xref: /linux/net/wireless/reg.c (revision bf80eef2212a1e8451df13b52533f4bc31bb4f8e)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2022 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137 
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140 	return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142 
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 	return rcu_dereference_check(wiphy->regd,
151 				     lockdep_is_held(&wiphy->mtx) ||
152 				     lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155 
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158 	switch (dfs_region) {
159 	case NL80211_DFS_UNSET:
160 		return "unset";
161 	case NL80211_DFS_FCC:
162 		return "FCC";
163 	case NL80211_DFS_ETSI:
164 		return "ETSI";
165 	case NL80211_DFS_JP:
166 		return "JP";
167 	}
168 	return "Unknown";
169 }
170 
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173 	const struct ieee80211_regdomain *regd = NULL;
174 	const struct ieee80211_regdomain *wiphy_regd = NULL;
175 	enum nl80211_dfs_regions dfs_region;
176 
177 	rcu_read_lock();
178 	regd = get_cfg80211_regdom();
179 	dfs_region = regd->dfs_region;
180 
181 	if (!wiphy)
182 		goto out;
183 
184 	wiphy_regd = get_wiphy_regdom(wiphy);
185 	if (!wiphy_regd)
186 		goto out;
187 
188 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 		dfs_region = wiphy_regd->dfs_region;
190 		goto out;
191 	}
192 
193 	if (wiphy_regd->dfs_region == regd->dfs_region)
194 		goto out;
195 
196 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 		 dev_name(&wiphy->dev),
198 		 reg_dfs_region_str(wiphy_regd->dfs_region),
199 		 reg_dfs_region_str(regd->dfs_region));
200 
201 out:
202 	rcu_read_unlock();
203 
204 	return dfs_region;
205 }
206 
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209 	if (!r)
210 		return;
211 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213 
214 static struct regulatory_request *get_last_request(void)
215 {
216 	return rcu_dereference_rtnl(last_request);
217 }
218 
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222 
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226 
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229 
230 struct reg_beacon {
231 	struct list_head list;
232 	struct ieee80211_channel chan;
233 };
234 
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237 
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240 
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243 	.n_reg_rules = 8,
244 	.alpha2 =  "00",
245 	.reg_rules = {
246 		/* IEEE 802.11b/g, channels 1..11 */
247 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 		/* IEEE 802.11b/g, channels 12..13. */
249 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 		/* IEEE 802.11 channel 14 - Only JP enables
252 		 * this and for 802.11b only */
253 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 			NL80211_RRF_NO_IR |
255 			NL80211_RRF_NO_OFDM),
256 		/* IEEE 802.11a, channel 36..48 */
257 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260 
261 		/* IEEE 802.11a, channel 52..64 - DFS required */
262 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 			NL80211_RRF_NO_IR |
264 			NL80211_RRF_AUTO_BW |
265 			NL80211_RRF_DFS),
266 
267 		/* IEEE 802.11a, channel 100..144 - DFS required */
268 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 			NL80211_RRF_NO_IR |
270 			NL80211_RRF_DFS),
271 
272 		/* IEEE 802.11a, channel 149..165 */
273 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 			NL80211_RRF_NO_IR),
275 
276 		/* IEEE 802.11ad (60GHz), channels 1..3 */
277 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 	}
279 };
280 
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 	&world_regdom;
284 
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288 
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291 
292 static void reg_free_request(struct regulatory_request *request)
293 {
294 	if (request == &core_request_world)
295 		return;
296 
297 	if (request != get_last_request())
298 		kfree(request);
299 }
300 
301 static void reg_free_last_request(void)
302 {
303 	struct regulatory_request *lr = get_last_request();
304 
305 	if (lr != &core_request_world && lr)
306 		kfree_rcu(lr, rcu_head);
307 }
308 
309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311 	struct regulatory_request *lr;
312 
313 	lr = get_last_request();
314 	if (lr == request)
315 		return;
316 
317 	reg_free_last_request();
318 	rcu_assign_pointer(last_request, request);
319 }
320 
321 static void reset_regdomains(bool full_reset,
322 			     const struct ieee80211_regdomain *new_regdom)
323 {
324 	const struct ieee80211_regdomain *r;
325 
326 	ASSERT_RTNL();
327 
328 	r = get_cfg80211_regdom();
329 
330 	/* avoid freeing static information or freeing something twice */
331 	if (r == cfg80211_world_regdom)
332 		r = NULL;
333 	if (cfg80211_world_regdom == &world_regdom)
334 		cfg80211_world_regdom = NULL;
335 	if (r == &world_regdom)
336 		r = NULL;
337 
338 	rcu_free_regdom(r);
339 	rcu_free_regdom(cfg80211_world_regdom);
340 
341 	cfg80211_world_regdom = &world_regdom;
342 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343 
344 	if (!full_reset)
345 		return;
346 
347 	reg_update_last_request(&core_request_world);
348 }
349 
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356 	struct regulatory_request *lr;
357 
358 	lr = get_last_request();
359 
360 	WARN_ON(!lr);
361 
362 	reset_regdomains(false, rd);
363 
364 	cfg80211_world_regdom = rd;
365 }
366 
367 bool is_world_regdom(const char *alpha2)
368 {
369 	if (!alpha2)
370 		return false;
371 	return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373 
374 static bool is_alpha2_set(const char *alpha2)
375 {
376 	if (!alpha2)
377 		return false;
378 	return alpha2[0] && alpha2[1];
379 }
380 
381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383 	if (!alpha2)
384 		return false;
385 	/*
386 	 * Special case where regulatory domain was built by driver
387 	 * but a specific alpha2 cannot be determined
388 	 */
389 	return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391 
392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394 	if (!alpha2)
395 		return false;
396 	/*
397 	 * Special case where regulatory domain is the
398 	 * result of an intersection between two regulatory domain
399 	 * structures
400 	 */
401 	return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403 
404 static bool is_an_alpha2(const char *alpha2)
405 {
406 	if (!alpha2)
407 		return false;
408 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410 
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413 	if (!alpha2_x || !alpha2_y)
414 		return false;
415 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417 
418 static bool regdom_changes(const char *alpha2)
419 {
420 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421 
422 	if (!r)
423 		return true;
424 	return !alpha2_equal(r->alpha2, alpha2);
425 }
426 
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
432 static bool is_user_regdom_saved(void)
433 {
434 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 		return false;
436 
437 	/* This would indicate a mistake on the design */
438 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 		 "Unexpected user alpha2: %c%c\n",
440 		 user_alpha2[0], user_alpha2[1]))
441 		return false;
442 
443 	return true;
444 }
445 
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449 	struct ieee80211_regdomain *regd;
450 	unsigned int i;
451 
452 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 		       GFP_KERNEL);
454 	if (!regd)
455 		return ERR_PTR(-ENOMEM);
456 
457 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458 
459 	for (i = 0; i < src_regd->n_reg_rules; i++)
460 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461 		       sizeof(struct ieee80211_reg_rule));
462 
463 	return regd;
464 }
465 
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468 	ASSERT_RTNL();
469 
470 	if (!IS_ERR(cfg80211_user_regdom))
471 		kfree(cfg80211_user_regdom);
472 	cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474 
475 struct reg_regdb_apply_request {
476 	struct list_head list;
477 	const struct ieee80211_regdomain *regdom;
478 };
479 
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482 
483 static void reg_regdb_apply(struct work_struct *work)
484 {
485 	struct reg_regdb_apply_request *request;
486 
487 	rtnl_lock();
488 
489 	mutex_lock(&reg_regdb_apply_mutex);
490 	while (!list_empty(&reg_regdb_apply_list)) {
491 		request = list_first_entry(&reg_regdb_apply_list,
492 					   struct reg_regdb_apply_request,
493 					   list);
494 		list_del(&request->list);
495 
496 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 		kfree(request);
498 	}
499 	mutex_unlock(&reg_regdb_apply_mutex);
500 
501 	rtnl_unlock();
502 }
503 
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505 
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508 	struct reg_regdb_apply_request *request;
509 
510 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 	if (!request) {
512 		kfree(regdom);
513 		return -ENOMEM;
514 	}
515 
516 	request->regdom = regdom;
517 
518 	mutex_lock(&reg_regdb_apply_mutex);
519 	list_add_tail(&request->list, &reg_regdb_apply_list);
520 	mutex_unlock(&reg_regdb_apply_mutex);
521 
522 	schedule_work(&reg_regdb_work);
523 	return 0;
524 }
525 
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529 
530 static u32 reg_crda_timeouts;
531 
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534 
535 static void crda_timeout_work(struct work_struct *work)
536 {
537 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 	rtnl_lock();
539 	reg_crda_timeouts++;
540 	restore_regulatory_settings(true, false);
541 	rtnl_unlock();
542 }
543 
544 static void cancel_crda_timeout(void)
545 {
546 	cancel_delayed_work(&crda_timeout);
547 }
548 
549 static void cancel_crda_timeout_sync(void)
550 {
551 	cancel_delayed_work_sync(&crda_timeout);
552 }
553 
554 static void reset_crda_timeouts(void)
555 {
556 	reg_crda_timeouts = 0;
557 }
558 
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565 	char country[12];
566 	char *env[] = { country, NULL };
567 	int ret;
568 
569 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 		 alpha2[0], alpha2[1]);
571 
572 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 		return -EINVAL;
575 	}
576 
577 	if (!is_world_regdom((char *) alpha2))
578 		pr_debug("Calling CRDA for country: %c%c\n",
579 			 alpha2[0], alpha2[1]);
580 	else
581 		pr_debug("Calling CRDA to update world regulatory domain\n");
582 
583 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584 	if (ret)
585 		return ret;
586 
587 	queue_delayed_work(system_power_efficient_wq,
588 			   &crda_timeout, msecs_to_jiffies(3142));
589 	return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597 	return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600 
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603 
604 struct fwdb_country {
605 	u8 alpha2[2];
606 	__be16 coll_ptr;
607 	/* this struct cannot be extended */
608 } __packed __aligned(4);
609 
610 struct fwdb_collection {
611 	u8 len;
612 	u8 n_rules;
613 	u8 dfs_region;
614 	/* no optional data yet */
615 	/* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617 
618 enum fwdb_flags {
619 	FWDB_FLAG_NO_OFDM	= BIT(0),
620 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
621 	FWDB_FLAG_DFS		= BIT(2),
622 	FWDB_FLAG_NO_IR		= BIT(3),
623 	FWDB_FLAG_AUTO_BW	= BIT(4),
624 };
625 
626 struct fwdb_wmm_ac {
627 	u8 ecw;
628 	u8 aifsn;
629 	__be16 cot;
630 } __packed;
631 
632 struct fwdb_wmm_rule {
633 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636 
637 struct fwdb_rule {
638 	u8 len;
639 	u8 flags;
640 	__be16 max_eirp;
641 	__be32 start, end, max_bw;
642 	/* start of optional data */
643 	__be16 cac_timeout;
644 	__be16 wmm_ptr;
645 } __packed __aligned(4);
646 
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649 
650 struct fwdb_header {
651 	__be32 magic;
652 	__be32 version;
653 	struct fwdb_country country[];
654 } __packed __aligned(4);
655 
656 static int ecw2cw(int ecw)
657 {
658 	return (1 << ecw) - 1;
659 }
660 
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 	int i;
665 
666 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 		u8 aifsn = ac[i].aifsn;
670 
671 		if (cw_min >= cw_max)
672 			return false;
673 
674 		if (aifsn < 1)
675 			return false;
676 	}
677 
678 	return true;
679 }
680 
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684 
685 	if ((u8 *)rule + sizeof(rule->len) > data + size)
686 		return false;
687 
688 	/* mandatory fields */
689 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 		return false;
691 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 		struct fwdb_wmm_rule *wmm;
694 
695 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 			return false;
697 
698 		wmm = (void *)(data + wmm_ptr);
699 
700 		if (!valid_wmm(wmm))
701 			return false;
702 	}
703 	return true;
704 }
705 
706 static bool valid_country(const u8 *data, unsigned int size,
707 			  const struct fwdb_country *country)
708 {
709 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 	struct fwdb_collection *coll = (void *)(data + ptr);
711 	__be16 *rules_ptr;
712 	unsigned int i;
713 
714 	/* make sure we can read len/n_rules */
715 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 		return false;
717 
718 	/* make sure base struct and all rules fit */
719 	if ((u8 *)coll + ALIGN(coll->len, 2) +
720 	    (coll->n_rules * 2) > data + size)
721 		return false;
722 
723 	/* mandatory fields must exist */
724 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 		return false;
726 
727 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728 
729 	for (i = 0; i < coll->n_rules; i++) {
730 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731 
732 		if (!valid_rule(data, size, rule_ptr))
733 			return false;
734 	}
735 
736 	return true;
737 }
738 
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 static struct key *builtin_regdb_keys;
741 
742 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
743 {
744 	const u8 *end = p + buflen;
745 	size_t plen;
746 	key_ref_t key;
747 
748 	while (p < end) {
749 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
750 		 * than 256 bytes in size.
