1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 /** 13 * DOC: Wireless regulatory infrastructure 14 * 15 * The usual implementation is for a driver to read a device EEPROM to 16 * determine which regulatory domain it should be operating under, then 17 * looking up the allowable channels in a driver-local table and finally 18 * registering those channels in the wiphy structure. 19 * 20 * Another set of compliance enforcement is for drivers to use their 21 * own compliance limits which can be stored on the EEPROM. The host 22 * driver or firmware may ensure these are used. 23 * 24 * In addition to all this we provide an extra layer of regulatory 25 * conformance. For drivers which do not have any regulatory 26 * information CRDA provides the complete regulatory solution. 27 * For others it provides a community effort on further restrictions 28 * to enhance compliance. 29 * 30 * Note: When number of rules --> infinity we will not be able to 31 * index on alpha2 any more, instead we'll probably have to 32 * rely on some SHA1 checksum of the regdomain for example. 33 * 34 */ 35 #include <linux/kernel.h> 36 #include <linux/list.h> 37 #include <linux/random.h> 38 #include <linux/nl80211.h> 39 #include <linux/platform_device.h> 40 #include <net/cfg80211.h> 41 #include "core.h" 42 #include "reg.h" 43 #include "nl80211.h" 44 45 /* Receipt of information from last regulatory request */ 46 static struct regulatory_request *last_request; 47 48 /* To trigger userspace events */ 49 static struct platform_device *reg_pdev; 50 51 /* 52 * Central wireless core regulatory domains, we only need two, 53 * the current one and a world regulatory domain in case we have no 54 * information to give us an alpha2 55 */ 56 const struct ieee80211_regdomain *cfg80211_regdomain; 57 58 /* 59 * We use this as a place for the rd structure built from the 60 * last parsed country IE to rest until CRDA gets back to us with 61 * what it thinks should apply for the same country 62 */ 63 static const struct ieee80211_regdomain *country_ie_regdomain; 64 65 /* Used to queue up regulatory hints */ 66 static LIST_HEAD(reg_requests_list); 67 static spinlock_t reg_requests_lock; 68 69 /* Used to queue up beacon hints for review */ 70 static LIST_HEAD(reg_pending_beacons); 71 static spinlock_t reg_pending_beacons_lock; 72 73 /* Used to keep track of processed beacon hints */ 74 static LIST_HEAD(reg_beacon_list); 75 76 struct reg_beacon { 77 struct list_head list; 78 struct ieee80211_channel chan; 79 }; 80 81 /* We keep a static world regulatory domain in case of the absence of CRDA */ 82 static const struct ieee80211_regdomain world_regdom = { 83 .n_reg_rules = 5, 84 .alpha2 = "00", 85 .reg_rules = { 86 /* IEEE 802.11b/g, channels 1..11 */ 87 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 88 /* IEEE 802.11b/g, channels 12..13. No HT40 89 * channel fits here. */ 90 REG_RULE(2467-10, 2472+10, 20, 6, 20, 91 NL80211_RRF_PASSIVE_SCAN | 92 NL80211_RRF_NO_IBSS), 93 /* IEEE 802.11 channel 14 - Only JP enables 94 * this and for 802.11b only */ 95 REG_RULE(2484-10, 2484+10, 20, 6, 20, 96 NL80211_RRF_PASSIVE_SCAN | 97 NL80211_RRF_NO_IBSS | 98 NL80211_RRF_NO_OFDM), 99 /* IEEE 802.11a, channel 36..48 */ 100 REG_RULE(5180-10, 5240+10, 40, 6, 20, 101 NL80211_RRF_PASSIVE_SCAN | 102 NL80211_RRF_NO_IBSS), 103 104 /* NB: 5260 MHz - 5700 MHz requies DFS */ 105 106 /* IEEE 802.11a, channel 149..165 */ 107 REG_RULE(5745-10, 5825+10, 40, 6, 20, 108 NL80211_RRF_PASSIVE_SCAN | 109 NL80211_RRF_NO_IBSS), 110 } 111 }; 112 113 static const struct ieee80211_regdomain *cfg80211_world_regdom = 114 &world_regdom; 115 116 #ifdef CONFIG_WIRELESS_OLD_REGULATORY 117 static char *ieee80211_regdom = "US"; 118 #else 119 static char *ieee80211_regdom = "00"; 120 #endif 121 122 module_param(ieee80211_regdom, charp, 0444); 123 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 124 125 #ifdef CONFIG_WIRELESS_OLD_REGULATORY 126 /* 127 * We assume 40 MHz bandwidth for the old regulatory work. 128 * We make emphasis we are using the exact same frequencies 129 * as before 130 */ 131 132 static const struct ieee80211_regdomain us_regdom = { 133 .n_reg_rules = 6, 134 .alpha2 = "US", 135 .reg_rules = { 136 /* IEEE 802.11b/g, channels 1..11 */ 137 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0), 138 /* IEEE 802.11a, channel 36 */ 139 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0), 140 /* IEEE 802.11a, channel 40 */ 141 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0), 142 /* IEEE 802.11a, channel 44 */ 143 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0), 144 /* IEEE 802.11a, channels 48..64 */ 145 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0), 146 /* IEEE 802.11a, channels 149..165, outdoor */ 147 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0), 148 } 149 }; 150 151 static const struct ieee80211_regdomain jp_regdom = { 152 .n_reg_rules = 3, 153 .alpha2 = "JP", 154 .reg_rules = { 155 /* IEEE 802.11b/g, channels 1..14 */ 156 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0), 157 /* IEEE 802.11a, channels 34..48 */ 158 REG_RULE(5170-10, 5240+10, 40, 6, 20, 159 NL80211_RRF_PASSIVE_SCAN), 160 /* IEEE 802.11a, channels 52..64 */ 161 REG_RULE(5260-10, 5320+10, 40, 6, 20, 162 NL80211_RRF_NO_IBSS | 163 NL80211_RRF_DFS), 164 } 165 }; 166 167 static const struct ieee80211_regdomain eu_regdom = { 168 .n_reg_rules = 6, 169 /* 170 * This alpha2 is bogus, we leave it here just for stupid 171 * backward compatibility 172 */ 173 .alpha2 = "EU", 174 .reg_rules = { 175 /* IEEE 802.11b/g, channels 1..13 */ 176 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0), 177 /* IEEE 802.11a, channel 36 */ 178 REG_RULE(5180-10, 5180+10, 40, 6, 23, 179 NL80211_RRF_PASSIVE_SCAN), 180 /* IEEE 802.11a, channel 40 */ 181 REG_RULE(5200-10, 5200+10, 40, 6, 23, 182 NL80211_RRF_PASSIVE_SCAN), 183 /* IEEE 802.11a, channel 44 */ 184 REG_RULE(5220-10, 5220+10, 40, 6, 23, 185 NL80211_RRF_PASSIVE_SCAN), 186 /* IEEE 802.11a, channels 48..64 */ 187 REG_RULE(5240-10, 5320+10, 40, 6, 20, 188 NL80211_RRF_NO_IBSS | 189 NL80211_RRF_DFS), 190 /* IEEE 802.11a, channels 100..140 */ 191 REG_RULE(5500-10, 5700+10, 40, 6, 30, 192 NL80211_RRF_NO_IBSS | 193 NL80211_RRF_DFS), 194 } 195 }; 196 197 static const struct ieee80211_regdomain *static_regdom(char *alpha2) 198 { 199 if (alpha2[0] == 'U' && alpha2[1] == 'S') 200 return &us_regdom; 201 if (alpha2[0] == 'J' && alpha2[1] == 'P') 202 return &jp_regdom; 203 if (alpha2[0] == 'E' && alpha2[1] == 'U') 204 return &eu_regdom; 205 /* Default, as per the old rules */ 206 return &us_regdom; 207 } 208 209 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd) 210 { 211 if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom) 212 return true; 213 return false; 214 } 215 #else 216 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd) 217 { 218 return false; 219 } 220 #endif 221 222 static void reset_regdomains(void) 223 { 224 /* avoid freeing static information or freeing something twice */ 225 if (cfg80211_regdomain == cfg80211_world_regdom) 226 cfg80211_regdomain = NULL; 227 if (cfg80211_world_regdom == &world_regdom) 228 cfg80211_world_regdom = NULL; 229 if (cfg80211_regdomain == &world_regdom) 230 cfg80211_regdomain = NULL; 231 if (is_old_static_regdom(cfg80211_regdomain)) 232 cfg80211_regdomain = NULL; 233 234 kfree(cfg80211_regdomain); 235 kfree(cfg80211_world_regdom); 236 237 cfg80211_world_regdom = &world_regdom; 238 cfg80211_regdomain = NULL; 239 } 240 241 /* 242 * Dynamic world regulatory domain requested by the wireless 243 * core upon initialization 244 */ 245 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 246 { 247 BUG_ON(!last_request); 248 249 reset_regdomains(); 250 251 cfg80211_world_regdom = rd; 252 cfg80211_regdomain = rd; 253 } 254 255 bool is_world_regdom(const char *alpha2) 256 { 257 if (!alpha2) 258 return false; 259 if (alpha2[0] == '0' && alpha2[1] == '0') 260 return true; 261 return false; 262 } 263 264 static bool is_alpha2_set(const char *alpha2) 265 { 266 if (!alpha2) 267 return false; 268 if (alpha2[0] != 0 && alpha2[1] != 0) 269 return true; 270 return false; 271 } 272 273 static bool is_alpha_upper(char letter) 274 { 275 /* ASCII A - Z */ 276 if (letter >= 65 && letter <= 90) 277 return true; 278 return false; 279 } 280 281 static bool is_unknown_alpha2(const char *alpha2) 282 { 283 if (!alpha2) 284 return false; 285 /* 286 * Special case where regulatory domain was built by driver 287 * but a specific alpha2 cannot be determined 288 */ 289 if (alpha2[0] == '9' && alpha2[1] == '9') 290 return true; 291 return false; 292 } 293 294 static bool is_intersected_alpha2(const char *alpha2) 295 { 296 if (!alpha2) 297 return false; 298 /* 299 * Special case where regulatory domain is the 300 * result of an intersection between two regulatory domain 301 * structures 302 */ 303 if (alpha2[0] == '9' && alpha2[1] == '8') 304 return true; 305 return false; 306 } 307 308 static bool is_an_alpha2(const char *alpha2) 309 { 310 if (!alpha2) 311 return false; 312 if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1])) 313 return true; 314 return false; 315 } 316 317 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 318 { 319 if (!alpha2_x || !alpha2_y) 320 return false; 321 if (alpha2_x[0] == alpha2_y[0] && 322 alpha2_x[1] == alpha2_y[1]) 323 return true; 324 return false; 325 } 326 327 static bool regdom_changes(const char *alpha2) 328 { 329 assert_cfg80211_lock(); 330 331 if (!cfg80211_regdomain) 332 return true; 333 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2)) 334 return false; 335 return true; 336 } 337 338 /** 339 * country_ie_integrity_changes - tells us if the country IE has changed 340 * @checksum: checksum of country IE of fields we are interested in 341 * 342 * If the country IE has not changed you can ignore it safely. This is 343 * useful to determine if two devices are seeing two different country IEs 344 * even on the same alpha2. Note that this will return false if no IE has 345 * been set on the wireless core yet. 346 */ 347 static bool country_ie_integrity_changes(u32 checksum) 348 { 349 /* If no IE has been set then the checksum doesn't change */ 350 if (unlikely(!last_request->country_ie_checksum)) 351 return false; 352 if (unlikely(last_request->country_ie_checksum != checksum)) 353 return true; 354 return false; 355 } 356 357 /* 358 * This lets us keep regulatory code which is updated on a regulatory 359 * basis in userspace. 360 */ 361 static int call_crda(const char *alpha2) 362 { 363 char country_env[9 + 2] = "COUNTRY="; 364 char *envp[] = { 365 country_env, 366 NULL 367 }; 368 369 if (!is_world_regdom((char *) alpha2)) 370 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n", 371 alpha2[0], alpha2[1]); 372 else 373 printk(KERN_INFO "cfg80211: Calling CRDA to update world " 374 "regulatory domain\n"); 375 376 country_env[8] = alpha2[0]; 377 country_env[9] = alpha2[1]; 378 379 return kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, envp); 380 } 381 382 /* Used by nl80211 before kmalloc'ing our regulatory domain */ 383 bool reg_is_valid_request(const char *alpha2) 384 { 385 assert_cfg80211_lock(); 386 387 if (!last_request) 388 return false; 389 390 return alpha2_equal(last_request->alpha2, alpha2); 391 } 392 393 /* Sanity check on a regulatory rule */ 394 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 395 { 396 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 397 u32 freq_diff; 398 399 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 400 return false; 401 402 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 403 return false; 404 405 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 406 407 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 408 freq_range->max_bandwidth_khz > freq_diff) 409 return false; 410 411 return true; 412 } 413 414 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 415 { 416 const struct ieee80211_reg_rule *reg_rule = NULL; 417 unsigned int i; 418 419 if (!rd->n_reg_rules) 420 return false; 421 422 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 423 return false; 424 425 for (i = 0; i < rd->n_reg_rules; i++) { 426 reg_rule = &rd->reg_rules[i]; 427 if (!is_valid_reg_rule(reg_rule)) 428 return false; 429 } 430 431 return true; 432 } 433 434 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 435 u32 center_freq_khz, 436 u32 bw_khz) 437 { 438 u32 start_freq_khz, end_freq_khz; 439 440 start_freq_khz = center_freq_khz - (bw_khz/2); 441 end_freq_khz = center_freq_khz + (bw_khz/2); 442 443 if (start_freq_khz >= freq_range->start_freq_khz && 444 end_freq_khz <= freq_range->end_freq_khz) 445 return true; 446 447 return false; 448 } 449 450 /** 451 * freq_in_rule_band - tells us if a frequency is in a frequency band 452 * @freq_range: frequency rule we want to query 453 * @freq_khz: frequency we are inquiring about 454 * 455 * This lets us know if a specific frequency rule is or is not relevant to 456 * a specific frequency's band. Bands are device specific and artificial 457 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is 458 * safe for now to assume that a frequency rule should not be part of a 459 * frequency's band if the start freq or end freq are off by more than 2 GHz. 460 * This resolution can be lowered and should be considered as we add 461 * regulatory rule support for other "bands". 462 **/ 463 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 464 u32 freq_khz) 465 { 466 #define ONE_GHZ_IN_KHZ 1000000 467 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 468 return true; 469 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 470 return true; 471 return false; 472 #undef ONE_GHZ_IN_KHZ 473 } 474 475 /* 476 * Converts a country IE to a regulatory domain. A regulatory domain 477 * structure has a lot of information which the IE doesn't yet have, 478 * so for the other values we use upper max values as we will intersect 479 * with our userspace regulatory agent to get lower bounds. 480 */ 481 static struct ieee80211_regdomain *country_ie_2_rd( 482 u8 *country_ie, 483 u8 country_ie_len, 484 u32 *checksum) 485 { 486 struct ieee80211_regdomain *rd = NULL; 487 unsigned int i = 0; 488 char alpha2[2]; 489 u32 flags = 0; 490 u32 num_rules = 0, size_of_regd = 0; 491 u8 *triplets_start = NULL; 492 u8 len_at_triplet = 0; 493 /* the last channel we have registered in a subband (triplet) */ 494 int last_sub_max_channel = 0; 495 496 *checksum = 0xDEADBEEF; 497 498 /* Country IE requirements */ 499 BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN || 500 country_ie_len & 0x01); 501 502 alpha2[0] = country_ie[0]; 503 alpha2[1] = country_ie[1]; 504 505 /* 506 * Third octet can be: 507 * 'I' - Indoor 508 * 'O' - Outdoor 509 * 510 * anything else we assume is no restrictions 511 */ 512 if (country_ie[2] == 'I') 513 flags = NL80211_RRF_NO_OUTDOOR; 514 else if (country_ie[2] == 'O') 515 flags = NL80211_RRF_NO_INDOOR; 516 517 country_ie += 3; 518 country_ie_len -= 3; 519 520 triplets_start = country_ie; 521 len_at_triplet = country_ie_len; 522 523 *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8); 524 525 /* 526 * We need to build a reg rule for each triplet, but first we must 527 * calculate the number of reg rules we will need. We will need one 528 * for each channel subband 529 */ 530 while (country_ie_len >= 3) { 531 int end_channel = 0; 532 struct ieee80211_country_ie_triplet *triplet = 533 (struct ieee80211_country_ie_triplet *) country_ie; 534 int cur_sub_max_channel = 0, cur_channel = 0; 535 536 if (triplet->ext.reg_extension_id >= 537 IEEE80211_COUNTRY_EXTENSION_ID) { 538 country_ie += 3; 539 country_ie_len -= 3; 540 continue; 541 } 542 543 /* 2 GHz */ 544 if (triplet->chans.first_channel <= 14) 545 end_channel = triplet->chans.first_channel + 546 triplet->chans.num_channels; 547 else 548 /* 549 * 5 GHz -- For example in country IEs if the first 550 * channel given is 36 and the number of channels is 4 551 * then the individual channel numbers defined for the 552 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48 553 * and not 36, 37, 38, 39. 