xref: /linux/net/wireless/reg.c (revision c546656f31c5138afcaddfcd8f8b93fbf73e4d3a)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2022 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137 
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140 	return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142 
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 	return rcu_dereference_check(wiphy->regd,
151 				     lockdep_is_held(&wiphy->mtx) ||
152 				     lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155 
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158 	switch (dfs_region) {
159 	case NL80211_DFS_UNSET:
160 		return "unset";
161 	case NL80211_DFS_FCC:
162 		return "FCC";
163 	case NL80211_DFS_ETSI:
164 		return "ETSI";
165 	case NL80211_DFS_JP:
166 		return "JP";
167 	}
168 	return "Unknown";
169 }
170 
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173 	const struct ieee80211_regdomain *regd = NULL;
174 	const struct ieee80211_regdomain *wiphy_regd = NULL;
175 	enum nl80211_dfs_regions dfs_region;
176 
177 	rcu_read_lock();
178 	regd = get_cfg80211_regdom();
179 	dfs_region = regd->dfs_region;
180 
181 	if (!wiphy)
182 		goto out;
183 
184 	wiphy_regd = get_wiphy_regdom(wiphy);
185 	if (!wiphy_regd)
186 		goto out;
187 
188 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 		dfs_region = wiphy_regd->dfs_region;
190 		goto out;
191 	}
192 
193 	if (wiphy_regd->dfs_region == regd->dfs_region)
194 		goto out;
195 
196 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 		 dev_name(&wiphy->dev),
198 		 reg_dfs_region_str(wiphy_regd->dfs_region),
199 		 reg_dfs_region_str(regd->dfs_region));
200 
201 out:
202 	rcu_read_unlock();
203 
204 	return dfs_region;
205 }
206 
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209 	if (!r)
210 		return;
211 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213 
214 static struct regulatory_request *get_last_request(void)
215 {
216 	return rcu_dereference_rtnl(last_request);
217 }
218 
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222 
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226 
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229 
230 struct reg_beacon {
231 	struct list_head list;
232 	struct ieee80211_channel chan;
233 };
234 
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237 
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240 
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243 	.n_reg_rules = 8,
244 	.alpha2 =  "00",
245 	.reg_rules = {
246 		/* IEEE 802.11b/g, channels 1..11 */
247 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 		/* IEEE 802.11b/g, channels 12..13. */
249 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 		/* IEEE 802.11 channel 14 - Only JP enables
252 		 * this and for 802.11b only */
253 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 			NL80211_RRF_NO_IR |
255 			NL80211_RRF_NO_OFDM),
256 		/* IEEE 802.11a, channel 36..48 */
257 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260 
261 		/* IEEE 802.11a, channel 52..64 - DFS required */
262 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 			NL80211_RRF_NO_IR |
264 			NL80211_RRF_AUTO_BW |
265 			NL80211_RRF_DFS),
266 
267 		/* IEEE 802.11a, channel 100..144 - DFS required */
268 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 			NL80211_RRF_NO_IR |
270 			NL80211_RRF_DFS),
271 
272 		/* IEEE 802.11a, channel 149..165 */
273 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 			NL80211_RRF_NO_IR),
275 
276 		/* IEEE 802.11ad (60GHz), channels 1..3 */
277 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 	}
279 };
280 
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 	&world_regdom;
284 
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288 
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291 
292 static void reg_free_request(struct regulatory_request *request)
293 {
294 	if (request == &core_request_world)
295 		return;
296 
297 	if (request != get_last_request())
298 		kfree(request);
299 }
300 
301 static void reg_free_last_request(void)
302 {
303 	struct regulatory_request *lr = get_last_request();
304 
305 	if (lr != &core_request_world && lr)
306 		kfree_rcu(lr, rcu_head);
307 }
308 
309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311 	struct regulatory_request *lr;
312 
313 	lr = get_last_request();
314 	if (lr == request)
315 		return;
316 
317 	reg_free_last_request();
318 	rcu_assign_pointer(last_request, request);
319 }
320 
321 static void reset_regdomains(bool full_reset,
322 			     const struct ieee80211_regdomain *new_regdom)
323 {
324 	const struct ieee80211_regdomain *r;
325 
326 	ASSERT_RTNL();
327 
328 	r = get_cfg80211_regdom();
329 
330 	/* avoid freeing static information or freeing something twice */
331 	if (r == cfg80211_world_regdom)
332 		r = NULL;
333 	if (cfg80211_world_regdom == &world_regdom)
334 		cfg80211_world_regdom = NULL;
335 	if (r == &world_regdom)
336 		r = NULL;
337 
338 	rcu_free_regdom(r);
339 	rcu_free_regdom(cfg80211_world_regdom);
340 
341 	cfg80211_world_regdom = &world_regdom;
342 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343 
344 	if (!full_reset)
345 		return;
346 
347 	reg_update_last_request(&core_request_world);
348 }
349 
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356 	struct regulatory_request *lr;
357 
358 	lr = get_last_request();
359 
360 	WARN_ON(!lr);
361 
362 	reset_regdomains(false, rd);
363 
364 	cfg80211_world_regdom = rd;
365 }
366 
367 bool is_world_regdom(const char *alpha2)
368 {
369 	if (!alpha2)
370 		return false;
371 	return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373 
374 static bool is_alpha2_set(const char *alpha2)
375 {
376 	if (!alpha2)
377 		return false;
378 	return alpha2[0] && alpha2[1];
379 }
380 
381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383 	if (!alpha2)
384 		return false;
385 	/*
386 	 * Special case where regulatory domain was built by driver
387 	 * but a specific alpha2 cannot be determined
388 	 */
389 	return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391 
392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394 	if (!alpha2)
395 		return false;
396 	/*
397 	 * Special case where regulatory domain is the
398 	 * result of an intersection between two regulatory domain
399 	 * structures
400 	 */
401 	return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403 
404 static bool is_an_alpha2(const char *alpha2)
405 {
406 	if (!alpha2)
407 		return false;
408 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410 
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413 	if (!alpha2_x || !alpha2_y)
414 		return false;
415 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417 
418 static bool regdom_changes(const char *alpha2)
419 {
420 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421 
422 	if (!r)
423 		return true;
424 	return !alpha2_equal(r->alpha2, alpha2);
425 }
426 
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
432 static bool is_user_regdom_saved(void)
433 {
434 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 		return false;
436 
437 	/* This would indicate a mistake on the design */
438 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 		 "Unexpected user alpha2: %c%c\n",
440 		 user_alpha2[0], user_alpha2[1]))
441 		return false;
442 
443 	return true;
444 }
445 
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449 	struct ieee80211_regdomain *regd;
450 	unsigned int i;
451 
452 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 		       GFP_KERNEL);
454 	if (!regd)
455 		return ERR_PTR(-ENOMEM);
456 
457 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458 
459 	for (i = 0; i < src_regd->n_reg_rules; i++)
460 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461 		       sizeof(struct ieee80211_reg_rule));
462 
463 	return regd;
464 }
465 
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468 	ASSERT_RTNL();
469 
470 	if (!IS_ERR(cfg80211_user_regdom))
471 		kfree(cfg80211_user_regdom);
472 	cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474 
475 struct reg_regdb_apply_request {
476 	struct list_head list;
477 	const struct ieee80211_regdomain *regdom;
478 };
479 
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482 
483 static void reg_regdb_apply(struct work_struct *work)
484 {
485 	struct reg_regdb_apply_request *request;
486 
487 	rtnl_lock();
488 
489 	mutex_lock(&reg_regdb_apply_mutex);
490 	while (!list_empty(&reg_regdb_apply_list)) {
491 		request = list_first_entry(&reg_regdb_apply_list,
492 					   struct reg_regdb_apply_request,
493 					   list);
494 		list_del(&request->list);
495 
496 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 		kfree(request);
498 	}
499 	mutex_unlock(&reg_regdb_apply_mutex);
500 
501 	rtnl_unlock();
502 }
503 
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505 
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508 	struct reg_regdb_apply_request *request;
509 
510 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 	if (!request) {
512 		kfree(regdom);
513 		return -ENOMEM;
514 	}
515 
516 	request->regdom = regdom;
517 
518 	mutex_lock(&reg_regdb_apply_mutex);
519 	list_add_tail(&request->list, &reg_regdb_apply_list);
520 	mutex_unlock(&reg_regdb_apply_mutex);
521 
522 	schedule_work(&reg_regdb_work);
523 	return 0;
524 }
525 
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529 
530 static u32 reg_crda_timeouts;
531 
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534 
535 static void crda_timeout_work(struct work_struct *work)
536 {
537 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 	rtnl_lock();
539 	reg_crda_timeouts++;
540 	restore_regulatory_settings(true, false);
541 	rtnl_unlock();
542 }
543 
544 static void cancel_crda_timeout(void)
545 {
546 	cancel_delayed_work(&crda_timeout);
547 }
548 
549 static void cancel_crda_timeout_sync(void)
550 {
551 	cancel_delayed_work_sync(&crda_timeout);
552 }
553 
554 static void reset_crda_timeouts(void)
555 {
556 	reg_crda_timeouts = 0;
557 }
558 
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565 	char country[12];
566 	char *env[] = { country, NULL };
567 	int ret;
568 
569 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 		 alpha2[0], alpha2[1]);
571 
572 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 		return -EINVAL;
575 	}
576 
577 	if (!is_world_regdom((char *) alpha2))
578 		pr_debug("Calling CRDA for country: %c%c\n",
579 			 alpha2[0], alpha2[1]);
580 	else
581 		pr_debug("Calling CRDA to update world regulatory domain\n");
582 
583 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584 	if (ret)
585 		return ret;
586 
587 	queue_delayed_work(system_power_efficient_wq,
588 			   &crda_timeout, msecs_to_jiffies(3142));
589 	return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597 	return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600 
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603 
604 struct fwdb_country {
605 	u8 alpha2[2];
606 	__be16 coll_ptr;
607 	/* this struct cannot be extended */
608 } __packed __aligned(4);
609 
610 struct fwdb_collection {
611 	u8 len;
612 	u8 n_rules;
613 	u8 dfs_region;
614 	/* no optional data yet */
615 	/* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617 
618 enum fwdb_flags {
619 	FWDB_FLAG_NO_OFDM	= BIT(0),
620 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
621 	FWDB_FLAG_DFS		= BIT(2),
622 	FWDB_FLAG_NO_IR		= BIT(3),
623 	FWDB_FLAG_AUTO_BW	= BIT(4),
624 };
625 
626 struct fwdb_wmm_ac {
627 	u8 ecw;
628 	u8 aifsn;
629 	__be16 cot;
630 } __packed;
631 
632 struct fwdb_wmm_rule {
633 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636 
637 struct fwdb_rule {
638 	u8 len;
639 	u8 flags;
640 	__be16 max_eirp;
641 	__be32 start, end, max_bw;
642 	/* start of optional data */
643 	__be16 cac_timeout;
644 	__be16 wmm_ptr;
645 } __packed __aligned(4);
646 
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649 
650 struct fwdb_header {
651 	__be32 magic;
652 	__be32 version;
653 	struct fwdb_country country[];
654 } __packed __aligned(4);
655 
656 static int ecw2cw(int ecw)
657 {
658 	return (1 << ecw) - 1;
659 }
660 
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 	int i;
665 
666 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 		u8 aifsn = ac[i].aifsn;
670 
671 		if (cw_min >= cw_max)
672 			return false;
673 
674 		if (aifsn < 1)
675 			return false;
676 	}
677 
678 	return true;
679 }
680 
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684 
685 	if ((u8 *)rule + sizeof(rule->len) > data + size)
686 		return false;
687 
688 	/* mandatory fields */
689 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 		return false;
691 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 		struct fwdb_wmm_rule *wmm;
694 
695 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 			return false;
697 
698 		wmm = (void *)(data + wmm_ptr);
699 
700 		if (!valid_wmm(wmm))
701 			return false;
702 	}
703 	return true;
704 }
705 
706 static bool valid_country(const u8 *data, unsigned int size,
707 			  const struct fwdb_country *country)
708 {
709 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 	struct fwdb_collection *coll = (void *)(data + ptr);
711 	__be16 *rules_ptr;
712 	unsigned int i;
713 
714 	/* make sure we can read len/n_rules */
715 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 		return false;
717 
718 	/* make sure base struct and all rules fit */
719 	if ((u8 *)coll + ALIGN(coll->len, 2) +
720 	    (coll->n_rules * 2) > data + size)
721 		return false;
722 
723 	/* mandatory fields must exist */
724 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 		return false;
726 
727 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728 
729 	for (i = 0; i < coll->n_rules; i++) {
730 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731 
732 		if (!valid_rule(data, size, rule_ptr))
733 			return false;
734 	}
735 
736 	return true;
737 }
738 
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 #include <keys/asymmetric-type.h>
741 
742 static struct key *builtin_regdb_keys;
743 
744 static int __init load_builtin_regdb_keys(void)
745 {
746 	builtin_regdb_keys =
747 		keyring_alloc(".builtin_regdb_keys",
748 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
749 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
750 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
751 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
752 	if (IS_ERR(builtin_regdb_keys))
753 		return PTR_ERR(builtin_regdb_keys);
754 
755 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
756 
757 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
758 	x509_load_certificate_list(shipped_regdb_certs,
759 				   shipped_regdb_certs_len,
760 				   builtin_regdb_keys);
761 #endif
762 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
763 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
764 		x509_load_certificate_list(extra_regdb_certs,
765 					   extra_regdb_certs_len,
766 					   builtin_regdb_keys);
767 #endif
768 
769 	return 0;
770 }
771 
772 MODULE_FIRMWARE("regulatory.db.p7s");
773 
774 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
775 {
776 	const struct firmware *sig;
777 	bool result;
778 
779 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
780 		return false;
781 
782 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
783 					builtin_regdb_keys,
784 					VERIFYING_UNSPECIFIED_SIGNATURE,
785 					NULL, NULL) == 0;
786 
787 	release_firmware(sig);
788 
789 	return result;
790 }
791 
792 static void free_regdb_keyring(void)
793 {
794 	key_put(builtin_regdb_keys);
795 }
796 #else
797 static int load_builtin_regdb_keys(void)
798 {
799 	return 0;
800 }
801 
802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803 {
804 	return true;
805 }
806 
807 static void free_regdb_keyring(void)
808 {
809 }
810 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
811 
812 static bool valid_regdb(const u8 *data, unsigned int size)
813 {
814 	const struct fwdb_header *hdr = (void *)data;
815 	const struct fwdb_country *country;
816 
817 	if (size < sizeof(*hdr))
818 		return false;
819 
820 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
821 		return false;
822 
823 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
824 		return false;
825 
826 	if (!regdb_has_valid_signature(data, size))
827 		return false;
828 
829 	country = &hdr->country[0];
830 	while ((u8 *)(country + 1) <= data + size) {
831 		if (!country->coll_ptr)
832 			break;
833 		if (!valid_country(data, size, country))
834 			return false;
835 		country++;
836 	}
837 
838 	return true;
839 }
840 
