1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2022 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static DEFINE_SPINLOCK(reg_indoor_lock); 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 static void reg_process_hint(struct regulatory_request *reg_request); 137 138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 139 { 140 return rcu_dereference_rtnl(cfg80211_regdomain); 141 } 142 143 /* 144 * Returns the regulatory domain associated with the wiphy. 145 * 146 * Requires any of RTNL, wiphy mutex or RCU protection. 147 */ 148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 149 { 150 return rcu_dereference_check(wiphy->regd, 151 lockdep_is_held(&wiphy->mtx) || 152 lockdep_rtnl_is_held()); 153 } 154 EXPORT_SYMBOL(get_wiphy_regdom); 155 156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 157 { 158 switch (dfs_region) { 159 case NL80211_DFS_UNSET: 160 return "unset"; 161 case NL80211_DFS_FCC: 162 return "FCC"; 163 case NL80211_DFS_ETSI: 164 return "ETSI"; 165 case NL80211_DFS_JP: 166 return "JP"; 167 } 168 return "Unknown"; 169 } 170 171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 172 { 173 const struct ieee80211_regdomain *regd = NULL; 174 const struct ieee80211_regdomain *wiphy_regd = NULL; 175 enum nl80211_dfs_regions dfs_region; 176 177 rcu_read_lock(); 178 regd = get_cfg80211_regdom(); 179 dfs_region = regd->dfs_region; 180 181 if (!wiphy) 182 goto out; 183 184 wiphy_regd = get_wiphy_regdom(wiphy); 185 if (!wiphy_regd) 186 goto out; 187 188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 189 dfs_region = wiphy_regd->dfs_region; 190 goto out; 191 } 192 193 if (wiphy_regd->dfs_region == regd->dfs_region) 194 goto out; 195 196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 197 dev_name(&wiphy->dev), 198 reg_dfs_region_str(wiphy_regd->dfs_region), 199 reg_dfs_region_str(regd->dfs_region)); 200 201 out: 202 rcu_read_unlock(); 203 204 return dfs_region; 205 } 206 207 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 208 { 209 if (!r) 210 return; 211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 212 } 213 214 static struct regulatory_request *get_last_request(void) 215 { 216 return rcu_dereference_rtnl(last_request); 217 } 218 219 /* Used to queue up regulatory hints */ 220 static LIST_HEAD(reg_requests_list); 221 static DEFINE_SPINLOCK(reg_requests_lock); 222 223 /* Used to queue up beacon hints for review */ 224 static LIST_HEAD(reg_pending_beacons); 225 static DEFINE_SPINLOCK(reg_pending_beacons_lock); 226 227 /* Used to keep track of processed beacon hints */ 228 static LIST_HEAD(reg_beacon_list); 229 230 struct reg_beacon { 231 struct list_head list; 232 struct ieee80211_channel chan; 233 }; 234 235 static void reg_check_chans_work(struct work_struct *work); 236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 237 238 static void reg_todo(struct work_struct *work); 239 static DECLARE_WORK(reg_work, reg_todo); 240 241 /* We keep a static world regulatory domain in case of the absence of CRDA */ 242 static const struct ieee80211_regdomain world_regdom = { 243 .n_reg_rules = 8, 244 .alpha2 = "00", 245 .reg_rules = { 246 /* IEEE 802.11b/g, channels 1..11 */ 247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 248 /* IEEE 802.11b/g, channels 12..13. */ 249 REG_RULE(2467-10, 2472+10, 20, 6, 20, 250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 251 /* IEEE 802.11 channel 14 - Only JP enables 252 * this and for 802.11b only */ 253 REG_RULE(2484-10, 2484+10, 20, 6, 20, 254 NL80211_RRF_NO_IR | 255 NL80211_RRF_NO_OFDM), 256 /* IEEE 802.11a, channel 36..48 */ 257 REG_RULE(5180-10, 5240+10, 80, 6, 20, 258 NL80211_RRF_NO_IR | 259 NL80211_RRF_AUTO_BW), 260 261 /* IEEE 802.11a, channel 52..64 - DFS required */ 262 REG_RULE(5260-10, 5320+10, 80, 6, 20, 263 NL80211_RRF_NO_IR | 264 NL80211_RRF_AUTO_BW | 265 NL80211_RRF_DFS), 266 267 /* IEEE 802.11a, channel 100..144 - DFS required */ 268 REG_RULE(5500-10, 5720+10, 160, 6, 20, 269 NL80211_RRF_NO_IR | 270 NL80211_RRF_DFS), 271 272 /* IEEE 802.11a, channel 149..165 */ 273 REG_RULE(5745-10, 5825+10, 80, 6, 20, 274 NL80211_RRF_NO_IR), 275 276 /* IEEE 802.11ad (60GHz), channels 1..3 */ 277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 278 } 279 }; 280 281 /* protected by RTNL */ 282 static const struct ieee80211_regdomain *cfg80211_world_regdom = 283 &world_regdom; 284 285 static char *ieee80211_regdom = "00"; 286 static char user_alpha2[2]; 287 static const struct ieee80211_regdomain *cfg80211_user_regdom; 288 289 module_param(ieee80211_regdom, charp, 0444); 290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 291 292 static void reg_free_request(struct regulatory_request *request) 293 { 294 if (request == &core_request_world) 295 return; 296 297 if (request != get_last_request()) 298 kfree(request); 299 } 300 301 static void reg_free_last_request(void) 302 { 303 struct regulatory_request *lr = get_last_request(); 304 305 if (lr != &core_request_world && lr) 306 kfree_rcu(lr, rcu_head); 307 } 308 309 static void reg_update_last_request(struct regulatory_request *request) 310 { 311 struct regulatory_request *lr; 312 313 lr = get_last_request(); 314 if (lr == request) 315 return; 316 317 reg_free_last_request(); 318 rcu_assign_pointer(last_request, request); 319 } 320 321 static void reset_regdomains(bool full_reset, 322 const struct ieee80211_regdomain *new_regdom) 323 { 324 const struct ieee80211_regdomain *r; 325 326 ASSERT_RTNL(); 327 328 r = get_cfg80211_regdom(); 329 330 /* avoid freeing static information or freeing something twice */ 331 if (r == cfg80211_world_regdom) 332 r = NULL; 333 if (cfg80211_world_regdom == &world_regdom) 334 cfg80211_world_regdom = NULL; 335 if (r == &world_regdom) 336 r = NULL; 337 338 rcu_free_regdom(r); 339 rcu_free_regdom(cfg80211_world_regdom); 340 341 cfg80211_world_regdom = &world_regdom; 342 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 343 344 if (!full_reset) 345 return; 346 347 reg_update_last_request(&core_request_world); 348 } 349 350 /* 351 * Dynamic world regulatory domain requested by the wireless 352 * core upon initialization 353 */ 354 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 355 { 356 struct regulatory_request *lr; 357 358 lr = get_last_request(); 359 360 WARN_ON(!lr); 361 362 reset_regdomains(false, rd); 363 364 cfg80211_world_regdom = rd; 365 } 366 367 bool is_world_regdom(const char *alpha2) 368 { 369 if (!alpha2) 370 return false; 371 return alpha2[0] == '0' && alpha2[1] == '0'; 372 } 373 374 static bool is_alpha2_set(const char *alpha2) 375 { 376 if (!alpha2) 377 return false; 378 return alpha2[0] && alpha2[1]; 379 } 380 381 static bool is_unknown_alpha2(const char *alpha2) 382 { 383 if (!alpha2) 384 return false; 385 /* 386 * Special case where regulatory domain was built by driver 387 * but a specific alpha2 cannot be determined 388 */ 389 return alpha2[0] == '9' && alpha2[1] == '9'; 390 } 391 392 static bool is_intersected_alpha2(const char *alpha2) 393 { 394 if (!alpha2) 395 return false; 396 /* 397 * Special case where regulatory domain is the 398 * result of an intersection between two regulatory domain 399 * structures 400 */ 401 return alpha2[0] == '9' && alpha2[1] == '8'; 402 } 403 404 static bool is_an_alpha2(const char *alpha2) 405 { 406 if (!alpha2) 407 return false; 408 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 409 } 410 411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 412 { 413 if (!alpha2_x || !alpha2_y) 414 return false; 415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 416 } 417 418 static bool regdom_changes(const char *alpha2) 419 { 420 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 421 422 if (!r) 423 return true; 424 return !alpha2_equal(r->alpha2, alpha2); 425 } 426 427 /* 428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 430 * has ever been issued. 431 */ 432 static bool is_user_regdom_saved(void) 433 { 434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 435 return false; 436 437 /* This would indicate a mistake on the design */ 438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 439 "Unexpected user alpha2: %c%c\n", 440 user_alpha2[0], user_alpha2[1])) 441 return false; 442 443 return true; 444 } 445 446 static const struct ieee80211_regdomain * 447 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 448 { 449 struct ieee80211_regdomain *regd; 450 unsigned int i; 451 452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 453 GFP_KERNEL); 454 if (!regd) 455 return ERR_PTR(-ENOMEM); 456 457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 458 459 for (i = 0; i < src_regd->n_reg_rules; i++) 460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 461 sizeof(struct ieee80211_reg_rule)); 462 463 return regd; 464 } 465 466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 467 { 468 ASSERT_RTNL(); 469 470 if (!IS_ERR(cfg80211_user_regdom)) 471 kfree(cfg80211_user_regdom); 472 cfg80211_user_regdom = reg_copy_regd(rd); 473 } 474 475 struct reg_regdb_apply_request { 476 struct list_head list; 477 const struct ieee80211_regdomain *regdom; 478 }; 479 480 static LIST_HEAD(reg_regdb_apply_list); 481 static DEFINE_MUTEX(reg_regdb_apply_mutex); 482 483 static void reg_regdb_apply(struct work_struct *work) 484 { 485 struct reg_regdb_apply_request *request; 486 487 rtnl_lock(); 488 489 mutex_lock(®_regdb_apply_mutex); 490 while (!list_empty(®_regdb_apply_list)) { 491 request = list_first_entry(®_regdb_apply_list, 492 struct reg_regdb_apply_request, 493 list); 494 list_del(&request->list); 495 496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 497 kfree(request); 498 } 499 mutex_unlock(®_regdb_apply_mutex); 500 501 rtnl_unlock(); 502 } 503 504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 505 506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 507 { 508 struct reg_regdb_apply_request *request; 509 510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 511 if (!request) { 512 kfree(regdom); 513 return -ENOMEM; 514 } 515 516 request->regdom = regdom; 517 518 mutex_lock(®_regdb_apply_mutex); 519 list_add_tail(&request->list, ®_regdb_apply_list); 520 mutex_unlock(®_regdb_apply_mutex); 521 522 schedule_work(®_regdb_work); 523 return 0; 524 } 525 526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 527 /* Max number of consecutive attempts to communicate with CRDA */ 528 #define REG_MAX_CRDA_TIMEOUTS 10 529 530 static u32 reg_crda_timeouts; 531 532 static void crda_timeout_work(struct work_struct *work); 533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 534 535 static void crda_timeout_work(struct work_struct *work) 536 { 537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 538 rtnl_lock(); 539 reg_crda_timeouts++; 540 restore_regulatory_settings(true, false); 541 rtnl_unlock(); 542 } 543 544 static void cancel_crda_timeout(void) 545 { 546 cancel_delayed_work(&crda_timeout); 547 } 548 549 static void cancel_crda_timeout_sync(void) 550 { 551 cancel_delayed_work_sync(&crda_timeout); 552 } 553 554 static void reset_crda_timeouts(void) 555 { 556 reg_crda_timeouts = 0; 557 } 558 559 /* 560 * This lets us keep regulatory code which is updated on a regulatory 561 * basis in userspace. 562 */ 563 static int call_crda(const char *alpha2) 564 { 565 char country[12]; 566 char *env[] = { country, NULL }; 567 int ret; 568 569 snprintf(country, sizeof(country), "COUNTRY=%c%c", 570 alpha2[0], alpha2[1]); 571 572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 574 return -EINVAL; 575 } 576 577 if (!is_world_regdom((char *) alpha2)) 578 pr_debug("Calling CRDA for country: %c%c\n", 579 alpha2[0], alpha2[1]); 580 else 581 pr_debug("Calling CRDA to update world regulatory domain\n"); 582 583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 584 if (ret) 585 return ret; 586 587 queue_delayed_work(system_power_efficient_wq, 588 &crda_timeout, msecs_to_jiffies(3142)); 589 return 0; 590 } 591 #else 592 static inline void cancel_crda_timeout(void) {} 593 static inline void cancel_crda_timeout_sync(void) {} 594 static inline void reset_crda_timeouts(void) {} 595 static inline int call_crda(const char *alpha2) 596 { 597 return -ENODATA; 598 } 599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 600 601 /* code to directly load a firmware database through request_firmware */ 602 static const struct fwdb_header *regdb; 603 604 struct fwdb_country { 605 u8 alpha2[2]; 606 __be16 coll_ptr; 607 /* this struct cannot be extended */ 608 } __packed __aligned(4); 609 610 struct fwdb_collection { 611 u8 len; 612 u8 n_rules; 613 u8 dfs_region; 614 /* no optional data yet */ 615 /* aligned to 2, then followed by __be16 array of rule pointers */ 616 } __packed __aligned(4); 617 618 enum fwdb_flags { 619 FWDB_FLAG_NO_OFDM = BIT(0), 620 FWDB_FLAG_NO_OUTDOOR = BIT(1), 621 FWDB_FLAG_DFS = BIT(2), 622 FWDB_FLAG_NO_IR = BIT(3), 623 FWDB_FLAG_AUTO_BW = BIT(4), 624 }; 625 626 struct fwdb_wmm_ac { 627 u8 ecw; 628 u8 aifsn; 629 __be16 cot; 630 } __packed; 631 632 struct fwdb_wmm_rule { 633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 635 } __packed; 636 637 struct fwdb_rule { 638 u8 len; 639 u8 flags; 640 __be16 max_eirp; 641 __be32 start, end, max_bw; 642 /* start of optional data */ 643 __be16 cac_timeout; 644 __be16 wmm_ptr; 645 } __packed __aligned(4); 646 647 #define FWDB_MAGIC 0x52474442 648 #define FWDB_VERSION 20 649 650 struct fwdb_header { 651 __be32 magic; 652 __be32 version; 653 struct fwdb_country country[]; 654 } __packed __aligned(4); 655 656 static int ecw2cw(int ecw) 657 { 658 return (1 << ecw) - 1; 659 } 660 661 static bool valid_wmm(struct fwdb_wmm_rule *rule) 662 { 663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 664 int i; 665 666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 669 u8 aifsn = ac[i].aifsn; 670 671 if (cw_min >= cw_max) 672 return false; 673 674 if (aifsn < 1) 675 return false; 676 } 677 678 return true; 679 } 680 681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 682 { 683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 684 685 if ((u8 *)rule + sizeof(rule->len) > data + size) 686 return false; 687 688 /* mandatory fields */ 689 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 690 return false; 691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 693 struct fwdb_wmm_rule *wmm; 694 695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 696 return false; 697 698 wmm = (void *)(data + wmm_ptr); 699 700 if (!valid_wmm(wmm)) 701 return false; 702 } 703 return true; 704 } 705 706 static bool valid_country(const u8 *data, unsigned int size, 707 const struct fwdb_country *country) 708 { 709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 710 struct fwdb_collection *coll = (void *)(data + ptr); 711 __be16 *rules_ptr; 712 unsigned int i; 713 714 /* make sure we can read len/n_rules */ 715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 716 return false; 717 718 /* make sure base struct and all rules fit */ 719 if ((u8 *)coll + ALIGN(coll->len, 2) + 720 (coll->n_rules * 2) > data + size) 721 return false; 722 723 /* mandatory fields must exist */ 724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 725 return false; 726 727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 728 729 for (i = 0; i < coll->n_rules; i++) { 