240 assert_cfg80211_lock(); 241 242 if (!cfg80211_regdomain) 243 return true; 244 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2)) 245 return false; 246 return true; 247 } 248 249 /* 250 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 251 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 252 * has ever been issued. 253 */ 254 static bool is_user_regdom_saved(void) 255 { 256 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 257 return false; 258 259 /* This would indicate a mistake on the design */ 260 if (WARN((!is_world_regdom(user_alpha2) && 261 !is_an_alpha2(user_alpha2)), 262 "Unexpected user alpha2: %c%c\n", 263 user_alpha2[0], 264 user_alpha2[1])) 265 return false; 266 267 return true; 268 } 269 270 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd, 271 const struct ieee80211_regdomain *src_regd) 272 { 273 struct ieee80211_regdomain *regd; 274 int size_of_regd = 0; 275 unsigned int i; 276 277 size_of_regd = sizeof(struct ieee80211_regdomain) + 278 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule)); 279 280 regd = kzalloc(size_of_regd, GFP_KERNEL); 281 if (!regd) 282 return -ENOMEM; 283 284 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 285 286 for (i = 0; i < src_regd->n_reg_rules; i++) 287 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 288 sizeof(struct ieee80211_reg_rule)); 289 290 *dst_regd = regd; 291 return 0; 292 } 293 294 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 295 struct reg_regdb_search_request { 296 char alpha2[2]; 297 struct list_head list; 298 }; 299 300 static LIST_HEAD(reg_regdb_search_list); 301 static DEFINE_MUTEX(reg_regdb_search_mutex); 302 303 static void reg_regdb_search(struct work_struct *work) 304 { 305 struct reg_regdb_search_request *request; 306 const struct ieee80211_regdomain *curdom, *regdom; 307 int i, r; 308 309 mutex_lock(®_regdb_search_mutex); 310 while (!list_empty(®_regdb_search_list)) { 311 request = list_first_entry(®_regdb_search_list, 312 struct reg_regdb_search_request, 313 list); 314 list_del(&request->list); 315 316 for (i=0; i<reg_regdb_size; i++) { 317 curdom = reg_regdb[i]; 318 319 if (!memcmp(request->alpha2, curdom->alpha2, 2)) { 320 r = reg_copy_regd(®dom, curdom); 321 if (r) 322 break; 323 mutex_lock(&cfg80211_mutex); 324 set_regdom(regdom); 325 mutex_unlock(&cfg80211_mutex); 326 break; 327 } 328 } 329 330 kfree(request); 331 } 332 mutex_unlock(®_regdb_search_mutex); 333 } 334 335 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 336 337 static void reg_regdb_query(const char *alpha2) 338 { 339 struct reg_regdb_search_request *request; 340 341 if (!alpha2) 342 return; 343 344 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 345 if (!request) 346 return; 347 348 memcpy(request->alpha2, alpha2, 2); 349 350 mutex_lock(®_regdb_search_mutex); 351 list_add_tail(&request->list, ®_regdb_search_list); 352 mutex_unlock(®_regdb_search_mutex); 353 354 schedule_work(®_regdb_work); 355 } 356 #else 357 static inline void reg_regdb_query(const char *alpha2) {} 358 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 359 360 /* 361 * This lets us keep regulatory code which is updated on a regulatory 362 * basis in userspace. 363 */ 364 static int call_crda(const char *alpha2) 365 { 366 char country_env[9 + 2] = "COUNTRY="; 367 char *envp[] = { 368 country_env, 369 NULL 370 }; 371 372 if (!is_world_regdom((char *) alpha2)) 373 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n", 374 alpha2[0], alpha2[1]); 375 else 376 printk(KERN_INFO "cfg80211: Calling CRDA to update world " 377 "regulatory domain\n"); 378 379 /* query internal regulatory database (if it exists) */ 380 reg_regdb_query(alpha2); 381 382 country_env[8] = alpha2[0]; 383 country_env[9] = alpha2[1]; 384 385 return kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, envp); 386 } 387 388 /* Used by nl80211 before kmalloc'ing our regulatory domain */ 389 bool reg_is_valid_request(const char *alpha2) 390 { 391 assert_cfg80211_lock(); 392 393 if (!last_request) 394 return false; 395 396 return alpha2_equal(last_request->alpha2, alpha2); 397 } 398 399 /* Sanity check on a regulatory rule */ 400 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 401 { 402 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 403 u32 freq_diff; 404 405 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 406 return false; 407 408 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 409 return false; 410 411 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 412 413 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 414 freq_range->max_bandwidth_khz > freq_diff) 415 return false; 416 417 return true; 418 } 419 420 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 421 { 422 const struct ieee80211_reg_rule *reg_rule = NULL; 423 unsigned int i; 424 425 if (!rd->n_reg_rules) 426 return false; 427 428 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 429 return false; 430 431 for (i = 0; i < rd->n_reg_rules; i++) { 432 reg_rule = &rd->reg_rules[i]; 433 if (!is_valid_reg_rule(reg_rule)) 434 return false; 435 } 436 437 return true; 438 } 439 440 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 441 u32 center_freq_khz, 442 u32 bw_khz) 443 { 444 u32 start_freq_khz, end_freq_khz; 445 446 start_freq_khz = center_freq_khz - (bw_khz/2); 447 end_freq_khz = center_freq_khz + (bw_khz/2); 448 449 if (start_freq_khz >= freq_range->start_freq_khz && 450 end_freq_khz <= freq_range->end_freq_khz) 451 return true; 452 453 return false; 454 } 455 456 /** 457 * freq_in_rule_band - tells us if a frequency is in a frequency band 458 * @freq_range: frequency rule we want to query 459 * @freq_khz: frequency we are inquiring about 460 * 461 * This lets us know if a specific frequency rule is or is not relevant to 462 * a specific frequency's band. Bands are device specific and artificial 463 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is 464 * safe for now to assume that a frequency rule should not be part of a 465 * frequency's band if the start freq or end freq are off by more than 2 GHz. 466 * This resolution can be lowered and should be considered as we add 467 * regulatory rule support for other "bands". 