xref: /linux/net/wireless/reg.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/nl80211.h>
40 #include <linux/platform_device.h>
41 #include <net/cfg80211.h>
42 #include "core.h"
43 #include "reg.h"
44 #include "regdb.h"
45 #include "nl80211.h"
46 
47 #ifdef CONFIG_CFG80211_REG_DEBUG
48 #define REG_DBG_PRINT(format, args...) \
49 	do { \
50 		printk(KERN_DEBUG format , ## args); \
51 	} while (0)
52 #else
53 #define REG_DBG_PRINT(args...)
54 #endif
55 
56 /* Receipt of information from last regulatory request */
57 static struct regulatory_request *last_request;
58 
59 /* To trigger userspace events */
60 static struct platform_device *reg_pdev;
61 
62 /*
63  * Central wireless core regulatory domains, we only need two,
64  * the current one and a world regulatory domain in case we have no
65  * information to give us an alpha2
66  */
67 const struct ieee80211_regdomain *cfg80211_regdomain;
68 
69 /*
70  * We use this as a place for the rd structure built from the
71  * last parsed country IE to rest until CRDA gets back to us with
72  * what it thinks should apply for the same country
73  */
74 static const struct ieee80211_regdomain *country_ie_regdomain;
75 
76 /*
77  * Protects static reg.c components:
78  *     - cfg80211_world_regdom
79  *     - cfg80211_regdom
80  *     - country_ie_regdomain
81  *     - last_request
82  */
83 DEFINE_MUTEX(reg_mutex);
84 #define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
85 
86 /* Used to queue up regulatory hints */
87 static LIST_HEAD(reg_requests_list);
88 static spinlock_t reg_requests_lock;
89 
90 /* Used to queue up beacon hints for review */
91 static LIST_HEAD(reg_pending_beacons);
92 static spinlock_t reg_pending_beacons_lock;
93 
94 /* Used to keep track of processed beacon hints */
95 static LIST_HEAD(reg_beacon_list);
96 
97 struct reg_beacon {
98 	struct list_head list;
99 	struct ieee80211_channel chan;
100 };
101 
102 /* We keep a static world regulatory domain in case of the absence of CRDA */
103 static const struct ieee80211_regdomain world_regdom = {
104 	.n_reg_rules = 5,
105 	.alpha2 =  "00",
106 	.reg_rules = {
107 		/* IEEE 802.11b/g, channels 1..11 */
108 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
109 		/* IEEE 802.11b/g, channels 12..13. No HT40
110 		 * channel fits here. */
111 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
112 			NL80211_RRF_PASSIVE_SCAN |
113 			NL80211_RRF_NO_IBSS),
114 		/* IEEE 802.11 channel 14 - Only JP enables
115 		 * this and for 802.11b only */
116 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
117 			NL80211_RRF_PASSIVE_SCAN |
118 			NL80211_RRF_NO_IBSS |
119 			NL80211_RRF_NO_OFDM),
120 		/* IEEE 802.11a, channel 36..48 */
121 		REG_RULE(5180-10, 5240+10, 40, 6, 20,
122                         NL80211_RRF_PASSIVE_SCAN |
123                         NL80211_RRF_NO_IBSS),
124 
125 		/* NB: 5260 MHz - 5700 MHz requies DFS */
126 
127 		/* IEEE 802.11a, channel 149..165 */
128 		REG_RULE(5745-10, 5825+10, 40, 6, 20,
129 			NL80211_RRF_PASSIVE_SCAN |
130 			NL80211_RRF_NO_IBSS),
131 	}
132 };
133 
134 static const struct ieee80211_regdomain *cfg80211_world_regdom =
135 	&world_regdom;
136 
137 static char *ieee80211_regdom = "00";
138 static char user_alpha2[2];
139 
140 module_param(ieee80211_regdom, charp, 0444);
141 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
142 
143 static void reset_regdomains(void)
144 {
145 	/* avoid freeing static information or freeing something twice */
146 	if (cfg80211_regdomain == cfg80211_world_regdom)
147 		cfg80211_regdomain = NULL;
148 	if (cfg80211_world_regdom == &world_regdom)
149 		cfg80211_world_regdom = NULL;
150 	if (cfg80211_regdomain == &world_regdom)
151 		cfg80211_regdomain = NULL;
152 
153 	kfree(cfg80211_regdomain);
154 	kfree(cfg80211_world_regdom);
155 
156 	cfg80211_world_regdom = &world_regdom;
157 	cfg80211_regdomain = NULL;
158 }
159 
160 /*
161  * Dynamic world regulatory domain requested by the wireless
162  * core upon initialization
163  */
164 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
165 {
166 	BUG_ON(!last_request);
167 
168 	reset_regdomains();
169 
170 	cfg80211_world_regdom = rd;
171 	cfg80211_regdomain = rd;
172 }
173 
174 bool is_world_regdom(const char *alpha2)
175 {
176 	if (!alpha2)
177 		return false;
178 	if (alpha2[0] == '0' && alpha2[1] == '0')
179 		return true;
180 	return false;
181 }
182 
183 static bool is_alpha2_set(const char *alpha2)
184 {
185 	if (!alpha2)
186 		return false;
187 	if (alpha2[0] != 0 && alpha2[1] != 0)
188 		return true;
189 	return false;
190 }
191 
192 static bool is_alpha_upper(char letter)
193 {
194 	/* ASCII A - Z */
195 	if (letter >= 65 && letter <= 90)
196 		return true;
197 	return false;
198 }
199 
200 static bool is_unknown_alpha2(const char *alpha2)
201 {
202 	if (!alpha2)
203 		return false;
204 	/*
205 	 * Special case where regulatory domain was built by driver
206 	 * but a specific alpha2 cannot be determined
207 	 */
208 	if (alpha2[0] == '9' && alpha2[1] == '9')
209 		return true;
210 	return false;
211 }
212 
213 static bool is_intersected_alpha2(const char *alpha2)
214 {
215 	if (!alpha2)
216 		return false;
217 	/*
218 	 * Special case where regulatory domain is the
219 	 * result of an intersection between two regulatory domain
220 	 * structures
221 	 */
222 	if (alpha2[0] == '9' && alpha2[1] == '8')
223 		return true;
224 	return false;
225 }
226 
227 static bool is_an_alpha2(const char *alpha2)
228 {
229 	if (!alpha2)
230 		return false;
231 	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
232 		return true;
233 	return false;
234 }
235 
236 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
237 {
238 	if (!alpha2_x || !alpha2_y)
239 		return false;
240 	if (alpha2_x[0] == alpha2_y[0] &&
241 		alpha2_x[1] == alpha2_y[1])
242 		return true;
243 	return false;
244 }
245 
246 static bool regdom_changes(const char *alpha2)
247 {
248 	assert_cfg80211_lock();
249 
250 	if (!cfg80211_regdomain)
251 		return true;
252 	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
253 		return false;
254 	return true;
255 }
256 
257 /*
258  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
259  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
260  * has ever been issued.
