1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * 8 * Permission to use, copy, modify, and/or distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 22 /** 23 * DOC: Wireless regulatory infrastructure 24 * 25 * The usual implementation is for a driver to read a device EEPROM to 26 * determine which regulatory domain it should be operating under, then 27 * looking up the allowable channels in a driver-local table and finally 28 * registering those channels in the wiphy structure. 29 * 30 * Another set of compliance enforcement is for drivers to use their 31 * own compliance limits which can be stored on the EEPROM. The host 32 * driver or firmware may ensure these are used. 33 * 34 * In addition to all this we provide an extra layer of regulatory 35 * conformance. For drivers which do not have any regulatory 36 * information CRDA provides the complete regulatory solution. 37 * For others it provides a community effort on further restrictions 38 * to enhance compliance. 39 * 40 * Note: When number of rules --> infinity we will not be able to 41 * index on alpha2 any more, instead we'll probably have to 42 * rely on some SHA1 checksum of the regdomain for example. 43 * 44 */ 45 46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 47 48 #include <linux/kernel.h> 49 #include <linux/export.h> 50 #include <linux/slab.h> 51 #include <linux/list.h> 52 #include <linux/ctype.h> 53 #include <linux/nl80211.h> 54 #include <linux/platform_device.h> 55 #include <linux/moduleparam.h> 56 #include <net/cfg80211.h> 57 #include "core.h" 58 #include "reg.h" 59 #include "rdev-ops.h" 60 #include "regdb.h" 61 #include "nl80211.h" 62 63 /* 64 * Grace period we give before making sure all current interfaces reside on 65 * channels allowed by the current regulatory domain. 66 */ 67 #define REG_ENFORCE_GRACE_MS 60000 68 69 /** 70 * enum reg_request_treatment - regulatory request treatment 71 * 72 * @REG_REQ_OK: continue processing the regulatory request 73 * @REG_REQ_IGNORE: ignore the regulatory request 74 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 75 * be intersected with the current one. 76 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 77 * regulatory settings, and no further processing is required. 78 */ 79 enum reg_request_treatment { 80 REG_REQ_OK, 81 REG_REQ_IGNORE, 82 REG_REQ_INTERSECT, 83 REG_REQ_ALREADY_SET, 84 }; 85 86 static struct regulatory_request core_request_world = { 87 .initiator = NL80211_REGDOM_SET_BY_CORE, 88 .alpha2[0] = '0', 89 .alpha2[1] = '0', 90 .intersect = false, 91 .processed = true, 92 .country_ie_env = ENVIRON_ANY, 93 }; 94 95 /* 96 * Receipt of information from last regulatory request, 97 * protected by RTNL (and can be accessed with RCU protection) 98 */ 99 static struct regulatory_request __rcu *last_request = 100 (void __force __rcu *)&core_request_world; 101 102 /* To trigger userspace events */ 103 static struct platform_device *reg_pdev; 104 105 /* 106 * Central wireless core regulatory domains, we only need two, 107 * the current one and a world regulatory domain in case we have no 108 * information to give us an alpha2. 109 * (protected by RTNL, can be read under RCU) 110 */ 111 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 112 113 /* 114 * Number of devices that registered to the core 115 * that support cellular base station regulatory hints 116 * (protected by RTNL) 117 */ 118 static int reg_num_devs_support_basehint; 119 120 /* 121 * State variable indicating if the platform on which the devices 122 * are attached is operating in an indoor environment. The state variable 123 * is relevant for all registered devices. 124 */ 125 static bool reg_is_indoor; 126 static spinlock_t reg_indoor_lock; 127 128 /* Used to track the userspace process controlling the indoor setting */ 129 static u32 reg_is_indoor_portid; 130 131 static void restore_regulatory_settings(bool reset_user); 132 133 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 134 { 135 return rtnl_dereference(cfg80211_regdomain); 136 } 137 138 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 139 { 140 return rtnl_dereference(wiphy->regd); 141 } 142 143 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 144 { 145 switch (dfs_region) { 146 case NL80211_DFS_UNSET: 147 return "unset"; 148 case NL80211_DFS_FCC: 149 return "FCC"; 150 case NL80211_DFS_ETSI: 151 return "ETSI"; 152 case NL80211_DFS_JP: 153 return "JP"; 154 } 155 return "Unknown"; 156 } 157 158 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 159 { 160 const struct ieee80211_regdomain *regd = NULL; 161 const struct ieee80211_regdomain *wiphy_regd = NULL; 162 163 regd = get_cfg80211_regdom(); 164 if (!wiphy) 165 goto out; 166 167 wiphy_regd = get_wiphy_regdom(wiphy); 168 if (!wiphy_regd) 169 goto out; 170 171 if (wiphy_regd->dfs_region == regd->dfs_region) 172 goto out; 173 174 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 175 dev_name(&wiphy->dev), 176 reg_dfs_region_str(wiphy_regd->dfs_region), 177 reg_dfs_region_str(regd->dfs_region)); 178 179 out: 180 return regd->dfs_region; 181 } 182 183 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 184 { 185 if (!r) 186 return; 187 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 188 } 189 190 static struct regulatory_request *get_last_request(void) 191 { 192 return rcu_dereference_rtnl(last_request); 193 } 194 195 /* Used to queue up regulatory hints */ 196 static LIST_HEAD(reg_requests_list); 197 static spinlock_t reg_requests_lock; 198 199 /* Used to queue up beacon hints for review */ 200 static LIST_HEAD(reg_pending_beacons); 201 static spinlock_t reg_pending_beacons_lock; 202 203 /* Used to keep track of processed beacon hints */ 204 static LIST_HEAD(reg_beacon_list); 205 206 struct reg_beacon { 207 struct list_head list; 208 struct ieee80211_channel chan; 209 }; 210 211 static void reg_check_chans_work(struct work_struct *work); 212 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 213 214 static void reg_todo(struct work_struct *work); 215 static DECLARE_WORK(reg_work, reg_todo); 216 217 /* We keep a static world regulatory domain in case of the absence of CRDA */ 218 static const struct ieee80211_regdomain world_regdom = { 219 .n_reg_rules = 8, 220 .alpha2 = "00", 221 .reg_rules = { 222 /* IEEE 802.11b/g, channels 1..11 */ 223 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 224 /* IEEE 802.11b/g, channels 12..13. */ 225 REG_RULE(2467-10, 2472+10, 20, 6, 20, 226 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 227 /* IEEE 802.11 channel 14 - Only JP enables 228 * this and for 802.11b only */ 229 REG_RULE(2484-10, 2484+10, 20, 6, 20, 230 NL80211_RRF_NO_IR | 231 NL80211_RRF_NO_OFDM), 232 /* IEEE 802.11a, channel 36..48 */ 233 REG_RULE(5180-10, 5240+10, 80, 6, 20, 234 NL80211_RRF_NO_IR | 235 NL80211_RRF_AUTO_BW), 236 237 /* IEEE 802.11a, channel 52..64 - DFS required */ 238 REG_RULE(5260-10, 5320+10, 80, 6, 20, 239 NL80211_RRF_NO_IR | 240 NL80211_RRF_AUTO_BW | 241 NL80211_RRF_DFS), 242 243 /* IEEE 802.11a, channel 100..144 - DFS required */ 244 REG_RULE(5500-10, 5720+10, 160, 6, 20, 245 NL80211_RRF_NO_IR | 246 NL80211_RRF_DFS), 247 248 /* IEEE 802.11a, channel 149..165 */ 249 REG_RULE(5745-10, 5825+10, 80, 6, 20, 250 NL80211_RRF_NO_IR), 251 252 /* IEEE 802.11ad (60GHz), channels 1..3 */ 253 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 254 } 255 }; 256 257 /* protected by RTNL */ 258 static const struct ieee80211_regdomain *cfg80211_world_regdom = 259 &world_regdom; 260 261 static char *ieee80211_regdom = "00"; 262 static char user_alpha2[2]; 263 264 module_param(ieee80211_regdom, charp, 0444); 265 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 266 267 static void reg_free_request(struct regulatory_request *request) 268 { 269 if (request == &core_request_world) 270 return; 271 272 if (request != get_last_request()) 273 kfree(request); 274 } 275 276 static void reg_free_last_request(void) 277 { 278 struct regulatory_request *lr = get_last_request(); 279 280 if (lr != &core_request_world && lr) 281 kfree_rcu(lr, rcu_head); 282 } 283 284 static void reg_update_last_request(struct regulatory_request *request) 285 { 286 struct regulatory_request *lr; 287 288 lr = get_last_request(); 289 if (lr == request) 290 return; 291 292 reg_free_last_request(); 293 rcu_assign_pointer(last_request, request); 294 } 295 296 static void reset_regdomains(bool full_reset, 297 const struct ieee80211_regdomain *new_regdom) 298 { 299 const struct ieee80211_regdomain *r; 300 301 ASSERT_RTNL(); 302 303 r = get_cfg80211_regdom(); 304 305 /* avoid freeing static information or freeing something twice */ 306 if (r == cfg80211_world_regdom) 307 r = NULL; 308 if (cfg80211_world_regdom == &world_regdom) 309 cfg80211_world_regdom = NULL; 310 if (r == &world_regdom) 311 r = NULL; 312 313 rcu_free_regdom(r); 314 rcu_free_regdom(cfg80211_world_regdom); 315 316 cfg80211_world_regdom = &world_regdom; 317 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 318 319 if (!full_reset) 320 return; 321 322 reg_update_last_request(&core_request_world); 323 } 324 325 /* 326 * Dynamic world regulatory domain requested by the wireless 327 * core upon initialization 328 */ 329 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 330 { 331 struct regulatory_request *lr; 332 333 lr = get_last_request(); 334 335 WARN_ON(!lr); 336 337 reset_regdomains(false, rd); 338 339 cfg80211_world_regdom = rd; 340 } 341 342 bool is_world_regdom(const char *alpha2) 343 { 344 if (!alpha2) 345 return false; 346 return alpha2[0] == '0' && alpha2[1] == '0'; 347 } 348 349 static bool is_alpha2_set(const char *alpha2) 350 { 351 if (!alpha2) 352 return false; 353 return alpha2[0] && alpha2[1]; 354 } 355 356 static bool is_unknown_alpha2(const char *alpha2) 357 { 358 if (!alpha2) 359 return false; 360 /* 361 * Special case where regulatory domain was built by driver 362 * but a specific alpha2 cannot be determined 363 */ 364 return alpha2[0] == '9' && alpha2[1] == '9'; 365 } 366 367 static bool is_intersected_alpha2(const char *alpha2) 368 { 369 if (!alpha2) 370 return false; 371 /* 372 * Special case where regulatory domain is the 373 * result of an intersection between two regulatory domain 374 * structures 375 */ 376 return alpha2[0] == '9' && alpha2[1] == '8'; 377 } 378 379 static bool is_an_alpha2(const char *alpha2) 380 { 381 if (!alpha2) 382 return false; 383 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 384 } 385 386 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 387 { 388 if (!alpha2_x || !alpha2_y) 389 return false; 390 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 391 } 392 393 static bool regdom_changes(const char *alpha2) 394 { 395 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 396 397 if (!r) 398 return true; 399 return !alpha2_equal(r->alpha2, alpha2); 400 } 401 402 /* 403 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 404 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 405 * has ever been issued. 