841 static void set_wmm_rule(const struct fwdb_header *db,
842 			 const struct fwdb_country *country,
843 			 const struct fwdb_rule *rule,
844 			 struct ieee80211_reg_rule *rrule)
845 {
846 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
847 	struct fwdb_wmm_rule *wmm;
848 	unsigned int i, wmm_ptr;
849 
850 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
851 	wmm = (void *)((u8 *)db + wmm_ptr);
852 
853 	if (!valid_wmm(wmm)) {
854 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
855 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
856 		       country->alpha2[0], country->alpha2[1]);
857 		return;
858 	}
859 
860 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
861 		wmm_rule->client[i].cw_min =
862 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
863 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
864 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
865 		wmm_rule->client[i].cot =
866 			1000 * be16_to_cpu(wmm->client[i].cot);
867 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
868 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
869 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
870 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
871 	}
872 
873 	rrule->has_wmm = true;
874 }
875 
876 static int __regdb_query_wmm(const struct fwdb_header *db,
877 			     const struct fwdb_country *country, int freq,
878 			     struct ieee80211_reg_rule *rrule)
879 {
880 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
881 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
882 	int i;
883 
884 	for (i = 0; i < coll->n_rules; i++) {
885 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
886 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
887 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
888 
889 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
890 			continue;
891 
892 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
893 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
894 			set_wmm_rule(db, country, rule, rrule);
895 			return 0;
896 		}
897 	}
898 
899 	return -ENODATA;
900 }
901 
902 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
903 {
904 	const struct fwdb_header *hdr = regdb;
905 	const struct fwdb_country *country;
906 
907 	if (!regdb)
908 		return -ENODATA;
909 
910 	if (IS_ERR(regdb))
911 		return PTR_ERR(regdb);
912 
913 	country = &hdr->country[0];
914 	while (country->coll_ptr) {
915 		if (alpha2_equal(alpha2, country->alpha2))
916 			return __regdb_query_wmm(regdb, country, freq, rule);
917 
918 		country++;
919 	}
920 
921 	return -ENODATA;
922 }
923 EXPORT_SYMBOL(reg_query_regdb_wmm);
924 
925 static int regdb_query_country(const struct fwdb_header *db,
926 			       const struct fwdb_country *country)
927 {
928 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
929 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
930 	struct ieee80211_regdomain *regdom;
931 	unsigned int i;
932 
933 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
934 			 GFP_KERNEL);
935 	if (!regdom)
936 		return -ENOMEM;
937 
938 	regdom->n_reg_rules = coll->n_rules;
939 	regdom->alpha2[0] = country->alpha2[0];
940 	regdom->alpha2[1] = country->alpha2[1];
941 	regdom->dfs_region = coll->dfs_region;
942 
943 	for (i = 0; i < regdom->n_reg_rules; i++) {
944 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
945 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
946 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
947 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
948 
949 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
950 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
951 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
952 
953 		rrule->power_rule.max_antenna_gain = 0;
954 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
955 
956 		rrule->flags = 0;
957 		if (rule->flags & FWDB_FLAG_NO_OFDM)
958 			rrule->flags |= NL80211_RRF_NO_OFDM;
959 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
960 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
961 		if (rule->flags & FWDB_FLAG_DFS)
962 			rrule->flags |= NL80211_RRF_DFS;
963 		if (rule->flags & FWDB_FLAG_NO_IR)
964 			rrule->flags |= NL80211_RRF_NO_IR;
965 		if (rule->flags & FWDB_FLAG_AUTO_BW)
966 			rrule->flags |= NL80211_RRF_AUTO_BW;
967 
968 		rrule->dfs_cac_ms = 0;
969 
970 		/* handle optional data */
971 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
972 			rrule->dfs_cac_ms =
973 				1000 * be16_to_cpu(rule->cac_timeout);
974 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
975 			set_wmm_rule(db, country, rule, rrule);
976 	}
977 
978 	return reg_schedule_apply(regdom);
979 }
980 
981 static int query_regdb(const char *alpha2)
982 {
983 	const struct fwdb_header *hdr = regdb;
984 	const struct fwdb_country *country;
985 
986 	ASSERT_RTNL();
987 
988 	if (IS_ERR(regdb))
989 		return PTR_ERR(regdb);
990 
991 	country = &hdr->country[0];
992 	while (country->coll_ptr) {
993 		if (alpha2_equal(alpha2, country->alpha2))
994 			return regdb_query_country(regdb, country);
995 		country++;
996 	}
997 
998 	return -ENODATA;
999 }
1000 
1001 static void regdb_fw_cb(const struct firmware *fw, void *context)
1002 {
1003 	int set_error = 0;
1004 	bool restore = true;
1005 	void *db;
1006 
1007 	if (!fw) {
1008 		pr_info("failed to load regulatory.db\n");
1009 		set_error = -ENODATA;
1010 	} else if (!valid_regdb(fw->data, fw->size)) {
1011 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012 		set_error = -EINVAL;
1013 	}
1014 
1015 	rtnl_lock();
1016 	if (regdb && !IS_ERR(regdb)) {
1017 		/* negative case - a bug
1018 		 * positive case - can happen due to race in case of multiple cb's in
1019 		 * queue, due to usage of asynchronous callback
1020 		 *
1021 		 * Either case, just restore and free new db.
1022 		 */
1023 	} else if (set_error) {
1024 		regdb = ERR_PTR(set_error);
1025 	} else if (fw) {
1026 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027 		if (db) {
1028 			regdb = db;
1029 			restore = context && query_regdb(context);
1030 		} else {
1031 			restore = true;
1032 		}
1033 	}
1034 
1035 	if (restore)
1036 		restore_regulatory_settings(true, false);
1037 
1038 	rtnl_unlock();
1039 
1040 	kfree(context);
1041 
1042 	release_firmware(fw);
1043 }
1044 
1045 MODULE_FIRMWARE("regulatory.db");
1046 
1047 static int query_regdb_file(const char *alpha2)
1048 {
1049 	int err;
1050 
1051 	ASSERT_RTNL();
1052 
1053 	if (regdb)
1054 		return query_regdb(alpha2);
1055 
1056 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057 	if (!alpha2)
1058 		return -ENOMEM;
1059 
1060 	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061 				      &reg_pdev->dev, GFP_KERNEL,
1062 				      (void *)alpha2, regdb_fw_cb);
1063 	if (err)
1064 		kfree(alpha2);
1065 
1066 	return err;
1067 }
1068 
1069 int reg_reload_regdb(void)
1070 {
1071 	const struct firmware *fw;
1072 	void *db;
1073 	int err;
1074 	const struct ieee80211_regdomain *current_regdomain;
1075 	struct regulatory_request *request;
1076 
1077 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1078 	if (err)
1079 		return err;
1080 
1081 	if (!valid_regdb(fw->data, fw->size)) {
1082 		err = -ENODATA;
1083 		goto out;
1084 	}
1085 
1086 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087 	if (!db) {
1088 		err = -ENOMEM;
1089 		goto out;
1090 	}
1091 
1092 	rtnl_lock();
1093 	if (!IS_ERR_OR_NULL(regdb))
1094 		kfree(regdb);
1095 	regdb = db;
1096 
1097 	/* reset regulatory domain */
1098 	current_regdomain = get_cfg80211_regdom();
1099 
1100 	request = kzalloc(sizeof(*request), GFP_KERNEL);
1101 	if (!request) {
1102 		err = -ENOMEM;
1103 		goto out_unlock;
1104 	}
1105 
1106 	request->wiphy_idx = WIPHY_IDX_INVALID;
1107 	request->alpha2[0] = current_regdomain->alpha2[0];
1108 	request->alpha2[1] = current_regdomain->alpha2[1];
1109 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110 	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111 
1112 	reg_process_hint(request);
1113 
1114 out_unlock:
1115 	rtnl_unlock();
1116  out:
1117 	release_firmware(fw);
1118 	return err;
1119 }
1120 
1121 static bool reg_query_database(struct regulatory_request *request)
1122 {
1123 	if (query_regdb_file(request->alpha2) == 0)
1124 		return true;
1125 
1126 	if (call_crda(request->alpha2) == 0)
1127 		return true;
1128 
1129 	return false;
1130 }
1131 
1132 bool reg_is_valid_request(const char *alpha2)
1133 {
1134 	struct regulatory_request *lr = get_last_request();
1135 
1136 	if (!lr || lr->processed)
1137 		return false;
1138 
1139 	return alpha2_equal(lr->alpha2, alpha2);
1140 }
1141 
1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143 {
1144 	struct regulatory_request *lr = get_last_request();
1145 
1146 	/*
1147 	 * Follow the driver's regulatory domain, if present, unless a country
1148 	 * IE has been processed or a user wants to help complaince further
1149 	 */
1150 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152 	    wiphy->regd)
1153 		return get_wiphy_regdom(wiphy);
1154 
1155 	return get_cfg80211_regdom();
1156 }
1157 
1158 static unsigned int
1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160 				 const struct ieee80211_reg_rule *rule)
1161 {
1162 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163 	const struct ieee80211_freq_range *freq_range_tmp;
1164 	const struct ieee80211_reg_rule *tmp;
1165 	u32 start_freq, end_freq, idx, no;
1166 
1167 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1168 		if (rule == &rd->reg_rules[idx])
1169 			break;
1170 
1171 	if (idx == rd->n_reg_rules)
1172 		return 0;
1173 
1174 	/* get start_freq */
1175 	no = idx;
1176 
1177 	while (no) {
1178 		tmp = &rd->reg_rules[--no];
1179 		freq_range_tmp = &tmp->freq_range;
1180 
1181 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182 			break;
1183 
1184 		freq_range = freq_range_tmp;
1185 	}
1186 
1187 	start_freq = freq_range->start_freq_khz;
1188 
1189 	/* get end_freq */
1190 	freq_range = &rule->freq_range;
1191 	no = idx;
1192 
1193 	while (no < rd->n_reg_rules - 1) {
1194 		tmp = &rd->reg_rules[++no];
1195 		freq_range_tmp = &tmp->freq_range;
1196 
1197 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198 			break;
1199 
1200 		freq_range = freq_range_tmp;
1201 	}
1202 
1203 	end_freq = freq_range->end_freq_khz;
1204 
1205 	return end_freq - start_freq;
1206 }
1207 
1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209 				   const struct ieee80211_reg_rule *rule)
1210 {
1211 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212 
1213 	if (rule->flags & NL80211_RRF_NO_320MHZ)
1214 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1216 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1218 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219 
1220 	/*
1221 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222 	 * are not allowed.
1223 	 */
1224 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1226 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227 
1228 	return bw;
1229 }
1230 
1231 /* Sanity check on a regulatory rule */
1232 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233 {
1234 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235 	u32 freq_diff;
1236 
1237 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238 		return false;
1239 
1240 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241 		return false;
1242 
1243 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244 
1245 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246 	    freq_range->max_bandwidth_khz > freq_diff)
1247 		return false;
1248 
1249 	return true;
1250 }
1251 
1252 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253 {
1254 	const struct ieee80211_reg_rule *reg_rule = NULL;
1255 	unsigned int i;
1256 
1257 	if (!rd->n_reg_rules)
1258 		return false;
1259 
1260 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261 		return false;
1262 
1263 	for (i = 0; i < rd->n_reg_rules; i++) {
1264 		reg_rule = &rd->reg_rules[i];
1265 		if (!is_valid_reg_rule(reg_rule))
1266 			return false;
1267 	}
1268 
1269 	return true;
1270 }
1271 
1272 /**
1273  * freq_in_rule_band - tells us if a frequency is in a frequency band
1274  * @freq_range: frequency rule we want to query
1275  * @freq_khz: frequency we are inquiring about
1276  *
1277  * This lets us know if a specific frequency rule is or is not relevant to
1278  * a specific frequency's band. Bands are device specific and artificial
1279  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280  * however it is safe for now to assume that a frequency rule should not be
1281  * part of a frequency's band if the start freq or end freq are off by more
1282  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283  * 60 GHz band.
1284  * This resolution can be lowered and should be considered as we add
1285  * regulatory rule support for other "bands".
1286  **/
1287 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1288 			      u32 freq_khz)
1289 {
1290 #define ONE_GHZ_IN_KHZ	1000000
1291 	/*
1292 	 * From 802.11ad: directional multi-gigabit (DMG):
1293 	 * Pertaining to operation in a frequency band containing a channel
1294 	 * with the Channel starting frequency above 45 GHz.
1295 	 */
1296 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1297 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1298 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1299 		return true;
1300 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1301 		return true;
1302 	return false;
1303 #undef ONE_GHZ_IN_KHZ
1304 }
1305 
1306 /*
1307  * Later on we can perhaps use the more restrictive DFS
1308  * region but we don't have information for that yet so
1309  * for now simply disallow conflicts.
1310  */
1311 static enum nl80211_dfs_regions
1312 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1313 			 const enum nl80211_dfs_regions dfs_region2)
1314 {
1315 	if (dfs_region1 != dfs_region2)
1316 		return NL80211_DFS_UNSET;
1317 	return dfs_region1;
1318 }
1319 
1320 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1321 				    const struct ieee80211_wmm_ac *wmm_ac2,
1322 				    struct ieee80211_wmm_ac *intersect)
1323 {
1324 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1325 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1326 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1327 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1328 }
1329 
1330 /*
1331  * Helper for regdom_intersect(), this does the real
1332  * mathematical intersection fun
1333  */
1334 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1335 			       const struct ieee80211_regdomain *rd2,
1336 			       const struct ieee80211_reg_rule *rule1,
1337 			       const struct ieee80211_reg_rule *rule2,
1338 			       struct ieee80211_reg_rule *intersected_rule)
1339 {
1340 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1341 	struct ieee80211_freq_range *freq_range;
1342 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1343 	struct ieee80211_power_rule *power_rule;
1344 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1345 	struct ieee80211_wmm_rule *wmm_rule;
1346 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1347 
1348 	freq_range1 = &rule1->freq_range;
1349 	freq_range2 = &rule2->freq_range;
1350 	freq_range = &intersected_rule->freq_range;
1351 
1352 	power_rule1 = &rule1->power_rule;
1353 	power_rule2 = &rule2->power_rule;
1354 	power_rule = &intersected_rule->power_rule;
1355 
1356 	wmm_rule1 = &rule1->wmm_rule;
1357 	wmm_rule2 = &rule2->wmm_rule;
1358 	wmm_rule = &intersected_rule->wmm_rule;
1359 
1360 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1361 					 freq_range2->start_freq_khz);
1362 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1363 				       freq_range2->end_freq_khz);
1364 
1365 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1366 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1367 
1368 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1369 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1370 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1371 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1372 
1373 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1374 
1375 	intersected_rule->flags = rule1->flags | rule2->flags;
1376 
1377 	/*
1378 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1379 	 * set AUTO_BW in intersected rule also. Next we will
1380 	 * calculate BW correctly in handle_channel function.
1381 	 * In other case remove AUTO_BW flag while we calculate
1382 	 * maximum bandwidth correctly and auto calculation is
1383 	 * not required.
