xref: /linux/net/wireless/reg.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61 
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...)			\
64 	printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68 
69 static struct regulatory_request core_request_world = {
70 	.initiator = NL80211_REGDOM_SET_BY_CORE,
71 	.alpha2[0] = '0',
72 	.alpha2[1] = '0',
73 	.intersect = false,
74 	.processed = true,
75 	.country_ie_env = ENVIRON_ANY,
76 };
77 
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80 
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83 
84 static struct device_type reg_device_type = {
85 	.uevent = reg_device_uevent,
86 };
87 
88 /*
89  * Central wireless core regulatory domains, we only need two,
90  * the current one and a world regulatory domain in case we have no
91  * information to give us an alpha2
92  */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94 
95 /*
96  * Protects static reg.c components:
97  *     - cfg80211_world_regdom
98  *     - cfg80211_regdom
99  *     - last_request
100  */
101 static DEFINE_MUTEX(reg_mutex);
102 
103 static inline void assert_reg_lock(void)
104 {
105 	lockdep_assert_held(&reg_mutex);
106 }
107 
108 /* Used to queue up regulatory hints */
109 static LIST_HEAD(reg_requests_list);
110 static spinlock_t reg_requests_lock;
111 
112 /* Used to queue up beacon hints for review */
113 static LIST_HEAD(reg_pending_beacons);
114 static spinlock_t reg_pending_beacons_lock;
115 
116 /* Used to keep track of processed beacon hints */
117 static LIST_HEAD(reg_beacon_list);
118 
119 struct reg_beacon {
120 	struct list_head list;
121 	struct ieee80211_channel chan;
122 };
123 
124 static void reg_todo(struct work_struct *work);
125 static DECLARE_WORK(reg_work, reg_todo);
126 
127 static void reg_timeout_work(struct work_struct *work);
128 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
129 
130 /* We keep a static world regulatory domain in case of the absence of CRDA */
131 static const struct ieee80211_regdomain world_regdom = {
132 	.n_reg_rules = 5,
133 	.alpha2 =  "00",
134 	.reg_rules = {
135 		/* IEEE 802.11b/g, channels 1..11 */
136 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
137 		/* IEEE 802.11b/g, channels 12..13. No HT40
138 		 * channel fits here. */
139 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
140 			NL80211_RRF_PASSIVE_SCAN |
141 			NL80211_RRF_NO_IBSS),
142 		/* IEEE 802.11 channel 14 - Only JP enables
143 		 * this and for 802.11b only */
144 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
145 			NL80211_RRF_PASSIVE_SCAN |
146 			NL80211_RRF_NO_IBSS |
147 			NL80211_RRF_NO_OFDM),
148 		/* IEEE 802.11a, channel 36..48 */
149 		REG_RULE(5180-10, 5240+10, 40, 6, 20,
150                         NL80211_RRF_PASSIVE_SCAN |
151                         NL80211_RRF_NO_IBSS),
152 
153 		/* NB: 5260 MHz - 5700 MHz requies DFS */
154 
155 		/* IEEE 802.11a, channel 149..165 */
156 		REG_RULE(5745-10, 5825+10, 40, 6, 20,
157 			NL80211_RRF_PASSIVE_SCAN |
158 			NL80211_RRF_NO_IBSS),
159 	}
160 };
161 
162 static const struct ieee80211_regdomain *cfg80211_world_regdom =
163 	&world_regdom;
164 
165 static char *ieee80211_regdom = "00";
166 static char user_alpha2[2];
167 
168 module_param(ieee80211_regdom, charp, 0444);
169 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
170 
171 static void reset_regdomains(bool full_reset)
172 {
173 	/* avoid freeing static information or freeing something twice */
174 	if (cfg80211_regdomain == cfg80211_world_regdom)
175 		cfg80211_regdomain = NULL;
176 	if (cfg80211_world_regdom == &world_regdom)
177 		cfg80211_world_regdom = NULL;
178 	if (cfg80211_regdomain == &world_regdom)
179 		cfg80211_regdomain = NULL;
180 
181 	kfree(cfg80211_regdomain);
182 	kfree(cfg80211_world_regdom);
183 
184 	cfg80211_world_regdom = &world_regdom;
185 	cfg80211_regdomain = NULL;
186 
187 	if (!full_reset)
188 		return;
189 
190 	if (last_request != &core_request_world)
191 		kfree(last_request);
192 	last_request = &core_request_world;
193 }
194 
195 /*
196  * Dynamic world regulatory domain requested by the wireless
197  * core upon initialization
198  */
199 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
200 {
201 	BUG_ON(!last_request);
202 
203 	reset_regdomains(false);
204 
205 	cfg80211_world_regdom = rd;
206 	cfg80211_regdomain = rd;
207 }
208 
209 bool is_world_regdom(const char *alpha2)
210 {
211 	if (!alpha2)
212 		return false;
213 	if (alpha2[0] == '0' && alpha2[1] == '0')
214 		return true;
215 	return false;
216 }
217 
218 static bool is_alpha2_set(const char *alpha2)
219 {
220 	if (!alpha2)
221 		return false;
222 	if (alpha2[0] != 0 && alpha2[1] != 0)
223 		return true;
224 	return false;
225 }
226 
227 static bool is_unknown_alpha2(const char *alpha2)
228 {
229 	if (!alpha2)
230 		return false;
231 	/*
232 	 * Special case where regulatory domain was built by driver
233 	 * but a specific alpha2 cannot be determined
234 	 */
235 	if (alpha2[0] == '9' && alpha2[1] == '9')
236 		return true;
237 	return false;
238 }
239 
240 static bool is_intersected_alpha2(const char *alpha2)
241 {
242 	if (!alpha2)
243 		return false;
244 	/*
245 	 * Special case where regulatory domain is the
246 	 * result of an intersection between two regulatory domain
247 	 * structures
248 	 */
249 	if (alpha2[0] == '9' && alpha2[1] == '8')
250 		return true;
251 	return false;
252 }
253 
254 static bool is_an_alpha2(const char *alpha2)
255 {
256 	if (!alpha2)
257 		return false;
258 	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
259 		return true;
260 	return false;
261 }
262 
263 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
264 {
265 	if (!alpha2_x || !alpha2_y)
266 		return false;
267 	if (alpha2_x[0] == alpha2_y[0] &&
268 		alpha2_x[1] == alpha2_y[1])
269 		return true;
270 	return false;
271 }
272 
273 static bool regdom_changes(const char *alpha2)
274 {
275 	assert_cfg80211_lock();
276 
277 	if (!cfg80211_regdomain)
278 		return true;
279 	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
280 		return false;
281 	return true;
282 }
283 
284 /*
285  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
286  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
287  * has ever been issued.