730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 731 732 if (!valid_rule(data, size, rule_ptr)) 733 return false; 734 } 735 736 return true; 737 } 738 739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 740 #include <keys/asymmetric-type.h> 741 742 static struct key *builtin_regdb_keys; 743 744 static int __init load_builtin_regdb_keys(void) 745 { 746 builtin_regdb_keys = 747 keyring_alloc(".builtin_regdb_keys", 748 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 749 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 750 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 751 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 752 if (IS_ERR(builtin_regdb_keys)) 753 return PTR_ERR(builtin_regdb_keys); 754 755 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 756 757 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 758 x509_load_certificate_list(shipped_regdb_certs, 759 shipped_regdb_certs_len, 760 builtin_regdb_keys); 761 #endif 762 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 763 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 764 x509_load_certificate_list(extra_regdb_certs, 765 extra_regdb_certs_len, 766 builtin_regdb_keys); 767 #endif 768 769 return 0; 770 } 771 772 MODULE_FIRMWARE("regulatory.db.p7s"); 773 774 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 775 { 776 const struct firmware *sig; 777 bool result; 778 779 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 780 return false; 781 782 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 783 builtin_regdb_keys, 784 VERIFYING_UNSPECIFIED_SIGNATURE, 785 NULL, NULL) == 0; 786 787 release_firmware(sig); 788 789 return result; 790 } 791 792 static void free_regdb_keyring(void) 793 { 794 key_put(builtin_regdb_keys); 795 } 796 #else 797 static int load_builtin_regdb_keys(void) 798 { 799 return 0; 800 } 801 802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 803 { 804 return true; 805 } 806 807 static void free_regdb_keyring(void) 808 { 809 } 810 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 811 812 static bool valid_regdb(const u8 *data, unsigned int size) 813 { 814 const struct fwdb_header *hdr = (void *)data; 815 const struct fwdb_country *country; 816 817 if (size < sizeof(*hdr)) 818 return false; 819 820 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 821 return false; 822 823 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 824 return false; 825 826 if (!regdb_has_valid_signature(data, size)) 827 return false; 828 829 country = &hdr->country[0]; 830 while ((u8 *)(country + 1) <= data + size) { 831 if (!country->coll_ptr) 832 break; 833 if (!valid_country(data, size, country)) 834 return false; 835 country++; 836 } 837 838 return true; 839 } 840 841 static void set_wmm_rule(const struct fwdb_header *db, 842 const struct fwdb_country *country, 843 const struct fwdb_rule *rule, 844 struct ieee80211_reg_rule *rrule) 845 { 846 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 847 struct fwdb_wmm_rule *wmm; 848 unsigned int i, wmm_ptr; 849 850 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 851 wmm = (void *)((u8 *)db + wmm_ptr); 852 853 if (!valid_wmm(wmm)) { 854 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 855 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 856 country->alpha2[0], country->alpha2[1]); 857 return; 858 } 859 860 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 861 wmm_rule->client[i].cw_min = 862 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 863 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 864 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 865 wmm_rule->client[i].cot = 866 1000 * be16_to_cpu(wmm->client[i].cot); 867 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 868 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 869 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 870 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 871 } 872 873 rrule->has_wmm = true; 874 } 875 876 static int __regdb_query_wmm(const struct fwdb_header *db, 877 const struct fwdb_country *country, int freq, 878 struct ieee80211_reg_rule *rrule) 879 { 880 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 881 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 882 int i; 883 884 for (i = 0; i < coll->n_rules; i++) { 885 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 886 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 887 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 888 889 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 890 continue; 891 892 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 893 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 894 set_wmm_rule(db, country, rule, rrule); 895 return 0; 896 } 897 } 898 899 return -ENODATA; 900 } 901 902 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 903 { 904 const struct fwdb_header *hdr = regdb; 905 const struct fwdb_country *country; 906 907 if (!regdb) 908 return -ENODATA; 909 910 if (IS_ERR(regdb)) 911 return PTR_ERR(regdb); 912 913 country = &hdr->country[0]; 914 while (country->coll_ptr) { 915 if (alpha2_equal(alpha2, country->alpha2)) 916 return __regdb_query_wmm(regdb, country, freq, rule); 917 918 country++; 919 } 920 921 return -ENODATA; 922 } 923 EXPORT_SYMBOL(reg_query_regdb_wmm); 924 925 static int regdb_query_country(const struct fwdb_header *db, 926 const struct fwdb_country *country) 927 { 928 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 929 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 930 struct ieee80211_regdomain *regdom; 931 unsigned int i; 932 933 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 934 GFP_KERNEL); 935 if (!regdom) 936 return -ENOMEM; 937 938 regdom->n_reg_rules = coll->n_rules; 939 regdom->alpha2[0] = country->alpha2[0]; 940 regdom->alpha2[1] = country->alpha2[1]; 941 regdom->dfs_region = coll->dfs_region; 942 943 for (i = 0; i < regdom->n_reg_rules; i++) { 944 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 945 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 946 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 947 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 948 949 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 950 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 951 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 952 953 rrule->power_rule.max_antenna_gain = 0; 954 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 955 956 rrule->flags = 0; 957 if (rule->flags & FWDB_FLAG_NO_OFDM) 958 rrule->flags |= NL80211_RRF_NO_OFDM; 959 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 960 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 961 if (rule->flags & FWDB_FLAG_DFS) 962 rrule->flags |= NL80211_RRF_DFS; 963 if (rule->flags & FWDB_FLAG_NO_IR) 964 rrule->flags |= NL80211_RRF_NO_IR; 965 if (rule->flags & FWDB_FLAG_AUTO_BW) 966 rrule->flags |= NL80211_RRF_AUTO_BW; 967 968 rrule->dfs_cac_ms = 0; 969 970 /* handle optional data */ 971 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 972 rrule->dfs_cac_ms = 973 1000 * be16_to_cpu(rule->cac_timeout); 974 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 975 set_wmm_rule(db, country, rule, rrule); 976 } 977 978 return reg_schedule_apply(regdom); 979 } 980 981 static int query_regdb(const char *alpha2) 982 { 983 const struct fwdb_header *hdr = regdb; 984 const struct fwdb_country *country; 985 986 ASSERT_RTNL(); 987 988 if (IS_ERR(regdb)) 989 return PTR_ERR(regdb); 990 991 country = &hdr->country[0]; 992 while (country->coll_ptr) { 993 if (alpha2_equal(alpha2, country->alpha2)) 994 return regdb_query_country(regdb, country); 995 country++; 996 } 997 998 return -ENODATA; 999 } 1000 1001 static void regdb_fw_cb(const struct firmware *fw, void *context) 1002 { 1003 int set_error = 0; 1004 bool restore = true; 1005 void *db; 1006 1007 if (!fw) { 1008 pr_info("failed to load regulatory.db\n"); 1009 set_error = -ENODATA; 1010 } else if (!valid_regdb(fw->data, fw->size)) { 1011 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1012 set_error = -EINVAL; 1013 } 1014 1015 rtnl_lock(); 1016 if (regdb && !IS_ERR(regdb)) { 1017 /* negative case - a bug 1018 * positive case - can happen due to race in case of multiple cb's in 1019 * queue, due to usage of asynchronous callback 1020 * 1021 * Either case, just restore and free new db. 1022 */ 1023 } else if (set_error) { 1024 regdb = ERR_PTR(set_error); 1025 } else if (fw) { 1026 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1027 if (db) { 1028 regdb = db; 1029 restore = context && query_regdb(context); 1030 } else { 1031 restore = true; 1032 } 1033 } 1034 1035 if (restore) 1036 restore_regulatory_settings(true, false); 1037 1038 rtnl_unlock(); 1039 1040 kfree(context); 1041 1042 release_firmware(fw); 1043 } 1044 1045 MODULE_FIRMWARE("regulatory.db"); 1046 1047 static int query_regdb_file(const char *alpha2) 1048 { 1049 int err; 1050 1051 ASSERT_RTNL(); 1052 1053 if (regdb) 1054 return query_regdb(alpha2); 1055 1056 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1057 if (!alpha2) 1058 return -ENOMEM; 1059 1060 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1061 ®_pdev->dev, GFP_KERNEL, 1062 (void *)alpha2, regdb_fw_cb); 1063 if (err) 1064 kfree(alpha2); 1065 1066 return err; 1067 } 1068 1069 int reg_reload_regdb(void) 1070 { 1071 const struct firmware *fw; 1072 void *db; 1073 int err; 1074 const struct ieee80211_regdomain *current_regdomain; 1075 struct regulatory_request *request; 1076 1077 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1078 if (err) 1079 return err; 1080 1081 if (!valid_regdb(fw->data, fw->size)) { 1082 err = -ENODATA; 1083 goto out; 1084 } 1085 1086 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1087 if (!db) { 1088 err = -ENOMEM; 1089 goto out; 1090 } 1091 1092 rtnl_lock(); 1093 if (!IS_ERR_OR_NULL(regdb)) 1094 kfree(regdb); 1095 regdb = db; 1096 1097 /* reset regulatory domain */ 1098 current_regdomain = get_cfg80211_regdom(); 1099 1100 request = kzalloc(sizeof(*request), GFP_KERNEL); 1101 if (!request) { 1102 err = -ENOMEM; 1103 goto out_unlock; 1104 } 1105 1106 request->wiphy_idx = WIPHY_IDX_INVALID; 1107 request->alpha2[0] = current_regdomain->alpha2[0]; 1108 request->alpha2[1] = current_regdomain->alpha2[1]; 1109 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1110 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER; 1111 1112 reg_process_hint(request); 1113 1114 out_unlock: 1115 rtnl_unlock(); 1116 out: 1117 release_firmware(fw); 1118 return err; 1119 } 1120 1121 static bool reg_query_database(struct regulatory_request *request) 1122 { 1123 if (query_regdb_file(request->alpha2) == 0) 1124 return true; 1125 1126 if (call_crda(request->alpha2) == 0) 1127 return true; 1128 1129 return false; 1130 } 1131 1132 bool reg_is_valid_request(const char *alpha2) 1133 { 1134 struct regulatory_request *lr = get_last_request(); 1135 1136 if (!lr || lr->processed) 1137 return false; 1138 1139 return alpha2_equal(lr->alpha2, alpha2); 1140 } 1141 1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1143 { 1144 struct regulatory_request *lr = get_last_request(); 1145 1146 /* 1147 * Follow the driver's regulatory domain, if present, unless a country 1148 * IE has been processed or a user wants to help complaince further 1149 */ 1150 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1151 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1152 wiphy->regd) 1153 return get_wiphy_regdom(wiphy); 1154 1155 return get_cfg80211_regdom(); 1156 } 1157 1158 static unsigned int 1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1160 const struct ieee80211_reg_rule *rule) 1161 { 1162 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1163 const struct ieee80211_freq_range *freq_range_tmp; 1164 const struct ieee80211_reg_rule *tmp; 1165 u32 start_freq, end_freq, idx, no; 1166 1167 for (idx = 0; idx < rd->n_reg_rules; idx++) 1168 if (rule == &rd->reg_rules[idx]) 1169 break; 1170 1171 if (idx == rd->n_reg_rules) 1172 return 0; 1173 1174 /* get start_freq */ 1175 no = idx; 1176 1177 while (no) { 1178 tmp = &rd->reg_rules[--no]; 1179 freq_range_tmp = &tmp->freq_range; 1180 1181 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1182 break; 1183 1184 freq_range = freq_range_tmp; 1185 } 1186 1187 start_freq = freq_range->start_freq_khz; 1188 1189 /* get end_freq */ 1190 freq_range = &rule->freq_range; 1191 no = idx; 1192 1193 while (no < rd->n_reg_rules - 1) { 1194 tmp = &rd->reg_rules[++no]; 1195 freq_range_tmp = &tmp->freq_range; 1196 1197 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1198 break; 1199 1200 freq_range = freq_range_tmp; 1201 } 1202 1203 end_freq = freq_range->end_freq_khz; 1204 1205 return end_freq - start_freq; 1206 } 1207 1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1209 const struct ieee80211_reg_rule *rule) 1210 { 1211 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1212 1213 if (rule->flags & NL80211_RRF_NO_320MHZ) 1214 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160)); 1215 if (rule->flags & NL80211_RRF_NO_160MHZ) 1216 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1217 if (rule->flags & NL80211_RRF_NO_80MHZ) 1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1219 1220 /* 1221 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1222 * are not allowed. 1223 */ 1224 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1225 rule->flags & NL80211_RRF_NO_HT40PLUS) 1226 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1227 1228 return bw; 1229 } 1230 1231 /* Sanity check on a regulatory rule */ 1232 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1233 { 1234 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1235 u32 freq_diff; 1236 1237 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1238 return false; 1239 1240 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1241 return false; 1242 1243 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1244 1245 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1246 freq_range->max_bandwidth_khz > freq_diff) 1247 return false; 1248 1249 return true; 1250 } 1251 1252 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1253 { 1254 const struct ieee80211_reg_rule *reg_rule = NULL; 1255 unsigned int i; 1256 1257 if (!rd->n_reg_rules) 1258 return false; 1259 1260 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1261 return false; 1262 1263 for (i = 0; i < rd->n_reg_rules; i++) { 1264 reg_rule = &rd->reg_rules[i]; 1265 if (!is_valid_reg_rule(reg_rule)) 1266 return false; 1267 } 1268 1269 return true; 1270 } 1271 1272 /** 1273 * freq_in_rule_band - tells us if a frequency is in a frequency band 1274 * @freq_range: frequency rule we want to query 1275 * @freq_khz: frequency we are inquiring about 1276 * 1277 * This lets us know if a specific frequency rule is or is not relevant to 1278 * a specific frequency's band. Bands are device specific and artificial 1279 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1280 * however it is safe for now to assume that a frequency rule should not be 1281 * part of a frequency's band if the start freq or end freq are off by more 1282 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1283 * 60 GHz band. 1284 * This resolution can be lowered and should be considered as we add 1285 * regulatory rule support for other "bands". 