468 **/ 469 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 470 u32 freq_khz) 471 { 472 #define ONE_GHZ_IN_KHZ 1000000 473 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 474 return true; 475 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 476 return true; 477 return false; 478 #undef ONE_GHZ_IN_KHZ 479 } 480 481 /* 482 * Helper for regdom_intersect(), this does the real 483 * mathematical intersection fun 484 */ 485 static int reg_rules_intersect( 486 const struct ieee80211_reg_rule *rule1, 487 const struct ieee80211_reg_rule *rule2, 488 struct ieee80211_reg_rule *intersected_rule) 489 { 490 const struct ieee80211_freq_range *freq_range1, *freq_range2; 491 struct ieee80211_freq_range *freq_range; 492 const struct ieee80211_power_rule *power_rule1, *power_rule2; 493 struct ieee80211_power_rule *power_rule; 494 u32 freq_diff; 495 496 freq_range1 = &rule1->freq_range; 497 freq_range2 = &rule2->freq_range; 498 freq_range = &intersected_rule->freq_range; 499 500 power_rule1 = &rule1->power_rule; 501 power_rule2 = &rule2->power_rule; 502 power_rule = &intersected_rule->power_rule; 503 504 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 505 freq_range2->start_freq_khz); 506 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 507 freq_range2->end_freq_khz); 508 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, 509 freq_range2->max_bandwidth_khz); 510 511 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 512 if (freq_range->max_bandwidth_khz > freq_diff) 513 freq_range->max_bandwidth_khz = freq_diff; 514 515 power_rule->max_eirp = min(power_rule1->max_eirp, 516 power_rule2->max_eirp); 517 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 518 power_rule2->max_antenna_gain); 519 520 intersected_rule->flags = (rule1->flags | rule2->flags); 521 522 if (!is_valid_reg_rule(intersected_rule)) 523 return -EINVAL; 524 525 return 0; 526 } 527 528 /** 529 * regdom_intersect - do the intersection between two regulatory domains 530 * @rd1: first regulatory domain 531 * @rd2: second regulatory domain 532 * 533 * Use this function to get the intersection between two regulatory domains. 534 * Once completed we will mark the alpha2 for the rd as intersected, "98", 535 * as no one single alpha2 can represent this regulatory domain. 536 * 537 * Returns a pointer to the regulatory domain structure which will hold the 538 * resulting intersection of rules between rd1 and rd2. We will 539 * kzalloc() this structure for you. 540 */ 541 static struct ieee80211_regdomain *regdom_intersect( 542 const struct ieee80211_regdomain *rd1, 543 const struct ieee80211_regdomain *rd2) 544 { 545 int r, size_of_regd; 546 unsigned int x, y; 547 unsigned int num_rules = 0, rule_idx = 0; 548 const struct ieee80211_reg_rule *rule1, *rule2; 549 struct ieee80211_reg_rule *intersected_rule; 550 struct ieee80211_regdomain *rd; 551 /* This is just a dummy holder to help us count */ 552 struct ieee80211_reg_rule irule; 553 554 /* Uses the stack temporarily for counter arithmetic */ 555 intersected_rule = &irule; 556 557 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule)); 558 559 if (!rd1 || !rd2) 560 return NULL; 561 562 /* 563 * First we get a count of the rules we'll need, then we actually 564 * build them. This is to so we can malloc() and free() a 565 * regdomain once. The reason we use reg_rules_intersect() here 566 * is it will return -EINVAL if the rule computed makes no sense. 567 * All rules that do check out OK are valid. 568 */ 569 570 for (x = 0; x < rd1->n_reg_rules; x++) { 571 rule1 = &rd1->reg_rules[x]; 572 for (y = 0; y < rd2->n_reg_rules; y++) { 573 rule2 = &rd2->reg_rules[y]; 574 if (!reg_rules_intersect(rule1, rule2, 575 intersected_rule)) 576 num_rules++; 577 memset(intersected_rule, 0, 578 sizeof(struct ieee80211_reg_rule)); 579 } 580 } 581 582 if (!num_rules) 583 return NULL; 584 585 size_of_regd = sizeof(struct ieee80211_regdomain) + 586 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule)); 587 588 rd = kzalloc(size_of_regd, GFP_KERNEL); 589 if (!rd) 590 return NULL; 591 592 for (x = 0; x < rd1->n_reg_rules; x++) { 593 rule1 = &rd1->reg_rules[x]; 594 for (y = 0; y < rd2->n_reg_rules; y++) { 595 rule2 = &rd2->reg_rules[y]; 596 /* 597 * This time around instead of using the stack lets 598 * write to the target rule directly saving ourselves 599 * a memcpy() 600 */ 601 intersected_rule = &rd->reg_rules[rule_idx]; 602 r = reg_rules_intersect(rule1, rule2, 603 intersected_rule); 604 /* 605 * No need to memset here the intersected rule here as 606 * we're not using the stack anymore 607 */ 608 if (r) 609 continue; 610 rule_idx++; 611 } 612 } 613 614 if (rule_idx != num_rules) { 615 kfree(rd); 616 return NULL; 617 } 618 619 rd->n_reg_rules = num_rules; 620 rd->alpha2[0] = '9'; 621 rd->alpha2[1] = '8'; 622 623 return rd; 624 } 625 626 /* 627 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 628 * want to just have the channel structure use these 629 */ 630 static u32 map_regdom_flags(u32 rd_flags) 631 { 632 u32 channel_flags = 0; 633 if (rd_flags & NL80211_RRF_PASSIVE_SCAN) 634 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; 635 if (rd_flags & NL80211_RRF_NO_IBSS) 636 channel_flags |= IEEE80211_CHAN_NO_IBSS; 637 if (rd_flags & NL80211_RRF_DFS) 638 channel_flags |= IEEE80211_CHAN_RADAR; 639 return channel_flags; 640 } 641 642 static int freq_reg_info_regd(struct wiphy *wiphy, 643 u32 center_freq, 644 u32 desired_bw_khz, 645 const struct ieee80211_reg_rule **reg_rule, 646 const struct ieee80211_regdomain *custom_regd) 647 { 648 int i; 649 bool band_rule_found = false; 650 const struct ieee80211_regdomain *regd; 651 bool bw_fits = false; 652 653 if (!desired_bw_khz) 654 desired_bw_khz = MHZ_TO_KHZ(20); 655 656 regd = custom_regd ? custom_regd : cfg80211_regdomain; 657 658 /* 659 * Follow the driver's regulatory domain, if present, unless a country 660 * IE has been processed or a user wants to help complaince further 661 */ 662 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 663 last_request->initiator != NL80211_REGDOM_SET_BY_USER && 664 wiphy->regd) 665 regd = wiphy->regd; 666 667 if (!regd) 668 return -EINVAL; 669 670 for (i = 0; i < regd->n_reg_rules; i++) { 671 const struct ieee80211_reg_rule *rr; 672 const struct ieee80211_freq_range *fr = NULL; 673 const struct ieee80211_power_rule *pr = NULL; 674 675 rr = ®d->reg_rules[i]; 676 fr = &rr->freq_range; 677 pr = &rr->power_rule; 678 679 /* 680 * We only need to know if one frequency rule was 681 * was in center_freq's band, that's enough, so lets 682 * not overwrite it once found 683 */ 684 if (!band_rule_found) 685 band_rule_found = freq_in_rule_band(fr, center_freq); 686 687 bw_fits = reg_does_bw_fit(fr, 688 center_freq, 689 desired_bw_khz); 690 691 if (band_rule_found && bw_fits) { 692 *reg_rule = rr; 693 return 0; 694 } 695 } 696 697 if (!band_rule_found) 698 return -ERANGE; 699 700 return -EINVAL; 701 } 702 703 int freq_reg_info(struct wiphy *wiphy, 704 u32 center_freq, 705 u32 desired_bw_khz, 706 const struct ieee80211_reg_rule **reg_rule) 707 { 708 assert_cfg80211_lock(); 709 return freq_reg_info_regd(wiphy, 710 center_freq, 711 desired_bw_khz, 712 reg_rule, 713 NULL); 714 } 715 EXPORT_SYMBOL(freq_reg_info); 716 717 /* 718 * Note that right now we assume the desired channel bandwidth 719 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 720 * per channel, the primary and the extension channel). To support 721 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a 722 * new ieee80211_channel.target_bw and re run the regulatory check 723 * on the wiphy with the target_bw specified. Then we can simply use 724 * that below for the desired_bw_khz below. 