554 * 555 * See: http://tinyurl.com/11d-clarification 556 */ 557 end_channel = triplet->chans.first_channel + 558 (4 * (triplet->chans.num_channels - 1)); 559 560 cur_channel = triplet->chans.first_channel; 561 cur_sub_max_channel = end_channel; 562 563 /* Basic sanity check */ 564 if (cur_sub_max_channel < cur_channel) 565 return NULL; 566 567 /* 568 * Do not allow overlapping channels. Also channels 569 * passed in each subband must be monotonically 570 * increasing 571 */ 572 if (last_sub_max_channel) { 573 if (cur_channel <= last_sub_max_channel) 574 return NULL; 575 if (cur_sub_max_channel <= last_sub_max_channel) 576 return NULL; 577 } 578 579 /* 580 * When dot11RegulatoryClassesRequired is supported 581 * we can throw ext triplets as part of this soup, 582 * for now we don't care when those change as we 583 * don't support them 584 */ 585 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) | 586 ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) | 587 ((triplet->chans.max_power ^ cur_sub_max_channel) << 24); 588 589 last_sub_max_channel = cur_sub_max_channel; 590 591 country_ie += 3; 592 country_ie_len -= 3; 593 num_rules++; 594 595 /* 596 * Note: this is not a IEEE requirement but 597 * simply a memory requirement 598 */ 599 if (num_rules > NL80211_MAX_SUPP_REG_RULES) 600 return NULL; 601 } 602 603 country_ie = triplets_start; 604 country_ie_len = len_at_triplet; 605 606 size_of_regd = sizeof(struct ieee80211_regdomain) + 607 (num_rules * sizeof(struct ieee80211_reg_rule)); 608 609 rd = kzalloc(size_of_regd, GFP_KERNEL); 610 if (!rd) 611 return NULL; 612 613 rd->n_reg_rules = num_rules; 614 rd->alpha2[0] = alpha2[0]; 615 rd->alpha2[1] = alpha2[1]; 616 617 /* This time around we fill in the rd */ 618 while (country_ie_len >= 3) { 619 int end_channel = 0; 620 struct ieee80211_country_ie_triplet *triplet = 621 (struct ieee80211_country_ie_triplet *) country_ie; 622 struct ieee80211_reg_rule *reg_rule = NULL; 623 struct ieee80211_freq_range *freq_range = NULL; 624 struct ieee80211_power_rule *power_rule = NULL; 625 626 /* 627 * Must parse if dot11RegulatoryClassesRequired is true, 628 * we don't support this yet 629 */ 630 if (triplet->ext.reg_extension_id >= 631 IEEE80211_COUNTRY_EXTENSION_ID) { 632 country_ie += 3; 633 country_ie_len -= 3; 634 continue; 635 } 636 637 reg_rule = &rd->reg_rules[i]; 638 freq_range = ®_rule->freq_range; 639 power_rule = ®_rule->power_rule; 640 641 reg_rule->flags = flags; 642 643 /* 2 GHz */ 644 if (triplet->chans.first_channel <= 14) 645 end_channel = triplet->chans.first_channel + 646 triplet->chans.num_channels; 647 else 648 end_channel = triplet->chans.first_channel + 649 (4 * (triplet->chans.num_channels - 1)); 650 651 /* 652 * The +10 is since the regulatory domain expects 653 * the actual band edge, not the center of freq for 654 * its start and end freqs, assuming 20 MHz bandwidth on 655 * the channels passed 656 */ 657 freq_range->start_freq_khz = 658 MHZ_TO_KHZ(ieee80211_channel_to_frequency( 659 triplet->chans.first_channel) - 10); 660 freq_range->end_freq_khz = 661 MHZ_TO_KHZ(ieee80211_channel_to_frequency( 662 end_channel) + 10); 663 664 /* 665 * These are large arbitrary values we use to intersect later. 666 * Increment this if we ever support >= 40 MHz channels 667 * in IEEE 802.11 668 */ 669 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40); 670 power_rule->max_antenna_gain = DBI_TO_MBI(100); 671 power_rule->max_eirp = DBM_TO_MBM(100); 672 673 country_ie += 3; 674 country_ie_len -= 3; 675 i++; 676 677 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES); 678 } 679 680 return rd; 681 } 682 683 684 /* 685 * Helper for regdom_intersect(), this does the real 686 * mathematical intersection fun 687 */ 688 static int reg_rules_intersect( 689 const struct ieee80211_reg_rule *rule1, 690 const struct ieee80211_reg_rule *rule2, 691 struct ieee80211_reg_rule *intersected_rule) 692 { 693 const struct ieee80211_freq_range *freq_range1, *freq_range2; 694 struct ieee80211_freq_range *freq_range; 695 const struct ieee80211_power_rule *power_rule1, *power_rule2; 696 struct ieee80211_power_rule *power_rule; 697 u32 freq_diff; 698 699 freq_range1 = &rule1->freq_range; 700 freq_range2 = &rule2->freq_range; 701 freq_range = &intersected_rule->freq_range; 702 703 power_rule1 = &rule1->power_rule; 704 power_rule2 = &rule2->power_rule; 705 power_rule = &intersected_rule->power_rule; 706 707 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 708 freq_range2->start_freq_khz); 709 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 710 freq_range2->end_freq_khz); 711 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, 712 freq_range2->max_bandwidth_khz); 713 714 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 715 if (freq_range->max_bandwidth_khz > freq_diff) 716 freq_range->max_bandwidth_khz = freq_diff; 717 718 power_rule->max_eirp = min(power_rule1->max_eirp, 719 power_rule2->max_eirp); 720 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 721 power_rule2->max_antenna_gain); 722 723 intersected_rule->flags = (rule1->flags | rule2->flags); 724 725 if (!is_valid_reg_rule(intersected_rule)) 726 return -EINVAL; 727 728 return 0; 729 } 730 731 /** 732 * regdom_intersect - do the intersection between two regulatory domains 733 * @rd1: first regulatory domain 734 * @rd2: second regulatory domain 735 * 736 * Use this function to get the intersection between two regulatory domains. 737 * Once completed we will mark the alpha2 for the rd as intersected, "98", 738 * as no one single alpha2 can represent this regulatory domain. 739 * 740 * Returns a pointer to the regulatory domain structure which will hold the 741 * resulting intersection of rules between rd1 and rd2. We will 742 * kzalloc() this structure for you. 743 */ 744 static struct ieee80211_regdomain *regdom_intersect( 745 const struct ieee80211_regdomain *rd1, 746 const struct ieee80211_regdomain *rd2) 747 { 748 int r, size_of_regd; 749 unsigned int x, y; 750 unsigned int num_rules = 0, rule_idx = 0; 751 const struct ieee80211_reg_rule *rule1, *rule2; 752 struct ieee80211_reg_rule *intersected_rule; 753 struct ieee80211_regdomain *rd; 754 /* This is just a dummy holder to help us count */ 755 struct ieee80211_reg_rule irule; 756 757 /* Uses the stack temporarily for counter arithmetic */ 758 intersected_rule = &irule; 759 760 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule)); 761 762 if (!rd1 || !rd2) 763 return NULL; 764 765 /* 766 * First we get a count of the rules we'll need, then we actually 767 * build them. This is to so we can malloc() and free() a 768 * regdomain once. The reason we use reg_rules_intersect() here 769 * is it will return -EINVAL if the rule computed makes no sense. 770 * All rules that do check out OK are valid. 771 */ 772 773 for (x = 0; x < rd1->n_reg_rules; x++) { 774 rule1 = &rd1->reg_rules[x]; 775 for (y = 0; y < rd2->n_reg_rules; y++) { 776 rule2 = &rd2->reg_rules[y]; 777 if (!reg_rules_intersect(rule1, rule2, 778 intersected_rule)) 779 num_rules++; 780 memset(intersected_rule, 0, 781 sizeof(struct ieee80211_reg_rule)); 782 } 783 } 784 785 if (!num_rules) 786 return NULL; 787 788 size_of_regd = sizeof(struct ieee80211_regdomain) + 789 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule)); 790 791 rd = kzalloc(size_of_regd, GFP_KERNEL); 792 if (!rd) 793 return NULL; 794 795 for (x = 0; x < rd1->n_reg_rules; x++) { 796 rule1 = &rd1->reg_rules[x]; 797 for (y = 0; y < rd2->n_reg_rules; y++) { 798 rule2 = &rd2->reg_rules[y]; 799 /* 800 * This time around instead of using the stack lets 801 * write to the target rule directly saving ourselves 802 * a memcpy() 803 */ 804 intersected_rule = &rd->reg_rules[rule_idx]; 805 r = reg_rules_intersect(rule1, rule2, 806 intersected_rule); 807 /* 808 * No need to memset here the intersected rule here as 809 * we're not using the stack anymore 810 */ 811 if (r) 812 continue; 813 rule_idx++; 814 } 815 } 816 817 if (rule_idx != num_rules) { 818 kfree(rd); 819 return NULL; 820 } 821 822 rd->n_reg_rules = num_rules; 823 rd->alpha2[0] = '9'; 824 rd->alpha2[1] = '8'; 825 826 return rd; 827 } 828 829 /* 830 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 831 * want to just have the channel structure use these 832 */ 833 static u32 map_regdom_flags(u32 rd_flags) 834 { 835 u32 channel_flags = 0; 836 if (rd_flags & NL80211_RRF_PASSIVE_SCAN) 837 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; 838 if (rd_flags & NL80211_RRF_NO_IBSS) 839 channel_flags |= IEEE80211_CHAN_NO_IBSS; 840 if (rd_flags & NL80211_RRF_DFS) 841 channel_flags |= IEEE80211_CHAN_RADAR; 842 return channel_flags; 843 } 844 845 static int freq_reg_info_regd(struct wiphy *wiphy, 846 u32 center_freq, 847 u32 desired_bw_khz, 848 const struct ieee80211_reg_rule **reg_rule, 849 const struct ieee80211_regdomain *custom_regd) 850 { 851 int i; 852 bool band_rule_found = false; 853 const struct ieee80211_regdomain *regd; 854 bool bw_fits = false; 855 856 if (!desired_bw_khz) 857 desired_bw_khz = MHZ_TO_KHZ(20); 858 859 regd = custom_regd ? custom_regd : cfg80211_regdomain; 860 861 /* 862 * Follow the driver's regulatory domain, if present, unless a country 863 * IE has been processed or a user wants to help complaince further 864 */ 865 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 866 last_request->initiator != NL80211_REGDOM_SET_BY_USER && 867 wiphy->regd) 868 regd = wiphy->regd; 869 870 if (!regd) 871 return -EINVAL; 872 873 for (i = 0; i < regd->n_reg_rules; i++) { 874 const struct ieee80211_reg_rule *rr; 875 const struct ieee80211_freq_range *fr = NULL; 876 const struct ieee80211_power_rule *pr = NULL; 877 878 rr = ®d->reg_rules[i]; 879 fr = &rr->freq_range; 880 pr = &rr->power_rule; 881 882 /* 883 * We only need to know if one frequency rule was 884 * was in center_freq's band, that's enough, so lets 885 * not overwrite it once found 886 */ 887 if (!band_rule_found) 888 band_rule_found = freq_in_rule_band(fr, center_freq); 889 890 bw_fits = reg_does_bw_fit(fr, 891 center_freq, 892 desired_bw_khz); 893 894 if (band_rule_found && bw_fits) { 895 *reg_rule = rr; 896 return 0; 897 } 898 } 899 900 if (!band_rule_found) 901 return -ERANGE; 902 903 return -EINVAL; 904 } 905 EXPORT_SYMBOL(freq_reg_info); 906 907 int freq_reg_info(struct wiphy *wiphy, 908 u32 center_freq, 909 u32 desired_bw_khz, 910 const struct ieee80211_reg_rule **reg_rule) 911 { 912 assert_cfg80211_lock(); 913 return freq_reg_info_regd(wiphy, 914 center_freq, 915 desired_bw_khz, 916 reg_rule, 917 NULL); 918 } 919 920 /* 921 * Note that right now we assume the desired channel bandwidth 922 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 923 * per channel, the primary and the extension channel). To support 924 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a 925 * new ieee80211_channel.target_bw and re run the regulatory check 926 * on the wiphy with the target_bw specified. Then we can simply use 927 * that below for the desired_bw_khz below. 