1384 	 */
1385 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1386 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1387 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1388 	else
1389 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1390 
1391 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1392 	if (freq_range->max_bandwidth_khz > freq_diff)
1393 		freq_range->max_bandwidth_khz = freq_diff;
1394 
1395 	power_rule->max_eirp = min(power_rule1->max_eirp,
1396 		power_rule2->max_eirp);
1397 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1398 		power_rule2->max_antenna_gain);
1399 
1400 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1401 					   rule2->dfs_cac_ms);
1402 
1403 	if (rule1->has_wmm && rule2->has_wmm) {
1404 		u8 ac;
1405 
1406 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1407 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1408 						&wmm_rule2->client[ac],
1409 						&wmm_rule->client[ac]);
1410 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1411 						&wmm_rule2->ap[ac],
1412 						&wmm_rule->ap[ac]);
1413 		}
1414 
1415 		intersected_rule->has_wmm = true;
1416 	} else if (rule1->has_wmm) {
1417 		*wmm_rule = *wmm_rule1;
1418 		intersected_rule->has_wmm = true;
1419 	} else if (rule2->has_wmm) {
1420 		*wmm_rule = *wmm_rule2;
1421 		intersected_rule->has_wmm = true;
1422 	} else {
1423 		intersected_rule->has_wmm = false;
1424 	}
1425 
1426 	if (!is_valid_reg_rule(intersected_rule))
1427 		return -EINVAL;
1428 
1429 	return 0;
1430 }
1431 
1432 /* check whether old rule contains new rule */
1433 static bool rule_contains(struct ieee80211_reg_rule *r1,
1434 			  struct ieee80211_reg_rule *r2)
1435 {
1436 	/* for simplicity, currently consider only same flags */
1437 	if (r1->flags != r2->flags)
1438 		return false;
1439 
1440 	/* verify r1 is more restrictive */
1441 	if ((r1->power_rule.max_antenna_gain >
1442 	     r2->power_rule.max_antenna_gain) ||
1443 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1444 		return false;
1445 
1446 	/* make sure r2's range is contained within r1 */
1447 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1448 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1449 		return false;
1450 
1451 	/* and finally verify that r1.max_bw >= r2.max_bw */
1452 	if (r1->freq_range.max_bandwidth_khz <
1453 	    r2->freq_range.max_bandwidth_khz)
1454 		return false;
1455 
1456 	return true;
1457 }
1458 
1459 /* add or extend current rules. do nothing if rule is already contained */
1460 static void add_rule(struct ieee80211_reg_rule *rule,
1461 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1462 {
1463 	struct ieee80211_reg_rule *tmp_rule;
1464 	int i;
1465 
1466 	for (i = 0; i < *n_rules; i++) {
1467 		tmp_rule = &reg_rules[i];
1468 		/* rule is already contained - do nothing */
1469 		if (rule_contains(tmp_rule, rule))
1470 			return;
1471 
1472 		/* extend rule if possible */
1473 		if (rule_contains(rule, tmp_rule)) {
1474 			memcpy(tmp_rule, rule, sizeof(*rule));
1475 			return;
1476 		}
1477 	}
1478 
1479 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1480 	(*n_rules)++;
1481 }
1482 
1483 /**
1484  * regdom_intersect - do the intersection between two regulatory domains
1485  * @rd1: first regulatory domain
1486  * @rd2: second regulatory domain
1487  *
1488  * Use this function to get the intersection between two regulatory domains.
1489  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1490  * as no one single alpha2 can represent this regulatory domain.
1491  *
1492  * Returns a pointer to the regulatory domain structure which will hold the
1493  * resulting intersection of rules between rd1 and rd2. We will
1494  * kzalloc() this structure for you.
1495  */
1496 static struct ieee80211_regdomain *
1497 regdom_intersect(const struct ieee80211_regdomain *rd1,
1498 		 const struct ieee80211_regdomain *rd2)
1499 {
1500 	int r;
1501 	unsigned int x, y;
1502 	unsigned int num_rules = 0;
1503 	const struct ieee80211_reg_rule *rule1, *rule2;
1504 	struct ieee80211_reg_rule intersected_rule;
1505 	struct ieee80211_regdomain *rd;
1506 
1507 	if (!rd1 || !rd2)
1508 		return NULL;
1509 
1510 	/*
1511 	 * First we get a count of the rules we'll need, then we actually
1512 	 * build them. This is to so we can malloc() and free() a
1513 	 * regdomain once. The reason we use reg_rules_intersect() here
1514 	 * is it will return -EINVAL if the rule computed makes no sense.
1515 	 * All rules that do check out OK are valid.
1516 	 */
1517 
1518 	for (x = 0; x < rd1->n_reg_rules; x++) {
1519 		rule1 = &rd1->reg_rules[x];
1520 		for (y = 0; y < rd2->n_reg_rules; y++) {
1521 			rule2 = &rd2->reg_rules[y];
1522 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1523 						 &intersected_rule))
1524 				num_rules++;
1525 		}
1526 	}
1527 
1528 	if (!num_rules)
1529 		return NULL;
1530 
1531 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1532 	if (!rd)
1533 		return NULL;
1534 
1535 	for (x = 0; x < rd1->n_reg_rules; x++) {
1536 		rule1 = &rd1->reg_rules[x];
1537 		for (y = 0; y < rd2->n_reg_rules; y++) {
1538 			rule2 = &rd2->reg_rules[y];
1539 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1540 						&intersected_rule);
1541 			/*
1542 			 * No need to memset here the intersected rule here as
1543 			 * we're not using the stack anymore
1544 			 */
1545 			if (r)
1546 				continue;
1547 
1548 			add_rule(&intersected_rule, rd->reg_rules,
1549 				 &rd->n_reg_rules);
1550 		}
1551 	}
1552 
1553 	rd->alpha2[0] = '9';
1554 	rd->alpha2[1] = '8';
1555 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1556 						  rd2->dfs_region);
1557 
1558 	return rd;
1559 }
1560 
1561 /*
1562  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1563  * want to just have the channel structure use these
1564  */
1565 static u32 map_regdom_flags(u32 rd_flags)
1566 {
1567 	u32 channel_flags = 0;
1568 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1569 		channel_flags |= IEEE80211_CHAN_NO_IR;
1570 	if (rd_flags & NL80211_RRF_DFS)
1571 		channel_flags |= IEEE80211_CHAN_RADAR;
1572 	if (rd_flags & NL80211_RRF_NO_OFDM)
1573 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1574 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1575 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1576 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1577 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1578 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1579 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1580 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1581 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1582 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1583 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1584 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1585 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1586 	if (rd_flags & NL80211_RRF_NO_HE)
1587 		channel_flags |= IEEE80211_CHAN_NO_HE;
1588 	if (rd_flags & NL80211_RRF_NO_320MHZ)
1589 		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1590 	return channel_flags;
1591 }
1592 
1593 static const struct ieee80211_reg_rule *
1594 freq_reg_info_regd(u32 center_freq,
1595 		   const struct ieee80211_regdomain *regd, u32 bw)
1596 {
1597 	int i;
1598 	bool band_rule_found = false;
1599 	bool bw_fits = false;
1600 
1601 	if (!regd)
1602 		return ERR_PTR(-EINVAL);
1603 
1604 	for (i = 0; i < regd->n_reg_rules; i++) {
1605 		const struct ieee80211_reg_rule *rr;
1606 		const struct ieee80211_freq_range *fr = NULL;
1607 
1608 		rr = &regd->reg_rules[i];
1609 		fr = &rr->freq_range;
1610 
1611 		/*
1612 		 * We only need to know if one frequency rule was
1613 		 * in center_freq's band, that's enough, so let's
1614 		 * not overwrite it once found
1615 		 */
1616 		if (!band_rule_found)
1617 			band_rule_found = freq_in_rule_band(fr, center_freq);
1618 
1619 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1620 
1621 		if (band_rule_found && bw_fits)
1622 			return rr;
1623 	}
1624 
1625 	if (!band_rule_found)
1626 		return ERR_PTR(-ERANGE);
1627 
1628 	return ERR_PTR(-EINVAL);
1629 }
1630 
1631 static const struct ieee80211_reg_rule *
1632 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1633 {
1634 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1635 	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1636 	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1637 	int i = ARRAY_SIZE(bws) - 1;
1638 	u32 bw;
1639 
1640 	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1641 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1642 		if (!IS_ERR(reg_rule))
1643 			return reg_rule;
1644 	}
1645 
1646 	return reg_rule;
1647 }
1648 
1649 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1650 					       u32 center_freq)
1651 {
1652 	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1653 
1654 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1655 }
1656 EXPORT_SYMBOL(freq_reg_info);
1657 
1658 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1659 {
1660 	switch (initiator) {
1661 	case NL80211_REGDOM_SET_BY_CORE:
1662 		return "core";
1663 	case NL80211_REGDOM_SET_BY_USER:
1664 		return "user";
1665 	case NL80211_REGDOM_SET_BY_DRIVER:
1666 		return "driver";
1667 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1668 		return "country element";
1669 	default:
1670 		WARN_ON(1);
1671 		return "bug";
1672 	}
1673 }
1674 EXPORT_SYMBOL(reg_initiator_name);
1675 
1676 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1677 					  const struct ieee80211_reg_rule *reg_rule,
1678 					  const struct ieee80211_channel *chan)
1679 {
1680 	const struct ieee80211_freq_range *freq_range = NULL;
1681 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1682 	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1683 
1684 	freq_range = &reg_rule->freq_range;
1685 
1686 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1687 	center_freq_khz = ieee80211_channel_to_khz(chan);
1688 	/* Check if auto calculation requested */
1689 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1690 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1691 
1692 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1693 	if (!cfg80211_does_bw_fit_range(freq_range,
1694 					center_freq_khz,
1695 					MHZ_TO_KHZ(10)))
1696 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1697 	if (!cfg80211_does_bw_fit_range(freq_range,
1698 					center_freq_khz,
1699 					MHZ_TO_KHZ(20)))
1700 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1701 
1702 	if (is_s1g) {
1703 		/* S1G is strict about non overlapping channels. We can
1704 		 * calculate which bandwidth is allowed per channel by finding
1705 		 * the largest bandwidth which cleanly divides the freq_range.
1706 		 */
1707 		int edge_offset;
1708 		int ch_bw = max_bandwidth_khz;
1709 
1710 		while (ch_bw) {
1711 			edge_offset = (center_freq_khz - ch_bw / 2) -
1712 				      freq_range->start_freq_khz;
1713 			if (edge_offset % ch_bw == 0) {
1714 				switch (KHZ_TO_MHZ(ch_bw)) {
1715 				case 1:
1716 					bw_flags |= IEEE80211_CHAN_1MHZ;
1717 					break;
1718 				case 2:
1719 					bw_flags |= IEEE80211_CHAN_2MHZ;
1720 					break;
1721 				case 4:
1722 					bw_flags |= IEEE80211_CHAN_4MHZ;
1723 					break;
1724 				case 8:
1725 					bw_flags |= IEEE80211_CHAN_8MHZ;
1726 					break;
1727 				case 16:
1728 					bw_flags |= IEEE80211_CHAN_16MHZ;
1729 					break;
1730 				default:
1731 					/* If we got here, no bandwidths fit on
1732 					 * this frequency, ie. band edge.
1733 					 */
1734 					bw_flags |= IEEE80211_CHAN_DISABLED;
1735 					break;
1736 				}
1737 				break;
1738 			}
1739 			ch_bw /= 2;
1740 		}
1741 	} else {
1742 		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1743 			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1744 		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1745 			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1746 		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1747 			bw_flags |= IEEE80211_CHAN_NO_HT40;
1748 		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1749 			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1750 		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1751 			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1752 		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1753 			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1754 	}
1755 	return bw_flags;
1756 }
1757 
1758 static void handle_channel_single_rule(struct wiphy *wiphy,
1759 				       enum nl80211_reg_initiator initiator,
1760 				       struct ieee80211_channel *chan,
1761 				       u32 flags,
1762 				       struct regulatory_request *lr,
1763 				       struct wiphy *request_wiphy,
1764 				       const struct ieee80211_reg_rule *reg_rule)
1765 {
1766 	u32 bw_flags = 0;
1767 	const struct ieee80211_power_rule *power_rule = NULL;
1768 	const struct ieee80211_regdomain *regd;
1769 
1770 	regd = reg_get_regdomain(wiphy);
1771 
1772 	power_rule = &reg_rule->power_rule;
1773 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1774 
1775 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1776 	    request_wiphy && request_wiphy == wiphy &&
1777 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1778 		/*
1779 		 * This guarantees the driver's requested regulatory domain
1780 		 * will always be used as a base for further regulatory
1781 		 * settings
1782 		 */
1783 		chan->flags = chan->orig_flags =
1784 			map_regdom_flags(reg_rule->flags) | bw_flags;
1785 		chan->max_antenna_gain = chan->orig_mag =
1786 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1787 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1788 			(int) MBM_TO_DBM(power_rule->max_eirp);
1789 
1790 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1791 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1792 			if (reg_rule->dfs_cac_ms)
1793 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1794 		}
1795 
1796 		return;
1797 	}
1798 
1799 	chan->dfs_state = NL80211_DFS_USABLE;
1800 	chan->dfs_state_entered = jiffies;
1801 
1802 	chan->beacon_found = false;
1803 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1804 	chan->max_antenna_gain =
1805 		min_t(int, chan->orig_mag,
1806 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1807 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1808 
1809 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1810 		if (reg_rule->dfs_cac_ms)
1811 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1812 		else
1813 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1814 	}
1815 
1816 	if (chan->orig_mpwr) {
1817 		/*
1818 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1819 		 * will always follow the passed country IE power settings.
1820 		 */
1821 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1822 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1823 			chan->max_power = chan->max_reg_power;
1824 		else
1825 			chan->max_power = min(chan->orig_mpwr,
1826 					      chan->max_reg_power);
1827 	} else
1828 		chan->max_power = chan->max_reg_power;
1829 }
1830 
1831 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1832 					  enum nl80211_reg_initiator initiator,
1833 					  struct ieee80211_channel *chan,
1834 					  u32 flags,
1835 					  struct regulatory_request *lr,
1836 					  struct wiphy *request_wiphy,
1837 					  const struct ieee80211_reg_rule *rrule1,
1838 					  const struct ieee80211_reg_rule *rrule2,
1839 					  struct ieee80211_freq_range *comb_range)
1840 {
1841 	u32 bw_flags1 = 0;
1842 	u32 bw_flags2 = 0;
1843 	const struct ieee80211_power_rule *power_rule1 = NULL;
1844 	const struct ieee80211_power_rule *power_rule2 = NULL;
1845 	const struct ieee80211_regdomain *regd;
1846 
1847 	regd = reg_get_regdomain(wiphy);
1848 
1849 	power_rule1 = &rrule1->power_rule;
1850 	power_rule2 = &rrule2->power_rule;
1851 	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1852 	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1853 
1854 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1855 	    request_wiphy && request_wiphy == wiphy &&
1856 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1857 		/* This guarantees the driver's requested regulatory domain
1858 		 * will always be used as a base for further regulatory
1859 		 * settings
1860 		 */
1861 		chan->flags =
1862 			map_regdom_flags(rrule1->flags) |
1863 			map_regdom_flags(rrule2->flags) |
1864 			bw_flags1 |
1865 			bw_flags2;
1866 		chan->orig_flags = chan->flags;
1867 		chan->max_antenna_gain =
1868 			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1869 			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1870 		chan->orig_mag = chan->max_antenna_gain;
1871 		chan->max_reg_power =
1872 			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1873 			      MBM_TO_DBM(power_rule2->max_eirp));
1874 		chan->max_power = chan->max_reg_power;
1875 		chan->orig_mpwr = chan->max_reg_power;
1876 
1877 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1878 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1879 			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1880 				chan->dfs_cac_ms = max_t(unsigned int,
1881 							 rrule1->dfs_cac_ms,
1882 							 rrule2->dfs_cac_ms);
1883 		}
1884 
1885 		return;
1886 	}
1887 
1888 	chan->dfs_state = NL80211_DFS_USABLE;
1889 	chan->dfs_state_entered = jiffies;
1890 
1891 	chan->beacon_found = false;
1892 	chan->flags = flags | bw_flags1 | bw_flags2 |
1893 		      map_regdom_flags(rrule1->flags) |
1894 		      map_regdom_flags(rrule2->flags);
1895 
1896 	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1897 	 * (otherwise no adj. rule case), recheck therefore
1898 	 */
1899 	if (cfg80211_does_bw_fit_range(comb_range,
1900 				       ieee80211_channel_to_khz(chan),
1901 				       MHZ_TO_KHZ(10)))
1902 		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1903 	if (cfg80211_does_bw_fit_range(comb_range,
1904 				       ieee80211_channel_to_khz(chan),
1905 				       MHZ_TO_KHZ(20)))
1906 		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1907 
1908 	chan->max_antenna_gain =
1909 		min_t(int, chan->orig_mag,
1910 		      min_t(int,
1911 			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1912 			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1913 	chan->max_reg_power = min_t(int,
1914 				    MBM_TO_DBM(power_rule1->max_eirp),
1915 				    MBM_TO_DBM(power_rule2->max_eirp));
1916 
1917 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1918 		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1919 			chan->dfs_cac_ms = max_t(unsigned int,
1920 						 rrule1->dfs_cac_ms,
1921 						 rrule2->dfs_cac_ms);
1922 		else
1923 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1924 	}
1925 
1926 	if (chan->orig_mpwr) {
1927 		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1928 		 * will always follow the passed country IE power settings.