725 */ 726 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band, 727 unsigned int chan_idx) 728 { 729 int r; 730 u32 flags, bw_flags = 0; 731 u32 desired_bw_khz = MHZ_TO_KHZ(20); 732 const struct ieee80211_reg_rule *reg_rule = NULL; 733 const struct ieee80211_power_rule *power_rule = NULL; 734 const struct ieee80211_freq_range *freq_range = NULL; 735 struct ieee80211_supported_band *sband; 736 struct ieee80211_channel *chan; 737 struct wiphy *request_wiphy = NULL; 738 739 assert_cfg80211_lock(); 740 741 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 742 743 sband = wiphy->bands[band]; 744 BUG_ON(chan_idx >= sband->n_channels); 745 chan = &sband->channels[chan_idx]; 746 747 flags = chan->orig_flags; 748 749 r = freq_reg_info(wiphy, 750 MHZ_TO_KHZ(chan->center_freq), 751 desired_bw_khz, 752 ®_rule); 753 754 if (r) 755 return; 756 757 power_rule = ®_rule->power_rule; 758 freq_range = ®_rule->freq_range; 759 760 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 761 bw_flags = IEEE80211_CHAN_NO_HT40; 762 763 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 764 request_wiphy && request_wiphy == wiphy && 765 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 766 /* 767 * This gaurantees the driver's requested regulatory domain 768 * will always be used as a base for further regulatory 769 * settings 770 */ 771 chan->flags = chan->orig_flags = 772 map_regdom_flags(reg_rule->flags) | bw_flags; 773 chan->max_antenna_gain = chan->orig_mag = 774 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 775 chan->max_power = chan->orig_mpwr = 776 (int) MBM_TO_DBM(power_rule->max_eirp); 777 return; 778 } 779 780 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 781 chan->max_antenna_gain = min(chan->orig_mag, 782 (int) MBI_TO_DBI(power_rule->max_antenna_gain)); 783 if (chan->orig_mpwr) 784 chan->max_power = min(chan->orig_mpwr, 785 (int) MBM_TO_DBM(power_rule->max_eirp)); 786 else 787 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 788 } 789 790 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band) 791 { 792 unsigned int i; 793 struct ieee80211_supported_band *sband; 794 795 BUG_ON(!wiphy->bands[band]); 796 sband = wiphy->bands[band]; 797 798 for (i = 0; i < sband->n_channels; i++) 799 handle_channel(wiphy, band, i); 800 } 801 802 static bool ignore_reg_update(struct wiphy *wiphy, 803 enum nl80211_reg_initiator initiator) 804 { 805 if (!last_request) 806 return true; 807 if (initiator == NL80211_REGDOM_SET_BY_CORE && 808 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) 809 return true; 810 /* 811 * wiphy->regd will be set once the device has its own 812 * desired regulatory domain set 813 */ 814 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd && 815 !is_world_regdom(last_request->alpha2)) 816 return true; 817 return false; 818 } 819 820 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 821 { 822 struct cfg80211_registered_device *rdev; 823 824 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 825 wiphy_update_regulatory(&rdev->wiphy, initiator); 826 } 827 828 static void handle_reg_beacon(struct wiphy *wiphy, 829 unsigned int chan_idx, 830 struct reg_beacon *reg_beacon) 831 { 832 struct ieee80211_supported_band *sband; 833 struct ieee80211_channel *chan; 834 bool channel_changed = false; 835 struct ieee80211_channel chan_before; 836 837 assert_cfg80211_lock(); 838 839 sband = wiphy->bands[reg_beacon->chan.band]; 840 chan = &sband->channels[chan_idx]; 841 842 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 843 return; 844 845 if (chan->beacon_found) 846 return; 847 848 chan->beacon_found = true; 849 850 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS) 851 return; 852 853 chan_before.center_freq = chan->center_freq; 854 chan_before.flags = chan->flags; 855 856 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) { 857 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN; 858 channel_changed = true; 859 } 860 861 if (chan->flags & IEEE80211_CHAN_NO_IBSS) { 862 chan->flags &= ~IEEE80211_CHAN_NO_IBSS; 863 channel_changed = true; 864 } 865 866 if (channel_changed) 867 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 868 } 869 870 /* 871 * Called when a scan on a wiphy finds a beacon on 872 * new channel 873 */ 874 static void wiphy_update_new_beacon(struct wiphy *wiphy, 875 struct reg_beacon *reg_beacon) 876 { 877 unsigned int i; 878 struct ieee80211_supported_band *sband; 879 880 assert_cfg80211_lock(); 881 882 if (!wiphy->bands[reg_beacon->chan.band]) 883 return; 884 885 sband = wiphy->bands[reg_beacon->chan.band]; 886 887 for (i = 0; i < sband->n_channels; i++) 888 handle_reg_beacon(wiphy, i, reg_beacon); 889 } 890 891 /* 892 * Called upon reg changes or a new wiphy is added 893 */ 894 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 895 { 896 unsigned int i; 897 struct ieee80211_supported_band *sband; 898 struct reg_beacon *reg_beacon; 899 900 assert_cfg80211_lock(); 901 902 if (list_empty(®_beacon_list)) 903 return; 904 905 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 906 if (!wiphy->bands[reg_beacon->chan.band]) 907 continue; 908 sband = wiphy->bands[reg_beacon->chan.band]; 909 for (i = 0; i < sband->n_channels; i++) 910 handle_reg_beacon(wiphy, i, reg_beacon); 911 } 912 } 913 914 static bool reg_is_world_roaming(struct wiphy *wiphy) 915 { 916 if (is_world_regdom(cfg80211_regdomain->alpha2) || 917 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2))) 918 return true; 919 if (last_request && 920 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 921 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) 922 return true; 923 return false; 924 } 925 926 /* Reap the advantages of previously found beacons */ 927 static void reg_process_beacons(struct wiphy *wiphy) 928 { 929 /* 930 * Means we are just firing up cfg80211, so no beacons would 931 * have been processed yet. 932 */ 933 if (!last_request) 934 return; 935 if (!reg_is_world_roaming(wiphy)) 936 return; 937 wiphy_update_beacon_reg(wiphy); 938 } 939 940 static bool is_ht40_not_allowed(struct ieee80211_channel *chan) 941 { 942 if (!chan) 943 return true; 944 if (chan->flags & IEEE80211_CHAN_DISABLED) 945 return true; 946 /* This would happen when regulatory rules disallow HT40 completely */ 947 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40))) 948 return true; 949 return false; 950 } 951 952 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 953 enum ieee80211_band band, 954 unsigned int chan_idx) 955 { 956 struct ieee80211_supported_band *sband; 957 struct ieee80211_channel *channel; 958 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 959 unsigned int i; 960 961 assert_cfg80211_lock(); 962 963 sband = wiphy->bands[band]; 964 BUG_ON(chan_idx >= sband->n_channels); 965 channel = &sband->channels[chan_idx]; 966 967 if (is_ht40_not_allowed(channel)) { 968 channel->flags |= IEEE80211_CHAN_NO_HT40; 969 return; 970 } 971 972 /* 973 * We need to ensure the extension channels exist to 974 * be able to use HT40- or HT40+, this finds them (or not) 975 */ 976 for (i = 0; i < sband->n_channels; i++) { 977 struct ieee80211_channel *c = &sband->channels[i]; 978 if (c->center_freq == (channel->center_freq - 20)) 979 channel_before = c; 980 if (c->center_freq == (channel->center_freq + 20)) 981 channel_after = c; 982 } 983 984 /* 985 * Please note that this assumes target bandwidth is 20 MHz, 986 * if that ever changes we also need to change the below logic 987 * to include that as well. 988 */ 989 if (is_ht40_not_allowed(channel_before)) 990 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 991 else 992 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 993 994 if (is_ht40_not_allowed(channel_after)) 995 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 996 else 997 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 998 } 999 1000 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1001 enum ieee80211_band band) 1002 { 1003 unsigned int i; 1004 struct ieee80211_supported_band *sband; 1005 1006 BUG_ON(!wiphy->bands[band]); 1007 sband = wiphy->bands[band]; 1008 1009 for (i = 0; i < sband->n_channels; i++) 1010 reg_process_ht_flags_channel(wiphy, band, i); 1011 } 1012 1013 static void reg_process_ht_flags(struct wiphy *wiphy) 1014 { 1015 enum ieee80211_band band; 1016 1017 if (!wiphy) 1018 return; 1019 1020 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1021 if (wiphy->bands[band]) 1022 reg_process_ht_flags_band(wiphy, band); 1023 } 1024 1025 } 1026 1027 void wiphy_update_regulatory(struct wiphy *wiphy, 1028 enum nl80211_reg_initiator initiator) 1029 { 1030 enum ieee80211_band band; 1031 1032 if (ignore_reg_update(wiphy, initiator)) 1033 goto out; 1034 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1035 if (wiphy->bands[band]) 1036 handle_band(wiphy, band); 1037 } 1038 out: 1039 reg_process_beacons(wiphy); 1040 reg_process_ht_flags(wiphy); 1041 if (wiphy->reg_notifier) 1042 wiphy->reg_notifier(wiphy, last_request); 1043 } 1044 1045 static void handle_channel_custom(struct wiphy *wiphy, 1046 enum ieee80211_band band, 1047 unsigned int chan_idx, 1048 const struct ieee80211_regdomain *regd) 1049 { 1050 int r; 1051 u32 desired_bw_khz = MHZ_TO_KHZ(20); 1052 u32 bw_flags = 0; 1053 const struct ieee80211_reg_rule *reg_rule = NULL; 1054 const struct ieee80211_power_rule *power_rule = NULL; 1055 const struct ieee80211_freq_range *freq_range = NULL; 1056 struct ieee80211_supported_band *sband; 1057 struct ieee80211_channel *chan; 1058 1059 assert_reg_lock(); 1060 1061 sband = wiphy->bands[band]; 1062 BUG_ON(chan_idx >= sband->n_channels); 1063 chan = &sband->channels[chan_idx]; 1064 1065 r = freq_reg_info_regd(wiphy, 1066 MHZ_TO_KHZ(chan->center_freq), 1067 desired_bw_khz, 1068 ®_rule, 1069 regd); 1070 1071 if (r) { 1072 chan->flags = IEEE80211_CHAN_DISABLED; 1073 return; 1074 } 1075 1076 power_rule = ®_rule->power_rule; 1077 freq_range = ®_rule->freq_range; 1078 1079 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 1080 bw_flags = IEEE80211_CHAN_NO_HT40; 1081 1082 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1083 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1084 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1085 } 1086 1087 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band, 1088 const struct ieee80211_regdomain *regd) 1089 { 1090 unsigned int i; 1091 struct ieee80211_supported_band *sband; 1092 1093 BUG_ON(!wiphy->bands[band]); 1094 sband = wiphy->bands[band]; 1095 1096 for (i = 0; i < sband->n_channels; i++) 1097 handle_channel_custom(wiphy, band, i, regd); 1098 } 1099 1100 /* Used by drivers prior to wiphy registration */ 1101 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1102 const struct ieee80211_regdomain *regd) 1103 { 1104 enum ieee80211_band band; 1105 unsigned int bands_set = 0; 1106 1107 mutex_lock(®_mutex); 1108 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1109 if (!wiphy->bands[band]) 1110 continue; 1111 handle_band_custom(wiphy, band, regd); 1112 bands_set++; 1113 } 1114 mutex_unlock(®_mutex); 1115 1116 /* 1117 * no point in calling this if it won't have any effect 1118 * on your device's supportd bands. 1119 */ 1120 WARN_ON(!bands_set); 1121 } 1122 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1123 1124 /* 1125 * Return value which can be used by ignore_request() to indicate 1126 * it has been determined we should intersect two regulatory domains 1127 */ 1128 #define REG_INTERSECT 1 1129 1130 /* This has the logic which determines when a new request 1131 * should be ignored. */ 1132 static int ignore_request(struct wiphy *wiphy, 1133 struct regulatory_request *pending_request) 1134 { 1135 struct wiphy *last_wiphy = NULL; 1136 1137 assert_cfg80211_lock(); 1138 1139 /* All initial requests are respected */ 1140 if (!last_request) 1141 return 0; 1142 1143 switch (pending_request->initiator) { 1144 case NL80211_REGDOM_SET_BY_CORE: 1145 return 0; 1146 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1147 1148 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 1149 1150 if (unlikely(!is_an_alpha2(pending_request->alpha2))) 1151 return -EINVAL; 1152 if (last_request->initiator == 1153 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1154 if (last_wiphy != wiphy) { 1155 /* 1156 * Two cards with two APs claiming different 1157 * Country IE alpha2s. We could 1158 * intersect them, but that seems unlikely 1159 * to be correct. Reject second one for now. 1160 */ 1161 if (regdom_changes(pending_request->alpha2)) 1162 return -EOPNOTSUPP; 1163 return -EALREADY; 1164 } 1165 /* 1166 * Two consecutive Country IE hints on the same wiphy. 