928 */ 929 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band, 930 unsigned int chan_idx) 931 { 932 int r; 933 u32 flags, bw_flags = 0; 934 u32 desired_bw_khz = MHZ_TO_KHZ(20); 935 const struct ieee80211_reg_rule *reg_rule = NULL; 936 const struct ieee80211_power_rule *power_rule = NULL; 937 const struct ieee80211_freq_range *freq_range = NULL; 938 struct ieee80211_supported_band *sband; 939 struct ieee80211_channel *chan; 940 struct wiphy *request_wiphy = NULL; 941 942 assert_cfg80211_lock(); 943 944 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 945 946 sband = wiphy->bands[band]; 947 BUG_ON(chan_idx >= sband->n_channels); 948 chan = &sband->channels[chan_idx]; 949 950 flags = chan->orig_flags; 951 952 r = freq_reg_info(wiphy, 953 MHZ_TO_KHZ(chan->center_freq), 954 desired_bw_khz, 955 ®_rule); 956 957 if (r) { 958 /* 959 * This means no regulatory rule was found in the country IE 960 * with a frequency range on the center_freq's band, since 961 * IEEE-802.11 allows for a country IE to have a subset of the 962 * regulatory information provided in a country we ignore 963 * disabling the channel unless at least one reg rule was 964 * found on the center_freq's band. For details see this 965 * clarification: 966 * 967 * http://tinyurl.com/11d-clarification 968 */ 969 if (r == -ERANGE && 970 last_request->initiator == 971 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 972 #ifdef CONFIG_CFG80211_REG_DEBUG 973 printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz " 974 "intact on %s - no rule found in band on " 975 "Country IE\n", 976 chan->center_freq, wiphy_name(wiphy)); 977 #endif 978 } else { 979 /* 980 * In this case we know the country IE has at least one reg rule 981 * for the band so we respect its band definitions 982 */ 983 #ifdef CONFIG_CFG80211_REG_DEBUG 984 if (last_request->initiator == 985 NL80211_REGDOM_SET_BY_COUNTRY_IE) 986 printk(KERN_DEBUG "cfg80211: Disabling " 987 "channel %d MHz on %s due to " 988 "Country IE\n", 989 chan->center_freq, wiphy_name(wiphy)); 990 #endif 991 flags |= IEEE80211_CHAN_DISABLED; 992 chan->flags = flags; 993 } 994 return; 995 } 996 997 power_rule = ®_rule->power_rule; 998 freq_range = ®_rule->freq_range; 999 1000 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 1001 bw_flags = IEEE80211_CHAN_NO_HT40; 1002 1003 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1004 request_wiphy && request_wiphy == wiphy && 1005 request_wiphy->strict_regulatory) { 1006 /* 1007 * This gaurantees the driver's requested regulatory domain 1008 * will always be used as a base for further regulatory 1009 * settings 1010 */ 1011 chan->flags = chan->orig_flags = 1012 map_regdom_flags(reg_rule->flags) | bw_flags; 1013 chan->max_antenna_gain = chan->orig_mag = 1014 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1015 chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz); 1016 chan->max_power = chan->orig_mpwr = 1017 (int) MBM_TO_DBM(power_rule->max_eirp); 1018 return; 1019 } 1020 1021 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1022 chan->max_antenna_gain = min(chan->orig_mag, 1023 (int) MBI_TO_DBI(power_rule->max_antenna_gain)); 1024 chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz); 1025 if (chan->orig_mpwr) 1026 chan->max_power = min(chan->orig_mpwr, 1027 (int) MBM_TO_DBM(power_rule->max_eirp)); 1028 else 1029 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1030 } 1031 1032 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band) 1033 { 1034 unsigned int i; 1035 struct ieee80211_supported_band *sband; 1036 1037 BUG_ON(!wiphy->bands[band]); 1038 sband = wiphy->bands[band]; 1039 1040 for (i = 0; i < sband->n_channels; i++) 1041 handle_channel(wiphy, band, i); 1042 } 1043 1044 static bool ignore_reg_update(struct wiphy *wiphy, 1045 enum nl80211_reg_initiator initiator) 1046 { 1047 if (!last_request) 1048 return true; 1049 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1050 wiphy->custom_regulatory) 1051 return true; 1052 /* 1053 * wiphy->regd will be set once the device has its own 1054 * desired regulatory domain set 1055 */ 1056 if (wiphy->strict_regulatory && !wiphy->regd && 1057 !is_world_regdom(last_request->alpha2)) 1058 return true; 1059 return false; 1060 } 1061 1062 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1063 { 1064 struct cfg80211_registered_device *drv; 1065 1066 list_for_each_entry(drv, &cfg80211_drv_list, list) 1067 wiphy_update_regulatory(&drv->wiphy, initiator); 1068 } 1069 1070 static void handle_reg_beacon(struct wiphy *wiphy, 1071 unsigned int chan_idx, 1072 struct reg_beacon *reg_beacon) 1073 { 1074 struct ieee80211_supported_band *sband; 1075 struct ieee80211_channel *chan; 1076 bool channel_changed = false; 1077 struct ieee80211_channel chan_before; 1078 1079 assert_cfg80211_lock(); 1080 1081 sband = wiphy->bands[reg_beacon->chan.band]; 1082 chan = &sband->channels[chan_idx]; 1083 1084 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1085 return; 1086 1087 if (chan->beacon_found) 1088 return; 1089 1090 chan->beacon_found = true; 1091 1092 if (wiphy->disable_beacon_hints) 1093 return; 1094 1095 chan_before.center_freq = chan->center_freq; 1096 chan_before.flags = chan->flags; 1097 1098 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) { 1099 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN; 1100 channel_changed = true; 1101 } 1102 1103 if (chan->flags & IEEE80211_CHAN_NO_IBSS) { 1104 chan->flags &= ~IEEE80211_CHAN_NO_IBSS; 1105 channel_changed = true; 1106 } 1107 1108 if (channel_changed) 1109 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1110 } 1111 1112 /* 1113 * Called when a scan on a wiphy finds a beacon on 1114 * new channel 1115 */ 1116 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1117 struct reg_beacon *reg_beacon) 1118 { 1119 unsigned int i; 1120 struct ieee80211_supported_band *sband; 1121 1122 assert_cfg80211_lock(); 1123 1124 if (!wiphy->bands[reg_beacon->chan.band]) 1125 return; 1126 1127 sband = wiphy->bands[reg_beacon->chan.band]; 1128 1129 for (i = 0; i < sband->n_channels; i++) 1130 handle_reg_beacon(wiphy, i, reg_beacon); 1131 } 1132 1133 /* 1134 * Called upon reg changes or a new wiphy is added 1135 */ 1136 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1137 { 1138 unsigned int i; 1139 struct ieee80211_supported_band *sband; 1140 struct reg_beacon *reg_beacon; 1141 1142 assert_cfg80211_lock(); 1143 1144 if (list_empty(®_beacon_list)) 1145 return; 1146 1147 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1148 if (!wiphy->bands[reg_beacon->chan.band]) 1149 continue; 1150 sband = wiphy->bands[reg_beacon->chan.band]; 1151 for (i = 0; i < sband->n_channels; i++) 1152 handle_reg_beacon(wiphy, i, reg_beacon); 1153 } 1154 } 1155 1156 static bool reg_is_world_roaming(struct wiphy *wiphy) 1157 { 1158 if (is_world_regdom(cfg80211_regdomain->alpha2) || 1159 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2))) 1160 return true; 1161 if (last_request && 1162 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1163 wiphy->custom_regulatory) 1164 return true; 1165 return false; 1166 } 1167 1168 /* Reap the advantages of previously found beacons */ 1169 static void reg_process_beacons(struct wiphy *wiphy) 1170 { 1171 /* 1172 * Means we are just firing up cfg80211, so no beacons would 1173 * have been processed yet. 1174 */ 1175 if (!last_request) 1176 return; 1177 if (!reg_is_world_roaming(wiphy)) 1178 return; 1179 wiphy_update_beacon_reg(wiphy); 1180 } 1181 1182 static bool is_ht40_not_allowed(struct