288  */
289 static bool is_user_regdom_saved(void)
290 {
291 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
292 		return false;
293 
294 	/* This would indicate a mistake on the design */
295 	if (WARN((!is_world_regdom(user_alpha2) &&
296 		  !is_an_alpha2(user_alpha2)),
297 		 "Unexpected user alpha2: %c%c\n",
298 		 user_alpha2[0],
299 	         user_alpha2[1]))
300 		return false;
301 
302 	return true;
303 }
304 
305 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
306 			 const struct ieee80211_regdomain *src_regd)
307 {
308 	struct ieee80211_regdomain *regd;
309 	int size_of_regd = 0;
310 	unsigned int i;
311 
312 	size_of_regd = sizeof(struct ieee80211_regdomain) +
313 	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
314 
315 	regd = kzalloc(size_of_regd, GFP_KERNEL);
316 	if (!regd)
317 		return -ENOMEM;
318 
319 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
320 
321 	for (i = 0; i < src_regd->n_reg_rules; i++)
322 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
323 			sizeof(struct ieee80211_reg_rule));
324 
325 	*dst_regd = regd;
326 	return 0;
327 }
328 
329 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
330 struct reg_regdb_search_request {
331 	char alpha2[2];
332 	struct list_head list;
333 };
334 
335 static LIST_HEAD(reg_regdb_search_list);
336 static DEFINE_MUTEX(reg_regdb_search_mutex);
337 
338 static void reg_regdb_search(struct work_struct *work)
339 {
340 	struct reg_regdb_search_request *request;
341 	const struct ieee80211_regdomain *curdom, *regdom;
342 	int i, r;
343 
344 	mutex_lock(&reg_regdb_search_mutex);
345 	while (!list_empty(&reg_regdb_search_list)) {
346 		request = list_first_entry(&reg_regdb_search_list,
347 					   struct reg_regdb_search_request,
348 					   list);
349 		list_del(&request->list);
350 
351 		for (i=0; i<reg_regdb_size; i++) {
352 			curdom = reg_regdb[i];
353 
354 			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
355 				r = reg_copy_regd(&regdom, curdom);
356 				if (r)
357 					break;
358 				mutex_lock(&cfg80211_mutex);
359 				set_regdom(regdom);
360 				mutex_unlock(&cfg80211_mutex);
361 				break;
362 			}
363 		}
364 
365 		kfree(request);
366 	}
367 	mutex_unlock(&reg_regdb_search_mutex);
368 }
369 
370 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
371 
372 static void reg_regdb_query(const char *alpha2)
373 {
374 	struct reg_regdb_search_request *request;
375 
376 	if (!alpha2)
377 		return;
378 
379 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
380 	if (!request)
381 		return;
382 
383 	memcpy(request->alpha2, alpha2, 2);
384 
385 	mutex_lock(&reg_regdb_search_mutex);
386 	list_add_tail(&request->list, &reg_regdb_search_list);
387 	mutex_unlock(&reg_regdb_search_mutex);
388 
389 	schedule_work(&reg_regdb_work);
390 }
391 #else
392 static inline void reg_regdb_query(const char *alpha2) {}
393 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
394 
395 /*
396  * This lets us keep regulatory code which is updated on a regulatory
397  * basis in userspace. Country information is filled in by
398  * reg_device_uevent
399  */
400 static int call_crda(const char *alpha2)
401 {
402 	if (!is_world_regdom((char *) alpha2))
403 		pr_info("Calling CRDA for country: %c%c\n",
404 			alpha2[0], alpha2[1]);
405 	else
406 		pr_info("Calling CRDA to update world regulatory domain\n");
407 
408 	/* query internal regulatory database (if it exists) */
409 	reg_regdb_query(alpha2);
410 
411 	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
412 }
413 
414 /* Used by nl80211 before kmalloc'ing our regulatory domain */
415 bool reg_is_valid_request(const char *alpha2)
416 {
417 	assert_cfg80211_lock();
418 
419 	if (!last_request)
420 		return false;
421 
422 	return alpha2_equal(last_request->alpha2, alpha2);
423 }
424 
425 /* Sanity check on a regulatory rule */
426 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
427 {
428 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
429 	u32 freq_diff;
430 
431 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
432 		return false;
433 
434 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
435 		return false;
436 
437 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
438 
439 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
440 			freq_range->max_bandwidth_khz > freq_diff)
441 		return false;
442 
443 	return true;
444 }
445 
446 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
447 {
448 	const struct ieee80211_reg_rule *reg_rule = NULL;
449 	unsigned int i;
450 
451 	if (!rd->n_reg_rules)
452 		return false;
453 
454 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
455 		return false;
456 
457 	for (i = 0; i < rd->n_reg_rules; i++) {
458 		reg_rule = &rd->reg_rules[i];
459 		if (!is_valid_reg_rule(reg_rule))
460 			return false;
461 	}
462 
463 	return true;
464 }
465 
466 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
467 			    u32 center_freq_khz,
468 			    u32 bw_khz)
469 {
470 	u32 start_freq_khz, end_freq_khz;
471 
472 	start_freq_khz = center_freq_khz - (bw_khz/2);
473 	end_freq_khz = center_freq_khz + (bw_khz/2);
474 
475 	if (start_freq_khz >= freq_range->start_freq_khz &&
476 	    end_freq_khz <= freq_range->end_freq_khz)
477 		return true;
478 
479 	return false;
480 }
481 
482 /**
483  * freq_in_rule_band - tells us if a frequency is in a frequency band
484  * @freq_range: frequency rule we want to query
485  * @freq_khz: frequency we are inquiring about
486  *
487  * This lets us know if a specific frequency rule is or is not relevant to
488  * a specific frequency's band. Bands are device specific and artificial
489  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
490  * safe for now to assume that a frequency rule should not be part of a
491  * frequency's band if the start freq or end freq are off by more than 2 GHz.
492  * This resolution can be lowered and should be considered as we add
493  * regulatory rule support for other "bands".
494  **/
495 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
496 	u32 freq_khz)
497 {
498 #define ONE_GHZ_IN_KHZ	1000000
499 	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
500 		return true;
501 	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
502 		return true;
503 	return false;
504 #undef ONE_GHZ_IN_KHZ
505 }
506 
507 /*
508  * Helper for regdom_intersect(), this does the real
509  * mathematical intersection fun
510  */
511 static int reg_rules_intersect(
512 	const struct ieee80211_reg_rule *rule1,
513 	const struct ieee80211_reg_rule *rule2,
514 	struct ieee80211_reg_rule *intersected_rule)
515 {
516 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
517 	struct ieee80211_freq_range *freq_range;
518 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
519 	struct ieee80211_power_rule *power_rule;
520 	u32 freq_diff;
521 
522 	freq_range1 = &rule1->freq_range;
523 	freq_range2 = &rule2->freq_range;
524 	freq_range = &intersected_rule->freq_range;
525 
526 	power_rule1 = &rule1->power_rule;
527 	power_rule2 = &rule2->power_rule;
528 	power_rule = &intersected_rule->power_rule;
529 
530 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
531 		freq_range2->start_freq_khz);
532 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
533 		freq_range2->end_freq_khz);
534 	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
535 		freq_range2->max_bandwidth_khz);
536 
537 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
538 	if (freq_range->max_bandwidth_khz > freq_diff)
539 		freq_range->max_bandwidth_khz = freq_diff;
540 
541 	power_rule->max_eirp = min(power_rule1->max_eirp,
542 		power_rule2->max_eirp);
543 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
544 		power_rule2->max_antenna_gain);
545 
546 	intersected_rule->flags = (rule1->flags | rule2->flags);
547 
548 	if (!is_valid_reg_rule(intersected_rule))
549 		return -EINVAL;
550 
551 	return 0;
552 }
553 
554 /**
555  * regdom_intersect - do the intersection between two regulatory domains
556  * @rd1: first regulatory domain
557  * @rd2: second regulatory domain
558  *
559  * Use this function to get the intersection between two regulatory domains.
560  * Once completed we will mark the alpha2 for the rd as intersected, "98",
561  * as no one single alpha2 can represent this regulatory domain.
562  *
563  * Returns a pointer to the regulatory domain structure which will hold the
564  * resulting intersection of rules between rd1 and rd2. We will
565  * kzalloc() this structure for you.
566  */
567 static struct ieee80211_regdomain *regdom_intersect(
568 	const struct ieee80211_regdomain *rd1,
569 	const struct ieee80211_regdomain *rd2)
570 {
571 	int r, size_of_regd;
572 	unsigned int x, y;
573 	unsigned int num_rules = 0, rule_idx = 0;
574 	const struct ieee80211_reg_rule *rule1, *rule2;
575 	struct ieee80211_reg_rule *intersected_rule;
576 	struct ieee80211_regdomain *rd;
577 	/* This is just a dummy holder to help us count */
578 	struct ieee80211_reg_rule irule;
579 
580 	/* Uses the stack temporarily for counter arithmetic */
581 	intersected_rule = &irule;
582 
583 	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
584 
585 	if (!rd1 || !rd2)
586 		return NULL;
587 
588 	/*
589 	 * First we get a count of the rules we'll need, then we actually
590 	 * build them. This is to so we can malloc() and free() a
591 	 * regdomain once. The reason we use reg_rules_intersect() here
592 	 * is it will return -EINVAL if the rule computed makes no sense.
593 	 * All rules that do check out OK are valid.
594 	 */
595 
596 	for (x = 0; x < rd1->n_reg_rules; x++) {
597 		rule1 = &rd1->reg_rules[x];
598 		for (y = 0; y < rd2->n_reg_rules; y++) {
599 			rule2 = &rd2->reg_rules[y];
600 			if (!reg_rules_intersect(rule1, rule2,
601 					intersected_rule))
602 				num_rules++;
603 			memset(intersected_rule, 0,
604 					sizeof(struct ieee80211_reg_rule));
605 		}
606 	}
607 
608 	if (!num_rules)
609 		return NULL;
610 
611 	size_of_regd = sizeof(struct ieee80211_regdomain) +
612 		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
613 
614 	rd = kzalloc(size_of_regd, GFP_KERNEL);
615 	if (!rd)
616 		return NULL;
617 
618 	for (x = 0; x < rd1->n_reg_rules; x++) {
619 		rule1 = &rd1->reg_rules[x];
620 		for (y = 0; y < rd2->n_reg_rules; y++) {
621 			rule2 = &rd2->reg_rules[y];
622 			/*
623 			 * This time around instead of using the stack lets
624 			 * write to the target rule directly saving ourselves
625 			 * a memcpy()
626 			 */
627 			intersected_rule = &rd->reg_rules[rule_idx];
628 			r = reg_rules_intersect(rule1, rule2,
629 				intersected_rule);
630 			/*
631 			 * No need to memset here the intersected rule here as
632 			 * we're not using the stack anymore
633 			 */
634 			if (r)
635 				continue;
636 			rule_idx++;
637 		}
638 	}
639 
640 	if (rule_idx != num_rules) {
641 		kfree(rd);
642 		return NULL;
643 	}
644 
645 	rd->n_reg_rules = num_rules;
646 	rd->alpha2[0] = '9';
647 	rd->alpha2[1] = '8';
648 
649 	return rd;
650 }
651 
652 /*
653  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
654  * want to just have the channel structure use these
655  */
656 static u32 map_regdom_flags(u32 rd_flags)
657 {
658 	u32 channel_flags = 0;
659 	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
660 		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
661 	if (rd_flags & NL80211_RRF_NO_IBSS)
662 		channel_flags |= IEEE80211_CHAN_NO_IBSS;
663 	if (rd_flags & NL80211_RRF_DFS)
664 		channel_flags |= IEEE80211_CHAN_RADAR;
665 	return channel_flags;
666 }
667 
668 static int freq_reg_info_regd(struct wiphy *wiphy,
669 			      u32 center_freq,
670 			      u32 desired_bw_khz,
671 			      const struct ieee80211_reg_rule **reg_rule,
672 			      const struct ieee80211_regdomain *custom_regd)
673 {
674 	int i;
675 	bool band_rule_found = false;
676 	const struct ieee80211_regdomain *regd;