1167 * This should be picked up early by the driver/stack 1168 */ 1169 if (WARN_ON(regdom_changes(pending_request->alpha2))) 1170 return 0; 1171 return -EALREADY; 1172 } 1173 return REG_INTERSECT; 1174 case NL80211_REGDOM_SET_BY_DRIVER: 1175 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) { 1176 if (regdom_changes(pending_request->alpha2)) 1177 return 0; 1178 return -EALREADY; 1179 } 1180 1181 /* 1182 * This would happen if you unplug and plug your card 1183 * back in or if you add a new device for which the previously 1184 * loaded card also agrees on the regulatory domain. 1185 */ 1186 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1187 !regdom_changes(pending_request->alpha2)) 1188 return -EALREADY; 1189 1190 return REG_INTERSECT; 1191 case NL80211_REGDOM_SET_BY_USER: 1192 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1193 return REG_INTERSECT; 1194 /* 1195 * If the user knows better the user should set the regdom 1196 * to their country before the IE is picked up 1197 */ 1198 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER && 1199 last_request->intersect) 1200 return -EOPNOTSUPP; 1201 /* 1202 * Process user requests only after previous user/driver/core 1203 * requests have been processed 1204 */ 1205 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE || 1206 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1207 last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1208 if (regdom_changes(last_request->alpha2)) 1209 return -EAGAIN; 1210 } 1211 1212 if (!regdom_changes(pending_request->alpha2)) 1213 return -EALREADY; 1214 1215 return 0; 1216 } 1217 1218 return -EINVAL; 1219 } 1220 1221 /** 1222 * __regulatory_hint - hint to the wireless core a regulatory domain 1223 * @wiphy: if the hint comes from country information from an AP, this 1224 * is required to be set to the wiphy that received the information 1225 * @pending_request: the regulatory request currently being processed 1226 * 1227 * The Wireless subsystem can use this function to hint to the wireless core 1228 * what it believes should be the current regulatory domain. 1229 * 1230 * Returns zero if all went fine, %-EALREADY if a regulatory domain had 1231 * already been set or other standard error codes. 1232 * 1233 * Caller must hold &cfg80211_mutex and ®_mutex 1234 */ 1235 static int __regulatory_hint(struct wiphy *wiphy, 1236 struct regulatory_request *pending_request) 1237 { 1238 bool intersect = false; 1239 int r = 0; 1240 1241 assert_cfg80211_lock(); 1242 1243 r = ignore_request(wiphy, pending_request); 1244 1245 if (r == REG_INTERSECT) { 1246 if (pending_request->initiator == 1247 NL80211_REGDOM_SET_BY_DRIVER) { 1248 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1249 if (r) { 1250 kfree(pending_request); 1251 return r; 1252 } 1253 } 1254 intersect = true; 1255 } else if (r) { 1256 /* 1257 * If the regulatory domain being requested by the 1258 * driver has already been set just copy it to the 1259 * wiphy 1260 */ 1261 if (r == -EALREADY && 1262 pending_request->initiator == 1263 NL80211_REGDOM_SET_BY_DRIVER) { 1264 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1265 if (r) { 1266 kfree(pending_request); 1267 return r; 1268 } 1269 r = -EALREADY; 1270 goto new_request; 1271 } 1272 kfree(pending_request); 1273 return r; 1274 } 1275 1276 new_request: 1277 kfree(last_request); 1278 1279 last_request = pending_request; 1280 last_request->intersect = intersect; 1281 1282 pending_request = NULL; 1283 1284 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1285 user_alpha2[0] = last_request->alpha2[0]; 1286 user_alpha2[1] = last_request->alpha2[1]; 1287 } 1288 1289 /* When r == REG_INTERSECT we do need to call CRDA */ 1290 if (r < 0) { 1291 /* 1292 * Since CRDA will not be called in this case as we already 1293 * have applied the requested regulatory domain before we just 1294 * inform userspace we have processed the request 1295 */ 1296 if (r == -EALREADY) 1297 nl80211_send_reg_change_event(last_request); 1298 return r; 1299 } 1300 1301 return call_crda(last_request->alpha2); 1302 } 1303 1304 /* This processes *all* regulatory hints */ 1305 static void reg_process_hint(struct regulatory_request *reg_request) 1306 { 1307 int r = 0; 1308 struct wiphy *wiphy = NULL; 1309 enum nl80211_reg_initiator initiator = reg_request->initiator; 1310 1311 BUG_ON(!reg_request->alpha2); 1312 1313 mutex_lock(&cfg80211_mutex); 1314 mutex_lock(®_mutex); 1315 1316 if (wiphy_idx_valid(reg_request->wiphy_idx)) 1317 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1318 1319 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1320 !wiphy) { 1321 kfree(reg_request); 1322 goto out; 1323 } 1324 1325 r = __regulatory_hint(wiphy, reg_request); 1326 /* This is required so that the orig_* parameters are saved */ 1327 if (r == -EALREADY && wiphy && 1328 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) 1329 wiphy_update_regulatory(wiphy, initiator); 1330 out: 1331 mutex_unlock(®_mutex); 1332 mutex_unlock(&cfg80211_mutex); 1333 } 1334 1335 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */ 1336 static void reg_process_pending_hints(void) 1337 { 1338 struct regulatory_request *reg_request; 1339 1340 spin_lock(®_requests_lock); 1341 while (!list_empty(®_requests_list)) { 1342 reg_request = list_first_entry(®_requests_list, 1343 struct regulatory_request, 1344 list); 1345 list_del_init(®_request->list); 1346 1347 spin_unlock(®_requests_lock); 1348 reg_process_hint(reg_request); 1349 spin_lock(®_requests_lock); 1350 } 1351 spin_unlock(®_requests_lock); 1352 } 1353 1354 /* Processes beacon hints -- this has nothing to do with country IEs */ 1355 static void reg_process_pending_beacon_hints(void) 1356 { 1357 struct cfg80211_registered_device *rdev; 1358 struct reg_beacon *pending_beacon, *tmp; 1359 1360 /* 1361 * No need to hold the reg_mutex here as we just touch wiphys 1362 * and do not read or access regulatory variables. 