261  */
262 static bool is_user_regdom_saved(void)
263 {
264 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
265 		return false;
266 
267 	/* This would indicate a mistake on the design */
268 	if (WARN((!is_world_regdom(user_alpha2) &&
269 		  !is_an_alpha2(user_alpha2)),
270 		 "Unexpected user alpha2: %c%c\n",
271 		 user_alpha2[0],
272 	         user_alpha2[1]))
273 		return false;
274 
275 	return true;
276 }
277 
278 /**
279  * country_ie_integrity_changes - tells us if the country IE has changed
280  * @checksum: checksum of country IE of fields we are interested in
281  *
282  * If the country IE has not changed you can ignore it safely. This is
283  * useful to determine if two devices are seeing two different country IEs
284  * even on the same alpha2. Note that this will return false if no IE has
285  * been set on the wireless core yet.
286  */
287 static bool country_ie_integrity_changes(u32 checksum)
288 {
289 	/* If no IE has been set then the checksum doesn't change */
290 	if (unlikely(!last_request->country_ie_checksum))
291 		return false;
292 	if (unlikely(last_request->country_ie_checksum != checksum))
293 		return true;
294 	return false;
295 }
296 
297 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
298 			 const struct ieee80211_regdomain *src_regd)
299 {
300 	struct ieee80211_regdomain *regd;
301 	int size_of_regd = 0;
302 	unsigned int i;
303 
304 	size_of_regd = sizeof(struct ieee80211_regdomain) +
305 	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
306 
307 	regd = kzalloc(size_of_regd, GFP_KERNEL);
308 	if (!regd)
309 		return -ENOMEM;
310 
311 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
312 
313 	for (i = 0; i < src_regd->n_reg_rules; i++)
314 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
315 			sizeof(struct ieee80211_reg_rule));
316 
317 	*dst_regd = regd;
318 	return 0;
319 }
320 
321 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
322 struct reg_regdb_search_request {
323 	char alpha2[2];
324 	struct list_head list;
325 };
326 
327 static LIST_HEAD(reg_regdb_search_list);
328 static DEFINE_MUTEX(reg_regdb_search_mutex);
329 
330 static void reg_regdb_search(struct work_struct *work)
331 {
332 	struct reg_regdb_search_request *request;
333 	const struct ieee80211_regdomain *curdom, *regdom;
334 	int i, r;
335 
336 	mutex_lock(&reg_regdb_search_mutex);
337 	while (!list_empty(&reg_regdb_search_list)) {
338 		request = list_first_entry(&reg_regdb_search_list,
339 					   struct reg_regdb_search_request,
340 					   list);
341 		list_del(&request->list);
342 
343 		for (i=0; i<reg_regdb_size; i++) {
344 			curdom = reg_regdb[i];
345 
346 			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
347 				r = reg_copy_regd(&regdom, curdom);
348 				if (r)
349 					break;
350 				mutex_lock(&cfg80211_mutex);
351 				set_regdom(regdom);
352 				mutex_unlock(&cfg80211_mutex);
353 				break;
354 			}
355 		}
356 
357 		kfree(request);
358 	}
359 	mutex_unlock(&reg_regdb_search_mutex);
360 }
361 
362 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
363 
364 static void reg_regdb_query(const char *alpha2)
365 {
366 	struct reg_regdb_search_request *request;
367 
368 	if (!alpha2)
369 		return;
370 
371 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
372 	if (!request)
373 		return;
374 
375 	memcpy(request->alpha2, alpha2, 2);
376 
377 	mutex_lock(&reg_regdb_search_mutex);
378 	list_add_tail(&request->list, &reg_regdb_search_list);
379 	mutex_unlock(&reg_regdb_search_mutex);
380 
381 	schedule_work(&reg_regdb_work);
382 }
383 #else
384 static inline void reg_regdb_query(const char *alpha2) {}
385 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
386 
387 /*
388  * This lets us keep regulatory code which is updated on a regulatory
389  * basis in userspace.
390  */
391 static int call_crda(const char *alpha2)
392 {
393 	char country_env[9 + 2] = "COUNTRY=";
394 	char *envp[] = {
395 		country_env,
396 		NULL
397 	};
398 
399 	if (!is_world_regdom((char *) alpha2))
400 		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
401 			alpha2[0], alpha2[1]);
402 	else
403 		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
404 			"regulatory domain\n");
405 
406 	/* query internal regulatory database (if it exists) */
407 	reg_regdb_query(alpha2);
408 
409 	country_env[8] = alpha2[0];
410 	country_env[9] = alpha2[1];
411 
412 	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
413 }
414 
415 /* Used by nl80211 before kmalloc'ing our regulatory domain */
416 bool reg_is_valid_request(const char *alpha2)
417 {
418 	assert_cfg80211_lock();
419 
420 	if (!last_request)
421 		return false;
422 
423 	return alpha2_equal(last_request->alpha2, alpha2);
424 }
425 
426 /* Sanity check on a regulatory rule */
427 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
428 {
429 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
430 	u32 freq_diff;
431 
432 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
433 		return false;
434 
435 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
436 		return false;
437 
438 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
439 
440 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
441 			freq_range->max_bandwidth_khz > freq_diff)
442 		return false;
443 
444 	return true;
445 }
446 
447 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
448 {
449 	const struct ieee80211_reg_rule *reg_rule = NULL;
450 	unsigned int i;
451 
452 	if (!rd->n_reg_rules)
453 		return false;
454 
455 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
456 		return false;
457 
458 	for (i = 0; i < rd->n_reg_rules; i++) {
459 		reg_rule = &rd->reg_rules[i];
460 		if (!is_valid_reg_rule(reg_rule))
461 			return false;
462 	}
463 
464 	return true;
465 }
466 
467 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
468 			    u32 center_freq_khz,
469 			    u32 bw_khz)
470 {
471 	u32 start_freq_khz, end_freq_khz;
472 
473 	start_freq_khz = center_freq_khz - (bw_khz/2);
474 	end_freq_khz = center_freq_khz + (bw_khz/2);
475 
476 	if (start_freq_khz >= freq_range->start_freq_khz &&
477 	    end_freq_khz <= freq_range->end_freq_khz)
478 		return true;
479 
480 	return false;
481 }
482 
483 /**
484  * freq_in_rule_band - tells us if a frequency is in a frequency band
485  * @freq_range: frequency rule we want to query
486  * @freq_khz: frequency we are inquiring about
487  *
488  * This lets us know if a specific frequency rule is or is not relevant to
489  * a specific frequency's band. Bands are device specific and artificial
490  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
491  * safe for now to assume that a frequency rule should not be part of a
492  * frequency's band if the start freq or end freq are off by more than 2 GHz.