1929 		 */
1930 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1931 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1932 			chan->max_power = chan->max_reg_power;
1933 		else
1934 			chan->max_power = min(chan->orig_mpwr,
1935 					      chan->max_reg_power);
1936 	} else {
1937 		chan->max_power = chan->max_reg_power;
1938 	}
1939 }
1940 
1941 /* Note that right now we assume the desired channel bandwidth
1942  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1943  * per channel, the primary and the extension channel).
1944  */
1945 static void handle_channel(struct wiphy *wiphy,
1946 			   enum nl80211_reg_initiator initiator,
1947 			   struct ieee80211_channel *chan)
1948 {
1949 	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1950 	struct regulatory_request *lr = get_last_request();
1951 	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1952 	const struct ieee80211_reg_rule *rrule = NULL;
1953 	const struct ieee80211_reg_rule *rrule1 = NULL;
1954 	const struct ieee80211_reg_rule *rrule2 = NULL;
1955 
1956 	u32 flags = chan->orig_flags;
1957 
1958 	rrule = freq_reg_info(wiphy, orig_chan_freq);
1959 	if (IS_ERR(rrule)) {
1960 		/* check for adjacent match, therefore get rules for
1961 		 * chan - 20 MHz and chan + 20 MHz and test
1962 		 * if reg rules are adjacent
1963 		 */
1964 		rrule1 = freq_reg_info(wiphy,
1965 				       orig_chan_freq - MHZ_TO_KHZ(20));
1966 		rrule2 = freq_reg_info(wiphy,
1967 				       orig_chan_freq + MHZ_TO_KHZ(20));
1968 		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1969 			struct ieee80211_freq_range comb_range;
1970 
1971 			if (rrule1->freq_range.end_freq_khz !=
1972 			    rrule2->freq_range.start_freq_khz)
1973 				goto disable_chan;
1974 
1975 			comb_range.start_freq_khz =
1976 				rrule1->freq_range.start_freq_khz;
1977 			comb_range.end_freq_khz =
1978 				rrule2->freq_range.end_freq_khz;
1979 			comb_range.max_bandwidth_khz =
1980 				min_t(u32,
1981 				      rrule1->freq_range.max_bandwidth_khz,
1982 				      rrule2->freq_range.max_bandwidth_khz);
1983 
1984 			if (!cfg80211_does_bw_fit_range(&comb_range,
1985 							orig_chan_freq,
1986 							MHZ_TO_KHZ(20)))
1987 				goto disable_chan;
1988 
1989 			handle_channel_adjacent_rules(wiphy, initiator, chan,
1990 						      flags, lr, request_wiphy,
1991 						      rrule1, rrule2,
1992 						      &comb_range);
1993 			return;
1994 		}
1995 
1996 disable_chan:
1997 		/* We will disable all channels that do not match our
1998 		 * received regulatory rule unless the hint is coming
1999 		 * from a Country IE and the Country IE had no information
2000 		 * about a band. The IEEE 802.11 spec allows for an AP
2001 		 * to send only a subset of the regulatory rules allowed,
2002 		 * so an AP in the US that only supports 2.4 GHz may only send
2003 		 * a country IE with information for the 2.4 GHz band
2004 		 * while 5 GHz is still supported.
2005 		 */
2006 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2007 		    PTR_ERR(rrule) == -ERANGE)
2008 			return;
2009 
2010 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2011 		    request_wiphy && request_wiphy == wiphy &&
2012 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2013 			pr_debug("Disabling freq %d.%03d MHz for good\n",
2014 				 chan->center_freq, chan->freq_offset);
2015 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2016 			chan->flags = chan->orig_flags;
2017 		} else {
2018 			pr_debug("Disabling freq %d.%03d MHz\n",
2019 				 chan->center_freq, chan->freq_offset);
2020 			chan->flags |= IEEE80211_CHAN_DISABLED;
2021 		}
2022 		return;
2023 	}
2024 
2025 	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2026 				   request_wiphy, rrule);
2027 }
2028 
2029 static void handle_band(struct wiphy *wiphy,
2030 			enum nl80211_reg_initiator initiator,
2031 			struct ieee80211_supported_band *sband)
2032 {
2033 	unsigned int i;
2034 
2035 	if (!sband)
2036 		return;
2037 
2038 	for (i = 0; i < sband->n_channels; i++)
2039 		handle_channel(wiphy, initiator, &sband->channels[i]);
2040 }
2041 
2042 static bool reg_request_cell_base(struct regulatory_request *request)
2043 {
2044 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2045 		return false;
2046 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2047 }
2048 
2049 bool reg_last_request_cell_base(void)
2050 {
2051 	return reg_request_cell_base(get_last_request());
2052 }
2053 
2054 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2055 /* Core specific check */
2056 static enum reg_request_treatment
2057 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2058 {
2059 	struct regulatory_request *lr = get_last_request();
2060 
2061 	if (!reg_num_devs_support_basehint)
2062 		return REG_REQ_IGNORE;
2063 
2064 	if (reg_request_cell_base(lr) &&
2065 	    !regdom_changes(pending_request->alpha2))
2066 		return REG_REQ_ALREADY_SET;
2067 
2068 	return REG_REQ_OK;
2069 }
2070 
2071 /* Device specific check */
2072 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2073 {
2074 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2075 }
2076 #else
2077 static enum reg_request_treatment
2078 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2079 {
2080 	return REG_REQ_IGNORE;
2081 }
2082 
2083 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2084 {
2085 	return true;
2086 }
2087 #endif
2088 
2089 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2090 {
2091 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2092 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2093 		return true;
2094 	return false;
2095 }
2096 
2097 static bool ignore_reg_update(struct wiphy *wiphy,
2098 			      enum nl80211_reg_initiator initiator)
2099 {
2100 	struct regulatory_request *lr = get_last_request();
2101 
2102 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2103 		return true;
2104 
2105 	if (!lr) {
2106 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2107 			 reg_initiator_name(initiator));
2108 		return true;
2109 	}
2110 
2111 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2112 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2113 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2114 			 reg_initiator_name(initiator));
2115 		return true;
2116 	}
2117 
2118 	/*
2119 	 * wiphy->regd will be set once the device has its own
2120 	 * desired regulatory domain set
2121 	 */
2122 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2123 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2124 	    !is_world_regdom(lr->alpha2)) {
2125 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2126 			 reg_initiator_name(initiator));
2127 		return true;
2128 	}
2129 
2130 	if (reg_request_cell_base(lr))
2131 		return reg_dev_ignore_cell_hint(wiphy);
2132 
2133 	return false;
2134 }
2135 
2136 static bool reg_is_world_roaming(struct wiphy *wiphy)
2137 {
2138 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2139 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2140 	struct regulatory_request *lr = get_last_request();
2141 
2142 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2143 		return true;
2144 
2145 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2146 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2147 		return true;
2148 
2149 	return false;
2150 }
2151 
2152 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2153 			      struct reg_beacon *reg_beacon)
2154 {
2155 	struct ieee80211_supported_band *sband;
2156 	struct ieee80211_channel *chan;
2157 	bool channel_changed = false;
2158 	struct ieee80211_channel chan_before;
2159 
2160 	sband = wiphy->bands[reg_beacon->chan.band];
2161 	chan = &sband->channels[chan_idx];
2162 
2163 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2164 		return;
2165 
2166 	if (chan->beacon_found)
2167 		return;
2168 
2169 	chan->beacon_found = true;
2170 
2171 	if (!reg_is_world_roaming(wiphy))
2172 		return;
2173 
2174 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2175 		return;
2176 
2177 	chan_before = *chan;
2178 
2179 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2180 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2181 		channel_changed = true;
2182 	}
2183 
2184 	if (channel_changed)
2185 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2186 }
2187 
2188 /*
2189  * Called when a scan on a wiphy finds a beacon on
2190  * new channel
2191  */
2192 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2193 				    struct reg_beacon *reg_beacon)
2194 {
2195 	unsigned int i;
2196 	struct ieee80211_supported_band *sband;
2197 
2198 	if (!wiphy->bands[reg_beacon->chan.band])
2199 		return;
2200 
2201 	sband = wiphy->bands[reg_beacon->chan.band];
2202 
2203 	for (i = 0; i < sband->n_channels; i++)
2204 		handle_reg_beacon(wiphy, i, reg_beacon);
2205 }
2206 
2207 /*
2208  * Called upon reg changes or a new wiphy is added
2209  */
2210 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2211 {
2212 	unsigned int i;
2213 	struct ieee80211_supported_band *sband;
2214 	struct reg_beacon *reg_beacon;
2215 
2216 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2217 		if (!wiphy->bands[reg_beacon->chan.band])
2218 			continue;
2219 		sband = wiphy->bands[reg_beacon->chan.band];
2220 		for (i = 0; i < sband->n_channels; i++)
2221 			handle_reg_beacon(wiphy, i, reg_beacon);
2222 	}
2223 }
2224 
2225 /* Reap the advantages of previously found beacons */
2226 static void reg_process_beacons(struct wiphy *wiphy)
2227 {
2228 	/*
2229 	 * Means we are just firing up cfg80211, so no beacons would
2230 	 * have been processed yet.
2231 	 */
2232 	if (!last_request)
2233 		return;
2234 	wiphy_update_beacon_reg(wiphy);
2235 }
2236 
2237 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2238 {
2239 	if (!chan)
2240 		return false;
2241 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2242 		return false;
2243 	/* This would happen when regulatory rules disallow HT40 completely */
2244 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2245 		return false;
2246 	return true;
2247 }
2248 
2249 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2250 					 struct ieee80211_channel *channel)
2251 {
2252 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2253 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2254 	const struct ieee80211_regdomain *regd;
2255 	unsigned int i;
2256 	u32 flags;
2257 
2258 	if (!is_ht40_allowed(channel)) {
2259 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2260 		return;
2261 	}
2262 
2263 	/*
2264 	 * We need to ensure the extension channels exist to
2265 	 * be able to use HT40- or HT40+, this finds them (or not)
2266 	 */
2267 	for (i = 0; i < sband->n_channels; i++) {
2268 		struct ieee80211_channel *c = &sband->channels[i];
2269 
2270 		if (c->center_freq == (channel->center_freq - 20))
2271 			channel_before = c;
2272 		if (c->center_freq == (channel->center_freq + 20))
2273 			channel_after = c;
2274 	}
2275 
2276 	flags = 0;
2277 	regd = get_wiphy_regdom(wiphy);
2278 	if (regd) {
2279 		const struct ieee80211_reg_rule *reg_rule =
2280 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2281 					   regd, MHZ_TO_KHZ(20));
2282 
2283 		if (!IS_ERR(reg_rule))
2284 			flags = reg_rule->flags;
2285 	}
2286 
2287 	/*
2288 	 * Please note that this assumes target bandwidth is 20 MHz,
2289 	 * if that ever changes we also need to change the below logic
2290 	 * to include that as well.
2291 	 */
2292 	if (!is_ht40_allowed(channel_before) ||
2293 	    flags & NL80211_RRF_NO_HT40MINUS)
2294 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2295 	else
2296 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2297 
2298 	if (!is_ht40_allowed(channel_after) ||
2299 	    flags & NL80211_RRF_NO_HT40PLUS)
2300 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2301 	else
2302 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2303 }
2304 
2305 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2306 				      struct ieee80211_supported_band *sband)
2307 {
2308 	unsigned int i;
2309 
2310 	if (!sband)
2311 		return;
2312 
2313 	for (i = 0; i < sband->n_channels; i++)
2314 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2315 }
2316 
2317 static void reg_process_ht_flags(struct wiphy *wiphy)
2318 {
2319 	enum nl80211_band band;
2320 
2321 	if (!wiphy)
2322 		return;
2323 
2324 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2325 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2326 }
2327 
2328 static void reg_call_notifier(struct wiphy *wiphy,
2329 			      struct regulatory_request *request)
2330 {
2331 	if (wiphy->reg_notifier)
2332 		wiphy->reg_notifier(wiphy, request);
2333 }
2334 
2335 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2336 {
2337 	struct cfg80211_chan_def chandef = {};
2338 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2339 	enum nl80211_iftype iftype;
2340 	bool ret;
2341 	int link;
2342 
2343 	wdev_lock(wdev);
2344 	iftype = wdev->iftype;
2345 
2346 	/* make sure the interface is active */
2347 	if (!wdev->netdev || !netif_running(wdev->netdev))
2348 		goto wdev_inactive_unlock;
2349 
2350 	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2351 		struct ieee80211_channel *chan;
2352 
2353 		if (!wdev->valid_links && link > 0)
2354 			break;
2355 		if (!(wdev->valid_links & BIT(link)))
2356 			continue;
2357 		switch (iftype) {
2358 		case NL80211_IFTYPE_AP:
2359 		case NL80211_IFTYPE_P2P_GO:
2360 			if (!wdev->links[link].ap.beacon_interval)
2361 				continue;
2362 			chandef = wdev->links[link].ap.chandef;
2363 			break;
2364 		case NL80211_IFTYPE_MESH_POINT:
2365 			if (!wdev->u.mesh.beacon_interval)
2366 				continue;
2367 			chandef = wdev->u.mesh.chandef;
2368 			break;
2369 		case NL80211_IFTYPE_ADHOC:
2370 			if (!wdev->u.ibss.ssid_len)
2371 				continue;
2372 			chandef = wdev->u.ibss.chandef;
2373 			break;
2374 		case NL80211_IFTYPE_STATION:
2375 		case NL80211_IFTYPE_P2P_CLIENT:
2376 			/* Maybe we could consider disabling that link only? */
2377 			if (!wdev->links[link].client.current_bss)
2378 				continue;
2379 
2380 			chan = wdev->links[link].client.current_bss->pub.channel;
2381 			if (!chan)
2382 				continue;
2383 
2384 			if (!rdev->ops->get_channel ||
2385 			    rdev_get_channel(rdev, wdev, link, &chandef))
2386 				cfg80211_chandef_create(&chandef, chan,
2387 							NL80211_CHAN_NO_HT);
2388 			break;
2389 		case NL80211_IFTYPE_MONITOR:
2390 		case NL80211_IFTYPE_AP_VLAN:
2391 		case NL80211_IFTYPE_P2P_DEVICE:
2392 			/* no enforcement required */
2393 			break;
2394 		default:
2395 			/* others not implemented for now */
2396 			WARN_ON(1);
2397 			break;
2398 		}
2399 
2400 		wdev_unlock(wdev);
2401 
2402 		switch (iftype) {
2403 		case NL80211_IFTYPE_AP:
2404 		case NL80211_IFTYPE_P2P_GO:
2405 		case NL80211_IFTYPE_ADHOC:
2406 		case NL80211_IFTYPE_MESH_POINT:
2407 			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2408 							    iftype);
2409 			if (!ret)
2410 				return ret;
2411 			break;
2412 		case NL80211_IFTYPE_STATION:
2413 		case NL80211_IFTYPE_P2P_CLIENT:
2414 			ret = cfg80211_chandef_usable(wiphy, &chandef,
2415 						      IEEE80211_CHAN_DISABLED);
2416 			if (!ret)
2417 				return ret;
2418 			break;
2419 		default:
2420 			break;
2421 		}
2422 
2423 		wdev_lock(wdev);
2424 	}
2425 
2426 	wdev_unlock(wdev);
2427 
2428 	return true;
2429 
2430 wdev_inactive_unlock:
2431 	wdev_unlock(wdev);
2432 	return true;
2433 }
2434 
2435 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2436 {
2437 	struct wireless_dev *wdev;
2438 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2439 
2440 	wiphy_lock(wiphy);
2441 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2442 		if (!reg_wdev_chan_valid(wiphy, wdev))
2443 			cfg80211_leave(rdev, wdev);
2444 	wiphy_unlock(wiphy);
2445 }
2446 
2447 static void reg_check_chans_work(struct work_struct *work)
2448 {
2449 	struct cfg80211_registered_device *rdev;
2450 
2451 	pr_debug("Verifying active interfaces after reg change\n");
2452 	rtnl_lock();
2453 
2454 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2455 		if (!(rdev->wiphy.regulatory_flags &
2456 		      REGULATORY_IGNORE_STALE_KICKOFF))
2457 			reg_leave_invalid_chans(&rdev->wiphy);
2458 
2459 	rtnl_unlock();
2460 }
2461 
2462 static void reg_check_channels(void)
2463 {
2464 	/*
2465 	 * Give usermode a chance to do something nicer (move to another
2466 	 * channel, orderly disconnection), before forcing a disconnection.
