1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static spinlock_t reg_indoor_lock; 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user); 135 136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 137 { 138 return rcu_dereference_rtnl(cfg80211_regdomain); 139 } 140 141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 142 { 143 return rcu_dereference_rtnl(wiphy->regd); 144 } 145 146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 147 { 148 switch (dfs_region) { 149 case NL80211_DFS_UNSET: 150 return "unset"; 151 case NL80211_DFS_FCC: 152 return "FCC"; 153 case NL80211_DFS_ETSI: 154 return "ETSI"; 155 case NL80211_DFS_JP: 156 return "JP"; 157 } 158 return "Unknown"; 159 } 160 161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 162 { 163 const struct ieee80211_regdomain *regd = NULL; 164 const struct ieee80211_regdomain *wiphy_regd = NULL; 165 166 regd = get_cfg80211_regdom(); 167 if (!wiphy) 168 goto out; 169 170 wiphy_regd = get_wiphy_regdom(wiphy); 171 if (!wiphy_regd) 172 goto out; 173 174 if (wiphy_regd->dfs_region == regd->dfs_region) 175 goto out; 176 177 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 178 dev_name(&wiphy->dev), 179 reg_dfs_region_str(wiphy_regd->dfs_region), 180 reg_dfs_region_str(regd->dfs_region)); 181 182 out: 183 return regd->dfs_region; 184 } 185 186 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 187 { 188 if (!r) 189 return; 190 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 191 } 192 193 static struct regulatory_request *get_last_request(void) 194 { 195 return rcu_dereference_rtnl(last_request); 196 } 197 198 /* Used to queue up regulatory hints */ 199 static LIST_HEAD(reg_requests_list); 200 static spinlock_t reg_requests_lock; 201 202 /* Used to queue up beacon hints for review */ 203 static LIST_HEAD(reg_pending_beacons); 204 static spinlock_t reg_pending_beacons_lock; 205 206 /* Used to keep track of processed beacon hints */ 207 static LIST_HEAD(reg_beacon_list); 208 209 struct reg_beacon { 210 struct list_head list; 211 struct ieee80211_channel chan; 212 }; 213 214 static void reg_check_chans_work(struct work_struct *work); 215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 216 217 static void reg_todo(struct work_struct *work); 218 static DECLARE_WORK(reg_work, reg_todo); 219 220 /* We keep a static world regulatory domain in case of the absence of CRDA */ 221 static const struct ieee80211_regdomain world_regdom = { 222 .n_reg_rules = 8, 223 .alpha2 = "00", 224 .reg_rules = { 225 /* IEEE 802.11b/g, channels 1..11 */ 226 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 227 /* IEEE 802.11b/g, channels 12..13. */ 228 REG_RULE(2467-10, 2472+10, 20, 6, 20, 229 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 230 /* IEEE 802.11 channel 14 - Only JP enables 231 * this and for 802.11b only */ 232 REG_RULE(2484-10, 2484+10, 20, 6, 20, 233 NL80211_RRF_NO_IR | 234 NL80211_RRF_NO_OFDM), 235 /* IEEE 802.11a, channel 36..48 */ 236 REG_RULE(5180-10, 5240+10, 80, 6, 20, 237 NL80211_RRF_NO_IR | 238 NL80211_RRF_AUTO_BW), 239 240 /* IEEE 802.11a, channel 52..64 - DFS required */ 241 REG_RULE(5260-10, 5320+10, 80, 6, 20, 242 NL80211_RRF_NO_IR | 243 NL80211_RRF_AUTO_BW | 244 NL80211_RRF_DFS), 245 246 /* IEEE 802.11a, channel 100..144 - DFS required */ 247 REG_RULE(5500-10, 5720+10, 160, 6, 20, 248 NL80211_RRF_NO_IR | 249 NL80211_RRF_DFS), 250 251 /* IEEE 802.11a, channel 149..165 */ 252 REG_RULE(5745-10, 5825+10, 80, 6, 20, 253 NL80211_RRF_NO_IR), 254 255 /* IEEE 802.11ad (60GHz), channels 1..3 */ 256 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 257 } 258 }; 259 260 /* protected by RTNL */ 261 static const struct ieee80211_regdomain *cfg80211_world_regdom = 262 &world_regdom; 263 264 static char *ieee80211_regdom = "00"; 265 static char user_alpha2[2]; 266 267 module_param(ieee80211_regdom, charp, 0444); 268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 269 270 static void reg_free_request(struct regulatory_request *request) 271 { 272 if (request == &core_request_world) 273 return; 274 275 if (request != get_last_request()) 276 kfree(request); 277 } 278 279 static void reg_free_last_request(void) 280 { 281 struct regulatory_request *lr = get_last_request(); 282 283 if (lr != &core_request_world && lr) 284 kfree_rcu(lr, rcu_head); 285 } 286 287 static void reg_update_last_request(struct regulatory_request *request) 288 { 289 struct regulatory_request *lr; 290 291 lr = get_last_request(); 292 if (lr == request) 293 return; 294 295 reg_free_last_request(); 296 rcu_assign_pointer(last_request, request); 297 } 298 299 static void reset_regdomains(bool full_reset, 300 const struct ieee80211_regdomain *new_regdom) 301 { 302 const struct ieee80211_regdomain *r; 303 304 ASSERT_RTNL(); 305 306 r = get_cfg80211_regdom(); 307 308 /* avoid freeing static information or freeing something twice */ 309 if (r == cfg80211_world_regdom) 310 r = NULL; 311 if (cfg80211_world_regdom == &world_regdom) 312 cfg80211_world_regdom = NULL; 313 if (r == &world_regdom) 314 r = NULL; 315 316 rcu_free_regdom(r); 317 rcu_free_regdom(cfg80211_world_regdom); 318 319 cfg80211_world_regdom = &world_regdom; 320 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 321 322 if (!full_reset) 323 return; 324 325 reg_update_last_request(&core_request_world); 326 } 327 328 /* 329 * Dynamic world regulatory domain requested by the wireless 330 * core upon initialization 331 */ 332 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 333 { 334 struct regulatory_request *lr; 335 336 lr = get_last_request(); 337 338 WARN_ON(!lr); 339 340 reset_regdomains(false, rd); 341 342 cfg80211_world_regdom = rd; 343 } 344 345 bool is_world_regdom(const char *alpha2) 346 { 347 if (!alpha2) 348 return false; 349 return alpha2[0] == '0' && alpha2[1] == '0'; 350 } 351 352 static bool is_alpha2_set(const char *alpha2) 353 { 354 if (!alpha2) 355 return false; 356 return alpha2[0] && alpha2[1]; 357 } 358 359 static bool is_unknown_alpha2(const char *alpha2) 360 { 361 if (!alpha2) 362 return false; 363 /* 364 * Special case where regulatory domain was built by driver 365 * but a specific alpha2 cannot be determined 366 */ 367 return alpha2[0] == '9' && alpha2[1] == '9'; 368 } 369 370 static bool is_intersected_alpha2(const char *alpha2) 371 { 372 if (!alpha2) 373 return false; 374 /* 375 * Special case where regulatory domain is the 376 * result of an intersection between two regulatory domain 377 * structures 378 */ 379 return alpha2[0] == '9' && alpha2[1] == '8'; 380 } 381 382 static bool is_an_alpha2(const char *alpha2) 383 { 384 if (!alpha2) 385 return false; 386 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 387 } 388 389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 390 { 391 if (!alpha2_x || !alpha2_y) 392 return false; 393 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 394 } 395 396 static bool regdom_changes(const char *alpha2) 397 { 398 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 399 400 if (!r) 401 return true; 402 return !alpha2_equal(r->alpha2, alpha2); 403 } 404 405 /* 406 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 407 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 408 * has ever been issued. 409 */ 410 static bool is_user_regdom_saved(void) 411 { 412 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 413 return false; 414 415 /* This would indicate a mistake on the design */ 416 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 417 "Unexpected user alpha2: %c%c\n", 418 user_alpha2[0], user_alpha2[1])) 419 return false; 420 421 return true; 422 } 423 424 static const struct ieee80211_regdomain * 425 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 426 { 427 struct ieee80211_regdomain *regd; 428 int size_of_regd; 429 unsigned int i; 430 431 size_of_regd = 432 sizeof(struct ieee80211_regdomain) + 433 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 434 435 regd = kzalloc(size_of_regd, GFP_KERNEL); 436 if (!regd) 437 return ERR_PTR(-ENOMEM); 438 439 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 440 441 for (i = 0; i < src_regd->n_reg_rules; i++) 442 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 443 sizeof(struct ieee80211_reg_rule)); 444 445 return regd; 446 } 447 448 struct reg_regdb_apply_request { 449 struct list_head list; 450 const struct ieee80211_regdomain *regdom; 451 }; 452 453 static LIST_HEAD(reg_regdb_apply_list); 454 static DEFINE_MUTEX(reg_regdb_apply_mutex); 455 456 static void reg_regdb_apply(struct work_struct *work) 457 { 458 struct reg_regdb_apply_request *request; 459 460 rtnl_lock(); 461 462 mutex_lock(®_regdb_apply_mutex); 463 while (!list_empty(®_regdb_apply_list)) { 464 request = list_first_entry(®_regdb_apply_list, 465 struct reg_regdb_apply_request, 466 list); 467 list_del(&request->list); 468 469 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 470 kfree(request); 471 } 472 mutex_unlock(®_regdb_apply_mutex); 473 474 rtnl_unlock(); 475 } 476 477 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 478 479 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 480 { 481 struct reg_regdb_apply_request *request; 482 483 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 484 if (!request) { 485 kfree(regdom); 486 return -ENOMEM; 487 } 488 489 request->regdom = regdom; 490 491 mutex_lock(®_regdb_apply_mutex); 492 list_add_tail(&request->list, ®_regdb_apply_list); 493 mutex_unlock(®_regdb_apply_mutex); 494 495 schedule_work(®_regdb_work); 496 return 0; 497 } 498 499 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 500 /* Max number of consecutive attempts to communicate with CRDA */ 501 #define REG_MAX_CRDA_TIMEOUTS 10 502 503 static u32 reg_crda_timeouts; 504 505 static void crda_timeout_work(struct work_struct *work); 506 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 507 508 static void crda_timeout_work(struct work_struct *work) 509 { 510 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 511 rtnl_lock(); 512 reg_crda_timeouts++; 513 restore_regulatory_settings(true); 514 rtnl_unlock(); 515 } 516 517 static void cancel_crda_timeout(void) 518 { 519 cancel_delayed_work(&crda_timeout); 520 } 521 522 static void cancel_crda_timeout_sync(void) 523 { 524 cancel_delayed_work_sync(&crda_timeout); 525 } 526 527 static void reset_crda_timeouts(void) 528 { 529 reg_crda_timeouts = 0; 530 } 531 532 /* 533 * This lets us keep regulatory code which is updated on a regulatory 534 * basis in userspace. 535 */ 536 static int call_crda(const char *alpha2) 537 { 538 char country[12]; 539 char *env[] = { country, NULL }; 540 int ret; 541 542 snprintf(country, sizeof(country), "COUNTRY=%c%c", 543 alpha2[0], alpha2[1]); 544 545 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 546 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 547 return -EINVAL; 548 } 549 550 if (!is_world_regdom((char *) alpha2)) 551 pr_debug("Calling CRDA for country: %c%c\n", 552 alpha2[0], alpha2[1]); 553 else 554 pr_debug("Calling CRDA to update world regulatory domain\n"); 555 556 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 557 if (ret) 558 return ret; 559 560 queue_delayed_work(system_power_efficient_wq, 561 &crda_timeout, msecs_to_jiffies(3142)); 562 return 0; 563 } 564 #else 565 static inline void cancel_crda_timeout(void) {} 566 static inline void cancel_crda_timeout_sync(void) {} 567 static inline void reset_crda_timeouts(void) {} 568 static inline int call_crda(const char *alpha2) 569 { 570 return -ENODATA; 571 } 572 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 573 574 /* code to directly load a firmware database through request_firmware */ 575 static const struct fwdb_header *regdb; 576 577 struct fwdb_country { 578 u8 alpha2[2]; 579 __be16 coll_ptr; 580 /* this struct cannot be extended */ 581 } __packed __aligned(4); 582 583 struct fwdb_collection { 584 u8 len; 585 u8 n_rules; 586 u8 dfs_region; 587 /* no optional data yet */ 588 /* aligned to 2, then followed by __be16 array of rule pointers */ 589 } __packed __aligned(4); 590 591 enum fwdb_flags { 592 FWDB_FLAG_NO_OFDM = BIT(0), 593 FWDB_FLAG_NO_OUTDOOR = BIT(1), 594 FWDB_FLAG_DFS = BIT(2), 595 FWDB_FLAG_NO_IR = BIT(3), 596 FWDB_FLAG_AUTO_BW = BIT(4), 597 }; 598 599 struct fwdb_wmm_ac { 600 u8 ecw; 601 u8 aifsn; 602 __be16 cot; 603 } __packed; 604 605 struct fwdb_wmm_rule { 606 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 607 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 608 } __packed; 609 610 struct fwdb_rule { 611 u8 len; 612 u8 flags; 613 __be16 max_eirp; 614 __be32 start, end, max_bw; 615 /* start of optional data */ 616 __be16 cac_timeout; 617 __be16 wmm_ptr; 618 } __packed __aligned(4); 619 620 #define FWDB_MAGIC 0x52474442 621 #define FWDB_VERSION 20 622 623 struct fwdb_header { 624 __be32 magic; 625 __be32 version; 626 struct fwdb_country country[]; 627 } __packed __aligned(4); 628 629 static int ecw2cw(int ecw) 630 { 631 return (1 << ecw) - 1; 632 } 633 634 static bool valid_wmm(struct fwdb_wmm_rule *rule) 635 { 636 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 637 int i; 638 639 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 640 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 641 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 642 u8 aifsn = ac[i].aifsn; 643 644 if (cw_min >= cw_max) 645 return false; 646 647 if (aifsn < 1) 648 return false; 649 } 650 