1286 **/ 1287 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1288 u32 freq_khz) 1289 { 1290 #define ONE_GHZ_IN_KHZ 1000000 1291 /* 1292 * From 802.11ad: directional multi-gigabit (DMG): 1293 * Pertaining to operation in a frequency band containing a channel 1294 * with the Channel starting frequency above 45 GHz. 1295 */ 1296 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1297 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1298 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1299 return true; 1300 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1301 return true; 1302 return false; 1303 #undef ONE_GHZ_IN_KHZ 1304 } 1305 1306 /* 1307 * Later on we can perhaps use the more restrictive DFS 1308 * region but we don't have information for that yet so 1309 * for now simply disallow conflicts. 1310 */ 1311 static enum nl80211_dfs_regions 1312 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1313 const enum nl80211_dfs_regions dfs_region2) 1314 { 1315 if (dfs_region1 != dfs_region2) 1316 return NL80211_DFS_UNSET; 1317 return dfs_region1; 1318 } 1319 1320 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1321 const struct ieee80211_wmm_ac *wmm_ac2, 1322 struct ieee80211_wmm_ac *intersect) 1323 { 1324 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1325 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1326 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1327 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1328 } 1329 1330 /* 1331 * Helper for regdom_intersect(), this does the real 1332 * mathematical intersection fun 1333 */ 1334 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1335 const struct ieee80211_regdomain *rd2, 1336 const struct ieee80211_reg_rule *rule1, 1337 const struct ieee80211_reg_rule *rule2, 1338 struct ieee80211_reg_rule *intersected_rule) 1339 { 1340 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1341 struct ieee80211_freq_range *freq_range; 1342 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1343 struct ieee80211_power_rule *power_rule; 1344 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1345 struct ieee80211_wmm_rule *wmm_rule; 1346 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1347 1348 freq_range1 = &rule1->freq_range; 1349 freq_range2 = &rule2->freq_range; 1350 freq_range = &intersected_rule->freq_range; 1351 1352 power_rule1 = &rule1->power_rule; 1353 power_rule2 = &rule2->power_rule; 1354 power_rule = &intersected_rule->power_rule; 1355 1356 wmm_rule1 = &rule1->wmm_rule; 1357 wmm_rule2 = &rule2->wmm_rule; 1358 wmm_rule = &intersected_rule->wmm_rule; 1359 1360 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1361 freq_range2->start_freq_khz); 1362 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1363 freq_range2->end_freq_khz); 1364 1365 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1366 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1367 1368 if (rule1->flags & NL80211_RRF_AUTO_BW) 1369 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1370 if (rule2->flags & NL80211_RRF_AUTO_BW) 1371 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1372 1373 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1374 1375 intersected_rule->flags = rule1->flags | rule2->flags; 1376 1377 /* 1378 * In case NL80211_RRF_AUTO_BW requested for both rules 1379 * set AUTO_BW in intersected rule also. Next we will 1380 * calculate BW correctly in handle_channel function. 1381 * In other case remove AUTO_BW flag while we calculate 1382 * maximum bandwidth correctly and auto calculation is 1383 * not required. 1384 */ 1385 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1386 (rule2->flags & NL80211_RRF_AUTO_BW)) 1387 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1388 else 1389 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1390 1391 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1392 if (freq_range->max_bandwidth_khz > freq_diff) 1393 freq_range->max_bandwidth_khz = freq_diff; 1394 1395 power_rule->max_eirp = min(power_rule1->max_eirp, 1396 power_rule2->max_eirp); 1397 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1398 power_rule2->max_antenna_gain); 1399 1400 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1401 rule2->dfs_cac_ms); 1402 1403 if (rule1->has_wmm && rule2->has_wmm) { 1404 u8 ac; 1405 1406 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1407 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1408 &wmm_rule2->client[ac], 1409 &wmm_rule->client[ac]); 1410 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1411 &wmm_rule2->ap[ac], 1412 &wmm_rule->ap[ac]); 1413 } 1414 1415 intersected_rule->has_wmm = true; 1416 } else if (rule1->has_wmm) { 1417 *wmm_rule = *wmm_rule1; 1418 intersected_rule->has_wmm = true; 1419 } else if (rule2->has_wmm) { 1420 *wmm_rule = *wmm_rule2; 1421 intersected_rule->has_wmm = true; 1422 } else { 1423 intersected_rule->has_wmm = false; 1424 } 1425 1426 if (!is_valid_reg_rule(intersected_rule)) 1427 return -EINVAL; 1428 1429 return 0; 1430 } 1431 1432 /* check whether old rule contains new rule */ 1433 static bool rule_contains(struct ieee80211_reg_rule *r1, 1434 struct ieee80211_reg_rule *r2) 1435 { 1436 /* for simplicity, currently consider only same flags */ 1437 if (r1->flags != r2->flags) 1438 return false; 1439 1440 /* verify r1 is more restrictive */ 1441 if ((r1->power_rule.max_antenna_gain > 1442 r2->power_rule.max_antenna_gain) || 1443 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1444 return false; 1445 1446 /* make sure r2's range is contained within r1 */ 1447 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1448 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1449 return false; 1450 1451 /* and finally verify that r1.max_bw >= r2.max_bw */ 1452 if (r1->freq_range.max_bandwidth_khz < 1453 r2->freq_range.max_bandwidth_khz) 1454 return false; 1455 1456 return true; 1457 } 1458 1459 /* add or extend current rules. do nothing if rule is already contained */ 1460 static void add_rule(struct ieee80211_reg_rule *rule, 1461 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1462 { 1463 struct ieee80211_reg_rule *tmp_rule; 1464 int i; 1465 1466 for (i = 0; i < *n_rules; i++) { 1467 tmp_rule = ®_rules[i]; 1468 /* rule is already contained - do nothing */ 1469 if (rule_contains(tmp_rule, rule)) 1470 return; 1471 1472 /* extend rule if possible */ 1473 if (rule_contains(rule, tmp_rule)) { 1474 memcpy(tmp_rule, rule, sizeof(*rule)); 1475 return; 1476 } 1477 } 1478 1479 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1480 (*n_rules)++; 1481 } 1482 1483 /** 1484 * regdom_intersect - do the intersection between two regulatory domains 1485 * @rd1: first regulatory domain 1486 * @rd2: second regulatory domain 1487 * 1488 * Use this function to get the intersection between two regulatory domains. 1489 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1490 * as no one single alpha2 can represent this regulatory domain. 1491 * 1492 * Returns a pointer to the regulatory domain structure which will hold the 1493 * resulting intersection of rules between rd1 and rd2. We will 1494 * kzalloc() this structure for you. 1495 */ 1496 static struct ieee80211_regdomain * 1497 regdom_intersect(const struct ieee80211_regdomain *rd1, 1498 const struct ieee80211_regdomain *rd2) 1499 { 1500 int r; 1501 unsigned int x, y; 1502 unsigned int num_rules = 0; 1503 const struct ieee80211_reg_rule *rule1, *rule2; 1504 struct ieee80211_reg_rule intersected_rule; 1505 struct ieee80211_regdomain *rd; 1506 1507 if (!rd1 || !rd2) 1508 return NULL; 1509 1510 /* 1511 * First we get a count of the rules we'll need, then we actually 1512 * build them. This is to so we can malloc() and free() a 1513 * regdomain once. The reason we use reg_rules_intersect() here 1514 * is it will return -EINVAL if the rule computed makes no sense. 1515 * All rules that do check out OK are valid. 1516 */ 1517 1518 for (x = 0; x < rd1->n_reg_rules; x++) { 1519 rule1 = &rd1->reg_rules[x]; 1520 for (y = 0; y < rd2->n_reg_rules; y++) { 1521 rule2 = &rd2->reg_rules[y]; 1522 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1523 &intersected_rule)) 1524 num_rules++; 1525 } 1526 } 1527 1528 if (!num_rules) 1529 return NULL; 1530 1531 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1532 if (!rd) 1533 return NULL; 1534 1535 for (x = 0; x < rd1->n_reg_rules; x++) { 1536 rule1 = &rd1->reg_rules[x]; 1537 for (y = 0; y < rd2->n_reg_rules; y++) { 1538 rule2 = &rd2->reg_rules[y]; 1539 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1540 &intersected_rule); 1541 /* 1542 * No need to memset here the intersected rule here as 1543 * we're not using the stack anymore 1544 */ 1545 if (r) 1546 continue; 1547 1548 add_rule(&intersected_rule, rd->reg_rules, 1549 &rd->n_reg_rules); 1550 } 1551 } 1552 1553 rd->alpha2[0] = '9'; 1554 rd->alpha2[1] = '8'; 1555 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1556 rd2->dfs_region); 1557 1558 return rd; 1559 } 1560 1561 /* 1562 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1563 * want to just have the channel structure use these 1564 */ 1565 static u32 map_regdom_flags(u32 rd_flags) 1566 { 1567 u32 channel_flags = 0; 1568 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1569 channel_flags |= IEEE80211_CHAN_NO_IR; 1570 if (rd_flags & NL80211_RRF_DFS) 1571 channel_flags |= IEEE80211_CHAN_RADAR; 1572 if (rd_flags & NL80211_RRF_NO_OFDM) 1573 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1574 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1575 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1576 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1577 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1578 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1579 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1580 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1581 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1582 if (rd_flags & NL80211_RRF_NO_80MHZ) 1583 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1584 if (rd_flags & NL80211_RRF_NO_160MHZ) 1585 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1586 if (rd_flags & NL80211_RRF_NO_HE) 1587 channel_flags |= IEEE80211_CHAN_NO_HE; 1588 if (rd_flags & NL80211_RRF_NO_320MHZ) 1589 channel_flags |= IEEE80211_CHAN_NO_320MHZ; 1590 return channel_flags; 1591 } 1592 1593 static const struct ieee80211_reg_rule * 1594 freq_reg_info_regd(u32 center_freq, 1595 const struct ieee80211_regdomain *regd, u32 bw) 1596 { 1597 int i; 1598 bool band_rule_found = false; 1599 bool bw_fits = false; 1600 1601 if (!regd) 1602 return ERR_PTR(-EINVAL); 1603 1604 for (i = 0; i < regd->n_reg_rules; i++) { 1605 const struct ieee80211_reg_rule *rr; 1606 const struct ieee80211_freq_range *fr = NULL; 1607 1608 rr = ®d->reg_rules[i]; 1609 fr = &rr->freq_range; 1610 1611 /* 1612 * We only need to know if one frequency rule was 1613 * in center_freq's band, that's enough, so let's 1614 * not overwrite it once found 1615 */ 1616 if (!band_rule_found) 1617 band_rule_found = freq_in_rule_band(fr, center_freq); 1618 1619 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1620 1621 if (band_rule_found && bw_fits) 1622 return rr; 1623 } 1624 1625 if (!band_rule_found) 1626 return ERR_PTR(-ERANGE); 1627 1628 return ERR_PTR(-EINVAL); 1629 } 1630 1631 static const struct ieee80211_reg_rule * 1632 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1633 { 1634 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1635 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1636 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE); 1637 int i = ARRAY_SIZE(bws) - 1; 1638 u32 bw; 1639 1640 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1641 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1642 if (!IS_ERR(reg_rule)) 1643 return reg_rule; 1644 } 1645 1646 return reg_rule; 1647 } 1648 1649 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1650 u32 center_freq) 1651 { 1652 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1653 1654 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1655 } 1656 EXPORT_SYMBOL(freq_reg_info); 1657 1658 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1659 { 1660 switch (initiator) { 1661 case NL80211_REGDOM_SET_BY_CORE: 1662 return "core"; 1663 case NL80211_REGDOM_SET_BY_USER: 1664 return "user"; 1665 case NL80211_REGDOM_SET_BY_DRIVER: 1666 return "driver"; 1667 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1668 return "country element"; 1669 default: 1670 WARN_ON(1); 1671 return "bug"; 1672 } 1673 } 1674 EXPORT_SYMBOL(reg_initiator_name); 1675 1676 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1677 const struct ieee80211_reg_rule *reg_rule, 1678 const struct ieee80211_channel *chan) 1679 { 1680 const struct ieee80211_freq_range *freq_range = NULL; 1681 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1682 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1683 1684 freq_range = ®_rule->freq_range; 1685 1686 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1687 center_freq_khz = ieee80211_channel_to_khz(chan); 1688 /* Check if auto calculation requested */ 1689 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1690 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1691 1692 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1693 if (!cfg80211_does_bw_fit_range(freq_range, 1694 center_freq_khz, 1695 MHZ_TO_KHZ(10))) 1696 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1697 if (!cfg80211_does_bw_fit_range(freq_range, 1698 center_freq_khz, 1699 MHZ_TO_KHZ(20))) 1700 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1701 1702 if (is_s1g) { 1703 /* S1G is strict about non overlapping channels. We can 1704 * calculate which bandwidth is allowed per channel by finding 1705 * the largest bandwidth which cleanly divides the freq_range. 