ieee80211_channel *chan) 1183 { 1184 if (!chan) 1185 return true; 1186 if (chan->flags & IEEE80211_CHAN_DISABLED) 1187 return true; 1188 /* This would happen when regulatory rules disallow HT40 completely */ 1189 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40))) 1190 return true; 1191 return false; 1192 } 1193 1194 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1195 enum ieee80211_band band, 1196 unsigned int chan_idx) 1197 { 1198 struct ieee80211_supported_band *sband; 1199 struct ieee80211_channel *channel; 1200 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1201 unsigned int i; 1202 1203 assert_cfg80211_lock(); 1204 1205 sband = wiphy->bands[band]; 1206 BUG_ON(chan_idx >= sband->n_channels); 1207 channel = &sband->channels[chan_idx]; 1208 1209 if (is_ht40_not_allowed(channel)) { 1210 channel->flags |= IEEE80211_CHAN_NO_HT40; 1211 return; 1212 } 1213 1214 /* 1215 * We need to ensure the extension channels exist to 1216 * be able to use HT40- or HT40+, this finds them (or not) 1217 */ 1218 for (i = 0; i < sband->n_channels; i++) { 1219 struct ieee80211_channel *c = &sband->channels[i]; 1220 if (c->center_freq == (channel->center_freq - 20)) 1221 channel_before = c; 1222 if (c->center_freq == (channel->center_freq + 20)) 1223 channel_after = c; 1224 } 1225 1226 /* 1227 * Please note that this assumes target bandwidth is 20 MHz, 1228 * if that ever changes we also need to change the below logic 1229 * to include that as well. 1230 */ 1231 if (is_ht40_not_allowed(channel_before)) 1232 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1233 else 1234 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1235 1236 if (is_ht40_not_allowed(channel_after)) 1237 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1238 else 1239 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1240 } 1241 1242 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1243 enum ieee80211_band band) 1244 { 1245 unsigned int i; 1246 struct ieee80211_supported_band *sband; 1247 1248 BUG_ON(!wiphy->bands[band]); 1249 sband = wiphy->bands[band]; 1250 1251 for (i = 0; i < sband->n_channels; i++) 1252 reg_process_ht_flags_channel(wiphy, band, i); 1253 } 1254 1255 static void reg_process_ht_flags(struct wiphy *wiphy) 1256 { 1257 enum ieee80211_band band; 1258 1259 if (!wiphy) 1260 return; 1261 1262 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1263 if (wiphy->bands[band]) 1264 reg_process_ht_flags_band(wiphy, band); 1265 } 1266 1267 } 1268 1269 void wiphy_update_regulatory(struct wiphy *wiphy, 1270 enum nl80211_reg_initiator initiator) 1271 { 1272 enum ieee80211_band band; 1273 1274 if (ignore_reg_update(wiphy, initiator)) 1275 goto out; 1276 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1277 if (wiphy->bands[band]) 1278 handle_band(wiphy, band); 1279 } 1280 out: 1281 reg_process_beacons(wiphy); 1282 reg_process_ht_flags(wiphy); 1283 if (wiphy->reg_notifier) 1284 wiphy->reg_notifier(wiphy, last_request); 1285 } 1286 1287 static void handle_channel_custom(struct wiphy *wiphy, 1288 enum ieee80211_band band, 1289 unsigned int chan_idx, 1290 const struct ieee80211_regdomain *regd) 1291 { 1292 int r; 1293 u32 desired_bw_khz = MHZ_TO_KHZ(20); 1294 u32 bw_flags = 0; 1295 const struct ieee80211_reg_rule *reg_rule = NULL; 1296 const struct ieee80211_power_rule *power_rule = NULL; 1297 const struct ieee80211_freq_range *freq_range = NULL; 1298 struct ieee80211_supported_band *sband; 1299 struct ieee80211_channel *chan; 1300 1301 assert_cfg80211_lock(); 1302 1303 sband = wiphy->bands[band]; 1304 BUG_ON(chan_idx >= sband->n_channels); 1305 chan = &sband->channels[chan_idx]; 1306 1307 r = freq_reg_info_regd(wiphy, 1308 MHZ_TO_KHZ(chan->center_freq), 1309 desired_bw_khz, 1310 ®_rule, 1311 regd); 1312 1313 if (r) { 1314 chan->flags = IEEE80211_CHAN_DISABLED; 1315 return; 1316 } 1317 1318 power_rule = ®_rule->power_rule; 1319 freq_range = ®_rule->freq_range; 1320 1321 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 1322 bw_flags = IEEE80211_CHAN_NO_HT40; 1323 1324 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1325 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1326 chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz); 1327 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1328 } 1329 1330 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band, 1331 const struct ieee80211_regdomain *regd) 1332 { 1333 unsigned int i; 1334 struct ieee80211_supported_band *sband; 1335 1336 BUG_ON(!wiphy->bands[band]); 1337 sband = wiphy->bands[band]; 1338 1339 for (i = 0; i < sband->n_channels; i++) 1340 handle_channel_custom(wiphy, band, i, regd); 1341 } 1342 1343 /* Used by drivers prior to wiphy registration */ 1344 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1345 const struct ieee80211_regdomain *regd) 1346 { 1347 enum ieee80211_band band; 1348 unsigned int bands_set = 0; 1349 1350 mutex_lock(&cfg80211_mutex); 1351 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1352 if (!wiphy->bands[band]) 1353 continue; 1354 handle_band_custom(wiphy, band, regd); 1355 bands_set++; 1356 } 1357 mutex_unlock(&cfg80211_mutex); 1358 1359 /* 1360 * no point in calling this if it won't have any effect 1361 * on your device's supportd bands. 1362 */ 1363 WARN_ON(!bands_set); 1364 } 1365 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1366 1367 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd, 1368 const struct ieee80211_regdomain *src_regd) 1369 { 1370 struct ieee80211_regdomain *regd; 1371 int size_of_regd = 0; 1372 unsigned int i; 1373 1374 size_of_regd = sizeof(struct ieee80211_regdomain) + 1375 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule)); 1376 1377 regd = kzalloc(size_of_regd, GFP_KERNEL); 1378 if (!regd) 1379 return -ENOMEM; 1380 1381 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 1382 1383 for (i = 0; i < src_regd->n_reg_rules; i++) 1384 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 1385 sizeof(struct ieee80211_reg_rule)); 1386 1387 *dst_regd = regd; 1388 return 0; 1389 } 1390 1391 /* 1392 * Return value which can be used by ignore_request() to indicate 1393 * it has been determined we should intersect two regulatory domains 1394 */ 1395 #define REG_INTERSECT 1 1396 1397 /* This has the logic which determines when a new request 1398 * should be ignored. */ 1399 static int ignore_request(struct wiphy *wiphy, 1400 struct regulatory_request *pending_request) 1401 { 1402 struct wiphy *last_wiphy = NULL; 1403 1404 assert_cfg80211_lock(); 1405 1406 /* All initial requests are respected */ 1407 if (!last_request) 1408 return 0; 1409 1410 switch (pending_request->initiator) { 1411 case NL80211_REGDOM_SET_BY_CORE: 1412 return -EINVAL; 1413 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1414 1415 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 1416 1417 if (unlikely(!is_an_alpha2(pending_request->alpha2))) 1418 return -EINVAL; 1419 if (last_request->initiator == 1420 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1421 if (last_wiphy != wiphy) { 1422 /* 1423 * Two cards with two APs claiming different 1424 * different Country IE alpha2s. We could 1425 * intersect them, but that seems unlikely 1426 * to be correct. Reject second one for now. 1427 */ 1428 if (regdom_changes(pending_request->alpha2)) 1429 return -EOPNOTSUPP; 1430 return -EALREADY; 1431 } 1432 /* 1433 * Two consecutive Country IE hints on the same wiphy. 1434 * This should be picked up early by the driver/stack 1435 */ 1436 if (WARN_ON(regdom_changes(pending_request->alpha2))) 1437 return 0; 1438 return -EALREADY; 1439 } 1440 return REG_INTERSECT; 1441 case NL80211_REGDOM_SET_BY_DRIVER: 1442 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) { 1443 if (is_old_static_regdom(cfg80211_regdomain)) 1444 return 0; 1445 if (regdom_changes(pending_request->alpha2)) 1446 return 0; 1447 return -EALREADY; 1448 } 1449 1450 /* 1451 * This would happen if you unplug and plug your card 1452 * back in or if you add a new device for which the previously 1453 * loaded card also agrees on the regulatory domain. 