493  * This resolution can be lowered and should be considered as we add
494  * regulatory rule support for other "bands".
495  **/
496 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
497 	u32 freq_khz)
498 {
499 #define ONE_GHZ_IN_KHZ	1000000
500 	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
501 		return true;
502 	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
503 		return true;
504 	return false;
505 #undef ONE_GHZ_IN_KHZ
506 }
507 
508 /*
509  * This is a work around for sanity checking ieee80211_channel_to_frequency()'s
510  * work. ieee80211_channel_to_frequency() can for example currently provide a
511  * 2 GHz channel when in fact a 5 GHz channel was desired. An example would be
512  * an AP providing channel 8 on a country IE triplet when it sent this on the
513  * 5 GHz band, that channel is designed to be channel 8 on 5 GHz, not a 2 GHz
514  * channel.
515  *
516  * This can be removed once ieee80211_channel_to_frequency() takes in a band.
517  */
518 static bool chan_in_band(int chan, enum ieee80211_band band)
519 {
520 	int center_freq = ieee80211_channel_to_frequency(chan);
521 
522 	switch (band) {
523 	case IEEE80211_BAND_2GHZ:
524 		if (center_freq <= 2484)
525 			return true;
526 		return false;
527 	case IEEE80211_BAND_5GHZ:
528 		if (center_freq >= 5005)
529 			return true;
530 		return false;
531 	default:
532 		return false;
533 	}
534 }
535 
536 /*
537  * Some APs may send a country IE triplet for each channel they
538  * support and while this is completely overkill and silly we still
539  * need to support it. We avoid making a single rule for each channel
540  * though and to help us with this we use this helper to find the
541  * actual subband end channel. These type of country IE triplet
542  * scenerios are handled then, all yielding two regulaotry rules from
543  * parsing a country IE:
544  *
545  * [1]
546  * [2]
547  * [36]
548  * [40]
549  *
550  * [1]
551  * [2-4]
552  * [5-12]
553  * [36]
554  * [40-44]
555  *
556  * [1-4]
557  * [5-7]
558  * [36-44]
559  * [48-64]
560  *
561  * [36-36]
562  * [40-40]
563  * [44-44]
564  * [48-48]
565  * [52-52]
566  * [56-56]
567  * [60-60]
568  * [64-64]
569  * [100-100]
570  * [104-104]
571  * [108-108]
572  * [112-112]
573  * [116-116]
574  * [120-120]
575  * [124-124]
576  * [128-128]
577  * [132-132]
578  * [136-136]
579  * [140-140]
580  *
581  * Returns 0 if the IE has been found to be invalid in the middle
582  * somewhere.
583  */
584 static int max_subband_chan(enum ieee80211_band band,
585 			    int orig_cur_chan,
586 			    int orig_end_channel,
587 			    s8 orig_max_power,
588 			    u8 **country_ie,
589 			    u8 *country_ie_len)
590 {
591 	u8 *triplets_start = *country_ie;
592 	u8 len_at_triplet = *country_ie_len;
593 	int end_subband_chan = orig_end_channel;
594 
595 	/*
596 	 * We'll deal with padding for the caller unless
597 	 * its not immediate and we don't process any channels
598 	 */
599 	if (*country_ie_len == 1) {
600 		*country_ie += 1;
601 		*country_ie_len -= 1;
602 		return orig_end_channel;
603 	}
604 
605 	/* Move to the next triplet and then start search */
606 	*country_ie += 3;
607 	*country_ie_len -= 3;
608 
609 	if (!chan_in_band(orig_cur_chan, band))
610 		return 0;
611 
612 	while (*country_ie_len >= 3) {
613 		int end_channel = 0;
614 		struct ieee80211_country_ie_triplet *triplet =
615 			(struct ieee80211_country_ie_triplet *) *country_ie;
616 		int cur_channel = 0, next_expected_chan;
617 
618 		/* means last triplet is completely unrelated to this one */
619 		if (triplet->ext.reg_extension_id >=
620 				IEEE80211_COUNTRY_EXTENSION_ID) {
621 			*country_ie -= 3;
622 			*country_ie_len += 3;
623 			break;
624 		}
625 
626 		if (triplet->chans.first_channel == 0) {
627 			*country_ie += 1;
628 			*country_ie_len -= 1;
629 			if (*country_ie_len != 0)
630 				return 0;
631 			break;
632 		}
633 
634 		if (triplet->chans.num_channels == 0)
635 			return 0;
636 
637 		/* Monitonically increasing channel order */
638 		if (triplet->chans.first_channel <= end_subband_chan)
639 			return 0;
640 
641 		if (!chan_in_band(triplet->chans.first_channel, band))
642 			return 0;
643 
644 		/* 2 GHz */
645 		if (triplet->chans.first_channel <= 14) {
646 			end_channel = triplet->chans.first_channel +
647 				triplet->chans.num_channels - 1;
648 		}
649 		else {
650 			end_channel =  triplet->chans.first_channel +
651 				(4 * (triplet->chans.num_channels - 1));
652 		}
653 
654 		if (!chan_in_band(end_channel, band))
655 			return 0;
656 
657 		if (orig_max_power != triplet->chans.max_power) {
658 			*country_ie -= 3;
659 			*country_ie_len += 3;
660 			break;
661 		}
662 
663 		cur_channel = triplet->chans.first_channel;
664 
665 		/* The key is finding the right next expected channel */
666 		if (band == IEEE80211_BAND_2GHZ)
667 			next_expected_chan = end_subband_chan + 1;
668 		 else
669 			next_expected_chan = end_subband_chan + 4;
670 
671 		if (cur_channel != next_expected_chan) {
672 			*country_ie -= 3;
673 			*country_ie_len += 3;
674 			break;
675 		}
676 
677 		end_subband_chan = end_channel;
678 
679 		/* Move to the next one */
680 		*country_ie += 3;
681 		*country_ie_len -= 3;
682 
683 		/*
684 		 * Padding needs to be dealt with if we processed
685 		 * some channels.