1706 */ 1707 int edge_offset; 1708 int ch_bw = max_bandwidth_khz; 1709 1710 while (ch_bw) { 1711 edge_offset = (center_freq_khz - ch_bw / 2) - 1712 freq_range->start_freq_khz; 1713 if (edge_offset % ch_bw == 0) { 1714 switch (KHZ_TO_MHZ(ch_bw)) { 1715 case 1: 1716 bw_flags |= IEEE80211_CHAN_1MHZ; 1717 break; 1718 case 2: 1719 bw_flags |= IEEE80211_CHAN_2MHZ; 1720 break; 1721 case 4: 1722 bw_flags |= IEEE80211_CHAN_4MHZ; 1723 break; 1724 case 8: 1725 bw_flags |= IEEE80211_CHAN_8MHZ; 1726 break; 1727 case 16: 1728 bw_flags |= IEEE80211_CHAN_16MHZ; 1729 break; 1730 default: 1731 /* If we got here, no bandwidths fit on 1732 * this frequency, ie. band edge. 1733 */ 1734 bw_flags |= IEEE80211_CHAN_DISABLED; 1735 break; 1736 } 1737 break; 1738 } 1739 ch_bw /= 2; 1740 } 1741 } else { 1742 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1743 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1744 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1745 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1746 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1747 bw_flags |= IEEE80211_CHAN_NO_HT40; 1748 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1749 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1750 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1751 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1752 if (max_bandwidth_khz < MHZ_TO_KHZ(320)) 1753 bw_flags |= IEEE80211_CHAN_NO_320MHZ; 1754 } 1755 return bw_flags; 1756 } 1757 1758 static void handle_channel_single_rule(struct wiphy *wiphy, 1759 enum nl80211_reg_initiator initiator, 1760 struct ieee80211_channel *chan, 1761 u32 flags, 1762 struct regulatory_request *lr, 1763 struct wiphy *request_wiphy, 1764 const struct ieee80211_reg_rule *reg_rule) 1765 { 1766 u32 bw_flags = 0; 1767 const struct ieee80211_power_rule *power_rule = NULL; 1768 const struct ieee80211_regdomain *regd; 1769 1770 regd = reg_get_regdomain(wiphy); 1771 1772 power_rule = ®_rule->power_rule; 1773 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1774 1775 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1776 request_wiphy && request_wiphy == wiphy && 1777 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1778 /* 1779 * This guarantees the driver's requested regulatory domain 1780 * will always be used as a base for further regulatory 1781 * settings 1782 */ 1783 chan->flags = chan->orig_flags = 1784 map_regdom_flags(reg_rule->flags) | bw_flags; 1785 chan->max_antenna_gain = chan->orig_mag = 1786 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1787 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1788 (int) MBM_TO_DBM(power_rule->max_eirp); 1789 1790 if (chan->flags & IEEE80211_CHAN_RADAR) { 1791 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1792 if (reg_rule->dfs_cac_ms) 1793 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1794 } 1795 1796 return; 1797 } 1798 1799 chan->dfs_state = NL80211_DFS_USABLE; 1800 chan->dfs_state_entered = jiffies; 1801 1802 chan->beacon_found = false; 1803 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1804 chan->max_antenna_gain = 1805 min_t(int, chan->orig_mag, 1806 MBI_TO_DBI(power_rule->max_antenna_gain)); 1807 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1808 1809 if (chan->flags & IEEE80211_CHAN_RADAR) { 1810 if (reg_rule->dfs_cac_ms) 1811 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1812 else 1813 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1814 } 1815 1816 if (chan->orig_mpwr) { 1817 /* 1818 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1819 * will always follow the passed country IE power settings. 1820 */ 1821 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1822 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1823 chan->max_power = chan->max_reg_power; 1824 else 1825 chan->max_power = min(chan->orig_mpwr, 1826 chan->max_reg_power); 1827 } else 1828 chan->max_power = chan->max_reg_power; 1829 } 1830 1831 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1832 enum nl80211_reg_initiator initiator, 1833 struct ieee80211_channel *chan, 1834 u32 flags, 1835 struct regulatory_request *lr, 1836 struct wiphy *request_wiphy, 1837 const struct ieee80211_reg_rule *rrule1, 1838 const struct ieee80211_reg_rule *rrule2, 1839 struct ieee80211_freq_range *comb_range) 1840 { 1841 u32 bw_flags1 = 0; 1842 u32 bw_flags2 = 0; 1843 const struct ieee80211_power_rule *power_rule1 = NULL; 1844 const struct ieee80211_power_rule *power_rule2 = NULL; 1845 const struct ieee80211_regdomain *regd; 1846 1847 regd = reg_get_regdomain(wiphy); 1848 1849 power_rule1 = &rrule1->power_rule; 1850 power_rule2 = &rrule2->power_rule; 1851 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1852 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1853 1854 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1855 request_wiphy && request_wiphy == wiphy && 1856 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1857 /* This guarantees the driver's requested regulatory domain 1858 * will always be used as a base for further regulatory 1859 * settings 1860 */ 1861 chan->flags = 1862 map_regdom_flags(rrule1->flags) | 1863 map_regdom_flags(rrule2->flags) | 1864 bw_flags1 | 1865 bw_flags2; 1866 chan->orig_flags = chan->flags; 1867 chan->max_antenna_gain = 1868 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1869 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1870 chan->orig_mag = chan->max_antenna_gain; 1871 chan->max_reg_power = 1872 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1873 MBM_TO_DBM(power_rule2->max_eirp)); 1874 chan->max_power = chan->max_reg_power; 1875 chan->orig_mpwr = chan->max_reg_power; 1876 1877 if (chan->flags & IEEE80211_CHAN_RADAR) { 1878 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1879 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1880 chan->dfs_cac_ms = max_t(unsigned int, 1881 rrule1->dfs_cac_ms, 1882 rrule2->dfs_cac_ms); 1883 } 1884 1885 return; 1886 } 1887 1888 chan->dfs_state = NL80211_DFS_USABLE; 1889 chan->dfs_state_entered = jiffies; 1890 1891 chan->beacon_found = false; 1892 chan->flags = flags | bw_flags1 | bw_flags2 | 1893 map_regdom_flags(rrule1->flags) | 1894 map_regdom_flags(rrule2->flags); 1895 1896 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1897 * (otherwise no adj. rule case), recheck therefore 1898 */ 1899 if (cfg80211_does_bw_fit_range(comb_range, 1900 ieee80211_channel_to_khz(chan), 1901 MHZ_TO_KHZ(10))) 1902 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1903 if (cfg80211_does_bw_fit_range(comb_range, 1904 ieee80211_channel_to_khz(chan), 1905 MHZ_TO_KHZ(20))) 1906 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1907 1908 chan->max_antenna_gain = 1909 min_t(int, chan->orig_mag, 1910 min_t(int, 1911 MBI_TO_DBI(power_rule1->max_antenna_gain), 1912 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1913 chan->max_reg_power = min_t(int, 1914 MBM_TO_DBM(power_rule1->max_eirp), 1915 MBM_TO_DBM(power_rule2->max_eirp)); 1916 1917 if (chan->flags & IEEE80211_CHAN_RADAR) { 1918 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1919 chan->dfs_cac_ms = max_t(unsigned int, 1920 rrule1->dfs_cac_ms, 1921 rrule2->dfs_cac_ms); 1922 else 1923 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1924 } 1925 1926 if (chan->orig_mpwr) { 1927 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1928 * will always follow the passed country IE power settings. 1929 */ 1930 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1931 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1932 chan->max_power = chan->max_reg_power; 1933 else 1934 chan->max_power = min(chan->orig_mpwr, 1935 chan->max_reg_power); 1936 } else { 1937 chan->max_power = chan->max_reg_power; 1938 } 1939 } 1940 1941 /* Note that right now we assume the desired channel bandwidth 1942 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1943 * per channel, the primary and the extension channel). 1944 */ 1945 static void handle_channel(struct wiphy *wiphy, 1946 enum nl80211_reg_initiator initiator, 1947 struct ieee80211_channel *chan) 1948 { 1949 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1950 struct regulatory_request *lr = get_last_request(); 1951 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1952 const struct ieee80211_reg_rule *rrule = NULL; 1953 const struct ieee80211_reg_rule *rrule1 = NULL; 1954 const struct ieee80211_reg_rule *rrule2 = NULL; 1955 1956 u32 flags = chan->orig_flags; 1957 1958 rrule = freq_reg_info(wiphy, orig_chan_freq); 1959 if (IS_ERR(rrule)) { 1960 /* check for adjacent match, therefore get rules for 1961 * chan - 20 MHz and chan + 20 MHz and test 1962 * if reg rules are adjacent 1963 */ 1964 rrule1 = freq_reg_info(wiphy, 1965 orig_chan_freq - MHZ_TO_KHZ(20)); 1966 rrule2 = freq_reg_info(wiphy, 1967 orig_chan_freq + MHZ_TO_KHZ(20)); 1968 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 1969 struct ieee80211_freq_range comb_range; 1970 1971 if (rrule1->freq_range.end_freq_khz != 1972 rrule2->freq_range.start_freq_khz) 1973 goto disable_chan; 1974 1975 comb_range.start_freq_khz = 1976 rrule1->freq_range.start_freq_khz; 1977 comb_range.end_freq_khz = 1978 rrule2->freq_range.end_freq_khz; 1979 comb_range.max_bandwidth_khz = 1980 min_t(u32, 1981 rrule1->freq_range.max_bandwidth_khz, 1982 rrule2->freq_range.max_bandwidth_khz); 1983 1984 if (!cfg80211_does_bw_fit_range(&comb_range, 1985 orig_chan_freq, 1986 MHZ_TO_KHZ(20))) 1987 goto disable_chan; 1988 1989 handle_channel_adjacent_rules(wiphy, initiator, chan, 1990 flags, lr, request_wiphy, 1991 rrule1, rrule2, 1992 &comb_range); 1993 return; 1994 } 1995 1996 disable_chan: 1997 /* We will disable all channels that do not match our 1998 * received regulatory rule unless the hint is coming 1999 * from a Country IE and the Country IE had no information 2000 * about a band. The IEEE 802.11 spec allows for an AP 2001 * to send only a subset of the regulatory rules allowed, 2002 * so an AP in the US that only supports 2.4 GHz may only send 2003 * a country IE with information for the 2.4 GHz band 2004 * while 5 GHz is still supported. 2005 */ 2006 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2007 PTR_ERR(rrule) == -ERANGE) 2008 return; 2009 2010 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2011 request_wiphy && request_wiphy == wiphy && 2012 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2013 pr_debug("Disabling freq %d.%03d MHz for good\n", 2014 chan->center_freq, chan->freq_offset); 2015 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2016 chan->flags = chan->orig_flags; 2017 } else { 2018 pr_debug("Disabling freq %d.%03d MHz\n", 2019 chan->center_freq, chan->freq_offset); 2020 chan->flags |= IEEE80211_CHAN_DISABLED; 2021 } 2022 return; 2023 } 2024 2025 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2026 request_wiphy, rrule); 2027 } 2028 2029 static void handle_band(struct wiphy *wiphy, 2030 enum nl80211_reg_initiator initiator, 2031 struct ieee80211_supported_band *sband) 2032 { 2033 unsigned int i; 2034 2035 if (!sband) 2036 return; 2037 2038 for (i = 0; i < sband->n_channels; i++) 2039 handle_channel(wiphy, initiator, &sband->channels[i]); 2040 } 2041 2042 static bool reg_request_cell_base(struct regulatory_request *request) 2043 { 2044 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2045 return false; 2046 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2047 } 2048 2049 bool reg_last_request_cell_base(void) 2050 { 2051 return reg_request_cell_base(get_last_request()); 2052 } 2053 2054 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2055 /* Core specific check */ 2056 static enum reg_request_treatment 2057 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2058 { 2059 struct regulatory_request *lr = get_last_request(); 2060 2061 if (!reg_num_devs_support_basehint) 2062 return REG_REQ_IGNORE; 2063 2064 if (reg_request_cell_base(lr) && 2065 !regdom_changes(pending_request->alpha2)) 2066 return REG_REQ_ALREADY_SET; 2067 2068 return REG_REQ_OK; 2069 } 2070 2071 /* Device specific check */ 2072 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2073 { 2074 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2075 } 2076 #else 2077 static enum reg_request_treatment 2078 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2079 { 2080 return REG_REQ_IGNORE; 2081 } 2082 2083 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2084 { 2085 return true; 2086 } 2087 #endif 2088 2089 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2090 { 2091 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2092 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2093 return true; 2094 return false; 2095 } 2096 2097 static bool ignore_reg_update(struct wiphy *wiphy, 2098 enum nl80211_reg_initiator initiator) 2099 { 2100 struct regulatory_request *lr = get_last_request(); 2101 2102 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2103 return true; 2104 2105 if (!lr) { 2106 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2107 reg_initiator_name(initiator)); 2108 return true; 2109 } 2110 2111 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2112 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2113 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2114 reg_initiator_name(initiator)); 2115 return true; 2116 } 2117 2118 /* 2119 * wiphy->regd will be set once the device has its own 2120 * desired regulatory domain set 2121 */ 2122 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2123 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2124 !is_world_regdom(lr->alpha2)) { 2125 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2126 reg_initiator_name(initiator)); 2127 return true; 2128 } 2129 2130 if (reg_request_cell_base(lr)) 2131 return reg_dev_ignore_cell_hint(wiphy); 2132 2133 return false; 2134 } 2135 2136 static bool reg_is_world_roaming(struct wiphy *wiphy) 2137 { 2138 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2139 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2140 struct regulatory_request *lr = get_last_request(); 2141 2142 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2143 return true; 2144 2145 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2146 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2147 return true; 2148 2149 return false; 2150 } 2151 2152 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2153 struct reg_beacon *reg_beacon) 2154 { 2155 struct ieee80211_supported_band *sband; 2156 struct ieee80211_channel *chan; 2157 bool channel_changed = false; 2158 struct ieee80211_channel chan_before; 2159 2160 sband = wiphy->bands[reg_beacon->chan.band]; 2161 chan = &sband->channels[chan_idx]; 2162 2163 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2164 return; 2165 2166 if (chan->beacon_found) 2167 return; 2168 2169 chan->beacon_found = true; 2170 2171 if (!reg_is_world_roaming(wiphy)) 2172 return; 2173 2174 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2175 return; 2176 2177 chan_before = *chan; 2178 2179 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2180 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2181 channel_changed = true; 2182 } 2183 2184 if (channel_changed) 2185 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2186 } 2187 2188 /* 2189 * Called when a scan on a wiphy finds a beacon on 2190 * new channel 2191 */ 2192 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2193 struct reg_beacon *reg_beacon) 2194 { 2195 unsigned int i; 2196 struct ieee80211_supported_band *sband; 2197 2198 if (!wiphy->bands[reg_beacon->chan.band]) 2199 return; 2200 2201 sband = wiphy->bands[reg_beacon->chan.band]; 2202 2203 for (i = 0; i < sband->n_channels; i++) 2204 handle_reg_beacon(wiphy, i, reg_beacon); 2205 } 2206 2207 /* 2208 * Called upon reg changes or a new wiphy is added 2209 */ 2210 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2211 { 2212 unsigned int i; 2213 struct ieee80211_supported_band *sband; 2214 struct reg_beacon *reg_beacon; 2215 2216 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2217 if (!wiphy->bands[reg_beacon->chan.band]) 2218 continue; 2219 sband = wiphy->bands[reg_beacon->chan.band]; 2220 for (i = 0; i < sband->n_channels; i++) 2221 handle_reg_beacon(wiphy, i, reg_beacon); 2222 } 2223 } 2224 2225 /* Reap the advantages of previously found beacons */ 2226 static void reg_process_beacons(struct wiphy *wiphy) 2227 { 2228 /* 2229 * Means we are just firing up cfg80211, so no beacons would 2230 * have been processed yet. 2231 */ 2232 if (!last_request) 2233 return; 2234 wiphy_update_beacon_reg(wiphy); 2235 } 2236 2237 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2238 { 2239 if (!chan) 2240 return false; 2241 if (chan->flags & IEEE80211_CHAN_DISABLED) 2242 return false; 2243 /* This would happen when regulatory rules disallow HT40 completely */ 2244 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2245 return false; 2246 return true; 2247 } 2248 2249 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2250 struct ieee80211_channel *channel) 2251 { 2252 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2253 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2254 const struct ieee80211_regdomain *regd; 2255 unsigned int i; 2256 u32 flags; 2257 2258 if (!is_ht40_allowed(channel)) { 2259 channel->flags |= IEEE80211_CHAN_NO_HT40; 2260 return; 2261 } 2262 2263 /* 2264 * We need to ensure the extension channels exist to 2265 * be able to use HT40- or HT40+, this finds them (or not) 2266 */ 2267 for (i = 0; i < sband->n_channels; i++) { 2268 struct ieee80211_channel *c = &sband->channels[i]; 2269 2270 if (c->center_freq == (channel->center_freq - 20)) 2271 channel_before = c; 2272 if (c->center_freq == (channel->center_freq + 20)) 2273 channel_after = c; 2274 } 2275 2276 flags = 0; 2277 regd = get_wiphy_regdom(wiphy); 2278 if (regd) { 2279 const struct ieee80211_reg_rule *reg_rule = 2280 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2281 regd, MHZ_TO_KHZ(20)); 2282 2283 if (!IS_ERR(reg_rule)) 2284 flags = reg_rule->flags; 2285 } 2286 2287 /* 2288 * Please note that this assumes target bandwidth is 20 MHz, 2289 * if that ever changes we also need to change the below logic 2290 * to include that as well. 2291 */ 2292 if (!is_ht40_allowed(channel_before) || 2293 flags & NL80211_RRF_NO_HT40MINUS) 2294 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2295 else 2296 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2297 2298 if (!is_ht40_allowed(channel_after) || 2299 flags & NL80211_RRF_NO_HT40PLUS) 2300 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2301 else 2302 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2303 } 2304 2305 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2306 struct ieee80211_supported_band *sband) 2307 { 2308 unsigned int i; 2309 2310 if (!sband) 2311 return; 2312 2313 for (i = 0; i < sband->n_channels; i++) 2314 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2315 } 2316 2317 static void reg_process_ht_flags(struct wiphy *wiphy) 2318 { 2319 enum nl80211_band band; 2320 2321 if (!wiphy) 2322 return; 2323 2324 for (band = 0; band < NUM_NL80211_BANDS; band++) 2325 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2326 } 2327 2328 static void reg_call_notifier(struct wiphy *wiphy, 2329 struct regulatory_request *request) 2330 { 2331 if (wiphy->reg_notifier) 2332 wiphy->reg_notifier(wiphy, request); 2333 } 2334 2335 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2336 { 2337 struct cfg80211_chan_def chandef = {}; 2338 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2339 enum nl80211_iftype iftype; 2340 bool ret; 2341 int link; 2342 2343 wdev_lock(wdev); 2344 iftype = wdev->iftype; 2345 2346 /* make sure the interface is active */ 2347 if (!wdev->netdev || !netif_running(wdev->netdev)) 2348 goto wdev_inactive_unlock; 2349 2350 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) { 2351 struct ieee80211_channel *chan; 2352 2353 if (!wdev->valid_links && link > 0) 2354 break; 2355 if (!(wdev->valid_links & BIT(link))) 2356 continue; 2357 switch (iftype) { 2358 case NL80211_IFTYPE_AP: 2359 case NL80211_IFTYPE_P2P_GO: 2360 if (!wdev->links[link].ap.beacon_interval) 2361 continue; 2362 chandef = wdev->links[link].ap.chandef; 2363 break; 2364 case NL80211_IFTYPE_MESH_POINT: 2365 if (!wdev->u.mesh.beacon_interval) 2366 continue; 2367 chandef = wdev->u.mesh.chandef; 2368 break; 2369 case NL80211_IFTYPE_ADHOC: 2370 if (!wdev->u.ibss.ssid_len) 2371 continue; 2372 chandef = wdev->u.ibss.chandef; 2373 break; 2374 case NL80211_IFTYPE_STATION: 2375 case NL80211_IFTYPE_P2P_CLIENT: 2376 /* Maybe we could consider disabling that link only? */ 2377 if (!wdev->links[link].client.current_bss) 2378 continue; 2379 2380 chan = wdev->links[link].client.current_bss->pub.channel; 2381 if (!chan) 2382 continue; 2383 2384 if (!rdev->ops->get_channel || 2385 rdev_get_channel(rdev, wdev, link, &chandef)) 2386 cfg80211_chandef_create(&chandef, chan, 2387 NL80211_CHAN_NO_HT); 2388 break; 2389 case NL80211_IFTYPE_MONITOR: 2390 case NL80211_IFTYPE_AP_VLAN: 2391 case NL80211_IFTYPE_P2P_DEVICE: 2392 /* no enforcement required */ 2393 break; 2394 default: 2395 /* others not implemented for now */ 2396 WARN_ON(1); 2397 break; 2398 } 2399 2400 wdev_unlock(wdev); 2401 2402 switch (iftype) { 2403 case NL80211_IFTYPE_AP: 2404 case NL80211_IFTYPE_P2P_GO: 2405 case NL80211_IFTYPE_ADHOC: 2406 case NL80211_IFTYPE_MESH_POINT: 2407 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, 2408 iftype); 2409 if (!ret) 2410 return ret; 2411 break; 2412 case NL80211_IFTYPE_STATION: 2413 case NL80211_IFTYPE_P2P_CLIENT: 2414 ret = cfg80211_chandef_usable(wiphy, &chandef, 2415 IEEE80211_CHAN_DISABLED); 2416 if (!ret) 2417 return ret; 2418 break; 2419 default: 2420 break; 2421 } 2422 2423 wdev_lock(wdev); 2424 } 2425 2426 wdev_unlock(wdev); 2427 2428 return true; 2429 2430 wdev_inactive_unlock: 2431 wdev_unlock(wdev); 2432 return true; 2433 } 2434 2435 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2436 { 2437 struct wireless_dev *wdev; 2438 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2439 2440 wiphy_lock(wiphy); 2441 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2442 if (!reg_wdev_chan_valid(wiphy, wdev)) 2443 cfg80211_leave(rdev, wdev); 2444 wiphy_unlock(wiphy); 2445 } 2446 2447 static void reg_check_chans_work(struct work_struct *work) 2448 { 2449 struct cfg80211_registered_device *rdev; 2450 2451 pr_debug("Verifying active interfaces after reg change\n"); 2452 rtnl_lock(); 2453 2454 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2455 if (!(rdev->wiphy.regulatory_flags & 2456 REGULATORY_IGNORE_STALE_KICKOFF)) 2457 reg_leave_invalid_chans(&rdev->wiphy); 2458 2459 rtnl_unlock(); 2460 } 2461 2462 static void reg_check_channels(void) 2463 { 2464 /* 2465 * Give usermode a chance to do something nicer (move to another 2466 * channel, orderly disconnection), before forcing a disconnection. 2467 */ 2468 mod_delayed_work(system_power_efficient_wq, 2469 ®_check_chans, 2470 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2471 } 2472 2473 static void wiphy_update_regulatory(struct wiphy *wiphy, 2474 enum nl80211_reg_initiator initiator) 2475 { 2476 enum nl80211_band band; 2477 struct regulatory_request *lr = get_last_request(); 2478 2479 if (ignore_reg_update(wiphy, initiator)) { 2480 /* 2481 * Regulatory updates set by CORE are ignored for custom 2482 * regulatory cards. Let us notify the changes to the driver, 2483 * as some drivers used this to restore its orig_* reg domain. 2484 */ 2485 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2486 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2487 !(wiphy->regulatory_flags & 2488 REGULATORY_WIPHY_SELF_MANAGED)) 2489 reg_call_notifier(wiphy, lr); 2490 return; 2491 } 2492 2493 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2494 2495 for (band = 0; band < NUM_NL80211_BANDS; band++) 2496 handle_band(wiphy, initiator, wiphy->bands[band]); 2497 2498 reg_process_beacons(wiphy); 2499 reg_process_ht_flags(wiphy); 2500 reg_call_notifier(wiphy, lr); 2501 } 2502 2503 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2504 { 2505 struct cfg80211_registered_device *rdev; 2506 struct wiphy *wiphy; 2507 2508 ASSERT_RTNL(); 2509 2510 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2511 wiphy = &rdev->wiphy; 2512 wiphy_update_regulatory(wiphy, initiator); 2513 } 2514 2515 reg_check_channels(); 2516 } 2517 2518 static void handle_channel_custom(struct wiphy *wiphy, 2519 struct ieee80211_channel *chan, 2520 const struct ieee80211_regdomain *regd, 2521 u32 min_bw) 2522 { 2523 u32 bw_flags = 0; 2524 const struct ieee80211_reg_rule *reg_rule = NULL; 2525 const struct ieee80211_power_rule *power_rule = NULL; 2526 u32 bw, center_freq_khz; 2527 2528 center_freq_khz = ieee80211_channel_to_khz(chan); 2529 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2530 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2531 if (!IS_ERR(reg_rule)) 2532 break; 2533 } 2534 2535 if (IS_ERR_OR_NULL(reg_rule)) { 2536 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2537 chan->center_freq, chan->freq_offset); 2538 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2539 chan->flags |= IEEE80211_CHAN_DISABLED; 2540 } else { 2541 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2542 chan->flags = chan->orig_flags; 2543 } 2544 return; 2545 } 2546 2547 power_rule = ®_rule->power_rule; 2548 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2549 2550 chan->dfs_state_entered = jiffies; 2551 chan->dfs_state = NL80211_DFS_USABLE; 2552 2553 chan->beacon_found = false; 2554 2555 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2556 chan->flags = chan->orig_flags | bw_flags | 2557 map_regdom_flags(reg_rule->flags); 2558 else 2559 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2560 2561 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2562 chan->max_reg_power = chan->max_power = 2563 (int) MBM_TO_DBM(power_rule->max_eirp); 2564 2565 if (chan->flags & IEEE80211_CHAN_RADAR) { 2566 if (reg_rule->dfs_cac_ms) 2567 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2568 else 2569 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2570 } 2571 2572 chan->max_power = chan->max_reg_power; 2573 } 2574 2575 static void handle_band_custom(struct wiphy *wiphy, 2576 struct ieee80211_supported_band *sband, 2577 const struct ieee80211_regdomain *regd) 2578 { 2579 unsigned int i; 2580 2581 if (!sband) 2582 return; 2583 2584 /* 2585 * We currently assume that you always want at least 20 MHz, 2586 * otherwise channel 12 might get enabled if this rule is 2587 * compatible to US, which permits 2402 - 2472 MHz. 2588 */ 2589 for (i = 0; i < sband->n_channels; i++) 2590 handle_channel_custom(wiphy, &sband->channels[i], regd, 2591 MHZ_TO_KHZ(20)); 2592 } 2593 2594 /* Used by drivers prior to wiphy registration */ 2595 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2596 const struct ieee80211_regdomain *regd) 2597 { 2598 const struct ieee80211_regdomain *new_regd, *tmp; 2599 enum nl80211_band band; 2600 unsigned int bands_set = 0; 2601 2602 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2603 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2604 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2605 2606 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2607 if (!wiphy->bands[band]) 2608 continue; 2609 handle_band_custom(wiphy, wiphy->bands[band], regd); 2610 bands_set++; 2611 } 2612 2613 /* 2614 * no point in calling this if it won't have any effect 2615 * on your device's supported bands. 2616 */ 2617 WARN_ON(!bands_set); 2618 new_regd = reg_copy_regd(regd); 2619 if (IS_ERR(new_regd)) 2620 return; 2621 2622 rtnl_lock(); 2623 wiphy_lock(wiphy); 2624 2625 tmp = get_wiphy_regdom(wiphy); 2626 rcu_assign_pointer(wiphy->regd, new_regd); 2627 rcu_free_regdom(tmp); 2628 2629 wiphy_unlock(wiphy); 2630 rtnl_unlock(); 2631 } 2632 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2633 2634 static void reg_set_request_processed(void) 2635 { 2636 bool need_more_processing = false; 2637 struct regulatory_request *lr = get_last_request(); 2638 2639 lr->processed = true; 2640 2641 spin_lock(®_requests_lock); 2642 if (!list_empty(®_requests_list)) 2643 need_more_processing = true; 2644 spin_unlock(®_requests_lock); 2645 2646 cancel_crda_timeout(); 2647 2648 if (need_more_processing) 2649 schedule_work(®_work); 2650 } 2651 2652 /** 2653 * reg_process_hint_core - process core regulatory requests 2654 * @core_request: a pending core regulatory request 2655 * 2656 * The wireless subsystem can use this function to process 2657 * a regulatory request issued by the regulatory core. 2658 */ 2659 static enum reg_request_treatment 2660 reg_process_hint_core(struct regulatory_request *core_request) 2661 { 2662 if (reg_query_database(core_request)) { 2663 core_request->intersect = false; 2664 core_request->processed = false; 2665 reg_update_last_request(core_request); 2666 return REG_REQ_OK; 2667 } 2668 2669 return REG_REQ_IGNORE; 2670 } 2671 2672 static enum reg_request_treatment 2673 __reg_process_hint_user(struct regulatory_request *user_request) 2674 { 2675 struct regulatory_request *lr = get_last_request(); 2676 2677 if (reg_request_cell_base(user_request)) 2678 return reg_ignore_cell_hint(user_request); 2679 2680 if (reg_request_cell_base(lr)) 2681 return REG_REQ_IGNORE; 2682 2683 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2684 return REG_REQ_INTERSECT; 2685 /* 2686 * If the user knows better the user should set the regdom 2687 * to their country before the IE is picked up 2688 */ 2689 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2690 lr->intersect) 2691 return REG_REQ_IGNORE; 2692 /* 2693 * Process user requests only after previous user/driver/core 2694 * requests have been processed 2695 */ 2696 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2697 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2698 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2699 regdom_changes(lr->alpha2)) 2700 return REG_REQ_IGNORE; 2701 2702 if (!regdom_changes(user_request->alpha2)) 2703 return REG_REQ_ALREADY_SET; 2704 2705 return REG_REQ_OK; 2706 } 2707 2708 /** 2709 * reg_process_hint_user - process user regulatory requests 2710 * @user_request: a pending user regulatory request 2711 * 2712 * The wireless subsystem can use this function to process 2713 * a regulatory request initiated by userspace. 2714 */ 2715 static enum reg_request_treatment 2716 reg_process_hint_user(struct regulatory_request *user_request) 2717 { 2718 enum reg_request_treatment treatment; 2719 2720 treatment = __reg_process_hint_user(user_request); 2721 if (treatment == REG_REQ_IGNORE || 2722 treatment == REG_REQ_ALREADY_SET) 2723 return REG_REQ_IGNORE; 2724 2725 user_request->intersect = treatment == REG_REQ_INTERSECT; 2726 user_request->processed = false; 2727 2728 if (reg_query_database(user_request)) { 2729 reg_update_last_request(user_request); 2730 user_alpha2[0] = user_request->alpha2[0]; 2731 user_alpha2[1] = user_request->alpha2[1]; 2732 return REG_REQ_OK; 2733 } 2734 2735 return REG_REQ_IGNORE; 2736 } 2737 2738 static enum reg_request_treatment 2739 __reg_process_hint_driver(struct regulatory_request *driver_request) 2740 { 2741 struct regulatory_request *lr = get_last_request(); 2742 2743 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2744 if (regdom_changes(driver_request->alpha2)) 2745 return REG_REQ_OK; 2746 return REG_REQ_ALREADY_SET; 2747 } 2748 2749 /* 2750 * This would happen if you unplug and plug your card 2751 * back in or if you add a new device for which the previously 2752 * loaded card also agrees on the regulatory domain. 2753 */ 2754 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2755 !regdom_changes(driver_request->alpha2)) 2756 return REG_REQ_ALREADY_SET; 2757 2758 return REG_REQ_INTERSECT; 2759 } 2760 2761 /** 2762 * reg_process_hint_driver - process driver regulatory requests 2763 * @wiphy: the wireless device for the regulatory request 2764 * @driver_request: a pending driver regulatory request 2765 * 2766 * The wireless subsystem can use this function to process 2767 * a regulatory request issued by an 802.11 driver. 