1454 */ 1455 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1456 !regdom_changes(pending_request->alpha2)) 1457 return -EALREADY; 1458 1459 return REG_INTERSECT; 1460 case NL80211_REGDOM_SET_BY_USER: 1461 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1462 return REG_INTERSECT; 1463 /* 1464 * If the user knows better the user should set the regdom 1465 * to their country before the IE is picked up 1466 */ 1467 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER && 1468 last_request->intersect) 1469 return -EOPNOTSUPP; 1470 /* 1471 * Process user requests only after previous user/driver/core 1472 * requests have been processed 1473 */ 1474 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE || 1475 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1476 last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1477 if (regdom_changes(last_request->alpha2)) 1478 return -EAGAIN; 1479 } 1480 1481 if (!is_old_static_regdom(cfg80211_regdomain) && 1482 !regdom_changes(pending_request->alpha2)) 1483 return -EALREADY; 1484 1485 return 0; 1486 } 1487 1488 return -EINVAL; 1489 } 1490 1491 /** 1492 * __regulatory_hint - hint to the wireless core a regulatory domain 1493 * @wiphy: if the hint comes from country information from an AP, this 1494 * is required to be set to the wiphy that received the information 1495 * @pending_request: the regulatory request currently being processed 1496 * 1497 * The Wireless subsystem can use this function to hint to the wireless core 1498 * what it believes should be the current regulatory domain. 1499 * 1500 * Returns zero if all went fine, %-EALREADY if a regulatory domain had 1501 * already been set or other standard error codes. 1502 * 1503 * Caller must hold &cfg80211_mutex 1504 */ 1505 static int __regulatory_hint(struct wiphy *wiphy, 1506 struct regulatory_request *pending_request) 1507 { 1508 bool intersect = false; 1509 int r = 0; 1510 1511 assert_cfg80211_lock(); 1512 1513 r = ignore_request(wiphy, pending_request); 1514 1515 if (r == REG_INTERSECT) { 1516 if (pending_request->initiator == 1517 NL80211_REGDOM_SET_BY_DRIVER) { 1518 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1519 if (r) { 1520 kfree(pending_request); 1521 return r; 1522 } 1523 } 1524 intersect = true; 1525 } else if (r) { 1526 /* 1527 * If the regulatory domain being requested by the 1528 * driver has already been set just copy it to the 1529 * wiphy 1530 */ 1531 if (r == -EALREADY && 1532 pending_request->initiator == 1533 NL80211_REGDOM_SET_BY_DRIVER) { 1534 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1535 if (r) { 1536 kfree(pending_request); 1537 return r; 1538 } 1539 r = -EALREADY; 1540 goto new_request; 1541 } 1542 kfree(pending_request); 1543 return r; 1544 } 1545 1546 new_request: 1547 kfree(last_request); 1548 1549 last_request = pending_request; 1550 last_request->intersect = intersect; 1551 1552 pending_request = NULL; 1553 1554 /* When r == REG_INTERSECT we do need to call CRDA */ 1555 if (r < 0) { 1556 /* 1557 * Since CRDA will not be called in this case as we already 1558 * have applied the requested regulatory domain before we just 1559 * inform userspace we have processed the request 1560 */ 1561 if (r == -EALREADY) 1562 nl80211_send_reg_change_event(last_request); 1563 return r; 1564 } 1565 1566 return call_crda(last_request->alpha2); 1567 } 1568 1569 /* This processes *all* regulatory hints */ 1570 static void reg_process_hint(struct regulatory_request *reg_request) 1571 { 1572 int r = 0; 1573 struct wiphy *wiphy = NULL; 1574 1575 BUG_ON(!reg_request->alpha2); 1576 1577 mutex_lock(&cfg80211_mutex); 1578 1579 if (wiphy_idx_valid(reg_request->wiphy_idx)) 1580 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1581 1582 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1583 !wiphy) { 1584 kfree(reg_request); 1585 goto out; 1586 } 1587 1588 r = __regulatory_hint(wiphy, reg_request); 1589 /* This is required so that the orig_* parameters are saved */ 1590 if (r == -EALREADY && wiphy && wiphy->strict_regulatory) 1591 wiphy_update_regulatory(wiphy, reg_request->initiator); 1592 out: 1593 mutex_unlock(&cfg80211_mutex); 1594 } 1595 1596 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */ 1597 static void reg_process_pending_hints(void) 1598 { 1599 struct regulatory_request *reg_request; 1600 1601 spin_lock(®_requests_lock); 1602 while (!list_empty(®_requests_list)) { 1603 reg_request = list_first_entry(®_requests_list, 1604 struct regulatory_request, 1605 list); 1606 list_del_init(®_request->list); 1607 1608 spin_unlock(®_requests_lock); 1609 reg_process_hint(reg_request); 1610 spin_lock(®_requests_lock); 1611 } 1612 spin_unlock(®_requests_lock); 1613 } 1614 1615 /* Processes beacon hints -- this has nothing to do with country IEs */ 1616 static void reg_process_pending_beacon_hints(void) 1617 { 1618 struct cfg80211_registered_device *drv; 1619 struct reg_beacon *pending_beacon, *tmp; 1620 1621 mutex_lock(&cfg80211_mutex); 1622 1623 /* This goes through the _pending_ beacon list */ 1624 spin_lock_bh(®_pending_beacons_lock); 1625 1626 if (list_empty(®_pending_beacons)) { 1627 spin_unlock_bh(®_pending_beacons_lock); 1628 goto out; 1629 } 1630 1631 list_for_each_entry_safe(pending_beacon, tmp, 1632 ®_pending_beacons, list) { 1633 1634 list_del_init(&pending_beacon->list); 1635 1636 /* Applies the beacon hint to current wiphys */ 1637 list_for_each_entry(drv, &cfg80211_drv_list, list) 1638 wiphy_update_new_beacon(&drv->wiphy, pending_beacon); 1639 1640 /* Remembers the beacon hint for new wiphys or reg changes */ 1641 list_add_tail(&pending_beacon->list, ®_beacon_list); 1642 } 1643 1644 spin_unlock_bh(®_pending_beacons_lock); 1645 out: 1646 mutex_unlock(&cfg80211_mutex); 1647 } 1648 1649 static void reg_todo(struct work_struct *work) 1650 { 1651 reg_process_pending_hints(); 1652 reg_process_pending_beacon_hints(); 1653 } 1654 1655 static DECLARE_WORK(reg_work, reg_todo); 1656 1657 static void queue_regulatory_request(struct regulatory_request *request) 1658 { 1659 spin_lock(®_requests_lock); 1660 list_add_tail(&request->list, ®_requests_list); 1661 spin_unlock(®_requests_lock); 1662 1663 schedule_work(®_work); 1664 } 1665 1666 /* Core regulatory hint -- happens once during cfg80211_init() */ 1667 static int regulatory_hint_core(const char *alpha2) 1668 { 1669 struct regulatory_request *request; 1670 1671 BUG_ON(last_request); 1672 1673 request = kzalloc(sizeof(struct regulatory_request), 1674 GFP_KERNEL); 1675 if (!request) 1676 return -ENOMEM; 1677 1678 request->alpha2[0] = alpha2[0]; 1679 request->alpha2[1] = alpha2[1]; 1680 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1681 1682 queue_regulatory_request(request); 1683 1684 /* 1685 * This ensures last_request is populated once modules 1686 * come swinging in and calling regulatory hints and 1687 * wiphy_apply_custom_regulatory(). 1688 */ 1689 flush_scheduled_work(); 1690 1691 return 0; 1692 } 1693 1694 /* User hints */ 1695 int regulatory_hint_user(const char *alpha2) 1696 { 1697 struct regulatory_request *request; 1698 1699 BUG_ON(!alpha2); 1700 1701 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1702 if (!request) 1703 return -ENOMEM; 1704 1705 request->wiphy_idx = WIPHY_IDX_STALE; 1706 request->alpha2[0] = alpha2[0]; 1707 request->alpha2[1] = alpha2[1]; 1708 request->initiator = NL80211_REGDOM_SET_BY_USER, 1709 1710 queue_regulatory_request(request); 1711 1712 return 0; 1713 } 1714 1715 /* Driver hints */ 1716 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 1717 { 1718 struct regulatory_request *request; 1719 1720 BUG_ON(!alpha2); 1721 BUG_ON(!wiphy); 1722 1723 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1724 if (!request) 1725 return -ENOMEM; 1726 1727 request->wiphy_idx = get_wiphy_idx(wiphy); 1728 1729 /* Must have registered wiphy first */ 1730 BUG_ON(!wiphy_idx_valid(request->wiphy_idx)); 1731 1732 request->alpha2[0] = alpha2[0]; 1733 request->alpha2[1] = alpha2[1]; 1734 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 1735 1736 queue_regulatory_request(request); 1737 1738 return 0; 1739 } 1740 EXPORT_SYMBOL(regulatory_hint); 1741 1742 static bool reg_same_country_ie_hint(struct wiphy *wiphy, 1743 u32 country_ie_checksum) 1744 { 1745 struct wiphy *request_wiphy; 1746 1747 assert_cfg80211_lock(); 1748 1749 if (unlikely(last_request->initiator != 1750 NL80211_REGDOM_SET_BY_COUNTRY_IE)) 1751 return false; 1752 1753 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 1754 1755 if (!request_wiphy) 1756 return false; 1757 1758 if (likely(request_wiphy != wiphy)) 1759 return !country_ie_integrity_changes(country_ie_checksum); 1760 /* 1761 * We should not have let these through at this point, they 1762 * should have been picked up earlier by the first alpha2 check 1763 * on the device 1764 */ 1765 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum))) 1766 return true; 1767 return false; 1768 } 1769 1770 void regulatory_hint_11d(struct wiphy *wiphy, 1771 u8 *country_ie, 1772 u8 country_ie_len) 1773 { 1774 struct ieee80211_regdomain *rd = NULL; 1775 char alpha2[2]; 1776 u32 checksum = 0; 1777 enum environment_cap env = ENVIRON_ANY; 1778 struct regulatory_request *request; 1779 1780 mutex_lock(&cfg80211_mutex); 