751 		 */
752 		if (end - p < 4)
753 			goto dodgy_cert;
754 		if (p[0] != 0x30 &&
755 		    p[1] != 0x82)
756 			goto dodgy_cert;
757 		plen = (p[2] << 8) | p[3];
758 		plen += 4;
759 		if (plen > end - p)
760 			goto dodgy_cert;
761 
762 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
763 					   "asymmetric", NULL, p, plen,
764 					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 					    KEY_USR_VIEW | KEY_USR_READ),
766 					   KEY_ALLOC_NOT_IN_QUOTA |
767 					   KEY_ALLOC_BUILT_IN |
768 					   KEY_ALLOC_BYPASS_RESTRICTION);
769 		if (IS_ERR(key)) {
770 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
771 			       PTR_ERR(key));
772 		} else {
773 			pr_notice("Loaded X.509 cert '%s'\n",
774 				  key_ref_to_ptr(key)->description);
775 			key_ref_put(key);
776 		}
777 		p += plen;
778 	}
779 
780 	return;
781 
782 dodgy_cert:
783 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
784 }
785 
786 static int __init load_builtin_regdb_keys(void)
787 {
788 	builtin_regdb_keys =
789 		keyring_alloc(".builtin_regdb_keys",
790 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
791 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
792 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
793 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
794 	if (IS_ERR(builtin_regdb_keys))
795 		return PTR_ERR(builtin_regdb_keys);
796 
797 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
798 
799 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
800 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
801 #endif
802 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
803 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
804 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
805 #endif
806 
807 	return 0;
808 }
809 
810 MODULE_FIRMWARE("regulatory.db.p7s");
811 
812 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
813 {
814 	const struct firmware *sig;
815 	bool result;
816 
817 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
818 		return false;
819 
820 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
821 					builtin_regdb_keys,
822 					VERIFYING_UNSPECIFIED_SIGNATURE,
823 					NULL, NULL) == 0;
824 
825 	release_firmware(sig);
826 
827 	return result;
828 }
829 
830 static void free_regdb_keyring(void)
831 {
832 	key_put(builtin_regdb_keys);
833 }
834 #else
835 static int load_builtin_regdb_keys(void)
836 {
837 	return 0;
838 }
839 
840 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
841 {
842 	return true;
843 }
844 
845 static void free_regdb_keyring(void)
846 {
847 }
848 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
849 
850 static bool valid_regdb(const u8 *data, unsigned int size)
851 {
852 	const struct fwdb_header *hdr = (void *)data;
853 	const struct fwdb_country *country;
854 
855 	if (size < sizeof(*hdr))
856 		return false;
857 
858 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
859 		return false;
860 
861 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
862 		return false;
863 
864 	if (!regdb_has_valid_signature(data, size))
865 		return false;
866 
867 	country = &hdr->country[0];
868 	while ((u8 *)(country + 1) <= data + size) {
869 		if (!country->coll_ptr)
870 			break;
871 		if (!valid_country(data, size, country))
872 			return false;
873 		country++;
874 	}
875 
876 	return true;
877 }
878 
879 static void set_wmm_rule(const struct fwdb_header *db,
880 			 const struct fwdb_country *country,
881 			 const struct fwdb_rule *rule,
882 			 struct ieee80211_reg_rule *rrule)
883 {
884 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
885 	struct fwdb_wmm_rule *wmm;
886 	unsigned int i, wmm_ptr;
887 
888 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
889 	wmm = (void *)((u8 *)db + wmm_ptr);
890 
891 	if (!valid_wmm(wmm)) {
892 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
893 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
894 		       country->alpha2[0], country->alpha2[1]);
895 		return;
896 	}
897 
898 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
899 		wmm_rule->client[i].cw_min =
900 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
901 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
902 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
903 		wmm_rule->client[i].cot =
904 			1000 * be16_to_cpu(wmm->client[i].cot);
905 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
906 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
907 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
908 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
909 	}
910 
911 	rrule->has_wmm = true;
912 }
913 
914 static int __regdb_query_wmm(const struct fwdb_header *db,
915 			     const struct fwdb_country *country, int freq,
916 			     struct ieee80211_reg_rule *rrule)
917 {
918 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
919 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
920 	int i;
921 
922 	for (i = 0; i < coll->n_rules; i++) {
923 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
924 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
925 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
926 
927 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
928 			continue;
929 
930 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
931 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
932 			set_wmm_rule(db, country, rule, rrule);
933 			return 0;
934 		}
935 	}
936 
937 	return -ENODATA;
938 }
939 
940 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
941 {
942 	const struct fwdb_header *hdr = regdb;
943 	const struct fwdb_country *country;
944 
945 	if (!regdb)
946 		return -ENODATA;
947 
948 	if (IS_ERR(regdb))
949 		return PTR_ERR(regdb);
950 
951 	country = &hdr->country[0];
952 	while (country->coll_ptr) {
953 		if (alpha2_equal(alpha2, country->alpha2))
954 			return __regdb_query_wmm(regdb, country, freq, rule);
955 
956 		country++;
957 	}
958 
959 	return -ENODATA;
960 }
961 EXPORT_SYMBOL(reg_query_regdb_wmm);
962 
963 static int regdb_query_country(const struct fwdb_header *db,
964 			       const struct fwdb_country *country)
965 {
966 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
967 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
968 	struct ieee80211_regdomain *regdom;
969 	unsigned int i;
970 
971 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
972 			 GFP_KERNEL);
973 	if (!regdom)
974 		return -ENOMEM;
975 
976 	regdom->n_reg_rules = coll->n_rules;
977 	regdom->alpha2[0] = country->alpha2[0];
978 	regdom->alpha2[1] = country->alpha2[1];
979 	regdom->dfs_region = coll->dfs_region;
980 
981 	for (i = 0; i < regdom->n_reg_rules; i++) {
982 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
983 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
984 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
985 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
986 
987 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
988 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
989 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
990 
991 		rrule->power_rule.max_antenna_gain = 0;
992 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
993 
994 		rrule->flags = 0;
995 		if (rule->flags & FWDB_FLAG_NO_OFDM)
996 			rrule->flags |= NL80211_RRF_NO_OFDM;
997 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
998 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
999 		if (rule->flags & FWDB_FLAG_DFS)
1000 			rrule->flags |= NL80211_RRF_DFS;
1001 		if (rule->flags & FWDB_FLAG_NO_IR)
1002 			rrule->flags |= NL80211_RRF_NO_IR;
1003 		if (rule->flags & FWDB_FLAG_AUTO_BW)
1004 			rrule->flags |= NL80211_RRF_AUTO_BW;
1005 
1006 		rrule->dfs_cac_ms = 0;
1007 
1008 		/* handle optional data */
1009 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1010 			rrule->dfs_cac_ms =
1011 				1000 * be16_to_cpu(rule->cac_timeout);
1012 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1013 			set_wmm_rule(db, country, rule, rrule);
1014 	}
1015 
1016 	return reg_schedule_apply(regdom);
1017 }
1018 
1019 static int query_regdb(const char *alpha2)
1020 {
1021 	const struct fwdb_header *hdr = regdb;
1022 	const struct fwdb_country *country;
1023 
1024 	ASSERT_RTNL();
1025 
1026 	if (IS_ERR(regdb))
1027 		return PTR_ERR(regdb);
1028 
1029 	country = &hdr->country[0];
1030 	while (country->coll_ptr) {
1031 		if (alpha2_equal(alpha2, country->alpha2))
1032 			return regdb_query_country(regdb, country);
1033 		country++;
1034 	}
1035 
1036 	return -ENODATA;
1037 }
1038 
1039 static void regdb_fw_cb(const struct firmware *fw, void *context)
1040 {
1041 	int set_error = 0;
1042 	bool restore = true;
1043 	void *db;
1044 
1045 	if (!fw) {
1046 		pr_info("failed to load regulatory.db\n");
1047 		set_error = -ENODATA;
1048 	} else if (!valid_regdb(fw->data, fw->size)) {
1049 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1050 		set_error = -EINVAL;
1051 	}
1052 
1053 	rtnl_lock();
1054 	if (regdb && !IS_ERR(regdb)) {
1055 		/* negative case - a bug
1056 		 * positive case - can happen due to race in case of multiple cb's in
1057 		 * queue, due to usage of asynchronous callback
1058 		 *
1059 		 * Either case, just restore and free new db.
1060 		 */
1061 	} else if (set_error) {
1062 		regdb = ERR_PTR(set_error);
1063 	} else if (fw) {
1064 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1065 		if (db) {
1066 			regdb = db;
1067 			restore = context && query_regdb(context);
1068 		} else {
1069 			restore = true;
1070 		}
1071 	}
1072 
1073 	if (restore)
1074 		restore_regulatory_settings(true, false);
1075 
1076 	rtnl_unlock();
1077 
1078 	kfree(context);
1079 
1080 	release_firmware(fw);
1081 }
1082 
1083 MODULE_FIRMWARE("regulatory.db");
1084 
1085 static int query_regdb_file(const char *alpha2)
1086 {
1087 	ASSERT_RTNL();
1088 
1089 	if (regdb)
1090 		return query_regdb(alpha2);
1091 
1092 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1093 	if (!alpha2)
1094 		return -ENOMEM;
1095 
1096 	return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1097 				       &reg_pdev->dev, GFP_KERNEL,
1098 				       (void *)alpha2, regdb_fw_cb);
1099 }
1100 
1101 int reg_reload_regdb(void)
1102 {
1103 	const struct firmware *fw;
1104 	void *db;
1105 	int err;
1106 	const struct ieee80211_regdomain *current_regdomain;
1107 	struct regulatory_request *request;
1108 
1109 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1110 	if (err)
1111 		return err;
1112 
1113 	if (!valid_regdb(fw->data, fw->size)) {
1114 		err = -ENODATA;
1115 		goto out;
1116 	}
1117 
1118 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1119 	if (!db) {
1120 		err = -ENOMEM;
1121 		goto out;
1122 	}
1123 
1124 	rtnl_lock();
1125 	if (!IS_ERR_OR_NULL(regdb))
1126 		kfree(regdb);
1127 	regdb = db;
1128 
1129 	/* reset regulatory domain */
1130 	current_regdomain = get_cfg80211_regdom();
1131 
1132 	request = kzalloc(sizeof(*request), GFP_KERNEL);
1133 	if (!request) {
1134 		err = -ENOMEM;
1135 		goto out_unlock;
1136 	}
1137 
1138 	request->wiphy_idx = WIPHY_IDX_INVALID;
1139 	request->alpha2[0] = current_regdomain->alpha2[0];
1140 	request->alpha2[1] = current_regdomain->alpha2[1];
1141 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1142 	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1143 
1144 	reg_process_hint(request);
1145 
1146 out_unlock:
1147 	rtnl_unlock();
1148  out:
1149 	release_firmware(fw);
1150 	return err;
1151 }
1152 
1153 static bool reg_query_database(struct regulatory_request *request)
1154 {
1155 	if (query_regdb_file(request->alpha2) == 0)
1156 		return true;
1157 
1158 	if (call_crda(request->alpha2) == 0)
1159 		return true;
1160 
1161 	return false;
1162 }
1163 
1164 bool reg_is_valid_request(const char *alpha2)
1165 {
1166 	struct regulatory_request *lr = get_last_request();
1167 
1168 	if (!lr || lr->processed)
1169 		return false;
1170 
1171 	return alpha2_equal(lr->alpha2, alpha2);
1172 }
1173 
1174 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1175 {
1176 	struct regulatory_request *lr = get_last_request();
1177 
1178 	/*
1179 	 * Follow the driver's regulatory domain, if present, unless a country
1180 	 * IE has been processed or a user wants to help complaince further
1181 	 */
1182 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1183 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1184 	    wiphy->regd)
1185 		return get_wiphy_regdom(wiphy);
1186 
1187 	return get_cfg80211_regdom();
1188 }
1189 
1190 static unsigned int
1191 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1192 				 const struct ieee80211_reg_rule *rule)
1193 {
1194 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1195 	const struct ieee80211_freq_range *freq_range_tmp;
1196 	const struct ieee80211_reg_rule *tmp;
1197 	u32 start_freq, end_freq, idx, no;
1198 
1199 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1200 		if (rule == &rd->reg_rules[idx])
1201 			break;
1202 
1203 	if (idx == rd->n_reg_rules)
1204 		return 0;
1205 
1206 	/* get start_freq */
1207 	no = idx;
1208 
1209 	while (no) {
1210 		tmp = &rd->reg_rules[--no];
1211 		freq_range_tmp = &tmp->freq_range;
1212 
1213 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1214 			break;
1215 
1216 		freq_range = freq_range_tmp;
1217 	}
1218 
1219 	start_freq = freq_range->start_freq_khz;
1220 
1221 	/* get end_freq */
1222 	freq_range = &rule->freq_range;
1223 	no = idx;
1224 
1225 	while (no < rd->n_reg_rules - 1) {
1226 		tmp = &rd->reg_rules[++no];
1227 		freq_range_tmp = &tmp->freq_range;
1228 
1229 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1230 			break;
1231 
1232 		freq_range = freq_range_tmp;
1233 	}
1234 
1235 	end_freq = freq_range->end_freq_khz;
1236 
1237 	return end_freq - start_freq;
1238 }
1239 
1240 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1241 				   const struct ieee80211_reg_rule *rule)
1242 {
1243 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1244 
1245 	if (rule->flags & NL80211_RRF_NO_320MHZ)
1246 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1247 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1248 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1249 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1250 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1251 
1252 	/*
1253 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1254 	 * are not allowed.
1255 	 */
1256 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1257 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1258 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1259 
1260 	return bw;
1261 }
1262 
1263 /* Sanity check on a regulatory rule */
1264 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1265 {
1266 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1267 	u32 freq_diff;
1268 
1269 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1270 		return false;
1271 
1272 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1273 		return false;
1274 
1275 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1276 
1277 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1278 	    freq_range->max_bandwidth_khz > freq_diff)
1279 		return false;
1280 
1281 	return true;
1282 }
1283 
1284 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1285 {
1286 	const struct ieee80211_reg_rule *reg_rule = NULL;
1287 	unsigned int i;
1288 
1289 	if (!rd->n_reg_rules)
1290 		return false;
1291 
1292 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1293 		return false;
1294 
1295 	for (i = 0; i < rd->n_reg_rules; i++) {
1296 		reg_rule = &rd->reg_rules[i];
1297 		if (!is_valid_reg_rule(reg_rule))
1298 			return false;
1299 	}
1300 
1301 	return true;
1302 }
1303 
1304 /**
1305  * freq_in_rule_band - tells us if a frequency is in a frequency band
1306  * @freq_range: frequency rule we want to query
1307  * @freq_khz: frequency we are inquiring about
1308  *
1309  * This lets us know if a specific frequency rule is or is not relevant to
1310  * a specific frequency's band. Bands are device specific and artificial
1311  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1312  * however it is safe for now to assume that a frequency rule should not be
1313  * part of a frequency's band if the start freq or end freq are off by more
1314  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1315  * 60 GHz band.
1316  * This resolution can be lowered and should be considered as we add
1317  * regulatory rule support for other "bands".
1318  **/
1319 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1320 			      u32 freq_khz)
1321 {
1322 #define ONE_GHZ_IN_KHZ	1000000
1323 	/*
1324 	 * From 802.11ad: directional multi-gigabit (DMG):
1325 	 * Pertaining to operation in a frequency band containing a channel
1326 	 * with the Channel starting frequency above 45 GHz.
1327 	 */
1328 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1329 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1330 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1331 		return true;
1332 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1333 		return true;
1334 	return false;
1335 #undef ONE_GHZ_IN_KHZ
1336 }
1337 
1338 /*
1339  * Later on we can perhaps use the more restrictive DFS
1340  * region but we don't have information for that yet so
1341  * for now simply disallow conflicts.
1342  */
1343 static enum nl80211_dfs_regions
1344 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1345 			 const enum nl80211_dfs_regions dfs_region2)
1346 {
1347 	if (dfs_region1 != dfs_region2)
1348 		return NL80211_DFS_UNSET;
1349 	return dfs_region1;
1350 }
1351 
1352 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1353 				    const struct ieee80211_wmm_ac *wmm_ac2,
1354 				    struct ieee80211_wmm_ac *intersect)
1355 {
1356 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1357 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1358 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1359 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1360 }
1361 
1362 /*
1363  * Helper for regdom_intersect(), this does the real
1364  * mathematical intersection fun
1365  */
1366 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1367 			       const struct ieee80211_regdomain *rd2,
1368 			       const struct ieee80211_reg_rule *rule1,
1369 			       const struct ieee80211_reg_rule *rule2,
1370 			       struct ieee80211_reg_rule *intersected_rule)
1371 {
1372 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1373 	struct ieee80211_freq_range *freq_range;
1374 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1375 	struct ieee80211_power_rule *power_rule;
1376 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1377 	struct ieee80211_wmm_rule *wmm_rule;
1378 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1379 
1380 	freq_range1 = &rule1->freq_range;
1381 	freq_range2 = &rule2->freq_range;
1382 	freq_range = &intersected_rule->freq_range;
1383 
1384 	power_rule1 = &rule1->power_rule;
1385 	power_rule2 = &rule2->power_rule;
1386 	power_rule = &intersected_rule->power_rule;
1387 
1388 	wmm_rule1 = &rule1->wmm_rule;
1389 	wmm_rule2 = &rule2->wmm_rule;
1390 	wmm_rule = &intersected_rule->wmm_rule;
1391 
1392 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1393 					 freq_range2->start_freq_khz);
1394 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1395 				       freq_range2->end_freq_khz);
1396 
1397 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1398 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1399 
1400 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1401 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1402 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1403 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1404 
1405 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1406 
1407 	intersected_rule->flags = rule1->flags | rule2->flags;
1408 
1409 	/*
1410 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1411 	 * set AUTO_BW in intersected rule also. Next we will
1412 	 * calculate BW correctly in handle_channel function.
1413 	 * In other case remove AUTO_BW flag while we calculate
1414 	 * maximum bandwidth correctly and auto calculation is
1415 	 * not required.