2768 * 2769 * Returns one of the different reg request treatment values. 2770 */ 2771 static enum reg_request_treatment 2772 reg_process_hint_driver(struct wiphy *wiphy, 2773 struct regulatory_request *driver_request) 2774 { 2775 const struct ieee80211_regdomain *regd, *tmp; 2776 enum reg_request_treatment treatment; 2777 2778 treatment = __reg_process_hint_driver(driver_request); 2779 2780 switch (treatment) { 2781 case REG_REQ_OK: 2782 break; 2783 case REG_REQ_IGNORE: 2784 return REG_REQ_IGNORE; 2785 case REG_REQ_INTERSECT: 2786 case REG_REQ_ALREADY_SET: 2787 regd = reg_copy_regd(get_cfg80211_regdom()); 2788 if (IS_ERR(regd)) 2789 return REG_REQ_IGNORE; 2790 2791 tmp = get_wiphy_regdom(wiphy); 2792 ASSERT_RTNL(); 2793 wiphy_lock(wiphy); 2794 rcu_assign_pointer(wiphy->regd, regd); 2795 wiphy_unlock(wiphy); 2796 rcu_free_regdom(tmp); 2797 } 2798 2799 2800 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2801 driver_request->processed = false; 2802 2803 /* 2804 * Since CRDA will not be called in this case as we already 2805 * have applied the requested regulatory domain before we just 2806 * inform userspace we have processed the request 2807 */ 2808 if (treatment == REG_REQ_ALREADY_SET) { 2809 nl80211_send_reg_change_event(driver_request); 2810 reg_update_last_request(driver_request); 2811 reg_set_request_processed(); 2812 return REG_REQ_ALREADY_SET; 2813 } 2814 2815 if (reg_query_database(driver_request)) { 2816 reg_update_last_request(driver_request); 2817 return REG_REQ_OK; 2818 } 2819 2820 return REG_REQ_IGNORE; 2821 } 2822 2823 static enum reg_request_treatment 2824 __reg_process_hint_country_ie(struct wiphy *wiphy, 2825 struct regulatory_request *country_ie_request) 2826 { 2827 struct wiphy *last_wiphy = NULL; 2828 struct regulatory_request *lr = get_last_request(); 2829 2830 if (reg_request_cell_base(lr)) { 2831 /* Trust a Cell base station over the AP's country IE */ 2832 if (regdom_changes(country_ie_request->alpha2)) 2833 return REG_REQ_IGNORE; 2834 return REG_REQ_ALREADY_SET; 2835 } else { 2836 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2837 return REG_REQ_IGNORE; 2838 } 2839 2840 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2841 return -EINVAL; 2842 2843 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2844 return REG_REQ_OK; 2845 2846 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2847 2848 if (last_wiphy != wiphy) { 2849 /* 2850 * Two cards with two APs claiming different 2851 * Country IE alpha2s. We could 2852 * intersect them, but that seems unlikely 2853 * to be correct. Reject second one for now. 2854 */ 2855 if (regdom_changes(country_ie_request->alpha2)) 2856 return REG_REQ_IGNORE; 2857 return REG_REQ_ALREADY_SET; 2858 } 2859 2860 if (regdom_changes(country_ie_request->alpha2)) 2861 return REG_REQ_OK; 2862 return REG_REQ_ALREADY_SET; 2863 } 2864 2865 /** 2866 * reg_process_hint_country_ie - process regulatory requests from country IEs 2867 * @wiphy: the wireless device for the regulatory request 2868 * @country_ie_request: a regulatory request from a country IE 2869 * 2870 * The wireless subsystem can use this function to process 2871 * a regulatory request issued by a country Information Element. 2872 * 2873 * Returns one of the different reg request treatment values. 2874 */ 2875 static enum reg_request_treatment 2876 reg_process_hint_country_ie(struct wiphy *wiphy, 2877 struct regulatory_request *country_ie_request) 2878 { 2879 enum reg_request_treatment treatment; 2880 2881 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2882 2883 switch (treatment) { 2884 case REG_REQ_OK: 2885 break; 2886 case REG_REQ_IGNORE: 2887 return REG_REQ_IGNORE; 2888 case REG_REQ_ALREADY_SET: 2889 reg_free_request(country_ie_request); 2890 return REG_REQ_ALREADY_SET; 2891 case REG_REQ_INTERSECT: 2892 /* 2893 * This doesn't happen yet, not sure we 2894 * ever want to support it for this case. 2895 */ 2896 WARN_ONCE(1, "Unexpected intersection for country elements"); 2897 return REG_REQ_IGNORE; 2898 } 2899 2900 country_ie_request->intersect = false; 2901 country_ie_request->processed = false; 2902 2903 if (reg_query_database(country_ie_request)) { 2904 reg_update_last_request(country_ie_request); 2905 return REG_REQ_OK; 2906 } 2907 2908 return REG_REQ_IGNORE; 2909 } 2910 2911 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2912 { 2913 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2914 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2915 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2916 bool dfs_domain_same; 2917 2918 rcu_read_lock(); 2919 2920 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2921 wiphy1_regd = rcu_dereference(wiphy1->regd); 2922 if (!wiphy1_regd) 2923 wiphy1_regd = cfg80211_regd; 2924 2925 wiphy2_regd = rcu_dereference(wiphy2->regd); 2926 if (!wiphy2_regd) 2927 wiphy2_regd = cfg80211_regd; 2928 2929 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2930 2931 rcu_read_unlock(); 2932 2933 return dfs_domain_same; 2934 } 2935 2936 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2937 struct ieee80211_channel *src_chan) 2938 { 2939 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2940 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2941 return; 2942 2943 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2944 src_chan->flags & IEEE80211_CHAN_DISABLED) 2945 return; 2946 2947 if (src_chan->center_freq == dst_chan->center_freq && 2948 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2949 dst_chan->dfs_state = src_chan->dfs_state; 2950 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2951 } 2952 } 2953 2954 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2955 struct wiphy *src_wiphy) 2956 { 2957 struct ieee80211_supported_band *src_sband, *dst_sband; 2958 struct ieee80211_channel *src_chan, *dst_chan; 2959 int i, j, band; 2960 2961 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2962 return; 2963 2964 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2965 dst_sband = dst_wiphy->bands[band]; 2966 src_sband = src_wiphy->bands[band]; 2967 if (!dst_sband || !src_sband) 2968 continue; 2969 2970 for (i = 0; i < dst_sband->n_channels; i++) { 2971 dst_chan = &dst_sband->channels[i]; 2972 for (j = 0; j < src_sband->n_channels; j++) { 2973 src_chan = &src_sband->channels[j]; 2974 reg_copy_dfs_chan_state(dst_chan, src_chan); 2975 } 2976 } 2977 } 2978 } 2979 2980 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2981 { 2982 struct cfg80211_registered_device *rdev; 2983 2984 ASSERT_RTNL(); 2985 2986 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2987 if (wiphy == &rdev->wiphy) 2988 continue; 2989 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2990 } 2991 } 2992 2993 /* This processes *all* regulatory hints */ 2994 static void reg_process_hint(struct regulatory_request *reg_request) 2995 { 2996 struct wiphy *wiphy = NULL; 2997 enum reg_request_treatment treatment; 2998 enum nl80211_reg_initiator initiator = reg_request->initiator; 2999 3000 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 3001 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 3002 3003 switch (initiator) { 3004 case NL80211_REGDOM_SET_BY_CORE: 3005 treatment = reg_process_hint_core(reg_request); 3006 break; 3007 case NL80211_REGDOM_SET_BY_USER: 3008 treatment = reg_process_hint_user(reg_request); 3009 break; 3010 case NL80211_REGDOM_SET_BY_DRIVER: 3011 if (!wiphy) 3012 goto out_free; 3013 treatment = reg_process_hint_driver(wiphy, reg_request); 3014 break; 3015 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3016 if (!wiphy) 3017 goto out_free; 3018 treatment = reg_process_hint_country_ie(wiphy, reg_request); 3019 break; 3020 default: 3021 WARN(1, "invalid initiator %d\n", initiator); 3022 goto out_free; 3023 } 3024 3025 if (treatment == REG_REQ_IGNORE) 3026 goto out_free; 3027 3028 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 3029 "unexpected treatment value %d\n", treatment); 3030 3031 /* This is required so that the orig_* parameters are saved. 3032 * NOTE: treatment must be set for any case that reaches here! 3033 */ 3034 if (treatment == REG_REQ_ALREADY_SET && wiphy && 3035 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 3036 wiphy_update_regulatory(wiphy, initiator); 3037 wiphy_all_share_dfs_chan_state(wiphy); 3038 reg_check_channels(); 3039 } 3040 3041 return; 3042 3043 out_free: 3044 reg_free_request(reg_request); 3045 } 3046 3047 static void notify_self_managed_wiphys(struct regulatory_request *request) 3048 { 3049 struct cfg80211_registered_device *rdev; 3050 struct wiphy *wiphy; 3051 3052 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3053 wiphy = &rdev->wiphy; 3054 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 3055 request->initiator == NL80211_REGDOM_SET_BY_USER) 3056 reg_call_notifier(wiphy, request); 3057 } 3058 } 3059 3060 /* 3061 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 3062 * Regulatory hints come on a first come first serve basis and we 3063 * must process each one atomically. 3064 */ 3065 static void reg_process_pending_hints(void) 3066 { 3067 struct regulatory_request *reg_request, *lr; 3068 3069 lr = get_last_request(); 3070 3071 /* When last_request->processed becomes true this will be rescheduled */ 3072 if (lr && !lr->processed) { 3073 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3074 return; 3075 } 3076 3077 spin_lock(®_requests_lock); 3078 3079 if (list_empty(®_requests_list)) { 3080 spin_unlock(®_requests_lock); 3081 return; 3082 } 3083 3084 reg_request = list_first_entry(®_requests_list, 3085 struct regulatory_request, 3086 list); 3087 list_del_init(®_request->list); 3088 3089 spin_unlock(®_requests_lock); 3090 3091 notify_self_managed_wiphys(reg_request); 3092 3093 reg_process_hint(reg_request); 3094 3095 lr = get_last_request(); 3096 3097 spin_lock(®_requests_lock); 3098 if (!list_empty(®_requests_list) && lr && lr->processed) 3099 schedule_work(®_work); 3100 spin_unlock(®_requests_lock); 3101 } 3102 3103 /* Processes beacon hints -- this has nothing to do with country IEs */ 3104 static void reg_process_pending_beacon_hints(void) 3105 { 3106 struct cfg80211_registered_device *rdev; 3107 struct reg_beacon *pending_beacon, *tmp; 3108 3109 /* This goes through the _pending_ beacon list */ 3110 spin_lock_bh(®_pending_beacons_lock); 3111 3112 list_for_each_entry_safe(pending_beacon, tmp, 3113 ®_pending_beacons, list) { 3114 list_del_init(&pending_beacon->list); 3115 3116 /* Applies the beacon hint to current wiphys */ 3117 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 3118 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3119 3120 /* Remembers the beacon hint for new wiphys or reg changes */ 3121 list_add_tail(&pending_beacon->list, ®_beacon_list); 3122 } 3123 3124 spin_unlock_bh(®_pending_beacons_lock); 3125 } 3126 3127 static void reg_process_self_managed_hint(struct wiphy *wiphy) 3128 { 3129 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3130 const struct ieee80211_regdomain *tmp; 3131 const struct ieee80211_regdomain *regd; 3132 enum nl80211_band band; 3133 struct regulatory_request request = {}; 3134 3135 ASSERT_RTNL(); 3136 lockdep_assert_wiphy(wiphy); 3137 3138 spin_lock(®_requests_lock); 3139 regd = rdev->requested_regd; 3140 rdev->requested_regd = NULL; 3141 spin_unlock(®_requests_lock); 3142 3143 if (!regd) 3144 return; 3145 3146 tmp = get_wiphy_regdom(wiphy); 3147 rcu_assign_pointer(wiphy->regd, regd); 3148 rcu_free_regdom(tmp); 3149 3150 for (band = 0; band < NUM_NL80211_BANDS; band++) 3151 handle_band_custom(wiphy, wiphy->bands[band], regd); 3152 3153 reg_process_ht_flags(wiphy); 3154 3155 request.wiphy_idx = get_wiphy_idx(wiphy); 3156 request.alpha2[0] = regd->alpha2[0]; 3157 request.alpha2[1] = regd->alpha2[1]; 3158 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3159 3160 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER) 3161 reg_call_notifier(wiphy, &request); 3162 3163 nl80211_send_wiphy_reg_change_event(&request); 3164 } 3165 3166 static void reg_process_self_managed_hints(void) 3167 { 3168 struct cfg80211_registered_device *rdev; 3169 3170 ASSERT_RTNL(); 3171 3172 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3173 wiphy_lock(&rdev->wiphy); 3174 reg_process_self_managed_hint(&rdev->wiphy); 3175 wiphy_unlock(&rdev->wiphy); 3176 } 3177 3178 reg_check_channels(); 3179 } 3180 3181 static void reg_todo(struct work_struct *work) 3182 { 3183 rtnl_lock(); 3184 reg_process_pending_hints(); 3185 reg_process_pending_beacon_hints(); 3186 reg_process_self_managed_hints(); 3187 rtnl_unlock(); 3188 } 3189 3190 static void queue_regulatory_request(struct regulatory_request *request) 3191 { 3192 request->alpha2[0] = toupper(request->alpha2[0]); 3193 request->alpha2[1] = toupper(request->alpha2[1]); 3194 3195 spin_lock(®_requests_lock); 3196 list_add_tail(&request->list, ®_requests_list); 3197 spin_unlock(®_requests_lock); 3198 3199 schedule_work(®_work); 3200 } 3201 3202 /* 3203 * Core regulatory hint -- happens during cfg80211_init() 3204 * and when we restore regulatory settings. 3205 */ 3206 static int regulatory_hint_core(const char *alpha2) 3207 { 3208 struct regulatory_request *request; 3209 3210 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3211 if (!request) 3212 return -ENOMEM; 3213 3214 request->alpha2[0] = alpha2[0]; 3215 request->alpha2[1] = alpha2[1]; 3216 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3217 request->wiphy_idx = WIPHY_IDX_INVALID; 3218 3219 queue_regulatory_request(request); 3220 3221 return 0; 3222 } 3223 3224 /* User hints */ 3225 int regulatory_hint_user(const char *alpha2, 3226 enum nl80211_user_reg_hint_type user_reg_hint_type) 3227 { 3228 struct regulatory_request *request; 3229 3230 if (WARN_ON(!alpha2)) 3231 return -EINVAL; 3232 3233 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3234 return -EINVAL; 3235 3236 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3237 if (!request) 3238 return -ENOMEM; 3239 3240 request->wiphy_idx = WIPHY_IDX_INVALID; 3241 request->alpha2[0] = alpha2[0]; 3242 request->alpha2[1] = alpha2[1]; 3243 request->initiator = NL80211_REGDOM_SET_BY_USER; 3244 request->user_reg_hint_type = user_reg_hint_type; 3245 3246 /* Allow calling CRDA again */ 3247 reset_crda_timeouts(); 3248 3249 queue_regulatory_request(request); 3250 3251 return 0; 3252 } 3253 3254 int regulatory_hint_indoor(bool is_indoor, u32 portid) 3255 { 3256 spin_lock(®_indoor_lock); 3257 3258 /* It is possible that more than one user space process is trying to 3259 * configure the indoor setting. To handle such cases, clear the indoor 3260 * setting in case that some process does not think that the device 3261 * is operating in an indoor environment. In addition, if a user space 3262 * process indicates that it is controlling the indoor setting, save its 3263 * portid, i.e., make it the owner. 