651 return true; 652 } 653 654 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 655 { 656 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 657 658 if ((u8 *)rule + sizeof(rule->len) > data + size) 659 return false; 660 661 /* mandatory fields */ 662 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 663 return false; 664 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 665 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 666 struct fwdb_wmm_rule *wmm; 667 668 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 669 return false; 670 671 wmm = (void *)(data + wmm_ptr); 672 673 if (!valid_wmm(wmm)) 674 return false; 675 } 676 return true; 677 } 678 679 static bool valid_country(const u8 *data, unsigned int size, 680 const struct fwdb_country *country) 681 { 682 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 683 struct fwdb_collection *coll = (void *)(data + ptr); 684 __be16 *rules_ptr; 685 unsigned int i; 686 687 /* make sure we can read len/n_rules */ 688 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 689 return false; 690 691 /* make sure base struct and all rules fit */ 692 if ((u8 *)coll + ALIGN(coll->len, 2) + 693 (coll->n_rules * 2) > data + size) 694 return false; 695 696 /* mandatory fields must exist */ 697 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 698 return false; 699 700 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 701 702 for (i = 0; i < coll->n_rules; i++) { 703 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 704 705 if (!valid_rule(data, size, rule_ptr)) 706 return false; 707 } 708 709 return true; 710 } 711 712 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 713 static struct key *builtin_regdb_keys; 714 715 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 716 { 717 const u8 *end = p + buflen; 718 size_t plen; 719 key_ref_t key; 720 721 while (p < end) { 722 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 723 * than 256 bytes in size. 724 */ 725 if (end - p < 4) 726 goto dodgy_cert; 727 if (p[0] != 0x30 && 728 p[1] != 0x82) 729 goto dodgy_cert; 730 plen = (p[2] << 8) | p[3]; 731 plen += 4; 732 if (plen > end - p) 733 goto dodgy_cert; 734 735 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 736 "asymmetric", NULL, p, plen, 737 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 738 KEY_USR_VIEW | KEY_USR_READ), 739 KEY_ALLOC_NOT_IN_QUOTA | 740 KEY_ALLOC_BUILT_IN | 741 KEY_ALLOC_BYPASS_RESTRICTION); 742 if (IS_ERR(key)) { 743 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 744 PTR_ERR(key)); 745 } else { 746 pr_notice("Loaded X.509 cert '%s'\n", 747 key_ref_to_ptr(key)->description); 748 key_ref_put(key); 749 } 750 p += plen; 751 } 752 753 return; 754 755 dodgy_cert: 756 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 757 } 758 759 static int __init load_builtin_regdb_keys(void) 760 { 761 builtin_regdb_keys = 762 keyring_alloc(".builtin_regdb_keys", 763 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 765 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 766 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 767 if (IS_ERR(builtin_regdb_keys)) 768 return PTR_ERR(builtin_regdb_keys); 769 770 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 771 772 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 773 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 774 #endif 775 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 776 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 777 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 778 #endif 779 780 return 0; 781 } 782 783 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 784 { 785 const struct firmware *sig; 786 bool result; 787 788 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 789 return false; 790 791 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 792 builtin_regdb_keys, 793 VERIFYING_UNSPECIFIED_SIGNATURE, 794 NULL, NULL) == 0; 795 796 release_firmware(sig); 797 798 return result; 799 } 800 801 static void free_regdb_keyring(void) 802 { 803 key_put(builtin_regdb_keys); 804 } 805 #else 806 static int load_builtin_regdb_keys(void) 807 { 808 return 0; 809 } 810 811 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 812 { 813 return true; 814 } 815 816 static void free_regdb_keyring(void) 817 { 818 } 819 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 820 821 static bool valid_regdb(const u8 *data, unsigned int size) 822 { 823 const struct fwdb_header *hdr = (void *)data; 824 const struct fwdb_country *country; 825 826 if (size < sizeof(*hdr)) 827 return false; 828 829 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 830 return false; 831 832 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 833 return false; 834 835 if (!regdb_has_valid_signature(data, size)) 836 return false; 837 838 country = &hdr->country[0]; 839 while ((u8 *)(country + 1) <= data + size) { 840 if (!country->coll_ptr) 841 break; 842 if (!valid_country(data, size, country)) 843 return false; 844 country++; 845 } 846 847 return true; 848 } 849 850 static void set_wmm_rule(struct ieee80211_reg_rule *rrule, 851 struct fwdb_wmm_rule *wmm) 852 { 853 struct ieee80211_wmm_rule *rule = &rrule->wmm_rule; 854 unsigned int i; 855 856 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 857 rule->client[i].cw_min = 858 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 859 rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 860 rule->client[i].aifsn = wmm->client[i].aifsn; 861 rule->client[i].cot = 1000 * be16_to_cpu(wmm->client[i].cot); 862 rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 863 rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 864 rule->ap[i].aifsn = wmm->ap[i].aifsn; 865 rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 866 } 867 868 rrule->has_wmm = true; 869 } 870 871 static int __regdb_query_wmm(const struct fwdb_header *db, 872 const struct fwdb_country *country, int freq, 873 struct ieee80211_reg_rule *rule) 874 { 875 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 876 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 877 int i; 878 879 for (i = 0; i < coll->n_rules; i++) { 880 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 881 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 882 struct fwdb_rule *rrule = (void *)((u8 *)db + rule_ptr); 883 struct fwdb_wmm_rule *wmm; 884 unsigned int wmm_ptr; 885 886 if (rrule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 887 continue; 888 889 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rrule->start)) && 890 freq <= KHZ_TO_MHZ(be32_to_cpu(rrule->end))) { 891 wmm_ptr = be16_to_cpu(rrule->wmm_ptr) << 2; 892 wmm = (void *)((u8 *)db + wmm_ptr); 893 set_wmm_rule(rule, wmm); 894 return 0; 895 } 896 } 897 898 return -ENODATA; 899 } 900 901 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 902 { 903 const struct fwdb_header *hdr = regdb; 904 const struct fwdb_country *country; 905 906 if (!regdb) 907 return -ENODATA; 908 909 if (IS_ERR(regdb)) 910 return PTR_ERR(regdb); 911 912 country = &hdr->country[0]; 913 while (country->coll_ptr) { 914 if (alpha2_equal(alpha2, country->alpha2)) 915 return __regdb_query_wmm(regdb, country, freq, rule); 916 917 country++; 918 } 919 920 return -ENODATA; 921 } 922 EXPORT_SYMBOL(reg_query_regdb_wmm); 923 924 static int regdb_query_country(const struct fwdb_header *db, 925 const struct fwdb_country *country) 926 { 927 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 928 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 929 struct ieee80211_regdomain *regdom; 930 unsigned int size_of_regd, i; 931 932 size_of_regd = sizeof(struct ieee80211_regdomain) + 933 coll->n_rules * sizeof(struct ieee80211_reg_rule); 934 935 regdom = kzalloc(size_of_regd, GFP_KERNEL); 936 if (!regdom) 937 return -ENOMEM; 938 939 regdom->n_reg_rules = coll->n_rules; 940 regdom->alpha2[0] = country->alpha2[0]; 941 regdom->alpha2[1] = country->alpha2[1]; 942 regdom->dfs_region = coll->dfs_region; 943 944 for (i = 0; i < regdom->n_reg_rules; i++) { 945 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 946 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 947 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 948 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 949 950 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 951 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 952 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 953 954 rrule->power_rule.max_antenna_gain = 0; 955 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 956 957 rrule->flags = 0; 958 if (rule->flags & FWDB_FLAG_NO_OFDM) 959 rrule->flags |= NL80211_RRF_NO_OFDM; 960 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 961 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 962 if (rule->flags & FWDB_FLAG_DFS) 963 rrule->flags |= NL80211_RRF_DFS; 964 if (rule->flags & FWDB_FLAG_NO_IR) 965 rrule->flags |= NL80211_RRF_NO_IR; 966 if (rule->flags & FWDB_FLAG_AUTO_BW) 967 rrule->flags |= NL80211_RRF_AUTO_BW; 968 969 rrule->dfs_cac_ms = 0; 970 971 /* handle optional data */ 972 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 973 rrule->dfs_cac_ms = 974 1000 * be16_to_cpu(rule->cac_timeout); 975 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 976 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 977 struct fwdb_wmm_rule *wmm = (void *)((u8 *)db + wmm_ptr); 978 979 set_wmm_rule(rrule, wmm); 980 } 981 } 982 983 return reg_schedule_apply(regdom); 984 } 985 986 static int query_regdb(const char *alpha2) 987 { 988 const struct fwdb_header *hdr = regdb; 989 const struct fwdb_country *country; 990 991 ASSERT_RTNL(); 992 993 if (IS_ERR(regdb)) 994 return PTR_ERR(regdb); 995 996 country = &hdr->country[0]; 997 while (country->coll_ptr) { 998 if (alpha2_equal(alpha2, country->alpha2)) 999 return regdb_query_country(regdb, country); 1000 country++; 1001 } 1002 1003 return -ENODATA; 1004 } 1005 1006 static void regdb_fw_cb(const struct firmware *fw, void *context) 1007 { 1008 int set_error = 0; 1009 bool restore = true; 1010 void *db; 1011 1012 if (!fw) { 1013 pr_info("failed to load regulatory.db\n"); 1014 set_error = -ENODATA; 1015 } else if (!valid_regdb(fw->data, fw->size)) { 1016 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1017 set_error = -EINVAL; 1018 } 1019 1020 rtnl_lock(); 1021 if (WARN_ON(regdb && !IS_ERR(regdb))) { 1022 /* just restore and free new db */ 1023 } else if (set_error) { 1024 regdb = ERR_PTR(set_error); 1025 } else if (fw) { 1026 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1027 if (db) { 1028 regdb = db; 1029 restore = context && query_regdb(context); 1030 } else { 1031 restore = true; 1032 } 1033 } 1034 1035 if (restore) 1036 restore_regulatory_settings(true); 1037 1038 rtnl_unlock(); 1039 1040 kfree(context); 1041 1042 release_firmware(fw); 1043 } 1044 1045 static int query_regdb_file(const char *alpha2) 1046 { 1047 ASSERT_RTNL(); 1048 1049 if (regdb) 1050 return query_regdb(alpha2); 1051 1052 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1053 if (!alpha2) 1054 return -ENOMEM; 1055 1056 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1057 ®_pdev->dev, GFP_KERNEL, 1058 (void *)alpha2, regdb_fw_cb); 1059 } 1060 1061 int reg_reload_regdb(void) 1062 { 1063 const struct firmware *fw; 1064 void *db; 1065 int err; 1066 1067 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1068 if (err) 1069 return err; 1070 1071 if (!valid_regdb(fw->data, fw->size)) { 1072 err = -ENODATA; 1073 goto out; 1074 } 1075 1076 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1077 if (!db) { 1078 err = -ENOMEM; 1079 goto out; 1080 } 1081 1082 rtnl_lock(); 1083 if (!IS_ERR_OR_NULL(regdb)) 1084 kfree(regdb); 1085 regdb = db; 1086 rtnl_unlock(); 1087 1088 out: 1089 release_firmware(fw); 1090 return err; 1091 } 1092 1093 static bool reg_query_database(struct regulatory_request *request) 1094 { 1095 if (query_regdb_file(request->alpha2) == 0) 1096 return true; 1097 1098 if (call_crda(request->alpha2) == 0) 1099 return true; 1100 1101 return false; 1102 } 1103 1104 bool reg_is_valid_request(const char *alpha2) 1105 { 1106 struct regulatory_request *lr = get_last_request(); 1107 1108 if (!lr || lr->processed) 1109 return false; 1110 1111 return alpha2_equal(lr->alpha2, alpha2); 1112 } 1113 1114 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1115 { 1116 struct regulatory_request *lr = get_last_request(); 1117 1118 /* 1119 * Follow the driver's regulatory domain, if present, unless a country 1120 * IE has been processed or a user wants to help complaince further 1121 */ 1122 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1123 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1124 wiphy->regd) 1125 return get_wiphy_regdom(wiphy); 1126 1127 return get_cfg80211_regdom(); 1128 } 1129 1130 static unsigned int 1131 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1132 const struct ieee80211_reg_rule *rule) 1133 { 1134 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1135 const struct ieee80211_freq_range *freq_range_tmp; 1136 const struct ieee80211_reg_rule *tmp; 1137 u32 start_freq, end_freq, idx, no; 1138 1139 for (idx = 0; idx < rd->n_reg_rules; idx++) 1140 if (rule == &rd->reg_rules[idx]) 1141 break; 1142 1143 if (idx == rd->n_reg_rules) 1144 return 0; 1145 1146 /* get start_freq */ 1147 no = idx; 1148 1149 while (no) { 1150 tmp = &rd->reg_rules[--no]; 1151 freq_range_tmp = &tmp->freq_range; 1152 1153 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1154 break; 1155 1156 freq_range = freq_range_tmp; 1157 } 1158 1159 start_freq = freq_range->start_freq_khz; 1160 1161 /* get end_freq */ 1162 freq_range = &rule->freq_range; 1163 no = idx; 1164 1165 while (no < rd->n_reg_rules - 1) { 1166 tmp = &rd->reg_rules[++no]; 1167 freq_range_tmp = &tmp->freq_range; 1168 1169 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1170 break; 1171 1172 freq_range = freq_range_tmp; 1173 } 1174 1175 end_freq = freq_range->end_freq_khz; 1176 1177 return end_freq - start_freq; 1178 } 1179 1180 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1181 const struct ieee80211_reg_rule *rule) 1182 { 1183 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1184 1185 if (rule->flags & NL80211_RRF_NO_160MHZ) 1186 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1187 if (rule->flags & NL80211_RRF_NO_80MHZ) 1188 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1189 1190 /* 1191 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1192 * are not allowed. 