677 	bool bw_fits = false;
678 
679 	if (!desired_bw_khz)
680 		desired_bw_khz = MHZ_TO_KHZ(20);
681 
682 	regd = custom_regd ? custom_regd : cfg80211_regdomain;
683 
684 	/*
685 	 * Follow the driver's regulatory domain, if present, unless a country
686 	 * IE has been processed or a user wants to help complaince further
687 	 */
688 	if (!custom_regd &&
689 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
690 	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
691 	    wiphy->regd)
692 		regd = wiphy->regd;
693 
694 	if (!regd)
695 		return -EINVAL;
696 
697 	for (i = 0; i < regd->n_reg_rules; i++) {
698 		const struct ieee80211_reg_rule *rr;
699 		const struct ieee80211_freq_range *fr = NULL;
700 
701 		rr = &regd->reg_rules[i];
702 		fr = &rr->freq_range;
703 
704 		/*
705 		 * We only need to know if one frequency rule was
706 		 * was in center_freq's band, that's enough, so lets
707 		 * not overwrite it once found
708 		 */
709 		if (!band_rule_found)
710 			band_rule_found = freq_in_rule_band(fr, center_freq);
711 
712 		bw_fits = reg_does_bw_fit(fr,
713 					  center_freq,
714 					  desired_bw_khz);
715 
716 		if (band_rule_found && bw_fits) {
717 			*reg_rule = rr;
718 			return 0;
719 		}
720 	}
721 
722 	if (!band_rule_found)
723 		return -ERANGE;
724 
725 	return -EINVAL;
726 }
727 
728 int freq_reg_info(struct wiphy *wiphy,
729 		  u32 center_freq,
730 		  u32 desired_bw_khz,
731 		  const struct ieee80211_reg_rule **reg_rule)
732 {
733 	assert_cfg80211_lock();
734 	return freq_reg_info_regd(wiphy,
735 				  center_freq,
736 				  desired_bw_khz,
737 				  reg_rule,
738 				  NULL);
739 }
740 EXPORT_SYMBOL(freq_reg_info);
741 
742 #ifdef CONFIG_CFG80211_REG_DEBUG
743 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
744 {
745 	switch (initiator) {
746 	case NL80211_REGDOM_SET_BY_CORE:
747 		return "Set by core";
748 	case NL80211_REGDOM_SET_BY_USER:
749 		return "Set by user";
750 	case NL80211_REGDOM_SET_BY_DRIVER:
751 		return "Set by driver";
752 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
753 		return "Set by country IE";
754 	default:
755 		WARN_ON(1);
756 		return "Set by bug";
757 	}
758 }
759 
760 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
761 				    u32 desired_bw_khz,
762 				    const struct ieee80211_reg_rule *reg_rule)
763 {
764 	const struct ieee80211_power_rule *power_rule;
765 	const struct ieee80211_freq_range *freq_range;
766 	char max_antenna_gain[32];
767 
768 	power_rule = &reg_rule->power_rule;
769 	freq_range = &reg_rule->freq_range;
770 
771 	if (!power_rule->max_antenna_gain)
772 		snprintf(max_antenna_gain, 32, "N/A");
773 	else
774 		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
775 
776 	REG_DBG_PRINT("Updating information on frequency %d MHz "
777 		      "for a %d MHz width channel with regulatory rule:\n",
778 		      chan->center_freq,
779 		      KHZ_TO_MHZ(desired_bw_khz));
780 
781 	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
782 		      freq_range->start_freq_khz,
783 		      freq_range->end_freq_khz,
784 		      freq_range->max_bandwidth_khz,
785 		      max_antenna_gain,
786 		      power_rule->max_eirp);
787 }
788 #else
789 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
790 				    u32 desired_bw_khz,
791 				    const struct ieee80211_reg_rule *reg_rule)
792 {
793 	return;
794 }
795 #endif
796 
797 /*
798  * Note that right now we assume the desired channel bandwidth
799  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
800  * per channel, the primary and the extension channel). To support
801  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
802  * new ieee80211_channel.target_bw and re run the regulatory check
803  * on the wiphy with the target_bw specified. Then we can simply use
804  * that below for the desired_bw_khz below.
805  */
806 static void handle_channel(struct wiphy *wiphy,
807 			   enum nl80211_reg_initiator initiator,
808 			   enum ieee80211_band band,
809 			   unsigned int chan_idx)
810 {
811 	int r;
812 	u32 flags, bw_flags = 0;
813 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
814 	const struct ieee80211_reg_rule *reg_rule = NULL;
815 	const struct ieee80211_power_rule *power_rule = NULL;
816 	const struct ieee80211_freq_range *freq_range = NULL;
817 	struct ieee80211_supported_band *sband;
818 	struct ieee80211_channel *chan;
819 	struct wiphy *request_wiphy = NULL;
820 
821 	assert_cfg80211_lock();
822 
823 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
824 
825 	sband = wiphy->bands[band];
826 	BUG_ON(chan_idx >= sband->n_channels);
827 	chan = &sband->channels[chan_idx];
828 
829 	flags = chan->orig_flags;
830 
831 	r = freq_reg_info(wiphy,
832 			  MHZ_TO_KHZ(chan->center_freq),
833 			  desired_bw_khz,
834 			  &reg_rule);
835 
836 	if (r) {
837 		/*
838 		 * We will disable all channels that do not match our
839 		 * received regulatory rule unless the hint is coming
840 		 * from a Country IE and the Country IE had no information
841 		 * about a band. The IEEE 802.11 spec allows for an AP
842 		 * to send only a subset of the regulatory rules allowed,
843 		 * so an AP in the US that only supports 2.4 GHz may only send
844 		 * a country IE with information for the 2.4 GHz band
845 		 * while 5 GHz is still supported.
846 		 */
847 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
848 		    r == -ERANGE)
849 			return;
850 
851 		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
852 		chan->flags = IEEE80211_CHAN_DISABLED;
853 		return;
854 	}
855 
856 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
857 
858 	power_rule = &reg_rule->power_rule;
859 	freq_range = &reg_rule->freq_range;
860 
861 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
862 		bw_flags = IEEE80211_CHAN_NO_HT40;
863 
864 	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
865 	    request_wiphy && request_wiphy == wiphy &&
866 	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
867 		/*
868 		 * This guarantees the driver's requested regulatory domain
869 		 * will always be used as a base for further regulatory
870 		 * settings
871 		 */
872 		chan->flags = chan->orig_flags =
873 			map_regdom_flags(reg_rule->flags) | bw_flags;
874 		chan->max_antenna_gain = chan->orig_mag =
875 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
876 		chan->max_power = chan->orig_mpwr =
877 			(int) MBM_TO_DBM(power_rule->max_eirp);
878 		return;
879 	}
880 
881 	chan->beacon_found = false;
882 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
883 	chan->max_antenna_gain = min(chan->orig_mag,
884 		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
885 	if (chan->orig_mpwr) {
886 		/*
887 		 * Devices that have their own custom regulatory domain
888 		 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
889 		 * passed country IE power settings.
890 		 */
891 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
892 		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
893 		    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
894 			chan->max_power =
895 				MBM_TO_DBM(power_rule->max_eirp);
896 		} else {
897 			chan->max_power = min(chan->orig_mpwr,
898 				(int) MBM_TO_DBM(power_rule->max_eirp));
899 		}
900 	} else
901 		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
902 }
903 
904 static void handle_band(struct wiphy *wiphy,
905 			enum ieee80211_band band,
906 			enum nl80211_reg_initiator initiator)
907 {
908 	unsigned int i;
909 	struct ieee80211_supported_band *sband;
910 
911 	BUG_ON(!wiphy->bands[band]);
912 	sband = wiphy->bands[band];
913 
914 	for (i = 0; i < sband->n_channels; i++)
915 		handle_channel(wiphy, initiator, band, i);
916 }
917 
918 static bool ignore_reg_update(struct wiphy *wiphy,
919 			      enum nl80211_reg_initiator initiator)
920 {
921 	if (!last_request) {
922 		REG_DBG_PRINT("Ignoring regulatory request %s since "
923 			      "last_request is not set\n",
924 			      reg_initiator_name(initiator));
925 		return true;
926 	}
927 
928 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
929 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
930 		REG_DBG_PRINT("Ignoring regulatory request %s "
931 			      "since the driver uses its own custom "
932 			      "regulatory domain\n",
933 			      reg_initiator_name(initiator));
934 		return true;
935 	}
936 
937 	/*
938 	 * wiphy->regd will be set once the device has its own
939 	 * desired regulatory domain set
940 	 */
941 	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
942 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
943 	    !is_world_regdom(last_request->alpha2)) {
944 		REG_DBG_PRINT("Ignoring regulatory request %s "
945 			      "since the driver requires its own regulatory "
946 			      "domain to be set first\n",
947 			      reg_initiator_name(initiator));
948 		return true;
949 	}
950 
951 	return false;
952 }
953 
954 static void handle_reg_beacon(struct wiphy *wiphy,
955 			      unsigned int chan_idx,
956 			      struct reg_beacon *reg_beacon)
957 {
958 	struct ieee80211_supported_band *sband;
959 	struct ieee80211_channel *chan;
960 	bool channel_changed = false;
961 	struct ieee80211_channel chan_before;
962 
963 	assert_cfg80211_lock();
964 
965 	sband = wiphy->bands[reg_beacon->chan.band];
966 	chan = &sband->channels[chan_idx];
967 
968 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
969 		return;
970 
971 	if (chan->beacon_found)
972 		return;
973 
974 	chan->beacon_found = true;
975 
976 	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
977 		return;
978 
979 	chan_before.center_freq = chan->center_freq;
980 	chan_before.flags = chan->flags;
981 
982 	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
983 		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
984 		channel_changed = true;
985 	}
986 
987 	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
988 		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
989 		channel_changed = true;
990 	}
991 
992 	if (channel_changed)
993 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
994 }
995 
996 /*
997  * Called when a scan on a wiphy finds a beacon on
998  * new channel
999  */
1000 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1001 				    struct reg_beacon *reg_beacon)
1002 {
1003 	unsigned int i;
1004 	struct ieee80211_supported_band *sband;
1005 
1006 	assert_cfg80211_lock();
1007 
1008 	if (!wiphy->bands[reg_beacon->chan.band])
1009 		return;
1010 
1011 	sband = wiphy->bands[reg_beacon->chan.band];
1012 
1013 	for (i = 0; i < sband->n_channels; i++)
1014 		handle_reg_beacon(wiphy, i, reg_beacon);
1015 }
1016 
1017 /*
1018  * Called upon reg changes or a new wiphy is added
1019  */
1020 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1021 {
1022 	unsigned int i;
1023 	struct ieee80211_supported_band *sband;
1024 	struct reg_beacon *reg_beacon;
1025 
1026 	assert_cfg80211_lock();
1027 
1028 	if (list_empty(&reg_beacon_list))
1029 		return;
1030 
1031 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1032 		if (!wiphy->bands[reg_beacon->chan.band])
1033 			continue;
1034 		sband = wiphy->bands[reg_beacon->chan.band];
1035 		for (i = 0; i < sband->n_channels; i++)
1036 			handle_reg_beacon(wiphy, i, reg_beacon);
1037 	}
1038 }
1039 
1040 static bool reg_is_world_roaming(struct wiphy *wiphy)
1041 {
1042 	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1043 	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1044 		return true;
1045 	if (last_request &&
1046 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1047 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1048 		return true;
1049 	return false;
1050 }
1051 
1052 /* Reap the advantages of previously found beacons */
1053 static void reg_process_beacons(struct wiphy *wiphy)
1054 {
1055 	/*
1056 	 * Means we are just firing up cfg80211, so no beacons would
1057 	 * have been processed yet.