686 		 */
687 		if (*country_ie_len == 1) {
688 			*country_ie += 1;
689 			*country_ie_len -= 1;
690 			break;
691 		}
692 
693 		/* If seen, the IE is invalid */
694 		if (*country_ie_len == 2)
695 			return 0;
696 	}
697 
698 	if (end_subband_chan == orig_end_channel) {
699 		*country_ie = triplets_start;
700 		*country_ie_len = len_at_triplet;
701 		return orig_end_channel;
702 	}
703 
704 	return end_subband_chan;
705 }
706 
707 /*
708  * Converts a country IE to a regulatory domain. A regulatory domain
709  * structure has a lot of information which the IE doesn't yet have,
710  * so for the other values we use upper max values as we will intersect
711  * with our userspace regulatory agent to get lower bounds.
712  */
713 static struct ieee80211_regdomain *country_ie_2_rd(
714 				enum ieee80211_band band,
715 				u8 *country_ie,
716 				u8 country_ie_len,
717 				u32 *checksum)
718 {
719 	struct ieee80211_regdomain *rd = NULL;
720 	unsigned int i = 0;
721 	char alpha2[2];
722 	u32 flags = 0;
723 	u32 num_rules = 0, size_of_regd = 0;
724 	u8 *triplets_start = NULL;
725 	u8 len_at_triplet = 0;
726 	/* the last channel we have registered in a subband (triplet) */
727 	int last_sub_max_channel = 0;
728 
729 	*checksum = 0xDEADBEEF;
730 
731 	/* Country IE requirements */
732 	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
733 		country_ie_len & 0x01);
734 
735 	alpha2[0] = country_ie[0];
736 	alpha2[1] = country_ie[1];
737 
738 	/*
739 	 * Third octet can be:
740 	 *    'I' - Indoor
741 	 *    'O' - Outdoor
742 	 *
743 	 *  anything else we assume is no restrictions
744 	 */
745 	if (country_ie[2] == 'I')
746 		flags = NL80211_RRF_NO_OUTDOOR;
747 	else if (country_ie[2] == 'O')
748 		flags = NL80211_RRF_NO_INDOOR;
749 
750 	country_ie += 3;
751 	country_ie_len -= 3;
752 
753 	triplets_start = country_ie;
754 	len_at_triplet = country_ie_len;
755 
756 	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
757 
758 	/*
759 	 * We need to build a reg rule for each triplet, but first we must
760 	 * calculate the number of reg rules we will need. We will need one
761 	 * for each channel subband
762 	 */
763 	while (country_ie_len >= 3) {
764 		int end_channel = 0;
765 		struct ieee80211_country_ie_triplet *triplet =
766 			(struct ieee80211_country_ie_triplet *) country_ie;
767 		int cur_sub_max_channel = 0, cur_channel = 0;
768 
769 		if (triplet->ext.reg_extension_id >=
770 				IEEE80211_COUNTRY_EXTENSION_ID) {
771 			country_ie += 3;
772 			country_ie_len -= 3;
773 			continue;
774 		}
775 
776 		/*
777 		 * APs can add padding to make length divisible
778 		 * by two, required by the spec.
779 		 */
780 		if (triplet->chans.first_channel == 0) {
781 			country_ie++;
782 			country_ie_len--;
783 			/* This is expected to be at the very end only */
784 			if (country_ie_len != 0)
785 				return NULL;
786 			break;
787 		}
788 
789 		if (triplet->chans.num_channels == 0)
790 			return NULL;
791 
792 		if (!chan_in_band(triplet->chans.first_channel, band))
793 			return NULL;
794 
795 		/* 2 GHz */
796 		if (band == IEEE80211_BAND_2GHZ)
797 			end_channel = triplet->chans.first_channel +
798 				triplet->chans.num_channels - 1;
799 		else
800 			/*
801 			 * 5 GHz -- For example in country IEs if the first
802 			 * channel given is 36 and the number of channels is 4
803 			 * then the individual channel numbers defined for the
804 			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
805 			 * and not 36, 37, 38, 39.
806 			 *
807 			 * See: http://tinyurl.com/11d-clarification
808 			 */
809 			end_channel =  triplet->chans.first_channel +
810 				(4 * (triplet->chans.num_channels - 1));
811 
812 		cur_channel = triplet->chans.first_channel;
813 
814 		/*
815 		 * Enhancement for APs that send a triplet for every channel
816 		 * or for whatever reason sends triplets with multiple channels
817 		 * separated when in fact they should be together.