1193 */ 1194 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1195 rule->flags & NL80211_RRF_NO_HT40PLUS) 1196 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1197 1198 return bw; 1199 } 1200 1201 /* Sanity check on a regulatory rule */ 1202 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1203 { 1204 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1205 u32 freq_diff; 1206 1207 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1208 return false; 1209 1210 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1211 return false; 1212 1213 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1214 1215 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1216 freq_range->max_bandwidth_khz > freq_diff) 1217 return false; 1218 1219 return true; 1220 } 1221 1222 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1223 { 1224 const struct ieee80211_reg_rule *reg_rule = NULL; 1225 unsigned int i; 1226 1227 if (!rd->n_reg_rules) 1228 return false; 1229 1230 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1231 return false; 1232 1233 for (i = 0; i < rd->n_reg_rules; i++) { 1234 reg_rule = &rd->reg_rules[i]; 1235 if (!is_valid_reg_rule(reg_rule)) 1236 return false; 1237 } 1238 1239 return true; 1240 } 1241 1242 /** 1243 * freq_in_rule_band - tells us if a frequency is in a frequency band 1244 * @freq_range: frequency rule we want to query 1245 * @freq_khz: frequency we are inquiring about 1246 * 1247 * This lets us know if a specific frequency rule is or is not relevant to 1248 * a specific frequency's band. Bands are device specific and artificial 1249 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1250 * however it is safe for now to assume that a frequency rule should not be 1251 * part of a frequency's band if the start freq or end freq are off by more 1252 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 1253 * 60 GHz band. 1254 * This resolution can be lowered and should be considered as we add 1255 * regulatory rule support for other "bands". 1256 **/ 1257 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1258 u32 freq_khz) 1259 { 1260 #define ONE_GHZ_IN_KHZ 1000000 1261 /* 1262 * From 802.11ad: directional multi-gigabit (DMG): 1263 * Pertaining to operation in a frequency band containing a channel 1264 * with the Channel starting frequency above 45 GHz. 1265 */ 1266 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1267 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1268 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1269 return true; 1270 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1271 return true; 1272 return false; 1273 #undef ONE_GHZ_IN_KHZ 1274 } 1275 1276 /* 1277 * Later on we can perhaps use the more restrictive DFS 1278 * region but we don't have information for that yet so 1279 * for now simply disallow conflicts. 1280 */ 1281 static enum nl80211_dfs_regions 1282 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1283 const enum nl80211_dfs_regions dfs_region2) 1284 { 1285 if (dfs_region1 != dfs_region2) 1286 return NL80211_DFS_UNSET; 1287 return dfs_region1; 1288 } 1289 1290 /* 1291 * Helper for regdom_intersect(), this does the real 1292 * mathematical intersection fun 1293 */ 1294 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1295 const struct ieee80211_regdomain *rd2, 1296 const struct ieee80211_reg_rule *rule1, 1297 const struct ieee80211_reg_rule *rule2, 1298 struct ieee80211_reg_rule *intersected_rule) 1299 { 1300 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1301 struct ieee80211_freq_range *freq_range; 1302 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1303 struct ieee80211_power_rule *power_rule; 1304 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1305 1306 freq_range1 = &rule1->freq_range; 1307 freq_range2 = &rule2->freq_range; 1308 freq_range = &intersected_rule->freq_range; 1309 1310 power_rule1 = &rule1->power_rule; 1311 power_rule2 = &rule2->power_rule; 1312 power_rule = &intersected_rule->power_rule; 1313 1314 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1315 freq_range2->start_freq_khz); 1316 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1317 freq_range2->end_freq_khz); 1318 1319 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1320 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1321 1322 if (rule1->flags & NL80211_RRF_AUTO_BW) 1323 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1324 if (rule2->flags & NL80211_RRF_AUTO_BW) 1325 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1326 1327 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1328 1329 intersected_rule->flags = rule1->flags | rule2->flags; 1330 1331 /* 1332 * In case NL80211_RRF_AUTO_BW requested for both rules 1333 * set AUTO_BW in intersected rule also. Next we will 1334 * calculate BW correctly in handle_channel function. 1335 * In other case remove AUTO_BW flag while we calculate 1336 * maximum bandwidth correctly and auto calculation is 1337 * not required. 1338 */ 1339 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1340 (rule2->flags & NL80211_RRF_AUTO_BW)) 1341 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1342 else 1343 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1344 1345 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1346 if (freq_range->max_bandwidth_khz > freq_diff) 1347 freq_range->max_bandwidth_khz = freq_diff; 1348 1349 power_rule->max_eirp = min(power_rule1->max_eirp, 1350 power_rule2->max_eirp); 1351 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1352 power_rule2->max_antenna_gain); 1353 1354 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1355 rule2->dfs_cac_ms); 1356 1357 if (!is_valid_reg_rule(intersected_rule)) 1358 return -EINVAL; 1359 1360 return 0; 1361 } 1362 1363 /* check whether old rule contains new rule */ 1364 static bool rule_contains(struct ieee80211_reg_rule *r1, 1365 struct ieee80211_reg_rule *r2) 1366 { 1367 /* for simplicity, currently consider only same flags */ 1368 if (r1->flags != r2->flags) 1369 return false; 1370 1371 /* verify r1 is more restrictive */ 1372 if ((r1->power_rule.max_antenna_gain > 1373 r2->power_rule.max_antenna_gain) || 1374 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1375 return false; 1376 1377 /* make sure r2's range is contained within r1 */ 1378 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1379 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1380 return false; 1381 1382 /* and finally verify that r1.max_bw >= r2.max_bw */ 1383 if (r1->freq_range.max_bandwidth_khz < 1384 r2->freq_range.max_bandwidth_khz) 1385 return false; 1386 1387 return true; 1388 } 1389 1390 /* add or extend current rules. do nothing if rule is already contained */ 1391 static void add_rule(struct ieee80211_reg_rule *rule, 1392 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1393 { 1394 struct ieee80211_reg_rule *tmp_rule; 1395 int i; 1396 1397 for (i = 0; i < *n_rules; i++) { 1398 tmp_rule = ®_rules[i]; 1399 /* rule is already contained - do nothing */ 1400 if (rule_contains(tmp_rule, rule)) 1401 return; 1402 1403 /* extend rule if possible */ 1404 if (rule_contains(rule, tmp_rule)) { 1405 memcpy(tmp_rule, rule, sizeof(*rule)); 1406 return; 1407 } 1408 } 1409 1410 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1411 (*n_rules)++; 1412 } 1413 1414 /** 1415 * regdom_intersect - do the intersection between two regulatory domains 1416 * @rd1: first regulatory domain 1417 * @rd2: second regulatory domain 1418 * 1419 * Use this function to get the intersection between two regulatory domains. 1420 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1421 * as no one single alpha2 can represent this regulatory domain. 1422 * 1423 * Returns a pointer to the regulatory domain structure which will hold the 1424 * resulting intersection of rules between rd1 and rd2. We will 1425 * kzalloc() this structure for you. 1426 */ 1427 static struct ieee80211_regdomain * 1428 regdom_intersect(const struct ieee80211_regdomain *rd1, 1429 const struct ieee80211_regdomain *rd2) 1430 { 1431 int r, size_of_regd; 1432 unsigned int x, y; 1433 unsigned int num_rules = 0; 1434 const struct ieee80211_reg_rule *rule1, *rule2; 1435 struct ieee80211_reg_rule intersected_rule; 1436 struct ieee80211_regdomain *rd; 1437 1438 if (!rd1 || !rd2) 1439 return NULL; 1440 1441 /* 1442 * First we get a count of the rules we'll need, then we actually 1443 * build them. This is to so we can malloc() and free() a 1444 * regdomain once. The reason we use reg_rules_intersect() here 1445 * is it will return -EINVAL if the rule computed makes no sense. 1446 * All rules that do check out OK are valid. 1447 */ 1448 1449 for (x = 0; x < rd1->n_reg_rules; x++) { 1450 rule1 = &rd1->reg_rules[x]; 1451 for (y = 0; y < rd2->n_reg_rules; y++) { 1452 rule2 = &rd2->reg_rules[y]; 1453 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1454 &intersected_rule)) 1455 num_rules++; 1456 } 1457 } 1458 1459 if (!num_rules) 1460 return NULL; 1461 1462 size_of_regd = sizeof(struct ieee80211_regdomain) + 1463 num_rules * sizeof(struct ieee80211_reg_rule); 1464 1465 rd = kzalloc(size_of_regd, GFP_KERNEL); 1466 if (!rd) 1467 return NULL; 1468 1469 for (x = 0; x < rd1->n_reg_rules; x++) { 1470 rule1 = &rd1->reg_rules[x]; 1471 for (y = 0; y < rd2->n_reg_rules; y++) { 1472 rule2 = &rd2->reg_rules[y]; 1473 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1474 &intersected_rule); 1475 /* 1476 * No need to memset here the intersected rule here as 1477 * we're not using the stack anymore 1478 */ 1479 if (r) 1480 continue; 1481 1482 add_rule(&intersected_rule, rd->reg_rules, 1483 &rd->n_reg_rules); 1484 } 1485 } 1486 1487 rd->alpha2[0] = '9'; 1488 rd->alpha2[1] = '8'; 1489 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1490 rd2->dfs_region); 1491 1492 return rd; 1493 } 1494 1495 /* 1496 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1497 * want to just have the channel structure use these 1498 */ 1499 static u32 map_regdom_flags(u32 rd_flags) 1500 { 1501 u32 channel_flags = 0; 1502 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1503 channel_flags |= IEEE80211_CHAN_NO_IR; 1504 if (rd_flags & NL80211_RRF_DFS) 1505 channel_flags |= IEEE80211_CHAN_RADAR; 1506 if (rd_flags & NL80211_RRF_NO_OFDM) 1507 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1508 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1509 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1510 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1511 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1512 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1513 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1514 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1515 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1516 if (rd_flags & NL80211_RRF_NO_80MHZ) 1517 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1518 if (rd_flags & NL80211_RRF_NO_160MHZ) 1519 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1520 return channel_flags; 1521 } 1522 1523 static const struct ieee80211_reg_rule * 1524 freq_reg_info_regd(u32 center_freq, 1525 const struct ieee80211_regdomain *regd, u32 bw) 1526 { 1527 int i; 1528 bool band_rule_found = false; 1529 bool bw_fits = false; 1530 1531 if (!regd) 1532 return ERR_PTR(-EINVAL); 1533 1534 for (i = 0; i < regd->n_reg_rules; i++) { 1535 const struct ieee80211_reg_rule *rr; 1536 const struct ieee80211_freq_range *fr = NULL; 1537 1538 rr = ®d->reg_rules[i]; 1539 fr = &rr->freq_range; 1540 1541 /* 1542 * We only need to know if one frequency rule was 1543 * was in center_freq's band, that's enough, so lets 1544 * not overwrite it once found 1545 */ 1546 if (!band_rule_found) 1547 band_rule_found = freq_in_rule_band(fr, center_freq); 1548 1549 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1550 1551 if (band_rule_found && bw_fits) 1552 return rr; 1553 } 1554 1555 if (!band_rule_found) 1556 return ERR_PTR(-ERANGE); 1557 1558 return ERR_PTR(-EINVAL); 1559 } 1560 1561 static const struct ieee80211_reg_rule * 1562 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1563 { 1564 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1565 const struct ieee80211_reg_rule *reg_rule = NULL; 1566 u32 bw; 1567 1568 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 1569 