1058 	 */
1059 	if (!last_request)
1060 		return;
1061 	if (!reg_is_world_roaming(wiphy))
1062 		return;
1063 	wiphy_update_beacon_reg(wiphy);
1064 }
1065 
1066 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1067 {
1068 	if (!chan)
1069 		return true;
1070 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1071 		return true;
1072 	/* This would happen when regulatory rules disallow HT40 completely */
1073 	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1074 		return true;
1075 	return false;
1076 }
1077 
1078 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1079 					 enum ieee80211_band band,
1080 					 unsigned int chan_idx)
1081 {
1082 	struct ieee80211_supported_band *sband;
1083 	struct ieee80211_channel *channel;
1084 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1085 	unsigned int i;
1086 
1087 	assert_cfg80211_lock();
1088 
1089 	sband = wiphy->bands[band];
1090 	BUG_ON(chan_idx >= sband->n_channels);
1091 	channel = &sband->channels[chan_idx];
1092 
1093 	if (is_ht40_not_allowed(channel)) {
1094 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1095 		return;
1096 	}
1097 
1098 	/*
1099 	 * We need to ensure the extension channels exist to
1100 	 * be able to use HT40- or HT40+, this finds them (or not)
1101 	 */
1102 	for (i = 0; i < sband->n_channels; i++) {
1103 		struct ieee80211_channel *c = &sband->channels[i];
1104 		if (c->center_freq == (channel->center_freq - 20))
1105 			channel_before = c;
1106 		if (c->center_freq == (channel->center_freq + 20))
1107 			channel_after = c;
1108 	}
1109 
1110 	/*
1111 	 * Please note that this assumes target bandwidth is 20 MHz,
1112 	 * if that ever changes we also need to change the below logic
1113 	 * to include that as well.
1114 	 */
1115 	if (is_ht40_not_allowed(channel_before))
1116 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1117 	else
1118 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1119 
1120 	if (is_ht40_not_allowed(channel_after))
1121 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1122 	else
1123 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1124 }
1125 
1126 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1127 				      enum ieee80211_band band)
1128 {
1129 	unsigned int i;
1130 	struct ieee80211_supported_band *sband;
1131 
1132 	BUG_ON(!wiphy->bands[band]);
1133 	sband = wiphy->bands[band];
1134 
1135 	for (i = 0; i < sband->n_channels; i++)
1136 		reg_process_ht_flags_channel(wiphy, band, i);
1137 }
1138 
1139 static void reg_process_ht_flags(struct wiphy *wiphy)
1140 {
1141 	enum ieee80211_band band;
1142 
1143 	if (!wiphy)
1144 		return;
1145 
1146 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1147 		if (wiphy->bands[band])
1148 			reg_process_ht_flags_band(wiphy, band);
1149 	}
1150 
1151 }
1152 
1153 static void wiphy_update_regulatory(struct wiphy *wiphy,
1154 				    enum nl80211_reg_initiator initiator)
1155 {
1156 	enum ieee80211_band band;
1157 
1158 	assert_reg_lock();
1159 
1160 	if (ignore_reg_update(wiphy, initiator))
1161 		return;
1162 
1163 	last_request->dfs_region = cfg80211_regdomain->dfs_region;
1164 
1165 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1166 		if (wiphy->bands[band])
1167 			handle_band(wiphy, band, initiator);
1168 	}
1169 
1170 	reg_process_beacons(wiphy);
1171 	reg_process_ht_flags(wiphy);
1172 	if (wiphy->reg_notifier)
1173 		wiphy->reg_notifier(wiphy, last_request);
1174 }
1175 
1176 void regulatory_update(struct wiphy *wiphy,
1177 		       enum nl80211_reg_initiator setby)
1178 {
1179 	mutex_lock(&reg_mutex);
1180 	wiphy_update_regulatory(wiphy, setby);
1181 	mutex_unlock(&reg_mutex);
1182 }
1183 
1184 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1185 {
1186 	struct cfg80211_registered_device *rdev;
1187 	struct wiphy *wiphy;
1188 
1189 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1190 		wiphy = &rdev->wiphy;
1191 		wiphy_update_regulatory(wiphy, initiator);
1192 		/*
1193 		 * Regulatory updates set by CORE are ignored for custom
1194 		 * regulatory cards. Let us notify the changes to the driver,
1195 		 * as some drivers used this to restore its orig_* reg domain.
1196 		 */
1197 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1198 		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1199 		    wiphy->reg_notifier)
1200 			wiphy->reg_notifier(wiphy, last_request);
1201 	}
1202 }
1203 
1204 static void handle_channel_custom(struct wiphy *wiphy,
1205 				  enum ieee80211_band band,
1206 				  unsigned int chan_idx,
1207 				  const struct ieee80211_regdomain *regd)
1208 {
1209 	int r;
1210 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1211 	u32 bw_flags = 0;
1212 	const struct ieee80211_reg_rule *reg_rule = NULL;
1213 	const struct ieee80211_power_rule *power_rule = NULL;
1214 	const struct ieee80211_freq_range *freq_range = NULL;
1215 	struct ieee80211_supported_band *sband;
1216 	struct ieee80211_channel *chan;
1217 
1218 	assert_reg_lock();
1219 
1220 	sband = wiphy->bands[band];
1221 	BUG_ON(chan_idx >= sband->n_channels);
1222 	chan = &sband->channels[chan_idx];
1223 
1224 	r = freq_reg_info_regd(wiphy,
1225 			       MHZ_TO_KHZ(chan->center_freq),
1226 			       desired_bw_khz,
1227 			       &reg_rule,
1228 			       regd);
1229 
1230 	if (r) {
1231 		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1232 			      "regd has no rule that fits a %d MHz "
1233 			      "wide channel\n",
1234 			      chan->center_freq,
1235 			      KHZ_TO_MHZ(desired_bw_khz));
1236 		chan->flags = IEEE80211_CHAN_DISABLED;
1237 		return;
1238 	}
1239 
1240 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1241 
1242 	power_rule = &reg_rule->power_rule;
1243 	freq_range = &reg_rule->freq_range;
1244 
1245 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1246 		bw_flags = IEEE80211_CHAN_NO_HT40;
1247 
1248 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1249 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1250 	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1251 }
1252 
1253 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1254 			       const struct ieee80211_regdomain *regd)
1255 {
1256 	unsigned int i;
1257 	struct ieee80211_supported_band *sband;
1258 
1259 	BUG_ON(!wiphy->bands[band]);
1260 	sband = wiphy->bands[band];
1261 
1262 	for (i = 0; i < sband->n_channels; i++)
1263 		handle_channel_custom(wiphy, band, i, regd);
1264 }
1265 
1266 /* Used by drivers prior to wiphy registration */
1267 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1268 				   const struct ieee80211_regdomain *regd)
1269 {
1270 	enum ieee80211_band band;
1271 	unsigned int bands_set = 0;
1272 
1273 	mutex_lock(&reg_mutex);
1274 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1275 		if (!wiphy->bands[band])
1276 			continue;
1277 		handle_band_custom(wiphy, band, regd);
1278 		bands_set++;
1279 	}
1280 	mutex_unlock(&reg_mutex);
1281 
1282 	/*
1283 	 * no point in calling this if it won't have any effect
1284 	 * on your device's supportd bands.