2467 	 */
2468 	mod_delayed_work(system_power_efficient_wq,
2469 			 &reg_check_chans,
2470 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2471 }
2472 
2473 static void wiphy_update_regulatory(struct wiphy *wiphy,
2474 				    enum nl80211_reg_initiator initiator)
2475 {
2476 	enum nl80211_band band;
2477 	struct regulatory_request *lr = get_last_request();
2478 
2479 	if (ignore_reg_update(wiphy, initiator)) {
2480 		/*
2481 		 * Regulatory updates set by CORE are ignored for custom
2482 		 * regulatory cards. Let us notify the changes to the driver,
2483 		 * as some drivers used this to restore its orig_* reg domain.
2484 		 */
2485 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2486 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2487 		    !(wiphy->regulatory_flags &
2488 		      REGULATORY_WIPHY_SELF_MANAGED))
2489 			reg_call_notifier(wiphy, lr);
2490 		return;
2491 	}
2492 
2493 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2494 
2495 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2496 		handle_band(wiphy, initiator, wiphy->bands[band]);
2497 
2498 	reg_process_beacons(wiphy);
2499 	reg_process_ht_flags(wiphy);
2500 	reg_call_notifier(wiphy, lr);
2501 }
2502 
2503 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2504 {
2505 	struct cfg80211_registered_device *rdev;
2506 	struct wiphy *wiphy;
2507 
2508 	ASSERT_RTNL();
2509 
2510 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2511 		wiphy = &rdev->wiphy;
2512 		wiphy_update_regulatory(wiphy, initiator);
2513 	}
2514 
2515 	reg_check_channels();
2516 }
2517 
2518 static void handle_channel_custom(struct wiphy *wiphy,
2519 				  struct ieee80211_channel *chan,
2520 				  const struct ieee80211_regdomain *regd,
2521 				  u32 min_bw)
2522 {
2523 	u32 bw_flags = 0;
2524 	const struct ieee80211_reg_rule *reg_rule = NULL;
2525 	const struct ieee80211_power_rule *power_rule = NULL;
2526 	u32 bw, center_freq_khz;
2527 
2528 	center_freq_khz = ieee80211_channel_to_khz(chan);
2529 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2530 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2531 		if (!IS_ERR(reg_rule))
2532 			break;
2533 	}
2534 
2535 	if (IS_ERR_OR_NULL(reg_rule)) {
2536 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2537 			 chan->center_freq, chan->freq_offset);
2538 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2539 			chan->flags |= IEEE80211_CHAN_DISABLED;
2540 		} else {
2541 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2542 			chan->flags = chan->orig_flags;
2543 		}
2544 		return;
2545 	}
2546 
2547 	power_rule = &reg_rule->power_rule;
2548 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2549 
2550 	chan->dfs_state_entered = jiffies;
2551 	chan->dfs_state = NL80211_DFS_USABLE;
2552 
2553 	chan->beacon_found = false;
2554 
2555 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2556 		chan->flags = chan->orig_flags | bw_flags |
2557 			      map_regdom_flags(reg_rule->flags);
2558 	else
2559 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2560 
2561 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2562 	chan->max_reg_power = chan->max_power =
2563 		(int) MBM_TO_DBM(power_rule->max_eirp);
2564 
2565 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2566 		if (reg_rule->dfs_cac_ms)
2567 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2568 		else
2569 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2570 	}
2571 
2572 	chan->max_power = chan->max_reg_power;
2573 }
2574 
2575 static void handle_band_custom(struct wiphy *wiphy,
2576 			       struct ieee80211_supported_band *sband,
2577 			       const struct ieee80211_regdomain *regd)
2578 {
2579 	unsigned int i;
2580 
2581 	if (!sband)
2582 		return;
2583 
2584 	/*
2585 	 * We currently assume that you always want at least 20 MHz,
2586 	 * otherwise channel 12 might get enabled if this rule is
2587 	 * compatible to US, which permits 2402 - 2472 MHz.
2588 	 */
2589 	for (i = 0; i < sband->n_channels; i++)
2590 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2591 				      MHZ_TO_KHZ(20));
2592 }
2593 
2594 /* Used by drivers prior to wiphy registration */
2595 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2596 				   const struct ieee80211_regdomain *regd)
2597 {
2598 	const struct ieee80211_regdomain *new_regd, *tmp;
2599 	enum nl80211_band band;
2600 	unsigned int bands_set = 0;
2601 
2602 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2603 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2604 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2605 
2606 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2607 		if (!wiphy->bands[band])
2608 			continue;
2609 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2610 		bands_set++;
2611 	}
2612 
2613 	/*
2614 	 * no point in calling this if it won't have any effect
2615 	 * on your device's supported bands.
2616 	 */
2617 	WARN_ON(!bands_set);
2618 	new_regd = reg_copy_regd(regd);
2619 	if (IS_ERR(new_regd))
2620 		return;
2621 
2622 	rtnl_lock();
2623 	wiphy_lock(wiphy);
2624 
2625 	tmp = get_wiphy_regdom(wiphy);
2626 	rcu_assign_pointer(wiphy->regd, new_regd);
2627 	rcu_free_regdom(tmp);
2628 
2629 	wiphy_unlock(wiphy);
2630 	rtnl_unlock();
2631 }
2632 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2633 
2634 static void reg_set_request_processed(void)
2635 {
2636 	bool need_more_processing = false;
2637 	struct regulatory_request *lr = get_last_request();
2638 
2639 	lr->processed = true;
2640 
2641 	spin_lock(&reg_requests_lock);
2642 	if (!list_empty(&reg_requests_list))
2643 		need_more_processing = true;
2644 	spin_unlock(&reg_requests_lock);
2645 
2646 	cancel_crda_timeout();
2647 
2648 	if (need_more_processing)
2649 		schedule_work(&reg_work);
2650 }
2651 
2652 /**
2653  * reg_process_hint_core - process core regulatory requests
2654  * @core_request: a pending core regulatory request
2655  *
2656  * The wireless subsystem can use this function to process
2657  * a regulatory request issued by the regulatory core.
2658  */
2659 static enum reg_request_treatment
2660 reg_process_hint_core(struct regulatory_request *core_request)
2661 {
2662 	if (reg_query_database(core_request)) {
2663 		core_request->intersect = false;
2664 		core_request->processed = false;
2665 		reg_update_last_request(core_request);
2666 		return REG_REQ_OK;
2667 	}
2668 
2669 	return REG_REQ_IGNORE;
2670 }
2671 
2672 static enum reg_request_treatment
2673 __reg_process_hint_user(struct regulatory_request *user_request)
2674 {
2675 	struct regulatory_request *lr = get_last_request();
2676 
2677 	if (reg_request_cell_base(user_request))
2678 		return reg_ignore_cell_hint(user_request);
2679 
2680 	if (reg_request_cell_base(lr))
2681 		return REG_REQ_IGNORE;
2682 
2683 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2684 		return REG_REQ_INTERSECT;
2685 	/*
2686 	 * If the user knows better the user should set the regdom
2687 	 * to their country before the IE is picked up
2688 	 */
2689 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2690 	    lr->intersect)
2691 		return REG_REQ_IGNORE;
2692 	/*
2693 	 * Process user requests only after previous user/driver/core
2694 	 * requests have been processed
2695 	 */
2696 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2697 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2698 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2699 	    regdom_changes(lr->alpha2))
2700 		return REG_REQ_IGNORE;
2701 
2702 	if (!regdom_changes(user_request->alpha2))
2703 		return REG_REQ_ALREADY_SET;
2704 
2705 	return REG_REQ_OK;
2706 }
2707 
2708 /**
2709  * reg_process_hint_user - process user regulatory requests
2710  * @user_request: a pending user regulatory request
2711  *
2712  * The wireless subsystem can use this function to process
2713  * a regulatory request initiated by userspace.
2714  */
2715 static enum reg_request_treatment
2716 reg_process_hint_user(struct regulatory_request *user_request)
2717 {
2718 	enum reg_request_treatment treatment;
2719 
2720 	treatment = __reg_process_hint_user(user_request);
2721 	if (treatment == REG_REQ_IGNORE ||
2722 	    treatment == REG_REQ_ALREADY_SET)
2723 		return REG_REQ_IGNORE;
2724 
2725 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2726 	user_request->processed = false;
2727 
2728 	if (reg_query_database(user_request)) {
2729 		reg_update_last_request(user_request);
2730 		user_alpha2[0] = user_request->alpha2[0];
2731 		user_alpha2[1] = user_request->alpha2[1];
2732 		return REG_REQ_OK;
2733 	}
2734 
2735 	return REG_REQ_IGNORE;
2736 }
2737 
2738 static enum reg_request_treatment
2739 __reg_process_hint_driver(struct regulatory_request *driver_request)
2740 {
2741 	struct regulatory_request *lr = get_last_request();
2742 
2743 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2744 		if (regdom_changes(driver_request->alpha2))
2745 			return REG_REQ_OK;
2746 		return REG_REQ_ALREADY_SET;
2747 	}
2748 
2749 	/*
2750 	 * This would happen if you unplug and plug your card
2751 	 * back in or if you add a new device for which the previously
2752 	 * loaded card also agrees on the regulatory domain.
2753 	 */
2754 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2755 	    !regdom_changes(driver_request->alpha2))
2756 		return REG_REQ_ALREADY_SET;
2757 
2758 	return REG_REQ_INTERSECT;
2759 }
2760 
2761 /**
2762  * reg_process_hint_driver - process driver regulatory requests
2763  * @wiphy: the wireless device for the regulatory request
2764  * @driver_request: a pending driver regulatory request
2765  *
2766  * The wireless subsystem can use this function to process
2767  * a regulatory request issued by an 802.11 driver.
2768  *
2769  * Returns one of the different reg request treatment values.
2770  */
2771 static enum reg_request_treatment
2772 reg_process_hint_driver(struct wiphy *wiphy,
2773 			struct regulatory_request *driver_request)
2774 {
2775 	const struct ieee80211_regdomain *regd, *tmp;
2776 	enum reg_request_treatment treatment;
2777 
2778 	treatment = __reg_process_hint_driver(driver_request);
2779 
2780 	switch (treatment) {
2781 	case REG_REQ_OK:
2782 		break;
2783 	case REG_REQ_IGNORE:
2784 		return REG_REQ_IGNORE;
2785 	case REG_REQ_INTERSECT:
2786 	case REG_REQ_ALREADY_SET:
2787 		regd = reg_copy_regd(get_cfg80211_regdom());
2788 		if (IS_ERR(regd))
2789 			return REG_REQ_IGNORE;
2790 
2791 		tmp = get_wiphy_regdom(wiphy);
2792 		ASSERT_RTNL();
2793 		wiphy_lock(wiphy);
2794 		rcu_assign_pointer(wiphy->regd, regd);
2795 		wiphy_unlock(wiphy);
2796 		rcu_free_regdom(tmp);
2797 	}
2798 
2799 
2800 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2801 	driver_request->processed = false;
2802 
2803 	/*
2804 	 * Since CRDA will not be called in this case as we already
2805 	 * have applied the requested regulatory domain before we just
2806 	 * inform userspace we have processed the request
2807 	 */
2808 	if (treatment == REG_REQ_ALREADY_SET) {
2809 		nl80211_send_reg_change_event(driver_request);
2810 		reg_update_last_request(driver_request);
2811 		reg_set_request_processed();
2812 		return REG_REQ_ALREADY_SET;
2813 	}
2814 
2815 	if (reg_query_database(driver_request)) {
2816 		reg_update_last_request(driver_request);
2817 		return REG_REQ_OK;
2818 	}
2819 
2820 	return REG_REQ_IGNORE;
2821 }
2822 
2823 static enum reg_request_treatment
2824 __reg_process_hint_country_ie(struct wiphy *wiphy,
2825 			      struct regulatory_request *country_ie_request)
2826 {
2827 	struct wiphy *last_wiphy = NULL;
2828 	struct regulatory_request *lr = get_last_request();
2829 
2830 	if (reg_request_cell_base(lr)) {
2831 		/* Trust a Cell base station over the AP's country IE */
2832 		if (regdom_changes(country_ie_request->alpha2))
2833 			return REG_REQ_IGNORE;
2834 		return REG_REQ_ALREADY_SET;
2835 	} else {
2836 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2837 			return REG_REQ_IGNORE;
2838 	}
2839 
2840 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2841 		return -EINVAL;
2842 
2843 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2844 		return REG_REQ_OK;
2845 
2846 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2847 
2848 	if (last_wiphy != wiphy) {
2849 		/*
2850 		 * Two cards with two APs claiming different
2851 		 * Country IE alpha2s. We could
2852 		 * intersect them, but that seems unlikely
2853 		 * to be correct. Reject second one for now.
2854 		 */
2855 		if (regdom_changes(country_ie_request->alpha2))
2856 			return REG_REQ_IGNORE;
2857 		return REG_REQ_ALREADY_SET;
2858 	}
2859 
2860 	if (regdom_changes(country_ie_request->alpha2))
2861 		return REG_REQ_OK;
2862 	return REG_REQ_ALREADY_SET;
2863 }
2864 
2865 /**
2866  * reg_process_hint_country_ie - process regulatory requests from country IEs
2867  * @wiphy: the wireless device for the regulatory request
2868  * @country_ie_request: a regulatory request from a country IE
2869  *
2870  * The wireless subsystem can use this function to process
2871  * a regulatory request issued by a country Information Element.