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1570 if (!IS_ERR(reg_rule)) 1571 return reg_rule; 1572 } 1573 1574 return reg_rule; 1575 } 1576 1577 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1578 u32 center_freq) 1579 { 1580 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); 1581 } 1582 EXPORT_SYMBOL(freq_reg_info); 1583 1584 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1585 { 1586 switch (initiator) { 1587 case NL80211_REGDOM_SET_BY_CORE: 1588 return "core"; 1589 case NL80211_REGDOM_SET_BY_USER: 1590 return "user"; 1591 case NL80211_REGDOM_SET_BY_DRIVER: 1592 return "driver"; 1593 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1594 return "country element"; 1595 default: 1596 WARN_ON(1); 1597 return "bug"; 1598 } 1599 } 1600 EXPORT_SYMBOL(reg_initiator_name); 1601 1602 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1603 const struct ieee80211_reg_rule *reg_rule, 1604 const struct ieee80211_channel *chan) 1605 { 1606 const struct ieee80211_freq_range *freq_range = NULL; 1607 u32 max_bandwidth_khz, bw_flags = 0; 1608 1609 freq_range = ®_rule->freq_range; 1610 1611 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1612 /* Check if auto calculation requested */ 1613 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1614 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1615 1616 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1617 if (!cfg80211_does_bw_fit_range(freq_range, 1618 MHZ_TO_KHZ(chan->center_freq), 1619 MHZ_TO_KHZ(10))) 1620 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1621 if (!cfg80211_does_bw_fit_range(freq_range, 1622 MHZ_TO_KHZ(chan->center_freq), 1623 MHZ_TO_KHZ(20))) 1624 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1625 1626 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1627 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1628 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1629 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1630 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1631 bw_flags |= IEEE80211_CHAN_NO_HT40; 1632 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1633 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1634 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1635 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1636 return bw_flags; 1637 } 1638 1639 /* 1640 * Note that right now we assume the desired channel bandwidth 1641 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1642 * per channel, the primary and the extension channel). 1643 */ 1644 static void handle_channel(struct wiphy *wiphy, 1645 enum nl80211_reg_initiator initiator, 1646 struct ieee80211_channel *chan) 1647 { 1648 u32 flags, bw_flags = 0; 1649 const struct ieee80211_reg_rule *reg_rule = NULL; 1650 const struct ieee80211_power_rule *power_rule = NULL; 1651 struct wiphy *request_wiphy = NULL; 1652 struct regulatory_request *lr = get_last_request(); 1653 const struct ieee80211_regdomain *regd; 1654 1655 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1656 1657 flags = chan->orig_flags; 1658 1659 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1660 if (IS_ERR(reg_rule)) { 1661 /* 1662 * We will disable all channels that do not match our 1663 * received regulatory rule unless the hint is coming 1664 * from a Country IE and the Country IE had no information 1665 * about a band. The IEEE 802.11 spec allows for an AP 1666 * to send only a subset of the regulatory rules allowed, 1667 * so an AP in the US that only supports 2.4 GHz may only send 1668 * a country IE with information for the 2.4 GHz band 1669 * while 5 GHz is still supported. 1670 */ 1671 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1672 PTR_ERR(reg_rule) == -ERANGE) 1673 return; 1674 1675 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1676 request_wiphy && request_wiphy == wiphy && 1677 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1678 pr_debug("Disabling freq %d MHz for good\n", 1679 chan->center_freq); 1680 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1681 chan->flags = chan->orig_flags; 1682 } else { 1683 pr_debug("Disabling freq %d MHz\n", 1684 chan->center_freq); 1685 chan->flags |= IEEE80211_CHAN_DISABLED; 1686 } 1687 return; 1688 } 1689 1690 regd = reg_get_regdomain(wiphy); 1691 1692 power_rule = ®_rule->power_rule; 1693 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1694 1695 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1696 request_wiphy && request_wiphy == wiphy && 1697 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1698 /* 1699 * This guarantees the driver's requested regulatory domain 1700 * will always be used as a base for further regulatory 1701 * settings 1702 */ 1703 chan->flags = chan->orig_flags = 1704 map_regdom_flags(reg_rule->flags) | bw_flags; 1705 chan->max_antenna_gain = chan->orig_mag = 1706 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1707 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1708 (int) MBM_TO_DBM(power_rule->max_eirp); 1709 1710 if (chan->flags & IEEE80211_CHAN_RADAR) { 1711 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1712 if (reg_rule->dfs_cac_ms) 1713 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1714 } 1715 1716 return; 1717 } 1718 1719 chan->dfs_state = NL80211_DFS_USABLE; 1720 chan->dfs_state_entered = jiffies; 1721 1722 chan->beacon_found = false; 1723 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1724 chan->max_antenna_gain = 1725 min_t(int, chan->orig_mag, 1726 MBI_TO_DBI(power_rule->max_antenna_gain)); 1727 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1728 1729 if (chan->flags & IEEE80211_CHAN_RADAR) { 1730 if (reg_rule->dfs_cac_ms) 1731 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1732 else 1733 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1734 } 1735 1736 if (chan->orig_mpwr) { 1737 /* 1738 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1739 * will always follow the passed country IE power settings. 1740 */ 1741 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1742 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1743 chan->max_power = chan->max_reg_power; 1744 else 1745 chan->max_power = min(chan->orig_mpwr, 1746 chan->max_reg_power); 1747 } else 1748 chan->max_power = chan->max_reg_power; 1749 } 1750 1751 static void handle_band(struct wiphy *wiphy, 1752 enum nl80211_reg_initiator initiator, 1753 struct ieee80211_supported_band *sband) 1754 { 1755 unsigned int i; 1756 1757 if (!sband) 1758 return; 1759 1760 for (i = 0; i < sband->n_channels; i++) 1761 handle_channel(wiphy, initiator, &sband->channels[i]); 1762 } 1763 1764 static bool reg_request_cell_base(struct regulatory_request *request) 1765 { 1766 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1767 return false; 1768 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1769 } 1770 1771 bool reg_last_request_cell_base(void) 1772 { 1773 return reg_request_cell_base(get_last_request()); 1774 } 1775 1776 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1777 /* Core specific check */ 1778 static enum reg_request_treatment 1779 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1780 { 1781 struct regulatory_request *lr = get_last_request(); 1782 1783 if (!reg_num_devs_support_basehint) 1784 return REG_REQ_IGNORE; 1785 1786 if (reg_request_cell_base(lr) && 1787 !regdom_changes(pending_request->alpha2)) 1788 return REG_REQ_ALREADY_SET; 1789 1790 return REG_REQ_OK; 1791 } 1792 1793 /* Device specific check */ 1794 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1795 { 1796 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1797 } 1798 #else 1799 static enum reg_request_treatment 1800 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1801 { 1802 return REG_REQ_IGNORE; 1803 } 1804 1805 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1806 { 1807 return true; 1808 } 1809 #endif 1810 1811 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1812 { 1813 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1814 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1815 return true; 1816 return false; 1817 } 1818 1819 static bool ignore_reg_update(struct wiphy *wiphy, 1820 enum nl80211_reg_initiator initiator) 1821 { 1822 struct regulatory_request *lr = get_last_request(); 1823 1824 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1825 return true; 1826 1827 if (!lr) { 1828 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 1829 reg_initiator_name(initiator)); 1830 return true; 1831 } 1832 1833 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1834 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1835 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 1836 reg_initiator_name(initiator)); 1837 return true; 1838 } 1839 1840 /* 1841 * wiphy->regd will be set once the device has its own 1842 * desired regulatory domain set 1843 */ 1844 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1845 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1846 !is_world_regdom(lr->alpha2)) { 1847 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 1848 reg_initiator_name(initiator)); 1849 return true; 1850 } 1851 1852 if (reg_request_cell_base(lr)) 1853 return reg_dev_ignore_cell_hint(wiphy); 1854 1855 return false; 1856 } 1857 1858 static bool reg_is_world_roaming(struct wiphy *wiphy) 1859 { 1860 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1861 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1862 struct regulatory_request *lr = get_last_request(); 1863 1864 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1865 return true; 1866 1867 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1868 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1869 return true; 1870 1871 return false; 1872 } 1873 1874 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1875 struct reg_beacon *reg_beacon) 1876 { 1877 struct ieee80211_supported_band *sband; 1878 struct ieee80211_channel *chan; 1879 bool channel_changed = false; 1880 struct ieee80211_channel chan_before; 1881 1882 sband = wiphy->bands[reg_beacon->chan.band]; 1883 chan = &sband->channels[chan_idx]; 1884 1885 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1886 return; 1887 1888 if (chan->beacon_found) 1889 return; 1890 1891 chan->beacon_found = true; 1892 1893 if (!reg_is_world_roaming(wiphy)) 1894 return; 1895 1896 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1897 return; 1898 1899 chan_before = *chan; 1900 1901 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1902 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1903 channel_changed = true; 1904 } 1905 1906 if (channel_changed) 1907 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1908 } 1909 1910 /* 1911 * Called when a scan on a wiphy finds a beacon on 1912 * new channel 1913 */ 1914 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1915 struct reg_beacon *reg_beacon) 1916 { 1917 unsigned int i; 1918 struct ieee80211_supported_band *sband; 1919 1920 if (!wiphy->bands[reg_beacon->chan.band]) 1921 return; 1922 1923 sband = wiphy->bands[reg_beacon->chan.band]; 1924 1925 for (i = 0; i < sband->n_channels; i++) 1926 handle_reg_beacon(wiphy, i, reg_beacon); 1927 } 1928 1929 /* 1930 * Called upon reg changes or a new wiphy is added 1931 */ 1932 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1933 { 1934 unsigned int i; 1935 struct ieee80211_supported_band *sband; 1936 struct reg_beacon *reg_beacon; 1937 1938 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1939 if (!wiphy->bands[reg_beacon->chan.band]) 1940 continue; 1941 sband = wiphy->bands[reg_beacon->chan.band]; 1942 for (i = 0; i < sband->n_channels; i++) 1943 handle_reg_beacon(wiphy, i, reg_beacon); 1944 } 1945 } 1946 1947 /* Reap the advantages of previously found beacons */ 1948 static void reg_process_beacons(struct wiphy *wiphy) 1949 { 1950 /* 1951 * Means we are just firing up cfg80211, so no beacons would 1952 * have been processed yet. 1953 */ 1954 if (!last_request) 1955 return; 1956 wiphy_update_beacon_reg(wiphy); 1957 } 1958 1959 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1960 { 1961 if (!chan) 1962 return false; 1963 if (chan->flags & IEEE80211_CHAN_DISABLED) 1964 return false; 1965 /* This would happen when regulatory rules disallow HT40 completely */ 1966 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1967 return false; 1968 return true; 1969 } 1970 1971 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1972 struct ieee80211_channel *channel) 1973 { 1974 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1975 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1976 const struct ieee80211_regdomain *regd; 1977 unsigned int i; 1978 u32 flags; 1979 1980 if (!is_ht40_allowed(channel)) { 1981 channel->flags |= IEEE80211_CHAN_NO_HT40; 1982 return; 1983 } 1984 1985 /* 1986 * We need to ensure the extension channels exist to 1987 * be able to use HT40- or HT40+, this finds them (or not) 1988 */ 1989 for (i = 0; i < sband->n_channels; i++) { 1990 struct ieee80211_channel *c = &sband->channels[i]; 1991 1992 if (c->center_freq == (channel->center_freq - 20)) 1993 channel_before = c; 1994 if (c->center_freq == (channel->center_freq + 20)) 1995 channel_after = c; 1996 } 1997 1998 flags = 0; 1999 regd = get_wiphy_regdom(wiphy); 2000 if (regd) { 2001 const struct ieee80211_reg_rule *reg_rule = 2002 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2003 regd, MHZ_TO_KHZ(20)); 