1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 21 /** 22 * DOC: Wireless regulatory infrastructure 23 * 24 * The usual implementation is for a driver to read a device EEPROM to 25 * determine which regulatory domain it should be operating under, then 26 * looking up the allowable channels in a driver-local table and finally 27 * registering those channels in the wiphy structure. 28 * 29 * Another set of compliance enforcement is for drivers to use their 30 * own compliance limits which can be stored on the EEPROM. The host 31 * driver or firmware may ensure these are used. 32 * 33 * In addition to all this we provide an extra layer of regulatory 34 * conformance. For drivers which do not have any regulatory 35 * information CRDA provides the complete regulatory solution. 36 * For others it provides a community effort on further restrictions 37 * to enhance compliance. 38 * 39 * Note: When number of rules --> infinity we will not be able to 40 * index on alpha2 any more, instead we'll probably have to 41 * rely on some SHA1 checksum of the regdomain for example. 42 * 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/kernel.h> 48 #include <linux/export.h> 49 #include <linux/slab.h> 50 #include <linux/list.h> 51 #include <linux/random.h> 52 #include <linux/ctype.h> 53 #include <linux/nl80211.h> 54 #include <linux/platform_device.h> 55 #include <linux/moduleparam.h> 56 #include <net/cfg80211.h> 57 #include "core.h" 58 #include "reg.h" 59 #include "regdb.h" 60 #include "nl80211.h" 61 62 #ifdef CONFIG_CFG80211_REG_DEBUG 63 #define REG_DBG_PRINT(format, args...) \ 64 printk(KERN_DEBUG pr_fmt(format), ##args) 65 #else 66 #define REG_DBG_PRINT(args...) 67 #endif 68 69 static struct regulatory_request core_request_world = { 70 .initiator = NL80211_REGDOM_SET_BY_CORE, 71 .alpha2[0] = '0', 72 .alpha2[1] = '0', 73 .intersect = false, 74 .processed = true, 75 .country_ie_env = ENVIRON_ANY, 76 }; 77 78 /* Receipt of information from last regulatory request */ 79 static struct regulatory_request *last_request = &core_request_world; 80 81 /* To trigger userspace events */ 82 static struct platform_device *reg_pdev; 83 84 static struct device_type reg_device_type = { 85 .uevent = reg_device_uevent, 86 }; 87 88 /* 89 * Central wireless core regulatory domains, we only need two, 90 * the current one and a world regulatory domain in case we have no 91 * information to give us an alpha2 92 */ 93 const struct ieee80211_regdomain *cfg80211_regdomain; 94 95 /* 96 * Protects static reg.c components: 97 * - cfg80211_world_regdom 98 * - cfg80211_regdom 99 * - last_request 100 */ 101 static DEFINE_MUTEX(reg_mutex); 102 103 static inline void assert_reg_lock(void) 104 { 105 lockdep_assert_held(®_mutex); 106 } 107 108 /* Used to queue up regulatory hints */ 109 static LIST_HEAD(reg_requests_list); 110 static spinlock_t reg_requests_lock; 111 112 /* Used to queue up beacon hints for review */ 113 static LIST_HEAD(reg_pending_beacons); 114 static spinlock_t reg_pending_beacons_lock; 115 116 /* Used to keep track of processed beacon hints */ 117 static LIST_HEAD(reg_beacon_list); 118 119 struct reg_beacon { 120 struct list_head list; 121 struct ieee80211_channel chan; 122 }; 123 124 static void reg_todo(struct work_struct *work); 125 static DECLARE_WORK(reg_work, reg_todo); 126 127 static void reg_timeout_work(struct work_struct *work); 128 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); 129 130 /* We keep a static world regulatory domain in case of the absence of CRDA */ 131 static const struct ieee80211_regdomain world_regdom = { 132 .n_reg_rules = 5, 133 .alpha2 = "00", 134 .reg_rules = { 135 /* IEEE 802.11b/g, channels 1..11 */ 136 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 137 /* IEEE 802.11b/g, channels 12..13. No HT40 138 * channel fits here. */ 139 REG_RULE(2467-10, 2472+10, 20, 6, 20, 140 NL80211_RRF_PASSIVE_SCAN | 141 NL80211_RRF_NO_IBSS), 142 /* IEEE 802.11 channel 14 - Only JP enables 143 * this and for 802.11b only */ 144 REG_RULE(2484-10, 2484+10, 20, 6, 20, 145 NL80211_RRF_PASSIVE_SCAN | 146 NL80211_RRF_NO_IBSS | 147 NL80211_RRF_NO_OFDM), 148 /* IEEE 802.11a, channel 36..48 */ 149 REG_RULE(5180-10, 5240+10, 40, 6, 20, 150 NL80211_RRF_PASSIVE_SCAN | 151 NL80211_RRF_NO_IBSS), 152 153 /* NB: 5260 MHz - 5700 MHz requies DFS */ 154 155 /* IEEE 802.11a, channel 149..165 */ 156 REG_RULE(5745-10, 5825+10, 40, 6, 20, 157 NL80211_RRF_PASSIVE_SCAN | 158 NL80211_RRF_NO_IBSS), 159 } 160 }; 161 162 static const struct ieee80211_regdomain *cfg80211_world_regdom = 163 &world_regdom; 164 165 static char *ieee80211_regdom = "00"; 166 static char user_alpha2[2]; 167 168 module_param(ieee80211_regdom, charp, 0444); 169 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 170 171 static void reset_regdomains(bool full_reset) 172 { 173 /* avoid freeing static information or freeing something twice */ 174 if (cfg80211_regdomain == cfg80211_world_regdom) 175 cfg80211_regdomain = NULL; 176 if (cfg80211_world_regdom == &world_regdom) 177 cfg80211_world_regdom = NULL; 178 if (cfg80211_regdomain == &world_regdom) 179 cfg80211_regdomain = NULL; 180 181 kfree(cfg80211_regdomain); 182 kfree(cfg80211_world_regdom); 183 184 cfg80211_world_regdom = &world_regdom; 185 cfg80211_regdomain = NULL; 186 187 if (!full_reset) 188 return; 189 190 if (last_request != &core_request_world) 191 kfree(last_request); 192 last_request = &core_request_world; 193 } 194 195 /* 196 * Dynamic world regulatory domain requested by the wireless 197 * core upon initialization 198 */ 199 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 200 { 201 BUG_ON(!last_request); 202 203 reset_regdomains(false); 204 205 cfg80211_world_regdom = rd; 206 cfg80211_regdomain = rd; 207 } 208 209 bool is_world_regdom(const char *alpha2) 210 { 211 if (!alpha2) 212 return false; 213 if (alpha2[0] == '0' && alpha2[1] == '0') 214 return true; 215 return false; 216 } 217 218 static bool is_alpha2_set(const char *alpha2) 219 { 220 if (!alpha2) 221 return false; 222 if (alpha2[0] != 0 && alpha2[1] != 0) 223 return true; 224 return false; 225 } 226 227 static bool is_unknown_alpha2(const char *alpha2) 228 { 229 if (!alpha2) 230 return false; 231 /* 232 * Special case where regulatory domain was built by driver 233 * but a specific alpha2 cannot be determined 234 */ 235 if (alpha2[0] == '9' && alpha2[1] == '9') 236 return true; 237 return false; 238 } 239 240 static bool is_intersected_alpha2(const char *alpha2) 241 { 242 if (!alpha2) 243 return false; 244 /* 245 * Special case where regulatory domain is the 246 * result of an intersection between two regulatory domain 247 * structures 248 */ 249 if (alpha2[0] == '9' && alpha2[1] == '8') 250 return true; 251 return false; 252 } 253 254 static bool is_an_alpha2(const char *alpha2) 255 { 256 if (!alpha2) 257 return false; 258 if (isalpha(alpha2[0]) && isalpha(alpha2[1])) 259 return true; 260 return false; 261 } 262 263 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 264 { 265 if (!alpha2_x || !alpha2_y) 266 return false; 267 if (alpha2_x[0] == alpha2_y[0] && 268 alpha2_x[1] == alpha2_y[1]) 269 return true; 270 return false; 271 } 272 273 static bool regdom_changes(const char *alpha2) 274 { 275 assert_cfg80211_lock(); 276 277 if (!cfg80211_regdomain) 278 return true; 279 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2)) 280 return false; 281 return true; 282 } 283 284 /* 285 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 286 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 287 * has ever been issued. 