1416 	 */
1417 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1418 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1419 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1420 	else
1421 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1422 
1423 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1424 	if (freq_range->max_bandwidth_khz > freq_diff)
1425 		freq_range->max_bandwidth_khz = freq_diff;
1426 
1427 	power_rule->max_eirp = min(power_rule1->max_eirp,
1428 		power_rule2->max_eirp);
1429 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1430 		power_rule2->max_antenna_gain);
1431 
1432 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1433 					   rule2->dfs_cac_ms);
1434 
1435 	if (rule1->has_wmm && rule2->has_wmm) {
1436 		u8 ac;
1437 
1438 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1439 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1440 						&wmm_rule2->client[ac],
1441 						&wmm_rule->client[ac]);
1442 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1443 						&wmm_rule2->ap[ac],
1444 						&wmm_rule->ap[ac]);
1445 		}
1446 
1447 		intersected_rule->has_wmm = true;
1448 	} else if (rule1->has_wmm) {
1449 		*wmm_rule = *wmm_rule1;
1450 		intersected_rule->has_wmm = true;
1451 	} else if (rule2->has_wmm) {
1452 		*wmm_rule = *wmm_rule2;
1453 		intersected_rule->has_wmm = true;
1454 	} else {
1455 		intersected_rule->has_wmm = false;
1456 	}
1457 
1458 	if (!is_valid_reg_rule(intersected_rule))
1459 		return -EINVAL;
1460 
1461 	return 0;
1462 }
1463 
1464 /* check whether old rule contains new rule */
1465 static bool rule_contains(struct ieee80211_reg_rule *r1,
1466 			  struct ieee80211_reg_rule *r2)
1467 {
1468 	/* for simplicity, currently consider only same flags */
1469 	if (r1->flags != r2->flags)
1470 		return false;
1471 
1472 	/* verify r1 is more restrictive */
1473 	if ((r1->power_rule.max_antenna_gain >
1474 	     r2->power_rule.max_antenna_gain) ||
1475 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1476 		return false;
1477 
1478 	/* make sure r2's range is contained within r1 */
1479 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1480 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1481 		return false;
1482 
1483 	/* and finally verify that r1.max_bw >= r2.max_bw */
1484 	if (r1->freq_range.max_bandwidth_khz <
1485 	    r2->freq_range.max_bandwidth_khz)
1486 		return false;
1487 
1488 	return true;
1489 }
1490 
1491 /* add or extend current rules. do nothing if rule is already contained */
1492 static void add_rule(struct ieee80211_reg_rule *rule,
1493 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1494 {
1495 	struct ieee80211_reg_rule *tmp_rule;
1496 	int i;
1497 
1498 	for (i = 0; i < *n_rules; i++) {
1499 		tmp_rule = &reg_rules[i];
1500 		/* rule is already contained - do nothing */
1501 		if (rule_contains(tmp_rule, rule))
1502 			return;
1503 
1504 		/* extend rule if possible */
1505 		if (rule_contains(rule, tmp_rule)) {
1506 			memcpy(tmp_rule, rule, sizeof(*rule));
1507 			return;
1508 		}
1509 	}
1510 
1511 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1512 	(*n_rules)++;
1513 }
1514 
1515 /**
1516  * regdom_intersect - do the intersection between two regulatory domains
1517  * @rd1: first regulatory domain
1518  * @rd2: second regulatory domain
1519  *
1520  * Use this function to get the intersection between two regulatory domains.
1521  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1522  * as no one single alpha2 can represent this regulatory domain.
1523  *
1524  * Returns a pointer to the regulatory domain structure which will hold the
1525  * resulting intersection of rules between rd1 and rd2. We will
1526  * kzalloc() this structure for you.
1527  */
1528 static struct ieee80211_regdomain *
1529 regdom_intersect(const struct ieee80211_regdomain *rd1,
1530 		 const struct ieee80211_regdomain *rd2)
1531 {
1532 	int r;
1533 	unsigned int x, y;
1534 	unsigned int num_rules = 0;
1535 	const struct ieee80211_reg_rule *rule1, *rule2;
1536 	struct ieee80211_reg_rule intersected_rule;
1537 	struct ieee80211_regdomain *rd;
1538 
1539 	if (!rd1 || !rd2)
1540 		return NULL;
1541 
1542 	/*
1543 	 * First we get a count of the rules we'll need, then we actually
1544 	 * build them. This is to so we can malloc() and free() a
1545 	 * regdomain once. The reason we use reg_rules_intersect() here
1546 	 * is it will return -EINVAL if the rule computed makes no sense.
1547 	 * All rules that do check out OK are valid.
1548 	 */
1549 
1550 	for (x = 0; x < rd1->n_reg_rules; x++) {
1551 		rule1 = &rd1->reg_rules[x];
1552 		for (y = 0; y < rd2->n_reg_rules; y++) {
1553 			rule2 = &rd2->reg_rules[y];
1554 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1555 						 &intersected_rule))
1556 				num_rules++;
1557 		}
1558 	}
1559 
1560 	if (!num_rules)
1561 		return NULL;
1562 
1563 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1564 	if (!rd)
1565 		return NULL;
1566 
1567 	for (x = 0; x < rd1->n_reg_rules; x++) {
1568 		rule1 = &rd1->reg_rules[x];
1569 		for (y = 0; y < rd2->n_reg_rules; y++) {
1570 			rule2 = &rd2->reg_rules[y];
1571 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1572 						&intersected_rule);
1573 			/*
1574 			 * No need to memset here the intersected rule here as
1575 			 * we're not using the stack anymore
1576 			 */
1577 			if (r)
1578 				continue;
1579 
1580 			add_rule(&intersected_rule, rd->reg_rules,
1581 				 &rd->n_reg_rules);
1582 		}
1583 	}
1584 
1585 	rd->alpha2[0] = '9';
1586 	rd->alpha2[1] = '8';
1587 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1588 						  rd2->dfs_region);
1589 
1590 	return rd;
1591 }
1592 
1593 /*
1594  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1595  * want to just have the channel structure use these
1596  */
1597 static u32 map_regdom_flags(u32 rd_flags)
1598 {
1599 	u32 channel_flags = 0;
1600 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1601 		channel_flags |= IEEE80211_CHAN_NO_IR;
1602 	if (rd_flags & NL80211_RRF_DFS)
1603 		channel_flags |= IEEE80211_CHAN_RADAR;
1604 	if (rd_flags & NL80211_RRF_NO_OFDM)
1605 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1606 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1607 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1608 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1609 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1610 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1611 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1612 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1613 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1614 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1615 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1616 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1617 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1618 	if (rd_flags & NL80211_RRF_NO_HE)
1619 		channel_flags |= IEEE80211_CHAN_NO_HE;
1620 	if (rd_flags & NL80211_RRF_NO_320MHZ)
1621 		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1622 	return channel_flags;
1623 }
1624 
1625 static const struct ieee80211_reg_rule *
1626 freq_reg_info_regd(u32 center_freq,
1627 		   const struct ieee80211_regdomain *regd, u32 bw)
1628 {
1629 	int i;
1630 	bool band_rule_found = false;
1631 	bool bw_fits = false;
1632 
1633 	if (!regd)
1634 		return ERR_PTR(-EINVAL);
1635 
1636 	for (i = 0; i < regd->n_reg_rules; i++) {
1637 		const struct ieee80211_reg_rule *rr;
1638 		const struct ieee80211_freq_range *fr = NULL;
1639 
1640 		rr = &regd->reg_rules[i];
1641 		fr = &rr->freq_range;
1642 
1643 		/*
1644 		 * We only need to know if one frequency rule was
1645 		 * in center_freq's band, that's enough, so let's
1646 		 * not overwrite it once found
1647 		 */
1648 		if (!band_rule_found)
1649 			band_rule_found = freq_in_rule_band(fr, center_freq);
1650 
1651 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1652 
1653 		if (band_rule_found && bw_fits)
1654 			return rr;
1655 	}
1656 
1657 	if (!band_rule_found)
1658 		return ERR_PTR(-ERANGE);
1659 
1660 	return ERR_PTR(-EINVAL);
1661 }
1662 
1663 static const struct ieee80211_reg_rule *
1664 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1665 {
1666 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1667 	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1668 	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1669 	int i = ARRAY_SIZE(bws) - 1;
1670 	u32 bw;
1671 
1672 	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1673 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1674 		if (!IS_ERR(reg_rule))
1675 			return reg_rule;
1676 	}
1677 
1678 	return reg_rule;
1679 }
1680 
1681 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1682 					       u32 center_freq)
1683 {
1684 	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1685 
1686 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1687 }
1688 EXPORT_SYMBOL(freq_reg_info);
1689 
1690 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1691 {
1692 	switch (initiator) {
1693 	case NL80211_REGDOM_SET_BY_CORE:
1694 		return "core";
1695 	case NL80211_REGDOM_SET_BY_USER:
1696 		return "user";
1697 	case NL80211_REGDOM_SET_BY_DRIVER:
1698 		return "driver";
1699 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1700 		return "country element";
1701 	default:
1702 		WARN_ON(1);
1703 		return "bug";
1704 	}
1705 }
1706 EXPORT_SYMBOL(reg_initiator_name);
1707 
1708 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1709 					  const struct ieee80211_reg_rule *reg_rule,
1710 					  const struct ieee80211_channel *chan)
1711 {
1712 	const struct ieee80211_freq_range *freq_range = NULL;
1713 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1714 	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1715 
1716 	freq_range = &reg_rule->freq_range;
1717 
1718 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1719 	center_freq_khz = ieee80211_channel_to_khz(chan);
1720 	/* Check if auto calculation requested */
1721 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1722 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1723 
1724 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1725 	if (!cfg80211_does_bw_fit_range(freq_range,
1726 					center_freq_khz,
1727 					MHZ_TO_KHZ(10)))
1728 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1729 	if (!cfg80211_does_bw_fit_range(freq_range,
1730 					center_freq_khz,
1731 					MHZ_TO_KHZ(20)))
1732 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1733 
1734 	if (is_s1g) {
1735 		/* S1G is strict about non overlapping channels. We can
1736 		 * calculate which bandwidth is allowed per channel by finding
1737 		 * the largest bandwidth which cleanly divides the freq_range.
1738 		 */
1739 		int edge_offset;
1740 		int ch_bw = max_bandwidth_khz;
1741 
1742 		while (ch_bw) {
1743 			edge_offset = (center_freq_khz - ch_bw / 2) -
1744 				      freq_range->start_freq_khz;
1745 			if (edge_offset % ch_bw == 0) {
1746 				switch (KHZ_TO_MHZ(ch_bw)) {
1747 				case 1:
1748 					bw_flags |= IEEE80211_CHAN_1MHZ;
1749 					break;
1750 				case 2:
1751 					bw_flags |= IEEE80211_CHAN_2MHZ;
1752 					break;
1753 				case 4:
1754 					bw_flags |= IEEE80211_CHAN_4MHZ;
1755 					break;
1756 				case 8:
1757 					bw_flags |= IEEE80211_CHAN_8MHZ;
1758 					break;
1759 				case 16:
1760 					bw_flags |= IEEE80211_CHAN_16MHZ;
1761 					break;
1762 				default:
1763 					/* If we got here, no bandwidths fit on
1764 					 * this frequency, ie. band edge.
1765 					 */
1766 					bw_flags |= IEEE80211_CHAN_DISABLED;
1767 					break;
1768 				}
1769 				break;
1770 			}
1771 			ch_bw /= 2;
1772 		}
1773 	} else {
1774 		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1775 			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1776 		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1777 			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1778 		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1779 			bw_flags |= IEEE80211_CHAN_NO_HT40;
1780 		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1781 			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1782 		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1783 			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1784 		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1785 			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1786 	}
1787 	return bw_flags;
1788 }
1789 
1790 static void handle_channel_single_rule(struct wiphy *wiphy,
1791 				       enum nl80211_reg_initiator initiator,
1792 				       struct ieee80211_channel *chan,
1793 				       u32 flags,
1794 				       struct regulatory_request *lr,
1795 				       struct wiphy *request_wiphy,
1796 				       const struct ieee80211_reg_rule *reg_rule)
1797 {
1798 	u32 bw_flags = 0;
1799 	const struct ieee80211_power_rule *power_rule = NULL;
1800 	const struct ieee80211_regdomain *regd;
1801 
1802 	regd = reg_get_regdomain(wiphy);
1803 
1804 	power_rule = &reg_rule->power_rule;
1805 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1806 
1807 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1808 	    request_wiphy && request_wiphy == wiphy &&
1809 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1810 		/*
1811 		 * This guarantees the driver's requested regulatory domain
1812 		 * will always be used as a base for further regulatory
1813 		 * settings
1814 		 */
1815 		chan->flags = chan->orig_flags =
1816 			map_regdom_flags(reg_rule->flags) | bw_flags;
1817 		chan->max_antenna_gain = chan->orig_mag =
1818 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1819 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1820 			(int) MBM_TO_DBM(power_rule->max_eirp);
1821 
1822 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1823 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1824 			if (reg_rule->dfs_cac_ms)
1825 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1826 		}
1827 
1828 		return;
1829 	}
1830 
1831 	chan->dfs_state = NL80211_DFS_USABLE;
1832 	chan->dfs_state_entered = jiffies;
1833 
1834 	chan->beacon_found = false;
1835 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1836 	chan->max_antenna_gain =
1837 		min_t(int, chan->orig_mag,
1838 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1839 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1840 
1841 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1842 		if (reg_rule->dfs_cac_ms)
1843 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1844 		else
1845 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1846 	}
1847 
1848 	if (chan->orig_mpwr) {
1849 		/*
1850 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1851 		 * will always follow the passed country IE power settings.
1852 		 */
1853 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1854 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1855 			chan->max_power = chan->max_reg_power;
1856 		else
1857 			chan->max_power = min(chan->orig_mpwr,
1858 					      chan->max_reg_power);
1859 	} else
1860 		chan->max_power = chan->max_reg_power;
1861 }
1862 
1863 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1864 					  enum nl80211_reg_initiator initiator,
1865 					  struct ieee80211_channel *chan,
1866 					  u32 flags,
1867 					  struct regulatory_request *lr,
1868 					  struct wiphy *request_wiphy,
1869 					  const struct ieee80211_reg_rule *rrule1,
1870 					  const struct ieee80211_reg_rule *rrule2,
1871 					  struct ieee80211_freq_range *comb_range)
1872 {
1873 	u32 bw_flags1 = 0;
1874 	u32 bw_flags2 = 0;
1875 	const struct ieee80211_power_rule *power_rule1 = NULL;
1876 	const struct ieee80211_power_rule *power_rule2 = NULL;
1877 	const struct ieee80211_regdomain *regd;
1878 
1879 	regd = reg_get_regdomain(wiphy);
1880 
1881 	power_rule1 = &rrule1->power_rule;
1882 	power_rule2 = &rrule2->power_rule;
1883 	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1884 	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1885 
1886 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1887 	    request_wiphy && request_wiphy == wiphy &&
1888 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1889 		/* This guarantees the driver's requested regulatory domain
1890 		 * will always be used as a base for further regulatory
1891 		 * settings
1892 		 */
1893 		chan->flags =
1894 			map_regdom_flags(rrule1->flags) |
1895 			map_regdom_flags(rrule2->flags) |
1896 			bw_flags1 |
1897 			bw_flags2;
1898 		chan->orig_flags = chan->flags;
1899 		chan->max_antenna_gain =
1900 			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1901 			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1902 		chan->orig_mag = chan->max_antenna_gain;
1903 		chan->max_reg_power =
1904 			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1905 			      MBM_TO_DBM(power_rule2->max_eirp));
1906 		chan->max_power = chan->max_reg_power;
1907 		chan->orig_mpwr = chan->max_reg_power;
1908 
1909 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1910 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1911 			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1912 				chan->dfs_cac_ms = max_t(unsigned int,
1913 							 rrule1->dfs_cac_ms,
1914 							 rrule2->dfs_cac_ms);
1915 		}
1916 
1917 		return;
1918 	}
1919 
1920 	chan->dfs_state = NL80211_DFS_USABLE;
1921 	chan->dfs_state_entered = jiffies;
1922 
1923 	chan->beacon_found = false;
1924 	chan->flags = flags | bw_flags1 | bw_flags2 |
1925 		      map_regdom_flags(rrule1->flags) |
1926 		      map_regdom_flags(rrule2->flags);
1927 
1928 	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1929 	 * (otherwise no adj. rule case), recheck therefore
1930 	 */
1931 	if (cfg80211_does_bw_fit_range(comb_range,
1932 				       ieee80211_channel_to_khz(chan),
1933 				       MHZ_TO_KHZ(10)))
1934 		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1935 	if (cfg80211_does_bw_fit_range(comb_range,
1936 				       ieee80211_channel_to_khz(chan),
1937 				       MHZ_TO_KHZ(20)))
1938 		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1939 
1940 	chan->max_antenna_gain =
1941 		min_t(int, chan->orig_mag,
1942 		      min_t(int,
1943 			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1944 			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1945 	chan->max_reg_power = min_t(int,
1946 				    MBM_TO_DBM(power_rule1->max_eirp),
1947 				    MBM_TO_DBM(power_rule2->max_eirp));
1948 
1949 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1950 		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1951 			chan->dfs_cac_ms = max_t(unsigned int,
1952 						 rrule1->dfs_cac_ms,
1953 						 rrule2->dfs_cac_ms);
1954 		else
1955 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1956 	}
1957 
1958 	if (chan->orig_mpwr) {
1959 		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1960 		 * will always follow the passed country IE power settings.