3264 */ 3265 reg_is_indoor = is_indoor; 3266 if (reg_is_indoor) { 3267 if (!reg_is_indoor_portid) 3268 reg_is_indoor_portid = portid; 3269 } else { 3270 reg_is_indoor_portid = 0; 3271 } 3272 3273 spin_unlock(®_indoor_lock); 3274 3275 if (!is_indoor) 3276 reg_check_channels(); 3277 3278 return 0; 3279 } 3280 3281 void regulatory_netlink_notify(u32 portid) 3282 { 3283 spin_lock(®_indoor_lock); 3284 3285 if (reg_is_indoor_portid != portid) { 3286 spin_unlock(®_indoor_lock); 3287 return; 3288 } 3289 3290 reg_is_indoor = false; 3291 reg_is_indoor_portid = 0; 3292 3293 spin_unlock(®_indoor_lock); 3294 3295 reg_check_channels(); 3296 } 3297 3298 /* Driver hints */ 3299 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3300 { 3301 struct regulatory_request *request; 3302 3303 if (WARN_ON(!alpha2 || !wiphy)) 3304 return -EINVAL; 3305 3306 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3307 3308 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3309 if (!request) 3310 return -ENOMEM; 3311 3312 request->wiphy_idx = get_wiphy_idx(wiphy); 3313 3314 request->alpha2[0] = alpha2[0]; 3315 request->alpha2[1] = alpha2[1]; 3316 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3317 3318 /* Allow calling CRDA again */ 3319 reset_crda_timeouts(); 3320 3321 queue_regulatory_request(request); 3322 3323 return 0; 3324 } 3325 EXPORT_SYMBOL(regulatory_hint); 3326 3327 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3328 const u8 *country_ie, u8 country_ie_len) 3329 { 3330 char alpha2[2]; 3331 enum environment_cap env = ENVIRON_ANY; 3332 struct regulatory_request *request = NULL, *lr; 3333 3334 /* IE len must be evenly divisible by 2 */ 3335 if (country_ie_len & 0x01) 3336 return; 3337 3338 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3339 return; 3340 3341 request = kzalloc(sizeof(*request), GFP_KERNEL); 3342 if (!request) 3343 return; 3344 3345 alpha2[0] = country_ie[0]; 3346 alpha2[1] = country_ie[1]; 3347 3348 if (country_ie[2] == 'I') 3349 env = ENVIRON_INDOOR; 3350 else if (country_ie[2] == 'O') 3351 env = ENVIRON_OUTDOOR; 3352 3353 rcu_read_lock(); 3354 lr = get_last_request(); 3355 3356 if (unlikely(!lr)) 3357 goto out; 3358 3359 /* 3360 * We will run this only upon a successful connection on cfg80211. 3361 * We leave conflict resolution to the workqueue, where can hold 3362 * the RTNL. 3363 */ 3364 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3365 lr->wiphy_idx != WIPHY_IDX_INVALID) 3366 goto out; 3367 3368 request->wiphy_idx = get_wiphy_idx(wiphy); 3369 request->alpha2[0] = alpha2[0]; 3370 request->alpha2[1] = alpha2[1]; 3371 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3372 request->country_ie_env = env; 3373 3374 /* Allow calling CRDA again */ 3375 reset_crda_timeouts(); 3376 3377 queue_regulatory_request(request); 3378 request = NULL; 3379 out: 3380 kfree(request); 3381 rcu_read_unlock(); 3382 } 3383 3384 static void restore_alpha2(char *alpha2, bool reset_user) 3385 { 3386 /* indicates there is no alpha2 to consider for restoration */ 3387 alpha2[0] = '9'; 3388 alpha2[1] = '7'; 3389 3390 /* The user setting has precedence over the module parameter */ 3391 if (is_user_regdom_saved()) { 3392 /* Unless we're asked to ignore it and reset it */ 3393 if (reset_user) { 3394 pr_debug("Restoring regulatory settings including user preference\n"); 3395 user_alpha2[0] = '9'; 3396 user_alpha2[1] = '7'; 3397 3398 /* 3399 * If we're ignoring user settings, we still need to 3400 * check the module parameter to ensure we put things 3401 * back as they were for a full restore. 3402 */ 3403 if (!is_world_regdom(ieee80211_regdom)) { 3404 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3405 ieee80211_regdom[0], ieee80211_regdom[1]); 3406 alpha2[0] = ieee80211_regdom[0]; 3407 alpha2[1] = ieee80211_regdom[1]; 3408 } 3409 } else { 3410 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3411 user_alpha2[0], user_alpha2[1]); 3412 alpha2[0] = user_alpha2[0]; 3413 alpha2[1] = user_alpha2[1]; 3414 } 3415 } else if (!is_world_regdom(ieee80211_regdom)) { 3416 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3417 ieee80211_regdom[0], ieee80211_regdom[1]); 3418 alpha2[0] = ieee80211_regdom[0]; 3419 alpha2[1] = ieee80211_regdom[1]; 3420 } else 3421 pr_debug("Restoring regulatory settings\n"); 3422 } 3423 3424 static void restore_custom_reg_settings(struct wiphy *wiphy) 3425 { 3426 struct ieee80211_supported_band *sband; 3427 enum nl80211_band band; 3428 struct ieee80211_channel *chan; 3429 int i; 3430 3431 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3432 sband = wiphy->bands[band]; 3433 if (!sband) 3434 continue; 3435 for (i = 0; i < sband->n_channels; i++) { 3436 chan = &sband->channels[i]; 3437 chan->flags = chan->orig_flags; 3438 chan->max_antenna_gain = chan->orig_mag; 3439 chan->max_power = chan->orig_mpwr; 3440 chan->beacon_found = false; 3441 } 3442 } 3443 } 3444 3445 /* 3446 * Restoring regulatory settings involves ignoring any 3447 * possibly stale country IE information and user regulatory 3448 * settings if so desired, this includes any beacon hints 3449 * learned as we could have traveled outside to another country 3450 * after disconnection. To restore regulatory settings we do 3451 * exactly what we did at bootup: 3452 * 3453 * - send a core regulatory hint 3454 * - send a user regulatory hint if applicable 3455 * 3456 * Device drivers that send a regulatory hint for a specific country 3457 * keep their own regulatory domain on wiphy->regd so that does 3458 * not need to be remembered. 3459 */ 3460 static void restore_regulatory_settings(bool reset_user, bool cached) 3461 { 3462 char alpha2[2]; 3463 char world_alpha2[2]; 3464 struct reg_beacon *reg_beacon, *btmp; 3465 LIST_HEAD(tmp_reg_req_list); 3466 struct cfg80211_registered_device *rdev; 3467 3468 ASSERT_RTNL(); 3469 3470 /* 3471 * Clear the indoor setting in case that it is not controlled by user 3472 * space, as otherwise there is no guarantee that the device is still 3473 * operating in an indoor environment. 3474 */ 3475 spin_lock(®_indoor_lock); 3476 if (reg_is_indoor && !reg_is_indoor_portid) { 3477 reg_is_indoor = false; 3478 reg_check_channels(); 3479 } 3480 spin_unlock(®_indoor_lock); 3481 3482 reset_regdomains(true, &world_regdom); 3483 restore_alpha2(alpha2, reset_user); 3484 3485 /* 3486 * If there's any pending requests we simply 3487 * stash them to a temporary pending queue and 3488 * add then after we've restored regulatory 3489 * settings. 3490 */ 3491 spin_lock(®_requests_lock); 3492 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3493 spin_unlock(®_requests_lock); 3494 3495 /* Clear beacon hints */ 3496 spin_lock_bh(®_pending_beacons_lock); 3497 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3498 list_del(®_beacon->list); 3499 kfree(reg_beacon); 3500 } 3501 spin_unlock_bh(®_pending_beacons_lock); 3502 3503 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3504 list_del(®_beacon->list); 3505 kfree(reg_beacon); 3506 } 3507 3508 /* First restore to the basic regulatory settings */ 3509 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3510 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3511 3512 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3513 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3514 continue; 3515 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3516 restore_custom_reg_settings(&rdev->wiphy); 3517 } 3518 3519 if (cached && (!is_an_alpha2(alpha2) || 3520 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3521 reset_regdomains(false, cfg80211_world_regdom); 3522 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3523 print_regdomain(get_cfg80211_regdom()); 3524 nl80211_send_reg_change_event(&core_request_world); 3525 reg_set_request_processed(); 3526 3527 if (is_an_alpha2(alpha2) && 3528 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3529 struct regulatory_request *ureq; 3530 3531 spin_lock(®_requests_lock); 3532 ureq = list_last_entry(®_requests_list, 3533 struct regulatory_request, 3534 list); 3535 list_del(&ureq->list); 3536 spin_unlock(®_requests_lock); 3537 3538 notify_self_managed_wiphys(ureq); 3539 reg_update_last_request(ureq); 3540 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3541 REGD_SOURCE_CACHED); 3542 } 3543 } else { 3544 regulatory_hint_core(world_alpha2); 3545 3546 /* 3547 * This restores the ieee80211_regdom module parameter 3548 * preference or the last user requested regulatory 3549 * settings, user regulatory settings takes precedence. 3550 */ 3551 if (is_an_alpha2(alpha2)) 3552 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3553 } 3554 3555 spin_lock(®_requests_lock); 3556 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3557 spin_unlock(®_requests_lock); 3558 3559 pr_debug("Kicking the queue\n"); 3560 3561 schedule_work(®_work); 3562 } 3563 3564 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3565 { 3566 struct cfg80211_registered_device *rdev; 3567 struct wireless_dev *wdev; 3568 3569 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3570 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3571 wdev_lock(wdev); 3572 if (!(wdev->wiphy->regulatory_flags & flag)) { 3573 wdev_unlock(wdev); 3574 return false; 3575 } 3576 wdev_unlock(wdev); 3577 } 3578 } 3579 3580 return true; 3581 } 3582 3583 void regulatory_hint_disconnect(void) 3584 { 3585 /* Restore of regulatory settings is not required when wiphy(s) 3586 * ignore IE from connected access point but clearance of beacon hints 3587 * is required when wiphy(s) supports beacon hints. 3588 */ 3589 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3590 struct reg_beacon *reg_beacon, *btmp; 3591 3592 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3593 return; 3594 3595 spin_lock_bh(®_pending_beacons_lock); 3596 list_for_each_entry_safe(reg_beacon, btmp, 3597 ®_pending_beacons, list) { 3598 list_del(®_beacon->list); 3599 kfree(reg_beacon); 3600 } 3601 spin_unlock_bh(®_pending_beacons_lock); 3602 3603 list_for_each_entry_safe(reg_beacon, btmp, 3604 ®_beacon_list, list) { 3605 list_del(®_beacon->list); 3606 kfree(reg_beacon); 3607 } 3608 3609 return; 3610 } 3611 3612 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3613 restore_regulatory_settings(false, true); 3614 } 3615 3616 static bool freq_is_chan_12_13_14(u32 freq) 3617 { 3618 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3619 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3620 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3621 return true; 3622 return false; 3623 } 3624 3625 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3626 { 3627 struct reg_beacon *pending_beacon; 3628 3629 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3630 if (ieee80211_channel_equal(beacon_chan, 3631 &pending_beacon->chan)) 3632 return true; 3633 return false; 3634 } 3635 3636 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3637 struct ieee80211_channel *beacon_chan, 3638 gfp_t gfp) 3639 { 3640 struct reg_beacon *reg_beacon; 3641 bool processing; 3642 3643 if (beacon_chan->beacon_found || 3644 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3645 (beacon_chan->band == NL80211_BAND_2GHZ && 3646 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3647 return 0; 3648 3649 spin_lock_bh(®_pending_beacons_lock); 3650 processing = pending_reg_beacon(beacon_chan); 3651 spin_unlock_bh(®_pending_beacons_lock); 3652 3653 if (processing) 3654 return 0; 3655 3656 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3657 if (!reg_beacon) 3658 return -ENOMEM; 3659 3660 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3661 beacon_chan->center_freq, beacon_chan->freq_offset, 3662 ieee80211_freq_khz_to_channel( 3663 ieee80211_channel_to_khz(beacon_chan)), 3664 wiphy_name(wiphy)); 3665 3666 memcpy(®_beacon->chan, beacon_chan, 3667 sizeof(struct ieee80211_channel)); 3668 3669 /* 3670 * Since we can be called from BH or and non-BH context 3671 * we must use spin_lock_bh() 3672 */ 3673 spin_lock_bh(®_pending_beacons_lock); 3674 list_add_tail(®_beacon->list, ®_pending_beacons); 3675 spin_unlock_bh(®_pending_beacons_lock); 3676 3677 schedule_work(®_work); 3678 3679 return 0; 3680 } 3681 3682 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3683 { 3684 unsigned int i; 3685 const struct ieee80211_reg_rule *reg_rule = NULL; 3686 const struct ieee80211_freq_range *freq_range = NULL; 3687 const struct ieee80211_power_rule *power_rule = NULL; 3688 char bw[32], cac_time[32]; 3689 3690 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3691 3692 for (i = 0; i < rd->n_reg_rules; i++) { 3693 reg_rule = &rd->reg_rules[i]; 3694 freq_range = ®_rule->freq_range; 3695 power_rule = ®_rule->power_rule; 3696 3697 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3698 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", 3699 freq_range->max_bandwidth_khz, 3700 reg_get_max_bandwidth(rd, reg_rule)); 3701 else 3702 snprintf(bw, sizeof(bw), "%d KHz", 3703 freq_range->max_bandwidth_khz); 3704 3705 if (reg_rule->flags & NL80211_RRF_DFS) 3706 scnprintf(cac_time, sizeof(cac_time), "%u s", 3707 reg_rule->dfs_cac_ms/1000); 3708 else 3709 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3710 3711 3712 /* 3713 * There may not be documentation for max antenna gain 3714 * in certain regions 3715 */ 3716 if (power_rule->max_antenna_gain) 3717 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3718 freq_range->start_freq_khz, 3719 freq_range->end_freq_khz, 3720 bw, 3721 power_rule->max_antenna_gain, 3722 power_rule->max_eirp, 3723 cac_time); 3724 else 3725 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3726 freq_range->start_freq_khz, 3727 freq_range->end_freq_khz, 3728 bw, 3729 power_rule->max_eirp, 3730 cac_time); 3731 } 3732 } 3733 3734 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3735 { 3736 switch (dfs_region) { 3737 case NL80211_DFS_UNSET: 3738 case NL80211_DFS_FCC: 3739 case NL80211_DFS_ETSI: 3740 case NL80211_DFS_JP: 3741 return true; 3742 default: 3743 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3744 return false; 3745 } 3746 } 3747 3748 static void print_regdomain(const struct ieee80211_regdomain *rd) 3749 { 3750 struct regulatory_request *lr = get_last_request(); 3751 3752 if (is_intersected_alpha2(rd->alpha2)) { 3753 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3754 struct cfg80211_registered_device *rdev; 3755 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3756 if (rdev) { 3757 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3758 rdev->country_ie_alpha2[0], 3759 rdev->country_ie_alpha2[1]); 3760 } else 3761 pr_debug("Current regulatory domain intersected:\n"); 3762 } else 3763 pr_debug("Current regulatory domain intersected:\n"); 3764 } else if (is_world_regdom(rd->alpha2)) { 3765 pr_debug("World regulatory domain updated:\n"); 3766 } else { 3767 if (is_unknown_alpha2(rd->alpha2)) 3768 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3769 else { 3770 if (reg_request_cell_base(lr)) 3771 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3772 rd->alpha2[0], rd->alpha2[1]); 3773 else 3774 pr_debug("Regulatory domain changed to country: %c%c\n", 3775 rd->alpha2[0], rd->alpha2[1]); 3776 } 3777 } 3778 3779 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3780 print_rd_rules(rd); 3781 } 3782 3783 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3784 { 3785 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3786 print_rd_rules(rd); 3787 } 3788 3789 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3790 { 