288 */ 289 static bool is_user_regdom_saved(void) 290 { 291 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 292 return false; 293 294 /* This would indicate a mistake on the design */ 295 if (WARN((!is_world_regdom(user_alpha2) && 296 !is_an_alpha2(user_alpha2)), 297 "Unexpected user alpha2: %c%c\n", 298 user_alpha2[0], 299 user_alpha2[1])) 300 return false; 301 302 return true; 303 } 304 305 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd, 306 const struct ieee80211_regdomain *src_regd) 307 { 308 struct ieee80211_regdomain *regd; 309 int size_of_regd = 0; 310 unsigned int i; 311 312 size_of_regd = sizeof(struct ieee80211_regdomain) + 313 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule)); 314 315 regd = kzalloc(size_of_regd, GFP_KERNEL); 316 if (!regd) 317 return -ENOMEM; 318 319 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 320 321 for (i = 0; i < src_regd->n_reg_rules; i++) 322 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 323 sizeof(struct ieee80211_reg_rule)); 324 325 *dst_regd = regd; 326 return 0; 327 } 328 329 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 330 struct reg_regdb_search_request { 331 char alpha2[2]; 332 struct list_head list; 333 }; 334 335 static LIST_HEAD(reg_regdb_search_list); 336 static DEFINE_MUTEX(reg_regdb_search_mutex); 337 338 static void reg_regdb_search(struct work_struct *work) 339 { 340 struct reg_regdb_search_request *request; 341 const struct ieee80211_regdomain *curdom, *regdom; 342 int i, r; 343 344 mutex_lock(®_regdb_search_mutex); 345 while (!list_empty(®_regdb_search_list)) { 346 request = list_first_entry(®_regdb_search_list, 347 struct reg_regdb_search_request, 348 list); 349 list_del(&request->list); 350 351 for (i=0; i<reg_regdb_size; i++) { 352 curdom = reg_regdb[i]; 353 354 if (!memcmp(request->alpha2, curdom->alpha2, 2)) { 355 r = reg_copy_regd(®dom, curdom); 356 if (r) 357 break; 358 mutex_lock(&cfg80211_mutex); 359 set_regdom(regdom); 360 mutex_unlock(&cfg80211_mutex); 361 break; 362 } 363 } 364 365 kfree(request); 366 } 367 mutex_unlock(®_regdb_search_mutex); 368 } 369 370 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 371 372 static void reg_regdb_query(const char *alpha2) 373 { 374 struct reg_regdb_search_request *request; 375 376 if (!alpha2) 377 return; 378 379 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 380 if (!request) 381 return; 382 383 memcpy(request->alpha2, alpha2, 2); 384 385 mutex_lock(®_regdb_search_mutex); 386 list_add_tail(&request->list, ®_regdb_search_list); 387 mutex_unlock(®_regdb_search_mutex); 388 389 schedule_work(®_regdb_work); 390 } 391 #else 392 static inline void reg_regdb_query(const char *alpha2) {} 393 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 394 395 /* 396 * This lets us keep regulatory code which is updated on a regulatory 397 * basis in userspace. Country information is filled in by 398 * reg_device_uevent 399 */ 400 static int call_crda(const char *alpha2) 401 { 402 if (!is_world_regdom((char *) alpha2)) 403 pr_info("Calling CRDA for country: %c%c\n", 404 alpha2[0], alpha2[1]); 405 else 406 pr_info("Calling CRDA to update world regulatory domain\n"); 407 408 /* query internal regulatory database (if it exists) */ 409 reg_regdb_query(alpha2); 410 411 return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE); 412 } 413 414 /* Used by nl80211 before kmalloc'ing our regulatory domain */ 415 bool reg_is_valid_request(const char *alpha2) 416 { 417 assert_cfg80211_lock(); 418 419 if (!last_request) 420 return false; 421 422 return alpha2_equal(last_request->alpha2, alpha2); 423 } 424 425 /* Sanity check on a regulatory rule */ 426 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 427 { 428 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 429 u32 freq_diff; 430 431 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 432 return false; 433 434 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 435 return false; 436 437 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 438 439 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 440 freq_range->max_bandwidth_khz > freq_diff) 441 return false; 442 443 return true; 444 } 445 446 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 447 { 448 const struct ieee80211_reg_rule *reg_rule = NULL; 449 unsigned int i; 450 451 if (!rd->n_reg_rules) 452 return false; 453 454 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 455 return false; 456 457 for (i = 0; i < rd->n_reg_rules; i++) { 458 reg_rule = &rd->reg_rules[i]; 459 if (!is_valid_reg_rule(reg_rule)) 460 return false; 461 } 462 463 return true; 464 } 465 466 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 467 u32 center_freq_khz, 468 u32 bw_khz) 469 { 470 u32 start_freq_khz, end_freq_khz; 471 472 start_freq_khz = center_freq_khz - (bw_khz/2); 473 end_freq_khz = center_freq_khz + (bw_khz/2); 474 475 if (start_freq_khz >= freq_range->start_freq_khz && 476 end_freq_khz <= freq_range->end_freq_khz) 477 return true; 478 479 return false; 480 } 481 482 /** 483 * freq_in_rule_band - tells us if a frequency is in a frequency band 484 * @freq_range: frequency rule we want to query 485 * @freq_khz: frequency we are inquiring about 486 * 487 * This lets us know if a specific frequency rule is or is not relevant to 488 * a specific frequency's band. Bands are device specific and artificial 489 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is 490 * safe for now to assume that a frequency rule should not be part of a 491 * frequency's band if the start freq or end freq are off by more than 2 GHz. 492 * This resolution can be lowered and should be considered as we add 493 * regulatory rule support for other "bands". 494 **/ 495 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 496 u32 freq_khz) 497 { 498 #define ONE_GHZ_IN_KHZ 1000000 499 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 500 return true; 501 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 502 return true; 503 return false; 504 #undef ONE_GHZ_IN_KHZ 505 } 506 507 /* 508 * Helper for regdom_intersect(), this does the real 509 * mathematical intersection fun 510 */ 511 static int reg_rules_intersect( 512 const struct ieee80211_reg_rule *rule1, 513 const struct ieee80211_reg_rule *rule2, 514 struct ieee80211_reg_rule *intersected_rule) 515 { 516 const struct ieee80211_freq_range *freq_range1, *freq_range2; 517 struct ieee80211_freq_range *freq_range; 518 const struct ieee80211_power_rule *power_rule1, *power_rule2; 519 struct ieee80211_power_rule *power_rule; 520 u32 freq_diff; 521 522 freq_range1 = &rule1->freq_range; 523 freq_range2 = &rule2->freq_range; 524 freq_range = &intersected_rule->freq_range; 525 526 power_rule1 = &rule1->power_rule; 527 power_rule2 = &rule2->power_rule; 528 power_rule = &intersected_rule->power_rule; 529 530 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 531 freq_range2->start_freq_khz); 532 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 533 freq_range2->end_freq_khz); 534 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, 535 freq_range2->max_bandwidth_khz); 536 537 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 538 if (freq_range->max_bandwidth_khz > freq_diff) 539 freq_range->max_bandwidth_khz = freq_diff; 540 541 power_rule->max_eirp = min(power_rule1->max_eirp, 542 power_rule2->max_eirp); 543 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 544 power_rule2->max_antenna_gain); 545 546 intersected_rule->flags = (rule1->flags | rule2->flags); 547 548 if (!is_valid_reg_rule(intersected_rule)) 549 return -EINVAL; 550 551 return 0; 552 } 553 554 /** 555 * regdom_intersect - do the intersection between two regulatory domains 556 * @rd1: first regulatory domain 557 * @rd2: second regulatory domain 558 * 559 * Use this function to get the intersection between two regulatory domains. 560 * Once completed we will mark the alpha2 for the rd as intersected, "98", 561 * as no one single alpha2 can represent this regulatory domain. 562 * 563 * Returns a pointer to the regulatory domain structure which will hold the 564 * resulting intersection of rules between rd1 and rd2. We will 565 * kzalloc() this structure for you. 566 */ 567 static struct ieee80211_regdomain *regdom_intersect( 568 const struct ieee80211_regdomain *rd1, 569 const struct ieee80211_regdomain *rd2) 570 { 571 int r, size_of_regd; 572 unsigned int x, y; 573 unsigned int num_rules = 0, rule_idx = 0; 574 const struct ieee80211_reg_rule *rule1, *rule2; 575 struct ieee80211_reg_rule *intersected_rule; 576 struct ieee80211_regdomain *rd; 577 /* This is just a dummy holder to help us count */ 578 struct ieee80211_reg_rule irule; 579 580 /* Uses the stack temporarily for counter arithmetic */ 581 intersected_rule = &irule; 582 583 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule)); 584 585 if (!rd1 || !rd2) 586 return NULL; 587 588 /* 589 * First we get a count of the rules we'll need, then we actually 590 * build them. This is to so we can malloc() and free() a 591 * regdomain once. The reason we use reg_rules_intersect() here 592 * is it will return -EINVAL if the rule computed makes no sense. 593 * All rules that do check out OK are valid. 