1961 		 */
1962 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1963 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1964 			chan->max_power = chan->max_reg_power;
1965 		else
1966 			chan->max_power = min(chan->orig_mpwr,
1967 					      chan->max_reg_power);
1968 	} else {
1969 		chan->max_power = chan->max_reg_power;
1970 	}
1971 }
1972 
1973 /* Note that right now we assume the desired channel bandwidth
1974  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1975  * per channel, the primary and the extension channel).
1976  */
1977 static void handle_channel(struct wiphy *wiphy,
1978 			   enum nl80211_reg_initiator initiator,
1979 			   struct ieee80211_channel *chan)
1980 {
1981 	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1982 	struct regulatory_request *lr = get_last_request();
1983 	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1984 	const struct ieee80211_reg_rule *rrule = NULL;
1985 	const struct ieee80211_reg_rule *rrule1 = NULL;
1986 	const struct ieee80211_reg_rule *rrule2 = NULL;
1987 
1988 	u32 flags = chan->orig_flags;
1989 
1990 	rrule = freq_reg_info(wiphy, orig_chan_freq);
1991 	if (IS_ERR(rrule)) {
1992 		/* check for adjacent match, therefore get rules for
1993 		 * chan - 20 MHz and chan + 20 MHz and test
1994 		 * if reg rules are adjacent
1995 		 */
1996 		rrule1 = freq_reg_info(wiphy,
1997 				       orig_chan_freq - MHZ_TO_KHZ(20));
1998 		rrule2 = freq_reg_info(wiphy,
1999 				       orig_chan_freq + MHZ_TO_KHZ(20));
2000 		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
2001 			struct ieee80211_freq_range comb_range;
2002 
2003 			if (rrule1->freq_range.end_freq_khz !=
2004 			    rrule2->freq_range.start_freq_khz)
2005 				goto disable_chan;
2006 
2007 			comb_range.start_freq_khz =
2008 				rrule1->freq_range.start_freq_khz;
2009 			comb_range.end_freq_khz =
2010 				rrule2->freq_range.end_freq_khz;
2011 			comb_range.max_bandwidth_khz =
2012 				min_t(u32,
2013 				      rrule1->freq_range.max_bandwidth_khz,
2014 				      rrule2->freq_range.max_bandwidth_khz);
2015 
2016 			if (!cfg80211_does_bw_fit_range(&comb_range,
2017 							orig_chan_freq,
2018 							MHZ_TO_KHZ(20)))
2019 				goto disable_chan;
2020 
2021 			handle_channel_adjacent_rules(wiphy, initiator, chan,
2022 						      flags, lr, request_wiphy,
2023 						      rrule1, rrule2,
2024 						      &comb_range);
2025 			return;
2026 		}
2027 
2028 disable_chan:
2029 		/* We will disable all channels that do not match our
2030 		 * received regulatory rule unless the hint is coming
2031 		 * from a Country IE and the Country IE had no information
2032 		 * about a band. The IEEE 802.11 spec allows for an AP
2033 		 * to send only a subset of the regulatory rules allowed,
2034 		 * so an AP in the US that only supports 2.4 GHz may only send
2035 		 * a country IE with information for the 2.4 GHz band
2036 		 * while 5 GHz is still supported.
2037 		 */
2038 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2039 		    PTR_ERR(rrule) == -ERANGE)
2040 			return;
2041 
2042 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2043 		    request_wiphy && request_wiphy == wiphy &&
2044 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2045 			pr_debug("Disabling freq %d.%03d MHz for good\n",
2046 				 chan->center_freq, chan->freq_offset);
2047 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2048 			chan->flags = chan->orig_flags;
2049 		} else {
2050 			pr_debug("Disabling freq %d.%03d MHz\n",
2051 				 chan->center_freq, chan->freq_offset);
2052 			chan->flags |= IEEE80211_CHAN_DISABLED;
2053 		}
2054 		return;
2055 	}
2056 
2057 	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2058 				   request_wiphy, rrule);
2059 }
2060 
2061 static void handle_band(struct wiphy *wiphy,
2062 			enum nl80211_reg_initiator initiator,
2063 			struct ieee80211_supported_band *sband)
2064 {
2065 	unsigned int i;
2066 
2067 	if (!sband)
2068 		return;
2069 
2070 	for (i = 0; i < sband->n_channels; i++)
2071 		handle_channel(wiphy, initiator, &sband->channels[i]);
2072 }
2073 
2074 static bool reg_request_cell_base(struct regulatory_request *request)
2075 {
2076 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2077 		return false;
2078 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2079 }
2080 
2081 bool reg_last_request_cell_base(void)
2082 {
2083 	return reg_request_cell_base(get_last_request());
2084 }
2085 
2086 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2087 /* Core specific check */
2088 static enum reg_request_treatment
2089 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2090 {
2091 	struct regulatory_request *lr = get_last_request();
2092 
2093 	if (!reg_num_devs_support_basehint)
2094 		return REG_REQ_IGNORE;
2095 
2096 	if (reg_request_cell_base(lr) &&
2097 	    !regdom_changes(pending_request->alpha2))
2098 		return REG_REQ_ALREADY_SET;
2099 
2100 	return REG_REQ_OK;
2101 }
2102 
2103 /* Device specific check */
2104 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2105 {
2106 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2107 }
2108 #else
2109 static enum reg_request_treatment
2110 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2111 {
2112 	return REG_REQ_IGNORE;
2113 }
2114 
2115 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2116 {
2117 	return true;
2118 }
2119 #endif
2120 
2121 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2122 {
2123 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2124 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2125 		return true;
2126 	return false;
2127 }
2128 
2129 static bool ignore_reg_update(struct wiphy *wiphy,
2130 			      enum nl80211_reg_initiator initiator)
2131 {
2132 	struct regulatory_request *lr = get_last_request();
2133 
2134 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2135 		return true;
2136 
2137 	if (!lr) {
2138 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2139 			 reg_initiator_name(initiator));
2140 		return true;
2141 	}
2142 
2143 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2144 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2145 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2146 			 reg_initiator_name(initiator));
2147 		return true;
2148 	}
2149 
2150 	/*
2151 	 * wiphy->regd will be set once the device has its own
2152 	 * desired regulatory domain set
2153 	 */
2154 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2155 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2156 	    !is_world_regdom(lr->alpha2)) {
2157 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2158 			 reg_initiator_name(initiator));
2159 		return true;
2160 	}
2161 
2162 	if (reg_request_cell_base(lr))
2163 		return reg_dev_ignore_cell_hint(wiphy);
2164 
2165 	return false;
2166 }
2167 
2168 static bool reg_is_world_roaming(struct wiphy *wiphy)
2169 {
2170 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2171 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2172 	struct regulatory_request *lr = get_last_request();
2173 
2174 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2175 		return true;
2176 
2177 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2178 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2179 		return true;
2180 
2181 	return false;
2182 }
2183 
2184 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2185 			      struct reg_beacon *reg_beacon)
2186 {
2187 	struct ieee80211_supported_band *sband;
2188 	struct ieee80211_channel *chan;
2189 	bool channel_changed = false;
2190 	struct ieee80211_channel chan_before;
2191 
2192 	sband = wiphy->bands[reg_beacon->chan.band];
2193 	chan = &sband->channels[chan_idx];
2194 
2195 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2196 		return;
2197 
2198 	if (chan->beacon_found)
2199 		return;
2200 
2201 	chan->beacon_found = true;
2202 
2203 	if (!reg_is_world_roaming(wiphy))
2204 		return;
2205 
2206 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2207 		return;
2208 
2209 	chan_before = *chan;
2210 
2211 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2212 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2213 		channel_changed = true;
2214 	}
2215 
2216 	if (channel_changed)
2217 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2218 }
2219 
2220 /*
2221  * Called when a scan on a wiphy finds a beacon on
2222  * new channel
2223  */
2224 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2225 				    struct reg_beacon *reg_beacon)
2226 {
2227 	unsigned int i;
2228 	struct ieee80211_supported_band *sband;
2229 
2230 	if (!wiphy->bands[reg_beacon->chan.band])
2231 		return;
2232 
2233 	sband = wiphy->bands[reg_beacon->chan.band];
2234 
2235 	for (i = 0; i < sband->n_channels; i++)
2236 		handle_reg_beacon(wiphy, i, reg_beacon);
2237 }
2238 
2239 /*
2240  * Called upon reg changes or a new wiphy is added
2241  */
2242 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2243 {
2244 	unsigned int i;
2245 	struct ieee80211_supported_band *sband;
2246 	struct reg_beacon *reg_beacon;
2247 
2248 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2249 		if (!wiphy->bands[reg_beacon->chan.band])
2250 			continue;
2251 		sband = wiphy->bands[reg_beacon->chan.band];
2252 		for (i = 0; i < sband->n_channels; i++)
2253 			handle_reg_beacon(wiphy, i, reg_beacon);
2254 	}
2255 }
2256 
2257 /* Reap the advantages of previously found beacons */
2258 static void reg_process_beacons(struct wiphy *wiphy)
2259 {
2260 	/*
2261 	 * Means we are just firing up cfg80211, so no beacons would
2262 	 * have been processed yet.
2263 	 */
2264 	if (!last_request)
2265 		return;
2266 	wiphy_update_beacon_reg(wiphy);
2267 }
2268 
2269 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2270 {
2271 	if (!chan)
2272 		return false;
2273 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2274 		return false;
2275 	/* This would happen when regulatory rules disallow HT40 completely */
2276 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2277 		return false;
2278 	return true;
2279 }
2280 
2281 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2282 					 struct ieee80211_channel *channel)
2283 {
2284 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2285 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2286 	const struct ieee80211_regdomain *regd;
2287 	unsigned int i;
2288 	u32 flags;
2289 
2290 	if (!is_ht40_allowed(channel)) {
2291 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2292 		return;
2293 	}
2294 
2295 	/*
2296 	 * We need to ensure the extension channels exist to
2297 	 * be able to use HT40- or HT40+, this finds them (or not)
2298 	 */
2299 	for (i = 0; i < sband->n_channels; i++) {
2300 		struct ieee80211_channel *c = &sband->channels[i];
2301 
2302 		if (c->center_freq == (channel->center_freq - 20))
2303 			channel_before = c;
2304 		if (c->center_freq == (channel->center_freq + 20))
2305 			channel_after = c;
2306 	}
2307 
2308 	flags = 0;
2309 	regd = get_wiphy_regdom(wiphy);
2310 	if (regd) {
2311 		const struct ieee80211_reg_rule *reg_rule =
2312 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2313 					   regd, MHZ_TO_KHZ(20));
2314 
2315 		if (!IS_ERR(reg_rule))
2316 			flags = reg_rule->flags;
2317 	}
2318 
2319 	/*
2320 	 * Please note that this assumes target bandwidth is 20 MHz,
2321 	 * if that ever changes we also need to change the below logic
2322 	 * to include that as well.
2323 	 */
2324 	if (!is_ht40_allowed(channel_before) ||
2325 	    flags & NL80211_RRF_NO_HT40MINUS)
2326 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2327 	else
2328 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2329 
2330 	if (!is_ht40_allowed(channel_after) ||
2331 	    flags & NL80211_RRF_NO_HT40PLUS)
2332 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2333 	else
2334 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2335 }
2336 
2337 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2338 				      struct ieee80211_supported_band *sband)
2339 {
2340 	unsigned int i;
2341 
2342 	if (!sband)
2343 		return;
2344 
2345 	for (i = 0; i < sband->n_channels; i++)
2346 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2347 }
2348 
2349 static void reg_process_ht_flags(struct wiphy *wiphy)
2350 {
2351 	enum nl80211_band band;
2352 
2353 	if (!wiphy)
2354 		return;
2355 
2356 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2357 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2358 }
2359 
2360 static void reg_call_notifier(struct wiphy *wiphy,
2361 			      struct regulatory_request *request)
2362 {
2363 	if (wiphy->reg_notifier)
2364 		wiphy->reg_notifier(wiphy, request);
2365 }
2366 
2367 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2368 {
2369 	struct cfg80211_chan_def chandef = {};
2370 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2371 	enum nl80211_iftype iftype;
2372 	bool ret;
2373 	int link;
2374 
2375 	wdev_lock(wdev);
2376 	iftype = wdev->iftype;
2377 
2378 	/* make sure the interface is active */
2379 	if (!wdev->netdev || !netif_running(wdev->netdev))
2380 		goto wdev_inactive_unlock;
2381 
2382 	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2383 		struct ieee80211_channel *chan;
2384 
2385 		if (!wdev->valid_links && link > 0)
2386 			break;
2387 		if (!(wdev->valid_links & BIT(link)))
2388 			continue;
2389 		switch (iftype) {
2390 		case NL80211_IFTYPE_AP:
2391 		case NL80211_IFTYPE_P2P_GO:
2392 			if (!wdev->links[link].ap.beacon_interval)
2393 				continue;
2394 			chandef = wdev->links[link].ap.chandef;
2395 			break;
2396 		case NL80211_IFTYPE_MESH_POINT:
2397 			if (!wdev->u.mesh.beacon_interval)
2398 				continue;
2399 			chandef = wdev->u.mesh.chandef;
2400 			break;
2401 		case NL80211_IFTYPE_ADHOC:
2402 			if (!wdev->u.ibss.ssid_len)
2403 				continue;
2404 			chandef = wdev->u.ibss.chandef;
2405 			break;
2406 		case NL80211_IFTYPE_STATION:
2407 		case NL80211_IFTYPE_P2P_CLIENT:
2408 			/* Maybe we could consider disabling that link only? */
2409 			if (!wdev->links[link].client.current_bss)
2410 				continue;
2411 
2412 			chan = wdev->links[link].client.current_bss->pub.channel;
2413 			if (!chan)
2414 				continue;
2415 
2416 			if (!rdev->ops->get_channel ||
2417 			    rdev_get_channel(rdev, wdev, link, &chandef))
2418 				cfg80211_chandef_create(&chandef, chan,
2419 							NL80211_CHAN_NO_HT);
2420 			break;
2421 		case NL80211_IFTYPE_MONITOR:
2422 		case NL80211_IFTYPE_AP_VLAN:
2423 		case NL80211_IFTYPE_P2P_DEVICE:
2424 			/* no enforcement required */
2425 			break;
2426 		default:
2427 			/* others not implemented for now */
2428 			WARN_ON(1);
2429 			break;
2430 		}
2431 
2432 		wdev_unlock(wdev);
2433 
2434 		switch (iftype) {
2435 		case NL80211_IFTYPE_AP:
2436 		case NL80211_IFTYPE_P2P_GO:
2437 		case NL80211_IFTYPE_ADHOC:
2438 		case NL80211_IFTYPE_MESH_POINT:
2439 			wiphy_lock(wiphy);
2440 			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2441 							    iftype);
2442 			wiphy_unlock(wiphy);
2443 
2444 			if (!ret)
2445 				return ret;
2446 			break;
2447 		case NL80211_IFTYPE_STATION:
2448 		case NL80211_IFTYPE_P2P_CLIENT:
2449 			ret = cfg80211_chandef_usable(wiphy, &chandef,
2450 						      IEEE80211_CHAN_DISABLED);
2451 			if (!ret)
2452 				return ret;
2453 			break;
2454 		default:
2455 			break;
2456 		}
2457 
2458 		wdev_lock(wdev);
2459 	}
2460 
2461 	wdev_unlock(wdev);
2462 
2463 	return true;
2464 
2465 wdev_inactive_unlock:
2466 	wdev_unlock(wdev);
2467 	return true;
2468 }
2469 
2470 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2471 {
2472 	struct wireless_dev *wdev;
2473 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2474 
2475 	ASSERT_RTNL();
2476 
2477 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2478 		if (!reg_wdev_chan_valid(wiphy, wdev))
2479 			cfg80211_leave(rdev, wdev);
2480 }
2481 
2482 static void reg_check_chans_work(struct work_struct *work)
2483 {
2484 	struct cfg80211_registered_device *rdev;
2485 
2486 	pr_debug("Verifying active interfaces after reg change\n");
2487 	rtnl_lock();
2488 
2489 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2490 		if (!(rdev->wiphy.regulatory_flags &
2491 		      REGULATORY_IGNORE_STALE_KICKOFF))
2492 			reg_leave_invalid_chans(&rdev->wiphy);
2493 
2494 	rtnl_unlock();
2495 }
2496 
2497 static void reg_check_channels(void)
2498 {
2499 	/*
2500 	 * Give usermode a chance to do something nicer (move to another
2501 	 * channel, orderly disconnection), before forcing a disconnection.