406 */ 407 static bool is_user_regdom_saved(void) 408 { 409 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 410 return false; 411 412 /* This would indicate a mistake on the design */ 413 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 414 "Unexpected user alpha2: %c%c\n", 415 user_alpha2[0], user_alpha2[1])) 416 return false; 417 418 return true; 419 } 420 421 static const struct ieee80211_regdomain * 422 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 423 { 424 struct ieee80211_regdomain *regd; 425 int size_of_regd; 426 unsigned int i; 427 428 size_of_regd = 429 sizeof(struct ieee80211_regdomain) + 430 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 431 432 regd = kzalloc(size_of_regd, GFP_KERNEL); 433 if (!regd) 434 return ERR_PTR(-ENOMEM); 435 436 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 437 438 for (i = 0; i < src_regd->n_reg_rules; i++) 439 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 440 sizeof(struct ieee80211_reg_rule)); 441 442 return regd; 443 } 444 445 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 446 struct reg_regdb_apply_request { 447 struct list_head list; 448 const struct ieee80211_regdomain *regdom; 449 }; 450 451 static LIST_HEAD(reg_regdb_apply_list); 452 static DEFINE_MUTEX(reg_regdb_apply_mutex); 453 454 static void reg_regdb_apply(struct work_struct *work) 455 { 456 struct reg_regdb_apply_request *request; 457 458 rtnl_lock(); 459 460 mutex_lock(®_regdb_apply_mutex); 461 while (!list_empty(®_regdb_apply_list)) { 462 request = list_first_entry(®_regdb_apply_list, 463 struct reg_regdb_apply_request, 464 list); 465 list_del(&request->list); 466 467 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 468 kfree(request); 469 } 470 mutex_unlock(®_regdb_apply_mutex); 471 472 rtnl_unlock(); 473 } 474 475 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 476 477 static int reg_query_builtin(const char *alpha2) 478 { 479 const struct ieee80211_regdomain *regdom = NULL; 480 struct reg_regdb_apply_request *request; 481 unsigned int i; 482 483 for (i = 0; i < reg_regdb_size; i++) { 484 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) { 485 regdom = reg_regdb[i]; 486 break; 487 } 488 } 489 490 if (!regdom) 491 return -ENODATA; 492 493 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 494 if (!request) 495 return -ENOMEM; 496 497 request->regdom = reg_copy_regd(regdom); 498 if (IS_ERR_OR_NULL(request->regdom)) { 499 kfree(request); 500 return -ENOMEM; 501 } 502 503 mutex_lock(®_regdb_apply_mutex); 504 list_add_tail(&request->list, ®_regdb_apply_list); 505 mutex_unlock(®_regdb_apply_mutex); 506 507 schedule_work(®_regdb_work); 508 509 return 0; 510 } 511 512 /* Feel free to add any other sanity checks here */ 513 static void reg_regdb_size_check(void) 514 { 515 /* We should ideally BUILD_BUG_ON() but then random builds would fail */ 516 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); 517 } 518 #else 519 static inline void reg_regdb_size_check(void) {} 520 static inline int reg_query_builtin(const char *alpha2) 521 { 522 return -ENODATA; 523 } 524 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 525 526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 527 /* Max number of consecutive attempts to communicate with CRDA */ 528 #define REG_MAX_CRDA_TIMEOUTS 10 529 530 static u32 reg_crda_timeouts; 531 532 static void crda_timeout_work(struct work_struct *work); 533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 534 535 static void crda_timeout_work(struct work_struct *work) 536 { 537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 538 rtnl_lock(); 539 reg_crda_timeouts++; 540 restore_regulatory_settings(true); 541 rtnl_unlock(); 542 } 543 544 static void cancel_crda_timeout(void) 545 { 546 cancel_delayed_work(&crda_timeout); 547 } 548 549 static void cancel_crda_timeout_sync(void) 550 { 551 cancel_delayed_work_sync(&crda_timeout); 552 } 553 554 static void reset_crda_timeouts(void) 555 { 556 reg_crda_timeouts = 0; 557 } 558 559 /* 560 * This lets us keep regulatory code which is updated on a regulatory 561 * basis in userspace. 562 */ 563 static int call_crda(const char *alpha2) 564 { 565 char country[12]; 566 char *env[] = { country, NULL }; 567 int ret; 568 569 snprintf(country, sizeof(country), "COUNTRY=%c%c", 570 alpha2[0], alpha2[1]); 571 572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 574 return -EINVAL; 575 } 576 577 if (!is_world_regdom((char *) alpha2)) 578 pr_debug("Calling CRDA for country: %c%c\n", 579 alpha2[0], alpha2[1]); 580 else 581 pr_debug("Calling CRDA to update world regulatory domain\n"); 582 583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 584 if (ret) 585 return ret; 586 587 queue_delayed_work(system_power_efficient_wq, 588 &crda_timeout, msecs_to_jiffies(3142)); 589 return 0; 590 } 591 #else 592 static inline void cancel_crda_timeout(void) {} 593 static inline void cancel_crda_timeout_sync(void) {} 594 static inline void reset_crda_timeouts(void) {} 595 static inline int call_crda(const char *alpha2) 596 { 597 return -ENODATA; 598 } 599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 600 601 static bool reg_query_database(struct regulatory_request *request) 602 { 603 /* query internal regulatory database (if it exists) */ 604 if (reg_query_builtin(request->alpha2) == 0) 605 return true; 606 607 if (call_crda(request->alpha2) == 0) 608 return true; 609 610 return false; 611 } 612 613 bool reg_is_valid_request(const char *alpha2) 614 { 615 struct regulatory_request *lr = get_last_request(); 616 617 if (!lr || lr->processed) 618 return false; 619 620 return alpha2_equal(lr->alpha2, alpha2); 621 } 622 623 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 624 { 625 struct regulatory_request *lr = get_last_request(); 626 627 /* 628 * Follow the driver's regulatory domain, if present, unless a country 629 * IE has been processed or a user wants to help complaince further 630 */ 631 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 632 lr->initiator != NL80211_REGDOM_SET_BY_USER && 633 wiphy->regd) 634 return get_wiphy_regdom(wiphy); 635 636 return get_cfg80211_regdom(); 637 } 638 639 static unsigned int 640 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 641 const struct ieee80211_reg_rule *rule) 642 { 643 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 644 const struct ieee80211_freq_range *freq_range_tmp; 645 const struct ieee80211_reg_rule *tmp; 646 u32 start_freq, end_freq, idx, no; 647 648 for (idx = 0; idx < rd->n_reg_rules; idx++) 649 if (rule == &rd->reg_rules[idx]) 650 break; 651 652 if (idx == rd->n_reg_rules) 653 return 0; 654 655 /* get start_freq */ 656 no = idx; 657 658 while (no) { 659 tmp = &rd->reg_rules[--no]; 660 freq_range_tmp = &tmp->freq_range; 661 662 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 663 break; 664 665 freq_range = freq_range_tmp; 666 } 667 668 start_freq = freq_range->start_freq_khz; 669 670 /* get end_freq */ 671 freq_range = &rule->freq_range; 672 no = idx; 673 674 while (no < rd->n_reg_rules - 1) { 675 tmp = &rd->reg_rules[++no]; 676 freq_range_tmp = &tmp->freq_range; 677 678 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 679 break; 680 681 freq_range = freq_range_tmp; 682 } 683 684 end_freq = freq_range->end_freq_khz; 685 686 return end_freq - start_freq; 687 } 688 689 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 690 const struct ieee80211_reg_rule *rule) 691 { 692 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 693 694 if (rule->flags & NL80211_RRF_NO_160MHZ) 695 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 696 if (rule->flags & NL80211_RRF_NO_80MHZ) 697 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 698 699 /* 700 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 701 * are not allowed. 702 */ 703 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 704 rule->flags & NL80211_RRF_NO_HT40PLUS) 705 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 706 707 return bw; 708 } 709 710 /* Sanity check on a regulatory rule */ 711 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 712 { 713 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 714 u32 freq_diff; 715 716 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 717 return false; 718 719 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 720 return false; 721 722 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 723 724 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 725 freq_range->max_bandwidth_khz > freq_diff) 726 return false; 727 728 return true; 729 } 730 731 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 732 { 733 const struct ieee80211_reg_rule *reg_rule = NULL; 734 unsigned int i; 735 736 if (!rd->n_reg_rules) 737 return false; 738 739 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 740 return false; 741 742 for (i = 0; i < rd->n_reg_rules; i++) { 743 reg_rule = &rd->reg_rules[i]; 744 if (!is_valid_reg_rule(reg_rule)) 745 return false; 746 } 747 748 return true; 749 } 750 751 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 752 u32 center_freq_khz, u32 bw_khz) 753 { 754 u32 start_freq_khz, end_freq_khz; 755 756 start_freq_khz = center_freq_khz - (bw_khz/2); 757 end_freq_khz = center_freq_khz + (bw_khz/2); 758 759 if (start_freq_khz >= freq_range->start_freq_khz && 760 end_freq_khz <= freq_range->end_freq_khz) 761 return true; 762 763 return false; 764 } 765 766 /** 767 * freq_in_rule_band - tells us if a frequency is in a frequency band 768 * @freq_range: frequency rule we want to query 769 * @freq_khz: frequency we are inquiring about 770 * 771 * This lets us know if a specific frequency rule is or is not relevant to 772 * a specific frequency's band. Bands are device specific and artificial 773 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 774 * however it is safe for now to assume that a frequency rule should not be 775 * part of a frequency's band if the start freq or end freq are off by more 776 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 777 * 60 GHz band. 778 * This resolution can be lowered and should be considered as we add 779 * regulatory rule support for other "bands". 780 **/ 781 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 782 u32 freq_khz) 783 { 784 #define ONE_GHZ_IN_KHZ 1000000 785 /* 786 * From 802.11ad: directional multi-gigabit (DMG): 787 * Pertaining to operation in a frequency band containing a channel 788 * with the Channel starting frequency above 45 GHz. 789 */ 790 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 791 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 792 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 793 return true; 794 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 795 return true; 796 return false; 797 #undef ONE_GHZ_IN_KHZ 798 } 799 800 /* 801 * Later on we can perhaps use the more restrictive DFS 802 * region but we don't have information for that yet so 803 * for now simply disallow conflicts. 804 */ 805 static enum nl80211_dfs_regions 806 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 807 const enum nl80211_dfs_regions dfs_region2) 808 { 809 if (dfs_region1 != dfs_region2) 810 return NL80211_DFS_UNSET; 811 return dfs_region1; 812 } 813 814 /* 815 * Helper for regdom_intersect(), this does the real 816 * mathematical intersection fun 817 */ 818 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 819 const struct ieee80211_regdomain *rd2, 820 const struct ieee80211_reg_rule *rule1, 821 const struct ieee80211_reg_rule *rule2, 822 struct ieee80211_reg_rule *intersected_rule) 823 { 824 const struct ieee80211_freq_range *freq_range1, *freq_range2; 825 struct ieee80211_freq_range *freq_range; 826 const struct ieee80211_power_rule *power_rule1, *power_rule2; 827 struct ieee80211_power_rule *power_rule; 828 u32 freq_diff, max_bandwidth1, max_bandwidth2; 829 830 freq_range1 = &rule1->freq_range; 831 freq_range2 = &rule2->freq_range; 832 freq_range = &intersected_rule->freq_range; 833 834 power_rule1 = &rule1->power_rule; 835 power_rule2 = &rule2->power_rule; 836 power_rule = &intersected_rule->power_rule; 837 838 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 839 freq_range2->start_freq_khz); 840 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 841 freq_range2->end_freq_khz); 842 843 max_bandwidth1 = freq_range1->max_bandwidth_khz; 844 max_bandwidth2 = freq_range2->max_bandwidth_khz; 845 846 if (rule1->flags & NL80211_RRF_AUTO_BW) 847 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 848 if (rule2->flags & NL80211_RRF_AUTO_BW) 849 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 850 851 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 852 853 intersected_rule->flags = rule1->flags | rule2->flags; 854 855 /* 856 * In case NL80211_RRF_AUTO_BW requested for both rules 857 * set AUTO_BW in intersected rule also. Next we will 858 * calculate BW correctly in handle_channel function. 