594 */ 595 596 for (x = 0; x < rd1->n_reg_rules; x++) { 597 rule1 = &rd1->reg_rules[x]; 598 for (y = 0; y < rd2->n_reg_rules; y++) { 599 rule2 = &rd2->reg_rules[y]; 600 if (!reg_rules_intersect(rule1, rule2, 601 intersected_rule)) 602 num_rules++; 603 memset(intersected_rule, 0, 604 sizeof(struct ieee80211_reg_rule)); 605 } 606 } 607 608 if (!num_rules) 609 return NULL; 610 611 size_of_regd = sizeof(struct ieee80211_regdomain) + 612 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule)); 613 614 rd = kzalloc(size_of_regd, GFP_KERNEL); 615 if (!rd) 616 return NULL; 617 618 for (x = 0; x < rd1->n_reg_rules; x++) { 619 rule1 = &rd1->reg_rules[x]; 620 for (y = 0; y < rd2->n_reg_rules; y++) { 621 rule2 = &rd2->reg_rules[y]; 622 /* 623 * This time around instead of using the stack lets 624 * write to the target rule directly saving ourselves 625 * a memcpy() 626 */ 627 intersected_rule = &rd->reg_rules[rule_idx]; 628 r = reg_rules_intersect(rule1, rule2, 629 intersected_rule); 630 /* 631 * No need to memset here the intersected rule here as 632 * we're not using the stack anymore 633 */ 634 if (r) 635 continue; 636 rule_idx++; 637 } 638 } 639 640 if (rule_idx != num_rules) { 641 kfree(rd); 642 return NULL; 643 } 644 645 rd->n_reg_rules = num_rules; 646 rd->alpha2[0] = '9'; 647 rd->alpha2[1] = '8'; 648 649 return rd; 650 } 651 652 /* 653 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 654 * want to just have the channel structure use these 655 */ 656 static u32 map_regdom_flags(u32 rd_flags) 657 { 658 u32 channel_flags = 0; 659 if (rd_flags & NL80211_RRF_PASSIVE_SCAN) 660 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; 661 if (rd_flags & NL80211_RRF_NO_IBSS) 662 channel_flags |= IEEE80211_CHAN_NO_IBSS; 663 if (rd_flags & NL80211_RRF_DFS) 664 channel_flags |= IEEE80211_CHAN_RADAR; 665 return channel_flags; 666 } 667 668 static int freq_reg_info_regd(struct wiphy *wiphy, 669 u32 center_freq, 670 u32 desired_bw_khz, 671 const struct ieee80211_reg_rule **reg_rule, 672 const struct ieee80211_regdomain *custom_regd) 673 { 674 int i; 675 bool band_rule_found = false; 676 const struct ieee80211_regdomain *regd; 677 bool bw_fits = false; 678 679 if (!desired_bw_khz) 680 desired_bw_khz = MHZ_TO_KHZ(20); 681 682 regd = custom_regd ? custom_regd : cfg80211_regdomain; 683 684 /* 685 * Follow the driver's regulatory domain, if present, unless a country 686 * IE has been processed or a user wants to help complaince further 687 */ 688 if (!custom_regd && 689 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 690 last_request->initiator != NL80211_REGDOM_SET_BY_USER && 691 wiphy->regd) 692 regd = wiphy->regd; 693 694 if (!regd) 695 return -EINVAL; 696 697 for (i = 0; i < regd->n_reg_rules; i++) { 698 const struct ieee80211_reg_rule *rr; 699 const struct ieee80211_freq_range *fr = NULL; 700 701 rr = ®d->reg_rules[i]; 702 fr = &rr->freq_range; 703 704 /* 705 * We only need to know if one frequency rule was 706 * was in center_freq's band, that's enough, so lets 707 * not overwrite it once found 708 */ 709 if (!band_rule_found) 710 band_rule_found = freq_in_rule_band(fr, center_freq); 711 712 bw_fits = reg_does_bw_fit(fr, 713 center_freq, 714 desired_bw_khz); 715 716 if (band_rule_found && bw_fits) { 717 *reg_rule = rr; 718 return 0; 719 } 720 } 721 722 if (!band_rule_found) 723 return -ERANGE; 724 725 return -EINVAL; 726 } 727 728 int freq_reg_info(struct wiphy *wiphy, 729 u32 center_freq, 730 u32 desired_bw_khz, 731 const struct ieee80211_reg_rule **reg_rule) 732 { 733 assert_cfg80211_lock(); 734 return freq_reg_info_regd(wiphy, 735 center_freq, 736 desired_bw_khz, 737 reg_rule, 738 NULL); 739 } 740 EXPORT_SYMBOL(freq_reg_info); 741 742 #ifdef CONFIG_CFG80211_REG_DEBUG 743 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 744 { 745 switch (initiator) { 746 case NL80211_REGDOM_SET_BY_CORE: 747 return "Set by core"; 748 case NL80211_REGDOM_SET_BY_USER: 749 return "Set by user"; 750 case NL80211_REGDOM_SET_BY_DRIVER: 751 return "Set by driver"; 752 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 753 return "Set by country IE"; 754 default: 755 WARN_ON(1); 756 return "Set by bug"; 757 } 758 } 759 760 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 761 u32 desired_bw_khz, 762 const struct ieee80211_reg_rule *reg_rule) 763 { 764 const struct ieee80211_power_rule *power_rule; 765 const struct ieee80211_freq_range *freq_range; 766 char max_antenna_gain[32]; 767 768 power_rule = ®_rule->power_rule; 769 freq_range = ®_rule->freq_range; 770 771 if (!power_rule->max_antenna_gain) 772 snprintf(max_antenna_gain, 32, "N/A"); 773 else 774 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain); 775 776 REG_DBG_PRINT("Updating information on frequency %d MHz " 777 "for a %d MHz width channel with regulatory rule:\n", 778 chan->center_freq, 779 KHZ_TO_MHZ(desired_bw_khz)); 780 781 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n", 782 freq_range->start_freq_khz, 783 freq_range->end_freq_khz, 784 freq_range->max_bandwidth_khz, 785 max_antenna_gain, 786 power_rule->max_eirp); 787 } 788 #else 789 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 790 u32 desired_bw_khz, 791 const struct ieee80211_reg_rule *reg_rule) 792 { 793 return; 794 } 795 #endif 796 797 /* 798 * Note that right now we assume the desired channel bandwidth 799 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 800 * per channel, the primary and the extension channel). To support 801 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a 802 * new ieee80211_channel.target_bw and re run the regulatory check 803 * on the wiphy with the target_bw specified. Then we can simply use 804 * that below for the desired_bw_khz below. 805 */ 806 static void handle_channel(struct wiphy *wiphy, 807 enum nl80211_reg_initiator initiator, 808 enum ieee80211_band band, 809 unsigned int chan_idx) 810 { 811 int r; 812 u32 flags, bw_flags = 0; 813 u32 desired_bw_khz = MHZ_TO_KHZ(20); 814 const struct ieee80211_reg_rule *reg_rule = NULL; 815 const struct ieee80211_power_rule *power_rule = NULL; 816 const struct ieee80211_freq_range *freq_range = NULL; 817 struct ieee80211_supported_band *sband; 818 struct ieee80211_channel *chan; 819 struct wiphy *request_wiphy = NULL; 820 821 assert_cfg80211_lock(); 822 823 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 824 825 sband = wiphy->bands[band]; 826 BUG_ON(chan_idx >= sband->n_channels); 827 chan = &sband->channels[chan_idx]; 828 829 flags = chan->orig_flags; 830 831 r = freq_reg_info(wiphy, 832 MHZ_TO_KHZ(chan->center_freq), 833 desired_bw_khz, 834 ®_rule); 835 836 if (r) { 837 /* 838 * We will disable all channels that do not match our 839 * received regulatory rule unless the hint is coming 840 * from a Country IE and the Country IE had no information 841 * about a band. The IEEE 802.11 spec allows for an AP 842 * to send only a subset of the regulatory rules allowed, 843 * so an AP in the US that only supports 2.4 GHz may only send 844 * a country IE with information for the 2.4 GHz band 845 * while 5 GHz is still supported. 846 */ 847 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 848 r == -ERANGE) 849 return; 850 851 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq); 852 chan->flags = IEEE80211_CHAN_DISABLED; 853 return; 854 } 855 856 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 857 858 power_rule = ®_rule->power_rule; 859 freq_range = ®_rule->freq_range; 860 861 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 862 bw_flags = IEEE80211_CHAN_NO_HT40; 863 864 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 865 request_wiphy && request_wiphy == wiphy && 866 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 867 /* 868 * This guarantees the driver's requested regulatory domain 869 * will always be used as a base for further regulatory 870 * settings 871 */ 872 chan->flags = chan->orig_flags = 873 map_regdom_flags(reg_rule->flags) | bw_flags; 874 chan->max_antenna_gain = chan->orig_mag = 875 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 876 chan->max_power = chan->orig_mpwr = 877 (int) MBM_TO_DBM(power_rule->max_eirp); 878 return; 879 } 880 881 chan->beacon_found = false; 882 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 883 chan->max_antenna_gain = min(chan->orig_mag, 884 (int) MBI_TO_DBI(power_rule->max_antenna_gain)); 885 if (chan->orig_mpwr) { 886 /* 887 * Devices that have their own custom regulatory domain 888 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the 889 * passed country IE power settings. 