1363 */ 1364 mutex_lock(&cfg80211_mutex); 1365 1366 /* This goes through the _pending_ beacon list */ 1367 spin_lock_bh(®_pending_beacons_lock); 1368 1369 if (list_empty(®_pending_beacons)) { 1370 spin_unlock_bh(®_pending_beacons_lock); 1371 goto out; 1372 } 1373 1374 list_for_each_entry_safe(pending_beacon, tmp, 1375 ®_pending_beacons, list) { 1376 1377 list_del_init(&pending_beacon->list); 1378 1379 /* Applies the beacon hint to current wiphys */ 1380 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1381 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 1382 1383 /* Remembers the beacon hint for new wiphys or reg changes */ 1384 list_add_tail(&pending_beacon->list, ®_beacon_list); 1385 } 1386 1387 spin_unlock_bh(®_pending_beacons_lock); 1388 out: 1389 mutex_unlock(&cfg80211_mutex); 1390 } 1391 1392 static void reg_todo(struct work_struct *work) 1393 { 1394 reg_process_pending_hints(); 1395 reg_process_pending_beacon_hints(); 1396 } 1397 1398 static DECLARE_WORK(reg_work, reg_todo); 1399 1400 static void queue_regulatory_request(struct regulatory_request *request) 1401 { 1402 spin_lock(®_requests_lock); 1403 list_add_tail(&request->list, ®_requests_list); 1404 spin_unlock(®_requests_lock); 1405 1406 schedule_work(®_work); 1407 } 1408 1409 /* 1410 * Core regulatory hint -- happens during cfg80211_init() 1411 * and when we restore regulatory settings. 1412 */ 1413 static int regulatory_hint_core(const char *alpha2) 1414 { 1415 struct regulatory_request *request; 1416 1417 kfree(last_request); 1418 last_request = NULL; 1419 1420 request = kzalloc(sizeof(struct regulatory_request), 1421 GFP_KERNEL); 1422 if (!request) 1423 return -ENOMEM; 1424 1425 request->alpha2[0] = alpha2[0]; 1426 request->alpha2[1] = alpha2[1]; 1427 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1428 1429 /* 1430 * This ensures last_request is populated once modules 1431 * come swinging in and calling regulatory hints and 1432 * wiphy_apply_custom_regulatory(). 1433 */ 1434 reg_process_hint(request); 1435 1436 return 0; 1437 } 1438 1439 /* User hints */ 1440 int regulatory_hint_user(const char *alpha2) 1441 { 1442 struct regulatory_request *request; 1443 1444 BUG_ON(!alpha2); 1445 1446 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1447 if (!request) 1448 return -ENOMEM; 1449 1450 request->wiphy_idx = WIPHY_IDX_STALE; 1451 request->alpha2[0] = alpha2[0]; 1452 request->alpha2[1] = alpha2[1]; 1453 request->initiator = NL80211_REGDOM_SET_BY_USER; 1454 1455 queue_regulatory_request(request); 1456 1457 return 0; 1458 } 1459 1460 /* Driver hints */ 1461 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 1462 { 1463 struct regulatory_request *request; 1464 1465 BUG_ON(!alpha2); 1466 BUG_ON(!wiphy); 1467 1468 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1469 if (!request) 1470 return -ENOMEM; 1471 1472 request->wiphy_idx = get_wiphy_idx(wiphy); 1473 1474 /* Must have registered wiphy first */ 1475 BUG_ON(!wiphy_idx_valid(request->wiphy_idx)); 1476 1477 request->alpha2[0] = alpha2[0]; 1478 request->alpha2[1] = alpha2[1]; 1479 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 1480 1481 queue_regulatory_request(request); 1482 1483 return 0; 1484 } 1485 EXPORT_SYMBOL(regulatory_hint); 1486 1487 /* 1488 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and 1489 * therefore cannot iterate over the rdev list here. 1490 */ 1491 void regulatory_hint_11d(struct wiphy *wiphy, 1492 enum ieee80211_band band, 1493 u8 *country_ie, 1494 u8 country_ie_len) 1495 { 1496 char alpha2[2]; 1497 enum environment_cap env = ENVIRON_ANY; 1498 struct regulatory_request *request; 1499 1500 mutex_lock(®_mutex); 1501 1502 if (unlikely(!last_request)) 1503 goto out; 1504 1505 /* IE len must be evenly divisible by 2 */ 1506 if (country_ie_len & 0x01) 1507 goto out; 1508 1509 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 1510 goto out; 1511 1512 alpha2[0] = country_ie[0]; 1513 alpha2[1] = country_ie[1]; 1514 1515 if (country_ie[2] == 'I') 1516 env = ENVIRON_INDOOR; 1517 else if (country_ie[2] == 'O') 1518 env = ENVIRON_OUTDOOR; 1519 1520 /* 1521 * We will run this only upon a successful connection on cfg80211. 1522 * We leave conflict resolution to the workqueue, where can hold 1523 * cfg80211_mutex. 1524 */ 1525 if (likely(last_request->initiator == 1526 NL80211_REGDOM_SET_BY_COUNTRY_IE && 1527 wiphy_idx_valid(last_request->wiphy_idx))) 1528 goto out; 1529 1530 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1531 if (!request) 1532 goto out; 1533 1534 request->wiphy_idx = get_wiphy_idx(wiphy); 1535 request->alpha2[0] = alpha2[0]; 1536 request->alpha2[1] = alpha2[1]; 1537 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 1538 request->country_ie_env = env; 1539 1540 mutex_unlock(®_mutex); 1541 1542 queue_regulatory_request(request); 1543 1544 return; 1545 1546 out: 1547 mutex_unlock(®_mutex); 1548 } 1549 1550 static void restore_alpha2(char *alpha2, bool reset_user) 1551 { 1552 /* indicates there is no alpha2 to consider for restoration */ 1553 alpha2[0] = '9'; 1554 alpha2[1] = '7'; 1555 1556 /* The user setting has precedence over the module parameter */ 1557 if (is_user_regdom_saved()) { 1558 /* Unless we're asked to ignore it and reset it */ 1559 if (reset_user) { 1560 REG_DBG_PRINT("cfg80211: Restoring regulatory settings " 1561 "including user preference\n"); 1562 user_alpha2[0] = '9'; 1563 user_alpha2[1] = '7'; 1564 1565 /* 1566 * If we're ignoring user settings, we still need to 1567 * check the module parameter to ensure we put things 1568 * back as they were for a full restore. 1569 */ 1570 if (!is_world_regdom(ieee80211_regdom)) { 1571 REG_DBG_PRINT("cfg80211: Keeping preference on " 1572 "module parameter ieee80211_regdom: %c%c\n", 1573 ieee80211_regdom[0], 1574 ieee80211_regdom[1]); 1575 alpha2[0] = ieee80211_regdom[0]; 1576 alpha2[1] = ieee80211_regdom[1]; 1577 } 1578 } else { 1579 REG_DBG_PRINT("cfg80211: Restoring regulatory settings " 1580 "while preserving user preference for: %c%c\n", 1581 user_alpha2[0], 1582 user_alpha2[1]); 1583 alpha2[0] = user_alpha2[0]; 1584 alpha2[1] = user_alpha2[1]; 1585 } 1586 } else if (!is_world_regdom(ieee80211_regdom)) { 1587 REG_DBG_PRINT("cfg80211: Keeping preference on " 1588 "module parameter ieee80211_regdom: %c%c\n", 1589 ieee80211_regdom[0], 1590 ieee80211_regdom[1]); 1591 alpha2[0] = ieee80211_regdom[0]; 1592 alpha2[1] = ieee80211_regdom[1]; 1593 } else 1594 REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n"); 1595 } 1596 1597 /* 1598 * Restoring regulatory settings involves ingoring any 1599 * possibly stale country IE information and user regulatory 1600 * settings if so desired, this includes any beacon hints 1601 * learned as we could have traveled outside to another country 1602 * after disconnection. To restore regulatory settings we do 1603 * exactly what we did at bootup: 1604 * 1605 * - send a core regulatory hint 1606 * - send a user regulatory hint if applicable 1607 * 1608 * Device drivers that send a regulatory hint for a specific country 1609 * keep their own regulatory domain on wiphy->regd so that does does 1610 * not need to be remembered. 