859 * In other case remove AUTO_BW flag while we calculate 860 * maximum bandwidth correctly and auto calculation is 861 * not required. 862 */ 863 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 864 (rule2->flags & NL80211_RRF_AUTO_BW)) 865 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 866 else 867 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 868 869 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 870 if (freq_range->max_bandwidth_khz > freq_diff) 871 freq_range->max_bandwidth_khz = freq_diff; 872 873 power_rule->max_eirp = min(power_rule1->max_eirp, 874 power_rule2->max_eirp); 875 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 876 power_rule2->max_antenna_gain); 877 878 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 879 rule2->dfs_cac_ms); 880 881 if (!is_valid_reg_rule(intersected_rule)) 882 return -EINVAL; 883 884 return 0; 885 } 886 887 /* check whether old rule contains new rule */ 888 static bool rule_contains(struct ieee80211_reg_rule *r1, 889 struct ieee80211_reg_rule *r2) 890 { 891 /* for simplicity, currently consider only same flags */ 892 if (r1->flags != r2->flags) 893 return false; 894 895 /* verify r1 is more restrictive */ 896 if ((r1->power_rule.max_antenna_gain > 897 r2->power_rule.max_antenna_gain) || 898 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 899 return false; 900 901 /* make sure r2's range is contained within r1 */ 902 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 903 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 904 return false; 905 906 /* and finally verify that r1.max_bw >= r2.max_bw */ 907 if (r1->freq_range.max_bandwidth_khz < 908 r2->freq_range.max_bandwidth_khz) 909 return false; 910 911 return true; 912 } 913 914 /* add or extend current rules. do nothing if rule is already contained */ 915 static void add_rule(struct ieee80211_reg_rule *rule, 916 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 917 { 918 struct ieee80211_reg_rule *tmp_rule; 919 int i; 920 921 for (i = 0; i < *n_rules; i++) { 922 tmp_rule = ®_rules[i]; 923 /* rule is already contained - do nothing */ 924 if (rule_contains(tmp_rule, rule)) 925 return; 926 927 /* extend rule if possible */ 928 if (rule_contains(rule, tmp_rule)) { 929 memcpy(tmp_rule, rule, sizeof(*rule)); 930 return; 931 } 932 } 933 934 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 935 (*n_rules)++; 936 } 937 938 /** 939 * regdom_intersect - do the intersection between two regulatory domains 940 * @rd1: first regulatory domain 941 * @rd2: second regulatory domain 942 * 943 * Use this function to get the intersection between two regulatory domains. 944 * Once completed we will mark the alpha2 for the rd as intersected, "98", 945 * as no one single alpha2 can represent this regulatory domain. 946 * 947 * Returns a pointer to the regulatory domain structure which will hold the 948 * resulting intersection of rules between rd1 and rd2. We will 949 * kzalloc() this structure for you. 950 */ 951 static struct ieee80211_regdomain * 952 regdom_intersect(const struct ieee80211_regdomain *rd1, 953 const struct ieee80211_regdomain *rd2) 954 { 955 int r, size_of_regd; 956 unsigned int x, y; 957 unsigned int num_rules = 0; 958 const struct ieee80211_reg_rule *rule1, *rule2; 959 struct ieee80211_reg_rule intersected_rule; 960 struct ieee80211_regdomain *rd; 961 962 if (!rd1 || !rd2) 963 return NULL; 964 965 /* 966 * First we get a count of the rules we'll need, then we actually 967 * build them. This is to so we can malloc() and free() a 968 * regdomain once. The reason we use reg_rules_intersect() here 969 * is it will return -EINVAL if the rule computed makes no sense. 970 * All rules that do check out OK are valid. 971 */ 972 973 for (x = 0; x < rd1->n_reg_rules; x++) { 974 rule1 = &rd1->reg_rules[x]; 975 for (y = 0; y < rd2->n_reg_rules; y++) { 976 rule2 = &rd2->reg_rules[y]; 977 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 978 &intersected_rule)) 979 num_rules++; 980 } 981 } 982 983 if (!num_rules) 984 return NULL; 985 986 size_of_regd = sizeof(struct ieee80211_regdomain) + 987 num_rules * sizeof(struct ieee80211_reg_rule); 988 989 rd = kzalloc(size_of_regd, GFP_KERNEL); 990 if (!rd) 991 return NULL; 992 993 for (x = 0; x < rd1->n_reg_rules; x++) { 994 rule1 = &rd1->reg_rules[x]; 995 for (y = 0; y < rd2->n_reg_rules; y++) { 996 rule2 = &rd2->reg_rules[y]; 997 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 998 &intersected_rule); 999 /* 1000 * No need to memset here the intersected rule here as 1001 * we're not using the stack anymore 1002 */ 1003 if (r) 1004 continue; 1005 1006 add_rule(&intersected_rule, rd->reg_rules, 1007 &rd->n_reg_rules); 1008 } 1009 } 1010 1011 rd->alpha2[0] = '9'; 1012 rd->alpha2[1] = '8'; 1013 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1014 rd2->dfs_region); 1015 1016 return rd; 1017 } 1018 1019 /* 1020 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1021 * want to just have the channel structure use these 1022 */ 1023 static u32 map_regdom_flags(u32 rd_flags) 1024 { 1025 u32 channel_flags = 0; 1026 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1027 channel_flags |= IEEE80211_CHAN_NO_IR; 1028 if (rd_flags & NL80211_RRF_DFS) 1029 channel_flags |= IEEE80211_CHAN_RADAR; 1030 if (rd_flags & NL80211_RRF_NO_OFDM) 1031 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1032 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1033 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1034 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1035 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1036 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1037 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1038 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1039 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1040 if (rd_flags & NL80211_RRF_NO_80MHZ) 1041 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1042 if (rd_flags & NL80211_RRF_NO_160MHZ) 1043 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1044 return channel_flags; 1045 } 1046 1047 static const struct ieee80211_reg_rule * 1048 freq_reg_info_regd(u32 center_freq, 1049 const struct ieee80211_regdomain *regd, u32 bw) 1050 { 1051 int i; 1052 bool band_rule_found = false; 1053 bool bw_fits = false; 1054 1055 if (!regd) 1056 return ERR_PTR(-EINVAL); 1057 1058 for (i = 0; i < regd->n_reg_rules; i++) { 1059 const struct ieee80211_reg_rule *rr; 1060 const struct ieee80211_freq_range *fr = NULL; 1061 1062 rr = ®d->reg_rules[i]; 1063 fr = &rr->freq_range; 1064 1065 /* 1066 * We only need to know if one frequency rule was 1067 * was in center_freq's band, that's enough, so lets 1068 * not overwrite it once found 1069 */ 1070 if (!band_rule_found) 1071 band_rule_found = freq_in_rule_band(fr, center_freq); 1072 1073 bw_fits = reg_does_bw_fit(fr, center_freq, bw); 1074 1075 if (band_rule_found && bw_fits) 1076 return rr; 1077 } 1078 1079 if (!band_rule_found) 1080 return ERR_PTR(-ERANGE); 1081 1082 return ERR_PTR(-EINVAL); 1083 } 1084 1085 static const struct ieee80211_reg_rule * 1086 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1087 { 1088 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1089 const struct ieee80211_reg_rule *reg_rule = NULL; 1090 u32 bw; 1091 1092 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 1093 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1094 if (!IS_ERR(reg_rule)) 1095 return reg_rule; 1096 } 1097 1098 return reg_rule; 1099 } 1100 1101 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1102 u32 center_freq) 1103 { 1104 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); 1105 } 1106 EXPORT_SYMBOL(freq_reg_info); 1107 1108 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1109 { 1110 switch (initiator) { 1111 case NL80211_REGDOM_SET_BY_CORE: 1112 return "core"; 1113 case NL80211_REGDOM_SET_BY_USER: 1114 return "user"; 1115 case NL80211_REGDOM_SET_BY_DRIVER: 1116 return "driver"; 1117 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1118 return "country IE"; 1119 default: 1120 WARN_ON(1); 1121 return "bug"; 1122 } 1123 } 1124 EXPORT_SYMBOL(reg_initiator_name); 1125 1126 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1127 const struct ieee80211_reg_rule *reg_rule, 1128 const struct ieee80211_channel *chan) 1129 { 1130 const struct ieee80211_freq_range *freq_range = NULL; 1131 u32 max_bandwidth_khz, bw_flags = 0; 1132 1133 freq_range = ®_rule->freq_range; 1134 1135 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1136 /* Check if auto calculation requested */ 1137 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1138 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1139 1140 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1141 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq), 1142 MHZ_TO_KHZ(10))) 1143 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1144 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq), 1145 MHZ_TO_KHZ(20))) 1146 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1147 1148 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1149 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1150 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1151 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1152 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1153 bw_flags |= IEEE80211_CHAN_NO_HT40; 1154 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1155 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1156 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1157 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1158 return bw_flags; 1159 } 1160 1161 /* 1162 * Note that right now we assume the desired channel bandwidth 1163 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1164 * per channel, the primary and the extension channel). 1165 */ 1166 static void handle_channel(struct wiphy *wiphy, 1167 enum nl80211_reg_initiator initiator, 1168 struct ieee80211_channel *chan) 1169 { 1170 u32 flags, bw_flags = 0; 1171 const struct ieee80211_reg_rule *reg_rule = NULL; 1172 const struct ieee80211_power_rule *power_rule = NULL; 1173 struct wiphy *request_wiphy = NULL; 1174 struct regulatory_request *lr = get_last_request(); 1175 const struct ieee80211_regdomain *regd; 1176 1177 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1178 1179 flags = chan->orig_flags; 1180 1181 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1182 if (IS_ERR(reg_rule)) { 1183 /* 1184 * We will disable all channels that do not match our 1185 * received regulatory rule unless the hint is coming 1186 * from a Country IE and the Country IE had no information 1187 * about a band. The IEEE 802.11 spec allows for an AP 1188 * to send only a subset of the regulatory rules allowed, 1189 * so an AP in the US that only supports 2.4 GHz may only send 1190 * a country IE with information for the 2.4 GHz band 1191 * while 5 GHz is still supported. 