890 */ 891 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 892 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY && 893 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 894 chan->max_power = 895 MBM_TO_DBM(power_rule->max_eirp); 896 } else { 897 chan->max_power = min(chan->orig_mpwr, 898 (int) MBM_TO_DBM(power_rule->max_eirp)); 899 } 900 } else 901 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 902 } 903 904 static void handle_band(struct wiphy *wiphy, 905 enum ieee80211_band band, 906 enum nl80211_reg_initiator initiator) 907 { 908 unsigned int i; 909 struct ieee80211_supported_band *sband; 910 911 BUG_ON(!wiphy->bands[band]); 912 sband = wiphy->bands[band]; 913 914 for (i = 0; i < sband->n_channels; i++) 915 handle_channel(wiphy, initiator, band, i); 916 } 917 918 static bool ignore_reg_update(struct wiphy *wiphy, 919 enum nl80211_reg_initiator initiator) 920 { 921 if (!last_request) { 922 REG_DBG_PRINT("Ignoring regulatory request %s since " 923 "last_request is not set\n", 924 reg_initiator_name(initiator)); 925 return true; 926 } 927 928 if (initiator == NL80211_REGDOM_SET_BY_CORE && 929 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) { 930 REG_DBG_PRINT("Ignoring regulatory request %s " 931 "since the driver uses its own custom " 932 "regulatory domain\n", 933 reg_initiator_name(initiator)); 934 return true; 935 } 936 937 /* 938 * wiphy->regd will be set once the device has its own 939 * desired regulatory domain set 940 */ 941 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd && 942 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 943 !is_world_regdom(last_request->alpha2)) { 944 REG_DBG_PRINT("Ignoring regulatory request %s " 945 "since the driver requires its own regulatory " 946 "domain to be set first\n", 947 reg_initiator_name(initiator)); 948 return true; 949 } 950 951 return false; 952 } 953 954 static void handle_reg_beacon(struct wiphy *wiphy, 955 unsigned int chan_idx, 956 struct reg_beacon *reg_beacon) 957 { 958 struct ieee80211_supported_band *sband; 959 struct ieee80211_channel *chan; 960 bool channel_changed = false; 961 struct ieee80211_channel chan_before; 962 963 assert_cfg80211_lock(); 964 965 sband = wiphy->bands[reg_beacon->chan.band]; 966 chan = &sband->channels[chan_idx]; 967 968 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 969 return; 970 971 if (chan->beacon_found) 972 return; 973 974 chan->beacon_found = true; 975 976 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS) 977 return; 978 979 chan_before.center_freq = chan->center_freq; 980 chan_before.flags = chan->flags; 981 982 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) { 983 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN; 984 channel_changed = true; 985 } 986 987 if (chan->flags & IEEE80211_CHAN_NO_IBSS) { 988 chan->flags &= ~IEEE80211_CHAN_NO_IBSS; 989 channel_changed = true; 990 } 991 992 if (channel_changed) 993 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 994 } 995 996 /* 997 * Called when a scan on a wiphy finds a beacon on 998 * new channel 999 */ 1000 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1001 struct reg_beacon *reg_beacon) 1002 { 1003 unsigned int i; 1004 struct ieee80211_supported_band *sband; 1005 1006 assert_cfg80211_lock(); 1007 1008 if (!wiphy->bands[reg_beacon->chan.band]) 1009 return; 1010 1011 sband = wiphy->bands[reg_beacon->chan.band]; 1012 1013 for (i = 0; i < sband->n_channels; i++) 1014 handle_reg_beacon(wiphy, i, reg_beacon); 1015 } 1016 1017 /* 1018 * Called upon reg changes or a new wiphy is added 1019 */ 1020 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1021 { 1022 unsigned int i; 1023 struct ieee80211_supported_band *sband; 1024 struct reg_beacon *reg_beacon; 1025 1026 assert_cfg80211_lock(); 1027 1028 if (list_empty(®_beacon_list)) 1029 return; 1030 1031 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1032 if (!wiphy->bands[reg_beacon->chan.band]) 1033 continue; 1034 sband = wiphy->bands[reg_beacon->chan.band]; 1035 for (i = 0; i < sband->n_channels; i++) 1036 handle_reg_beacon(wiphy, i, reg_beacon); 1037 } 1038 } 1039 1040 static bool reg_is_world_roaming(struct wiphy *wiphy) 1041 { 1042 if (is_world_regdom(cfg80211_regdomain->alpha2) || 1043 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2))) 1044 return true; 1045 if (last_request && 1046 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1047 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1048 return true; 1049 return false; 1050 } 1051 1052 /* Reap the advantages of previously found beacons */ 1053 static void reg_process_beacons(struct wiphy *wiphy) 1054 { 1055 /* 1056 * Means we are just firing up cfg80211, so no beacons would 1057 * have been processed yet. 1058 */ 1059 if (!last_request) 1060 return; 1061 if (!reg_is_world_roaming(wiphy)) 1062 return; 1063 wiphy_update_beacon_reg(wiphy); 1064 } 1065 1066 static bool is_ht40_not_allowed(struct ieee80211_channel *chan) 1067 { 1068 if (!chan) 1069 return true; 1070 if (chan->flags & IEEE80211_CHAN_DISABLED) 1071 return true; 1072 /* This would happen when regulatory rules disallow HT40 completely */ 1073 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40))) 1074 return true; 1075 return false; 1076 } 1077 1078 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1079 enum ieee80211_band band, 1080 unsigned int chan_idx) 1081 { 1082 struct ieee80211_supported_band *sband; 1083 struct ieee80211_channel *channel; 1084 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1085 unsigned int i; 1086 1087 assert_cfg80211_lock(); 1088 1089 sband = wiphy->bands[band]; 1090 BUG_ON(chan_idx >= sband->n_channels); 1091 channel = &sband->channels[chan_idx]; 1092 1093 if (is_ht40_not_allowed(channel)) { 1094 channel->flags |= IEEE80211_CHAN_NO_HT40; 1095 return; 1096 } 1097 1098 /* 1099 * We need to ensure the extension channels exist to 1100 * be able to use HT40- or HT40+, this finds them (or not) 1101 */ 1102 for (i = 0; i < sband->n_channels; i++) { 1103 struct ieee80211_channel *c = &sband->channels[i]; 1104 if (c->center_freq == (channel->center_freq - 20)) 1105 channel_before = c; 1106 if (c->center_freq == (channel->center_freq + 20)) 1107 channel_after = c; 1108 } 1109 1110 /* 1111 * Please note that this assumes target bandwidth is 20 MHz, 1112 * if that ever changes we also need to change the below logic 1113 * to include that as well. 1114 */ 1115 if (is_ht40_not_allowed(channel_before)) 1116 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1117 else 1118 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1119 1120 if (is_ht40_not_allowed(channel_after)) 1121 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1122 else 1123 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1124 } 1125 1126 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1127 enum ieee80211_band band) 1128 { 1129 unsigned int i; 1130 struct ieee80211_supported_band *sband; 1131 1132 BUG_ON(!wiphy->bands[band]); 1133 sband = wiphy->bands[band]; 1134 1135 for (i = 0; i < sband->n_channels; i++) 1136 reg_process_ht_flags_channel(wiphy, band, i); 1137 } 1138 1139 static void reg_process_ht_flags(struct wiphy *wiphy) 1140 { 1141 enum ieee80211_band band; 1142 1143 if (!wiphy) 1144 return; 1145 1146 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1147 if (wiphy->bands[band]) 1148 reg_process_ht_flags_band(wiphy, band); 1149 } 1150 1151 } 1152 1153 static void wiphy_update_regulatory(struct wiphy *wiphy, 1154 enum nl80211_reg_initiator initiator) 1155 { 1156 enum ieee80211_band band; 1157 1158 assert_reg_lock(); 1159 1160 if (ignore_reg_update(wiphy, initiator)) 1161 return; 1162 1163 last_request->dfs_region = cfg80211_regdomain->dfs_region; 1164 1165 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1166 if (wiphy->bands[band]) 1167 handle_band(wiphy, band, initiator); 1168 } 1169 1170 reg_process_beacons(wiphy); 1171 reg_process_ht_flags(wiphy); 1172 if (wiphy->reg_notifier) 1173 wiphy->reg_notifier(wiphy, last_request); 1174 } 1175 1176 void regulatory_update(struct wiphy *wiphy, 1177 enum nl80211_reg_initiator setby) 1178 { 1179 mutex_lock(®_mutex); 1180 wiphy_update_regulatory(wiphy, setby); 1181 mutex_unlock(®_mutex); 1182 } 1183 1184 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1185 { 1186 struct cfg80211_registered_device *rdev; 1187 struct wiphy *wiphy; 1188 1189 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1190 wiphy = &rdev->wiphy; 1191 wiphy_update_regulatory(wiphy, initiator); 1192 /* 1193 * Regulatory updates set by CORE are ignored for custom 1194 * regulatory cards. Let us notify the changes to the driver, 1195 * as some drivers used this to restore its orig_* reg domain. 