2872  *
2873  * Returns one of the different reg request treatment values.
2874  */
2875 static enum reg_request_treatment
2876 reg_process_hint_country_ie(struct wiphy *wiphy,
2877 			    struct regulatory_request *country_ie_request)
2878 {
2879 	enum reg_request_treatment treatment;
2880 
2881 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2882 
2883 	switch (treatment) {
2884 	case REG_REQ_OK:
2885 		break;
2886 	case REG_REQ_IGNORE:
2887 		return REG_REQ_IGNORE;
2888 	case REG_REQ_ALREADY_SET:
2889 		reg_free_request(country_ie_request);
2890 		return REG_REQ_ALREADY_SET;
2891 	case REG_REQ_INTERSECT:
2892 		/*
2893 		 * This doesn't happen yet, not sure we
2894 		 * ever want to support it for this case.
2895 		 */
2896 		WARN_ONCE(1, "Unexpected intersection for country elements");
2897 		return REG_REQ_IGNORE;
2898 	}
2899 
2900 	country_ie_request->intersect = false;
2901 	country_ie_request->processed = false;
2902 
2903 	if (reg_query_database(country_ie_request)) {
2904 		reg_update_last_request(country_ie_request);
2905 		return REG_REQ_OK;
2906 	}
2907 
2908 	return REG_REQ_IGNORE;
2909 }
2910 
2911 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2912 {
2913 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2914 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2915 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2916 	bool dfs_domain_same;
2917 
2918 	rcu_read_lock();
2919 
2920 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2921 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2922 	if (!wiphy1_regd)
2923 		wiphy1_regd = cfg80211_regd;
2924 
2925 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2926 	if (!wiphy2_regd)
2927 		wiphy2_regd = cfg80211_regd;
2928 
2929 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2930 
2931 	rcu_read_unlock();
2932 
2933 	return dfs_domain_same;
2934 }
2935 
2936 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2937 				    struct ieee80211_channel *src_chan)
2938 {
2939 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2940 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2941 		return;
2942 
2943 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2944 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2945 		return;
2946 
2947 	if (src_chan->center_freq == dst_chan->center_freq &&
2948 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2949 		dst_chan->dfs_state = src_chan->dfs_state;
2950 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2951 	}
2952 }
2953 
2954 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2955 				       struct wiphy *src_wiphy)
2956 {
2957 	struct ieee80211_supported_band *src_sband, *dst_sband;
2958 	struct ieee80211_channel *src_chan, *dst_chan;
2959 	int i, j, band;
2960 
2961 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2962 		return;
2963 
2964 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2965 		dst_sband = dst_wiphy->bands[band];
2966 		src_sband = src_wiphy->bands[band];
2967 		if (!dst_sband || !src_sband)
2968 			continue;
2969 
2970 		for (i = 0; i < dst_sband->n_channels; i++) {
2971 			dst_chan = &dst_sband->channels[i];
2972 			for (j = 0; j < src_sband->n_channels; j++) {
2973 				src_chan = &src_sband->channels[j];
2974 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2975 			}
2976 		}
2977 	}
2978 }
2979 
2980 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2981 {
2982 	struct cfg80211_registered_device *rdev;
2983 
2984 	ASSERT_RTNL();
2985 
2986 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2987 		if (wiphy == &rdev->wiphy)
2988 			continue;
2989 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2990 	}
2991 }
2992 
2993 /* This processes *all* regulatory hints */
2994 static void reg_process_hint(struct regulatory_request *reg_request)
2995 {
2996 	struct wiphy *wiphy = NULL;
2997 	enum reg_request_treatment treatment;
2998 	enum nl80211_reg_initiator initiator = reg_request->initiator;
2999 
3000 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3001 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3002 
3003 	switch (initiator) {
3004 	case NL80211_REGDOM_SET_BY_CORE:
3005 		treatment = reg_process_hint_core(reg_request);
3006 		break;
3007 	case NL80211_REGDOM_SET_BY_USER:
3008 		treatment = reg_process_hint_user(reg_request);
3009 		break;
3010 	case NL80211_REGDOM_SET_BY_DRIVER:
3011 		if (!wiphy)
3012 			goto out_free;
3013 		treatment = reg_process_hint_driver(wiphy, reg_request);
3014 		break;
3015 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3016 		if (!wiphy)
3017 			goto out_free;
3018 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3019 		break;
3020 	default:
3021 		WARN(1, "invalid initiator %d\n", initiator);
3022 		goto out_free;
3023 	}
3024 
3025 	if (treatment == REG_REQ_IGNORE)
3026 		goto out_free;
3027 
3028 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3029 	     "unexpected treatment value %d\n", treatment);
3030 
3031 	/* This is required so that the orig_* parameters are saved.
3032 	 * NOTE: treatment must be set for any case that reaches here!
3033 	 */
3034 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3035 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3036 		wiphy_update_regulatory(wiphy, initiator);
3037 		wiphy_all_share_dfs_chan_state(wiphy);
3038 		reg_check_channels();
3039 	}
3040 
3041 	return;
3042 
3043 out_free:
3044 	reg_free_request(reg_request);
3045 }
3046 
3047 static void notify_self_managed_wiphys(struct regulatory_request *request)
3048 {
3049 	struct cfg80211_registered_device *rdev;
3050 	struct wiphy *wiphy;
3051 
3052 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3053 		wiphy = &rdev->wiphy;
3054 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3055 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3056 			reg_call_notifier(wiphy, request);
3057 	}
3058 }
3059 
3060 /*
3061  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3062  * Regulatory hints come on a first come first serve basis and we
3063  * must process each one atomically.
3064  */
3065 static void reg_process_pending_hints(void)
3066 {
3067 	struct regulatory_request *reg_request, *lr;
3068 
3069 	lr = get_last_request();
3070 
3071 	/* When last_request->processed becomes true this will be rescheduled */
3072 	if (lr && !lr->processed) {
3073 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3074 		return;
3075 	}
3076 
3077 	spin_lock(&reg_requests_lock);
3078 
3079 	if (list_empty(&reg_requests_list)) {
3080 		spin_unlock(&reg_requests_lock);
3081 		return;
3082 	}
3083 
3084 	reg_request = list_first_entry(&reg_requests_list,
3085 				       struct regulatory_request,
3086 				       list);
3087 	list_del_init(&reg_request->list);
3088 
3089 	spin_unlock(&reg_requests_lock);
3090 
3091 	notify_self_managed_wiphys(reg_request);
3092 
3093 	reg_process_hint(reg_request);
3094 
3095 	lr = get_last_request();
3096 
3097 	spin_lock(&reg_requests_lock);
3098 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3099 		schedule_work(&reg_work);
3100 	spin_unlock(&reg_requests_lock);
3101 }
3102 
3103 /* Processes beacon hints -- this has nothing to do with country IEs */
3104 static void reg_process_pending_beacon_hints(void)
3105 {
3106 	struct cfg80211_registered_device *rdev;
3107 	struct reg_beacon *pending_beacon, *tmp;
3108 
3109 	/* This goes through the _pending_ beacon list */
3110 	spin_lock_bh(&reg_pending_beacons_lock);
3111 
3112 	list_for_each_entry_safe(pending_beacon, tmp,
3113 				 &reg_pending_beacons, list) {
3114 		list_del_init(&pending_beacon->list);
3115 
3116 		/* Applies the beacon hint to current wiphys */
3117 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3118 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3119 
3120 		/* Remembers the beacon hint for new wiphys or reg changes */
3121 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3122 	}
3123 
3124 	spin_unlock_bh(&reg_pending_beacons_lock);
3125 }
3126 
3127 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3128 {
3129 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3130 	const struct ieee80211_regdomain *tmp;
3131 	const struct ieee80211_regdomain *regd;
3132 	enum nl80211_band band;
3133 	struct regulatory_request request = {};
3134 
3135 	ASSERT_RTNL();
3136 	lockdep_assert_wiphy(wiphy);
3137 
3138 	spin_lock(&reg_requests_lock);
3139 	regd = rdev->requested_regd;
3140 	rdev->requested_regd = NULL;
3141 	spin_unlock(&reg_requests_lock);
3142 
3143 	if (!regd)
3144 		return;
3145 
3146 	tmp = get_wiphy_regdom(wiphy);
3147 	rcu_assign_pointer(wiphy->regd, regd);
3148 	rcu_free_regdom(tmp);
3149 
3150 	for (band = 0; band < NUM_NL80211_BANDS; band++)
3151 		handle_band_custom(wiphy, wiphy->bands[band], regd);
3152 
3153 	reg_process_ht_flags(wiphy);
3154 
3155 	request.wiphy_idx = get_wiphy_idx(wiphy);
3156 	request.alpha2[0] = regd->alpha2[0];
3157 	request.alpha2[1] = regd->alpha2[1];
3158 	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3159 
3160 	if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3161 		reg_call_notifier(wiphy, &request);
3162 
3163 	nl80211_send_wiphy_reg_change_event(&request);
3164 }
3165 
3166 static void reg_process_self_managed_hints(void)
3167 {
3168 	struct cfg80211_registered_device *rdev;
3169 
3170 	ASSERT_RTNL();
3171 
3172 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3173 		wiphy_lock(&rdev->wiphy);
3174 		reg_process_self_managed_hint(&rdev->wiphy);
3175 		wiphy_unlock(&rdev->wiphy);
3176 	}
3177 
3178 	reg_check_channels();
3179 }
3180 
3181 static void reg_todo(struct work_struct *work)
3182 {
3183 	rtnl_lock();
3184 	reg_process_pending_hints();
3185 	reg_process_pending_beacon_hints();
3186 	reg_process_self_managed_hints();
3187 	rtnl_unlock();
3188 }
3189 
3190 static void queue_regulatory_request(struct regulatory_request *request)
3191 {
3192 	request->alpha2[0] = toupper(request->alpha2[0]);
3193 	request->alpha2[1] = toupper(request->alpha2[1]);
3194 
3195 	spin_lock(&reg_requests_lock);
3196 	list_add_tail(&request->list, &reg_requests_list);
3197 	spin_unlock(&reg_requests_lock);
3198 
3199 	schedule_work(&reg_work);
3200 }
3201 
3202 /*
3203  * Core regulatory hint -- happens during cfg80211_init()
3204  * and when we restore regulatory settings.
3205  */
3206 static int regulatory_hint_core(const char *alpha2)
3207 {
3208 	struct regulatory_request *request;
3209 
3210 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3211 	if (!request)
3212 		return -ENOMEM;
3213 
3214 	request->alpha2[0] = alpha2[0];
3215 	request->alpha2[1] = alpha2[1];
3216 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3217 	request->wiphy_idx = WIPHY_IDX_INVALID;
3218 
3219 	queue_regulatory_request(request);
3220 
3221 	return 0;
3222 }
3223 
3224 /* User hints */
3225 int regulatory_hint_user(const char *alpha2,
3226 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3227 {
3228 	struct regulatory_request *request;
3229 
3230 	if (WARN_ON(!alpha2))
3231 		return -EINVAL;
3232 
3233 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3234 		return -EINVAL;
3235 
3236 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3237 	if (!request)
3238 		return -ENOMEM;
3239 
3240 	request->wiphy_idx = WIPHY_IDX_INVALID;
3241 	request->alpha2[0] = alpha2[0];
3242 	request->alpha2[1] = alpha2[1];
3243 	request->initiator = NL80211_REGDOM_SET_BY_USER;
3244 	request->user_reg_hint_type = user_reg_hint_type;
3245 
3246 	/* Allow calling CRDA again */
3247 	reset_crda_timeouts();
3248 
3249 	queue_regulatory_request(request);
3250 
3251 	return 0;
3252 }
3253 
3254 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3255 {
3256 	spin_lock(&reg_indoor_lock);
3257 
3258 	/* It is possible that more than one user space process is trying to
3259 	 * configure the indoor setting. To handle such cases, clear the indoor
3260 	 * setting in case that some process does not think that the device
3261 	 * is operating in an indoor environment. In addition, if a user space
3262 	 * process indicates that it is controlling the indoor setting, save its
3263 	 * portid, i.e., make it the owner.
3264 	 */
3265 	reg_is_indoor = is_indoor;
3266 	if (reg_is_indoor) {
3267 		if (!reg_is_indoor_portid)
3268 			reg_is_indoor_portid = portid;
3269 	} else {
3270 		reg_is_indoor_portid = 0;
3271 	}
3272 
3273 	spin_unlock(&reg_indoor_lock);
3274 
3275 	if (!is_indoor)
3276 		reg_check_channels();
3277 
3278 	return 0;
3279 }
3280 
3281 void regulatory_netlink_notify(u32 portid)
3282 {
3283 	spin_lock(&reg_indoor_lock);
3284 
3285 	if (reg_is_indoor_portid != portid) {
3286 		spin_unlock(&reg_indoor_lock);
3287 		return;
3288 	}
3289 
3290 	reg_is_indoor = false;
3291 	reg_is_indoor_portid = 0;
3292 
3293 	spin_unlock(&reg_indoor_lock);
3294 
3295 	reg_check_channels();
3296 }
3297 
3298 /* Driver hints */
3299 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3300 {
3301 	struct regulatory_request *request;
3302 
3303 	if (WARN_ON(!alpha2 || !wiphy))
3304 		return -EINVAL;
3305 
3306 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3307 
3308 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3309 	if (!request)
3310 		return -ENOMEM;
3311 
3312 	request->wiphy_idx = get_wiphy_idx(wiphy);
3313 
3314 	request->alpha2[0] = alpha2[0];
3315 	request->alpha2[1] = alpha2[1];
3316 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3317 
3318 	/* Allow calling CRDA again */
3319 	reset_crda_timeouts();
3320 
3321 	queue_regulatory_request(request);
3322 
3323 	return 0;
3324 }
3325 EXPORT_SYMBOL(regulatory_hint);
3326 
3327 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3328 				const u8 *country_ie, u8 country_ie_len)
3329 {
3330 	char alpha2[2];
3331 	enum environment_cap env = ENVIRON_ANY;
3332 	struct regulatory_request *request = NULL, *lr;
3333 
3334 	/* IE len must be evenly divisible by 2 */
3335 	if (country_ie_len & 0x01)
3336 		return;
3337 
3338 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3339 		return;
3340 
3341 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3342 	if (!request)
3343 		return;
3344 
3345 	alpha2[0] = country_ie[0];
3346 	alpha2[1] = country_ie[1];
3347 
3348 	if (country_ie[2] == 'I')
3349 		env = ENVIRON_INDOOR;
3350 	else if (country_ie[2] == 'O')
3351 		env = ENVIRON_OUTDOOR;
3352 
3353 	rcu_read_lock();
3354 	lr = get_last_request();
3355 
3356 	if (unlikely(!lr))
3357 		goto out;
3358 
3359 	/*
3360 	 * We will run this only upon a successful connection on cfg80211.
3361 	 * We leave conflict resolution to the workqueue, where can hold
3362 	 * the RTNL.