1781 1782 if (unlikely(!last_request)) { 1783 mutex_unlock(&cfg80211_mutex); 1784 return; 1785 } 1786 1787 /* IE len must be evenly divisible by 2 */ 1788 if (country_ie_len & 0x01) 1789 goto out; 1790 1791 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 1792 goto out; 1793 1794 /* 1795 * Pending country IE processing, this can happen after we 1796 * call CRDA and wait for a response if a beacon was received before 1797 * we were able to process the last regulatory_hint_11d() call 1798 */ 1799 if (country_ie_regdomain) 1800 goto out; 1801 1802 alpha2[0] = country_ie[0]; 1803 alpha2[1] = country_ie[1]; 1804 1805 if (country_ie[2] == 'I') 1806 env = ENVIRON_INDOOR; 1807 else if (country_ie[2] == 'O') 1808 env = ENVIRON_OUTDOOR; 1809 1810 /* 1811 * We will run this for *every* beacon processed for the BSSID, so 1812 * we optimize an early check to exit out early if we don't have to 1813 * do anything 1814 */ 1815 if (likely(last_request->initiator == 1816 NL80211_REGDOM_SET_BY_COUNTRY_IE && 1817 wiphy_idx_valid(last_request->wiphy_idx))) { 1818 struct cfg80211_registered_device *drv_last_ie; 1819 1820 drv_last_ie = 1821 cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx); 1822 1823 /* 1824 * Lets keep this simple -- we trust the first AP 1825 * after we intersect with CRDA 1826 */ 1827 if (likely(&drv_last_ie->wiphy == wiphy)) { 1828 /* 1829 * Ignore IEs coming in on this wiphy with 1830 * the same alpha2 and environment cap 1831 */ 1832 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2, 1833 alpha2) && 1834 env == drv_last_ie->env)) { 1835 goto out; 1836 } 1837 /* 1838 * the wiphy moved on to another BSSID or the AP 1839 * was reconfigured. XXX: We need to deal with the 1840 * case where the user suspends and goes to goes 1841 * to another country, and then gets IEs from an 1842 * AP with different settings 1843 */ 1844 goto out; 1845 } else { 1846 /* 1847 * Ignore IEs coming in on two separate wiphys with 1848 * the same alpha2 and environment cap 1849 */ 1850 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2, 1851 alpha2) && 1852 env == drv_last_ie->env)) { 1853 goto out; 1854 } 1855 /* We could potentially intersect though */ 1856 goto out; 1857 } 1858 } 1859 1860 rd = country_ie_2_rd(country_ie, country_ie_len, &checksum); 1861 if (!rd) 1862 goto out; 1863 1864 /* 1865 * This will not happen right now but we leave it here for the 1866 * the future when we want to add suspend/resume support and having 1867 * the user move to another country after doing so, or having the user 1868 * move to another AP. Right now we just trust the first AP. 1869 * 1870 * If we hit this before we add this support we want to be informed of 1871 * it as it would indicate a mistake in the current design 1872 */ 1873 if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum))) 1874 goto free_rd_out; 1875 1876 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1877 if (!request) 1878 goto free_rd_out; 1879 1880 /* 1881 * We keep this around for when CRDA comes back with a response so 1882 * we can intersect with that 1883 */ 1884 country_ie_regdomain = rd; 1885 1886 request->wiphy_idx = get_wiphy_idx(wiphy); 1887 request->alpha2[0] = rd->alpha2[0]; 1888 request->alpha2[1] = rd->alpha2[1]; 1889 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 1890 request->country_ie_checksum = checksum; 1891 request->country_ie_env = env; 1892 1893 mutex_unlock(&cfg80211_mutex); 1894 1895 queue_regulatory_request(request); 1896 1897 return; 1898 1899 free_rd_out: 1900 kfree(rd); 1901 out: 1902 mutex_unlock(&cfg80211_mutex); 1903 } 1904 EXPORT_SYMBOL(regulatory_hint_11d); 1905 1906 static bool freq_is_chan_12_13_14(u16 freq) 1907 { 1908 if (freq == ieee80211_channel_to_frequency(12) || 1909 freq == ieee80211_channel_to_frequency(13) || 1910 freq == ieee80211_channel_to_frequency(14)) 1911 return true; 1912 return false; 1913 } 1914 1915 int regulatory_hint_found_beacon(struct wiphy *wiphy, 1916 struct ieee80211_channel *beacon_chan, 1917 gfp_t gfp) 1918 { 1919 struct reg_beacon *reg_beacon; 1920 1921 if (likely((beacon_chan->beacon_found || 1922 (beacon_chan->flags & IEEE80211_CHAN_RADAR) || 1923 (beacon_chan->band == IEEE80211_BAND_2GHZ && 1924 !freq_is_chan_12_13_14(beacon_chan->center_freq))))) 1925 return 0; 1926 1927 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 1928 if (!reg_beacon) 1929 return -ENOMEM; 1930 1931 #ifdef CONFIG_CFG80211_REG_DEBUG 1932 printk(KERN_DEBUG "cfg80211: Found new beacon on " 1933 "frequency: %d MHz (Ch %d) on %s\n", 1934 beacon_chan->center_freq, 1935 ieee80211_frequency_to_channel(beacon_chan->center_freq), 1936 wiphy_name(wiphy)); 1937 #endif 1938 memcpy(®_beacon->chan, beacon_chan, 1939 sizeof(struct ieee80211_channel)); 1940 1941 1942 /* 1943 * Since we can be called from BH or and non-BH context 1944 * we must use spin_lock_bh() 1945 */ 1946 spin_lock_bh(®_pending_beacons_lock); 1947 list_add_tail(®_beacon->list, ®_pending_beacons); 1948 spin_unlock_bh(®_pending_beacons_lock); 1949 1950 schedule_work(®_work); 1951 1952 return 0; 1953 } 1954 1955 static void print_rd_rules(const struct ieee80211_regdomain *rd) 1956 { 1957 unsigned int i; 1958 const struct ieee80211_reg_rule *reg_rule = NULL; 1959 const struct ieee80211_freq_range *freq_range = NULL; 1960 const struct ieee80211_power_rule *power_rule = NULL; 1961 1962 printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), " 1963 "(max_antenna_gain, max_eirp)\n"); 1964 1965 for (i = 0; i < rd->n_reg_rules; i++) { 1966 reg_rule = &rd->reg_rules[i]; 1967 freq_range = ®_rule->freq_range; 1968 power_rule = ®_rule->power_rule; 1969 1970 /* 1971 * There may not be documentation for max antenna gain 1972 * in certain regions 1973 */ 1974 if (power_rule->max_antenna_gain) 1975 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), " 1976 "(%d mBi, %d mBm)\n", 1977 freq_range->start_freq_khz, 1978 freq_range->end_freq_khz, 1979 freq_range->max_bandwidth_khz, 1980 power_rule->max_antenna_gain, 1981 power_rule->max_eirp); 1982 else 1983 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), " 1984 "(N/A, %d mBm)\n", 1985 freq_range->start_freq_khz, 1986 freq_range->end_freq_khz, 1987 freq_range->max_bandwidth_khz, 1988 power_rule->max_eirp); 1989 } 1990 } 1991 1992 static void print_regdomain(const struct ieee80211_regdomain *rd) 1993 { 1994 1995 if (is_intersected_alpha2(rd->alpha2)) { 1996 1997 if (last_request->initiator == 1998 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1999 struct cfg80211_registered_device *drv; 2000 drv = cfg80211_drv_by_wiphy_idx( 2001 last_request->wiphy_idx); 2002 if (drv) { 2003 printk(KERN_INFO "cfg80211: Current regulatory " 2004 "domain updated by AP to: %c%c\n", 2005 drv->country_ie_alpha2[0], 2006 drv->country_ie_alpha2[1]); 2007 } else 2008 printk(KERN_INFO "cfg80211: Current regulatory " 2009 "domain intersected: \n"); 2010 } else 2011 printk(KERN_INFO "cfg80211: Current regulatory " 2012 "domain intersected: \n"); 2013 } else if (is_world_regdom(rd->alpha2)) 2014 printk(KERN_INFO "cfg80211: World regulatory " 2015 "domain updated:\n"); 2016 else { 2017 if (is_unknown_alpha2(rd->alpha2)) 2018 printk(KERN_INFO "cfg80211: Regulatory domain " 2019 "changed to driver built-in settings " 2020 "(unknown country)\n"); 2021 else 2022 printk(KERN_INFO "cfg80211: Regulatory domain " 2023 "changed to country: %c%c\n", 2024 rd->alpha2[0], rd->alpha2[1]); 2025 } 2026 print_rd_rules(rd); 2027 } 2028 2029 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2030 { 2031 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n", 2032 rd->alpha2[0], rd->alpha2[1]); 2033 print_rd_rules(rd); 2034 } 2035 2036 #ifdef CONFIG_CFG80211_REG_DEBUG 2037 static void reg_country_ie_process_debug( 2038 const struct ieee80211_regdomain *rd, 2039 const struct ieee80211_regdomain *country_ie_regdomain, 2040 const struct ieee80211_regdomain *intersected_rd) 2041 { 2042 printk(KERN_DEBUG "cfg80211: Received country IE:\n"); 2043 print_regdomain_info(country_ie_regdomain); 2044 printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n"); 2045 print_regdomain_info(rd); 2046 if (intersected_rd) { 2047 printk(KERN_DEBUG "cfg80211: We intersect both of these " 2048 "and get:\n"); 2049 print_regdomain_info(intersected_rd); 2050 return; 2051 } 2052 printk(KERN_DEBUG "cfg80211: Intersection between both failed\n"); 2053 } 2054 #else 2055 static inline void reg_country_ie_process_debug( 2056 const struct ieee80211_regdomain *rd, 2057 const struct ieee80211_regdomain *country_ie_regdomain, 2058 const struct ieee80211_regdomain *intersected_rd) 2059 { 2060 } 2061 #endif 2062 2063 /* Takes ownership