1196 */ 1197 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1198 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY && 1199 wiphy->reg_notifier) 1200 wiphy->reg_notifier(wiphy, last_request); 1201 } 1202 } 1203 1204 static void handle_channel_custom(struct wiphy *wiphy, 1205 enum ieee80211_band band, 1206 unsigned int chan_idx, 1207 const struct ieee80211_regdomain *regd) 1208 { 1209 int r; 1210 u32 desired_bw_khz = MHZ_TO_KHZ(20); 1211 u32 bw_flags = 0; 1212 const struct ieee80211_reg_rule *reg_rule = NULL; 1213 const struct ieee80211_power_rule *power_rule = NULL; 1214 const struct ieee80211_freq_range *freq_range = NULL; 1215 struct ieee80211_supported_band *sband; 1216 struct ieee80211_channel *chan; 1217 1218 assert_reg_lock(); 1219 1220 sband = wiphy->bands[band]; 1221 BUG_ON(chan_idx >= sband->n_channels); 1222 chan = &sband->channels[chan_idx]; 1223 1224 r = freq_reg_info_regd(wiphy, 1225 MHZ_TO_KHZ(chan->center_freq), 1226 desired_bw_khz, 1227 ®_rule, 1228 regd); 1229 1230 if (r) { 1231 REG_DBG_PRINT("Disabling freq %d MHz as custom " 1232 "regd has no rule that fits a %d MHz " 1233 "wide channel\n", 1234 chan->center_freq, 1235 KHZ_TO_MHZ(desired_bw_khz)); 1236 chan->flags = IEEE80211_CHAN_DISABLED; 1237 return; 1238 } 1239 1240 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 1241 1242 power_rule = ®_rule->power_rule; 1243 freq_range = ®_rule->freq_range; 1244 1245 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 1246 bw_flags = IEEE80211_CHAN_NO_HT40; 1247 1248 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1249 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1250 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1251 } 1252 1253 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band, 1254 const struct ieee80211_regdomain *regd) 1255 { 1256 unsigned int i; 1257 struct ieee80211_supported_band *sband; 1258 1259 BUG_ON(!wiphy->bands[band]); 1260 sband = wiphy->bands[band]; 1261 1262 for (i = 0; i < sband->n_channels; i++) 1263 handle_channel_custom(wiphy, band, i, regd); 1264 } 1265 1266 /* Used by drivers prior to wiphy registration */ 1267 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1268 const struct ieee80211_regdomain *regd) 1269 { 1270 enum ieee80211_band band; 1271 unsigned int bands_set = 0; 1272 1273 mutex_lock(®_mutex); 1274 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1275 if (!wiphy->bands[band]) 1276 continue; 1277 handle_band_custom(wiphy, band, regd); 1278 bands_set++; 1279 } 1280 mutex_unlock(®_mutex); 1281 1282 /* 1283 * no point in calling this if it won't have any effect 1284 * on your device's supportd bands. 1285 */ 1286 WARN_ON(!bands_set); 1287 } 1288 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1289 1290 /* 1291 * Return value which can be used by ignore_request() to indicate 1292 * it has been determined we should intersect two regulatory domains 1293 */ 1294 #define REG_INTERSECT 1 1295 1296 /* This has the logic which determines when a new request 1297 * should be ignored. */ 1298 static int ignore_request(struct wiphy *wiphy, 1299 struct regulatory_request *pending_request) 1300 { 1301 struct wiphy *last_wiphy = NULL; 1302 1303 assert_cfg80211_lock(); 1304 1305 /* All initial requests are respected */ 1306 if (!last_request) 1307 return 0; 1308 1309 switch (pending_request->initiator) { 1310 case NL80211_REGDOM_SET_BY_CORE: 1311 return 0; 1312 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1313 1314 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 1315 1316 if (unlikely(!is_an_alpha2(pending_request->alpha2))) 1317 return -EINVAL; 1318 if (last_request->initiator == 1319 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1320 if (last_wiphy != wiphy) { 1321 /* 1322 * Two cards with two APs claiming different 1323 * Country IE alpha2s. We could 1324 * intersect them, but that seems unlikely 1325 * to be correct. Reject second one for now. 1326 */ 1327 if (regdom_changes(pending_request->alpha2)) 1328 return -EOPNOTSUPP; 1329 return -EALREADY; 1330 } 1331 /* 1332 * Two consecutive Country IE hints on the same wiphy. 1333 * This should be picked up early by the driver/stack 1334 */ 1335 if (WARN_ON(regdom_changes(pending_request->alpha2))) 1336 return 0; 1337 return -EALREADY; 1338 } 1339 return 0; 1340 case NL80211_REGDOM_SET_BY_DRIVER: 1341 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) { 1342 if (regdom_changes(pending_request->alpha2)) 1343 return 0; 1344 return -EALREADY; 1345 } 1346 1347 /* 1348 * This would happen if you unplug and plug your card 1349 * back in or if you add a new device for which the previously 1350 * loaded card also agrees on the regulatory domain. 1351 */ 1352 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1353 !regdom_changes(pending_request->alpha2)) 1354 return -EALREADY; 1355 1356 return REG_INTERSECT; 1357 case NL80211_REGDOM_SET_BY_USER: 1358 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1359 return REG_INTERSECT; 1360 /* 1361 * If the user knows better the user should set the regdom 1362 * to their country before the IE is picked up 1363 */ 1364 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER && 1365 last_request->intersect) 1366 return -EOPNOTSUPP; 1367 /* 1368 * Process user requests only after previous user/driver/core 1369 * requests have been processed 1370 */ 1371 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE || 1372 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1373 last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1374 if (regdom_changes(last_request->alpha2)) 1375 return -EAGAIN; 1376 } 1377 1378 if (!regdom_changes(pending_request->alpha2)) 1379 return -EALREADY; 1380 1381 return 0; 1382 } 1383 1384 return -EINVAL; 1385 } 1386 1387 static void reg_set_request_processed(void) 1388 { 1389 bool need_more_processing = false; 1390 1391 last_request->processed = true; 1392 1393 spin_lock(®_requests_lock); 1394 if (!list_empty(®_requests_list)) 1395 need_more_processing = true; 1396 spin_unlock(®_requests_lock); 1397 1398 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) 1399 cancel_delayed_work_sync(®_timeout); 1400 1401 if (need_more_processing) 1402 schedule_work(®_work); 1403 } 1404 1405 /** 1406 * __regulatory_hint - hint to the wireless core a regulatory domain 1407 * @wiphy: if the hint comes from country information from an AP, this 1408 * is required to be set to the wiphy that received the information 1409 * @pending_request: the regulatory request currently being processed 1410 * 1411 * The Wireless subsystem can use this function to hint to the wireless core 1412 * what it believes should be the current regulatory domain. 1413 * 1414 * Returns zero if all went fine, %-EALREADY if a regulatory domain had 1415 * already been set or other standard error codes. 1416 * 1417 * Caller must hold &cfg80211_mutex and ®_mutex 1418 */ 1419 static int __regulatory_hint(struct wiphy *wiphy, 1420 struct regulatory_request *pending_request) 1421 { 1422 bool intersect = false; 1423 int r = 0; 1424 1425 assert_cfg80211_lock(); 1426 1427 r = ignore_request(wiphy, pending_request); 1428 1429 if (r == REG_INTERSECT) { 1430 if (pending_request->initiator == 1431 NL80211_REGDOM_SET_BY_DRIVER) { 1432 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1433 if (r) { 1434 kfree(pending_request); 1435 return r; 1436 } 1437 } 1438 intersect = true; 1439 } else if (r) { 1440 /* 1441 * If the regulatory domain being requested by the 1442 * driver has already been set just copy it to the 1443 * wiphy 1444 */ 1445 if (r == -EALREADY && 1446 pending_request->initiator == 1447 NL80211_REGDOM_SET_BY_DRIVER) { 1448 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1449 if (r) { 1450 kfree(pending_request); 1451 return r; 1452 } 1453 r = -EALREADY; 1454 goto new_request; 1455 } 1456 kfree(pending_request); 1457 return r; 1458 } 1459 1460 new_request: 1461 if (last_request != &core_request_world) 1462 kfree(last_request); 1463 1464 last_request = pending_request; 1465 last_request->intersect = intersect; 1466 1467 pending_request = NULL; 1468 1469 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1470 user_alpha2[0] = last_request->alpha2[0]; 1471 user_alpha2[1] = last_request->alpha2[1]; 1472 } 1473 1474 /* When r == REG_INTERSECT we do need to call CRDA */ 1475 if (r < 0) { 1476 /* 1477 * Since CRDA will not be called in this case as we already 1478 * have applied the requested regulatory domain before we just 1479 * inform userspace we have processed the request 1480 */ 1481 if (r == -EALREADY) { 1482 nl80211_send_reg_change_event(last_request); 1483 reg_set_request_processed(); 1484 } 1485 return r; 1486 } 1487 1488 return call_crda(last_request->alpha2); 1489 } 1490 1491 /* This processes *all* regulatory hints */ 1492 static void reg_process_hint(struct regulatory_request *reg_request, 1493 enum nl80211_reg_initiator reg_initiator) 1494 { 1495 int r = 0; 1496 struct wiphy *wiphy = NULL; 1497 1498 BUG_ON(!reg_request->alpha2); 1499 1500 if (wiphy_idx_valid(reg_request->wiphy_idx)) 1501 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1502 1503 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && 1504 !wiphy) { 1505 kfree(reg_request); 1506 return; 1507 } 1508 1509 r = __regulatory_hint(wiphy, reg_request); 1510 /* This is required so that the orig_* parameters are saved */ 1511 if (r == -EALREADY && wiphy && 1512 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 1513 wiphy_update_regulatory(wiphy, reg_initiator); 1514 return; 1515 } 1516 1517 /* 1518 * We only time out user hints, given that they should be the only 1519 * source of bogus requests. 