1285 	 */
1286 	WARN_ON(!bands_set);
1287 }
1288 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1289 
1290 /*
1291  * Return value which can be used by ignore_request() to indicate
1292  * it has been determined we should intersect two regulatory domains
1293  */
1294 #define REG_INTERSECT	1
1295 
1296 /* This has the logic which determines when a new request
1297  * should be ignored. */
1298 static int ignore_request(struct wiphy *wiphy,
1299 			  struct regulatory_request *pending_request)
1300 {
1301 	struct wiphy *last_wiphy = NULL;
1302 
1303 	assert_cfg80211_lock();
1304 
1305 	/* All initial requests are respected */
1306 	if (!last_request)
1307 		return 0;
1308 
1309 	switch (pending_request->initiator) {
1310 	case NL80211_REGDOM_SET_BY_CORE:
1311 		return 0;
1312 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1313 
1314 		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1315 
1316 		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1317 			return -EINVAL;
1318 		if (last_request->initiator ==
1319 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1320 			if (last_wiphy != wiphy) {
1321 				/*
1322 				 * Two cards with two APs claiming different
1323 				 * Country IE alpha2s. We could
1324 				 * intersect them, but that seems unlikely
1325 				 * to be correct. Reject second one for now.
1326 				 */
1327 				if (regdom_changes(pending_request->alpha2))
1328 					return -EOPNOTSUPP;
1329 				return -EALREADY;
1330 			}
1331 			/*
1332 			 * Two consecutive Country IE hints on the same wiphy.
1333 			 * This should be picked up early by the driver/stack
1334 			 */
1335 			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1336 				return 0;
1337 			return -EALREADY;
1338 		}
1339 		return 0;
1340 	case NL80211_REGDOM_SET_BY_DRIVER:
1341 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1342 			if (regdom_changes(pending_request->alpha2))
1343 				return 0;
1344 			return -EALREADY;
1345 		}
1346 
1347 		/*
1348 		 * This would happen if you unplug and plug your card
1349 		 * back in or if you add a new device for which the previously
1350 		 * loaded card also agrees on the regulatory domain.
1351 		 */
1352 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1353 		    !regdom_changes(pending_request->alpha2))
1354 			return -EALREADY;
1355 
1356 		return REG_INTERSECT;
1357 	case NL80211_REGDOM_SET_BY_USER:
1358 		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1359 			return REG_INTERSECT;
1360 		/*
1361 		 * If the user knows better the user should set the regdom
1362 		 * to their country before the IE is picked up
1363 		 */
1364 		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1365 			  last_request->intersect)
1366 			return -EOPNOTSUPP;
1367 		/*
1368 		 * Process user requests only after previous user/driver/core
1369 		 * requests have been processed
1370 		 */
1371 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1372 		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1373 		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1374 			if (regdom_changes(last_request->alpha2))
1375 				return -EAGAIN;
1376 		}
1377 
1378 		if (!regdom_changes(pending_request->alpha2))
1379 			return -EALREADY;
1380 
1381 		return 0;
1382 	}
1383 
1384 	return -EINVAL;
1385 }
1386 
1387 static void reg_set_request_processed(void)
1388 {
1389 	bool need_more_processing = false;
1390 
1391 	last_request->processed = true;
1392 
1393 	spin_lock(&reg_requests_lock);
1394 	if (!list_empty(&reg_requests_list))
1395 		need_more_processing = true;
1396 	spin_unlock(&reg_requests_lock);
1397 
1398 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1399 		cancel_delayed_work_sync(&reg_timeout);
1400 
1401 	if (need_more_processing)
1402 		schedule_work(&reg_work);
1403 }
1404 
1405 /**
1406  * __regulatory_hint - hint to the wireless core a regulatory domain
1407  * @wiphy: if the hint comes from country information from an AP, this
1408  *	is required to be set to the wiphy that received the information
1409  * @pending_request: the regulatory request currently being processed
1410  *
1411  * The Wireless subsystem can use this function to hint to the wireless core
1412  * what it believes should be the current regulatory domain.
1413  *
1414  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1415  * already been set or other standard error codes.
1416  *
1417  * Caller must hold &cfg80211_mutex and &reg_mutex
1418  */
1419 static int __regulatory_hint(struct wiphy *wiphy,
1420 			     struct regulatory_request *pending_request)
1421 {
1422 	bool intersect = false;
1423 	int r = 0;
1424 
1425 	assert_cfg80211_lock();
1426 
1427 	r = ignore_request(wiphy, pending_request);
1428 
1429 	if (r == REG_INTERSECT) {
1430 		if (pending_request->initiator ==
1431 		    NL80211_REGDOM_SET_BY_DRIVER) {
1432 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1433 			if (r) {
1434 				kfree(pending_request);
1435 				return r;
1436 			}
1437 		}
1438 		intersect = true;
1439 	} else if (r) {
1440 		/*
1441 		 * If the regulatory domain being requested by the
1442 		 * driver has already been set just copy it to the
1443 		 * wiphy
1444 		 */
1445 		if (r == -EALREADY &&
1446 		    pending_request->initiator ==
1447 		    NL80211_REGDOM_SET_BY_DRIVER) {
1448 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1449 			if (r) {
1450 				kfree(pending_request);
1451 				return r;
1452 			}
1453 			r = -EALREADY;
1454 			goto new_request;
1455 		}
1456 		kfree(pending_request);
1457 		return r;
1458 	}
1459 
1460 new_request:
1461 	if (last_request != &core_request_world)
1462 		kfree(last_request);
1463 
1464 	last_request = pending_request;
1465 	last_request->intersect = intersect;
1466 
1467 	pending_request = NULL;
1468 
1469 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1470 		user_alpha2[0] = last_request->alpha2[0];
1471 		user_alpha2[1] = last_request->alpha2[1];
1472 	}
1473 
1474 	/* When r == REG_INTERSECT we do need to call CRDA */
1475 	if (r < 0) {
1476 		/*
1477 		 * Since CRDA will not be called in this case as we already
1478 		 * have applied the requested regulatory domain before we just
1479 		 * inform userspace we have processed the request
1480 		 */
1481 		if (r == -EALREADY) {
1482 			nl80211_send_reg_change_event(last_request);
1483 			reg_set_request_processed();
1484 		}
1485 		return r;
1486 	}
1487 
1488 	return call_crda(last_request->alpha2);
1489 }
1490 
1491 /* This processes *all* regulatory hints */
1492 static void reg_process_hint(struct regulatory_request *reg_request,
1493 			     enum nl80211_reg_initiator reg_initiator)
1494 {
1495 	int r = 0;
1496 	struct wiphy *wiphy = NULL;
1497 
1498 	BUG_ON(!reg_request->alpha2);
1499 
1500 	if (wiphy_idx_valid(reg_request->wiphy_idx))
1501 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1502 
1503 	if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1504 	    !wiphy) {
1505 		kfree(reg_request);
1506 		return;
1507 	}
1508 
1509 	r = __regulatory_hint(wiphy, reg_request);
1510 	/* This is required so that the orig_* parameters are saved */
1511 	if (r == -EALREADY && wiphy &&
1512 	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1513 		wiphy_update_regulatory(wiphy, reg_initiator);
1514 		return;
1515 	}
1516 
1517 	/*
1518 	 * We only time out user hints, given that they should be the only
1519 	 * source of bogus requests.
1520 	 */
1521 	if (r != -EALREADY &&
1522 	    reg_initiator == NL80211_REGDOM_SET_BY_USER)
1523 		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1524 }
1525 
1526 /*
1527  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1528  * Regulatory hints come on a first come first serve basis and we
1529  * must process each one atomically.
1530  */
1531 static void reg_process_pending_hints(void)
1532 {
1533 	struct regulatory_request *reg_request;
1534 
1535 	mutex_lock(&cfg80211_mutex);
1536 	mutex_lock(&reg_mutex);
1537 
1538 	/* When last_request->processed becomes true this will be rescheduled */
1539 	if (last_request && !last_request->processed) {
1540 		REG_DBG_PRINT("Pending regulatory request, waiting "
1541 			      "for it to be processed...\n");
1542 		goto out;
1543 	}
1544 
1545 	spin_lock(&reg_requests_lock);
1546 
1547 	if (list_empty(&reg_requests_list)) {
1548 		spin_unlock(&reg_requests_lock);
1549 		goto out;
1550 	}
1551 
1552 	reg_request = list_first_entry(&reg_requests_list,
1553 				       struct regulatory_request,
1554 				       list);
1555 	list_del_init(&reg_request->list);
1556 
1557 	spin_unlock(&reg_requests_lock);
1558 
1559 	reg_process_hint(reg_request, reg_request->initiator);
1560 
1561 out:
1562 	mutex_unlock(&reg_mutex);
1563 	mutex_unlock(&cfg80211_mutex);
1564 }
1565 
1566 /* Processes beacon hints -- this has nothing to do with country IEs */
1567 static void reg_process_pending_beacon_hints(void)
1568 {
1569 	struct cfg80211_registered_device *rdev;
1570 	struct reg_beacon *pending_beacon, *tmp;
1571 
1572 	/*
1573 	 * No need to hold the reg_mutex here as we just touch wiphys
1574 	 * and do not read or access regulatory variables.