2502 	 */
2503 	mod_delayed_work(system_power_efficient_wq,
2504 			 &reg_check_chans,
2505 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2506 }
2507 
2508 static void wiphy_update_regulatory(struct wiphy *wiphy,
2509 				    enum nl80211_reg_initiator initiator)
2510 {
2511 	enum nl80211_band band;
2512 	struct regulatory_request *lr = get_last_request();
2513 
2514 	if (ignore_reg_update(wiphy, initiator)) {
2515 		/*
2516 		 * Regulatory updates set by CORE are ignored for custom
2517 		 * regulatory cards. Let us notify the changes to the driver,
2518 		 * as some drivers used this to restore its orig_* reg domain.
2519 		 */
2520 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2521 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2522 		    !(wiphy->regulatory_flags &
2523 		      REGULATORY_WIPHY_SELF_MANAGED))
2524 			reg_call_notifier(wiphy, lr);
2525 		return;
2526 	}
2527 
2528 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2529 
2530 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2531 		handle_band(wiphy, initiator, wiphy->bands[band]);
2532 
2533 	reg_process_beacons(wiphy);
2534 	reg_process_ht_flags(wiphy);
2535 	reg_call_notifier(wiphy, lr);
2536 }
2537 
2538 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2539 {
2540 	struct cfg80211_registered_device *rdev;
2541 	struct wiphy *wiphy;
2542 
2543 	ASSERT_RTNL();
2544 
2545 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2546 		wiphy = &rdev->wiphy;
2547 		wiphy_update_regulatory(wiphy, initiator);
2548 	}
2549 
2550 	reg_check_channels();
2551 }
2552 
2553 static void handle_channel_custom(struct wiphy *wiphy,
2554 				  struct ieee80211_channel *chan,
2555 				  const struct ieee80211_regdomain *regd,
2556 				  u32 min_bw)
2557 {
2558 	u32 bw_flags = 0;
2559 	const struct ieee80211_reg_rule *reg_rule = NULL;
2560 	const struct ieee80211_power_rule *power_rule = NULL;
2561 	u32 bw, center_freq_khz;
2562 
2563 	center_freq_khz = ieee80211_channel_to_khz(chan);
2564 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2565 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2566 		if (!IS_ERR(reg_rule))
2567 			break;
2568 	}
2569 
2570 	if (IS_ERR_OR_NULL(reg_rule)) {
2571 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2572 			 chan->center_freq, chan->freq_offset);
2573 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2574 			chan->flags |= IEEE80211_CHAN_DISABLED;
2575 		} else {
2576 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2577 			chan->flags = chan->orig_flags;
2578 		}
2579 		return;
2580 	}
2581 
2582 	power_rule = &reg_rule->power_rule;
2583 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2584 
2585 	chan->dfs_state_entered = jiffies;
2586 	chan->dfs_state = NL80211_DFS_USABLE;
2587 
2588 	chan->beacon_found = false;
2589 
2590 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2591 		chan->flags = chan->orig_flags | bw_flags |
2592 			      map_regdom_flags(reg_rule->flags);
2593 	else
2594 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2595 
2596 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2597 	chan->max_reg_power = chan->max_power =
2598 		(int) MBM_TO_DBM(power_rule->max_eirp);
2599 
2600 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2601 		if (reg_rule->dfs_cac_ms)
2602 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2603 		else
2604 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2605 	}
2606 
2607 	chan->max_power = chan->max_reg_power;
2608 }
2609 
2610 static void handle_band_custom(struct wiphy *wiphy,
2611 			       struct ieee80211_supported_band *sband,
2612 			       const struct ieee80211_regdomain *regd)
2613 {
2614 	unsigned int i;
2615 
2616 	if (!sband)
2617 		return;
2618 
2619 	/*
2620 	 * We currently assume that you always want at least 20 MHz,
2621 	 * otherwise channel 12 might get enabled if this rule is
2622 	 * compatible to US, which permits 2402 - 2472 MHz.
2623 	 */
2624 	for (i = 0; i < sband->n_channels; i++)
2625 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2626 				      MHZ_TO_KHZ(20));
2627 }
2628 
2629 /* Used by drivers prior to wiphy registration */
2630 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2631 				   const struct ieee80211_regdomain *regd)
2632 {
2633 	const struct ieee80211_regdomain *new_regd, *tmp;
2634 	enum nl80211_band band;
2635 	unsigned int bands_set = 0;
2636 
2637 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2638 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2639 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2640 
2641 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2642 		if (!wiphy->bands[band])
2643 			continue;
2644 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2645 		bands_set++;
2646 	}
2647 
2648 	/*
2649 	 * no point in calling this if it won't have any effect
2650 	 * on your device's supported bands.
2651 	 */
2652 	WARN_ON(!bands_set);
2653 	new_regd = reg_copy_regd(regd);
2654 	if (IS_ERR(new_regd))
2655 		return;
2656 
2657 	rtnl_lock();
2658 	wiphy_lock(wiphy);
2659 
2660 	tmp = get_wiphy_regdom(wiphy);
2661 	rcu_assign_pointer(wiphy->regd, new_regd);
2662 	rcu_free_regdom(tmp);
2663 
2664 	wiphy_unlock(wiphy);
2665 	rtnl_unlock();
2666 }
2667 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2668 
2669 static void reg_set_request_processed(void)
2670 {
2671 	bool need_more_processing = false;
2672 	struct regulatory_request *lr = get_last_request();
2673 
2674 	lr->processed = true;
2675 
2676 	spin_lock(&reg_requests_lock);
2677 	if (!list_empty(&reg_requests_list))
2678 		need_more_processing = true;
2679 	spin_unlock(&reg_requests_lock);
2680 
2681 	cancel_crda_timeout();
2682 
2683 	if (need_more_processing)
2684 		schedule_work(&reg_work);
2685 }
2686 
2687 /**
2688  * reg_process_hint_core - process core regulatory requests
2689  * @core_request: a pending core regulatory request
2690  *
2691  * The wireless subsystem can use this function to process
2692  * a regulatory request issued by the regulatory core.
2693  */
2694 static enum reg_request_treatment
2695 reg_process_hint_core(struct regulatory_request *core_request)
2696 {
2697 	if (reg_query_database(core_request)) {
2698 		core_request->intersect = false;
2699 		core_request->processed = false;
2700 		reg_update_last_request(core_request);
2701 		return REG_REQ_OK;
2702 	}
2703 
2704 	return REG_REQ_IGNORE;
2705 }
2706 
2707 static enum reg_request_treatment
2708 __reg_process_hint_user(struct regulatory_request *user_request)
2709 {
2710 	struct regulatory_request *lr = get_last_request();
2711 
2712 	if (reg_request_cell_base(user_request))
2713 		return reg_ignore_cell_hint(user_request);
2714 
2715 	if (reg_request_cell_base(lr))
2716 		return REG_REQ_IGNORE;
2717 
2718 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2719 		return REG_REQ_INTERSECT;
2720 	/*
2721 	 * If the user knows better the user should set the regdom
2722 	 * to their country before the IE is picked up
2723 	 */
2724 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2725 	    lr->intersect)
2726 		return REG_REQ_IGNORE;
2727 	/*
2728 	 * Process user requests only after previous user/driver/core
2729 	 * requests have been processed
2730 	 */
2731 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2732 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2733 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2734 	    regdom_changes(lr->alpha2))
2735 		return REG_REQ_IGNORE;
2736 
2737 	if (!regdom_changes(user_request->alpha2))
2738 		return REG_REQ_ALREADY_SET;
2739 
2740 	return REG_REQ_OK;
2741 }
2742 
2743 /**
2744  * reg_process_hint_user - process user regulatory requests
2745  * @user_request: a pending user regulatory request
2746  *
2747  * The wireless subsystem can use this function to process
2748  * a regulatory request initiated by userspace.
2749  */
2750 static enum reg_request_treatment
2751 reg_process_hint_user(struct regulatory_request *user_request)
2752 {
2753 	enum reg_request_treatment treatment;
2754 
2755 	treatment = __reg_process_hint_user(user_request);
2756 	if (treatment == REG_REQ_IGNORE ||
2757 	    treatment == REG_REQ_ALREADY_SET)
2758 		return REG_REQ_IGNORE;
2759 
2760 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2761 	user_request->processed = false;
2762 
2763 	if (reg_query_database(user_request)) {
2764 		reg_update_last_request(user_request);
2765 		user_alpha2[0] = user_request->alpha2[0];
2766 		user_alpha2[1] = user_request->alpha2[1];
2767 		return REG_REQ_OK;
2768 	}
2769 
2770 	return REG_REQ_IGNORE;
2771 }
2772 
2773 static enum reg_request_treatment
2774 __reg_process_hint_driver(struct regulatory_request *driver_request)
2775 {
2776 	struct regulatory_request *lr = get_last_request();
2777 
2778 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2779 		if (regdom_changes(driver_request->alpha2))
2780 			return REG_REQ_OK;
2781 		return REG_REQ_ALREADY_SET;
2782 	}
2783 
2784 	/*
2785 	 * This would happen if you unplug and plug your card
2786 	 * back in or if you add a new device for which the previously
2787 	 * loaded card also agrees on the regulatory domain.
2788 	 */
2789 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2790 	    !regdom_changes(driver_request->alpha2))
2791 		return REG_REQ_ALREADY_SET;
2792 
2793 	return REG_REQ_INTERSECT;
2794 }
2795 
2796 /**
2797  * reg_process_hint_driver - process driver regulatory requests
2798  * @wiphy: the wireless device for the regulatory request
2799  * @driver_request: a pending driver regulatory request
2800  *
2801  * The wireless subsystem can use this function to process
2802  * a regulatory request issued by an 802.11 driver.
2803  *
2804  * Returns one of the different reg request treatment values.
2805  */
2806 static enum reg_request_treatment
2807 reg_process_hint_driver(struct wiphy *wiphy,
2808 			struct regulatory_request *driver_request)
2809 {
2810 	const struct ieee80211_regdomain *regd, *tmp;
2811 	enum reg_request_treatment treatment;
2812 
2813 	treatment = __reg_process_hint_driver(driver_request);
2814 
2815 	switch (treatment) {
2816 	case REG_REQ_OK:
2817 		break;
2818 	case REG_REQ_IGNORE:
2819 		return REG_REQ_IGNORE;
2820 	case REG_REQ_INTERSECT:
2821 	case REG_REQ_ALREADY_SET:
2822 		regd = reg_copy_regd(get_cfg80211_regdom());
2823 		if (IS_ERR(regd))
2824 			return REG_REQ_IGNORE;
2825 
2826 		tmp = get_wiphy_regdom(wiphy);
2827 		ASSERT_RTNL();
2828 		wiphy_lock(wiphy);
2829 		rcu_assign_pointer(wiphy->regd, regd);
2830 		wiphy_unlock(wiphy);
2831 		rcu_free_regdom(tmp);
2832 	}
2833 
2834 
2835 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2836 	driver_request->processed = false;
2837 
2838 	/*
2839 	 * Since CRDA will not be called in this case as we already
2840 	 * have applied the requested regulatory domain before we just
2841 	 * inform userspace we have processed the request
2842 	 */
2843 	if (treatment == REG_REQ_ALREADY_SET) {
2844 		nl80211_send_reg_change_event(driver_request);
2845 		reg_update_last_request(driver_request);
2846 		reg_set_request_processed();
2847 		return REG_REQ_ALREADY_SET;
2848 	}
2849 
2850 	if (reg_query_database(driver_request)) {
2851 		reg_update_last_request(driver_request);
2852 		return REG_REQ_OK;
2853 	}
2854 
2855 	return REG_REQ_IGNORE;
2856 }
2857 
2858 static enum reg_request_treatment
2859 __reg_process_hint_country_ie(struct wiphy *wiphy,
2860 			      struct regulatory_request *country_ie_request)
2861 {
2862 	struct wiphy *last_wiphy = NULL;
2863 	struct regulatory_request *lr = get_last_request();
2864 
2865 	if (reg_request_cell_base(lr)) {
2866 		/* Trust a Cell base station over the AP's country IE */
2867 		if (regdom_changes(country_ie_request->alpha2))
2868 			return REG_REQ_IGNORE;
2869 		return REG_REQ_ALREADY_SET;
2870 	} else {
2871 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2872 			return REG_REQ_IGNORE;
2873 	}
2874 
2875 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2876 		return -EINVAL;
2877 
2878 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2879 		return REG_REQ_OK;
2880 
2881 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2882 
2883 	if (last_wiphy != wiphy) {
2884 		/*
2885 		 * Two cards with two APs claiming different
2886 		 * Country IE alpha2s. We could
2887 		 * intersect them, but that seems unlikely
2888 		 * to be correct. Reject second one for now.