1520 */ 1521 if (r != -EALREADY && 1522 reg_initiator == NL80211_REGDOM_SET_BY_USER) 1523 schedule_delayed_work(®_timeout, msecs_to_jiffies(3142)); 1524 } 1525 1526 /* 1527 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 1528 * Regulatory hints come on a first come first serve basis and we 1529 * must process each one atomically. 1530 */ 1531 static void reg_process_pending_hints(void) 1532 { 1533 struct regulatory_request *reg_request; 1534 1535 mutex_lock(&cfg80211_mutex); 1536 mutex_lock(®_mutex); 1537 1538 /* When last_request->processed becomes true this will be rescheduled */ 1539 if (last_request && !last_request->processed) { 1540 REG_DBG_PRINT("Pending regulatory request, waiting " 1541 "for it to be processed...\n"); 1542 goto out; 1543 } 1544 1545 spin_lock(®_requests_lock); 1546 1547 if (list_empty(®_requests_list)) { 1548 spin_unlock(®_requests_lock); 1549 goto out; 1550 } 1551 1552 reg_request = list_first_entry(®_requests_list, 1553 struct regulatory_request, 1554 list); 1555 list_del_init(®_request->list); 1556 1557 spin_unlock(®_requests_lock); 1558 1559 reg_process_hint(reg_request, reg_request->initiator); 1560 1561 out: 1562 mutex_unlock(®_mutex); 1563 mutex_unlock(&cfg80211_mutex); 1564 } 1565 1566 /* Processes beacon hints -- this has nothing to do with country IEs */ 1567 static void reg_process_pending_beacon_hints(void) 1568 { 1569 struct cfg80211_registered_device *rdev; 1570 struct reg_beacon *pending_beacon, *tmp; 1571 1572 /* 1573 * No need to hold the reg_mutex here as we just touch wiphys 1574 * and do not read or access regulatory variables. 1575 */ 1576 mutex_lock(&cfg80211_mutex); 1577 1578 /* This goes through the _pending_ beacon list */ 1579 spin_lock_bh(®_pending_beacons_lock); 1580 1581 if (list_empty(®_pending_beacons)) { 1582 spin_unlock_bh(®_pending_beacons_lock); 1583 goto out; 1584 } 1585 1586 list_for_each_entry_safe(pending_beacon, tmp, 1587 ®_pending_beacons, list) { 1588 1589 list_del_init(&pending_beacon->list); 1590 1591 /* Applies the beacon hint to current wiphys */ 1592 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1593 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 1594 1595 /* Remembers the beacon hint for new wiphys or reg changes */ 1596 list_add_tail(&pending_beacon->list, ®_beacon_list); 1597 } 1598 1599 spin_unlock_bh(®_pending_beacons_lock); 1600 out: 1601 mutex_unlock(&cfg80211_mutex); 1602 } 1603 1604 static void reg_todo(struct work_struct *work) 1605 { 1606 reg_process_pending_hints(); 1607 reg_process_pending_beacon_hints(); 1608 } 1609 1610 static void queue_regulatory_request(struct regulatory_request *request) 1611 { 1612 if (isalpha(request->alpha2[0])) 1613 request->alpha2[0] = toupper(request->alpha2[0]); 1614 if (isalpha(request->alpha2[1])) 1615 request->alpha2[1] = toupper(request->alpha2[1]); 1616 1617 spin_lock(®_requests_lock); 1618 list_add_tail(&request->list, ®_requests_list); 1619 spin_unlock(®_requests_lock); 1620 1621 schedule_work(®_work); 1622 } 1623 1624 /* 1625 * Core regulatory hint -- happens during cfg80211_init() 1626 * and when we restore regulatory settings. 1627 */ 1628 static int regulatory_hint_core(const char *alpha2) 1629 { 1630 struct regulatory_request *request; 1631 1632 request = kzalloc(sizeof(struct regulatory_request), 1633 GFP_KERNEL); 1634 if (!request) 1635 return -ENOMEM; 1636 1637 request->alpha2[0] = alpha2[0]; 1638 request->alpha2[1] = alpha2[1]; 1639 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1640 1641 queue_regulatory_request(request); 1642 1643 return 0; 1644 } 1645 1646 /* User hints */ 1647 int regulatory_hint_user(const char *alpha2) 1648 { 1649 struct regulatory_request *request; 1650 1651 BUG_ON(!alpha2); 1652 1653 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1654 if (!request) 1655 return -ENOMEM; 1656 1657 request->wiphy_idx = WIPHY_IDX_STALE; 1658 request->alpha2[0] = alpha2[0]; 1659 request->alpha2[1] = alpha2[1]; 1660 request->initiator = NL80211_REGDOM_SET_BY_USER; 1661 1662 queue_regulatory_request(request); 1663 1664 return 0; 1665 } 1666 1667 /* Driver hints */ 1668 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 1669 { 1670 struct regulatory_request *request; 1671 1672 BUG_ON(!alpha2); 1673 BUG_ON(!wiphy); 1674 1675 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1676 if (!request) 1677 return -ENOMEM; 1678 1679 request->wiphy_idx = get_wiphy_idx(wiphy); 1680 1681 /* Must have registered wiphy first */ 1682 BUG_ON(!wiphy_idx_valid(request->wiphy_idx)); 1683 1684 request->alpha2[0] = alpha2[0]; 1685 request->alpha2[1] = alpha2[1]; 1686 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 1687 1688 queue_regulatory_request(request); 1689 1690 return 0; 1691 } 1692 EXPORT_SYMBOL(regulatory_hint); 1693 1694 /* 1695 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and 1696 * therefore cannot iterate over the rdev list here. 1697 */ 1698 void regulatory_hint_11d(struct wiphy *wiphy, 1699 enum ieee80211_band band, 1700 u8 *country_ie, 1701 u8 country_ie_len) 1702 { 1703 char alpha2[2]; 1704 enum environment_cap env = ENVIRON_ANY; 1705 struct regulatory_request *request; 1706 1707 mutex_lock(®_mutex); 1708 1709 if (unlikely(!last_request)) 1710 goto out; 1711 1712 /* IE len must be evenly divisible by 2 */ 1713 if (country_ie_len & 0x01) 1714 goto out; 1715 1716 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 1717 goto out; 1718 1719 alpha2[0] = country_ie[0]; 1720 alpha2[1] = country_ie[1]; 1721 1722 if (country_ie[2] == 'I') 1723 env = ENVIRON_INDOOR; 1724 else if (country_ie[2] == 'O') 1725 env = ENVIRON_OUTDOOR; 1726 1727 /* 1728 * We will run this only upon a successful connection on cfg80211. 1729 * We leave conflict resolution to the workqueue, where can hold 1730 * cfg80211_mutex. 1731 */ 1732 if (likely(last_request->initiator == 1733 NL80211_REGDOM_SET_BY_COUNTRY_IE && 1734 wiphy_idx_valid(last_request->wiphy_idx))) 1735 goto out; 1736 1737 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1738 if (!request) 1739 goto out; 1740 1741 request->wiphy_idx = get_wiphy_idx(wiphy); 1742 request->alpha2[0] = alpha2[0]; 1743 request->alpha2[1] = alpha2[1]; 1744 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 1745 request->country_ie_env = env; 1746 1747 mutex_unlock(®_mutex); 1748 1749 queue_regulatory_request(request); 1750 1751 return; 1752 1753 out: 1754 mutex_unlock(®_mutex); 1755 } 1756 1757 static void restore_alpha2(char *alpha2, bool reset_user) 1758 { 1759 /* indicates there is no alpha2 to consider for restoration */ 1760 alpha2[0] = '9'; 1761 alpha2[1] = '7'; 1762 1763 /* The user setting has precedence over the module parameter */ 1764 if (is_user_regdom_saved()) { 1765 /* Unless we're asked to ignore it and reset it */ 1766 if (reset_user) { 1767 REG_DBG_PRINT("Restoring regulatory settings " 1768 "including user preference\n"); 1769 user_alpha2[0] = '9'; 1770 user_alpha2[1] = '7'; 1771 1772 /* 1773 * If we're ignoring user settings, we still need to 1774 * check the module parameter to ensure we put things 1775 * back as they were for a full restore. 