2004 2005 if (!IS_ERR(reg_rule)) 2006 flags = reg_rule->flags; 2007 } 2008 2009 /* 2010 * Please note that this assumes target bandwidth is 20 MHz, 2011 * if that ever changes we also need to change the below logic 2012 * to include that as well. 2013 */ 2014 if (!is_ht40_allowed(channel_before) || 2015 flags & NL80211_RRF_NO_HT40MINUS) 2016 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2017 else 2018 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2019 2020 if (!is_ht40_allowed(channel_after) || 2021 flags & NL80211_RRF_NO_HT40PLUS) 2022 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2023 else 2024 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2025 } 2026 2027 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2028 struct ieee80211_supported_band *sband) 2029 { 2030 unsigned int i; 2031 2032 if (!sband) 2033 return; 2034 2035 for (i = 0; i < sband->n_channels; i++) 2036 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2037 } 2038 2039 static void reg_process_ht_flags(struct wiphy *wiphy) 2040 { 2041 enum nl80211_band band; 2042 2043 if (!wiphy) 2044 return; 2045 2046 for (band = 0; band < NUM_NL80211_BANDS; band++) 2047 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2048 } 2049 2050 static void reg_call_notifier(struct wiphy *wiphy, 2051 struct regulatory_request *request) 2052 { 2053 if (wiphy->reg_notifier) 2054 wiphy->reg_notifier(wiphy, request); 2055 } 2056 2057 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2058 { 2059 struct cfg80211_chan_def chandef; 2060 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2061 enum nl80211_iftype iftype; 2062 2063 wdev_lock(wdev); 2064 iftype = wdev->iftype; 2065 2066 /* make sure the interface is active */ 2067 if (!wdev->netdev || !netif_running(wdev->netdev)) 2068 goto wdev_inactive_unlock; 2069 2070 switch (iftype) { 2071 case NL80211_IFTYPE_AP: 2072 case NL80211_IFTYPE_P2P_GO: 2073 if (!wdev->beacon_interval) 2074 goto wdev_inactive_unlock; 2075 chandef = wdev->chandef; 2076 break; 2077 case NL80211_IFTYPE_ADHOC: 2078 if (!wdev->ssid_len) 2079 goto wdev_inactive_unlock; 2080 chandef = wdev->chandef; 2081 break; 2082 case NL80211_IFTYPE_STATION: 2083 case NL80211_IFTYPE_P2P_CLIENT: 2084 if (!wdev->current_bss || 2085 !wdev->current_bss->pub.channel) 2086 goto wdev_inactive_unlock; 2087 2088 if (!rdev->ops->get_channel || 2089 rdev_get_channel(rdev, wdev, &chandef)) 2090 cfg80211_chandef_create(&chandef, 2091 wdev->current_bss->pub.channel, 2092 NL80211_CHAN_NO_HT); 2093 break; 2094 case NL80211_IFTYPE_MONITOR: 2095 case NL80211_IFTYPE_AP_VLAN: 2096 case NL80211_IFTYPE_P2P_DEVICE: 2097 /* no enforcement required */ 2098 break; 2099 default: 2100 /* others not implemented for now */ 2101 WARN_ON(1); 2102 break; 2103 } 2104 2105 wdev_unlock(wdev); 2106 2107 switch (iftype) { 2108 case NL80211_IFTYPE_AP: 2109 case NL80211_IFTYPE_P2P_GO: 2110 case NL80211_IFTYPE_ADHOC: 2111 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 2112 case NL80211_IFTYPE_STATION: 2113 case NL80211_IFTYPE_P2P_CLIENT: 2114 return cfg80211_chandef_usable(wiphy, &chandef, 2115 IEEE80211_CHAN_DISABLED); 2116 default: 2117 break; 2118 } 2119 2120 return true; 2121 2122 wdev_inactive_unlock: 2123 wdev_unlock(wdev); 2124 return true; 2125 } 2126 2127 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2128 { 2129 struct wireless_dev *wdev; 2130 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2131 2132 ASSERT_RTNL(); 2133 2134 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2135 if (!reg_wdev_chan_valid(wiphy, wdev)) 2136 cfg80211_leave(rdev, wdev); 2137 } 2138 2139 static void reg_check_chans_work(struct work_struct *work) 2140 { 2141 struct cfg80211_registered_device *rdev; 2142 2143 pr_debug("Verifying active interfaces after reg change\n"); 2144 rtnl_lock(); 2145 2146 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2147 if (!(rdev->wiphy.regulatory_flags & 2148 REGULATORY_IGNORE_STALE_KICKOFF)) 2149 reg_leave_invalid_chans(&rdev->wiphy); 2150 2151 rtnl_unlock(); 2152 } 2153 2154 static void reg_check_channels(void) 2155 { 2156 /* 2157 * Give usermode a chance to do something nicer (move to another 2158 * channel, orderly disconnection), before forcing a disconnection. 2159 */ 2160 mod_delayed_work(system_power_efficient_wq, 2161 ®_check_chans, 2162 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2163 } 2164 2165 static void wiphy_update_regulatory(struct wiphy *wiphy, 2166 enum nl80211_reg_initiator initiator) 2167 { 2168 enum nl80211_band band; 2169 struct regulatory_request *lr = get_last_request(); 2170 2171 if (ignore_reg_update(wiphy, initiator)) { 2172 /* 2173 * Regulatory updates set by CORE are ignored for custom 2174 * regulatory cards. Let us notify the changes to the driver, 2175 * as some drivers used this to restore its orig_* reg domain. 2176 */ 2177 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2178 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2179 !(wiphy->regulatory_flags & 2180 REGULATORY_WIPHY_SELF_MANAGED)) 2181 reg_call_notifier(wiphy, lr); 2182 return; 2183 } 2184 2185 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2186 2187 for (band = 0; band < NUM_NL80211_BANDS; band++) 2188 handle_band(wiphy, initiator, wiphy->bands[band]); 2189 2190 reg_process_beacons(wiphy); 2191 reg_process_ht_flags(wiphy); 2192 reg_call_notifier(wiphy, lr); 2193 } 2194 2195 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2196 { 2197 struct cfg80211_registered_device *rdev; 2198 struct wiphy *wiphy; 2199 2200 ASSERT_RTNL(); 2201 2202 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2203 wiphy = &rdev->wiphy; 2204 wiphy_update_regulatory(wiphy, initiator); 2205 } 2206 2207 reg_check_channels(); 2208 } 2209 2210 static void handle_channel_custom(struct wiphy *wiphy, 2211 struct ieee80211_channel *chan, 2212 const struct ieee80211_regdomain *regd) 2213 { 2214 u32 bw_flags = 0; 2215 const struct ieee80211_reg_rule *reg_rule = NULL; 2216 const struct ieee80211_power_rule *power_rule = NULL; 2217 u32 bw; 2218 2219 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) { 2220 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq), 2221 regd, bw); 2222 if (!IS_ERR(reg_rule)) 2223 break; 2224 } 2225 2226 if (IS_ERR(reg_rule)) { 2227 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n", 2228 chan->center_freq); 2229 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2230 chan->flags |= IEEE80211_CHAN_DISABLED; 2231 } else { 2232 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2233 chan->flags = chan->orig_flags; 2234 } 2235 return; 2236 } 2237 2238 power_rule = ®_rule->power_rule; 2239 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2240 2241 chan->dfs_state_entered = jiffies; 2242 chan->dfs_state = NL80211_DFS_USABLE; 2243 2244 chan->beacon_found = false; 2245 2246 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2247 chan->flags = chan->orig_flags | bw_flags | 2248 map_regdom_flags(reg_rule->flags); 2249 else 2250 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2251 2252 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2253 chan->max_reg_power = chan->max_power = 2254 (int) MBM_TO_DBM(power_rule->max_eirp); 2255 2256 if (chan->flags & IEEE80211_CHAN_RADAR) { 2257 if (reg_rule->dfs_cac_ms) 2258 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2259 else 2260 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2261 } 2262 2263 chan->max_power = chan->max_reg_power; 2264 } 2265 2266 static void handle_band_custom(struct wiphy *wiphy, 2267 struct ieee80211_supported_band *sband, 2268 const struct ieee80211_regdomain *regd) 2269 { 2270 unsigned int i; 2271 2272 if (!sband) 2273 return; 2274 2275 for (i = 0; i < sband->n_channels; i++) 2276 handle_channel_custom(wiphy, &sband->channels[i], regd); 2277 } 2278 2279 /* Used by drivers prior to wiphy registration */ 2280 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2281 const struct ieee80211_regdomain *regd) 2282 { 2283 enum nl80211_band band; 2284 unsigned int bands_set = 0; 2285 2286 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2287 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2288 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2289 2290 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2291 if (!wiphy->bands[band]) 2292 continue; 2293 handle_band_custom(wiphy, wiphy->bands[band], regd); 2294 bands_set++; 2295 } 2296 2297 /* 2298 * no point in calling this if it won't have any effect 2299 * on your device's supported bands. 2300 */ 2301 WARN_ON(!bands_set); 2302 } 2303 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2304 2305 static void reg_set_request_processed(void) 2306 { 2307 bool need_more_processing = false; 2308 struct regulatory_request *lr = get_last_request(); 2309 2310 lr->processed = true; 2311 2312 spin_lock(®_requests_lock); 2313 if (!list_empty(®_requests_list)) 2314 need_more_processing = true; 2315 spin_unlock(®_requests_lock); 2316 2317 cancel_crda_timeout(); 2318 2319 if (need_more_processing) 2320 schedule_work(®_work); 2321 } 2322 2323 /** 2324 * reg_process_hint_core - process core regulatory requests 2325 * @pending_request: a pending core regulatory request 2326 * 2327 * The wireless subsystem can use this function to process 2328 * a regulatory request issued by the regulatory core. 2329 */ 2330 static enum reg_request_treatment 2331 reg_process_hint_core(struct regulatory_request *core_request) 2332 { 2333 if (reg_query_database(core_request)) { 2334 core_request->intersect = false; 2335 core_request->processed = false; 2336 reg_update_last_request(core_request); 2337 return REG_REQ_OK; 2338 } 2339 2340 return REG_REQ_IGNORE; 2341 } 2342 2343 static enum reg_request_treatment 2344 __reg_process_hint_user(struct regulatory_request *user_request) 2345 { 2346 struct regulatory_request *lr = get_last_request(); 2347 2348 if (reg_request_cell_base(user_request)) 2349 return reg_ignore_cell_hint(user_request); 2350 2351 if (reg_request_cell_base(lr)) 2352 return REG_REQ_IGNORE; 2353 2354 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2355 return REG_REQ_INTERSECT; 2356 /* 2357 * If the user knows better the user should set the regdom 2358 * to their country before the IE is picked up 2359 */ 2360 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2361 lr->intersect) 2362 return REG_REQ_IGNORE; 2363 /* 2364 * Process user requests only after previous user/driver/core 2365 * requests have been processed 2366 */ 2367 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2368 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2369 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2370 regdom_changes(lr->alpha2)) 2371 return REG_REQ_IGNORE; 2372 2373 if (!regdom_changes(user_request->alpha2)) 2374 return REG_REQ_ALREADY_SET; 2375 2376 return REG_REQ_OK; 2377 } 2378 2379 /** 2380 * reg_process_hint_user - process user regulatory requests 2381 * @user_request: a pending user regulatory request 2382 * 2383 * The wireless subsystem can use this function to process 2384 * a regulatory request initiated by userspace. 2385 */ 2386 static enum reg_request_treatment 2387 reg_process_hint_user(struct regulatory_request *user_request) 2388 { 2389 enum reg_request_treatment treatment; 2390 2391 treatment = __reg_process_hint_user(user_request); 2392 if (treatment == REG_REQ_IGNORE || 2393 treatment == REG_REQ_ALREADY_SET) 2394 return REG_REQ_IGNORE; 2395 2396 user_request->intersect = treatment == REG_REQ_INTERSECT; 2397 user_request->processed = false; 2398 2399 if (reg_query_database(user_request)) { 2400 reg_update_last_request(user_request); 2401 user_alpha2[0] = user_request->alpha2[0]; 2402 user_alpha2[1] = user_request->alpha2[1]; 2403 return REG_REQ_OK; 2404 } 2405 2406 return REG_REQ_IGNORE; 2407 } 2408 2409 static enum reg_request_treatment 2410 __reg_process_hint_driver(struct regulatory_request *driver_request) 2411 { 2412 struct regulatory_request *lr = get_last_request(); 2413 2414 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2415 if (regdom_changes(driver_request->alpha2)) 2416 return REG_REQ_OK; 2417 return REG_REQ_ALREADY_SET; 2418 } 2419 2420 /* 2421 * This would happen if you unplug and plug your card 2422 * back in or if you add a new device for which the previously 2423 * loaded card also agrees on the regulatory domain. 2424 */ 2425 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2426 !regdom_changes(driver_request->alpha2)) 2427 return REG_REQ_ALREADY_SET; 2428 2429 return REG_REQ_INTERSECT; 2430 } 2431 2432 /** 2433 * reg_process_hint_driver - process driver regulatory requests 2434 * @driver_request: a pending driver regulatory request 2435 * 2436 * The wireless subsystem can use this function to process 2437 * a regulatory request issued by an 802.11 driver. 2438 * 2439 * Returns one of the different reg request treatment values. 