3363 	 */
3364 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3365 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3366 		goto out;
3367 
3368 	request->wiphy_idx = get_wiphy_idx(wiphy);
3369 	request->alpha2[0] = alpha2[0];
3370 	request->alpha2[1] = alpha2[1];
3371 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3372 	request->country_ie_env = env;
3373 
3374 	/* Allow calling CRDA again */
3375 	reset_crda_timeouts();
3376 
3377 	queue_regulatory_request(request);
3378 	request = NULL;
3379 out:
3380 	kfree(request);
3381 	rcu_read_unlock();
3382 }
3383 
3384 static void restore_alpha2(char *alpha2, bool reset_user)
3385 {
3386 	/* indicates there is no alpha2 to consider for restoration */
3387 	alpha2[0] = '9';
3388 	alpha2[1] = '7';
3389 
3390 	/* The user setting has precedence over the module parameter */
3391 	if (is_user_regdom_saved()) {
3392 		/* Unless we're asked to ignore it and reset it */
3393 		if (reset_user) {
3394 			pr_debug("Restoring regulatory settings including user preference\n");
3395 			user_alpha2[0] = '9';
3396 			user_alpha2[1] = '7';
3397 
3398 			/*
3399 			 * If we're ignoring user settings, we still need to
3400 			 * check the module parameter to ensure we put things
3401 			 * back as they were for a full restore.
3402 			 */
3403 			if (!is_world_regdom(ieee80211_regdom)) {
3404 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3405 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3406 				alpha2[0] = ieee80211_regdom[0];
3407 				alpha2[1] = ieee80211_regdom[1];
3408 			}
3409 		} else {
3410 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3411 				 user_alpha2[0], user_alpha2[1]);
3412 			alpha2[0] = user_alpha2[0];
3413 			alpha2[1] = user_alpha2[1];
3414 		}
3415 	} else if (!is_world_regdom(ieee80211_regdom)) {
3416 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3417 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3418 		alpha2[0] = ieee80211_regdom[0];
3419 		alpha2[1] = ieee80211_regdom[1];
3420 	} else
3421 		pr_debug("Restoring regulatory settings\n");
3422 }
3423 
3424 static void restore_custom_reg_settings(struct wiphy *wiphy)
3425 {
3426 	struct ieee80211_supported_band *sband;
3427 	enum nl80211_band band;
3428 	struct ieee80211_channel *chan;
3429 	int i;
3430 
3431 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3432 		sband = wiphy->bands[band];
3433 		if (!sband)
3434 			continue;
3435 		for (i = 0; i < sband->n_channels; i++) {
3436 			chan = &sband->channels[i];
3437 			chan->flags = chan->orig_flags;
3438 			chan->max_antenna_gain = chan->orig_mag;
3439 			chan->max_power = chan->orig_mpwr;
3440 			chan->beacon_found = false;
3441 		}
3442 	}
3443 }
3444 
3445 /*
3446  * Restoring regulatory settings involves ignoring any
3447  * possibly stale country IE information and user regulatory
3448  * settings if so desired, this includes any beacon hints
3449  * learned as we could have traveled outside to another country
3450  * after disconnection. To restore regulatory settings we do
3451  * exactly what we did at bootup:
3452  *
3453  *   - send a core regulatory hint
3454  *   - send a user regulatory hint if applicable
3455  *
3456  * Device drivers that send a regulatory hint for a specific country
3457  * keep their own regulatory domain on wiphy->regd so that does
3458  * not need to be remembered.
3459  */
3460 static void restore_regulatory_settings(bool reset_user, bool cached)
3461 {
3462 	char alpha2[2];
3463 	char world_alpha2[2];
3464 	struct reg_beacon *reg_beacon, *btmp;
3465 	LIST_HEAD(tmp_reg_req_list);
3466 	struct cfg80211_registered_device *rdev;
3467 
3468 	ASSERT_RTNL();
3469 
3470 	/*
3471 	 * Clear the indoor setting in case that it is not controlled by user
3472 	 * space, as otherwise there is no guarantee that the device is still
3473 	 * operating in an indoor environment.
3474 	 */
3475 	spin_lock(&reg_indoor_lock);
3476 	if (reg_is_indoor && !reg_is_indoor_portid) {
3477 		reg_is_indoor = false;
3478 		reg_check_channels();
3479 	}
3480 	spin_unlock(&reg_indoor_lock);
3481 
3482 	reset_regdomains(true, &world_regdom);
3483 	restore_alpha2(alpha2, reset_user);
3484 
3485 	/*
3486 	 * If there's any pending requests we simply
3487 	 * stash them to a temporary pending queue and
3488 	 * add then after we've restored regulatory
3489 	 * settings.
3490 	 */
3491 	spin_lock(&reg_requests_lock);
3492 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3493 	spin_unlock(&reg_requests_lock);
3494 
3495 	/* Clear beacon hints */
3496 	spin_lock_bh(&reg_pending_beacons_lock);
3497 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3498 		list_del(&reg_beacon->list);
3499 		kfree(reg_beacon);
3500 	}
3501 	spin_unlock_bh(&reg_pending_beacons_lock);
3502 
3503 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3504 		list_del(&reg_beacon->list);
3505 		kfree(reg_beacon);
3506 	}
3507 
3508 	/* First restore to the basic regulatory settings */
3509 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3510 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3511 
3512 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3513 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3514 			continue;
3515 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3516 			restore_custom_reg_settings(&rdev->wiphy);
3517 	}
3518 
3519 	if (cached && (!is_an_alpha2(alpha2) ||
3520 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3521 		reset_regdomains(false, cfg80211_world_regdom);
3522 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3523 		print_regdomain(get_cfg80211_regdom());
3524 		nl80211_send_reg_change_event(&core_request_world);
3525 		reg_set_request_processed();
3526 
3527 		if (is_an_alpha2(alpha2) &&
3528 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3529 			struct regulatory_request *ureq;
3530 
3531 			spin_lock(&reg_requests_lock);
3532 			ureq = list_last_entry(&reg_requests_list,
3533 					       struct regulatory_request,
3534 					       list);
3535 			list_del(&ureq->list);
3536 			spin_unlock(&reg_requests_lock);
3537 
3538 			notify_self_managed_wiphys(ureq);
3539 			reg_update_last_request(ureq);
3540 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3541 				   REGD_SOURCE_CACHED);
3542 		}
3543 	} else {
3544 		regulatory_hint_core(world_alpha2);
3545 
3546 		/*
3547 		 * This restores the ieee80211_regdom module parameter
3548 		 * preference or the last user requested regulatory
3549 		 * settings, user regulatory settings takes precedence.
3550 		 */
3551 		if (is_an_alpha2(alpha2))
3552 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3553 	}
3554 
3555 	spin_lock(&reg_requests_lock);
3556 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3557 	spin_unlock(&reg_requests_lock);
3558 
3559 	pr_debug("Kicking the queue\n");
3560 
3561 	schedule_work(&reg_work);
3562 }
3563 
3564 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3565 {
3566 	struct cfg80211_registered_device *rdev;
3567 	struct wireless_dev *wdev;
3568 
3569 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3570 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3571 			wdev_lock(wdev);
3572 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3573 				wdev_unlock(wdev);
3574 				return false;
3575 			}
3576 			wdev_unlock(wdev);
3577 		}
3578 	}
3579 
3580 	return true;
3581 }
3582 
3583 void regulatory_hint_disconnect(void)
3584 {
3585 	/* Restore of regulatory settings is not required when wiphy(s)
3586 	 * ignore IE from connected access point but clearance of beacon hints
3587 	 * is required when wiphy(s) supports beacon hints.
3588 	 */
3589 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3590 		struct reg_beacon *reg_beacon, *btmp;
3591 
3592 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3593 			return;
3594 
3595 		spin_lock_bh(&reg_pending_beacons_lock);
3596 		list_for_each_entry_safe(reg_beacon, btmp,
3597 					 &reg_pending_beacons, list) {
3598 			list_del(&reg_beacon->list);
3599 			kfree(reg_beacon);
3600 		}
3601 		spin_unlock_bh(&reg_pending_beacons_lock);
3602 
3603 		list_for_each_entry_safe(reg_beacon, btmp,
3604 					 &reg_beacon_list, list) {
3605 			list_del(&reg_beacon->list);
3606 			kfree(reg_beacon);
3607 		}
3608 
3609 		return;
3610 	}
3611 
3612 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3613 	restore_regulatory_settings(false, true);
3614 }
3615 
3616 static bool freq_is_chan_12_13_14(u32 freq)
3617 {
3618 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3619 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3620 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3621 		return true;
3622 	return false;
3623 }
3624 
3625 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3626 {
3627 	struct reg_beacon *pending_beacon;
3628 
3629 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3630 		if (ieee80211_channel_equal(beacon_chan,
3631 					    &pending_beacon->chan))
3632 			return true;
3633 	return false;
3634 }
3635 
3636 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3637 				 struct ieee80211_channel *beacon_chan,
3638 				 gfp_t gfp)
3639 {
3640 	struct reg_beacon *reg_beacon;
3641 	bool processing;
3642 
3643 	if (beacon_chan->beacon_found ||
3644 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3645 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3646 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3647 		return 0;
3648 
3649 	spin_lock_bh(&reg_pending_beacons_lock);
3650 	processing = pending_reg_beacon(beacon_chan);
3651 	spin_unlock_bh(&reg_pending_beacons_lock);
3652 
3653 	if (processing)
3654 		return 0;
3655 
3656 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3657 	if (!reg_beacon)
3658 		return -ENOMEM;
3659 
3660 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3661 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3662 		 ieee80211_freq_khz_to_channel(
3663 			 ieee80211_channel_to_khz(beacon_chan)),
3664 		 wiphy_name(wiphy));
3665 
3666 	memcpy(&reg_beacon->chan, beacon_chan,
3667 	       sizeof(struct ieee80211_channel));
3668 
3669 	/*
3670 	 * Since we can be called from BH or and non-BH context
3671 	 * we must use spin_lock_bh()
3672 	 */
3673 	spin_lock_bh(&reg_pending_beacons_lock);
3674 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3675 	spin_unlock_bh(&reg_pending_beacons_lock);
3676 
3677 	schedule_work(&reg_work);
3678 
3679 	return 0;
3680 }
3681 
3682 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3683 {
3684 	unsigned int i;
3685 	const struct ieee80211_reg_rule *reg_rule = NULL;
3686 	const struct ieee80211_freq_range *freq_range = NULL;
3687 	const struct ieee80211_power_rule *power_rule = NULL;
3688 	char bw[32], cac_time[32];
3689 
3690 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3691 
3692 	for (i = 0; i < rd->n_reg_rules; i++) {
3693 		reg_rule = &rd->reg_rules[i];
3694 		freq_range = &reg_rule->freq_range;
3695 		power_rule = &reg_rule->power_rule;
3696 
3697 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3698 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3699 				 freq_range->max_bandwidth_khz,
3700 				 reg_get_max_bandwidth(rd, reg_rule));
3701 		else
3702 			snprintf(bw, sizeof(bw), "%d KHz",
3703 				 freq_range->max_bandwidth_khz);
3704 
3705 		if (reg_rule->flags & NL80211_RRF_DFS)
3706 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3707 				  reg_rule->dfs_cac_ms/1000);
3708 		else
3709 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3710 
3711 
3712 		/*
3713 		 * There may not be documentation for max antenna gain
3714 		 * in certain regions
3715 		 */
3716 		if (power_rule->max_antenna_gain)
3717 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3718 				freq_range->start_freq_khz,
3719 				freq_range->end_freq_khz,
3720 				bw,
3721 				power_rule->max_antenna_gain,
3722 				power_rule->max_eirp,
3723 				cac_time);
3724 		else
3725 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3726 				freq_range->start_freq_khz,
3727 				freq_range->end_freq_khz,
3728 				bw,
3729 				power_rule->max_eirp,
3730 				cac_time);
3731 	}
3732 }
3733 
3734 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3735 {
3736 	switch (dfs_region) {
3737 	case NL80211_DFS_UNSET:
3738 	case NL80211_DFS_FCC:
3739 	case NL80211_DFS_ETSI:
3740 	case NL80211_DFS_JP:
3741 		return true;
3742 	default:
3743 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3744 		return false;
3745 	}
3746 }
3747 
3748 static void print_regdomain(const struct ieee80211_regdomain *rd)
3749 {
3750 	struct regulatory_request *lr = get_last_request();
3751 
3752 	if (is_intersected_alpha2(rd->alpha2)) {
3753 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3754 			struct cfg80211_registered_device *rdev;
3755 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3756 			if (rdev) {
3757 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3758 					rdev->country_ie_alpha2[0],
3759 					rdev->country_ie_alpha2[1]);
3760 			} else
3761 				pr_debug("Current regulatory domain intersected:\n");
3762 		} else
3763 			pr_debug("Current regulatory domain intersected:\n");
3764 	} else if (is_world_regdom(rd->alpha2)) {
3765 		pr_debug("World regulatory domain updated:\n");
3766 	} else {
3767 		if (is_unknown_alpha2(rd->alpha2))
3768 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3769 		else {
3770 			if (reg_request_cell_base(lr))
3771 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3772 					rd->alpha2[0], rd->alpha2[1]);
3773 			else
3774 				pr_debug("Regulatory domain changed to country: %c%c\n",
3775 					rd->alpha2[0], rd->alpha2[1]);
3776 		}
3777 	}
3778 
3779 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3780 	print_rd_rules(rd);
3781 }
3782 
3783 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3784 {
3785 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3786 	print_rd_rules(rd);
3787 }
3788 
3789 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3790 {
3791 	if (!is_world_regdom(rd->alpha2))
3792 		return -EINVAL;
3793 	update_world_regdomain(rd);
3794 	return 0;
3795 }
3796 
3797 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3798 			   struct regulatory_request *user_request)
3799 {
3800 	const struct ieee80211_regdomain *intersected_rd = NULL;
3801 
3802 	if (!regdom_changes(rd->alpha2))
3803 		return -EALREADY;
3804 
3805 	if (!is_valid_rd(rd)) {
3806 		pr_err("Invalid regulatory domain detected: %c%c\n",
3807 		       rd->alpha2[0], rd->alpha2[1]);
3808 		print_regdomain_info(rd);
3809 		return -EINVAL;
3810 	}
3811 
3812 	if (!user_request->intersect) {
3813 		reset_regdomains(false, rd);
3814 		return 0;
3815 	}
3816 
3817 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3818 	if (!intersected_rd)
3819 		return -EINVAL;
3820 
3821 	kfree(rd);
3822 	rd = NULL;
3823 	reset_regdomains(false, intersected_rd);
3824 
3825 	return 0;
3826 }
3827 
3828 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3829 			     struct regulatory_request *driver_request)
3830 {
3831 	const struct ieee80211_regdomain *regd;
3832 	const struct ieee80211_regdomain *intersected_rd = NULL;
3833 	const struct ieee80211_regdomain *tmp;
3834 	struct wiphy *request_wiphy;
3835 
3836 	if (is_world_regdom(rd->alpha2))
3837 		return -EINVAL;
3838 
3839 	if (!regdom_changes(rd->alpha2))
3840 		return -EALREADY;
3841 
3842 	if (!is_valid_rd(rd)) {
3843 		pr_err("Invalid regulatory domain detected: %c%c\n",
3844 		       rd->alpha2[0], rd->alpha2[1]);
3845 		print_regdomain_info(rd);
3846 		return -EINVAL;
3847 	}
3848 
3849 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3850 	if (!request_wiphy)
3851 		return -ENODEV;
3852 
3853 	if (!driver_request->intersect) {
3854 		ASSERT_RTNL();
3855 		wiphy_lock(request_wiphy);
3856 		if (request_wiphy->regd) {
3857 			wiphy_unlock(request_wiphy);
3858 			return -EALREADY;
3859 		}
3860 
3861 		regd = reg_copy_regd(rd);
3862 		if (IS_ERR(regd)) {
3863 			wiphy_unlock(request_wiphy);
3864 			return PTR_ERR(regd);
3865 		}
3866 
3867 		rcu_assign_pointer(request_wiphy->regd, regd);
3868 		wiphy_unlock(request_wiphy);
3869 		reset_regdomains(false, rd);
3870 		return 0;
3871 	}
3872 
3873 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3874 	if (!intersected_rd)
3875 		return -EINVAL;
3876 
3877 	/*
3878 	 * We can trash what CRDA provided now.