1192 */ 1193 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1194 PTR_ERR(reg_rule) == -ERANGE) 1195 return; 1196 1197 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1198 request_wiphy && request_wiphy == wiphy && 1199 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1200 pr_debug("Disabling freq %d MHz for good\n", 1201 chan->center_freq); 1202 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1203 chan->flags = chan->orig_flags; 1204 } else { 1205 pr_debug("Disabling freq %d MHz\n", 1206 chan->center_freq); 1207 chan->flags |= IEEE80211_CHAN_DISABLED; 1208 } 1209 return; 1210 } 1211 1212 regd = reg_get_regdomain(wiphy); 1213 1214 power_rule = ®_rule->power_rule; 1215 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1216 1217 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1218 request_wiphy && request_wiphy == wiphy && 1219 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1220 /* 1221 * This guarantees the driver's requested regulatory domain 1222 * will always be used as a base for further regulatory 1223 * settings 1224 */ 1225 chan->flags = chan->orig_flags = 1226 map_regdom_flags(reg_rule->flags) | bw_flags; 1227 chan->max_antenna_gain = chan->orig_mag = 1228 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1229 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1230 (int) MBM_TO_DBM(power_rule->max_eirp); 1231 1232 if (chan->flags & IEEE80211_CHAN_RADAR) { 1233 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1234 if (reg_rule->dfs_cac_ms) 1235 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1236 } 1237 1238 return; 1239 } 1240 1241 chan->dfs_state = NL80211_DFS_USABLE; 1242 chan->dfs_state_entered = jiffies; 1243 1244 chan->beacon_found = false; 1245 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1246 chan->max_antenna_gain = 1247 min_t(int, chan->orig_mag, 1248 MBI_TO_DBI(power_rule->max_antenna_gain)); 1249 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1250 1251 if (chan->flags & IEEE80211_CHAN_RADAR) { 1252 if (reg_rule->dfs_cac_ms) 1253 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1254 else 1255 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1256 } 1257 1258 if (chan->orig_mpwr) { 1259 /* 1260 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1261 * will always follow the passed country IE power settings. 1262 */ 1263 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1264 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1265 chan->max_power = chan->max_reg_power; 1266 else 1267 chan->max_power = min(chan->orig_mpwr, 1268 chan->max_reg_power); 1269 } else 1270 chan->max_power = chan->max_reg_power; 1271 } 1272 1273 static void handle_band(struct wiphy *wiphy, 1274 enum nl80211_reg_initiator initiator, 1275 struct ieee80211_supported_band *sband) 1276 { 1277 unsigned int i; 1278 1279 if (!sband) 1280 return; 1281 1282 for (i = 0; i < sband->n_channels; i++) 1283 handle_channel(wiphy, initiator, &sband->channels[i]); 1284 } 1285 1286 static bool reg_request_cell_base(struct regulatory_request *request) 1287 { 1288 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1289 return false; 1290 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1291 } 1292 1293 bool reg_last_request_cell_base(void) 1294 { 1295 return reg_request_cell_base(get_last_request()); 1296 } 1297 1298 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1299 /* Core specific check */ 1300 static enum reg_request_treatment 1301 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1302 { 1303 struct regulatory_request *lr = get_last_request(); 1304 1305 if (!reg_num_devs_support_basehint) 1306 return REG_REQ_IGNORE; 1307 1308 if (reg_request_cell_base(lr) && 1309 !regdom_changes(pending_request->alpha2)) 1310 return REG_REQ_ALREADY_SET; 1311 1312 return REG_REQ_OK; 1313 } 1314 1315 /* Device specific check */ 1316 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1317 { 1318 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1319 } 1320 #else 1321 static enum reg_request_treatment 1322 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1323 { 1324 return REG_REQ_IGNORE; 1325 } 1326 1327 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1328 { 1329 return true; 1330 } 1331 #endif 1332 1333 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1334 { 1335 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1336 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1337 return true; 1338 return false; 1339 } 1340 1341 static bool ignore_reg_update(struct wiphy *wiphy, 1342 enum nl80211_reg_initiator initiator) 1343 { 1344 struct regulatory_request *lr = get_last_request(); 1345 1346 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1347 return true; 1348 1349 if (!lr) { 1350 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 1351 reg_initiator_name(initiator)); 1352 return true; 1353 } 1354 1355 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1356 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1357 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 1358 reg_initiator_name(initiator)); 1359 return true; 1360 } 1361 1362 /* 1363 * wiphy->regd will be set once the device has its own 1364 * desired regulatory domain set 1365 */ 1366 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1367 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1368 !is_world_regdom(lr->alpha2)) { 1369 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 1370 reg_initiator_name(initiator)); 1371 return true; 1372 } 1373 1374 if (reg_request_cell_base(lr)) 1375 return reg_dev_ignore_cell_hint(wiphy); 1376 1377 return false; 1378 } 1379 1380 static bool reg_is_world_roaming(struct wiphy *wiphy) 1381 { 1382 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1383 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1384 struct regulatory_request *lr = get_last_request(); 1385 1386 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1387 return true; 1388 1389 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1390 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1391 return true; 1392 1393 return false; 1394 } 1395 1396 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1397 struct reg_beacon *reg_beacon) 1398 { 1399 struct ieee80211_supported_band *sband; 1400 struct ieee80211_channel *chan; 1401 bool channel_changed = false; 1402 struct ieee80211_channel chan_before; 1403 1404 sband = wiphy->bands[reg_beacon->chan.band]; 1405 chan = &sband->channels[chan_idx]; 1406 1407 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1408 return; 1409 1410 if (chan->beacon_found) 1411 return; 1412 1413 chan->beacon_found = true; 1414 1415 if (!reg_is_world_roaming(wiphy)) 1416 return; 1417 1418 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1419 return; 1420 1421 chan_before.center_freq = chan->center_freq; 1422 chan_before.flags = chan->flags; 1423 1424 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1425 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1426 channel_changed = true; 1427 } 1428 1429 if (channel_changed) 1430 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1431 } 1432 1433 /* 1434 * Called when a scan on a wiphy finds a beacon on 1435 * new channel 1436 */ 1437 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1438 struct reg_beacon *reg_beacon) 1439 { 1440 unsigned int i; 1441 struct ieee80211_supported_band *sband; 1442 1443 if (!wiphy->bands[reg_beacon->chan.band]) 1444 return; 1445 1446 sband = wiphy->bands[reg_beacon->chan.band]; 1447 1448 for (i = 0; i < sband->n_channels; i++) 1449 handle_reg_beacon(wiphy, i, reg_beacon); 1450 } 1451 1452 /* 1453 * Called upon reg changes or a new wiphy is added 1454 */ 1455 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1456 { 1457 unsigned int i; 1458 struct ieee80211_supported_band *sband; 1459 struct reg_beacon *reg_beacon; 1460 1461 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1462 if (!wiphy->bands[reg_beacon->chan.band]) 1463 continue; 1464 sband = wiphy->bands[reg_beacon->chan.band]; 1465 for (i = 0; i < sband->n_channels; i++) 1466 handle_reg_beacon(wiphy, i, reg_beacon); 1467 } 1468 } 1469 1470 /* Reap the advantages of previously found beacons */ 1471 static void reg_process_beacons(struct wiphy *wiphy) 1472 { 1473 /* 1474 * Means we are just firing up cfg80211, so no beacons would 1475 * have been processed yet. 1476 */ 1477 if (!last_request) 1478 return; 1479 wiphy_update_beacon_reg(wiphy); 1480 } 1481 1482 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1483 { 1484 if (!chan) 1485 return false; 1486 if (chan->flags & IEEE80211_CHAN_DISABLED) 1487 return false; 1488 /* This would happen when regulatory rules disallow HT40 completely */ 1489 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1490 return false; 1491 return true; 1492 } 1493 1494 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1495 struct ieee80211_channel *channel) 1496 { 1497 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1498 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1499 unsigned int i; 1500 1501 if (!is_ht40_allowed(channel)) { 1502 channel->flags |= IEEE80211_CHAN_NO_HT40; 1503 return; 1504 } 1505 1506 /* 1507 * We need to ensure the extension channels exist to 1508 * be able to use HT40- or HT40+, this finds them (or not) 1509 */ 1510 for (i = 0; i < sband->n_channels; i++) { 1511 struct ieee80211_channel *c = &sband->channels[i]; 1512 1513 if (c->center_freq == (channel->center_freq - 20)) 1514 channel_before = c; 1515 if (c->center_freq == (channel->center_freq + 20)) 1516 channel_after = c; 1517 } 1518 1519 /* 1520 * Please note that this assumes target bandwidth is 20 MHz, 1521 * if that ever changes we also need to change the below logic 1522 * to include that as well. 1523 */ 1524 if (!is_ht40_allowed(channel_before)) 1525 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1526 else 1527 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1528 1529 if (!is_ht40_allowed(channel_after)) 1530 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1531 else 1532 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1533 } 1534 1535 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1536 struct ieee80211_supported_band *sband) 1537 { 1538 unsigned int i; 1539 1540 if (!sband) 1541 return; 1542 1543 for (i = 0; i < sband->n_channels; i++) 1544 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 1545 } 1546 1547 static void reg_process_ht_flags(struct wiphy *wiphy) 1548 { 1549 enum nl80211_band band; 1550 1551 if (!wiphy) 1552 return; 1553 1554 for (band = 0; band < NUM_NL80211_BANDS; band++) 1555 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 1556 } 1557 1558 static void reg_call_notifier(struct wiphy *wiphy, 1559 struct regulatory_request *request) 1560 { 1561 if (wiphy->reg_notifier) 1562 wiphy->reg_notifier(wiphy, request); 1563 } 1564 1565 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 1566 { 1567 struct cfg80211_chan_def chandef; 1568 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1569 enum nl80211_iftype iftype; 1570 1571 wdev_lock(wdev); 1572 iftype = wdev->iftype; 1573 1574 /* make sure the interface is active */ 1575 if (!wdev->netdev || !netif_running(wdev->netdev)) 1576 goto wdev_inactive_unlock; 1577 1578 switch (iftype) { 1579 case NL80211_IFTYPE_AP: 1580 case NL80211_IFTYPE_P2P_GO: 1581 if (!wdev->beacon_interval) 1582 goto wdev_inactive_unlock; 1583 chandef = wdev->chandef; 1584 break; 1585 case NL80211_IFTYPE_ADHOC: 1586 if (!wdev->ssid_len) 1587 goto wdev_inactive_unlock; 1588 chandef = wdev->chandef; 1589 break; 1590 case NL80211_IFTYPE_STATION: 1591 case NL80211_IFTYPE_P2P_CLIENT: 1592 if (!wdev->current_bss || 1593 !wdev->current_bss->pub.channel) 1594 goto wdev_inactive_unlock; 1595 1596 if (!rdev->ops->get_channel || 1597 rdev_get_channel(rdev, wdev, &chandef)) 1598 cfg80211_chandef_create(&chandef, 1599 wdev->current_bss->pub.channel, 1600 NL80211_CHAN_NO_HT); 1601 break; 1602 case NL80211_IFTYPE_MONITOR: 1603 case NL80211_IFTYPE_AP_VLAN: 1604 case NL80211_IFTYPE_P2P_DEVICE: 1605 /* no enforcement required */ 1606 break; 1607 default: 1608 /* others not implemented for now */ 1609 WARN_ON(1); 1610 break; 1611 } 1612 1613 wdev_unlock(wdev); 1614 1615 switch (iftype) { 1616 case NL80211_IFTYPE_AP: 1617 case NL80211_IFTYPE_P2P_GO: 1618 case NL80211_IFTYPE_ADHOC: 1619 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 1620 case NL80211_IFTYPE_STATION: 1621 case NL80211_IFTYPE_P2P_CLIENT: 1622 return cfg80211_chandef_usable(wiphy, &chandef, 1623 IEEE80211_CHAN_DISABLED); 1624 default: 1625 break; 1626 } 1627 1628 return true; 1629 1630 wdev_inactive_unlock: 1631 wdev_unlock(wdev); 1632 return true; 1633 } 1634 1635 static void reg_leave_invalid_chans(struct wiphy *wiphy) 1636 { 1637 struct wireless_dev *wdev; 1638 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1639 1640 ASSERT_RTNL(); 1641 1642 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 1643 if (!reg_wdev_chan_valid(wiphy, wdev)) 1644 cfg80211_leave(rdev, wdev); 1645 } 1646 1647 static void reg_check_chans_work(struct work_struct *work) 1648 { 1649 struct cfg80211_registered_device *rdev; 1650 1651 pr_debug("Verifying active interfaces after reg change\n"); 1652 rtnl_lock(); 1653 1654 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1655 if (!