2440 */ 2441 static enum reg_request_treatment 2442 reg_process_hint_driver(struct wiphy *wiphy, 2443 struct regulatory_request *driver_request) 2444 { 2445 const struct ieee80211_regdomain *regd, *tmp; 2446 enum reg_request_treatment treatment; 2447 2448 treatment = __reg_process_hint_driver(driver_request); 2449 2450 switch (treatment) { 2451 case REG_REQ_OK: 2452 break; 2453 case REG_REQ_IGNORE: 2454 return REG_REQ_IGNORE; 2455 case REG_REQ_INTERSECT: 2456 case REG_REQ_ALREADY_SET: 2457 regd = reg_copy_regd(get_cfg80211_regdom()); 2458 if (IS_ERR(regd)) 2459 return REG_REQ_IGNORE; 2460 2461 tmp = get_wiphy_regdom(wiphy); 2462 rcu_assign_pointer(wiphy->regd, regd); 2463 rcu_free_regdom(tmp); 2464 } 2465 2466 2467 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2468 driver_request->processed = false; 2469 2470 /* 2471 * Since CRDA will not be called in this case as we already 2472 * have applied the requested regulatory domain before we just 2473 * inform userspace we have processed the request 2474 */ 2475 if (treatment == REG_REQ_ALREADY_SET) { 2476 nl80211_send_reg_change_event(driver_request); 2477 reg_update_last_request(driver_request); 2478 reg_set_request_processed(); 2479 return REG_REQ_ALREADY_SET; 2480 } 2481 2482 if (reg_query_database(driver_request)) { 2483 reg_update_last_request(driver_request); 2484 return REG_REQ_OK; 2485 } 2486 2487 return REG_REQ_IGNORE; 2488 } 2489 2490 static enum reg_request_treatment 2491 __reg_process_hint_country_ie(struct wiphy *wiphy, 2492 struct regulatory_request *country_ie_request) 2493 { 2494 struct wiphy *last_wiphy = NULL; 2495 struct regulatory_request *lr = get_last_request(); 2496 2497 if (reg_request_cell_base(lr)) { 2498 /* Trust a Cell base station over the AP's country IE */ 2499 if (regdom_changes(country_ie_request->alpha2)) 2500 return REG_REQ_IGNORE; 2501 return REG_REQ_ALREADY_SET; 2502 } else { 2503 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2504 return REG_REQ_IGNORE; 2505 } 2506 2507 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2508 return -EINVAL; 2509 2510 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2511 return REG_REQ_OK; 2512 2513 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2514 2515 if (last_wiphy != wiphy) { 2516 /* 2517 * Two cards with two APs claiming different 2518 * Country IE alpha2s. We could 2519 * intersect them, but that seems unlikely 2520 * to be correct. Reject second one for now. 2521 */ 2522 if (regdom_changes(country_ie_request->alpha2)) 2523 return REG_REQ_IGNORE; 2524 return REG_REQ_ALREADY_SET; 2525 } 2526 2527 if (regdom_changes(country_ie_request->alpha2)) 2528 return REG_REQ_OK; 2529 return REG_REQ_ALREADY_SET; 2530 } 2531 2532 /** 2533 * reg_process_hint_country_ie - process regulatory requests from country IEs 2534 * @country_ie_request: a regulatory request from a country IE 2535 * 2536 * The wireless subsystem can use this function to process 2537 * a regulatory request issued by a country Information Element. 2538 * 2539 * Returns one of the different reg request treatment values. 2540 */ 2541 static enum reg_request_treatment 2542 reg_process_hint_country_ie(struct wiphy *wiphy, 2543 struct regulatory_request *country_ie_request) 2544 { 2545 enum reg_request_treatment treatment; 2546 2547 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2548 2549 switch (treatment) { 2550 case REG_REQ_OK: 2551 break; 2552 case REG_REQ_IGNORE: 2553 return REG_REQ_IGNORE; 2554 case REG_REQ_ALREADY_SET: 2555 reg_free_request(country_ie_request); 2556 return REG_REQ_ALREADY_SET; 2557 case REG_REQ_INTERSECT: 2558 /* 2559 * This doesn't happen yet, not sure we 2560 * ever want to support it for this case. 2561 */ 2562 WARN_ONCE(1, "Unexpected intersection for country elements"); 2563 return REG_REQ_IGNORE; 2564 } 2565 2566 country_ie_request->intersect = false; 2567 country_ie_request->processed = false; 2568 2569 if (reg_query_database(country_ie_request)) { 2570 reg_update_last_request(country_ie_request); 2571 return REG_REQ_OK; 2572 } 2573 2574 return REG_REQ_IGNORE; 2575 } 2576 2577 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2578 { 2579 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2580 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2581 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2582 bool dfs_domain_same; 2583 2584 rcu_read_lock(); 2585 2586 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2587 wiphy1_regd = rcu_dereference(wiphy1->regd); 2588 if (!wiphy1_regd) 2589 wiphy1_regd = cfg80211_regd; 2590 2591 wiphy2_regd = rcu_dereference(wiphy2->regd); 2592 if (!wiphy2_regd) 2593 wiphy2_regd = cfg80211_regd; 2594 2595 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2596 2597 rcu_read_unlock(); 2598 2599 return dfs_domain_same; 2600 } 2601 2602 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2603 struct ieee80211_channel *src_chan) 2604 { 2605 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2606 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2607 return; 2608 2609 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2610 src_chan->flags & IEEE80211_CHAN_DISABLED) 2611 return; 2612 2613 if (src_chan->center_freq == dst_chan->center_freq && 2614 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2615 dst_chan->dfs_state = src_chan->dfs_state; 2616 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2617 } 2618 } 2619 2620 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2621 struct wiphy *src_wiphy) 2622 { 2623 struct ieee80211_supported_band *src_sband, *dst_sband; 2624 struct ieee80211_channel *src_chan, *dst_chan; 2625 int i, j, band; 2626 2627 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2628 return; 2629 2630 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2631 dst_sband = dst_wiphy->bands[band]; 2632 src_sband = src_wiphy->bands[band]; 2633 if (!dst_sband || !src_sband) 2634 continue; 2635 2636 for (i = 0; i < dst_sband->n_channels; i++) { 2637 dst_chan = &dst_sband->channels[i]; 2638 for (j = 0; j < src_sband->n_channels; j++) { 2639 src_chan = &src_sband->channels[j]; 2640 reg_copy_dfs_chan_state(dst_chan, src_chan); 2641 } 2642 } 2643 } 2644 } 2645 2646 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2647 { 2648 struct cfg80211_registered_device *rdev; 2649 2650 ASSERT_RTNL(); 2651 2652 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2653 if (wiphy == &rdev->wiphy) 2654 continue; 2655 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2656 } 2657 } 2658 2659 /* This processes *all* regulatory hints */ 2660 static void reg_process_hint(struct regulatory_request *reg_request) 2661 { 2662 struct wiphy *wiphy = NULL; 2663 enum reg_request_treatment treatment; 2664 enum nl80211_reg_initiator initiator = reg_request->initiator; 2665 2666 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2667 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2668 2669 switch (initiator) { 2670 case NL80211_REGDOM_SET_BY_CORE: 2671 treatment = reg_process_hint_core(reg_request); 2672 break; 2673 case NL80211_REGDOM_SET_BY_USER: 2674 treatment = reg_process_hint_user(reg_request); 2675 break; 2676 case NL80211_REGDOM_SET_BY_DRIVER: 2677 if (!wiphy) 2678 goto out_free; 2679 treatment = reg_process_hint_driver(wiphy, reg_request); 2680 break; 2681 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2682 if (!wiphy) 2683 goto out_free; 2684 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2685 break; 2686 default: 2687 WARN(1, "invalid initiator %d\n", initiator); 2688 goto out_free; 2689 } 2690 2691 if (treatment == REG_REQ_IGNORE) 2692 goto out_free; 2693 2694 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2695 "unexpected treatment value %d\n", treatment); 2696 2697 /* This is required so that the orig_* parameters are saved. 2698 * NOTE: treatment must be set for any case that reaches here! 2699 */ 2700 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2701 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2702 wiphy_update_regulatory(wiphy, initiator); 2703 wiphy_all_share_dfs_chan_state(wiphy); 2704 reg_check_channels(); 2705 } 2706 2707 return; 2708 2709 out_free: 2710 reg_free_request(reg_request); 2711 } 2712 2713 static void notify_self_managed_wiphys(struct regulatory_request *request) 2714 { 2715 struct cfg80211_registered_device *rdev; 2716 struct wiphy *wiphy; 2717 2718 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2719 wiphy = &rdev->wiphy; 2720 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 2721 request->initiator == NL80211_REGDOM_SET_BY_USER && 2722 request->user_reg_hint_type == 2723 NL80211_USER_REG_HINT_CELL_BASE) 2724 reg_call_notifier(wiphy, request); 2725 } 2726 } 2727 2728 /* 2729 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2730 * Regulatory hints come on a first come first serve basis and we 2731 * must process each one atomically. 2732 */ 2733 static void reg_process_pending_hints(void) 2734 { 2735 struct regulatory_request *reg_request, *lr; 2736 2737 lr = get_last_request(); 2738 2739 /* When last_request->processed becomes true this will be rescheduled */ 2740 if (lr && !lr->processed) { 2741 reg_process_hint(lr); 2742 return; 2743 } 2744 2745 spin_lock(®_requests_lock); 2746 2747 if (list_empty(®_requests_list)) { 2748 spin_unlock(®_requests_lock); 2749 return; 2750 } 2751 2752 reg_request = list_first_entry(®_requests_list, 2753 struct regulatory_request, 2754 list); 2755 list_del_init(®_request->list); 2756 2757 spin_unlock(®_requests_lock); 2758 2759 notify_self_managed_wiphys(reg_request); 2760 2761 reg_process_hint(reg_request); 2762 2763 lr = get_last_request(); 2764 2765 spin_lock(®_requests_lock); 2766 if (!list_empty(®_requests_list) && lr && lr->processed) 2767 schedule_work(®_work); 2768 spin_unlock(®_requests_lock); 2769 } 2770 2771 /* Processes beacon hints -- this has nothing to do with country IEs */ 2772 static void reg_process_pending_beacon_hints(void) 2773 { 2774 struct cfg80211_registered_device *rdev; 2775 struct reg_beacon *pending_beacon, *tmp; 2776 2777 /* This goes through the _pending_ beacon list */ 2778 spin_lock_bh(®_pending_beacons_lock); 2779 2780 list_for_each_entry_safe(pending_beacon, tmp, 2781 ®_pending_beacons, list) { 2782 list_del_init(&pending_beacon->list); 2783 2784 /* Applies the beacon hint to current wiphys */ 2785 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2786 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 2787 2788 /* Remembers the beacon hint for new wiphys or reg changes */ 2789 list_add_tail(&pending_beacon->list, ®_beacon_list); 2790 } 2791 2792 spin_unlock_bh(®_pending_beacons_lock); 2793 } 2794 2795 static void reg_process_self_managed_hints(void) 2796 { 2797 struct cfg80211_registered_device *rdev; 2798 struct wiphy *wiphy; 2799 const struct ieee80211_regdomain *tmp; 2800 const struct ieee80211_regdomain *regd; 2801 enum nl80211_band band; 2802 struct regulatory_request request = {}; 2803 2804 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2805 wiphy = &rdev->wiphy; 2806 2807 spin_lock(®_requests_lock); 2808 regd = rdev->requested_regd; 2809 rdev->requested_regd = NULL; 2810 spin_unlock(®_requests_lock); 2811 2812 if (regd == NULL) 2813 continue; 2814 2815 tmp = get_wiphy_regdom(wiphy); 2816 rcu_assign_pointer(wiphy->regd, regd); 2817 rcu_free_regdom(tmp); 2818 2819 for (band = 0; band < NUM_NL80211_BANDS; band++) 2820 handle_band_custom(wiphy, wiphy->bands[band], regd); 2821 2822 reg_process_ht_flags(wiphy); 2823 2824 request.wiphy_idx = get_wiphy_idx(wiphy); 2825 request.alpha2[0] = regd->alpha2[0]; 2826 request.alpha2[1] = regd->alpha2[1]; 2827 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 2828 2829 nl80211_send_wiphy_reg_change_event(&request); 2830 } 2831 2832 reg_check_channels(); 2833 } 2834 2835 static void reg_todo(struct work_struct *work) 2836 { 2837 rtnl_lock(); 2838 reg_process_pending_hints(); 2839 reg_process_pending_beacon_hints(); 2840 reg_process_self_managed_hints(); 2841 rtnl_unlock(); 2842 } 2843 2844 static void queue_regulatory_request(struct regulatory_request *request) 2845 { 2846 request->alpha2[0] = toupper(request->alpha2[0]); 2847 request->alpha2[1] = toupper(request->alpha2[1]); 2848 2849 spin_lock(®_requests_lock); 2850 list_add_tail(&request->list, ®_requests_list); 2851 spin_unlock(®_requests_lock); 2852 2853 schedule_work(®_work); 2854 } 2855 2856 /* 2857 * Core regulatory hint -- happens during cfg80211_init() 2858 * and when we restore regulatory settings. 2859 */ 2860 static int regulatory_hint_core(const char *alpha2) 2861 { 2862 struct regulatory_request *request; 2863 2864 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2865 if (!request) 2866 return -ENOMEM; 2867 2868 request->alpha2[0] = alpha2[0]; 2869 request->alpha2[1] = alpha2[1]; 2870 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2871 request->wiphy_idx = WIPHY_IDX_INVALID; 2872 2873 queue_regulatory_request(request); 2874 2875 return 0; 2876 } 2877 2878 /* User hints */ 2879 int regulatory_hint_user(const char *alpha2, 2880 enum nl80211_user_reg_hint_type user_reg_hint_type) 2881 { 2882 struct regulatory_request *request; 2883 2884 if (WARN_ON(!alpha2)) 2885 return -EINVAL; 2886 2887 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2888 if (!request) 2889 return -ENOMEM; 2890 2891 request->wiphy_idx = WIPHY_IDX_INVALID; 2892 request->alpha2[0] = alpha2[0]; 2893 request->alpha2[1] = alpha2[1]; 2894 request->initiator = NL80211_REGDOM_SET_BY_USER; 2895 request->user_reg_hint_type = user_reg_hint_type; 2896 2897 /* Allow calling CRDA again */ 2898 reset_crda_timeouts(); 2899 2900 queue_regulatory_request(request); 2901 2902 return 0; 2903 } 2904 2905 int regulatory_hint_indoor(bool is_indoor, u32 portid) 2906 { 2907 spin_lock(®_indoor_lock); 2908 2909 /* It is possible that more than one user space process is trying to 2910 * configure the indoor setting. To handle such cases, clear the indoor 2911 * setting in case that some process does not think that the device 2912 * is operating in an indoor environment. In addition, if a user space 2913 * process indicates that it is controlling the indoor setting, save its 2914 * portid, i.e., make it the owner. 