3879 	 * However if a driver requested this specific regulatory
3880 	 * domain we keep it for its private use
3881 	 */
3882 	tmp = get_wiphy_regdom(request_wiphy);
3883 	rcu_assign_pointer(request_wiphy->regd, rd);
3884 	rcu_free_regdom(tmp);
3885 
3886 	rd = NULL;
3887 
3888 	reset_regdomains(false, intersected_rd);
3889 
3890 	return 0;
3891 }
3892 
3893 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3894 				 struct regulatory_request *country_ie_request)
3895 {
3896 	struct wiphy *request_wiphy;
3897 
3898 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3899 	    !is_unknown_alpha2(rd->alpha2))
3900 		return -EINVAL;
3901 
3902 	/*
3903 	 * Lets only bother proceeding on the same alpha2 if the current
3904 	 * rd is non static (it means CRDA was present and was used last)
3905 	 * and the pending request came in from a country IE
3906 	 */
3907 
3908 	if (!is_valid_rd(rd)) {
3909 		pr_err("Invalid regulatory domain detected: %c%c\n",
3910 		       rd->alpha2[0], rd->alpha2[1]);
3911 		print_regdomain_info(rd);
3912 		return -EINVAL;
3913 	}
3914 
3915 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3916 	if (!request_wiphy)
3917 		return -ENODEV;
3918 
3919 	if (country_ie_request->intersect)
3920 		return -EINVAL;
3921 
3922 	reset_regdomains(false, rd);
3923 	return 0;
3924 }
3925 
3926 /*
3927  * Use this call to set the current regulatory domain. Conflicts with
3928  * multiple drivers can be ironed out later. Caller must've already
3929  * kmalloc'd the rd structure.
3930  */
3931 int set_regdom(const struct ieee80211_regdomain *rd,
3932 	       enum ieee80211_regd_source regd_src)
3933 {
3934 	struct regulatory_request *lr;
3935 	bool user_reset = false;
3936 	int r;
3937 
3938 	if (IS_ERR_OR_NULL(rd))
3939 		return -ENODATA;
3940 
3941 	if (!reg_is_valid_request(rd->alpha2)) {
3942 		kfree(rd);
3943 		return -EINVAL;
3944 	}
3945 
3946 	if (regd_src == REGD_SOURCE_CRDA)
3947 		reset_crda_timeouts();
3948 
3949 	lr = get_last_request();
3950 
3951 	/* Note that this doesn't update the wiphys, this is done below */
3952 	switch (lr->initiator) {
3953 	case NL80211_REGDOM_SET_BY_CORE:
3954 		r = reg_set_rd_core(rd);
3955 		break;
3956 	case NL80211_REGDOM_SET_BY_USER:
3957 		cfg80211_save_user_regdom(rd);
3958 		r = reg_set_rd_user(rd, lr);
3959 		user_reset = true;
3960 		break;
3961 	case NL80211_REGDOM_SET_BY_DRIVER:
3962 		r = reg_set_rd_driver(rd, lr);
3963 		break;
3964 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3965 		r = reg_set_rd_country_ie(rd, lr);
3966 		break;
3967 	default:
3968 		WARN(1, "invalid initiator %d\n", lr->initiator);
3969 		kfree(rd);
3970 		return -EINVAL;
3971 	}
3972 
3973 	if (r) {
3974 		switch (r) {
3975 		case -EALREADY:
3976 			reg_set_request_processed();
3977 			break;
3978 		default:
3979 			/* Back to world regulatory in case of errors */
3980 			restore_regulatory_settings(user_reset, false);
3981 		}
3982 
3983 		kfree(rd);
3984 		return r;
3985 	}
3986 
3987 	/* This would make this whole thing pointless */
3988 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3989 		return -EINVAL;
3990 
3991 	/* update all wiphys now with the new established regulatory domain */
3992 	update_all_wiphy_regulatory(lr->initiator);
3993 
3994 	print_regdomain(get_cfg80211_regdom());
3995 
3996 	nl80211_send_reg_change_event(lr);
3997 
3998 	reg_set_request_processed();
3999 
4000 	return 0;
4001 }
4002 
4003 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4004 				       struct ieee80211_regdomain *rd)
4005 {
4006 	const struct ieee80211_regdomain *regd;
4007 	const struct ieee80211_regdomain *prev_regd;
4008 	struct cfg80211_registered_device *rdev;
4009 
4010 	if (WARN_ON(!wiphy || !rd))
4011 		return -EINVAL;
4012 
4013 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4014 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4015 		return -EPERM;
4016 
4017 	if (WARN(!is_valid_rd(rd),
4018 		 "Invalid regulatory domain detected: %c%c\n",
4019 		 rd->alpha2[0], rd->alpha2[1])) {
4020 		print_regdomain_info(rd);
4021 		return -EINVAL;
4022 	}
4023 
4024 	regd = reg_copy_regd(rd);
4025 	if (IS_ERR(regd))
4026 		return PTR_ERR(regd);
4027 
4028 	rdev = wiphy_to_rdev(wiphy);
4029 
4030 	spin_lock(&reg_requests_lock);
4031 	prev_regd = rdev->requested_regd;
4032 	rdev->requested_regd = regd;
4033 	spin_unlock(&reg_requests_lock);
4034 
4035 	kfree(prev_regd);
4036 	return 0;
4037 }
4038 
4039 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4040 			      struct ieee80211_regdomain *rd)
4041 {
4042 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4043 
4044 	if (ret)
4045 		return ret;
4046 
4047 	schedule_work(&reg_work);
4048 	return 0;
4049 }
4050 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4051 
4052 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4053 				   struct ieee80211_regdomain *rd)
4054 {
4055 	int ret;
4056 
4057 	ASSERT_RTNL();
4058 
4059 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4060 	if (ret)
4061 		return ret;
4062 
4063 	/* process the request immediately */
4064 	reg_process_self_managed_hint(wiphy);
4065 	reg_check_channels();
4066 	return 0;
4067 }
4068 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4069 
4070 void wiphy_regulatory_register(struct wiphy *wiphy)
4071 {
4072 	struct regulatory_request *lr = get_last_request();
4073 
4074 	/* self-managed devices ignore beacon hints and country IE */
4075 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4076 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4077 					   REGULATORY_COUNTRY_IE_IGNORE;
4078 
4079 		/*
4080 		 * The last request may have been received before this
4081 		 * registration call. Call the driver notifier if
4082 		 * initiator is USER.
4083 		 */
4084 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4085 			reg_call_notifier(wiphy, lr);
4086 	}
4087 
4088 	if (!reg_dev_ignore_cell_hint(wiphy))
4089 		reg_num_devs_support_basehint++;
4090 
4091 	wiphy_update_regulatory(wiphy, lr->initiator);
4092 	wiphy_all_share_dfs_chan_state(wiphy);
4093 	reg_process_self_managed_hints();
4094 }
4095 
4096 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4097 {
4098 	struct wiphy *request_wiphy = NULL;
4099 	struct regulatory_request *lr;
4100 
4101 	lr = get_last_request();
4102 
4103 	if (!reg_dev_ignore_cell_hint(wiphy))
4104 		reg_num_devs_support_basehint--;
4105 
4106 	rcu_free_regdom(get_wiphy_regdom(wiphy));
4107 	RCU_INIT_POINTER(wiphy->regd, NULL);
4108 
4109 	if (lr)
4110 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4111 
4112 	if (!request_wiphy || request_wiphy != wiphy)
4113 		return;
4114 
4115 	lr->wiphy_idx = WIPHY_IDX_INVALID;
4116 	lr->country_ie_env = ENVIRON_ANY;
4117 }
4118 
4119 /*
4120  * See FCC notices for UNII band definitions
4121  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4122  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4123  */
4124 int cfg80211_get_unii(int freq)
4125 {
4126 	/* UNII-1 */
4127 	if (freq >= 5150 && freq <= 5250)
4128 		return 0;
4129 
4130 	/* UNII-2A */
4131 	if (freq > 5250 && freq <= 5350)
4132 		return 1;
4133 
4134 	/* UNII-2B */
4135 	if (freq > 5350 && freq <= 5470)
4136 		return 2;
4137 
4138 	/* UNII-2C */
4139 	if (freq > 5470 && freq <= 5725)
4140 		return 3;
4141 
4142 	/* UNII-3 */
4143 	if (freq > 5725 && freq <= 5825)
4144 		return 4;
4145 
4146 	/* UNII-5 */
4147 	if (freq > 5925 && freq <= 6425)
4148 		return 5;
4149 
4150 	/* UNII-6 */
4151 	if (freq > 6425 && freq <= 6525)
4152 		return 6;
4153 
4154 	/* UNII-7 */
4155 	if (freq > 6525 && freq <= 6875)
4156 		return 7;
4157 
4158 	/* UNII-8 */
4159 	if (freq > 6875 && freq <= 7125)
4160 		return 8;
4161 
4162 	return -EINVAL;
4163 }
4164 
4165 bool regulatory_indoor_allowed(void)
4166 {
4167 	return reg_is_indoor;
4168 }
4169 
4170 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4171 {
4172 	const struct ieee80211_regdomain *regd = NULL;
4173 	const struct ieee80211_regdomain *wiphy_regd = NULL;
4174 	bool pre_cac_allowed = false;
4175 
4176 	rcu_read_lock();
4177 
4178 	regd = rcu_dereference(cfg80211_regdomain);
4179 	wiphy_regd = rcu_dereference(wiphy->regd);
4180 	if (!wiphy_regd) {
4181 		if (regd->dfs_region == NL80211_DFS_ETSI)
4182 			pre_cac_allowed = true;
4183 
4184 		rcu_read_unlock();
4185 
4186 		return pre_cac_allowed;
4187 	}
4188 
4189 	if (regd->dfs_region == wiphy_regd->dfs_region &&
4190 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4191 		pre_cac_allowed = true;
4192 
4193 	rcu_read_unlock();
4194 
4195 	return pre_cac_allowed;
4196 }
4197 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4198 
4199 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4200 {
4201 	struct wireless_dev *wdev;
4202 	/* If we finished CAC or received radar, we should end any
4203 	 * CAC running on the same channels.
4204 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4205 	 * either all channels are available - those the CAC_FINISHED
4206 	 * event has effected another wdev state, or there is a channel
4207 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4208 	 * event has effected another wdev state.
4209 	 * In both cases we should end the CAC on the wdev.
4210 	 */
4211 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4212 		struct cfg80211_chan_def *chandef;
4213 
4214 		if (!wdev->cac_started)
4215 			continue;
4216 
4217 		/* FIXME: radar detection is tied to link 0 for now */
4218 		chandef = wdev_chandef(wdev, 0);
4219 		if (!chandef)
4220 			continue;
4221 
4222 		if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4223 			rdev_end_cac(rdev, wdev->netdev);
4224 	}
4225 }
4226 
4227 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4228 				    struct cfg80211_chan_def *chandef,
4229 				    enum nl80211_dfs_state dfs_state,
4230 				    enum nl80211_radar_event event)
4231 {
4232 	struct cfg80211_registered_device *rdev;
4233 
4234 	ASSERT_RTNL();
4235 
4236 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4237 		return;
4238 
4239 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4240 		if (wiphy == &rdev->wiphy)
4241 			continue;
4242 
4243 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4244 			continue;
4245 
4246 		if (!ieee80211_get_channel(&rdev->wiphy,
4247 					   chandef->chan->center_freq))
4248 			continue;
4249 
4250 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4251 
4252 		if (event == NL80211_RADAR_DETECTED ||
4253 		    event == NL80211_RADAR_CAC_FINISHED) {
4254 			cfg80211_sched_dfs_chan_update(rdev);
4255 			cfg80211_check_and_end_cac(rdev);
4256 		}
4257 
4258 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4259 	}
4260 }
4261 
4262 static int __init regulatory_init_db(void)
4263 {
4264 	int err;
4265 
4266 	/*
4267 	 * It's possible that - due to other bugs/issues - cfg80211
4268 	 * never called regulatory_init() below, or that it failed;
4269 	 * in that case, don't try to do any further work here as
4270 	 * it's doomed to lead to crashes.
4271 	 */
4272 	if (IS_ERR_OR_NULL(reg_pdev))
4273 		return -EINVAL;
4274 
4275 	err = load_builtin_regdb_keys();
4276 	if (err) {
4277 		platform_device_unregister(reg_pdev);
4278 		return err;
4279 	}
4280 
4281 	/* We always try to get an update for the static regdomain */
4282 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4283 	if (err) {
4284 		if (err == -ENOMEM) {
4285 			platform_device_unregister(reg_pdev);
4286 			return err;
4287 		}
4288 		/*
4289 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4290 		 * memory which is handled and propagated appropriately above
4291 		 * but it can also fail during a netlink_broadcast() or during
4292 		 * early boot for call_usermodehelper(). For now treat these
4293 		 * errors as non-fatal.
4294 		 */
4295 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4296 	}
4297 
4298 	/*
4299 	 * Finally, if the user set the module parameter treat it
4300 	 * as a user hint.
4301 	 */
4302 	if (!is_world_regdom(ieee80211_regdom))
4303 		regulatory_hint_user(ieee80211_regdom,
4304 				     NL80211_USER_REG_HINT_USER);
4305 
4306 	return 0;
4307 }
4308 #ifndef MODULE
4309 late_initcall(regulatory_init_db);
4310 #endif
4311 
4312 int __init regulatory_init(void)
4313 {
4314 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4315 	if (IS_ERR(reg_pdev))
4316 		return PTR_ERR(reg_pdev);
4317 
4318 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4319 
4320 	user_alpha2[0] = '9';
4321 	user_alpha2[1] = '7';
4322 
4323 #ifdef MODULE
4324 	return regulatory_init_db();
4325 #else
4326 	return 0;
4327 #endif
4328 }
4329 
4330 void regulatory_exit(void)
4331 {
4332 	struct regulatory_request *reg_request, *tmp;
4333 	struct reg_beacon *reg_beacon, *btmp;
4334 
4335 	cancel_work_sync(&reg_work);
4336 	cancel_crda_timeout_sync();
4337 	cancel_delayed_work_sync(&reg_check_chans);
4338 
4339 	/* Lock to suppress warnings */
4340 	rtnl_lock();
4341 	reset_regdomains(true, NULL);
4342 	rtnl_unlock();
4343 
4344 	dev_set_uevent_suppress(&reg_pdev->dev, true);
4345 
4346 	platform_device_unregister(reg_pdev);
4347 
4348 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4349 		list_del(&reg_beacon->list);
4350 		kfree(reg_beacon);
4351 	}
4352 
4353 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4354 		list_del(&reg_beacon->list);
4355 		kfree(reg_beacon);
4356 	}
4357 
4358 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4359 		list_del(&reg_request->list);
4360 		kfree(reg_request);
4361 	}
4362 
4363 	if (!IS_ERR_OR_NULL(regdb))
4364 		kfree(regdb);
4365 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4366 		kfree(cfg80211_user_regdom);
4367 
4368 	free_regdb_keyring();
4369 }
4370