(rdev->wiphy.regulatory_flags & 1656 REGULATORY_IGNORE_STALE_KICKOFF)) 1657 reg_leave_invalid_chans(&rdev->wiphy); 1658 1659 rtnl_unlock(); 1660 } 1661 1662 static void reg_check_channels(void) 1663 { 1664 /* 1665 * Give usermode a chance to do something nicer (move to another 1666 * channel, orderly disconnection), before forcing a disconnection. 1667 */ 1668 mod_delayed_work(system_power_efficient_wq, 1669 ®_check_chans, 1670 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 1671 } 1672 1673 static void wiphy_update_regulatory(struct wiphy *wiphy, 1674 enum nl80211_reg_initiator initiator) 1675 { 1676 enum nl80211_band band; 1677 struct regulatory_request *lr = get_last_request(); 1678 1679 if (ignore_reg_update(wiphy, initiator)) { 1680 /* 1681 * Regulatory updates set by CORE are ignored for custom 1682 * regulatory cards. Let us notify the changes to the driver, 1683 * as some drivers used this to restore its orig_* reg domain. 1684 */ 1685 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1686 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1687 reg_call_notifier(wiphy, lr); 1688 return; 1689 } 1690 1691 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 1692 1693 for (band = 0; band < NUM_NL80211_BANDS; band++) 1694 handle_band(wiphy, initiator, wiphy->bands[band]); 1695 1696 reg_process_beacons(wiphy); 1697 reg_process_ht_flags(wiphy); 1698 reg_call_notifier(wiphy, lr); 1699 } 1700 1701 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1702 { 1703 struct cfg80211_registered_device *rdev; 1704 struct wiphy *wiphy; 1705 1706 ASSERT_RTNL(); 1707 1708 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1709 wiphy = &rdev->wiphy; 1710 wiphy_update_regulatory(wiphy, initiator); 1711 } 1712 1713 reg_check_channels(); 1714 } 1715 1716 static void handle_channel_custom(struct wiphy *wiphy, 1717 struct ieee80211_channel *chan, 1718 const struct ieee80211_regdomain *regd) 1719 { 1720 u32 bw_flags = 0; 1721 const struct ieee80211_reg_rule *reg_rule = NULL; 1722 const struct ieee80211_power_rule *power_rule = NULL; 1723 u32 bw; 1724 1725 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) { 1726 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq), 1727 regd, bw); 1728 if (!IS_ERR(reg_rule)) 1729 break; 1730 } 1731 1732 if (IS_ERR(reg_rule)) { 1733 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n", 1734 chan->center_freq); 1735 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 1736 chan->flags |= IEEE80211_CHAN_DISABLED; 1737 } else { 1738 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1739 chan->flags = chan->orig_flags; 1740 } 1741 return; 1742 } 1743 1744 power_rule = ®_rule->power_rule; 1745 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1746 1747 chan->dfs_state_entered = jiffies; 1748 chan->dfs_state = NL80211_DFS_USABLE; 1749 1750 chan->beacon_found = false; 1751 1752 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1753 chan->flags = chan->orig_flags | bw_flags | 1754 map_regdom_flags(reg_rule->flags); 1755 else 1756 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1757 1758 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1759 chan->max_reg_power = chan->max_power = 1760 (int) MBM_TO_DBM(power_rule->max_eirp); 1761 1762 if (chan->flags & IEEE80211_CHAN_RADAR) { 1763 if (reg_rule->dfs_cac_ms) 1764 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1765 else 1766 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1767 } 1768 1769 chan->max_power = chan->max_reg_power; 1770 } 1771 1772 static void handle_band_custom(struct wiphy *wiphy, 1773 struct ieee80211_supported_band *sband, 1774 const struct ieee80211_regdomain *regd) 1775 { 1776 unsigned int i; 1777 1778 if (!sband) 1779 return; 1780 1781 for (i = 0; i < sband->n_channels; i++) 1782 handle_channel_custom(wiphy, &sband->channels[i], regd); 1783 } 1784 1785 /* Used by drivers prior to wiphy registration */ 1786 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1787 const struct ieee80211_regdomain *regd) 1788 { 1789 enum nl80211_band band; 1790 unsigned int bands_set = 0; 1791 1792 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 1793 "wiphy should have REGULATORY_CUSTOM_REG\n"); 1794 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 1795 1796 for (band = 0; band < NUM_NL80211_BANDS; band++) { 1797 if (!wiphy->bands[band]) 1798 continue; 1799 handle_band_custom(wiphy, wiphy->bands[band], regd); 1800 bands_set++; 1801 } 1802 1803 /* 1804 * no point in calling this if it won't have any effect 1805 * on your device's supported bands. 1806 */ 1807 WARN_ON(!bands_set); 1808 } 1809 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1810 1811 static void reg_set_request_processed(void) 1812 { 1813 bool need_more_processing = false; 1814 struct regulatory_request *lr = get_last_request(); 1815 1816 lr->processed = true; 1817 1818 spin_lock(®_requests_lock); 1819 if (!list_empty(®_requests_list)) 1820 need_more_processing = true; 1821 spin_unlock(®_requests_lock); 1822 1823 cancel_crda_timeout(); 1824 1825 if (need_more_processing) 1826 schedule_work(®_work); 1827 } 1828 1829 /** 1830 * reg_process_hint_core - process core regulatory requests 1831 * @pending_request: a pending core regulatory request 1832 * 1833 * The wireless subsystem can use this function to process 1834 * a regulatory request issued by the regulatory core. 1835 */ 1836 static enum reg_request_treatment 1837 reg_process_hint_core(struct regulatory_request *core_request) 1838 { 1839 if (reg_query_database(core_request)) { 1840 core_request->intersect = false; 1841 core_request->processed = false; 1842 reg_update_last_request(core_request); 1843 return REG_REQ_OK; 1844 } 1845 1846 return REG_REQ_IGNORE; 1847 } 1848 1849 static enum reg_request_treatment 1850 __reg_process_hint_user(struct regulatory_request *user_request) 1851 { 1852 struct regulatory_request *lr = get_last_request(); 1853 1854 if (reg_request_cell_base(user_request)) 1855 return reg_ignore_cell_hint(user_request); 1856 1857 if (reg_request_cell_base(lr)) 1858 return REG_REQ_IGNORE; 1859 1860 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1861 return REG_REQ_INTERSECT; 1862 /* 1863 * If the user knows better the user should set the regdom 1864 * to their country before the IE is picked up 1865 */ 1866 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 1867 lr->intersect) 1868 return REG_REQ_IGNORE; 1869 /* 1870 * Process user requests only after previous user/driver/core 1871 * requests have been processed 1872 */ 1873 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 1874 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1875 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 1876 regdom_changes(lr->alpha2)) 1877 return REG_REQ_IGNORE; 1878 1879 if (!regdom_changes(user_request->alpha2)) 1880 return REG_REQ_ALREADY_SET; 1881 1882 return REG_REQ_OK; 1883 } 1884 1885 /** 1886 * reg_process_hint_user - process user regulatory requests 1887 * @user_request: a pending user regulatory request 1888 * 1889 * The wireless subsystem can use this function to process 1890 * a regulatory request initiated by userspace. 1891 */ 1892 static enum reg_request_treatment 1893 reg_process_hint_user(struct regulatory_request *user_request) 1894 { 1895 enum reg_request_treatment treatment; 1896 1897 treatment = __reg_process_hint_user(user_request); 1898 if (treatment == REG_REQ_IGNORE || 1899 treatment == REG_REQ_ALREADY_SET) 1900 return REG_REQ_IGNORE; 1901 1902 user_request->intersect = treatment == REG_REQ_INTERSECT; 1903 user_request->processed = false; 1904 1905 if (reg_query_database(user_request)) { 1906 reg_update_last_request(user_request); 1907 user_alpha2[0] = user_request->alpha2[0]; 1908 user_alpha2[1] = user_request->alpha2[1]; 1909 return REG_REQ_OK; 1910 } 1911 1912 return REG_REQ_IGNORE; 1913 } 1914 1915 static enum reg_request_treatment 1916 __reg_process_hint_driver(struct regulatory_request *driver_request) 1917 { 1918 struct regulatory_request *lr = get_last_request(); 1919 1920 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 1921 if (regdom_changes(driver_request->alpha2)) 1922 return REG_REQ_OK; 1923 return REG_REQ_ALREADY_SET; 1924 } 1925 1926 /* 1927 * This would happen if you unplug and plug your card 1928 * back in or if you add a new device for which the previously 1929 * loaded card also agrees on the regulatory domain. 1930 */ 1931 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1932 !regdom_changes(driver_request->alpha2)) 1933 return REG_REQ_ALREADY_SET; 1934 1935 return REG_REQ_INTERSECT; 1936 } 1937 1938 /** 1939 * reg_process_hint_driver - process driver regulatory requests 1940 * @driver_request: a pending driver regulatory request 1941 * 1942 * The wireless subsystem can use this function to process 1943 * a regulatory request issued by an 802.11 driver. 1944 * 1945 * Returns one of the different reg request treatment values. 