2915 */ 2916 reg_is_indoor = is_indoor; 2917 if (reg_is_indoor) { 2918 if (!reg_is_indoor_portid) 2919 reg_is_indoor_portid = portid; 2920 } else { 2921 reg_is_indoor_portid = 0; 2922 } 2923 2924 spin_unlock(®_indoor_lock); 2925 2926 if (!is_indoor) 2927 reg_check_channels(); 2928 2929 return 0; 2930 } 2931 2932 void regulatory_netlink_notify(u32 portid) 2933 { 2934 spin_lock(®_indoor_lock); 2935 2936 if (reg_is_indoor_portid != portid) { 2937 spin_unlock(®_indoor_lock); 2938 return; 2939 } 2940 2941 reg_is_indoor = false; 2942 reg_is_indoor_portid = 0; 2943 2944 spin_unlock(®_indoor_lock); 2945 2946 reg_check_channels(); 2947 } 2948 2949 /* Driver hints */ 2950 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 2951 { 2952 struct regulatory_request *request; 2953 2954 if (WARN_ON(!alpha2 || !wiphy)) 2955 return -EINVAL; 2956 2957 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 2958 2959 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2960 if (!request) 2961 return -ENOMEM; 2962 2963 request->wiphy_idx = get_wiphy_idx(wiphy); 2964 2965 request->alpha2[0] = alpha2[0]; 2966 request->alpha2[1] = alpha2[1]; 2967 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 2968 2969 /* Allow calling CRDA again */ 2970 reset_crda_timeouts(); 2971 2972 queue_regulatory_request(request); 2973 2974 return 0; 2975 } 2976 EXPORT_SYMBOL(regulatory_hint); 2977 2978 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 2979 const u8 *country_ie, u8 country_ie_len) 2980 { 2981 char alpha2[2]; 2982 enum environment_cap env = ENVIRON_ANY; 2983 struct regulatory_request *request = NULL, *lr; 2984 2985 /* IE len must be evenly divisible by 2 */ 2986 if (country_ie_len & 0x01) 2987 return; 2988 2989 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 2990 return; 2991 2992 request = kzalloc(sizeof(*request), GFP_KERNEL); 2993 if (!request) 2994 return; 2995 2996 alpha2[0] = country_ie[0]; 2997 alpha2[1] = country_ie[1]; 2998 2999 if (country_ie[2] == 'I') 3000 env = ENVIRON_INDOOR; 3001 else if (country_ie[2] == 'O') 3002 env = ENVIRON_OUTDOOR; 3003 3004 rcu_read_lock(); 3005 lr = get_last_request(); 3006 3007 if (unlikely(!lr)) 3008 goto out; 3009 3010 /* 3011 * We will run this only upon a successful connection on cfg80211. 3012 * We leave conflict resolution to the workqueue, where can hold 3013 * the RTNL. 3014 */ 3015 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3016 lr->wiphy_idx != WIPHY_IDX_INVALID) 3017 goto out; 3018 3019 request->wiphy_idx = get_wiphy_idx(wiphy); 3020 request->alpha2[0] = alpha2[0]; 3021 request->alpha2[1] = alpha2[1]; 3022 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3023 request->country_ie_env = env; 3024 3025 /* Allow calling CRDA again */ 3026 reset_crda_timeouts(); 3027 3028 queue_regulatory_request(request); 3029 request = NULL; 3030 out: 3031 kfree(request); 3032 rcu_read_unlock(); 3033 } 3034 3035 static void restore_alpha2(char *alpha2, bool reset_user) 3036 { 3037 /* indicates there is no alpha2 to consider for restoration */ 3038 alpha2[0] = '9'; 3039 alpha2[1] = '7'; 3040 3041 /* The user setting has precedence over the module parameter */ 3042 if (is_user_regdom_saved()) { 3043 /* Unless we're asked to ignore it and reset it */ 3044 if (reset_user) { 3045 pr_debug("Restoring regulatory settings including user preference\n"); 3046 user_alpha2[0] = '9'; 3047 user_alpha2[1] = '7'; 3048 3049 /* 3050 * If we're ignoring user settings, we still need to 3051 * check the module parameter to ensure we put things 3052 * back as they were for a full restore. 3053 */ 3054 if (!is_world_regdom(ieee80211_regdom)) { 3055 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3056 ieee80211_regdom[0], ieee80211_regdom[1]); 3057 alpha2[0] = ieee80211_regdom[0]; 3058 alpha2[1] = ieee80211_regdom[1]; 3059 } 3060 } else { 3061 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3062 user_alpha2[0], user_alpha2[1]); 3063 alpha2[0] = user_alpha2[0]; 3064 alpha2[1] = user_alpha2[1]; 3065 } 3066 } else if (!is_world_regdom(ieee80211_regdom)) { 3067 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3068 ieee80211_regdom[0], ieee80211_regdom[1]); 3069 alpha2[0] = ieee80211_regdom[0]; 3070 alpha2[1] = ieee80211_regdom[1]; 3071 } else 3072 pr_debug("Restoring regulatory settings\n"); 3073 } 3074 3075 static void restore_custom_reg_settings(struct wiphy *wiphy) 3076 { 3077 struct ieee80211_supported_band *sband; 3078 enum nl80211_band band; 3079 struct ieee80211_channel *chan; 3080 int i; 3081 3082 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3083 sband = wiphy->bands[band]; 3084 if (!sband) 3085 continue; 3086 for (i = 0; i < sband->n_channels; i++) { 3087 chan = &sband->channels[i]; 3088 chan->flags = chan->orig_flags; 3089 chan->max_antenna_gain = chan->orig_mag; 3090 chan->max_power = chan->orig_mpwr; 3091 chan->beacon_found = false; 3092 } 3093 } 3094 } 3095 3096 /* 3097 * Restoring regulatory settings involves ingoring any 3098 * possibly stale country IE information and user regulatory 3099 * settings if so desired, this includes any beacon hints 3100 * learned as we could have traveled outside to another country 3101 * after disconnection. To restore regulatory settings we do 3102 * exactly what we did at bootup: 3103 * 3104 * - send a core regulatory hint 3105 * - send a user regulatory hint if applicable 3106 * 3107 * Device drivers that send a regulatory hint for a specific country 3108 * keep their own regulatory domain on wiphy->regd so that does does 3109 * not need to be remembered. 3110 */ 3111 static void restore_regulatory_settings(bool reset_user) 3112 { 3113 char alpha2[2]; 3114 char world_alpha2[2]; 3115 struct reg_beacon *reg_beacon, *btmp; 3116 LIST_HEAD(tmp_reg_req_list); 3117 struct cfg80211_registered_device *rdev; 3118 3119 ASSERT_RTNL(); 3120 3121 /* 3122 * Clear the indoor setting in case that it is not controlled by user 3123 * space, as otherwise there is no guarantee that the device is still 3124 * operating in an indoor environment. 3125 */ 3126 spin_lock(®_indoor_lock); 3127 if (reg_is_indoor && !reg_is_indoor_portid) { 3128 reg_is_indoor = false; 3129 reg_check_channels(); 3130 } 3131 spin_unlock(®_indoor_lock); 3132 3133 reset_regdomains(true, &world_regdom); 3134 restore_alpha2(alpha2, reset_user); 3135 3136 /* 3137 * If there's any pending requests we simply 3138 * stash them to a temporary pending queue and 3139 * add then after we've restored regulatory 3140 * settings. 3141 */ 3142 spin_lock(®_requests_lock); 3143 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3144 spin_unlock(®_requests_lock); 3145 3146 /* Clear beacon hints */ 3147 spin_lock_bh(®_pending_beacons_lock); 3148 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3149 list_del(®_beacon->list); 3150 kfree(reg_beacon); 3151 } 3152 spin_unlock_bh(®_pending_beacons_lock); 3153 3154 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3155 list_del(®_beacon->list); 3156 kfree(reg_beacon); 3157 } 3158 3159 /* First restore to the basic regulatory settings */ 3160 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3161 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3162 3163 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3164 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3165 continue; 3166 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3167 restore_custom_reg_settings(&rdev->wiphy); 3168 } 3169 3170 regulatory_hint_core(world_alpha2); 3171 3172 /* 3173 * This restores the ieee80211_regdom module parameter 3174 * preference or the last user requested regulatory 3175 * settings, user regulatory settings takes precedence. 3176 */ 3177 if (is_an_alpha2(alpha2)) 3178 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3179 3180 spin_lock(®_requests_lock); 3181 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3182 spin_unlock(®_requests_lock); 3183 3184 pr_debug("Kicking the queue\n"); 3185 3186 schedule_work(®_work); 3187 } 3188 3189 void regulatory_hint_disconnect(void) 3190 { 3191 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3192 restore_regulatory_settings(false); 3193 } 3194 3195 static bool freq_is_chan_12_13_14(u16 freq) 3196 { 3197 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3198 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3199 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3200 return true; 3201 return false; 3202 } 3203 3204 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3205 { 3206 struct reg_beacon *pending_beacon; 3207 3208 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3209 if (beacon_chan->center_freq == 3210 pending_beacon->chan.center_freq) 3211 return true; 3212 return false; 3213 } 3214 3215 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3216 struct ieee80211_channel *beacon_chan, 3217 gfp_t gfp) 3218 { 3219 struct reg_beacon *reg_beacon; 3220 bool processing; 3221 3222 if (beacon_chan->beacon_found || 3223 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3224 (beacon_chan->band == NL80211_BAND_2GHZ && 3225 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3226 return 0; 3227 3228 spin_lock_bh(®_pending_beacons_lock); 3229 processing = pending_reg_beacon(beacon_chan); 3230 spin_unlock_bh(®_pending_beacons_lock); 3231 3232 if (processing) 3233 return 0; 3234 3235 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3236 if (!reg_beacon) 3237 return -ENOMEM; 3238 3239 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 3240 beacon_chan->center_freq, 3241 ieee80211_frequency_to_channel(beacon_chan->center_freq), 3242 wiphy_name(wiphy)); 3243 3244 memcpy(®_beacon->chan, beacon_chan, 3245 sizeof(struct ieee80211_channel)); 3246 3247 /* 3248 * Since we can be called from BH or and non-BH context 3249 * we must use spin_lock_bh() 3250 */ 3251 spin_lock_bh(®_pending_beacons_lock); 3252 list_add_tail(®_beacon->list, ®_pending_beacons); 3253 spin_unlock_bh(®_pending_beacons_lock); 3254 3255 schedule_work(®_work); 3256 3257 return 0; 3258 } 3259 3260 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3261 { 3262 unsigned int i; 3263 const struct ieee80211_reg_rule *reg_rule = NULL; 3264 const struct ieee80211_freq_range *freq_range = NULL; 3265 const struct ieee80211_power_rule *power_rule = NULL; 3266 char bw[32], cac_time[32]; 3267 3268 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3269 3270 for (i = 0; i < rd->n_reg_rules; i++) { 3271 reg_rule = &rd->reg_rules[i]; 3272 freq_range = ®_rule->freq_range; 3273 power_rule = ®_rule->power_rule; 3274 3275 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3276 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 3277 freq_range->max_bandwidth_khz, 3278 reg_get_max_bandwidth(rd, reg_rule)); 3279 else 3280 snprintf(bw, sizeof(bw), "%d KHz", 3281 freq_range->max_bandwidth_khz); 3282 3283 if (reg_rule->flags & NL80211_RRF_DFS) 3284 scnprintf(cac_time, sizeof(cac_time), "%u s", 3285 reg_rule->dfs_cac_ms/1000); 3286 else 3287 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3288 3289 3290 /* 3291 * There may not be documentation for max antenna gain 3292 * in certain regions 3293 */ 3294 if (power_rule->max_antenna_gain) 3295 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3296 freq_range->start_freq_khz, 3297 freq_range->end_freq_khz, 3298 bw, 3299 power_rule->max_antenna_gain, 3300 power_rule->max_eirp, 3301 cac_time); 3302 else 3303 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3304 freq_range->start_freq_khz, 3305 freq_range->end_freq_khz, 3306 bw, 3307 power_rule->max_eirp, 3308 cac_time); 3309 } 3310 } 3311 3312 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3313 { 3314 switch (dfs_region) { 3315 case NL80211_DFS_UNSET: 3316 case NL80211_DFS_FCC: 3317 case NL80211_DFS_ETSI: 3318 case NL80211_DFS_JP: 3319 return true; 3320 default: 3321 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3322 return false; 3323 } 3324 } 3325 3326 static void print_regdomain(const struct ieee80211_regdomain *rd) 3327 { 3328 struct regulatory_request *lr = get_last_request(); 3329 3330 if (is_intersected_alpha2(rd->alpha2)) { 3331 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3332 struct cfg80211_registered_device *rdev; 3333 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3334 if (rdev) { 3335 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3336 rdev->country_ie_alpha2[0], 3337 rdev->country_ie_alpha2[1]); 3338 } else 3339 pr_debug("Current regulatory domain intersected:\n"); 3340 } else 3341 pr_debug("Current regulatory domain intersected:\n"); 3342 } else if (is_world_regdom(rd->alpha2)) { 3343 pr_debug("World regulatory domain updated:\n"); 3344 } else { 3345 if (is_unknown_alpha2(rd->alpha2)) 3346 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3347 else { 3348 if (reg_request_cell_base(lr)) 3349 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3350 rd->alpha2[0], rd->alpha2[1]); 3351 else 3352 pr_debug("Regulatory domain changed to country: %c%c\n", 3353 rd->alpha2[0], rd->alpha2[1]); 3354 } 3355 } 3356 3357 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3358 print_rd_rules(rd); 3359 } 3360 3361 