1776 */ 1777 if (!is_world_regdom(ieee80211_regdom)) { 1778 REG_DBG_PRINT("Keeping preference on " 1779 "module parameter ieee80211_regdom: %c%c\n", 1780 ieee80211_regdom[0], 1781 ieee80211_regdom[1]); 1782 alpha2[0] = ieee80211_regdom[0]; 1783 alpha2[1] = ieee80211_regdom[1]; 1784 } 1785 } else { 1786 REG_DBG_PRINT("Restoring regulatory settings " 1787 "while preserving user preference for: %c%c\n", 1788 user_alpha2[0], 1789 user_alpha2[1]); 1790 alpha2[0] = user_alpha2[0]; 1791 alpha2[1] = user_alpha2[1]; 1792 } 1793 } else if (!is_world_regdom(ieee80211_regdom)) { 1794 REG_DBG_PRINT("Keeping preference on " 1795 "module parameter ieee80211_regdom: %c%c\n", 1796 ieee80211_regdom[0], 1797 ieee80211_regdom[1]); 1798 alpha2[0] = ieee80211_regdom[0]; 1799 alpha2[1] = ieee80211_regdom[1]; 1800 } else 1801 REG_DBG_PRINT("Restoring regulatory settings\n"); 1802 } 1803 1804 static void restore_custom_reg_settings(struct wiphy *wiphy) 1805 { 1806 struct ieee80211_supported_band *sband; 1807 enum ieee80211_band band; 1808 struct ieee80211_channel *chan; 1809 int i; 1810 1811 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1812 sband = wiphy->bands[band]; 1813 if (!sband) 1814 continue; 1815 for (i = 0; i < sband->n_channels; i++) { 1816 chan = &sband->channels[i]; 1817 chan->flags = chan->orig_flags; 1818 chan->max_antenna_gain = chan->orig_mag; 1819 chan->max_power = chan->orig_mpwr; 1820 } 1821 } 1822 } 1823 1824 /* 1825 * Restoring regulatory settings involves ingoring any 1826 * possibly stale country IE information and user regulatory 1827 * settings if so desired, this includes any beacon hints 1828 * learned as we could have traveled outside to another country 1829 * after disconnection. To restore regulatory settings we do 1830 * exactly what we did at bootup: 1831 * 1832 * - send a core regulatory hint 1833 * - send a user regulatory hint if applicable 1834 * 1835 * Device drivers that send a regulatory hint for a specific country 1836 * keep their own regulatory domain on wiphy->regd so that does does 1837 * not need to be remembered. 1838 */ 1839 static void restore_regulatory_settings(bool reset_user) 1840 { 1841 char alpha2[2]; 1842 char world_alpha2[2]; 1843 struct reg_beacon *reg_beacon, *btmp; 1844 struct regulatory_request *reg_request, *tmp; 1845 LIST_HEAD(tmp_reg_req_list); 1846 struct cfg80211_registered_device *rdev; 1847 1848 mutex_lock(&cfg80211_mutex); 1849 mutex_lock(®_mutex); 1850 1851 reset_regdomains(true); 1852 restore_alpha2(alpha2, reset_user); 1853 1854 /* 1855 * If there's any pending requests we simply 1856 * stash them to a temporary pending queue and 1857 * add then after we've restored regulatory 1858 * settings. 1859 */ 1860 spin_lock(®_requests_lock); 1861 if (!list_empty(®_requests_list)) { 1862 list_for_each_entry_safe(reg_request, tmp, 1863 ®_requests_list, list) { 1864 if (reg_request->initiator != 1865 NL80211_REGDOM_SET_BY_USER) 1866 continue; 1867 list_del(®_request->list); 1868 list_add_tail(®_request->list, &tmp_reg_req_list); 1869 } 1870 } 1871 spin_unlock(®_requests_lock); 1872 1873 /* Clear beacon hints */ 1874 spin_lock_bh(®_pending_beacons_lock); 1875 if (!list_empty(®_pending_beacons)) { 1876 list_for_each_entry_safe(reg_beacon, btmp, 1877 ®_pending_beacons, list) { 1878 list_del(®_beacon->list); 1879 kfree(reg_beacon); 1880 } 1881 } 1882 spin_unlock_bh(®_pending_beacons_lock); 1883 1884 if (!list_empty(®_beacon_list)) { 1885 list_for_each_entry_safe(reg_beacon, btmp, 1886 ®_beacon_list, list) { 1887 list_del(®_beacon->list); 1888 kfree(reg_beacon); 1889 } 1890 } 1891 1892 /* First restore to the basic regulatory settings */ 1893 cfg80211_regdomain = cfg80211_world_regdom; 1894 world_alpha2[0] = cfg80211_regdomain->alpha2[0]; 1895 world_alpha2[1] = cfg80211_regdomain->alpha2[1]; 1896 1897 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1898 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1899 restore_custom_reg_settings(&rdev->wiphy); 1900 } 1901 1902 mutex_unlock(®_mutex); 1903 mutex_unlock(&cfg80211_mutex); 1904 1905 regulatory_hint_core(world_alpha2); 1906 1907 /* 1908 * This restores the ieee80211_regdom module parameter 1909 * preference or the last user requested regulatory 1910 * settings, user regulatory settings takes precedence. 1911 */ 1912 if (is_an_alpha2(alpha2)) 1913 regulatory_hint_user(user_alpha2); 1914 1915 if (list_empty(&tmp_reg_req_list)) 1916 return; 1917 1918 mutex_lock(&cfg80211_mutex); 1919 mutex_lock(®_mutex); 1920 1921 spin_lock(®_requests_lock); 1922 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) { 1923 REG_DBG_PRINT("Adding request for country %c%c back " 1924 "into the queue\n", 1925 reg_request->alpha2[0], 1926 reg_request->alpha2[1]); 1927 list_del(®_request->list); 1928 list_add_tail(®_request->list, ®_requests_list); 1929 } 1930 spin_unlock(®_requests_lock); 1931 1932 mutex_unlock(®_mutex); 1933 mutex_unlock(&cfg80211_mutex); 1934 1935 REG_DBG_PRINT("Kicking the queue\n"); 1936 1937 schedule_work(®_work); 1938 } 1939 1940 void regulatory_hint_disconnect(void) 1941 { 1942 REG_DBG_PRINT("All devices are disconnected, going to " 1943 "restore regulatory settings\n"); 1944 restore_regulatory_settings(false); 1945 } 1946 1947 static bool freq_is_chan_12_13_14(u16 freq) 1948 { 1949 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 1950 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 1951 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 1952 return true; 1953 return false; 1954 } 1955 1956 int regulatory_hint_found_beacon(struct wiphy *wiphy, 1957 struct ieee80211_channel *beacon_chan, 1958 gfp_t gfp) 1959 { 1960 struct reg_beacon *reg_beacon; 1961 1962 if (likely((beacon_chan->beacon_found || 1963 (beacon_chan->flags & IEEE80211_CHAN_RADAR) || 1964 (beacon_chan->band == IEEE80211_BAND_2GHZ && 1965 !freq_is_chan_12_13_14(beacon_chan->center_freq))))) 1966 return 0; 1967 1968 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 1969 if (!reg_beacon) 1970 return -ENOMEM; 1971 1972 REG_DBG_PRINT("Found new beacon on " 1973 "frequency: %d MHz (Ch %d) on %s\n", 1974 beacon_chan->center_freq, 1975 ieee80211_frequency_to_channel(beacon_chan->center_freq), 1976 wiphy_name(wiphy)); 1977 1978 memcpy(®_beacon->chan, beacon_chan, 1979 sizeof(struct ieee80211_channel)); 1980 1981 1982 /* 1983 * Since we can be called from BH or and non-BH context 1984 * we must use spin_lock_bh() 1985 */ 1986 spin_lock_bh(®_pending_beacons_lock); 1987 list_add_tail(®_beacon->list, ®_pending_beacons); 1988 spin_unlock_bh(®_pending_beacons_lock); 1989 1990 schedule_work(®_work); 1991 1992 return 0; 1993 } 1994 1995 static void print_rd_rules(const struct ieee80211_regdomain *rd) 1996 { 1997 unsigned int i; 1998 const struct ieee80211_reg_rule *reg_rule = NULL; 1999 const struct ieee80211_freq_range *freq_range = NULL; 2000 const struct ieee80211_power_rule *power_rule = NULL; 2001 2002 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n"); 2003 2004 for (i = 0; i < rd->n_reg_rules; i++) { 2005 reg_rule = &rd->reg_rules[i]; 2006 freq_range = ®_rule->freq_range; 2007 power_rule = ®_rule->power_rule; 2008 2009 /* 2010 * There may not be documentation for max antenna gain 2011 * in certain regions 2012 */ 2013 if (power_rule->max_antenna_gain) 2014 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n", 2015 freq_range->start_freq_khz, 2016 freq_range->end_freq_khz, 2017 freq_range->max_bandwidth_khz, 2018 power_rule->max_antenna_gain, 2019 power_rule->max_eirp); 2020 else 2021 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n", 2022 freq_range->start_freq_khz, 2023 freq_range->end_freq_khz, 2024 freq_range->max_bandwidth_khz, 2025 power_rule->max_eirp); 2026 } 2027 } 2028 2029 bool reg_supported_dfs_region(u8 dfs_region) 2030 { 2031 switch (dfs_region) { 2032 case NL80211_DFS_UNSET: 2033 case NL80211_DFS_FCC: 2034 case NL80211_DFS_ETSI: 2035 case NL80211_DFS_JP: 2036 return true; 2037 default: 2038 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", 2039 dfs_region); 2040 return false; 2041 } 2042 } 2043 2044 static void print_dfs_region(u8 dfs_region) 2045 { 2046 if (!dfs_region) 2047 return; 2048 2049 switch (dfs_region) { 2050 case NL80211_DFS_FCC: 2051 pr_info(" DFS Master region FCC"); 2052 break; 2053 case NL80211_DFS_ETSI: 2054 pr_info(" DFS Master region ETSI"); 2055 break; 2056 case NL80211_DFS_JP: 2057 pr_info(" DFS Master region JP"); 2058 break; 2059 default: 2060 pr_info(" DFS Master region Uknown"); 2061 break; 2062 } 2063 } 2064 2065 static void print_regdomain(const struct ieee80211_regdomain *rd) 2066 { 2067 2068 if (is_intersected_alpha2(rd->alpha2)) { 2069 2070 if (last_request->initiator == 2071 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2072 struct cfg80211_registered_device *rdev; 2073 rdev = cfg80211_rdev_by_wiphy_idx( 2074 last_request->wiphy_idx); 2075 if (rdev) { 2076 pr_info("Current regulatory domain updated by AP to: %c%c\n", 2077 rdev->country_ie_alpha2[0], 2078 rdev->country_ie_alpha2[1]); 2079 } else 2080 pr_info("Current regulatory domain intersected:\n"); 2081 } else 2082 pr_info("Current regulatory domain intersected:\n"); 2083 } else if (is_world_regdom(rd->alpha2)) 2084 pr_info("World regulatory domain updated:\n"); 2085 else { 2086 if (is_unknown_alpha2(rd->alpha2)) 2087 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2088 else 2089 pr_info("Regulatory domain changed to country: %c%c\n", 2090 rd->alpha2[0], rd->alpha2[1]); 2091 } 2092 print_dfs_region(rd->dfs_region); 2093 print_rd_rules(rd); 2094 } 2095 2096 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2097 { 2098 