1946 */ 1947 static enum reg_request_treatment 1948 reg_process_hint_driver(struct wiphy *wiphy, 1949 struct regulatory_request *driver_request) 1950 { 1951 const struct ieee80211_regdomain *regd, *tmp; 1952 enum reg_request_treatment treatment; 1953 1954 treatment = __reg_process_hint_driver(driver_request); 1955 1956 switch (treatment) { 1957 case REG_REQ_OK: 1958 break; 1959 case REG_REQ_IGNORE: 1960 return REG_REQ_IGNORE; 1961 case REG_REQ_INTERSECT: 1962 case REG_REQ_ALREADY_SET: 1963 regd = reg_copy_regd(get_cfg80211_regdom()); 1964 if (IS_ERR(regd)) 1965 return REG_REQ_IGNORE; 1966 1967 tmp = get_wiphy_regdom(wiphy); 1968 rcu_assign_pointer(wiphy->regd, regd); 1969 rcu_free_regdom(tmp); 1970 } 1971 1972 1973 driver_request->intersect = treatment == REG_REQ_INTERSECT; 1974 driver_request->processed = false; 1975 1976 /* 1977 * Since CRDA will not be called in this case as we already 1978 * have applied the requested regulatory domain before we just 1979 * inform userspace we have processed the request 1980 */ 1981 if (treatment == REG_REQ_ALREADY_SET) { 1982 nl80211_send_reg_change_event(driver_request); 1983 reg_update_last_request(driver_request); 1984 reg_set_request_processed(); 1985 return REG_REQ_ALREADY_SET; 1986 } 1987 1988 if (reg_query_database(driver_request)) { 1989 reg_update_last_request(driver_request); 1990 return REG_REQ_OK; 1991 } 1992 1993 return REG_REQ_IGNORE; 1994 } 1995 1996 static enum reg_request_treatment 1997 __reg_process_hint_country_ie(struct wiphy *wiphy, 1998 struct regulatory_request *country_ie_request) 1999 { 2000 struct wiphy *last_wiphy = NULL; 2001 struct regulatory_request *lr = get_last_request(); 2002 2003 if (reg_request_cell_base(lr)) { 2004 /* Trust a Cell base station over the AP's country IE */ 2005 if (regdom_changes(country_ie_request->alpha2)) 2006 return REG_REQ_IGNORE; 2007 return REG_REQ_ALREADY_SET; 2008 } else { 2009 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2010 return REG_REQ_IGNORE; 2011 } 2012 2013 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2014 return -EINVAL; 2015 2016 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2017 return REG_REQ_OK; 2018 2019 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2020 2021 if (last_wiphy != wiphy) { 2022 /* 2023 * Two cards with two APs claiming different 2024 * Country IE alpha2s. We could 2025 * intersect them, but that seems unlikely 2026 * to be correct. Reject second one for now. 2027 */ 2028 if (regdom_changes(country_ie_request->alpha2)) 2029 return REG_REQ_IGNORE; 2030 return REG_REQ_ALREADY_SET; 2031 } 2032 2033 if (regdom_changes(country_ie_request->alpha2)) 2034 return REG_REQ_OK; 2035 return REG_REQ_ALREADY_SET; 2036 } 2037 2038 /** 2039 * reg_process_hint_country_ie - process regulatory requests from country IEs 2040 * @country_ie_request: a regulatory request from a country IE 2041 * 2042 * The wireless subsystem can use this function to process 2043 * a regulatory request issued by a country Information Element. 2044 * 2045 * Returns one of the different reg request treatment values. 2046 */ 2047 static enum reg_request_treatment 2048 reg_process_hint_country_ie(struct wiphy *wiphy, 2049 struct regulatory_request *country_ie_request) 2050 { 2051 enum reg_request_treatment treatment; 2052 2053 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2054 2055 switch (treatment) { 2056 case REG_REQ_OK: 2057 break; 2058 case REG_REQ_IGNORE: 2059 return REG_REQ_IGNORE; 2060 case REG_REQ_ALREADY_SET: 2061 reg_free_request(country_ie_request); 2062 return REG_REQ_ALREADY_SET; 2063 case REG_REQ_INTERSECT: 2064 /* 2065 * This doesn't happen yet, not sure we 2066 * ever want to support it for this case. 2067 */ 2068 WARN_ONCE(1, "Unexpected intersection for country IEs"); 2069 return REG_REQ_IGNORE; 2070 } 2071 2072 country_ie_request->intersect = false; 2073 country_ie_request->processed = false; 2074 2075 if (reg_query_database(country_ie_request)) { 2076 reg_update_last_request(country_ie_request); 2077 return REG_REQ_OK; 2078 } 2079 2080 return REG_REQ_IGNORE; 2081 } 2082 2083 /* This processes *all* regulatory hints */ 2084 static void reg_process_hint(struct regulatory_request *reg_request) 2085 { 2086 struct wiphy *wiphy = NULL; 2087 enum reg_request_treatment treatment; 2088 2089 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2090 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2091 2092 switch (reg_request->initiator) { 2093 case NL80211_REGDOM_SET_BY_CORE: 2094 treatment = reg_process_hint_core(reg_request); 2095 break; 2096 case NL80211_REGDOM_SET_BY_USER: 2097 treatment = reg_process_hint_user(reg_request); 2098 break; 2099 case NL80211_REGDOM_SET_BY_DRIVER: 2100 if (!wiphy) 2101 goto out_free; 2102 treatment = reg_process_hint_driver(wiphy, reg_request); 2103 break; 2104 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2105 if (!wiphy) 2106 goto out_free; 2107 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2108 break; 2109 default: 2110 WARN(1, "invalid initiator %d\n", reg_request->initiator); 2111 goto out_free; 2112 } 2113 2114 if (treatment == REG_REQ_IGNORE) 2115 goto out_free; 2116 2117 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2118 "unexpected treatment value %d\n", treatment); 2119 2120 /* This is required so that the orig_* parameters are saved. 2121 * NOTE: treatment must be set for any case that reaches here! 2122 */ 2123 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2124 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2125 wiphy_update_regulatory(wiphy, reg_request->initiator); 2126 reg_check_channels(); 2127 } 2128 2129 return; 2130 2131 out_free: 2132 reg_free_request(reg_request); 2133 } 2134 2135 static bool reg_only_self_managed_wiphys(void) 2136 { 2137 struct cfg80211_registered_device *rdev; 2138 struct wiphy *wiphy; 2139 bool self_managed_found = false; 2140 2141 ASSERT_RTNL(); 2142 2143 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2144 wiphy = &rdev->wiphy; 2145 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2146 self_managed_found = true; 2147 else 2148 return false; 2149 } 2150 2151 /* make sure at least one self-managed wiphy exists */ 2152 return self_managed_found; 2153 } 2154 2155 /* 2156 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2157 * Regulatory hints come on a first come first serve basis and we 2158 * must process each one atomically. 2159 */ 2160 static void reg_process_pending_hints(void) 2161 { 2162 struct regulatory_request *reg_request, *lr; 2163 2164 lr = get_last_request(); 2165 2166 /* When last_request->processed becomes true this will be rescheduled */ 2167 if (lr && !lr->processed) { 2168 reg_process_hint(lr); 2169 return; 2170 } 2171 2172 spin_lock(®_requests_lock); 2173 2174 if (list_empty(®_requests_list)) { 2175 spin_unlock(®_requests_lock); 2176 return; 2177 } 2178 2179 reg_request = list_first_entry(®_requests_list, 2180 struct regulatory_request, 2181 list); 2182 list_del_init(®_request->list); 2183 2184 spin_unlock(®_requests_lock); 2185 2186 if (reg_only_self_managed_wiphys()) { 2187 reg_free_request(reg_request); 2188 return; 2189 } 2190 2191 reg_process_hint(reg_request); 2192 2193 lr = get_last_request(); 2194 2195 spin_lock(®_requests_lock); 2196 if (!list_empty(®_requests_list) && lr && lr->processed) 2197 schedule_work(®_work); 2198 spin_unlock(®_requests_lock); 2199 } 2200 2201 /* Processes beacon hints -- this has nothing to do with country IEs */ 2202 static void reg_process_pending_beacon_hints(void) 2203 { 2204 struct cfg80211_registered_device *rdev; 2205 struct reg_beacon *pending_beacon, *tmp; 2206 2207 /* This goes through the _pending_ beacon list */ 2208 spin_lock_bh(®_pending_beacons_lock); 2209 2210 list_for_each_entry_safe(pending_beacon, tmp, 2211 ®_pending_beacons, list) { 2212 list_del_init(&pending_beacon->list); 2213 2214 /* Applies the beacon hint to current wiphys */ 2215 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2216 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 2217 2218 /* Remembers the beacon hint for new wiphys or reg changes */ 2219 list_add_tail(&pending_beacon->list, ®_beacon_list); 2220 } 2221 2222 spin_unlock_bh(®_pending_beacons_lock); 2223 } 2224 2225 static void reg_process_self_managed_hints(void) 2226 { 2227 struct cfg80211_registered_device *rdev; 2228 struct wiphy *wiphy; 2229 const struct ieee80211_regdomain *tmp; 2230 const struct ieee80211_regdomain *regd; 2231 enum nl80211_band band; 2232 struct regulatory_request request = {}; 2233 2234 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2235 wiphy = &rdev->wiphy; 2236 2237 spin_lock(®_requests_lock); 2238 regd = rdev->requested_regd; 2239 rdev->requested_regd = NULL; 2240 spin_unlock(®_requests_lock); 2241 2242 if (regd == NULL) 2243 continue; 2244 2245 tmp = get_wiphy_regdom(wiphy); 2246 rcu_assign_pointer(wiphy->regd, regd); 2247 rcu_free_regdom(tmp); 2248 2249 for (band = 0; band < NUM_NL80211_BANDS; band++) 2250 handle_band_custom(wiphy, wiphy->bands[band], regd); 2251 2252 reg_process_ht_flags(wiphy); 2253 2254 request.wiphy_idx = get_wiphy_idx(wiphy); 2255 request.alpha2[0] = regd->alpha2[0]; 2256 request.alpha2[1] = regd->alpha2[1]; 2257 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 2258 2259 nl80211_send_wiphy_reg_change_event(&request); 2260 } 2261 2262 reg_check_channels(); 2263 } 2264 2265 static void reg_todo(struct work_struct *work) 2266 { 2267 rtnl_lock(); 2268 reg_process_pending_hints(); 2269 reg_process_pending_beacon_hints(); 2270 reg_process_self_managed_hints(); 2271 rtnl_unlock(); 2272 } 2273 2274 static void queue_regulatory_request(struct regulatory_request *request) 2275 { 2276 request->alpha2[0] = toupper(request->alpha2[0]); 2277 request->alpha2[1] = toupper(request->alpha2[1]); 2278 2279 spin_lock(®_requests_lock); 2280 list_add_tail(&request->list, ®_requests_list); 2281 spin_unlock(®_requests_lock); 2282 2283 schedule_work(®_work); 2284 } 2285 2286 /* 2287 * Core regulatory hint -- happens during cfg80211_init() 2288 * and when we restore regulatory settings. 2289 */ 2290 static int regulatory_hint_core(const char *alpha2) 2291 { 2292 struct regulatory_request *request; 2293 2294 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2295 if (!request) 2296 return -ENOMEM; 2297 2298 request->alpha2[0] = alpha2[0]; 2299 request->alpha2[1] = alpha2[1]; 2300 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2301 2302 queue_regulatory_request(request); 2303 2304 return 0; 2305 } 2306 2307 /* User hints */ 2308 int regulatory_hint_user(const char *alpha2, 2309 enum nl80211_user_reg_hint_type user_reg_hint_type) 2310 { 2311 struct regulatory_request *request; 2312 2313 if (WARN_ON(!alpha2)) 2314 return -EINVAL; 2315 2316 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2317 if (!request) 2318 return -ENOMEM; 2319 2320 request->wiphy_idx = WIPHY_IDX_INVALID; 2321 request->alpha2[0] = alpha2[0]; 2322 request->alpha2[1] = alpha2[1]; 2323 request->initiator = NL80211_REGDOM_SET_BY_USER; 2324 request->user_reg_hint_type = user_reg_hint_type; 2325 2326 /* Allow calling CRDA again */ 2327 reset_crda_timeouts(); 2328 2329 queue_regulatory_request(request); 2330 2331 return 0; 2332 } 2333 2334 int regulatory_hint_indoor(bool is_indoor, u32 portid) 2335 { 2336 spin_lock(®_indoor_lock); 2337 2338 /* It is possible that more than one user space process is trying to 2339 * configure the indoor setting. To handle such cases, clear the indoor 2340 * setting in case that some process does not think that the device 2341 * is operating in an indoor environment. In addition, if a user space 2342 * process indicates that it is controlling the indoor setting, save its 2343 * portid, i.e., make it the owner. 