818 		 */
819 		end_channel = max_subband_chan(band,
820 					       cur_channel,
821 					       end_channel,
822 					       triplet->chans.max_power,
823 					       &country_ie,
824 					       &country_ie_len);
825 		if (!end_channel)
826 			return NULL;
827 
828 		if (!chan_in_band(end_channel, band))
829 			return NULL;
830 
831 		cur_sub_max_channel = end_channel;
832 
833 		/* Basic sanity check */
834 		if (cur_sub_max_channel < cur_channel)
835 			return NULL;
836 
837 		/*
838 		 * Do not allow overlapping channels. Also channels
839 		 * passed in each subband must be monotonically
840 		 * increasing
841 		 */
842 		if (last_sub_max_channel) {
843 			if (cur_channel <= last_sub_max_channel)
844 				return NULL;
845 			if (cur_sub_max_channel <= last_sub_max_channel)
846 				return NULL;
847 		}
848 
849 		/*
850 		 * When dot11RegulatoryClassesRequired is supported
851 		 * we can throw ext triplets as part of this soup,
852 		 * for now we don't care when those change as we
853 		 * don't support them
854 		 */
855 		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
856 		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
857 		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
858 
859 		last_sub_max_channel = cur_sub_max_channel;
860 
861 		num_rules++;
862 
863 		if (country_ie_len >= 3) {
864 			country_ie += 3;
865 			country_ie_len -= 3;
866 		}
867 
868 		/*
869 		 * Note: this is not a IEEE requirement but
870 		 * simply a memory requirement
871 		 */
872 		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
873 			return NULL;
874 	}
875 
876 	country_ie = triplets_start;
877 	country_ie_len = len_at_triplet;
878 
879 	size_of_regd = sizeof(struct ieee80211_regdomain) +
880 		(num_rules * sizeof(struct ieee80211_reg_rule));
881 
882 	rd = kzalloc(size_of_regd, GFP_KERNEL);
883 	if (!rd)
884 		return NULL;
885 
886 	rd->n_reg_rules = num_rules;
887 	rd->alpha2[0] = alpha2[0];
888 	rd->alpha2[1] = alpha2[1];
889 
890 	/* This time around we fill in the rd */
891 	while (country_ie_len >= 3) {
892 		int end_channel = 0;
893 		struct ieee80211_country_ie_triplet *triplet =
894 			(struct ieee80211_country_ie_triplet *) country_ie;
895 		struct ieee80211_reg_rule *reg_rule = NULL;
896 		struct ieee80211_freq_range *freq_range = NULL;
897 		struct ieee80211_power_rule *power_rule = NULL;
898 
899 		/*
900 		 * Must parse if dot11RegulatoryClassesRequired is true,
901 		 * we don't support this yet
902 		 */
903 		if (triplet->ext.reg_extension_id >=
904 				IEEE80211_COUNTRY_EXTENSION_ID) {
905 			country_ie += 3;
906 			country_ie_len -= 3;
907 			continue;
908 		}
909 
910 		if (triplet->chans.first_channel == 0) {
911 			country_ie++;
912 			country_ie_len--;
913 			break;
914 		}
915 
916 		reg_rule = &rd->reg_rules[i];
917 		freq_range = &reg_rule->freq_range;
918 		power_rule = &reg_rule->power_rule;
919 
920 		reg_rule->flags = flags;
921 
922 		/* 2 GHz */
923 		if (band == IEEE80211_BAND_2GHZ)
924 			end_channel = triplet->chans.first_channel +
925 				triplet->chans.num_channels -1;
926 		else
927 			end_channel =  triplet->chans.first_channel +
928 				(4 * (triplet->chans.num_channels - 1));
929 
930 		end_channel = max_subband_chan(band,
931 					       triplet->chans.first_channel,
932 					       end_channel,
933 					       triplet->chans.max_power,
934 					       &country_ie,
935 					       &country_ie_len);
936 
937 		/*
938 		 * The +10 is since the regulatory domain expects
939 		 * the actual band edge, not the center of freq for
940 		 * its start and end freqs, assuming 20 MHz bandwidth on
941 		 * the channels passed
942 		 */
943 		freq_range->start_freq_khz =
944 			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
945 				triplet->chans.first_channel) - 10);
946 		freq_range->end_freq_khz =
947 			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
948 				end_channel) + 10);
949 
950 		/*
951 		 * These are large arbitrary values we use to intersect later.
952 		 * Increment this if we ever support >= 40 MHz channels
953 		 * in IEEE 802.11
954 		 */
955 		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
956 		power_rule->max_antenna_gain = DBI_TO_MBI(100);
957 		power_rule->max_eirp = DBM_TO_MBM(triplet->chans.max_power);
958 
959 		i++;
960 
961 		if (country_ie_len >= 3) {
962 			country_ie += 3;
963 			country_ie_len -= 3;
964 		}
965 
966 		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
967 	}
968 
969 	return rd;
970 }
971 
972 
973 /*
974  * Helper for regdom_intersect(), this does the real
975  * mathematical intersection fun
976  */
977 static int reg_rules_intersect(
978 	const struct ieee80211_reg_rule *rule1,
979 	const struct ieee80211_reg_rule *rule2,
980 	struct ieee80211_reg_rule *intersected_rule)
981 {
982 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
983 	struct ieee80211_freq_range *freq_range;
984 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
985 	struct ieee80211_power_rule *power_rule;
986 	u32 freq_diff;
987 
988 	freq_range1 = &rule1->freq_range;
989 	freq_range2 = &rule2->freq_range;
990 	freq_range = &intersected_rule->freq_range;
991 
992 	power_rule1 = &rule1->power_rule;
993 	power_rule2 = &rule2->power_rule;
994 	power_rule = &intersected_rule->power_rule;
995 
996 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
997 		freq_range2->start_freq_khz);
998 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
999 		freq_range2->end_freq_khz);
1000 	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
1001 		freq_range2->max_bandwidth_khz);
1002 
1003 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1004 	if (freq_range->max_bandwidth_khz > freq_diff)
1005 		freq_range->max_bandwidth_khz = freq_diff;
1006 
1007 	power_rule->max_eirp = min(power_rule1->max_eirp,
1008 		power_rule2->max_eirp);
1009 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1010 		power_rule2->max_antenna_gain);
1011 
1012 	intersected_rule->flags = (rule1->flags | rule2->flags);
1013 
1014 	if (!is_valid_reg_rule(intersected_rule))
1015 		return -EINVAL;
1016 
1017 	return 0;
1018 }
1019 
1020 /**
1021  * regdom_intersect - do the intersection between two regulatory domains
1022  * @rd1: first regulatory domain
1023  * @rd2: second regulatory domain
1024  *
1025  * Use this function to get the intersection between two regulatory domains.
1026  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1027  * as no one single alpha2 can represent this regulatory domain.