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2099 print_rd_rules(rd); 2100 } 2101 2102 /* Takes ownership of rd only if it doesn't fail */ 2103 static int __set_regdom(const struct ieee80211_regdomain *rd) 2104 { 2105 const struct ieee80211_regdomain *intersected_rd = NULL; 2106 struct cfg80211_registered_device *rdev = NULL; 2107 struct wiphy *request_wiphy; 2108 /* Some basic sanity checks first */ 2109 2110 if (is_world_regdom(rd->alpha2)) { 2111 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 2112 return -EINVAL; 2113 update_world_regdomain(rd); 2114 return 0; 2115 } 2116 2117 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2118 !is_unknown_alpha2(rd->alpha2)) 2119 return -EINVAL; 2120 2121 if (!last_request) 2122 return -EINVAL; 2123 2124 /* 2125 * Lets only bother proceeding on the same alpha2 if the current 2126 * rd is non static (it means CRDA was present and was used last) 2127 * and the pending request came in from a country IE 2128 */ 2129 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2130 /* 2131 * If someone else asked us to change the rd lets only bother 2132 * checking if the alpha2 changes if CRDA was already called 2133 */ 2134 if (!regdom_changes(rd->alpha2)) 2135 return -EINVAL; 2136 } 2137 2138 /* 2139 * Now lets set the regulatory domain, update all driver channels 2140 * and finally inform them of what we have done, in case they want 2141 * to review or adjust their own settings based on their own 2142 * internal EEPROM data 2143 */ 2144 2145 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 2146 return -EINVAL; 2147 2148 if (!is_valid_rd(rd)) { 2149 pr_err("Invalid regulatory domain detected:\n"); 2150 print_regdomain_info(rd); 2151 return -EINVAL; 2152 } 2153 2154 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2155 if (!request_wiphy && 2156 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2157 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) { 2158 schedule_delayed_work(®_timeout, 0); 2159 return -ENODEV; 2160 } 2161 2162 if (!last_request->intersect) { 2163 int r; 2164 2165 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) { 2166 reset_regdomains(false); 2167 cfg80211_regdomain = rd; 2168 return 0; 2169 } 2170 2171 /* 2172 * For a driver hint, lets copy the regulatory domain the 2173 * driver wanted to the wiphy to deal with conflicts 2174 */ 2175 2176 /* 2177 * Userspace could have sent two replies with only 2178 * one kernel request. 2179 */ 2180 if (request_wiphy->regd) 2181 return -EALREADY; 2182 2183 r = reg_copy_regd(&request_wiphy->regd, rd); 2184 if (r) 2185 return r; 2186 2187 reset_regdomains(false); 2188 cfg80211_regdomain = rd; 2189 return 0; 2190 } 2191 2192 /* Intersection requires a bit more work */ 2193 2194 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2195 2196 intersected_rd = regdom_intersect(rd, cfg80211_regdomain); 2197 if (!intersected_rd) 2198 return -EINVAL; 2199 2200 /* 2201 * We can trash what CRDA provided now. 2202 * However if a driver requested this specific regulatory 2203 * domain we keep it for its private use 2204 */ 2205 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) 2206 request_wiphy->regd = rd; 2207 else 2208 kfree(rd); 2209 2210 rd = NULL; 2211 2212 reset_regdomains(false); 2213 cfg80211_regdomain = intersected_rd; 2214 2215 return 0; 2216 } 2217 2218 if (!intersected_rd) 2219 return -EINVAL; 2220 2221 rdev = wiphy_to_dev(request_wiphy); 2222 2223 rdev->country_ie_alpha2[0] = rd->alpha2[0]; 2224 rdev->country_ie_alpha2[1] = rd->alpha2[1]; 2225 rdev->env = last_request->country_ie_env; 2226 2227 BUG_ON(intersected_rd == rd); 2228 2229 kfree(rd); 2230 rd = NULL; 2231 2232 reset_regdomains(false); 2233 cfg80211_regdomain = intersected_rd; 2234 2235 return 0; 2236 } 2237 2238 2239 /* 2240 * Use this call to set the current regulatory domain. Conflicts with 2241 * multiple drivers can be ironed out later. Caller must've already 2242 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex 2243 */ 2244 int set_regdom(const struct ieee80211_regdomain *rd) 2245 { 2246 int r; 2247 2248 assert_cfg80211_lock(); 2249 2250 mutex_lock(®_mutex); 2251 2252 /* Note that this doesn't update the wiphys, this is done below */ 2253 r = __set_regdom(rd); 2254 if (r) { 2255 kfree(rd); 2256 mutex_unlock(®_mutex); 2257 return r; 2258 } 2259 2260 /* This would make this whole thing pointless */ 2261 if (!last_request->intersect) 2262 BUG_ON(rd != cfg80211_regdomain); 2263 2264 /* update all wiphys now with the new established regulatory domain */ 2265 update_all_wiphy_regulatory(last_request->initiator); 2266 2267 print_regdomain(cfg80211_regdomain); 2268 2269 nl80211_send_reg_change_event(last_request); 2270 2271 reg_set_request_processed(); 2272 2273 mutex_unlock(®_mutex); 2274 2275 return r; 2276 } 2277 2278 #ifdef CONFIG_HOTPLUG 2279 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2280 { 2281 if (last_request && !last_request->processed) { 2282 if (add_uevent_var(env, "COUNTRY=%c%c", 2283 last_request->alpha2[0], 2284 last_request->alpha2[1])) 2285 return -ENOMEM; 2286 } 2287 2288 return 0; 2289 } 2290 #else 2291 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2292 { 2293 return -ENODEV; 2294 } 2295 #endif /* CONFIG_HOTPLUG */ 2296 2297 /* Caller must hold cfg80211_mutex */ 2298 void reg_device_remove(struct wiphy *wiphy) 2299 { 2300 struct wiphy *request_wiphy = NULL; 2301 2302 assert_cfg80211_lock(); 2303 2304 mutex_lock(®_mutex); 2305 2306 kfree(wiphy->regd); 2307 2308 if (last_request) 2309 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2310 2311 if (!request_wiphy || request_wiphy != wiphy) 2312 goto out; 2313 2314 last_request->wiphy_idx = WIPHY_IDX_STALE; 2315 last_request->country_ie_env = ENVIRON_ANY; 2316 out: 2317 mutex_unlock(®_mutex); 2318 } 2319 2320 static void reg_timeout_work(struct work_struct *work) 2321 { 2322 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, " 2323 "restoring regulatory settings\n"); 2324 restore_regulatory_settings(true); 2325 } 2326 2327 int __init regulatory_init(void) 2328 { 2329 int err = 0; 2330 2331 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2332 if (IS_ERR(reg_pdev)) 2333 return PTR_ERR(reg_pdev); 2334 2335 reg_pdev->dev.type = ®_device_type; 2336 2337 spin_lock_init(®_requests_lock); 2338 spin_lock_init(®_pending_beacons_lock); 2339 2340 cfg80211_regdomain = cfg80211_world_regdom; 2341 2342 user_alpha2[0] = '9'; 2343 user_alpha2[1] = '7'; 2344 2345 /* We always try to get an update for the static regdomain */ 2346 err = regulatory_hint_core(cfg80211_regdomain->alpha2); 2347 if (err) { 2348 if (err == -ENOMEM) 2349 return err; 2350 /* 2351 * N.B. kobject_uevent_env() can fail mainly for when we're out 2352 * memory which is handled and propagated appropriately above 2353 * but it can also fail during a netlink_broadcast() or during 2354 * early boot for call_usermodehelper(). For now treat these 2355 * errors as non-fatal. 2356 */ 2357 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 2358 #ifdef CONFIG_CFG80211_REG_DEBUG 2359 /* We want to find out exactly why when debugging */ 2360 WARN_ON(err); 2361 #endif 2362 } 2363 2364 /* 2365 * Finally, if the user set the module parameter treat it 2366 * as a user hint. 2367 */ 2368 if (!is_world_regdom(ieee80211_regdom)) 2369 regulatory_hint_user(ieee80211_regdom); 2370 2371 return 0; 2372 } 2373 2374 void /* __init_or_exit */ regulatory_exit(void) 2375 { 2376 struct regulatory_request *reg_request, *tmp; 2377 struct reg_beacon *reg_beacon, *btmp; 2378 2379 cancel_work_sync(®_work); 2380 cancel_delayed_work_sync(®_timeout); 2381 2382 mutex_lock(&cfg80211_mutex); 2383 mutex_lock(®_mutex); 2384 2385 reset_regdomains(true); 2386 2387 dev_set_uevent_suppress(®_pdev->dev, true); 2388 2389 platform_device_unregister(reg_pdev); 2390 2391 spin_lock_bh(®_pending_beacons_lock); 2392 if (!list_empty(®_pending_beacons)) { 2393 list_for_each_entry_safe(reg_beacon, btmp, 2394 ®_pending_beacons, list) { 2395 list_del(®_beacon->list); 2396 kfree(reg_beacon); 2397 } 2398 } 2399 spin_unlock_bh(®_pending_beacons_lock); 2400 2401 if (!list_empty(®_beacon_list)) { 2402 list_for_each_entry_safe(reg_beacon, btmp, 2403 ®_beacon_list, list) { 2404 list_del(®_beacon->list); 2405 kfree(reg_beacon); 2406 } 2407 } 2408 2409 spin_lock(®_requests_lock); 2410 if (!list_empty(®_requests_list)) { 2411 list_for_each_entry_safe(reg_request, tmp, 2412 ®_requests_list, list) { 2413 list_del(®_request->list); 2414 kfree(reg_request); 2415 } 2416 } 2417 spin_unlock(®_requests_lock); 2418 2419 mutex_unlock(®_mutex); 2420 mutex_unlock(&cfg80211_mutex); 2421 } 2422