2889 		 */
2890 		if (regdom_changes(country_ie_request->alpha2))
2891 			return REG_REQ_IGNORE;
2892 		return REG_REQ_ALREADY_SET;
2893 	}
2894 
2895 	if (regdom_changes(country_ie_request->alpha2))
2896 		return REG_REQ_OK;
2897 	return REG_REQ_ALREADY_SET;
2898 }
2899 
2900 /**
2901  * reg_process_hint_country_ie - process regulatory requests from country IEs
2902  * @wiphy: the wireless device for the regulatory request
2903  * @country_ie_request: a regulatory request from a country IE
2904  *
2905  * The wireless subsystem can use this function to process
2906  * a regulatory request issued by a country Information Element.
2907  *
2908  * Returns one of the different reg request treatment values.
2909  */
2910 static enum reg_request_treatment
2911 reg_process_hint_country_ie(struct wiphy *wiphy,
2912 			    struct regulatory_request *country_ie_request)
2913 {
2914 	enum reg_request_treatment treatment;
2915 
2916 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2917 
2918 	switch (treatment) {
2919 	case REG_REQ_OK:
2920 		break;
2921 	case REG_REQ_IGNORE:
2922 		return REG_REQ_IGNORE;
2923 	case REG_REQ_ALREADY_SET:
2924 		reg_free_request(country_ie_request);
2925 		return REG_REQ_ALREADY_SET;
2926 	case REG_REQ_INTERSECT:
2927 		/*
2928 		 * This doesn't happen yet, not sure we
2929 		 * ever want to support it for this case.
2930 		 */
2931 		WARN_ONCE(1, "Unexpected intersection for country elements");
2932 		return REG_REQ_IGNORE;
2933 	}
2934 
2935 	country_ie_request->intersect = false;
2936 	country_ie_request->processed = false;
2937 
2938 	if (reg_query_database(country_ie_request)) {
2939 		reg_update_last_request(country_ie_request);
2940 		return REG_REQ_OK;
2941 	}
2942 
2943 	return REG_REQ_IGNORE;
2944 }
2945 
2946 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2947 {
2948 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2949 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2950 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2951 	bool dfs_domain_same;
2952 
2953 	rcu_read_lock();
2954 
2955 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2956 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2957 	if (!wiphy1_regd)
2958 		wiphy1_regd = cfg80211_regd;
2959 
2960 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2961 	if (!wiphy2_regd)
2962 		wiphy2_regd = cfg80211_regd;
2963 
2964 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2965 
2966 	rcu_read_unlock();
2967 
2968 	return dfs_domain_same;
2969 }
2970 
2971 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2972 				    struct ieee80211_channel *src_chan)
2973 {
2974 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2975 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2976 		return;
2977 
2978 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2979 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2980 		return;
2981 
2982 	if (src_chan->center_freq == dst_chan->center_freq &&
2983 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2984 		dst_chan->dfs_state = src_chan->dfs_state;
2985 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2986 	}
2987 }
2988 
2989 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2990 				       struct wiphy *src_wiphy)
2991 {
2992 	struct ieee80211_supported_band *src_sband, *dst_sband;
2993 	struct ieee80211_channel *src_chan, *dst_chan;
2994 	int i, j, band;
2995 
2996 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2997 		return;
2998 
2999 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3000 		dst_sband = dst_wiphy->bands[band];
3001 		src_sband = src_wiphy->bands[band];
3002 		if (!dst_sband || !src_sband)
3003 			continue;
3004 
3005 		for (i = 0; i < dst_sband->n_channels; i++) {
3006 			dst_chan = &dst_sband->channels[i];
3007 			for (j = 0; j < src_sband->n_channels; j++) {
3008 				src_chan = &src_sband->channels[j];
3009 				reg_copy_dfs_chan_state(dst_chan, src_chan);
3010 			}
3011 		}
3012 	}
3013 }
3014 
3015 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3016 {
3017 	struct cfg80211_registered_device *rdev;
3018 
3019 	ASSERT_RTNL();
3020 
3021 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3022 		if (wiphy == &rdev->wiphy)
3023 			continue;
3024 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3025 	}
3026 }
3027 
3028 /* This processes *all* regulatory hints */
3029 static void reg_process_hint(struct regulatory_request *reg_request)
3030 {
3031 	struct wiphy *wiphy = NULL;
3032 	enum reg_request_treatment treatment;
3033 	enum nl80211_reg_initiator initiator = reg_request->initiator;
3034 
3035 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3036 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3037 
3038 	switch (initiator) {
3039 	case NL80211_REGDOM_SET_BY_CORE:
3040 		treatment = reg_process_hint_core(reg_request);
3041 		break;
3042 	case NL80211_REGDOM_SET_BY_USER:
3043 		treatment = reg_process_hint_user(reg_request);
3044 		break;
3045 	case NL80211_REGDOM_SET_BY_DRIVER:
3046 		if (!wiphy)
3047 			goto out_free;
3048 		treatment = reg_process_hint_driver(wiphy, reg_request);
3049 		break;
3050 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3051 		if (!wiphy)
3052 			goto out_free;
3053 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3054 		break;
3055 	default:
3056 		WARN(1, "invalid initiator %d\n", initiator);
3057 		goto out_free;
3058 	}
3059 
3060 	if (treatment == REG_REQ_IGNORE)
3061 		goto out_free;
3062 
3063 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3064 	     "unexpected treatment value %d\n", treatment);
3065 
3066 	/* This is required so that the orig_* parameters are saved.
3067 	 * NOTE: treatment must be set for any case that reaches here!
3068 	 */
3069 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3070 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3071 		wiphy_update_regulatory(wiphy, initiator);
3072 		wiphy_all_share_dfs_chan_state(wiphy);
3073 		reg_check_channels();
3074 	}
3075 
3076 	return;
3077 
3078 out_free:
3079 	reg_free_request(reg_request);
3080 }
3081 
3082 static void notify_self_managed_wiphys(struct regulatory_request *request)
3083 {
3084 	struct cfg80211_registered_device *rdev;
3085 	struct wiphy *wiphy;
3086 
3087 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3088 		wiphy = &rdev->wiphy;
3089 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3090 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3091 			reg_call_notifier(wiphy, request);
3092 	}
3093 }
3094 
3095 /*
3096  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3097  * Regulatory hints come on a first come first serve basis and we
3098  * must process each one atomically.
3099  */
3100 static void reg_process_pending_hints(void)
3101 {
3102 	struct regulatory_request *reg_request, *lr;
3103 
3104 	lr = get_last_request();
3105 
3106 	/* When last_request->processed becomes true this will be rescheduled */
3107 	if (lr && !lr->processed) {
3108 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3109 		return;
3110 	}
3111 
3112 	spin_lock(&reg_requests_lock);
3113 
3114 	if (list_empty(&reg_requests_list)) {
3115 		spin_unlock(&reg_requests_lock);
3116 		return;
3117 	}
3118 
3119 	reg_request = list_first_entry(&reg_requests_list,
3120 				       struct regulatory_request,
3121 				       list);
3122 	list_del_init(&reg_request->list);
3123 
3124 	spin_unlock(&reg_requests_lock);
3125 
3126 	notify_self_managed_wiphys(reg_request);
3127 
3128 	reg_process_hint(reg_request);
3129 
3130 	lr = get_last_request();
3131 
3132 	spin_lock(&reg_requests_lock);
3133 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3134 		schedule_work(&reg_work);
3135 	spin_unlock(&reg_requests_lock);
3136 }
3137 
3138 /* Processes beacon hints -- this has nothing to do with country IEs */
3139 static void reg_process_pending_beacon_hints(void)
3140 {
3141 	struct cfg80211_registered_device *rdev;
3142 	struct reg_beacon *pending_beacon, *tmp;
3143 
3144 	/* This goes through the _pending_ beacon list */
3145 	spin_lock_bh(&reg_pending_beacons_lock);
3146 
3147 	list_for_each_entry_safe(pending_beacon, tmp,
3148 				 &reg_pending_beacons, list) {
3149 		list_del_init(&pending_beacon->list);
3150 
3151 		/* Applies the beacon hint to current wiphys */
3152 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3153 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3154 
3155 		/* Remembers the beacon hint for new wiphys or reg changes */
3156 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3157 	}
3158 
3159 	spin_unlock_bh(&reg_pending_beacons_lock);
3160 }
3161 
3162 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3163 {
3164 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3165 	const struct ieee80211_regdomain *tmp;
3166 	const struct ieee80211_regdomain *regd;
3167 	enum nl80211_band band;
3168 	struct regulatory_request request = {};
3169 
3170 	ASSERT_RTNL();
3171 	lockdep_assert_wiphy(wiphy);
3172 
3173 	spin_lock(&reg_requests_lock);
3174 	regd = rdev->requested_regd;
3175 	rdev->requested_regd = NULL;
3176 	spin_unlock(&reg_requests_lock);
3177 
3178 	if (!regd)
3179 		return;
3180 
3181 	tmp = get_wiphy_regdom(wiphy);
3182 	rcu_assign_pointer(wiphy->regd, regd);
3183 	rcu_free_regdom(tmp);
3184 
3185 	for (band = 0; band < NUM_NL80211_BANDS; band++)
3186 		handle_band_custom(wiphy, wiphy->bands[band], regd);
3187 
3188 	reg_process_ht_flags(wiphy);
3189 
3190 	request.wiphy_idx = get_wiphy_idx(wiphy);
3191 	request.alpha2[0] = regd->alpha2[0];
3192 	request.alpha2[1] = regd->alpha2[1];
3193 	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3194 
3195 	nl80211_send_wiphy_reg_change_event(&request);
3196 }
3197 
3198 static void reg_process_self_managed_hints(void)
3199 {
3200 	struct cfg80211_registered_device *rdev;
3201 
3202 	ASSERT_RTNL();
3203 
3204 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3205 		wiphy_lock(&rdev->wiphy);
3206 		reg_process_self_managed_hint(&rdev->wiphy);
3207 		wiphy_unlock(&rdev->wiphy);
3208 	}
3209 
3210 	reg_check_channels();
3211 }
3212 
3213 static void reg_todo(struct work_struct *work)
3214 {
3215 	rtnl_lock();
3216 	reg_process_pending_hints();
3217 	reg_process_pending_beacon_hints();
3218 	reg_process_self_managed_hints();
3219 	rtnl_unlock();
3220 }
3221 
3222 static void queue_regulatory_request(struct regulatory_request *request)
3223 {
3224 	request->alpha2[0] = toupper(request->alpha2[0]);
3225 	request->alpha2[1] = toupper(request->alpha2[1]);
3226 
3227 	spin_lock(&reg_requests_lock);
3228 	list_add_tail(&request->list, &reg_requests_list);
3229 	spin_unlock(&reg_requests_lock);
3230 
3231 	schedule_work(&reg_work);
3232 }
3233 
3234 /*
3235  * Core regulatory hint -- happens during cfg80211_init()
3236  * and when we restore regulatory settings.
3237  */
3238 static int regulatory_hint_core(const char *alpha2)
3239 {
3240 	struct regulatory_request *request;
3241 
3242 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3243 	if (!request)
3244 		return -ENOMEM;
3245 
3246 	request->alpha2[0] = alpha2[0];
3247 	request->alpha2[1] = alpha2[1];
3248 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3249 	request->wiphy_idx = WIPHY_IDX_INVALID;
3250 
3251 	queue_regulatory_request(request);
3252 
3253 	return 0;
3254 }
3255 
3256 /* User hints */
3257 int regulatory_hint_user(const char *alpha2,
3258 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3259 {
3260 	struct regulatory_request *request;
3261 
3262 	if (WARN_ON(!alpha2))
3263 		return -EINVAL;
3264 
3265 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3266 		return -EINVAL;
3267 
3268 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3269 	if (!request)
3270 		return -ENOMEM;
3271 
3272 	request->wiphy_idx = WIPHY_IDX_INVALID;
3273 	request->alpha2[0] = alpha2[0];
3274 	request->alpha2[1] = alpha2[1];
3275 	request->initiator = NL80211_REGDOM_SET_BY_USER;
3276 	request->user_reg_hint_type = user_reg_hint_type;
3277 
3278 	/* Allow calling CRDA again */
3279 	reset_crda_timeouts();
3280 
3281 	queue_regulatory_request(request);
3282 
3283 	return 0;
3284 }
3285 
3286 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3287 {
3288 	spin_lock(&reg_indoor_lock);
3289 
3290 	/* It is possible that more than one user space process is trying to
3291 	 * configure the indoor setting. To handle such cases, clear the indoor
3292 	 * setting in case that some process does not think that the device
3293 	 * is operating in an indoor environment. In addition, if a user space
3294 	 * process indicates that it is controlling the indoor setting, save its
3295 	 * portid, i.e., make it the owner.
3296 	 */
3297 	reg_is_indoor = is_indoor;
3298 	if (reg_is_indoor) {
3299 		if (!reg_is_indoor_portid)
3300 			reg_is_indoor_portid = portid;
3301 	} else {
3302 		reg_is_indoor_portid = 0;
3303 	}
3304 
3305 	spin_unlock(&reg_indoor_lock);
3306 
3307 	if (!is_indoor)
3308 		reg_check_channels();
3309 
3310 	return 0;
3311 }
3312 
3313 void regulatory_netlink_notify(u32 portid)
3314 {
3315 	spin_lock(&reg_indoor_lock);
3316 
3317 	if (reg_is_indoor_portid != portid) {
3318 		spin_unlock(&reg_indoor_lock);
3319 		return;
3320 	}
3321 
3322 	reg_is_indoor = false;
3323 	reg_is_indoor_portid = 0;
3324 
3325 	spin_unlock(&reg_indoor_lock);
3326 
3327 	reg_check_channels();
3328 }
3329 
3330 /* Driver hints */
3331 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3332 {
3333 	struct regulatory_request *request;
3334 
3335 	if (WARN_ON(!alpha2 || !wiphy))
3336 		return -EINVAL;
3337 
3338 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3339 
3340 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3341 	if (!request)
3342 		return -ENOMEM;
3343 
3344 	request->wiphy_idx = get_wiphy_idx(wiphy);
3345 
3346 	request->alpha2[0] = alpha2[0];
3347 	request->alpha2[1] = alpha2[1];
3348 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3349 
3350 	/* Allow calling CRDA again */
3351 	reset_crda_timeouts();
3352 
3353 	queue_regulatory_request(request);
3354 
3355 	return 0;
3356 }
3357 EXPORT_SYMBOL(regulatory_hint);
3358 
3359 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3360 				const u8 *country_ie, u8 country_ie_len)
3361 {
3362 	char alpha2[2];
3363 	enum environment_cap env = ENVIRON_ANY;
3364 	struct regulatory_request *request = NULL, *lr;
3365 
3366 	/* IE len must be evenly divisible by 2 */
3367 	if (country_ie_len & 0x01)
3368 		return;
3369 
3370 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3371 		return;
3372 
3373 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3374 	if (!request)
3375 		return;
3376 
3377 	alpha2[0] = country_ie[0];
3378 	alpha2[1] = country_ie[1];
3379 
3380 	if (country_ie[2] == 'I')
3381 		env = ENVIRON_INDOOR;
3382 	else if (country_ie[2] == 'O')
3383 		env = ENVIRON_OUTDOOR;
3384 
3385 	rcu_read_lock();
3386 	lr = get_last_request();
3387 
3388 	if (unlikely(!lr))
3389 		goto out;
3390 
3391 	/*
3392 	 * We will run this only upon a successful connection on cfg80211.
3393 	 * We leave conflict resolution to the workqueue, where can hold
3394 	 * the RTNL.