1028  *
1029  * Returns a pointer to the regulatory domain structure which will hold the
1030  * resulting intersection of rules between rd1 and rd2. We will
1031  * kzalloc() this structure for you.
1032  */
1033 static struct ieee80211_regdomain *regdom_intersect(
1034 	const struct ieee80211_regdomain *rd1,
1035 	const struct ieee80211_regdomain *rd2)
1036 {
1037 	int r, size_of_regd;
1038 	unsigned int x, y;
1039 	unsigned int num_rules = 0, rule_idx = 0;
1040 	const struct ieee80211_reg_rule *rule1, *rule2;
1041 	struct ieee80211_reg_rule *intersected_rule;
1042 	struct ieee80211_regdomain *rd;
1043 	/* This is just a dummy holder to help us count */
1044 	struct ieee80211_reg_rule irule;
1045 
1046 	/* Uses the stack temporarily for counter arithmetic */
1047 	intersected_rule = &irule;
1048 
1049 	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
1050 
1051 	if (!rd1 || !rd2)
1052 		return NULL;
1053 
1054 	/*
1055 	 * First we get a count of the rules we'll need, then we actually
1056 	 * build them. This is to so we can malloc() and free() a
1057 	 * regdomain once. The reason we use reg_rules_intersect() here
1058 	 * is it will return -EINVAL if the rule computed makes no sense.
1059 	 * All rules that do check out OK are valid.
1060 	 */
1061 
1062 	for (x = 0; x < rd1->n_reg_rules; x++) {
1063 		rule1 = &rd1->reg_rules[x];
1064 		for (y = 0; y < rd2->n_reg_rules; y++) {
1065 			rule2 = &rd2->reg_rules[y];
1066 			if (!reg_rules_intersect(rule1, rule2,
1067 					intersected_rule))
1068 				num_rules++;
1069 			memset(intersected_rule, 0,
1070 					sizeof(struct ieee80211_reg_rule));
1071 		}
1072 	}
1073 
1074 	if (!num_rules)
1075 		return NULL;
1076 
1077 	size_of_regd = sizeof(struct ieee80211_regdomain) +
1078 		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
1079 
1080 	rd = kzalloc(size_of_regd, GFP_KERNEL);
1081 	if (!rd)
1082 		return NULL;
1083 
1084 	for (x = 0; x < rd1->n_reg_rules; x++) {
1085 		rule1 = &rd1->reg_rules[x];
1086 		for (y = 0; y < rd2->n_reg_rules; y++) {
1087 			rule2 = &rd2->reg_rules[y];
1088 			/*
1089 			 * This time around instead of using the stack lets
1090 			 * write to the target rule directly saving ourselves
1091 			 * a memcpy()
1092 			 */
1093 			intersected_rule = &rd->reg_rules[rule_idx];
1094 			r = reg_rules_intersect(rule1, rule2,
1095 				intersected_rule);
1096 			/*
1097 			 * No need to memset here the intersected rule here as
1098 			 * we're not using the stack anymore
1099 			 */
1100 			if (r)
1101 				continue;
1102 			rule_idx++;
1103 		}
1104 	}
1105 
1106 	if (rule_idx != num_rules) {
1107 		kfree(rd);
1108 		return NULL;
1109 	}
1110 
1111 	rd->n_reg_rules = num_rules;
1112 	rd->alpha2[0] = '9';
1113 	rd->alpha2[1] = '8';
1114 
1115 	return rd;
1116 }
1117 
1118 /*
1119  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1120  * want to just have the channel structure use these
1121  */
1122 static u32 map_regdom_flags(u32 rd_flags)
1123 {
1124 	u32 channel_flags = 0;
1125 	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
1126 		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
1127 	if (rd_flags & NL80211_RRF_NO_IBSS)
1128 		channel_flags |= IEEE80211_CHAN_NO_IBSS;
1129 	if (rd_flags & NL80211_RRF_DFS)
1130 		channel_flags |= IEEE80211_CHAN_RADAR;
1131 	return channel_flags;
1132 }
1133 
1134 static int freq_reg_info_regd(struct wiphy *wiphy,
1135 			      u32 center_freq,
1136 			      u32 desired_bw_khz,
1137 			      const struct ieee80211_reg_rule **reg_rule,
1138 			      const struct ieee80211_regdomain *custom_regd)
1139 {
1140 	int i;
1141 	bool band_rule_found = false;
1142 	const struct ieee80211_regdomain *regd;
1143 	bool bw_fits = false;
1144 
1145 	if (!desired_bw_khz)
1146 		desired_bw_khz = MHZ_TO_KHZ(20);
1147 
1148 	regd = custom_regd ? custom_regd : cfg80211_regdomain;
1149 
1150 	/*
1151 	 * Follow the driver's regulatory domain, if present, unless a country
1152 	 * IE has been processed or a user wants to help complaince further
1153 	 */
1154 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1155 	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
1156 	    wiphy->regd)
1157 		regd = wiphy->regd;
1158 
1159 	if (!regd)
1160 		return -EINVAL;
1161 
1162 	for (i = 0; i < regd->n_reg_rules; i++) {
1163 		const struct ieee80211_reg_rule *rr;
1164 		const struct ieee80211_freq_range *fr = NULL;
1165 		const struct ieee80211_power_rule *pr = NULL;
1166 
1167 		rr = &regd->reg_rules[i];
1168 		fr = &rr->freq_range;
1169 		pr = &rr->power_rule;
1170 
1171 		/*
1172 		 * We only need to know if one frequency rule was
1173 		 * was in center_freq's band, that's enough, so lets
1174 		 * not overwrite it once found
1175 		 */
1176 		if (!band_rule_found)
1177 			band_rule_found = freq_in_rule_band(fr, center_freq);
1178 
1179 		bw_fits = reg_does_bw_fit(fr,
1180 					  center_freq,
1181 					  desired_bw_khz);
1182 
1183 		if (band_rule_found && bw_fits) {
1184 			*reg_rule = rr;
1185 			return 0;
1186 		}
1187 	}
1188 
1189 	if (!band_rule_found)
1190 		return -ERANGE;
1191 
1192 	return -EINVAL;
1193 }
1194 EXPORT_SYMBOL(freq_reg_info);
1195 
1196 int freq_reg_info(struct wiphy *wiphy,
1197 		  u32 center_freq,
1198 		  u32 desired_bw_khz,
1199 		  const struct ieee80211_reg_rule **reg_rule)
1200 {
1201 	assert_cfg80211_lock();
1202 	return freq_reg_info_regd(wiphy,
1203 				  center_freq,
1204 				  desired_bw_khz,
1205 				  reg_rule,
1206 				  NULL);
1207 }
1208 
1209 /*
1210  * Note that right now we assume the desired channel bandwidth
1211  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1212  * per channel, the primary and the extension channel). To support
1213  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
1214  * new ieee80211_channel.target_bw and re run the regulatory check
1215  * on the wiphy with the target_bw specified. Then we can simply use
1216  * that below for the desired_bw_khz below.