3791 if (!is_world_regdom(rd->alpha2)) 3792 return -EINVAL; 3793 update_world_regdomain(rd); 3794 return 0; 3795 } 3796 3797 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3798 struct regulatory_request *user_request) 3799 { 3800 const struct ieee80211_regdomain *intersected_rd = NULL; 3801 3802 if (!regdom_changes(rd->alpha2)) 3803 return -EALREADY; 3804 3805 if (!is_valid_rd(rd)) { 3806 pr_err("Invalid regulatory domain detected: %c%c\n", 3807 rd->alpha2[0], rd->alpha2[1]); 3808 print_regdomain_info(rd); 3809 return -EINVAL; 3810 } 3811 3812 if (!user_request->intersect) { 3813 reset_regdomains(false, rd); 3814 return 0; 3815 } 3816 3817 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3818 if (!intersected_rd) 3819 return -EINVAL; 3820 3821 kfree(rd); 3822 rd = NULL; 3823 reset_regdomains(false, intersected_rd); 3824 3825 return 0; 3826 } 3827 3828 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3829 struct regulatory_request *driver_request) 3830 { 3831 const struct ieee80211_regdomain *regd; 3832 const struct ieee80211_regdomain *intersected_rd = NULL; 3833 const struct ieee80211_regdomain *tmp; 3834 struct wiphy *request_wiphy; 3835 3836 if (is_world_regdom(rd->alpha2)) 3837 return -EINVAL; 3838 3839 if (!regdom_changes(rd->alpha2)) 3840 return -EALREADY; 3841 3842 if (!is_valid_rd(rd)) { 3843 pr_err("Invalid regulatory domain detected: %c%c\n", 3844 rd->alpha2[0], rd->alpha2[1]); 3845 print_regdomain_info(rd); 3846 return -EINVAL; 3847 } 3848 3849 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3850 if (!request_wiphy) 3851 return -ENODEV; 3852 3853 if (!driver_request->intersect) { 3854 ASSERT_RTNL(); 3855 wiphy_lock(request_wiphy); 3856 if (request_wiphy->regd) { 3857 wiphy_unlock(request_wiphy); 3858 return -EALREADY; 3859 } 3860 3861 regd = reg_copy_regd(rd); 3862 if (IS_ERR(regd)) { 3863 wiphy_unlock(request_wiphy); 3864 return PTR_ERR(regd); 3865 } 3866 3867 rcu_assign_pointer(request_wiphy->regd, regd); 3868 wiphy_unlock(request_wiphy); 3869 reset_regdomains(false, rd); 3870 return 0; 3871 } 3872 3873 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3874 if (!intersected_rd) 3875 return -EINVAL; 3876 3877 /* 3878 * We can trash what CRDA provided now. 3879 * However if a driver requested this specific regulatory 3880 * domain we keep it for its private use 3881 */ 3882 tmp = get_wiphy_regdom(request_wiphy); 3883 rcu_assign_pointer(request_wiphy->regd, rd); 3884 rcu_free_regdom(tmp); 3885 3886 rd = NULL; 3887 3888 reset_regdomains(false, intersected_rd); 3889 3890 return 0; 3891 } 3892 3893 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3894 struct regulatory_request *country_ie_request) 3895 { 3896 struct wiphy *request_wiphy; 3897 3898 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3899 !is_unknown_alpha2(rd->alpha2)) 3900 return -EINVAL; 3901 3902 /* 3903 * Lets only bother proceeding on the same alpha2 if the current 3904 * rd is non static (it means CRDA was present and was used last) 3905 * and the pending request came in from a country IE 3906 */ 3907 3908 if (!is_valid_rd(rd)) { 3909 pr_err("Invalid regulatory domain detected: %c%c\n", 3910 rd->alpha2[0], rd->alpha2[1]); 3911 print_regdomain_info(rd); 3912 return -EINVAL; 3913 } 3914 3915 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3916 if (!request_wiphy) 3917 return -ENODEV; 3918 3919 if (country_ie_request->intersect) 3920 return -EINVAL; 3921 3922 reset_regdomains(false, rd); 3923 return 0; 3924 } 3925 3926 /* 3927 * Use this call to set the current regulatory domain. Conflicts with 3928 * multiple drivers can be ironed out later. Caller must've already 3929 * kmalloc'd the rd structure. 3930 */ 3931 int set_regdom(const struct ieee80211_regdomain *rd, 3932 enum ieee80211_regd_source regd_src) 3933 { 3934 struct regulatory_request *lr; 3935 bool user_reset = false; 3936 int r; 3937 3938 if (IS_ERR_OR_NULL(rd)) 3939 return -ENODATA; 3940 3941 if (!reg_is_valid_request(rd->alpha2)) { 3942 kfree(rd); 3943 return -EINVAL; 3944 } 3945 3946 if (regd_src == REGD_SOURCE_CRDA) 3947 reset_crda_timeouts(); 3948 3949 lr = get_last_request(); 3950 3951 /* Note that this doesn't update the wiphys, this is done below */ 3952 switch (lr->initiator) { 3953 case NL80211_REGDOM_SET_BY_CORE: 3954 r = reg_set_rd_core(rd); 3955 break; 3956 case NL80211_REGDOM_SET_BY_USER: 3957 cfg80211_save_user_regdom(rd); 3958 r = reg_set_rd_user(rd, lr); 3959 user_reset = true; 3960 break; 3961 case NL80211_REGDOM_SET_BY_DRIVER: 3962 r = reg_set_rd_driver(rd, lr); 3963 break; 3964 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3965 r = reg_set_rd_country_ie(rd, lr); 3966 break; 3967 default: 3968 WARN(1, "invalid initiator %d\n", lr->initiator); 3969 kfree(rd); 3970 return -EINVAL; 3971 } 3972 3973 if (r) { 3974 switch (r) { 3975 case -EALREADY: 3976 reg_set_request_processed(); 3977 break; 3978 default: 3979 /* Back to world regulatory in case of errors */ 3980 restore_regulatory_settings(user_reset, false); 3981 } 3982 3983 kfree(rd); 3984 return r; 3985 } 3986 3987 /* This would make this whole thing pointless */ 3988 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3989 return -EINVAL; 3990 3991 /* update all wiphys now with the new established regulatory domain */ 3992 update_all_wiphy_regulatory(lr->initiator); 3993 3994 print_regdomain(get_cfg80211_regdom()); 3995 3996 nl80211_send_reg_change_event(lr); 3997 3998 reg_set_request_processed(); 3999 4000 return 0; 4001 } 4002 4003 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 4004 struct ieee80211_regdomain *rd) 4005 { 4006 const struct ieee80211_regdomain *regd; 4007 const struct ieee80211_regdomain *prev_regd; 4008 struct cfg80211_registered_device *rdev; 4009 4010 if (WARN_ON(!wiphy || !rd)) 4011 return -EINVAL; 4012 4013 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 4014 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 4015 return -EPERM; 4016 4017 if (WARN(!is_valid_rd(rd), 4018 "Invalid regulatory domain detected: %c%c\n", 4019 rd->alpha2[0], rd->alpha2[1])) { 4020 print_regdomain_info(rd); 4021 return -EINVAL; 4022 } 4023 4024 regd = reg_copy_regd(rd); 4025 if (IS_ERR(regd)) 4026 return PTR_ERR(regd); 4027 4028 rdev = wiphy_to_rdev(wiphy); 4029 4030 spin_lock(®_requests_lock); 4031 prev_regd = rdev->requested_regd; 4032 rdev->requested_regd = regd; 4033 spin_unlock(®_requests_lock); 4034 4035 kfree(prev_regd); 4036 return 0; 4037 } 4038 4039 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 4040 struct ieee80211_regdomain *rd) 4041 { 4042 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 4043 4044 if (ret) 4045 return ret; 4046 4047 schedule_work(®_work); 4048 return 0; 4049 } 4050 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 4051 4052 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 4053 struct ieee80211_regdomain *rd) 4054 { 4055 int ret; 4056 4057 ASSERT_RTNL(); 4058 4059 ret = __regulatory_set_wiphy_regd(wiphy, rd); 4060 if (ret) 4061 return ret; 4062 4063 /* process the request immediately */ 4064 reg_process_self_managed_hint(wiphy); 4065 reg_check_channels(); 4066 return 0; 4067 } 4068 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync); 4069 4070 void wiphy_regulatory_register(struct wiphy *wiphy) 4071 { 4072 struct regulatory_request *lr = get_last_request(); 4073 4074 /* self-managed devices ignore beacon hints and country IE */ 4075 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 4076 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 4077 REGULATORY_COUNTRY_IE_IGNORE; 4078 4079 /* 4080 * The last request may have been received before this 4081 * registration call. Call the driver notifier if 4082 * initiator is USER. 4083 */ 4084 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 4085 reg_call_notifier(wiphy, lr); 4086 } 4087 4088 if (!reg_dev_ignore_cell_hint(wiphy)) 4089 reg_num_devs_support_basehint++; 4090 4091 wiphy_update_regulatory(wiphy, lr->initiator); 4092 wiphy_all_share_dfs_chan_state(wiphy); 4093 reg_process_self_managed_hints(); 4094 } 4095 4096 void wiphy_regulatory_deregister(struct wiphy *wiphy) 4097 { 4098 struct wiphy *request_wiphy = NULL; 4099 struct regulatory_request *lr; 4100 4101 lr = get_last_request(); 4102 4103 if (!reg_dev_ignore_cell_hint(wiphy)) 4104 reg_num_devs_support_basehint--; 4105 4106 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4107 RCU_INIT_POINTER(wiphy->regd, NULL); 4108 4109 if (lr) 4110 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4111 4112 if (!request_wiphy || request_wiphy != wiphy) 4113 return; 4114 4115 lr->wiphy_idx = WIPHY_IDX_INVALID; 4116 lr->country_ie_env = ENVIRON_ANY; 4117 } 4118 4119 /* 4120 * See FCC notices for UNII band definitions 4121 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4122 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4123 */ 4124 int cfg80211_get_unii(int freq) 4125 { 4126 /* UNII-1 */ 4127 if (freq >= 5150 && freq <= 5250) 4128 return 0; 4129 4130 /* UNII-2A */ 4131 if (freq > 5250 && freq <= 5350) 4132 return 1; 4133 4134 /* UNII-2B */ 4135 if (freq > 5350 && freq <= 5470) 4136 return 2; 4137 4138 /* UNII-2C */ 4139 if (freq > 5470 && freq <= 5725) 4140 return 3; 4141 4142 /* UNII-3 */ 4143 if (freq > 5725 && freq <= 5825) 4144 return 4; 4145 4146 /* UNII-5 */ 4147 if (freq > 5925 && freq <= 6425) 4148 return 5; 4149 4150 /* UNII-6 */ 4151 if (freq > 6425 && freq <= 6525) 4152 return 6; 4153 4154 /* UNII-7 */ 4155 if (freq > 6525 && freq <= 6875) 4156 return 7; 4157 4158 /* UNII-8 */ 4159 if (freq > 6875 && freq <= 7125) 4160 return 8; 4161 4162 return -EINVAL; 4163 } 4164 4165 bool regulatory_indoor_allowed(void) 4166 { 4167 return reg_is_indoor; 4168 } 4169 4170 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4171 { 4172 const struct ieee80211_regdomain *regd = NULL; 4173 const struct ieee80211_regdomain *wiphy_regd = NULL; 4174 bool pre_cac_allowed = false; 4175 4176 rcu_read_lock(); 4177 4178 regd = rcu_dereference(cfg80211_regdomain); 4179 wiphy_regd = rcu_dereference(wiphy->regd); 4180 if (!wiphy_regd) { 4181 if (regd->dfs_region == NL80211_DFS_ETSI) 4182 pre_cac_allowed = true; 4183 4184 rcu_read_unlock(); 4185 4186 return pre_cac_allowed; 4187 } 4188 4189 if (regd->dfs_region == wiphy_regd->dfs_region && 4190 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4191 pre_cac_allowed = true; 4192 4193 rcu_read_unlock(); 4194 4195 return pre_cac_allowed; 4196 } 4197 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4198 4199 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4200 { 4201 struct wireless_dev *wdev; 4202 /* If we finished CAC or received radar, we should end any 4203 * CAC running on the same channels. 4204 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4205 * either all channels are available - those the CAC_FINISHED 4206 * event has effected another wdev state, or there is a channel 4207 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4208 * event has effected another wdev state. 4209 * In both cases we should end the CAC on the wdev. 4210 */ 4211 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4212 struct cfg80211_chan_def *chandef; 4213 4214 if (!wdev->cac_started) 4215 continue; 4216 4217 /* FIXME: radar detection is tied to link 0 for now */ 4218 chandef = wdev_chandef(wdev, 0); 4219 if (!chandef) 4220 continue; 4221 4222 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef)) 4223 rdev_end_cac(rdev, wdev->netdev); 4224 } 4225 } 4226 4227 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4228 struct cfg80211_chan_def *chandef, 4229 enum nl80211_dfs_state dfs_state, 4230 enum nl80211_radar_event event) 4231 { 4232 struct cfg80211_registered_device *rdev; 4233 4234 ASSERT_RTNL(); 4235 4236 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4237 return; 4238 4239 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 4240 if (wiphy == &rdev->wiphy) 4241 continue; 4242 4243 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4244 continue; 4245 4246 if (!ieee80211_get_channel(&rdev->wiphy, 4247 chandef->chan->center_freq)) 4248 continue; 4249 4250 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4251 4252 if (event == NL80211_RADAR_DETECTED || 4253 event == NL80211_RADAR_CAC_FINISHED) { 4254 cfg80211_sched_dfs_chan_update(rdev); 4255 cfg80211_check_and_end_cac(rdev); 4256 } 4257 4258 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4259 } 4260 } 4261 4262 static int __init regulatory_init_db(void) 4263 { 4264 int err; 4265 4266 /* 4267 * It's possible that - due to other bugs/issues - cfg80211 4268 * never called regulatory_init() below, or that it failed; 4269 * in that case, don't try to do any further work here as 4270 * it's doomed to lead to crashes. 4271 */ 4272 if (IS_ERR_OR_NULL(reg_pdev)) 4273 return -EINVAL; 4274 4275 err = load_builtin_regdb_keys(); 4276 if (err) { 4277 platform_device_unregister(reg_pdev); 4278 return err; 4279 } 4280 4281 /* We always try to get an update for the static regdomain */ 4282 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4283 if (err) { 4284 if (err == -ENOMEM) { 4285 platform_device_unregister(reg_pdev); 4286 return err; 4287 } 4288 /* 4289 * N.B. kobject_uevent_env() can fail mainly for when we're out 4290 * memory which is handled and propagated appropriately above 4291 * but it can also fail during a netlink_broadcast() or during 4292 * early boot for call_usermodehelper(). For now treat these 4293 * errors as non-fatal. 4294 */ 4295 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4296 } 4297 4298 /* 4299 * Finally, if the user set the module parameter treat it 4300 * as a user hint. 4301 */ 4302 if (!is_world_regdom(ieee80211_regdom)) 4303 regulatory_hint_user(ieee80211_regdom, 4304 NL80211_USER_REG_HINT_USER); 4305 4306 return 0; 4307 } 4308 #ifndef MODULE 4309 late_initcall(regulatory_init_db); 4310 #endif 4311 4312 int __init regulatory_init(void) 4313 { 4314 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4315 if (IS_ERR(reg_pdev)) 4316 return PTR_ERR(reg_pdev); 4317 4318 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4319 4320 user_alpha2[0] = '9'; 4321 user_alpha2[1] = '7'; 4322 4323 #ifdef MODULE 4324 return regulatory_init_db(); 4325 #else 4326 return 0; 4327 #endif 4328 } 4329 4330 void regulatory_exit(void) 4331 { 4332 struct regulatory_request *reg_request, *tmp; 4333 struct reg_beacon *reg_beacon, *btmp; 4334 4335 cancel_work_sync(®_work); 4336 cancel_crda_timeout_sync(); 4337 cancel_delayed_work_sync(®_check_chans); 4338 4339 /* Lock to suppress warnings */ 4340 rtnl_lock(); 4341 reset_regdomains(true, NULL); 4342 rtnl_unlock(); 4343 4344 dev_set_uevent_suppress(®_pdev->dev, true); 4345 4346 platform_device_unregister(reg_pdev); 4347 4348 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4349 list_del(®_beacon->list); 4350 kfree(reg_beacon); 4351 } 4352 4353 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4354 list_del(®_beacon->list); 4355 kfree(reg_beacon); 4356 } 4357 4358 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4359 list_del(®_request->list); 4360 kfree(reg_request); 4361 } 4362 4363 if (!IS_ERR_OR_NULL(regdb)) 4364 kfree(regdb); 4365 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4366 kfree(cfg80211_user_regdom); 4367 4368 free_regdb_keyring(); 4369 } 4370