3395 	 */
3396 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3397 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3398 		goto out;
3399 
3400 	request->wiphy_idx = get_wiphy_idx(wiphy);
3401 	request->alpha2[0] = alpha2[0];
3402 	request->alpha2[1] = alpha2[1];
3403 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3404 	request->country_ie_env = env;
3405 
3406 	/* Allow calling CRDA again */
3407 	reset_crda_timeouts();
3408 
3409 	queue_regulatory_request(request);
3410 	request = NULL;
3411 out:
3412 	kfree(request);
3413 	rcu_read_unlock();
3414 }
3415 
3416 static void restore_alpha2(char *alpha2, bool reset_user)
3417 {
3418 	/* indicates there is no alpha2 to consider for restoration */
3419 	alpha2[0] = '9';
3420 	alpha2[1] = '7';
3421 
3422 	/* The user setting has precedence over the module parameter */
3423 	if (is_user_regdom_saved()) {
3424 		/* Unless we're asked to ignore it and reset it */
3425 		if (reset_user) {
3426 			pr_debug("Restoring regulatory settings including user preference\n");
3427 			user_alpha2[0] = '9';
3428 			user_alpha2[1] = '7';
3429 
3430 			/*
3431 			 * If we're ignoring user settings, we still need to
3432 			 * check the module parameter to ensure we put things
3433 			 * back as they were for a full restore.
3434 			 */
3435 			if (!is_world_regdom(ieee80211_regdom)) {
3436 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3437 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3438 				alpha2[0] = ieee80211_regdom[0];
3439 				alpha2[1] = ieee80211_regdom[1];
3440 			}
3441 		} else {
3442 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3443 				 user_alpha2[0], user_alpha2[1]);
3444 			alpha2[0] = user_alpha2[0];
3445 			alpha2[1] = user_alpha2[1];
3446 		}
3447 	} else if (!is_world_regdom(ieee80211_regdom)) {
3448 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3449 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3450 		alpha2[0] = ieee80211_regdom[0];
3451 		alpha2[1] = ieee80211_regdom[1];
3452 	} else
3453 		pr_debug("Restoring regulatory settings\n");
3454 }
3455 
3456 static void restore_custom_reg_settings(struct wiphy *wiphy)
3457 {
3458 	struct ieee80211_supported_band *sband;
3459 	enum nl80211_band band;
3460 	struct ieee80211_channel *chan;
3461 	int i;
3462 
3463 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3464 		sband = wiphy->bands[band];
3465 		if (!sband)
3466 			continue;
3467 		for (i = 0; i < sband->n_channels; i++) {
3468 			chan = &sband->channels[i];
3469 			chan->flags = chan->orig_flags;
3470 			chan->max_antenna_gain = chan->orig_mag;
3471 			chan->max_power = chan->orig_mpwr;
3472 			chan->beacon_found = false;
3473 		}
3474 	}
3475 }
3476 
3477 /*
3478  * Restoring regulatory settings involves ignoring any
3479  * possibly stale country IE information and user regulatory
3480  * settings if so desired, this includes any beacon hints
3481  * learned as we could have traveled outside to another country
3482  * after disconnection. To restore regulatory settings we do
3483  * exactly what we did at bootup:
3484  *
3485  *   - send a core regulatory hint
3486  *   - send a user regulatory hint if applicable
3487  *
3488  * Device drivers that send a regulatory hint for a specific country
3489  * keep their own regulatory domain on wiphy->regd so that does
3490  * not need to be remembered.
3491  */
3492 static void restore_regulatory_settings(bool reset_user, bool cached)
3493 {
3494 	char alpha2[2];
3495 	char world_alpha2[2];
3496 	struct reg_beacon *reg_beacon, *btmp;
3497 	LIST_HEAD(tmp_reg_req_list);
3498 	struct cfg80211_registered_device *rdev;
3499 
3500 	ASSERT_RTNL();
3501 
3502 	/*
3503 	 * Clear the indoor setting in case that it is not controlled by user
3504 	 * space, as otherwise there is no guarantee that the device is still
3505 	 * operating in an indoor environment.
3506 	 */
3507 	spin_lock(&reg_indoor_lock);
3508 	if (reg_is_indoor && !reg_is_indoor_portid) {
3509 		reg_is_indoor = false;
3510 		reg_check_channels();
3511 	}
3512 	spin_unlock(&reg_indoor_lock);
3513 
3514 	reset_regdomains(true, &world_regdom);
3515 	restore_alpha2(alpha2, reset_user);
3516 
3517 	/*
3518 	 * If there's any pending requests we simply
3519 	 * stash them to a temporary pending queue and
3520 	 * add then after we've restored regulatory
3521 	 * settings.
3522 	 */
3523 	spin_lock(&reg_requests_lock);
3524 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3525 	spin_unlock(&reg_requests_lock);
3526 
3527 	/* Clear beacon hints */
3528 	spin_lock_bh(&reg_pending_beacons_lock);
3529 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3530 		list_del(&reg_beacon->list);
3531 		kfree(reg_beacon);
3532 	}
3533 	spin_unlock_bh(&reg_pending_beacons_lock);
3534 
3535 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3536 		list_del(&reg_beacon->list);
3537 		kfree(reg_beacon);
3538 	}
3539 
3540 	/* First restore to the basic regulatory settings */
3541 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3542 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3543 
3544 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3545 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3546 			continue;
3547 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3548 			restore_custom_reg_settings(&rdev->wiphy);
3549 	}
3550 
3551 	if (cached && (!is_an_alpha2(alpha2) ||
3552 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3553 		reset_regdomains(false, cfg80211_world_regdom);
3554 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3555 		print_regdomain(get_cfg80211_regdom());
3556 		nl80211_send_reg_change_event(&core_request_world);
3557 		reg_set_request_processed();
3558 
3559 		if (is_an_alpha2(alpha2) &&
3560 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3561 			struct regulatory_request *ureq;
3562 
3563 			spin_lock(&reg_requests_lock);
3564 			ureq = list_last_entry(&reg_requests_list,
3565 					       struct regulatory_request,
3566 					       list);
3567 			list_del(&ureq->list);
3568 			spin_unlock(&reg_requests_lock);
3569 
3570 			notify_self_managed_wiphys(ureq);
3571 			reg_update_last_request(ureq);
3572 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3573 				   REGD_SOURCE_CACHED);
3574 		}
3575 	} else {
3576 		regulatory_hint_core(world_alpha2);
3577 
3578 		/*
3579 		 * This restores the ieee80211_regdom module parameter
3580 		 * preference or the last user requested regulatory
3581 		 * settings, user regulatory settings takes precedence.
3582 		 */
3583 		if (is_an_alpha2(alpha2))
3584 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3585 	}
3586 
3587 	spin_lock(&reg_requests_lock);
3588 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3589 	spin_unlock(&reg_requests_lock);
3590 
3591 	pr_debug("Kicking the queue\n");
3592 
3593 	schedule_work(&reg_work);
3594 }
3595 
3596 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3597 {
3598 	struct cfg80211_registered_device *rdev;
3599 	struct wireless_dev *wdev;
3600 
3601 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3602 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3603 			wdev_lock(wdev);
3604 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3605 				wdev_unlock(wdev);
3606 				return false;
3607 			}
3608 			wdev_unlock(wdev);
3609 		}
3610 	}
3611 
3612 	return true;
3613 }
3614 
3615 void regulatory_hint_disconnect(void)
3616 {
3617 	/* Restore of regulatory settings is not required when wiphy(s)
3618 	 * ignore IE from connected access point but clearance of beacon hints
3619 	 * is required when wiphy(s) supports beacon hints.
3620 	 */
3621 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3622 		struct reg_beacon *reg_beacon, *btmp;
3623 
3624 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3625 			return;
3626 
3627 		spin_lock_bh(&reg_pending_beacons_lock);
3628 		list_for_each_entry_safe(reg_beacon, btmp,
3629 					 &reg_pending_beacons, list) {
3630 			list_del(&reg_beacon->list);
3631 			kfree(reg_beacon);
3632 		}
3633 		spin_unlock_bh(&reg_pending_beacons_lock);
3634 
3635 		list_for_each_entry_safe(reg_beacon, btmp,
3636 					 &reg_beacon_list, list) {
3637 			list_del(&reg_beacon->list);
3638 			kfree(reg_beacon);
3639 		}
3640 
3641 		return;
3642 	}
3643 
3644 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3645 	restore_regulatory_settings(false, true);
3646 }
3647 
3648 static bool freq_is_chan_12_13_14(u32 freq)
3649 {
3650 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3651 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3652 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3653 		return true;
3654 	return false;
3655 }
3656 
3657 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3658 {
3659 	struct reg_beacon *pending_beacon;
3660 
3661 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3662 		if (ieee80211_channel_equal(beacon_chan,
3663 					    &pending_beacon->chan))
3664 			return true;
3665 	return false;
3666 }
3667 
3668 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3669 				 struct ieee80211_channel *beacon_chan,
3670 				 gfp_t gfp)
3671 {
3672 	struct reg_beacon *reg_beacon;
3673 	bool processing;
3674 
3675 	if (beacon_chan->beacon_found ||
3676 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3677 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3678 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3679 		return 0;
3680 
3681 	spin_lock_bh(&reg_pending_beacons_lock);
3682 	processing = pending_reg_beacon(beacon_chan);
3683 	spin_unlock_bh(&reg_pending_beacons_lock);
3684 
3685 	if (processing)
3686 		return 0;
3687 
3688 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3689 	if (!reg_beacon)
3690 		return -ENOMEM;
3691 
3692 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3693 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3694 		 ieee80211_freq_khz_to_channel(
3695 			 ieee80211_channel_to_khz(beacon_chan)),
3696 		 wiphy_name(wiphy));
3697 
3698 	memcpy(&reg_beacon->chan, beacon_chan,
3699 	       sizeof(struct ieee80211_channel));
3700 
3701 	/*
3702 	 * Since we can be called from BH or and non-BH context
3703 	 * we must use spin_lock_bh()
3704 	 */
3705 	spin_lock_bh(&reg_pending_beacons_lock);
3706 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3707 	spin_unlock_bh(&reg_pending_beacons_lock);
3708 
3709 	schedule_work(&reg_work);
3710 
3711 	return 0;
3712 }
3713 
3714 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3715 {
3716 	unsigned int i;
3717 	const struct ieee80211_reg_rule *reg_rule = NULL;
3718 	const struct ieee80211_freq_range *freq_range = NULL;
3719 	const struct ieee80211_power_rule *power_rule = NULL;
3720 	char bw[32], cac_time[32];
3721 
3722 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3723 
3724 	for (i = 0; i < rd->n_reg_rules; i++) {
3725 		reg_rule = &rd->reg_rules[i];
3726 		freq_range = &reg_rule->freq_range;
3727 		power_rule = &reg_rule->power_rule;
3728 
3729 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3730 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3731 				 freq_range->max_bandwidth_khz,
3732 				 reg_get_max_bandwidth(rd, reg_rule));
3733 		else
3734 			snprintf(bw, sizeof(bw), "%d KHz",
3735 				 freq_range->max_bandwidth_khz);
3736 
3737 		if (reg_rule->flags & NL80211_RRF_DFS)
3738 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3739 				  reg_rule->dfs_cac_ms/1000);
3740 		else
3741 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3742 
3743 
3744 		/*
3745 		 * There may not be documentation for max antenna gain
3746 		 * in certain regions
3747 		 */
3748 		if (power_rule->max_antenna_gain)
3749 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3750 				freq_range->start_freq_khz,
3751 				freq_range->end_freq_khz,
3752 				bw,
3753 				power_rule->max_antenna_gain,
3754 				power_rule->max_eirp,
3755 				cac_time);
3756 		else
3757 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3758 				freq_range->start_freq_khz,
3759 				freq_range->end_freq_khz,
3760 				bw,
3761 				power_rule->max_eirp,
3762 				cac_time);
3763 	}
3764 }
3765 
3766 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3767 {
3768 	switch (dfs_region) {
3769 	case NL80211_DFS_UNSET:
3770 	case NL80211_DFS_FCC:
3771 	case NL80211_DFS_ETSI:
3772 	case NL80211_DFS_JP:
3773 		return true;
3774 	default:
3775 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3776 		return false;
3777 	}
3778 }
3779 
3780 static void print_regdomain(const struct ieee80211_regdomain *rd)
3781 {
3782 	struct regulatory_request *lr = get_last_request();
3783 
3784 	if (is_intersected_alpha2(rd->alpha2)) {
3785 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3786 			struct cfg80211_registered_device *rdev;
3787 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3788 			if (rdev) {
3789 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3790 					rdev->country_ie_alpha2[0],
3791 					rdev->country_ie_alpha2[1]);
3792 			} else
3793 				pr_debug("Current regulatory domain intersected:\n");
3794 		} else
3795 			pr_debug("Current regulatory domain intersected:\n");
3796 	} else if (is_world_regdom(rd->alpha2)) {
3797 		pr_debug("World regulatory domain updated:\n");
3798 	} else {
3799 		if (is_unknown_alpha2(rd->alpha2))
3800 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3801 		else {
3802 			if (reg_request_cell_base(lr))
3803 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3804 					rd->alpha2[0], rd->alpha2[1]);
3805 			else
3806 				pr_debug("Regulatory domain changed to country: %c%c\n",
3807 					rd->alpha2[0], rd->alpha2[1]);
3808 		}
3809 	}
3810 
3811 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3812 	print_rd_rules(rd);
3813 }
3814 
3815 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3816 {
3817 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3818 	print_rd_rules(rd);
3819 }
3820 
3821 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3822 {
3823 	if (!is_world_regdom(rd->alpha2))
3824 		return -EINVAL;
3825 	update_world_regdomain(rd);
3826 	return 0;
3827 }
3828 
3829 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3830 			   struct regulatory_request *user_request)
3831 {
3832 	const struct ieee80211_regdomain *intersected_rd = NULL;
3833 
3834 	if (!regdom_changes(rd->alpha2))
3835 		return -EALREADY;
3836 
3837 	if (!is_valid_rd(rd)) {
3838 		pr_err("Invalid regulatory domain detected: %c%c\n",
3839 		       rd->alpha2[0], rd->alpha2[1]);
3840 		print_regdomain_info(rd);
3841 		return -EINVAL;
3842 	}
3843 
3844 	if (!user_request->intersect) {
3845 		reset_regdomains(false, rd);
3846 		return 0;
3847 	}
3848 
3849 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3850 	if (!intersected_rd)
3851 		return -EINVAL;
3852 
3853 	kfree(rd);
3854 	rd = NULL;
3855 	reset_regdomains(false, intersected_rd);
3856 
3857 	return 0;
3858 }
3859 
3860 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3861 			     struct regulatory_request *driver_request)
3862 {
3863 	const struct ieee80211_regdomain *regd;
3864 	const struct ieee80211_regdomain *intersected_rd = NULL;
3865 	const struct ieee80211_regdomain *tmp;
3866 	struct wiphy *request_wiphy;
3867 
3868 	if (is_world_regdom(rd->alpha2))
3869 		return -EINVAL;
3870 
3871 	if (!regdom_changes(rd->alpha2))
3872 		return -EALREADY;
3873 
3874 	if (!is_valid_rd(rd)) {
3875 		pr_err("Invalid regulatory domain detected: %c%c\n",
3876 		       rd->alpha2[0], rd->alpha2[1]);
3877 		print_regdomain_info(rd);
3878 		return -EINVAL;
3879 	}
3880 
3881 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3882 	if (!request_wiphy)
3883 		return -ENODEV;
3884 
3885 	if (!driver_request->intersect) {
3886 		ASSERT_RTNL();
3887 		wiphy_lock(request_wiphy);
3888 		if (request_wiphy->regd) {
3889 			wiphy_unlock(request_wiphy);
3890 			return -EALREADY;
3891 		}
3892 
3893 		regd = reg_copy_regd(rd);
3894 		if (IS_ERR(regd)) {
3895 			wiphy_unlock(request_wiphy);
3896 			return PTR_ERR(regd);
3897 		}
3898 
3899 		rcu_assign_pointer(request_wiphy->regd, regd);
3900 		wiphy_unlock(request_wiphy);
3901 		reset_regdomains(false, rd);
3902 		return 0;
3903 	}
3904 
3905 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3906 	if (!intersected_rd)
3907 		return -EINVAL;
3908 
3909 	/*
3910 	 * We can trash what CRDA provided now.