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3362 { 3363 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3364 print_rd_rules(rd); 3365 } 3366 3367 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3368 { 3369 if (!is_world_regdom(rd->alpha2)) 3370 return -EINVAL; 3371 update_world_regdomain(rd); 3372 return 0; 3373 } 3374 3375 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3376 struct regulatory_request *user_request) 3377 { 3378 const struct ieee80211_regdomain *intersected_rd = NULL; 3379 3380 if (!regdom_changes(rd->alpha2)) 3381 return -EALREADY; 3382 3383 if (!is_valid_rd(rd)) { 3384 pr_err("Invalid regulatory domain detected: %c%c\n", 3385 rd->alpha2[0], rd->alpha2[1]); 3386 print_regdomain_info(rd); 3387 return -EINVAL; 3388 } 3389 3390 if (!user_request->intersect) { 3391 reset_regdomains(false, rd); 3392 return 0; 3393 } 3394 3395 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3396 if (!intersected_rd) 3397 return -EINVAL; 3398 3399 kfree(rd); 3400 rd = NULL; 3401 reset_regdomains(false, intersected_rd); 3402 3403 return 0; 3404 } 3405 3406 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3407 struct regulatory_request *driver_request) 3408 { 3409 const struct ieee80211_regdomain *regd; 3410 const struct ieee80211_regdomain *intersected_rd = NULL; 3411 const struct ieee80211_regdomain *tmp; 3412 struct wiphy *request_wiphy; 3413 3414 if (is_world_regdom(rd->alpha2)) 3415 return -EINVAL; 3416 3417 if (!regdom_changes(rd->alpha2)) 3418 return -EALREADY; 3419 3420 if (!is_valid_rd(rd)) { 3421 pr_err("Invalid regulatory domain detected: %c%c\n", 3422 rd->alpha2[0], rd->alpha2[1]); 3423 print_regdomain_info(rd); 3424 return -EINVAL; 3425 } 3426 3427 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3428 if (!request_wiphy) 3429 return -ENODEV; 3430 3431 if (!driver_request->intersect) { 3432 if (request_wiphy->regd) 3433 return -EALREADY; 3434 3435 regd = reg_copy_regd(rd); 3436 if (IS_ERR(regd)) 3437 return PTR_ERR(regd); 3438 3439 rcu_assign_pointer(request_wiphy->regd, regd); 3440 reset_regdomains(false, rd); 3441 return 0; 3442 } 3443 3444 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3445 if (!intersected_rd) 3446 return -EINVAL; 3447 3448 /* 3449 * We can trash what CRDA provided now. 3450 * However if a driver requested this specific regulatory 3451 * domain we keep it for its private use 3452 */ 3453 tmp = get_wiphy_regdom(request_wiphy); 3454 rcu_assign_pointer(request_wiphy->regd, rd); 3455 rcu_free_regdom(tmp); 3456 3457 rd = NULL; 3458 3459 reset_regdomains(false, intersected_rd); 3460 3461 return 0; 3462 } 3463 3464 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3465 struct regulatory_request *country_ie_request) 3466 { 3467 struct wiphy *request_wiphy; 3468 3469 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3470 !is_unknown_alpha2(rd->alpha2)) 3471 return -EINVAL; 3472 3473 /* 3474 * Lets only bother proceeding on the same alpha2 if the current 3475 * rd is non static (it means CRDA was present and was used last) 3476 * and the pending request came in from a country IE 3477 */ 3478 3479 if (!is_valid_rd(rd)) { 3480 pr_err("Invalid regulatory domain detected: %c%c\n", 3481 rd->alpha2[0], rd->alpha2[1]); 3482 print_regdomain_info(rd); 3483 return -EINVAL; 3484 } 3485 3486 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3487 if (!request_wiphy) 3488 return -ENODEV; 3489 3490 if (country_ie_request->intersect) 3491 return -EINVAL; 3492 3493 reset_regdomains(false, rd); 3494 return 0; 3495 } 3496 3497 /* 3498 * Use this call to set the current regulatory domain. Conflicts with 3499 * multiple drivers can be ironed out later. Caller must've already 3500 * kmalloc'd the rd structure. 3501 */ 3502 int set_regdom(const struct ieee80211_regdomain *rd, 3503 enum ieee80211_regd_source regd_src) 3504 { 3505 struct regulatory_request *lr; 3506 bool user_reset = false; 3507 int r; 3508 3509 if (!reg_is_valid_request(rd->alpha2)) { 3510 kfree(rd); 3511 return -EINVAL; 3512 } 3513 3514 if (regd_src == REGD_SOURCE_CRDA) 3515 reset_crda_timeouts(); 3516 3517 lr = get_last_request(); 3518 3519 /* Note that this doesn't update the wiphys, this is done below */ 3520 switch (lr->initiator) { 3521 case NL80211_REGDOM_SET_BY_CORE: 3522 r = reg_set_rd_core(rd); 3523 break; 3524 case NL80211_REGDOM_SET_BY_USER: 3525 r = reg_set_rd_user(rd, lr); 3526 user_reset = true; 3527 break; 3528 case NL80211_REGDOM_SET_BY_DRIVER: 3529 r = reg_set_rd_driver(rd, lr); 3530 break; 3531 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3532 r = reg_set_rd_country_ie(rd, lr); 3533 break; 3534 default: 3535 WARN(1, "invalid initiator %d\n", lr->initiator); 3536 kfree(rd); 3537 return -EINVAL; 3538 } 3539 3540 if (r) { 3541 switch (r) { 3542 case -EALREADY: 3543 reg_set_request_processed(); 3544 break; 3545 default: 3546 /* Back to world regulatory in case of errors */ 3547 restore_regulatory_settings(user_reset); 3548 } 3549 3550 kfree(rd); 3551 return r; 3552 } 3553 3554 /* This would make this whole thing pointless */ 3555 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3556 return -EINVAL; 3557 3558 /* update all wiphys now with the new established regulatory domain */ 3559 update_all_wiphy_regulatory(lr->initiator); 3560 3561 print_regdomain(get_cfg80211_regdom()); 3562 3563 nl80211_send_reg_change_event(lr); 3564 3565 reg_set_request_processed(); 3566 3567 return 0; 3568 } 3569 3570 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3571 struct ieee80211_regdomain *rd) 3572 { 3573 const struct ieee80211_regdomain *regd; 3574 const struct ieee80211_regdomain *prev_regd; 3575 struct cfg80211_registered_device *rdev; 3576 3577 if (WARN_ON(!wiphy || !rd)) 3578 return -EINVAL; 3579 3580 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3581 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3582 return -EPERM; 3583 3584 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3585 print_regdomain_info(rd); 3586 return -EINVAL; 3587 } 3588 3589 regd = reg_copy_regd(rd); 3590 if (IS_ERR(regd)) 3591 return PTR_ERR(regd); 3592 3593 rdev = wiphy_to_rdev(wiphy); 3594 3595 spin_lock(®_requests_lock); 3596 prev_regd = rdev->requested_regd; 3597 rdev->requested_regd = regd; 3598 spin_unlock(®_requests_lock); 3599 3600 kfree(prev_regd); 3601 return 0; 3602 } 3603 3604 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3605 struct ieee80211_regdomain *rd) 3606 { 3607 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3608 3609 if (ret) 3610 return ret; 3611 3612 schedule_work(®_work); 3613 return 0; 3614 } 3615 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3616 3617 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3618 struct ieee80211_regdomain *rd) 3619 { 3620 int ret; 3621 3622 ASSERT_RTNL(); 3623 3624 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3625 if (ret) 3626 return ret; 3627 3628 /* process the request immediately */ 3629 reg_process_self_managed_hints(); 3630 return 0; 3631 } 3632 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3633 3634 void wiphy_regulatory_register(struct wiphy *wiphy) 3635 { 3636 struct regulatory_request *lr = get_last_request(); 3637 3638 /* self-managed devices ignore beacon hints and country IE */ 3639 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 3640 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3641 REGULATORY_COUNTRY_IE_IGNORE; 3642 3643 /* 3644 * The last request may have been received before this 3645 * registration call. Call the driver notifier if 3646 * initiator is USER and user type is CELL_BASE. 3647 */ 3648 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 3649 lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE) 3650 reg_call_notifier(wiphy, lr); 3651 } 3652 3653 if (!reg_dev_ignore_cell_hint(wiphy)) 3654 reg_num_devs_support_basehint++; 3655 3656 wiphy_update_regulatory(wiphy, lr->initiator); 3657 wiphy_all_share_dfs_chan_state(wiphy); 3658 } 3659 3660 void wiphy_regulatory_deregister(struct wiphy *wiphy) 3661 { 3662 struct wiphy *request_wiphy = NULL; 3663 struct regulatory_request *lr; 3664 3665 lr = get_last_request(); 3666 3667 if (!reg_dev_ignore_cell_hint(wiphy)) 3668 reg_num_devs_support_basehint--; 3669 3670 rcu_free_regdom(get_wiphy_regdom(wiphy)); 3671 RCU_INIT_POINTER(wiphy->regd, NULL); 3672 3673 if (lr) 3674 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 3675 3676 if (!request_wiphy || request_wiphy != wiphy) 3677 return; 3678 3679 lr->wiphy_idx = WIPHY_IDX_INVALID; 3680 lr->country_ie_env = ENVIRON_ANY; 3681 } 3682 3683 /* 3684 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for 3685 * UNII band definitions 3686 */ 3687 int cfg80211_get_unii(int freq) 3688 { 3689 /* UNII-1 */ 3690 if (freq >= 5150 && freq <= 5250) 3691 return 0; 3692 3693 /* UNII-2A */ 3694 if (freq > 5250 && freq <= 5350) 3695 return 1; 3696 3697 /* UNII-2B */ 3698 if (freq > 5350 && freq <= 5470) 3699 return 2; 3700 3701 /* UNII-2C */ 3702 if (freq > 5470 && freq <= 5725) 3703 return 3; 3704 3705 /* UNII-3 */ 3706 if (freq > 5725 && freq <= 5825) 3707 return 4; 3708 3709 return -EINVAL; 3710 } 3711 3712 bool regulatory_indoor_allowed(void) 3713 { 3714 return reg_is_indoor; 3715 } 3716 3717 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 3718 { 3719 const struct ieee80211_regdomain *regd = NULL; 3720 const struct ieee80211_regdomain *wiphy_regd = NULL; 3721 bool pre_cac_allowed = false; 3722 3723 rcu_read_lock(); 3724 3725 regd = rcu_dereference(cfg80211_regdomain); 3726 wiphy_regd = rcu_dereference(wiphy->regd); 3727 if (!wiphy_regd) { 3728 if (regd->dfs_region == NL80211_DFS_ETSI) 3729 pre_cac_allowed = true; 3730 3731 rcu_read_unlock(); 3732 3733 return pre_cac_allowed; 3734 } 3735 3736 if (regd->dfs_region == wiphy_regd->dfs_region && 3737 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 3738 pre_cac_allowed = true; 3739 3740 rcu_read_unlock(); 3741 3742 return pre_cac_allowed; 3743 } 3744 3745 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 3746 struct cfg80211_chan_def *chandef, 3747 enum nl80211_dfs_state dfs_state, 3748 enum nl80211_radar_event event) 3749 { 3750 struct cfg80211_registered_device *rdev; 3751 3752 ASSERT_RTNL(); 3753 3754 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 3755 return; 3756 3757 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3758 if (wiphy == &rdev->wiphy) 3759 continue; 3760 3761 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 3762 continue; 3763 3764 if (!ieee80211_get_channel(&rdev->wiphy, 3765 chandef->chan->center_freq)) 3766 continue; 3767 3768 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 3769 3770 if (event == NL80211_RADAR_DETECTED || 3771 event == NL80211_RADAR_CAC_FINISHED) 3772 cfg80211_sched_dfs_chan_update(rdev); 3773 3774 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 3775 } 3776 } 3777 3778 static int __init regulatory_init_db(void) 3779 { 3780 int err; 3781 3782 err = load_builtin_regdb_keys(); 3783 if (err) 3784 return err; 3785 3786 /* We always try to get an update for the static regdomain */ 3787 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 3788 if (err) { 3789 if (err == -ENOMEM) { 3790 platform_device_unregister(reg_pdev); 3791 return err; 3792 } 3793 /* 3794 * N.B. kobject_uevent_env() can fail mainly for when we're out 3795 * memory which is handled and propagated appropriately above 3796 * but it can also fail during a netlink_broadcast() or during 3797 * early boot for call_usermodehelper(). For now treat these 3798 * errors as non-fatal. 3799 */ 3800 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 3801 } 3802 3803 /* 3804 * Finally, if the user set the module parameter treat it 3805 * as a user hint. 3806 */ 3807 if (!is_world_regdom(ieee80211_regdom)) 3808 regulatory_hint_user(ieee80211_regdom, 3809 NL80211_USER_REG_HINT_USER); 3810 3811 return 0; 3812 } 3813 #ifndef MODULE 3814 late_initcall(regulatory_init_db); 3815 #endif 3816 3817 int __init regulatory_init(void) 3818 { 3819 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 3820 if (IS_ERR(reg_pdev)) 3821 return PTR_ERR(reg_pdev); 3822 3823 spin_lock_init(®_requests_lock); 3824 spin_lock_init(®_pending_beacons_lock); 3825 spin_lock_init(®_indoor_lock); 3826 3827 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 3828 3829 user_alpha2[0] = '9'; 3830 user_alpha2[1] = '7'; 3831 3832 #ifdef MODULE 3833 return regulatory_init_db(); 3834 #else 3835 return 0; 3836 #endif 3837 } 3838 3839 void regulatory_exit(void) 3840 { 3841 struct regulatory_request *reg_request, *tmp; 3842 struct reg_beacon *reg_beacon, *btmp; 3843 3844 cancel_work_sync(®_work); 3845 cancel_crda_timeout_sync(); 3846 cancel_delayed_work_sync(®_check_chans); 3847 3848 /* Lock to suppress warnings */ 3849 rtnl_lock(); 3850 reset_regdomains(true, NULL); 3851 rtnl_unlock(); 3852 3853 dev_set_uevent_suppress(®_pdev->dev, true); 3854 3855 platform_device_unregister(reg_pdev); 3856 3857 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3858 list_del(®_beacon->list); 3859 kfree(reg_beacon); 3860 } 3861 3862 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3863 list_del(®_beacon->list); 3864 kfree(reg_beacon); 3865 } 3866 3867 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 3868 list_del(®_request->list); 3869 kfree(reg_request); 3870 } 3871 3872 if (!IS_ERR_OR_NULL(regdb)) 3873 kfree(regdb); 3874 3875 free_regdb_keyring(); 3876 } 3877