1611 */ 1612 static void restore_regulatory_settings(bool reset_user) 1613 { 1614 char alpha2[2]; 1615 struct reg_beacon *reg_beacon, *btmp; 1616 1617 mutex_lock(&cfg80211_mutex); 1618 mutex_lock(®_mutex); 1619 1620 reset_regdomains(); 1621 restore_alpha2(alpha2, reset_user); 1622 1623 /* Clear beacon hints */ 1624 spin_lock_bh(®_pending_beacons_lock); 1625 if (!list_empty(®_pending_beacons)) { 1626 list_for_each_entry_safe(reg_beacon, btmp, 1627 ®_pending_beacons, list) { 1628 list_del(®_beacon->list); 1629 kfree(reg_beacon); 1630 } 1631 } 1632 spin_unlock_bh(®_pending_beacons_lock); 1633 1634 if (!list_empty(®_beacon_list)) { 1635 list_for_each_entry_safe(reg_beacon, btmp, 1636 ®_beacon_list, list) { 1637 list_del(®_beacon->list); 1638 kfree(reg_beacon); 1639 } 1640 } 1641 1642 /* First restore to the basic regulatory settings */ 1643 cfg80211_regdomain = cfg80211_world_regdom; 1644 1645 mutex_unlock(®_mutex); 1646 mutex_unlock(&cfg80211_mutex); 1647 1648 regulatory_hint_core(cfg80211_regdomain->alpha2); 1649 1650 /* 1651 * This restores the ieee80211_regdom module parameter 1652 * preference or the last user requested regulatory 1653 * settings, user regulatory settings takes precedence. 1654 */ 1655 if (is_an_alpha2(alpha2)) 1656 regulatory_hint_user(user_alpha2); 1657 } 1658 1659 1660 void regulatory_hint_disconnect(void) 1661 { 1662 REG_DBG_PRINT("cfg80211: All devices are disconnected, going to " 1663 "restore regulatory settings\n"); 1664 restore_regulatory_settings(false); 1665 } 1666 1667 static bool freq_is_chan_12_13_14(u16 freq) 1668 { 1669 if (freq == ieee80211_channel_to_frequency(12) || 1670 freq == ieee80211_channel_to_frequency(13) || 1671 freq == ieee80211_channel_to_frequency(14)) 1672 return true; 1673 return false; 1674 } 1675 1676 int regulatory_hint_found_beacon(struct wiphy *wiphy, 1677 struct ieee80211_channel *beacon_chan, 1678 gfp_t gfp) 1679 { 1680 struct reg_beacon *reg_beacon; 1681 1682 if (likely((beacon_chan->beacon_found || 1683 (beacon_chan->flags & IEEE80211_CHAN_RADAR) || 1684 (beacon_chan->band == IEEE80211_BAND_2GHZ && 1685 !freq_is_chan_12_13_14(beacon_chan->center_freq))))) 1686 return 0; 1687 1688 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 1689 if (!reg_beacon) 1690 return -ENOMEM; 1691 1692 REG_DBG_PRINT("cfg80211: Found new beacon on " 1693 "frequency: %d MHz (Ch %d) on %s\n", 1694 beacon_chan->center_freq, 1695 ieee80211_frequency_to_channel(beacon_chan->center_freq), 1696 wiphy_name(wiphy)); 1697 1698 memcpy(®_beacon->chan, beacon_chan, 1699 sizeof(struct ieee80211_channel)); 1700 1701 1702 /* 1703 * Since we can be called from BH or and non-BH context 1704 * we must use spin_lock_bh() 1705 */ 1706 spin_lock_bh(®_pending_beacons_lock); 1707 list_add_tail(®_beacon->list, ®_pending_beacons); 1708 spin_unlock_bh(®_pending_beacons_lock); 1709 1710 schedule_work(®_work); 1711 1712 return 0; 1713 } 1714 1715 static void print_rd_rules(const struct ieee80211_regdomain *rd) 1716 { 1717 unsigned int i; 1718 const struct ieee80211_reg_rule *reg_rule = NULL; 1719 const struct ieee80211_freq_range *freq_range = NULL; 1720 const struct ieee80211_power_rule *power_rule = NULL; 1721 1722 printk(KERN_INFO " (start_freq - end_freq @ bandwidth), " 1723 "(max_antenna_gain, max_eirp)\n"); 1724 1725 for (i = 0; i < rd->n_reg_rules; i++) { 1726 reg_rule = &rd->reg_rules[i]; 1727 freq_range = ®_rule->freq_range; 1728 power_rule = ®_rule->power_rule; 1729 1730 /* 1731 * There may not be documentation for max antenna gain 1732 * in certain regions 1733 */ 1734 if (power_rule->max_antenna_gain) 1735 printk(KERN_INFO " (%d KHz - %d KHz @ %d KHz), " 1736 "(%d mBi, %d mBm)\n", 1737 freq_range->start_freq_khz, 1738 freq_range->end_freq_khz, 1739 freq_range->max_bandwidth_khz, 1740 power_rule->max_antenna_gain, 1741 power_rule->max_eirp); 1742 else 1743 printk(KERN_INFO " (%d KHz - %d KHz @ %d KHz), " 1744 "(N/A, %d mBm)\n", 1745 freq_range->start_freq_khz, 1746 freq_range->end_freq_khz, 1747 freq_range->max_bandwidth_khz, 1748 power_rule->max_eirp); 1749 } 1750 } 1751 1752 static void print_regdomain(const struct ieee80211_regdomain *rd) 1753 { 1754 1755 if (is_intersected_alpha2(rd->alpha2)) { 1756 1757 if (last_request->initiator == 1758 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1759 struct cfg80211_registered_device *rdev; 1760 rdev = cfg80211_rdev_by_wiphy_idx( 1761 last_request->wiphy_idx); 1762 if (rdev) { 1763 printk(KERN_INFO "cfg80211: Current regulatory " 1764 "domain updated by AP to: %c%c\n", 1765 rdev->country_ie_alpha2[0], 1766 rdev->country_ie_alpha2[1]); 1767 } else 1768 printk(KERN_INFO "cfg80211: Current regulatory " 1769 "domain intersected:\n"); 1770 } else 1771 printk(KERN_INFO "cfg80211: Current regulatory " 1772 "domain intersected:\n"); 1773 } else if (is_world_regdom(rd->alpha2)) 1774 printk(KERN_INFO "cfg80211: World regulatory " 1775 "domain updated:\n"); 1776 else { 1777 if (is_unknown_alpha2(rd->alpha2)) 1778 printk(KERN_INFO "cfg80211: Regulatory domain " 1779 "changed to driver built-in settings " 1780 "(unknown country)\n"); 1781 else 1782 printk(KERN_INFO "cfg80211: Regulatory domain " 1783 "changed to country: %c%c\n", 1784 rd->alpha2[0], rd->alpha2[1]); 1785 } 1786 print_rd_rules(rd); 1787 } 1788 1789 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 1790 { 1791 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n", 1792 rd->alpha2[0], rd->alpha2[1]); 1793 print_rd_rules(rd); 1794 } 1795 1796 /* Takes ownership of rd only if it doesn't fail */ 1797 static int __set_regdom(const struct ieee80211_regdomain *rd) 1798 { 1799 const struct ieee80211_regdomain *intersected_rd = NULL; 1800 struct cfg80211_registered_device *rdev = NULL; 1801 struct wiphy *request_wiphy; 1802 /* Some basic sanity checks first */ 1803 1804 if (is_world_regdom(rd->alpha2)) { 1805 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 1806 return -EINVAL; 1807 update_world_regdomain(rd); 1808 return 0; 1809 } 1810 1811 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 1812 !is_unknown_alpha2(rd->alpha2)) 1813 return -EINVAL; 1814 1815 if (!last_request) 1816 return -EINVAL; 1817 1818 /* 1819 * Lets only bother proceeding on the same alpha2 if the current 1820 * rd is non static (it means CRDA was present and was used last) 1821 * and the pending request came in from a country IE 1822 */ 1823 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1824 /* 1825 * If someone