1217  */
1218 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
1219 			   unsigned int chan_idx)
1220 {
1221 	int r;
1222 	u32 flags, bw_flags = 0;
1223 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1224 	const struct ieee80211_reg_rule *reg_rule = NULL;
1225 	const struct ieee80211_power_rule *power_rule = NULL;
1226 	const struct ieee80211_freq_range *freq_range = NULL;
1227 	struct ieee80211_supported_band *sband;
1228 	struct ieee80211_channel *chan;
1229 	struct wiphy *request_wiphy = NULL;
1230 
1231 	assert_cfg80211_lock();
1232 
1233 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1234 
1235 	sband = wiphy->bands[band];
1236 	BUG_ON(chan_idx >= sband->n_channels);
1237 	chan = &sband->channels[chan_idx];
1238 
1239 	flags = chan->orig_flags;
1240 
1241 	r = freq_reg_info(wiphy,
1242 			  MHZ_TO_KHZ(chan->center_freq),
1243 			  desired_bw_khz,
1244 			  &reg_rule);
1245 
1246 	if (r) {
1247 		/*
1248 		 * This means no regulatory rule was found in the country IE
1249 		 * with a frequency range on the center_freq's band, since
1250 		 * IEEE-802.11 allows for a country IE to have a subset of the
1251 		 * regulatory information provided in a country we ignore
1252 		 * disabling the channel unless at least one reg rule was
1253 		 * found on the center_freq's band. For details see this
1254 		 * clarification:
1255 		 *
1256 		 * http://tinyurl.com/11d-clarification
1257 		 */
1258 		if (r == -ERANGE &&
1259 		    last_request->initiator ==
1260 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1261 			REG_DBG_PRINT("cfg80211: Leaving channel %d MHz "
1262 				"intact on %s - no rule found in band on "
1263 				"Country IE\n",
1264 			chan->center_freq, wiphy_name(wiphy));
1265 		} else {
1266 		/*
1267 		 * In this case we know the country IE has at least one reg rule
1268 		 * for the band so we respect its band definitions
1269 		 */
1270 			if (last_request->initiator ==
1271 			    NL80211_REGDOM_SET_BY_COUNTRY_IE)
1272 				REG_DBG_PRINT("cfg80211: Disabling "
1273 					"channel %d MHz on %s due to "
1274 					"Country IE\n",
1275 					chan->center_freq, wiphy_name(wiphy));
1276 			flags |= IEEE80211_CHAN_DISABLED;
1277 			chan->flags = flags;
1278 		}
1279 		return;
1280 	}
1281 
1282 	power_rule = &reg_rule->power_rule;
1283 	freq_range = &reg_rule->freq_range;
1284 
1285 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1286 		bw_flags = IEEE80211_CHAN_NO_HT40;
1287 
1288 	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1289 	    request_wiphy && request_wiphy == wiphy &&
1290 	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1291 		/*
1292 		 * This gaurantees the driver's requested regulatory domain
1293 		 * will always be used as a base for further regulatory
1294 		 * settings
1295 		 */
1296 		chan->flags = chan->orig_flags =
1297 			map_regdom_flags(reg_rule->flags) | bw_flags;
1298 		chan->max_antenna_gain = chan->orig_mag =
1299 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1300 		chan->max_power = chan->orig_mpwr =
1301 			(int) MBM_TO_DBM(power_rule->max_eirp);
1302 		return;
1303 	}
1304 
1305 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1306 	chan->max_antenna_gain = min(chan->orig_mag,
1307 		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
1308 	if (chan->orig_mpwr)
1309 		chan->max_power = min(chan->orig_mpwr,
1310 			(int) MBM_TO_DBM(power_rule->max_eirp));
1311 	else
1312 		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1313 }
1314 
1315 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1316 {
1317 	unsigned int i;
1318 	struct ieee80211_supported_band *sband;
1319 
1320 	BUG_ON(!wiphy->bands[band]);
1321 	sband = wiphy->bands[band];
1322 
1323 	for (i = 0; i < sband->n_channels; i++)
1324 		handle_channel(wiphy, band, i);
1325 }
1326 
1327 static bool ignore_reg_update(struct wiphy *wiphy,
1328 			      enum nl80211_reg_initiator initiator)
1329 {
1330 	if (!last_request)
1331 		return true;
1332 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1333 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1334 		return true;
1335 	/*
1336 	 * wiphy->regd will be set once the device has its own
1337 	 * desired regulatory domain set
1338 	 */
1339 	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1340 	    !is_world_regdom(last_request->alpha2))
1341 		return true;
1342 	return false;
1343 }
1344 
1345 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1346 {
1347 	struct cfg80211_registered_device *rdev;
1348 
1349 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1350 		wiphy_update_regulatory(&rdev->wiphy, initiator);
1351 }
1352 
1353 static void handle_reg_beacon(struct wiphy *wiphy,
1354 			      unsigned int chan_idx,
1355 			      struct reg_beacon *reg_beacon)
1356 {
1357 	struct ieee80211_supported_band *sband;
1358 	struct ieee80211_channel *chan;
1359 	bool channel_changed = false;
1360 	struct ieee80211_channel chan_before;
1361 
1362 	assert_cfg80211_lock();
1363 
1364 	sband = wiphy->bands[reg_beacon->chan.band];
1365 	chan = &sband->channels[chan_idx];
1366 
1367 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1368 		return;
1369 
1370 	if (chan->beacon_found)
1371 		return;
1372 
1373 	chan->beacon_found = true;
1374 
1375 	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1376 		return;
1377 
1378 	chan_before.center_freq = chan->center_freq;
1379 	chan_before.flags = chan->flags;
1380 
1381 	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1382 		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1383 		channel_changed = true;
1384 	}
1385 
1386 	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1387 		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1388 		channel_changed = true;