1575 	 */
1576 	mutex_lock(&cfg80211_mutex);
1577 
1578 	/* This goes through the _pending_ beacon list */
1579 	spin_lock_bh(&reg_pending_beacons_lock);
1580 
1581 	if (list_empty(&reg_pending_beacons)) {
1582 		spin_unlock_bh(&reg_pending_beacons_lock);
1583 		goto out;
1584 	}
1585 
1586 	list_for_each_entry_safe(pending_beacon, tmp,
1587 				 &reg_pending_beacons, list) {
1588 
1589 		list_del_init(&pending_beacon->list);
1590 
1591 		/* Applies the beacon hint to current wiphys */
1592 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1593 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1594 
1595 		/* Remembers the beacon hint for new wiphys or reg changes */
1596 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1597 	}
1598 
1599 	spin_unlock_bh(&reg_pending_beacons_lock);
1600 out:
1601 	mutex_unlock(&cfg80211_mutex);
1602 }
1603 
1604 static void reg_todo(struct work_struct *work)
1605 {
1606 	reg_process_pending_hints();
1607 	reg_process_pending_beacon_hints();
1608 }
1609 
1610 static void queue_regulatory_request(struct regulatory_request *request)
1611 {
1612 	if (isalpha(request->alpha2[0]))
1613 		request->alpha2[0] = toupper(request->alpha2[0]);
1614 	if (isalpha(request->alpha2[1]))
1615 		request->alpha2[1] = toupper(request->alpha2[1]);
1616 
1617 	spin_lock(&reg_requests_lock);
1618 	list_add_tail(&request->list, &reg_requests_list);
1619 	spin_unlock(&reg_requests_lock);
1620 
1621 	schedule_work(&reg_work);
1622 }
1623 
1624 /*
1625  * Core regulatory hint -- happens during cfg80211_init()
1626  * and when we restore regulatory settings.
1627  */
1628 static int regulatory_hint_core(const char *alpha2)
1629 {
1630 	struct regulatory_request *request;
1631 
1632 	request = kzalloc(sizeof(struct regulatory_request),
1633 			  GFP_KERNEL);
1634 	if (!request)
1635 		return -ENOMEM;
1636 
1637 	request->alpha2[0] = alpha2[0];
1638 	request->alpha2[1] = alpha2[1];
1639 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1640 
1641 	queue_regulatory_request(request);
1642 
1643 	return 0;
1644 }
1645 
1646 /* User hints */
1647 int regulatory_hint_user(const char *alpha2)
1648 {
1649 	struct regulatory_request *request;
1650 
1651 	BUG_ON(!alpha2);
1652 
1653 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1654 	if (!request)
1655 		return -ENOMEM;
1656 
1657 	request->wiphy_idx = WIPHY_IDX_STALE;
1658 	request->alpha2[0] = alpha2[0];
1659 	request->alpha2[1] = alpha2[1];
1660 	request->initiator = NL80211_REGDOM_SET_BY_USER;
1661 
1662 	queue_regulatory_request(request);
1663 
1664 	return 0;
1665 }
1666 
1667 /* Driver hints */
1668 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1669 {
1670 	struct regulatory_request *request;
1671 
1672 	BUG_ON(!alpha2);
1673 	BUG_ON(!wiphy);
1674 
1675 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1676 	if (!request)
1677 		return -ENOMEM;
1678 
1679 	request->wiphy_idx = get_wiphy_idx(wiphy);
1680 
1681 	/* Must have registered wiphy first */
1682 	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1683 
1684 	request->alpha2[0] = alpha2[0];
1685 	request->alpha2[1] = alpha2[1];
1686 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1687 
1688 	queue_regulatory_request(request);
1689 
1690 	return 0;
1691 }
1692 EXPORT_SYMBOL(regulatory_hint);
1693 
1694 /*
1695  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1696  * therefore cannot iterate over the rdev list here.
1697  */
1698 void regulatory_hint_11d(struct wiphy *wiphy,
1699 			 enum ieee80211_band band,
1700 			 u8 *country_ie,
1701 			 u8 country_ie_len)
1702 {
1703 	char alpha2[2];
1704 	enum environment_cap env = ENVIRON_ANY;
1705 	struct regulatory_request *request;
1706 
1707 	mutex_lock(&reg_mutex);
1708 
1709 	if (unlikely(!last_request))
1710 		goto out;
1711 
1712 	/* IE len must be evenly divisible by 2 */
1713 	if (country_ie_len & 0x01)
1714 		goto out;
1715 
1716 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1717 		goto out;
1718 
1719 	alpha2[0] = country_ie[0];
1720 	alpha2[1] = country_ie[1];
1721 
1722 	if (country_ie[2] == 'I')
1723 		env = ENVIRON_INDOOR;
1724 	else if (country_ie[2] == 'O')
1725 		env = ENVIRON_OUTDOOR;
1726 
1727 	/*
1728 	 * We will run this only upon a successful connection on cfg80211.
1729 	 * We leave conflict resolution to the workqueue, where can hold
1730 	 * cfg80211_mutex.
1731 	 */
1732 	if (likely(last_request->initiator ==
1733 	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1734 	    wiphy_idx_valid(last_request->wiphy_idx)))
1735 		goto out;
1736 
1737 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1738 	if (!request)
1739 		goto out;
1740 
1741 	request->wiphy_idx = get_wiphy_idx(wiphy);
1742 	request->alpha2[0] = alpha2[0];
1743 	request->alpha2[1] = alpha2[1];
1744 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1745 	request->country_ie_env = env;
1746 
1747 	mutex_unlock(&reg_mutex);
1748 
1749 	queue_regulatory_request(request);
1750 
1751 	return;
1752 
1753 out:
1754 	mutex_unlock(&reg_mutex);
1755 }
1756 
1757 static void restore_alpha2(char *alpha2, bool reset_user)
1758 {
1759 	/* indicates there is no alpha2 to consider for restoration */
1760 	alpha2[0] = '9';
1761 	alpha2[1] = '7';
1762 
1763 	/* The user setting has precedence over the module parameter */
1764 	if (is_user_regdom_saved()) {
1765 		/* Unless we're asked to ignore it and reset it */
1766 		if (reset_user) {
1767 			REG_DBG_PRINT("Restoring regulatory settings "
1768 			       "including user preference\n");
1769 			user_alpha2[0] = '9';
1770 			user_alpha2[1] = '7';
1771 
1772 			/*
1773 			 * If we're ignoring user settings, we still need to
1774 			 * check the module parameter to ensure we put things
1775 			 * back as they were for a full restore.
1776 			 */
1777 			if (!is_world_regdom(ieee80211_regdom)) {
1778 				REG_DBG_PRINT("Keeping preference on "
1779 				       "module parameter ieee80211_regdom: %c%c\n",
1780 				       ieee80211_regdom[0],
1781 				       ieee80211_regdom[1]);
1782 				alpha2[0] = ieee80211_regdom[0];
1783 				alpha2[1] = ieee80211_regdom[1];
1784 			}
1785 		} else {
1786 			REG_DBG_PRINT("Restoring regulatory settings "
1787 			       "while preserving user preference for: %c%c\n",
1788 			       user_alpha2[0],
1789 			       user_alpha2[1]);
1790 			alpha2[0] = user_alpha2[0];
1791 			alpha2[1] = user_alpha2[1];
1792 		}
1793 	} else if (!is_world_regdom(ieee80211_regdom)) {
1794 		REG_DBG_PRINT("Keeping preference on "
1795 		       "module parameter ieee80211_regdom: %c%c\n",
1796 		       ieee80211_regdom[0],
1797 		       ieee80211_regdom[1]);
1798 		alpha2[0] = ieee80211_regdom[0];
1799 		alpha2[1] = ieee80211_regdom[1];
1800 	} else
1801 		REG_DBG_PRINT("Restoring regulatory settings\n");
1802 }
1803 
1804 static void restore_custom_reg_settings(struct wiphy *wiphy)
1805 {
1806 	struct ieee80211_supported_band *sband;
1807 	enum ieee80211_band band;
1808 	struct ieee80211_channel *chan;
1809 	int i;
1810 
1811 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1812 		sband = wiphy->bands[band];
1813 		if (!sband)
1814 			continue;
1815 		for (i = 0; i < sband->n_channels; i++) {
1816 			chan = &sband->channels[i];
1817 			chan->flags = chan->orig_flags;
1818 			chan->max_antenna_gain = chan->orig_mag;
1819 			chan->max_power = chan->orig_mpwr;
1820 		}
1821 	}
1822 }
1823 
1824 /*
1825  * Restoring regulatory settings involves ingoring any
1826  * possibly stale country IE information and user regulatory
1827  * settings if so desired, this includes any beacon hints
1828  * learned as we could have traveled outside to another country
1829  * after disconnection. To restore regulatory settings we do
1830  * exactly what we did at bootup:
1831  *
1832  *   - send a core regulatory hint
1833  *   - send a user regulatory hint if applicable
1834  *
1835  * Device drivers that send a regulatory hint for a specific country
1836  * keep their own regulatory domain on wiphy->regd so that does does
1837  * not need to be remembered.
1838  */
1839 static void restore_regulatory_settings(bool reset_user)
1840 {
1841 	char alpha2[2];
1842 	char world_alpha2[2];
1843 	struct reg_beacon *reg_beacon, *btmp;
1844 	struct regulatory_request *reg_request, *tmp;
1845 	LIST_HEAD(tmp_reg_req_list);
1846 	struct cfg80211_registered_device *rdev;
1847 
1848 	mutex_lock(&cfg80211_mutex);
1849 	mutex_lock(&reg_mutex);
1850 
1851 	reset_regdomains(true);
1852 	restore_alpha2(alpha2, reset_user);
1853 
1854 	/*
1855 	 * If there's any pending requests we simply
1856 	 * stash them to a temporary pending queue and
1857 	 * add then after we've restored regulatory
1858 	 * settings.