2344 */ 2345 reg_is_indoor = is_indoor; 2346 if (reg_is_indoor) { 2347 if (!reg_is_indoor_portid) 2348 reg_is_indoor_portid = portid; 2349 } else { 2350 reg_is_indoor_portid = 0; 2351 } 2352 2353 spin_unlock(®_indoor_lock); 2354 2355 if (!is_indoor) 2356 reg_check_channels(); 2357 2358 return 0; 2359 } 2360 2361 void regulatory_netlink_notify(u32 portid) 2362 { 2363 spin_lock(®_indoor_lock); 2364 2365 if (reg_is_indoor_portid != portid) { 2366 spin_unlock(®_indoor_lock); 2367 return; 2368 } 2369 2370 reg_is_indoor = false; 2371 reg_is_indoor_portid = 0; 2372 2373 spin_unlock(®_indoor_lock); 2374 2375 reg_check_channels(); 2376 } 2377 2378 /* Driver hints */ 2379 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 2380 { 2381 struct regulatory_request *request; 2382 2383 if (WARN_ON(!alpha2 || !wiphy)) 2384 return -EINVAL; 2385 2386 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 2387 2388 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2389 if (!request) 2390 return -ENOMEM; 2391 2392 request->wiphy_idx = get_wiphy_idx(wiphy); 2393 2394 request->alpha2[0] = alpha2[0]; 2395 request->alpha2[1] = alpha2[1]; 2396 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 2397 2398 /* Allow calling CRDA again */ 2399 reset_crda_timeouts(); 2400 2401 queue_regulatory_request(request); 2402 2403 return 0; 2404 } 2405 EXPORT_SYMBOL(regulatory_hint); 2406 2407 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 2408 const u8 *country_ie, u8 country_ie_len) 2409 { 2410 char alpha2[2]; 2411 enum environment_cap env = ENVIRON_ANY; 2412 struct regulatory_request *request = NULL, *lr; 2413 2414 /* IE len must be evenly divisible by 2 */ 2415 if (country_ie_len & 0x01) 2416 return; 2417 2418 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 2419 return; 2420 2421 request = kzalloc(sizeof(*request), GFP_KERNEL); 2422 if (!request) 2423 return; 2424 2425 alpha2[0] = country_ie[0]; 2426 alpha2[1] = country_ie[1]; 2427 2428 if (country_ie[2] == 'I') 2429 env = ENVIRON_INDOOR; 2430 else if (country_ie[2] == 'O') 2431 env = ENVIRON_OUTDOOR; 2432 2433 rcu_read_lock(); 2434 lr = get_last_request(); 2435 2436 if (unlikely(!lr)) 2437 goto out; 2438 2439 /* 2440 * We will run this only upon a successful connection on cfg80211. 2441 * We leave conflict resolution to the workqueue, where can hold 2442 * the RTNL. 2443 */ 2444 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2445 lr->wiphy_idx != WIPHY_IDX_INVALID) 2446 goto out; 2447 2448 request->wiphy_idx = get_wiphy_idx(wiphy); 2449 request->alpha2[0] = alpha2[0]; 2450 request->alpha2[1] = alpha2[1]; 2451 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 2452 request->country_ie_env = env; 2453 2454 /* Allow calling CRDA again */ 2455 reset_crda_timeouts(); 2456 2457 queue_regulatory_request(request); 2458 request = NULL; 2459 out: 2460 kfree(request); 2461 rcu_read_unlock(); 2462 } 2463 2464 static void restore_alpha2(char *alpha2, bool reset_user) 2465 { 2466 /* indicates there is no alpha2 to consider for restoration */ 2467 alpha2[0] = '9'; 2468 alpha2[1] = '7'; 2469 2470 /* The user setting has precedence over the module parameter */ 2471 if (is_user_regdom_saved()) { 2472 /* Unless we're asked to ignore it and reset it */ 2473 if (reset_user) { 2474 pr_debug("Restoring regulatory settings including user preference\n"); 2475 user_alpha2[0] = '9'; 2476 user_alpha2[1] = '7'; 2477 2478 /* 2479 * If we're ignoring user settings, we still need to 2480 * check the module parameter to ensure we put things 2481 * back as they were for a full restore. 2482 */ 2483 if (!is_world_regdom(ieee80211_regdom)) { 2484 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2485 ieee80211_regdom[0], ieee80211_regdom[1]); 2486 alpha2[0] = ieee80211_regdom[0]; 2487 alpha2[1] = ieee80211_regdom[1]; 2488 } 2489 } else { 2490 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 2491 user_alpha2[0], user_alpha2[1]); 2492 alpha2[0] = user_alpha2[0]; 2493 alpha2[1] = user_alpha2[1]; 2494 } 2495 } else if (!is_world_regdom(ieee80211_regdom)) { 2496 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2497 ieee80211_regdom[0], ieee80211_regdom[1]); 2498 alpha2[0] = ieee80211_regdom[0]; 2499 alpha2[1] = ieee80211_regdom[1]; 2500 } else 2501 pr_debug("Restoring regulatory settings\n"); 2502 } 2503 2504 static void restore_custom_reg_settings(struct wiphy *wiphy) 2505 { 2506 struct ieee80211_supported_band *sband; 2507 enum nl80211_band band; 2508 struct ieee80211_channel *chan; 2509 int i; 2510 2511 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2512 sband = wiphy->bands[band]; 2513 if (!sband) 2514 continue; 2515 for (i = 0; i < sband->n_channels; i++) { 2516 chan = &sband->channels[i]; 2517 chan->flags = chan->orig_flags; 2518 chan->max_antenna_gain = chan->orig_mag; 2519 chan->max_power = chan->orig_mpwr; 2520 chan->beacon_found = false; 2521 } 2522 } 2523 } 2524 2525 /* 2526 * Restoring regulatory settings involves ingoring any 2527 * possibly stale country IE information and user regulatory 2528 * settings if so desired, this includes any beacon hints 2529 * learned as we could have traveled outside to another country 2530 * after disconnection. To restore regulatory settings we do 2531 * exactly what we did at bootup: 2532 * 2533 * - send a core regulatory hint 2534 * - send a user regulatory hint if applicable 2535 * 2536 * Device drivers that send a regulatory hint for a specific country 2537 * keep their own regulatory domain on wiphy->regd so that does does 2538 * not need to be remembered. 2539 */ 2540 static void restore_regulatory_settings(bool reset_user) 2541 { 2542 char alpha2[2]; 2543 char world_alpha2[2]; 2544 struct reg_beacon *reg_beacon, *btmp; 2545 LIST_HEAD(tmp_reg_req_list); 2546 struct cfg80211_registered_device *rdev; 2547 2548 ASSERT_RTNL(); 2549 2550 /* 2551 * Clear the indoor setting in case that it is not controlled by user 2552 * space, as otherwise there is no guarantee that the device is still 2553 * operating in an indoor environment. 2554 */ 2555 spin_lock(®_indoor_lock); 2556 if (reg_is_indoor && !reg_is_indoor_portid) { 2557 reg_is_indoor = false; 2558 reg_check_channels(); 2559 } 2560 spin_unlock(®_indoor_lock); 2561 2562 reset_regdomains(true, &world_regdom); 2563 restore_alpha2(alpha2, reset_user); 2564 2565 /* 2566 * If there's any pending requests we simply 2567 * stash them to a temporary pending queue and 2568 * add then after we've restored regulatory 2569 * settings. 2570 */ 2571 spin_lock(®_requests_lock); 2572 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 2573 spin_unlock(®_requests_lock); 2574 2575 /* Clear beacon hints */ 2576 spin_lock_bh(®_pending_beacons_lock); 2577 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2578 list_del(®_beacon->list); 2579 kfree(reg_beacon); 2580 } 2581 spin_unlock_bh(®_pending_beacons_lock); 2582 2583 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2584 list_del(®_beacon->list); 2585 kfree(reg_beacon); 2586 } 2587 2588 /* First restore to the basic regulatory settings */ 2589 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 2590 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 2591 2592 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2593 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2594 continue; 2595 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 2596 restore_custom_reg_settings(&rdev->wiphy); 2597 } 2598 2599 regulatory_hint_core(world_alpha2); 2600 2601 /* 2602 * This restores the ieee80211_regdom module parameter 2603 * preference or the last user requested regulatory 2604 * settings, user regulatory settings takes precedence. 2605 */ 2606 if (is_an_alpha2(alpha2)) 2607 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 2608 2609 spin_lock(®_requests_lock); 2610 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 2611 spin_unlock(®_requests_lock); 2612 2613 pr_debug("Kicking the queue\n"); 2614 2615 schedule_work(®_work); 2616 } 2617 2618 void regulatory_hint_disconnect(void) 2619 { 2620 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 2621 restore_regulatory_settings(false); 2622 } 2623 2624 static bool freq_is_chan_12_13_14(u16 freq) 2625 { 2626 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 2627 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 2628 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 2629 return true; 2630 return false; 2631 } 2632 2633 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 2634 { 2635 struct reg_beacon *pending_beacon; 2636 2637 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 2638 if (beacon_chan->center_freq == 2639 pending_beacon->chan.center_freq) 2640 return true; 2641 return false; 2642 } 2643 2644 int regulatory_hint_found_beacon(struct wiphy *wiphy, 2645 struct ieee80211_channel *beacon_chan, 2646 gfp_t gfp) 2647 { 2648 struct reg_beacon *reg_beacon; 2649 bool processing; 2650 2651 if (beacon_chan->beacon_found || 2652 beacon_chan->flags & IEEE80211_CHAN_RADAR || 2653 (beacon_chan->band == NL80211_BAND_2GHZ && 2654 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 2655 return 0; 2656 2657 spin_lock_bh(®_pending_beacons_lock); 2658 processing = pending_reg_beacon(beacon_chan); 2659 spin_unlock_bh(®_pending_beacons_lock); 2660 2661 if (processing) 2662 return 0; 2663 2664 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 2665 if (!reg_beacon) 2666 return -ENOMEM; 2667 2668 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 2669 beacon_chan->center_freq, 2670 ieee80211_frequency_to_channel(beacon_chan->center_freq), 2671 wiphy_name(wiphy)); 2672 2673 memcpy(®_beacon->chan, beacon_chan, 2674 sizeof(struct ieee80211_channel)); 2675 2676 /* 2677 * Since we can be called from BH or and non-BH context 2678 * we must use spin_lock_bh() 2679 */ 2680 spin_lock_bh(®_pending_beacons_lock); 2681 list_add_tail(®_beacon->list, ®_pending_beacons); 2682 spin_unlock_bh(®_pending_beacons_lock); 2683 2684 schedule_work(®_work); 2685 2686 return 0; 2687 } 2688 2689 static void print_rd_rules(const struct ieee80211_regdomain *rd) 2690 { 2691 unsigned int i; 2692 const struct ieee80211_reg_rule *reg_rule = NULL; 2693 const struct ieee80211_freq_range *freq_range = NULL; 2694 const struct ieee80211_power_rule *power_rule = NULL; 2695 char bw[32], cac_time[32]; 2696 2697 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 2698 2699 for (i = 0; i < rd->n_reg_rules; i++) { 2700 reg_rule = &rd->reg_rules[i]; 2701 freq_range = ®_rule->freq_range; 2702 power_rule = ®_rule->power_rule; 2703 2704 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 2705 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 2706 freq_range->max_bandwidth_khz, 2707 reg_get_max_bandwidth(rd, reg_rule)); 2708 else 2709 snprintf(bw, sizeof(bw), "%d KHz", 2710 freq_range->max_bandwidth_khz); 2711 2712 if (reg_rule->flags & NL80211_RRF_DFS) 2713 scnprintf(cac_time, sizeof(cac_time), "%u s", 2714 reg_rule->dfs_cac_ms/1000); 2715 else 2716 scnprintf(cac_time, sizeof(cac_time), "N/A"); 2717 2718 2719 /* 2720 * There may not be documentation for max antenna gain 2721 * in certain regions 2722 */ 2723 if (power_rule->max_antenna_gain) 2724 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 2725 freq_range->start_freq_khz, 2726 freq_range->end_freq_khz, 2727 bw, 2728 power_rule->max_antenna_gain, 2729 power_rule->max_eirp, 2730 cac_time); 2731 else 2732 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 2733 freq_range->start_freq_khz, 2734 freq_range->end_freq_khz, 2735 bw, 2736 power_rule->max_eirp, 2737 cac_time); 2738 } 2739 } 2740 2741 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 2742 { 2743 switch (dfs_region) { 2744 case NL80211_DFS_UNSET: 2745 case NL80211_DFS_FCC: 2746 case NL80211_DFS_ETSI: 2747 case NL80211_DFS_JP: 2748 return true; 2749 default: 2750 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region); 2751 return false; 2752 } 2753 } 2754 2755 static void print_regdomain(const struct ieee80211_regdomain *rd) 2756 { 2757 struct regulatory_request *lr = get_last_request(); 2758 2759 if (is_intersected_alpha2(rd->alpha2)) { 2760 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2761 struct cfg80211_registered_device *rdev; 2762 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 2763 if (rdev) { 2764 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 2765 rdev->country_ie_alpha2[0], 2766 rdev->country_ie_alpha2[1]); 2767 } else 2768 pr_debug("Current regulatory domain intersected:\n"); 2769 } else 2770 pr_debug("Current regulatory domain