3911 	 * However if a driver requested this specific regulatory
3912 	 * domain we keep it for its private use
3913 	 */
3914 	tmp = get_wiphy_regdom(request_wiphy);
3915 	rcu_assign_pointer(request_wiphy->regd, rd);
3916 	rcu_free_regdom(tmp);
3917 
3918 	rd = NULL;
3919 
3920 	reset_regdomains(false, intersected_rd);
3921 
3922 	return 0;
3923 }
3924 
3925 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3926 				 struct regulatory_request *country_ie_request)
3927 {
3928 	struct wiphy *request_wiphy;
3929 
3930 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3931 	    !is_unknown_alpha2(rd->alpha2))
3932 		return -EINVAL;
3933 
3934 	/*
3935 	 * Lets only bother proceeding on the same alpha2 if the current
3936 	 * rd is non static (it means CRDA was present and was used last)
3937 	 * and the pending request came in from a country IE
3938 	 */
3939 
3940 	if (!is_valid_rd(rd)) {
3941 		pr_err("Invalid regulatory domain detected: %c%c\n",
3942 		       rd->alpha2[0], rd->alpha2[1]);
3943 		print_regdomain_info(rd);
3944 		return -EINVAL;
3945 	}
3946 
3947 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3948 	if (!request_wiphy)
3949 		return -ENODEV;
3950 
3951 	if (country_ie_request->intersect)
3952 		return -EINVAL;
3953 
3954 	reset_regdomains(false, rd);
3955 	return 0;
3956 }
3957 
3958 /*
3959  * Use this call to set the current regulatory domain. Conflicts with
3960  * multiple drivers can be ironed out later. Caller must've already
3961  * kmalloc'd the rd structure.
3962  */
3963 int set_regdom(const struct ieee80211_regdomain *rd,
3964 	       enum ieee80211_regd_source regd_src)
3965 {
3966 	struct regulatory_request *lr;
3967 	bool user_reset = false;
3968 	int r;
3969 
3970 	if (IS_ERR_OR_NULL(rd))
3971 		return -ENODATA;
3972 
3973 	if (!reg_is_valid_request(rd->alpha2)) {
3974 		kfree(rd);
3975 		return -EINVAL;
3976 	}
3977 
3978 	if (regd_src == REGD_SOURCE_CRDA)
3979 		reset_crda_timeouts();
3980 
3981 	lr = get_last_request();
3982 
3983 	/* Note that this doesn't update the wiphys, this is done below */
3984 	switch (lr->initiator) {
3985 	case NL80211_REGDOM_SET_BY_CORE:
3986 		r = reg_set_rd_core(rd);
3987 		break;
3988 	case NL80211_REGDOM_SET_BY_USER:
3989 		cfg80211_save_user_regdom(rd);
3990 		r = reg_set_rd_user(rd, lr);
3991 		user_reset = true;
3992 		break;
3993 	case NL80211_REGDOM_SET_BY_DRIVER:
3994 		r = reg_set_rd_driver(rd, lr);
3995 		break;
3996 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3997 		r = reg_set_rd_country_ie(rd, lr);
3998 		break;
3999 	default:
4000 		WARN(1, "invalid initiator %d\n", lr->initiator);
4001 		kfree(rd);
4002 		return -EINVAL;
4003 	}
4004 
4005 	if (r) {
4006 		switch (r) {
4007 		case -EALREADY:
4008 			reg_set_request_processed();
4009 			break;
4010 		default:
4011 			/* Back to world regulatory in case of errors */
4012 			restore_regulatory_settings(user_reset, false);
4013 		}
4014 
4015 		kfree(rd);
4016 		return r;
4017 	}
4018 
4019 	/* This would make this whole thing pointless */
4020 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4021 		return -EINVAL;
4022 
4023 	/* update all wiphys now with the new established regulatory domain */
4024 	update_all_wiphy_regulatory(lr->initiator);
4025 
4026 	print_regdomain(get_cfg80211_regdom());
4027 
4028 	nl80211_send_reg_change_event(lr);
4029 
4030 	reg_set_request_processed();
4031 
4032 	return 0;
4033 }
4034 
4035 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4036 				       struct ieee80211_regdomain *rd)
4037 {
4038 	const struct ieee80211_regdomain *regd;
4039 	const struct ieee80211_regdomain *prev_regd;
4040 	struct cfg80211_registered_device *rdev;
4041 
4042 	if (WARN_ON(!wiphy || !rd))
4043 		return -EINVAL;
4044 
4045 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4046 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4047 		return -EPERM;
4048 
4049 	if (WARN(!is_valid_rd(rd),
4050 		 "Invalid regulatory domain detected: %c%c\n",
4051 		 rd->alpha2[0], rd->alpha2[1])) {
4052 		print_regdomain_info(rd);
4053 		return -EINVAL;
4054 	}
4055 
4056 	regd = reg_copy_regd(rd);
4057 	if (IS_ERR(regd))
4058 		return PTR_ERR(regd);
4059 
4060 	rdev = wiphy_to_rdev(wiphy);
4061 
4062 	spin_lock(&reg_requests_lock);
4063 	prev_regd = rdev->requested_regd;
4064 	rdev->requested_regd = regd;
4065 	spin_unlock(&reg_requests_lock);
4066 
4067 	kfree(prev_regd);
4068 	return 0;
4069 }
4070 
4071 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4072 			      struct ieee80211_regdomain *rd)
4073 {
4074 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4075 
4076 	if (ret)
4077 		return ret;
4078 
4079 	schedule_work(&reg_work);
4080 	return 0;
4081 }
4082 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4083 
4084 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4085 				   struct ieee80211_regdomain *rd)
4086 {
4087 	int ret;
4088 
4089 	ASSERT_RTNL();
4090 
4091 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4092 	if (ret)
4093 		return ret;
4094 
4095 	/* process the request immediately */
4096 	reg_process_self_managed_hint(wiphy);
4097 	reg_check_channels();
4098 	return 0;
4099 }
4100 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4101 
4102 void wiphy_regulatory_register(struct wiphy *wiphy)
4103 {
4104 	struct regulatory_request *lr = get_last_request();
4105 
4106 	/* self-managed devices ignore beacon hints and country IE */
4107 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4108 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4109 					   REGULATORY_COUNTRY_IE_IGNORE;
4110 
4111 		/*
4112 		 * The last request may have been received before this
4113 		 * registration call. Call the driver notifier if
4114 		 * initiator is USER.
4115 		 */
4116 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4117 			reg_call_notifier(wiphy, lr);
4118 	}
4119 
4120 	if (!reg_dev_ignore_cell_hint(wiphy))
4121 		reg_num_devs_support_basehint++;
4122 
4123 	wiphy_update_regulatory(wiphy, lr->initiator);
4124 	wiphy_all_share_dfs_chan_state(wiphy);
4125 	reg_process_self_managed_hints();
4126 }
4127 
4128 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4129 {
4130 	struct wiphy *request_wiphy = NULL;
4131 	struct regulatory_request *lr;
4132 
4133 	lr = get_last_request();
4134 
4135 	if (!reg_dev_ignore_cell_hint(wiphy))
4136 		reg_num_devs_support_basehint--;
4137 
4138 	rcu_free_regdom(get_wiphy_regdom(wiphy));
4139 	RCU_INIT_POINTER(wiphy->regd, NULL);
4140 
4141 	if (lr)
4142 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4143 
4144 	if (!request_wiphy || request_wiphy != wiphy)
4145 		return;
4146 
4147 	lr->wiphy_idx = WIPHY_IDX_INVALID;
4148 	lr->country_ie_env = ENVIRON_ANY;
4149 }
4150 
4151 /*
4152  * See FCC notices for UNII band definitions
4153  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4154  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4155  */
4156 int cfg80211_get_unii(int freq)
4157 {
4158 	/* UNII-1 */
4159 	if (freq >= 5150 && freq <= 5250)
4160 		return 0;
4161 
4162 	/* UNII-2A */
4163 	if (freq > 5250 && freq <= 5350)
4164 		return 1;
4165 
4166 	/* UNII-2B */
4167 	if (freq > 5350 && freq <= 5470)
4168 		return 2;
4169 
4170 	/* UNII-2C */
4171 	if (freq > 5470 && freq <= 5725)
4172 		return 3;
4173 
4174 	/* UNII-3 */
4175 	if (freq > 5725 && freq <= 5825)
4176 		return 4;
4177 
4178 	/* UNII-5 */
4179 	if (freq > 5925 && freq <= 6425)
4180 		return 5;
4181 
4182 	/* UNII-6 */
4183 	if (freq > 6425 && freq <= 6525)
4184 		return 6;
4185 
4186 	/* UNII-7 */
4187 	if (freq > 6525 && freq <= 6875)
4188 		return 7;
4189 
4190 	/* UNII-8 */
4191 	if (freq > 6875 && freq <= 7125)
4192 		return 8;
4193 
4194 	return -EINVAL;
4195 }
4196 
4197 bool regulatory_indoor_allowed(void)
4198 {
4199 	return reg_is_indoor;
4200 }
4201 
4202 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4203 {
4204 	const struct ieee80211_regdomain *regd = NULL;
4205 	const struct ieee80211_regdomain *wiphy_regd = NULL;
4206 	bool pre_cac_allowed = false;
4207 
4208 	rcu_read_lock();
4209 
4210 	regd = rcu_dereference(cfg80211_regdomain);
4211 	wiphy_regd = rcu_dereference(wiphy->regd);
4212 	if (!wiphy_regd) {
4213 		if (regd->dfs_region == NL80211_DFS_ETSI)
4214 			pre_cac_allowed = true;
4215 
4216 		rcu_read_unlock();
4217 
4218 		return pre_cac_allowed;
4219 	}
4220 
4221 	if (regd->dfs_region == wiphy_regd->dfs_region &&
4222 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4223 		pre_cac_allowed = true;
4224 
4225 	rcu_read_unlock();
4226 
4227 	return pre_cac_allowed;
4228 }
4229 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4230 
4231 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4232 {
4233 	struct wireless_dev *wdev;
4234 	/* If we finished CAC or received radar, we should end any
4235 	 * CAC running on the same channels.
4236 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4237 	 * either all channels are available - those the CAC_FINISHED
4238 	 * event has effected another wdev state, or there is a channel
4239 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4240 	 * event has effected another wdev state.
4241 	 * In both cases we should end the CAC on the wdev.
4242 	 */
4243 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4244 		struct cfg80211_chan_def *chandef;
4245 
4246 		if (!wdev->cac_started)
4247 			continue;
4248 
4249 		/* FIXME: radar detection is tied to link 0 for now */
4250 		chandef = wdev_chandef(wdev, 0);
4251 		if (!chandef)
4252 			continue;
4253 
4254 		if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4255 			rdev_end_cac(rdev, wdev->netdev);
4256 	}
4257 }
4258 
4259 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4260 				    struct cfg80211_chan_def *chandef,
4261 				    enum nl80211_dfs_state dfs_state,
4262 				    enum nl80211_radar_event event)
4263 {
4264 	struct cfg80211_registered_device *rdev;
4265 
4266 	ASSERT_RTNL();
4267 
4268 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4269 		return;
4270 
4271 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4272 		if (wiphy == &rdev->wiphy)
4273 			continue;
4274 
4275 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4276 			continue;
4277 
4278 		if (!ieee80211_get_channel(&rdev->wiphy,
4279 					   chandef->chan->center_freq))
4280 			continue;
4281 
4282 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4283 
4284 		if (event == NL80211_RADAR_DETECTED ||
4285 		    event == NL80211_RADAR_CAC_FINISHED) {
4286 			cfg80211_sched_dfs_chan_update(rdev);
4287 			cfg80211_check_and_end_cac(rdev);
4288 		}
4289 
4290 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4291 	}
4292 }
4293 
4294 static int __init regulatory_init_db(void)
4295 {
4296 	int err;
4297 
4298 	/*
4299 	 * It's possible that - due to other bugs/issues - cfg80211
4300 	 * never called regulatory_init() below, or that it failed;
4301 	 * in that case, don't try to do any further work here as
4302 	 * it's doomed to lead to crashes.
4303 	 */
4304 	if (IS_ERR_OR_NULL(reg_pdev))
4305 		return -EINVAL;
4306 
4307 	err = load_builtin_regdb_keys();
4308 	if (err)
4309 		return err;
4310 
4311 	/* We always try to get an update for the static regdomain */
4312 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4313 	if (err) {
4314 		if (err == -ENOMEM) {
4315 			platform_device_unregister(reg_pdev);
4316 			return err;
4317 		}
4318 		/*
4319 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4320 		 * memory which is handled and propagated appropriately above
4321 		 * but it can also fail during a netlink_broadcast() or during
4322 		 * early boot for call_usermodehelper(). For now treat these
4323 		 * errors as non-fatal.
4324 		 */
4325 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4326 	}
4327 
4328 	/*
4329 	 * Finally, if the user set the module parameter treat it
4330 	 * as a user hint.
4331 	 */
4332 	if (!is_world_regdom(ieee80211_regdom))
4333 		regulatory_hint_user(ieee80211_regdom,
4334 				     NL80211_USER_REG_HINT_USER);
4335 
4336 	return 0;
4337 }
4338 #ifndef MODULE
4339 late_initcall(regulatory_init_db);
4340 #endif
4341 
4342 int __init regulatory_init(void)
4343 {
4344 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4345 	if (IS_ERR(reg_pdev))
4346 		return PTR_ERR(reg_pdev);
4347 
4348 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4349 
4350 	user_alpha2[0] = '9';
4351 	user_alpha2[1] = '7';
4352 
4353 #ifdef MODULE
4354 	return regulatory_init_db();
4355 #else
4356 	return 0;
4357 #endif
4358 }
4359 
4360 void regulatory_exit(void)
4361 {
4362 	struct regulatory_request *reg_request, *tmp;
4363 	struct reg_beacon *reg_beacon, *btmp;
4364 
4365 	cancel_work_sync(&reg_work);
4366 	cancel_crda_timeout_sync();
4367 	cancel_delayed_work_sync(&reg_check_chans);
4368 
4369 	/* Lock to suppress warnings */
4370 	rtnl_lock();
4371 	reset_regdomains(true, NULL);
4372 	rtnl_unlock();
4373 
4374 	dev_set_uevent_suppress(&reg_pdev->dev, true);
4375 
4376 	platform_device_unregister(reg_pdev);
4377 
4378 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4379 		list_del(&reg_beacon->list);
4380 		kfree(reg_beacon);
4381 	}
4382 
4383 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4384 		list_del(&reg_beacon->list);
4385 		kfree(reg_beacon);
4386 	}
4387 
4388 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4389 		list_del(&reg_request->list);
4390 		kfree(reg_request);
4391 	}
4392 
4393 	if (!IS_ERR_OR_NULL(regdb))
4394 		kfree(regdb);
4395 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4396 		kfree(cfg80211_user_regdom);
4397 
4398 	free_regdb_keyring();
4399 }
4400