1859 	 */
1860 	spin_lock(&reg_requests_lock);
1861 	if (!list_empty(&reg_requests_list)) {
1862 		list_for_each_entry_safe(reg_request, tmp,
1863 					 &reg_requests_list, list) {
1864 			if (reg_request->initiator !=
1865 			    NL80211_REGDOM_SET_BY_USER)
1866 				continue;
1867 			list_del(&reg_request->list);
1868 			list_add_tail(&reg_request->list, &tmp_reg_req_list);
1869 		}
1870 	}
1871 	spin_unlock(&reg_requests_lock);
1872 
1873 	/* Clear beacon hints */
1874 	spin_lock_bh(&reg_pending_beacons_lock);
1875 	if (!list_empty(&reg_pending_beacons)) {
1876 		list_for_each_entry_safe(reg_beacon, btmp,
1877 					 &reg_pending_beacons, list) {
1878 			list_del(&reg_beacon->list);
1879 			kfree(reg_beacon);
1880 		}
1881 	}
1882 	spin_unlock_bh(&reg_pending_beacons_lock);
1883 
1884 	if (!list_empty(&reg_beacon_list)) {
1885 		list_for_each_entry_safe(reg_beacon, btmp,
1886 					 &reg_beacon_list, list) {
1887 			list_del(&reg_beacon->list);
1888 			kfree(reg_beacon);
1889 		}
1890 	}
1891 
1892 	/* First restore to the basic regulatory settings */
1893 	cfg80211_regdomain = cfg80211_world_regdom;
1894 	world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1895 	world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1896 
1897 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1898 		if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1899 			restore_custom_reg_settings(&rdev->wiphy);
1900 	}
1901 
1902 	mutex_unlock(&reg_mutex);
1903 	mutex_unlock(&cfg80211_mutex);
1904 
1905 	regulatory_hint_core(world_alpha2);
1906 
1907 	/*
1908 	 * This restores the ieee80211_regdom module parameter
1909 	 * preference or the last user requested regulatory
1910 	 * settings, user regulatory settings takes precedence.
1911 	 */
1912 	if (is_an_alpha2(alpha2))
1913 		regulatory_hint_user(user_alpha2);
1914 
1915 	if (list_empty(&tmp_reg_req_list))
1916 		return;
1917 
1918 	mutex_lock(&cfg80211_mutex);
1919 	mutex_lock(&reg_mutex);
1920 
1921 	spin_lock(&reg_requests_lock);
1922 	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1923 		REG_DBG_PRINT("Adding request for country %c%c back "
1924 			      "into the queue\n",
1925 			      reg_request->alpha2[0],
1926 			      reg_request->alpha2[1]);
1927 		list_del(&reg_request->list);
1928 		list_add_tail(&reg_request->list, &reg_requests_list);
1929 	}
1930 	spin_unlock(&reg_requests_lock);
1931 
1932 	mutex_unlock(&reg_mutex);
1933 	mutex_unlock(&cfg80211_mutex);
1934 
1935 	REG_DBG_PRINT("Kicking the queue\n");
1936 
1937 	schedule_work(&reg_work);
1938 }
1939 
1940 void regulatory_hint_disconnect(void)
1941 {
1942 	REG_DBG_PRINT("All devices are disconnected, going to "
1943 		      "restore regulatory settings\n");
1944 	restore_regulatory_settings(false);
1945 }
1946 
1947 static bool freq_is_chan_12_13_14(u16 freq)
1948 {
1949 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1950 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1951 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1952 		return true;
1953 	return false;
1954 }
1955 
1956 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1957 				 struct ieee80211_channel *beacon_chan,
1958 				 gfp_t gfp)
1959 {
1960 	struct reg_beacon *reg_beacon;
1961 
1962 	if (likely((beacon_chan->beacon_found ||
1963 	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1964 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1965 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1966 		return 0;
1967 
1968 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1969 	if (!reg_beacon)
1970 		return -ENOMEM;
1971 
1972 	REG_DBG_PRINT("Found new beacon on "
1973 		      "frequency: %d MHz (Ch %d) on %s\n",
1974 		      beacon_chan->center_freq,
1975 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
1976 		      wiphy_name(wiphy));
1977 
1978 	memcpy(&reg_beacon->chan, beacon_chan,
1979 		sizeof(struct ieee80211_channel));
1980 
1981 
1982 	/*
1983 	 * Since we can be called from BH or and non-BH context
1984 	 * we must use spin_lock_bh()
1985 	 */
1986 	spin_lock_bh(&reg_pending_beacons_lock);
1987 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1988 	spin_unlock_bh(&reg_pending_beacons_lock);
1989 
1990 	schedule_work(&reg_work);
1991 
1992 	return 0;
1993 }
1994 
1995 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1996 {
1997 	unsigned int i;
1998 	const struct ieee80211_reg_rule *reg_rule = NULL;
1999 	const struct ieee80211_freq_range *freq_range = NULL;
2000 	const struct ieee80211_power_rule *power_rule = NULL;
2001 
2002 	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2003 
2004 	for (i = 0; i < rd->n_reg_rules; i++) {
2005 		reg_rule = &rd->reg_rules[i];
2006 		freq_range = &reg_rule->freq_range;
2007 		power_rule = &reg_rule->power_rule;
2008 
2009 		/*
2010 		 * There may not be documentation for max antenna gain
2011 		 * in certain regions
2012 		 */
2013 		if (power_rule->max_antenna_gain)
2014 			pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2015 				freq_range->start_freq_khz,
2016 				freq_range->end_freq_khz,
2017 				freq_range->max_bandwidth_khz,
2018 				power_rule->max_antenna_gain,
2019 				power_rule->max_eirp);
2020 		else
2021 			pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2022 				freq_range->start_freq_khz,
2023 				freq_range->end_freq_khz,
2024 				freq_range->max_bandwidth_khz,
2025 				power_rule->max_eirp);
2026 	}
2027 }
2028 
2029 bool reg_supported_dfs_region(u8 dfs_region)
2030 {
2031 	switch (dfs_region) {
2032 	case NL80211_DFS_UNSET:
2033 	case NL80211_DFS_FCC:
2034 	case NL80211_DFS_ETSI:
2035 	case NL80211_DFS_JP:
2036 		return true;
2037 	default:
2038 		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2039 			      dfs_region);
2040 		return false;
2041 	}
2042 }
2043 
2044 static void print_dfs_region(u8 dfs_region)
2045 {
2046 	if (!dfs_region)
2047 		return;
2048 
2049 	switch (dfs_region) {
2050 	case NL80211_DFS_FCC:
2051 		pr_info(" DFS Master region FCC");
2052 		break;
2053 	case NL80211_DFS_ETSI:
2054 		pr_info(" DFS Master region ETSI");
2055 		break;
2056 	case NL80211_DFS_JP:
2057 		pr_info(" DFS Master region JP");
2058 		break;
2059 	default:
2060 		pr_info(" DFS Master region Uknown");
2061 		break;
2062 	}
2063 }
2064 
2065 static void print_regdomain(const struct ieee80211_regdomain *rd)
2066 {
2067 
2068 	if (is_intersected_alpha2(rd->alpha2)) {
2069 
2070 		if (last_request->initiator ==
2071 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2072 			struct cfg80211_registered_device *rdev;
2073 			rdev = cfg80211_rdev_by_wiphy_idx(
2074 				last_request->wiphy_idx);
2075 			if (rdev) {
2076 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2077 					rdev->country_ie_alpha2[0],
2078 					rdev->country_ie_alpha2[1]);
2079 			} else
2080 				pr_info("Current regulatory domain intersected:\n");
2081 		} else
2082 			pr_info("Current regulatory domain intersected:\n");
2083 	} else if (is_world_regdom(rd->alpha2))
2084 		pr_info("World regulatory domain updated:\n");
2085 	else {
2086 		if (is_unknown_alpha2(rd->alpha2))
2087 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2088 		else
2089 			pr_info("Regulatory domain changed to country: %c%c\n",
2090 				rd->alpha2[0], rd->alpha2[1]);
2091 	}
2092 	print_dfs_region(rd->dfs_region);
2093 	print_rd_rules(rd);
2094 }
2095 
2096 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2097 {
2098 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2099 	print_rd_rules(rd);
2100 }
2101 
2102 /* Takes ownership of rd only if it doesn't fail */
2103 static int __set_regdom(const struct ieee80211_regdomain *rd)
2104 {
2105 	const struct ieee80211_regdomain *intersected_rd = NULL;
2106 	struct cfg80211_registered_device *rdev = NULL;
2107 	struct wiphy *request_wiphy;
2108 	/* Some basic sanity checks first */
2109 
2110 	if (is_world_regdom(rd->alpha2)) {
2111 		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2112 			return -EINVAL;
2113 		update_world_regdomain(rd);
2114 		return 0;
2115 	}
2116 
2117 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2118 			!is_unknown_alpha2(rd->alpha2))
2119 		return -EINVAL;
2120 
2121 	if (!last_request)
2122 		return -EINVAL;
2123 
2124 	/*
2125 	 * Lets only bother proceeding on the same alpha2 if the current
2126 	 * rd is non static (it means CRDA was present and was used last)
2127 	 * and the pending request came in from a country IE
2128 	 */
2129 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2130 		/*
2131 		 * If someone else asked us to change the rd lets only bother
2132 		 * checking if the alpha2 changes if CRDA was already called
2133 		 */
2134 		if (!regdom_changes(rd->alpha2))
2135 			return -EINVAL;
2136 	}
2137 
2138 	/*
2139 	 * Now lets set the regulatory domain, update all driver channels
2140 	 * and finally inform them of what we have done, in case they want
2141 	 * to review or adjust their own settings based on their own
2142 	 * internal EEPROM data
2143 	 */
2144 
2145 	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2146 		return -EINVAL;
2147 
2148 	if (!is_valid_rd(rd)) {
2149 		pr_err("Invalid regulatory domain detected:\n");
2150 		print_regdomain_info(rd);
2151 		return -EINVAL;
2152 	}
2153 
2154 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2155 	if (!request_wiphy &&
2156 	    (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2157 	     last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2158 		schedule_delayed_work(&reg_timeout, 0);
2159 		return -ENODEV;
2160 	}
2161 
2162 	if (!last_request->intersect) {
2163 		int r;
2164 
2165 		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2166 			reset_regdomains(false);
2167 			cfg80211_regdomain = rd;
2168 			return 0;
2169 		}
2170 
2171 		/*
2172 		 * For a driver hint, lets copy the regulatory domain the
2173 		 * driver wanted to the wiphy to deal with conflicts
2174 		 */
2175 
2176 		/*
2177 		 * Userspace could have sent two replies with only
2178 		 * one kernel request.