of rd only if it doesn't fail */ 2064 static int __set_regdom(const struct ieee80211_regdomain *rd) 2065 { 2066 const struct ieee80211_regdomain *intersected_rd = NULL; 2067 struct cfg80211_registered_device *drv = NULL; 2068 struct wiphy *request_wiphy; 2069 /* Some basic sanity checks first */ 2070 2071 if (is_world_regdom(rd->alpha2)) { 2072 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 2073 return -EINVAL; 2074 update_world_regdomain(rd); 2075 return 0; 2076 } 2077 2078 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2079 !is_unknown_alpha2(rd->alpha2)) 2080 return -EINVAL; 2081 2082 if (!last_request) 2083 return -EINVAL; 2084 2085 /* 2086 * Lets only bother proceeding on the same alpha2 if the current 2087 * rd is non static (it means CRDA was present and was used last) 2088 * and the pending request came in from a country IE 2089 */ 2090 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2091 /* 2092 * If someone else asked us to change the rd lets only bother 2093 * checking if the alpha2 changes if CRDA was already called 2094 */ 2095 if (!is_old_static_regdom(cfg80211_regdomain) && 2096 !regdom_changes(rd->alpha2)) 2097 return -EINVAL; 2098 } 2099 2100 /* 2101 * Now lets set the regulatory domain, update all driver channels 2102 * and finally inform them of what we have done, in case they want 2103 * to review or adjust their own settings based on their own 2104 * internal EEPROM data 2105 */ 2106 2107 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 2108 return -EINVAL; 2109 2110 if (!is_valid_rd(rd)) { 2111 printk(KERN_ERR "cfg80211: Invalid " 2112 "regulatory domain detected:\n"); 2113 print_regdomain_info(rd); 2114 return -EINVAL; 2115 } 2116 2117 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2118 2119 if (!last_request->intersect) { 2120 int r; 2121 2122 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) { 2123 reset_regdomains(); 2124 cfg80211_regdomain = rd; 2125 return 0; 2126 } 2127 2128 /* 2129 * For a driver hint, lets copy the regulatory domain the 2130 * driver wanted to the wiphy to deal with conflicts 2131 */ 2132 2133 /* 2134 * Userspace could have sent two replies with only 2135 * one kernel request. 2136 */ 2137 if (request_wiphy->regd) 2138 return -EALREADY; 2139 2140 r = reg_copy_regd(&request_wiphy->regd, rd); 2141 if (r) 2142 return r; 2143 2144 reset_regdomains(); 2145 cfg80211_regdomain = rd; 2146 return 0; 2147 } 2148 2149 /* Intersection requires a bit more work */ 2150 2151 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2152 2153 intersected_rd = regdom_intersect(rd, cfg80211_regdomain); 2154 if (!intersected_rd) 2155 return -EINVAL; 2156 2157 /* 2158 * We can trash what CRDA provided now. 2159 * However if a driver requested this specific regulatory 2160 * domain we keep it for its private use 2161 */ 2162 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) 2163 request_wiphy->regd = rd; 2164 else 2165 kfree(rd); 2166 2167 rd = NULL; 2168 2169 reset_regdomains(); 2170 cfg80211_regdomain = intersected_rd; 2171 2172 return 0; 2173 } 2174 2175 /* 2176 * Country IE requests are handled a bit differently, we intersect 2177 * the country IE rd with what CRDA believes that country should have 2178 */ 2179 2180 /* 2181 * Userspace could have sent two replies with only 2182 * one kernel request. By the second reply we would have 2183 * already processed and consumed the country_ie_regdomain. 2184 */ 2185 if (!country_ie_regdomain) 2186 return -EALREADY; 2187 BUG_ON(rd == country_ie_regdomain); 2188 2189 /* 2190 * Intersect what CRDA returned and our what we 2191 * had built from the Country IE received 2192 */ 2193 2194 intersected_rd = regdom_intersect(rd, country_ie_regdomain); 2195 2196 reg_country_ie_process_debug(rd, 2197 country_ie_regdomain, 2198 intersected_rd); 2199 2200 kfree(country_ie_regdomain); 2201 country_ie_regdomain = NULL; 2202 2203 if (!intersected_rd) 2204 return -EINVAL; 2205 2206 drv = wiphy_to_dev(request_wiphy); 2207 2208 drv->country_ie_alpha2[0] = rd->alpha2[0]; 2209 drv->country_ie_alpha2[1] = rd->alpha2[1]; 2210 drv->env = last_request->country_ie_env; 2211 2212 BUG_ON(intersected_rd == rd); 2213 2214 kfree(rd); 2215 rd = NULL; 2216 2217 reset_regdomains(); 2218 cfg80211_regdomain = intersected_rd; 2219 2220 return 0; 2221 } 2222 2223 2224 /* 2225 * Use this call to set the current regulatory domain. Conflicts with 2226 * multiple drivers can be ironed out later. Caller must've already 2227 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex 2228 */ 2229 int set_regdom(const struct ieee80211_regdomain *rd) 2230 { 2231 int r; 2232 2233 assert_cfg80211_lock(); 2234 2235 /* Note that this doesn't update the wiphys, this is done below */ 2236 r = __set_regdom(rd); 2237 if (r) { 2238 kfree(rd); 2239 return r; 2240 } 2241 2242 /* This would make this whole thing pointless */ 2243 if (!last_request->intersect) 2244 BUG_ON(rd != cfg80211_regdomain); 2245 2246 /* update all wiphys now with the new established regulatory domain */ 2247 update_all_wiphy_regulatory(last_request->initiator); 2248 2249 print_regdomain(cfg80211_regdomain); 2250 2251 nl80211_send_reg_change_event(last_request); 2252 2253 return r; 2254 } 2255 2256 /* Caller must hold cfg80211_mutex */ 2257 void reg_device_remove(struct wiphy *wiphy) 2258 { 2259 struct wiphy *request_wiphy = NULL; 2260 2261 assert_cfg80211_lock(); 2262 2263 kfree(wiphy->regd); 2264 2265 if (last_request) 2266 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2267 2268 if (!request_wiphy || request_wiphy != wiphy) 2269 return; 2270 2271 last_request->wiphy_idx = WIPHY_IDX_STALE; 2272 last_request->country_ie_env = ENVIRON_ANY; 2273 } 2274 2275 int regulatory_init(void) 2276 { 2277 int err = 0; 2278 2279 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2280 if (IS_ERR(reg_pdev)) 2281 return PTR_ERR(reg_pdev); 2282 2283 spin_lock_init(®_requests_lock); 2284 spin_lock_init(®_pending_beacons_lock); 2285 2286 #ifdef CONFIG_WIRELESS_OLD_REGULATORY 2287 cfg80211_regdomain = static_regdom(ieee80211_regdom); 2288 2289 printk(KERN_INFO "cfg80211: Using static regulatory domain info\n"); 2290 print_regdomain_info(cfg80211_regdomain); 2291 /* 2292 * The old code still requests for a new regdomain and if 2293 * you have CRDA you get it updated, otherwise you get 2294 * stuck with the static values. Since "EU" is not a valid 2295 * ISO / IEC 3166 alpha2 code we can't expect userpace to 2296 * give us a regulatory domain for it. We need last_request 2297 * iniitalized though so lets just send a request which we 2298 * know will be ignored... this crap will be removed once 2299 * OLD_REG dies. 2300 */ 2301 err = regulatory_hint_core(ieee80211_regdom); 2302 #else 2303 cfg80211_regdomain = cfg80211_world_regdom; 2304 2305 err = regulatory_hint_core(ieee80211_regdom); 2306 #endif 2307 if (err) { 2308 if (err == -ENOMEM) 2309 return err; 2310 /* 2311 * N.B. kobject_uevent_env() can fail mainly for when we're out 2312 * memory which is handled and propagated appropriately above 2313 * but it can also fail during a netlink_broadcast() or during 2314 * early boot for call_usermodehelper(). For now treat these 2315 * errors as non-fatal. 2316 */ 2317 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable " 2318 "to call CRDA during init"); 2319 #ifdef CONFIG_CFG80211_REG_DEBUG 2320 /* We want to find out exactly why when debugging */ 2321 WARN_ON(err); 2322 #endif 2323 } 2324 2325 return 0; 2326 } 2327 2328 void regulatory_exit(void) 2329 { 2330 struct regulatory_request *reg_request, *tmp; 2331 struct reg_beacon *reg_beacon, *btmp; 2332 2333 cancel_work_sync(®_work); 2334 2335 mutex_lock(&cfg80211_mutex); 2336 2337 reset_regdomains(); 2338 2339 kfree(country_ie_regdomain); 2340 country_ie_regdomain = NULL; 2341 2342 kfree(last_request); 2343 2344 platform_device_unregister(reg_pdev); 2345 2346 spin_lock_bh(®_pending_beacons_lock); 2347 if (!list_empty(®_pending_beacons)) { 2348 list_for_each_entry_safe(reg_beacon, btmp, 2349 ®_pending_beacons, list) { 2350 list_del(®_beacon->list); 2351 kfree(reg_beacon); 2352 } 2353 } 2354 spin_unlock_bh(®_pending_beacons_lock); 2355 2356 if (!list_empty(®_beacon_list)) { 2357 list_for_each_entry_safe(reg_beacon, btmp, 2358 ®_beacon_list, list) { 2359 list_del(®_beacon->list); 2360 kfree(reg_beacon); 2361 } 2362 } 2363 2364 spin_lock(®_requests_lock); 2365 if (!list_empty(®_requests_list)) { 2366 list_for_each_entry_safe(reg_request, tmp, 2367 ®_requests_list, list) { 2368 list_del(®_request->list); 2369 kfree(reg_request); 2370 } 2371 } 2372 spin_unlock(®_requests_lock); 2373 2374 mutex_unlock(&cfg80211_mutex); 2375 } 2376