intersected:\n"); 2771 } else if (is_world_regdom(rd->alpha2)) { 2772 pr_debug("World regulatory domain updated:\n"); 2773 } else { 2774 if (is_unknown_alpha2(rd->alpha2)) 2775 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2776 else { 2777 if (reg_request_cell_base(lr)) 2778 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 2779 rd->alpha2[0], rd->alpha2[1]); 2780 else 2781 pr_debug("Regulatory domain changed to country: %c%c\n", 2782 rd->alpha2[0], rd->alpha2[1]); 2783 } 2784 } 2785 2786 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 2787 print_rd_rules(rd); 2788 } 2789 2790 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2791 { 2792 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2793 print_rd_rules(rd); 2794 } 2795 2796 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 2797 { 2798 if (!is_world_regdom(rd->alpha2)) 2799 return -EINVAL; 2800 update_world_regdomain(rd); 2801 return 0; 2802 } 2803 2804 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 2805 struct regulatory_request *user_request) 2806 { 2807 const struct ieee80211_regdomain *intersected_rd = NULL; 2808 2809 if (!regdom_changes(rd->alpha2)) 2810 return -EALREADY; 2811 2812 if (!is_valid_rd(rd)) { 2813 pr_err("Invalid regulatory domain detected: %c%c\n", 2814 rd->alpha2[0], rd->alpha2[1]); 2815 print_regdomain_info(rd); 2816 return -EINVAL; 2817 } 2818 2819 if (!user_request->intersect) { 2820 reset_regdomains(false, rd); 2821 return 0; 2822 } 2823 2824 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2825 if (!intersected_rd) 2826 return -EINVAL; 2827 2828 kfree(rd); 2829 rd = NULL; 2830 reset_regdomains(false, intersected_rd); 2831 2832 return 0; 2833 } 2834 2835 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 2836 struct regulatory_request *driver_request) 2837 { 2838 const struct ieee80211_regdomain *regd; 2839 const struct ieee80211_regdomain *intersected_rd = NULL; 2840 const struct ieee80211_regdomain *tmp; 2841 struct wiphy *request_wiphy; 2842 2843 if (is_world_regdom(rd->alpha2)) 2844 return -EINVAL; 2845 2846 if (!regdom_changes(rd->alpha2)) 2847 return -EALREADY; 2848 2849 if (!is_valid_rd(rd)) { 2850 pr_err("Invalid regulatory domain detected: %c%c\n", 2851 rd->alpha2[0], rd->alpha2[1]); 2852 print_regdomain_info(rd); 2853 return -EINVAL; 2854 } 2855 2856 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 2857 if (!request_wiphy) 2858 return -ENODEV; 2859 2860 if (!driver_request->intersect) { 2861 if (request_wiphy->regd) 2862 return -EALREADY; 2863 2864 regd = reg_copy_regd(rd); 2865 if (IS_ERR(regd)) 2866 return PTR_ERR(regd); 2867 2868 rcu_assign_pointer(request_wiphy->regd, regd); 2869 reset_regdomains(false, rd); 2870 return 0; 2871 } 2872 2873 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2874 if (!intersected_rd) 2875 return -EINVAL; 2876 2877 /* 2878 * We can trash what CRDA provided now. 2879 * However if a driver requested this specific regulatory 2880 * domain we keep it for its private use 2881 */ 2882 tmp = get_wiphy_regdom(request_wiphy); 2883 rcu_assign_pointer(request_wiphy->regd, rd); 2884 rcu_free_regdom(tmp); 2885 2886 rd = NULL; 2887 2888 reset_regdomains(false, intersected_rd); 2889 2890 return 0; 2891 } 2892 2893 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 2894 struct regulatory_request *country_ie_request) 2895 { 2896 struct wiphy *request_wiphy; 2897 2898 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2899 !is_unknown_alpha2(rd->alpha2)) 2900 return -EINVAL; 2901 2902 /* 2903 * Lets only bother proceeding on the same alpha2 if the current 2904 * rd is non static (it means CRDA was present and was used last) 2905 * and the pending request came in from a country IE 2906 */ 2907 2908 if (!is_valid_rd(rd)) { 2909 pr_err("Invalid regulatory domain detected: %c%c\n", 2910 rd->alpha2[0], rd->alpha2[1]); 2911 print_regdomain_info(rd); 2912 return -EINVAL; 2913 } 2914 2915 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 2916 if (!request_wiphy) 2917 return -ENODEV; 2918 2919 if (country_ie_request->intersect) 2920 return -EINVAL; 2921 2922 reset_regdomains(false, rd); 2923 return 0; 2924 } 2925 2926 /* 2927 * Use this call to set the current regulatory domain. Conflicts with 2928 * multiple drivers can be ironed out later. Caller must've already 2929 * kmalloc'd the rd structure. 2930 */ 2931 int set_regdom(const struct ieee80211_regdomain *rd, 2932 enum ieee80211_regd_source regd_src) 2933 { 2934 struct regulatory_request *lr; 2935 bool user_reset = false; 2936 int r; 2937 2938 if (!reg_is_valid_request(rd->alpha2)) { 2939 kfree(rd); 2940 return -EINVAL; 2941 } 2942 2943 if (regd_src == REGD_SOURCE_CRDA) 2944 reset_crda_timeouts(); 2945 2946 lr = get_last_request(); 2947 2948 /* Note that this doesn't update the wiphys, this is done below */ 2949 switch (lr->initiator) { 2950 case NL80211_REGDOM_SET_BY_CORE: 2951 r = reg_set_rd_core(rd); 2952 break; 2953 case NL80211_REGDOM_SET_BY_USER: 2954 r = reg_set_rd_user(rd, lr); 2955 user_reset = true; 2956 break; 2957 case NL80211_REGDOM_SET_BY_DRIVER: 2958 r = reg_set_rd_driver(rd, lr); 2959 break; 2960 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2961 r = reg_set_rd_country_ie(rd, lr); 2962 break; 2963 default: 2964 WARN(1, "invalid initiator %d\n", lr->initiator); 2965 kfree(rd); 2966 return -EINVAL; 2967 } 2968 2969 if (r) { 2970 switch (r) { 2971 case -EALREADY: 2972 reg_set_request_processed(); 2973 break; 2974 default: 2975 /* Back to world regulatory in case of errors */ 2976 restore_regulatory_settings(user_reset); 2977 } 2978 2979 kfree(rd); 2980 return r; 2981 } 2982 2983 /* This would make this whole thing pointless */ 2984 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 2985 return -EINVAL; 2986 2987 /* update all wiphys now with the new established regulatory domain */ 2988 update_all_wiphy_regulatory(lr->initiator); 2989 2990 print_regdomain(get_cfg80211_regdom()); 2991 2992 nl80211_send_reg_change_event(lr); 2993 2994 reg_set_request_processed(); 2995 2996 return 0; 2997 } 2998 2999 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3000 struct ieee80211_regdomain *rd) 3001 { 3002 const struct ieee80211_regdomain *regd; 3003 const struct ieee80211_regdomain *prev_regd; 3004 struct cfg80211_registered_device *rdev; 3005 3006 if (WARN_ON(!wiphy || !rd)) 3007 return -EINVAL; 3008 3009 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3010 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3011 return -EPERM; 3012 3013 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3014 print_regdomain_info(rd); 3015 return -EINVAL; 3016 } 3017 3018 regd = reg_copy_regd(rd); 3019 if (IS_ERR(regd)) 3020 return PTR_ERR(regd); 3021 3022 rdev = wiphy_to_rdev(wiphy); 3023 3024 spin_lock(®_requests_lock); 3025 prev_regd = rdev->requested_regd; 3026 rdev->requested_regd = regd; 3027 spin_unlock(®_requests_lock); 3028 3029 kfree(prev_regd); 3030 return 0; 3031 } 3032 3033 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3034 struct ieee80211_regdomain *rd) 3035 { 3036 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3037 3038 if (ret) 3039 return ret; 3040 3041 schedule_work(®_work); 3042 return 0; 3043 } 3044 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3045 3046 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3047 struct ieee80211_regdomain *rd) 3048 { 3049 int ret; 3050 3051 ASSERT_RTNL(); 3052 3053 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3054 if (ret) 3055 return ret; 3056 3057 /* process the request immediately */ 3058 reg_process_self_managed_hints(); 3059 return 0; 3060 } 3061 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3062 3063 void wiphy_regulatory_register(struct wiphy *wiphy) 3064 { 3065 struct regulatory_request *lr; 3066 3067 /* self-managed devices ignore external hints */ 3068 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3069 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3070 REGULATORY_COUNTRY_IE_IGNORE; 3071 3072 if (!reg_dev_ignore_cell_hint(wiphy)) 3073 reg_num_devs_support_basehint++; 3074 3075 lr = get_last_request(); 3076 wiphy_update_regulatory(wiphy, lr->initiator); 3077 } 3078 3079 void wiphy_regulatory_deregister(struct wiphy *wiphy) 3080 { 3081 struct wiphy *request_wiphy = NULL; 3082 struct regulatory_request *lr; 3083 3084 lr = get_last_request(); 3085 3086 if (!reg_dev_ignore_cell_hint(wiphy)) 3087 reg_num_devs_support_basehint--; 3088 3089 rcu_free_regdom(get_wiphy_regdom(wiphy)); 3090 RCU_INIT_POINTER(wiphy->regd, NULL); 3091 3092 if (lr) 3093 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 3094 3095 if (!request_wiphy || request_wiphy != wiphy) 3096 return; 3097 3098 lr->wiphy_idx = WIPHY_IDX_INVALID; 3099 lr->country_ie_env = ENVIRON_ANY; 3100 } 3101 3102 /* 3103 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for 3104 * UNII band definitions 3105 */ 3106 int cfg80211_get_unii(int freq) 3107 { 3108 /* UNII-1 */ 3109 if (freq >= 5150 && freq <= 5250) 3110 return 0; 3111 3112 /* UNII-2A */ 3113 if (freq > 5250 && freq <= 5350) 3114 return 1; 3115 3116 /* UNII-2B */ 3117 if (freq > 5350 && freq <= 5470) 3118 return 2; 3119 3120 /* UNII-2C */ 3121 if (freq > 5470 && freq <= 5725) 3122 return 3; 3123 3124 /* UNII-3 */ 3125 if (freq > 5725 && freq <= 5825) 3126 return 4; 3127 3128 return -EINVAL; 3129 } 3130 3131 bool regulatory_indoor_allowed(void) 3132 { 3133 return reg_is_indoor; 3134 } 3135 3136 int __init regulatory_init(void) 3137 { 3138 int err = 0; 3139 3140 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 3141 if (IS_ERR(reg_pdev)) 3142 return PTR_ERR(reg_pdev); 3143 3144 spin_lock_init(®_requests_lock); 3145 spin_lock_init(®_pending_beacons_lock); 3146 spin_lock_init(®_indoor_lock); 3147 3148 reg_regdb_size_check(); 3149 3150 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 3151 3152 user_alpha2[0] = '9'; 3153 user_alpha2[1] = '7'; 3154 3155 /* We always try to get an update for the static regdomain */ 3156 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 3157 if (err) { 3158 if (err == -ENOMEM) { 3159 platform_device_unregister(reg_pdev); 3160 return err; 3161 } 3162 /* 3163 * N.B. kobject_uevent_env() can fail mainly for when we're out 3164 * memory which is handled and propagated appropriately above 3165 * but it can also fail during a netlink_broadcast() or during 3166 * early boot for call_usermodehelper(). For now treat these 3167 * errors as non-fatal. 3168 */ 3169 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 3170 } 3171 3172 /* 3173 * Finally, if the user set the module parameter treat it 3174 * as a user hint. 3175 */ 3176 if (!is_world_regdom(ieee80211_regdom)) 3177 regulatory_hint_user(ieee80211_regdom, 3178 NL80211_USER_REG_HINT_USER); 3179 3180 return 0; 3181 } 3182 3183 void regulatory_exit(void) 3184 { 3185 struct regulatory_request *reg_request, *tmp; 3186 struct reg_beacon *reg_beacon, *btmp; 3187 3188 cancel_work_sync(®_work); 3189 cancel_crda_timeout_sync(); 3190 cancel_delayed_work_sync(®_check_chans); 3191 3192 /* Lock to suppress warnings */ 3193 rtnl_lock(); 3194 reset_regdomains(true, NULL); 3195 rtnl_unlock(); 3196 3197 dev_set_uevent_suppress(®_pdev->dev, true); 3198 3199 platform_device_unregister(reg_pdev); 3200 3201 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3202 list_del(®_beacon->list); 3203 kfree(reg_beacon); 3204 } 3205 3206 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3207 list_del(®_beacon->list); 3208 kfree(reg_beacon); 3209 } 3210 3211 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 3212 list_del(®_request->list); 3213 kfree(reg_request); 3214 } 3215 } 3216