2179 		 */
2180 		if (request_wiphy->regd)
2181 			return -EALREADY;
2182 
2183 		r = reg_copy_regd(&request_wiphy->regd, rd);
2184 		if (r)
2185 			return r;
2186 
2187 		reset_regdomains(false);
2188 		cfg80211_regdomain = rd;
2189 		return 0;
2190 	}
2191 
2192 	/* Intersection requires a bit more work */
2193 
2194 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2195 
2196 		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2197 		if (!intersected_rd)
2198 			return -EINVAL;
2199 
2200 		/*
2201 		 * We can trash what CRDA provided now.
2202 		 * However if a driver requested this specific regulatory
2203 		 * domain we keep it for its private use
2204 		 */
2205 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2206 			request_wiphy->regd = rd;
2207 		else
2208 			kfree(rd);
2209 
2210 		rd = NULL;
2211 
2212 		reset_regdomains(false);
2213 		cfg80211_regdomain = intersected_rd;
2214 
2215 		return 0;
2216 	}
2217 
2218 	if (!intersected_rd)
2219 		return -EINVAL;
2220 
2221 	rdev = wiphy_to_dev(request_wiphy);
2222 
2223 	rdev->country_ie_alpha2[0] = rd->alpha2[0];
2224 	rdev->country_ie_alpha2[1] = rd->alpha2[1];
2225 	rdev->env = last_request->country_ie_env;
2226 
2227 	BUG_ON(intersected_rd == rd);
2228 
2229 	kfree(rd);
2230 	rd = NULL;
2231 
2232 	reset_regdomains(false);
2233 	cfg80211_regdomain = intersected_rd;
2234 
2235 	return 0;
2236 }
2237 
2238 
2239 /*
2240  * Use this call to set the current regulatory domain. Conflicts with
2241  * multiple drivers can be ironed out later. Caller must've already
2242  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2243  */
2244 int set_regdom(const struct ieee80211_regdomain *rd)
2245 {
2246 	int r;
2247 
2248 	assert_cfg80211_lock();
2249 
2250 	mutex_lock(&reg_mutex);
2251 
2252 	/* Note that this doesn't update the wiphys, this is done below */
2253 	r = __set_regdom(rd);
2254 	if (r) {
2255 		kfree(rd);
2256 		mutex_unlock(&reg_mutex);
2257 		return r;
2258 	}
2259 
2260 	/* This would make this whole thing pointless */
2261 	if (!last_request->intersect)
2262 		BUG_ON(rd != cfg80211_regdomain);
2263 
2264 	/* update all wiphys now with the new established regulatory domain */
2265 	update_all_wiphy_regulatory(last_request->initiator);
2266 
2267 	print_regdomain(cfg80211_regdomain);
2268 
2269 	nl80211_send_reg_change_event(last_request);
2270 
2271 	reg_set_request_processed();
2272 
2273 	mutex_unlock(&reg_mutex);
2274 
2275 	return r;
2276 }
2277 
2278 #ifdef CONFIG_HOTPLUG
2279 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2280 {
2281 	if (last_request && !last_request->processed) {
2282 		if (add_uevent_var(env, "COUNTRY=%c%c",
2283 				   last_request->alpha2[0],
2284 				   last_request->alpha2[1]))
2285 			return -ENOMEM;
2286 	}
2287 
2288 	return 0;
2289 }
2290 #else
2291 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2292 {
2293 	return -ENODEV;
2294 }
2295 #endif /* CONFIG_HOTPLUG */
2296 
2297 /* Caller must hold cfg80211_mutex */
2298 void reg_device_remove(struct wiphy *wiphy)
2299 {
2300 	struct wiphy *request_wiphy = NULL;
2301 
2302 	assert_cfg80211_lock();
2303 
2304 	mutex_lock(&reg_mutex);
2305 
2306 	kfree(wiphy->regd);
2307 
2308 	if (last_request)
2309 		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2310 
2311 	if (!request_wiphy || request_wiphy != wiphy)
2312 		goto out;
2313 
2314 	last_request->wiphy_idx = WIPHY_IDX_STALE;
2315 	last_request->country_ie_env = ENVIRON_ANY;
2316 out:
2317 	mutex_unlock(&reg_mutex);
2318 }
2319 
2320 static void reg_timeout_work(struct work_struct *work)
2321 {
2322 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2323 		      "restoring regulatory settings\n");
2324 	restore_regulatory_settings(true);
2325 }
2326 
2327 int __init regulatory_init(void)
2328 {
2329 	int err = 0;
2330 
2331 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2332 	if (IS_ERR(reg_pdev))
2333 		return PTR_ERR(reg_pdev);
2334 
2335 	reg_pdev->dev.type = &reg_device_type;
2336 
2337 	spin_lock_init(&reg_requests_lock);
2338 	spin_lock_init(&reg_pending_beacons_lock);
2339 
2340 	cfg80211_regdomain = cfg80211_world_regdom;
2341 
2342 	user_alpha2[0] = '9';
2343 	user_alpha2[1] = '7';
2344 
2345 	/* We always try to get an update for the static regdomain */
2346 	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2347 	if (err) {
2348 		if (err == -ENOMEM)
2349 			return err;
2350 		/*
2351 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2352 		 * memory which is handled and propagated appropriately above
2353 		 * but it can also fail during a netlink_broadcast() or during
2354 		 * early boot for call_usermodehelper(). For now treat these
2355 		 * errors as non-fatal.
2356 		 */
2357 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2358 #ifdef CONFIG_CFG80211_REG_DEBUG
2359 		/* We want to find out exactly why when debugging */
2360 		WARN_ON(err);
2361 #endif
2362 	}
2363 
2364 	/*
2365 	 * Finally, if the user set the module parameter treat it
2366 	 * as a user hint.
2367 	 */
2368 	if (!is_world_regdom(ieee80211_regdom))
2369 		regulatory_hint_user(ieee80211_regdom);
2370 
2371 	return 0;
2372 }
2373 
2374 void /* __init_or_exit */ regulatory_exit(void)
2375 {
2376 	struct regulatory_request *reg_request, *tmp;
2377 	struct reg_beacon *reg_beacon, *btmp;
2378 
2379 	cancel_work_sync(&reg_work);
2380 	cancel_delayed_work_sync(&reg_timeout);
2381 
2382 	mutex_lock(&cfg80211_mutex);
2383 	mutex_lock(&reg_mutex);
2384 
2385 	reset_regdomains(true);
2386 
2387 	dev_set_uevent_suppress(&reg_pdev->dev, true);
2388 
2389 	platform_device_unregister(reg_pdev);
2390 
2391 	spin_lock_bh(&reg_pending_beacons_lock);
2392 	if (!list_empty(&reg_pending_beacons)) {
2393 		list_for_each_entry_safe(reg_beacon, btmp,
2394 					 &reg_pending_beacons, list) {
2395 			list_del(&reg_beacon->list);
2396 			kfree(reg_beacon);
2397 		}
2398 	}
2399 	spin_unlock_bh(&reg_pending_beacons_lock);
2400 
2401 	if (!list_empty(&reg_beacon_list)) {
2402 		list_for_each_entry_safe(reg_beacon, btmp,
2403 					 &reg_beacon_list, list) {
2404 			list_del(&reg_beacon->list);
2405 			kfree(reg_beacon);
2406 		}
2407 	}
2408 
2409 	spin_lock(&reg_requests_lock);
2410 	if (!list_empty(&reg_requests_list)) {
2411 		list_for_each_entry_safe(reg_request, tmp,
2412 					 &reg_requests_list, list) {
2413 			list_del(&reg_request->list);
2414 			kfree(reg_request);
2415 		}
2416 	}
2417 	spin_unlock(&reg_requests_lock);
2418 
2419 	mutex_unlock(&reg_mutex);
2420 	mutex_unlock(&cfg80211_mutex);
2421 }
2422