else asked us to change the rd lets only bother 1826 * checking if the alpha2 changes if CRDA was already called 1827 */ 1828 if (!regdom_changes(rd->alpha2)) 1829 return -EINVAL; 1830 } 1831 1832 /* 1833 * Now lets set the regulatory domain, update all driver channels 1834 * and finally inform them of what we have done, in case they want 1835 * to review or adjust their own settings based on their own 1836 * internal EEPROM data 1837 */ 1838 1839 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 1840 return -EINVAL; 1841 1842 if (!is_valid_rd(rd)) { 1843 printk(KERN_ERR "cfg80211: Invalid " 1844 "regulatory domain detected:\n"); 1845 print_regdomain_info(rd); 1846 return -EINVAL; 1847 } 1848 1849 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 1850 1851 if (!last_request->intersect) { 1852 int r; 1853 1854 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) { 1855 reset_regdomains(); 1856 cfg80211_regdomain = rd; 1857 return 0; 1858 } 1859 1860 /* 1861 * For a driver hint, lets copy the regulatory domain the 1862 * driver wanted to the wiphy to deal with conflicts 1863 */ 1864 1865 /* 1866 * Userspace could have sent two replies with only 1867 * one kernel request. 1868 */ 1869 if (request_wiphy->regd) 1870 return -EALREADY; 1871 1872 r = reg_copy_regd(&request_wiphy->regd, rd); 1873 if (r) 1874 return r; 1875 1876 reset_regdomains(); 1877 cfg80211_regdomain = rd; 1878 return 0; 1879 } 1880 1881 /* Intersection requires a bit more work */ 1882 1883 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1884 1885 intersected_rd = regdom_intersect(rd, cfg80211_regdomain); 1886 if (!intersected_rd) 1887 return -EINVAL; 1888 1889 /* 1890 * We can trash what CRDA provided now. 1891 * However if a driver requested this specific regulatory 1892 * domain we keep it for its private use 1893 */ 1894 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) 1895 request_wiphy->regd = rd; 1896 else 1897 kfree(rd); 1898 1899 rd = NULL; 1900 1901 reset_regdomains(); 1902 cfg80211_regdomain = intersected_rd; 1903 1904 return 0; 1905 } 1906 1907 if (!intersected_rd) 1908 return -EINVAL; 1909 1910 rdev = wiphy_to_dev(request_wiphy); 1911 1912 rdev->country_ie_alpha2[0] = rd->alpha2[0]; 1913 rdev->country_ie_alpha2[1] = rd->alpha2[1]; 1914 rdev->env = last_request->country_ie_env; 1915 1916 BUG_ON(intersected_rd == rd); 1917 1918 kfree(rd); 1919 rd = NULL; 1920 1921 reset_regdomains(); 1922 cfg80211_regdomain = intersected_rd; 1923 1924 return 0; 1925 } 1926 1927 1928 /* 1929 * Use this call to set the current regulatory domain. Conflicts with 1930 * multiple drivers can be ironed out later. Caller must've already 1931 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex 1932 */ 1933 int set_regdom(const struct ieee80211_regdomain *rd) 1934 { 1935 int r; 1936 1937 assert_cfg80211_lock(); 1938 1939 mutex_lock(®_mutex); 1940 1941 /* Note that this doesn't update the wiphys, this is done below */ 1942 r = __set_regdom(rd); 1943 if (r) { 1944 kfree(rd); 1945 mutex_unlock(®_mutex); 1946 return r; 1947 } 1948 1949 /* This would make this whole thing pointless */ 1950 if (!last_request->intersect) 1951 BUG_ON(rd != cfg80211_regdomain); 1952 1953 /* update all wiphys now with the new established regulatory domain */ 1954 update_all_wiphy_regulatory(last_request->initiator); 1955 1956 print_regdomain(cfg80211_regdomain); 1957 1958 nl80211_send_reg_change_event(last_request); 1959 1960 mutex_unlock(®_mutex); 1961 1962 return r; 1963 } 1964 1965 /* Caller must hold cfg80211_mutex */ 1966 void reg_device_remove(struct wiphy *wiphy) 1967 { 1968 struct wiphy *request_wiphy = NULL; 1969 1970 assert_cfg80211_lock(); 1971 1972 mutex_lock(®_mutex); 1973 1974 kfree(wiphy->regd); 1975 1976 if (last_request) 1977 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 1978 1979 if (!request_wiphy || request_wiphy != wiphy) 1980 goto out; 1981 1982 last_request->wiphy_idx = WIPHY_IDX_STALE; 1983 last_request->country_ie_env = ENVIRON_ANY; 1984 out: 1985 mutex_unlock(®_mutex); 1986 } 1987 1988 int __init regulatory_init(void) 1989 { 1990 int err = 0; 1991 1992 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 1993 if (IS_ERR(reg_pdev)) 1994 return PTR_ERR(reg_pdev); 1995 1996 spin_lock_init(®_requests_lock); 1997 spin_lock_init(®_pending_beacons_lock); 1998 1999 cfg80211_regdomain = cfg80211_world_regdom; 2000 2001 user_alpha2[0] = '9'; 2002 user_alpha2[1] = '7'; 2003 2004 /* We always try to get an update for the static regdomain */ 2005 err = regulatory_hint_core(cfg80211_regdomain->alpha2); 2006 if (err) { 2007 if (err == -ENOMEM) 2008 return err; 2009 /* 2010 * N.B. kobject_uevent_env() can fail mainly for when we're out 2011 * memory which is handled and propagated appropriately above 2012 * but it can also fail during a netlink_broadcast() or during 2013 * early boot for call_usermodehelper(). For now treat these 2014 * errors as non-fatal. 2015 */ 2016 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable " 2017 "to call CRDA during init"); 2018 #ifdef CONFIG_CFG80211_REG_DEBUG 2019 /* We want to find out exactly why when debugging */ 2020 WARN_ON(err); 2021 #endif 2022 } 2023 2024 /* 2025 * Finally, if the user set the module parameter treat it 2026 * as a user hint. 2027 */ 2028 if (!is_world_regdom(ieee80211_regdom)) 2029 regulatory_hint_user(ieee80211_regdom); 2030 2031 return 0; 2032 } 2033 2034 void /* __init_or_exit */ regulatory_exit(void) 2035 { 2036 struct regulatory_request *reg_request, *tmp; 2037 struct reg_beacon *reg_beacon, *btmp; 2038 2039 cancel_work_sync(®_work); 2040 2041 mutex_lock(&cfg80211_mutex); 2042 mutex_lock(®_mutex); 2043 2044 reset_regdomains(); 2045 2046 kfree(last_request); 2047 2048 platform_device_unregister(reg_pdev); 2049 2050 spin_lock_bh(®_pending_beacons_lock); 2051 if (!list_empty(®_pending_beacons)) { 2052 list_for_each_entry_safe(reg_beacon, btmp, 2053 ®_pending_beacons, list) { 2054 list_del(®_beacon->list); 2055 kfree(reg_beacon); 2056 } 2057 } 2058 spin_unlock_bh(®_pending_beacons_lock); 2059 2060 if (!list_empty(®_beacon_list)) { 2061 list_for_each_entry_safe(reg_beacon, btmp, 2062 ®_beacon_list, list) { 2063 list_del(®_beacon->list); 2064 kfree(reg_beacon); 2065 } 2066 } 2067 2068 spin_lock(®_requests_lock); 2069 if (!list_empty(®_requests_list)) { 2070 list_for_each_entry_safe(reg_request, tmp, 2071 ®_requests_list, list) { 2072 list_del(®_request->list); 2073 kfree(reg_request); 2074 } 2075 } 2076 spin_unlock(®_requests_lock); 2077 2078 mutex_unlock(®_mutex); 2079 mutex_unlock(&cfg80211_mutex); 2080 } 2081