1389 	}
1390 
1391 	if (channel_changed)
1392 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1393 }
1394 
1395 /*
1396  * Called when a scan on a wiphy finds a beacon on
1397  * new channel
1398  */
1399 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1400 				    struct reg_beacon *reg_beacon)
1401 {
1402 	unsigned int i;
1403 	struct ieee80211_supported_band *sband;
1404 
1405 	assert_cfg80211_lock();
1406 
1407 	if (!wiphy->bands[reg_beacon->chan.band])
1408 		return;
1409 
1410 	sband = wiphy->bands[reg_beacon->chan.band];
1411 
1412 	for (i = 0; i < sband->n_channels; i++)
1413 		handle_reg_beacon(wiphy, i, reg_beacon);
1414 }
1415 
1416 /*
1417  * Called upon reg changes or a new wiphy is added
1418  */
1419 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1420 {
1421 	unsigned int i;
1422 	struct ieee80211_supported_band *sband;
1423 	struct reg_beacon *reg_beacon;
1424 
1425 	assert_cfg80211_lock();
1426 
1427 	if (list_empty(&reg_beacon_list))
1428 		return;
1429 
1430 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1431 		if (!wiphy->bands[reg_beacon->chan.band])
1432 			continue;
1433 		sband = wiphy->bands[reg_beacon->chan.band];
1434 		for (i = 0; i < sband->n_channels; i++)
1435 			handle_reg_beacon(wiphy, i, reg_beacon);
1436 	}
1437 }
1438 
1439 static bool reg_is_world_roaming(struct wiphy *wiphy)
1440 {
1441 	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1442 	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1443 		return true;
1444 	if (last_request &&
1445 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1446 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1447 		return true;
1448 	return false;
1449 }
1450 
1451 /* Reap the advantages of previously found beacons */
1452 static void reg_process_beacons(struct wiphy *wiphy)
1453 {
1454 	/*
1455 	 * Means we are just firing up cfg80211, so no beacons would
1456 	 * have been processed yet.
1457 	 */
1458 	if (!last_request)
1459 		return;
1460 	if (!reg_is_world_roaming(wiphy))
1461 		return;
1462 	wiphy_update_beacon_reg(wiphy);
1463 }
1464 
1465 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1466 {
1467 	if (!chan)
1468 		return true;
1469 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1470 		return true;
1471 	/* This would happen when regulatory rules disallow HT40 completely */
1472 	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1473 		return true;
1474 	return false;
1475 }
1476 
1477 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1478 					 enum ieee80211_band band,
1479 					 unsigned int chan_idx)
1480 {
1481 	struct ieee80211_supported_band *sband;
1482 	struct ieee80211_channel *channel;
1483 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1484 	unsigned int i;
1485 
1486 	assert_cfg80211_lock();
1487 
1488 	sband = wiphy->bands[band];
1489 	BUG_ON(chan_idx >= sband->n_channels);
1490 	channel = &sband->channels[chan_idx];
1491 
1492 	if (is_ht40_not_allowed(channel)) {
1493 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1494 		return;
1495 	}
1496 
1497 	/*
1498 	 * We need to ensure the extension channels exist to
1499 	 * be able to use HT40- or HT40+, this finds them (or not)
1500 	 */
1501 	for (i = 0; i < sband->n_channels; i++) {
1502 		struct ieee80211_channel *c = &sband->channels[i];
1503 		if (c->center_freq == (channel->center_freq - 20))
1504 			channel_before = c;
1505 		if (c->center_freq == (channel->center_freq + 20))
1506 			channel_after = c;
1507 	}
1508 
1509 	/*
1510 	 * Please note that this assumes target bandwidth is 20 MHz,
1511 	 * if that ever changes we also need to change the below logic
1512 	 * to include that as well.
1513 	 */
1514 	if (is_ht40_not_allowed(channel_before))
1515 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1516 	else
1517 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1518 
1519 	if (is_ht40_not_allowed(channel_after))
1520 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1521 	else
1522 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1523 }
1524 
1525 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1526 				      enum ieee80211_band band)
1527 {
1528 	unsigned int i;
1529 	struct ieee80211_supported_band *sband;
1530 
1531 	BUG_ON(!wiphy->bands[band]);
1532 	sband = wiphy->bands[band];
1533 
1534 	for (i = 0; i < sband->n_channels; i++)
1535 		reg_process_ht_flags_channel(wiphy, band, i);
1536 }
1537 
1538 static void reg_process_ht_flags(struct wiphy *wiphy)
1539 {
1540 	enum ieee80211_band band;
1541 
1542 	if (!wiphy)
1543 		return;
1544 
1545 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1546 		if (wiphy->bands[band])
1547 			reg_process_ht_flags_band(wiphy, band);
1548 	}
1549 
1550 }
1551 
1552 void wiphy_update_regulatory(struct wiphy *wiphy,
1553 			     enum nl80211_reg_initiator initiator)
1554 {
1555 	enum ieee80211_band band;
1556 
1557 	if (ignore_reg_update(wiphy, initiator))
1558 		goto out;
1559 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1560 		if (wiphy->bands[band])
1561 			handle_band(wiphy, band);
1562 	}
1563 out:
1564 	reg_process_beacons(wiphy);
1565 	reg_process_ht_flags(wiphy);
1566 	if (wiphy->reg_notifier)
1567 		wiphy->reg_notifier(wiphy, last_request);
1568 }
1569 
1570 static void handle_channel_custom(struct wiphy *wiphy,
1571 				  enum ieee80211_band band,
1572 				  unsigned int chan_idx,
1573 				  const struct ieee80211_regdomain *regd)
1574 {
1575 	int r;
1576 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1577 	u32 bw_flags = 0;
1578 	const struct ieee80211_reg_rule *reg_rule = NULL;
1579 	const struct ieee80211_power_rule *power_rule = NULL;
1580 	const struct ieee80211_freq_range *freq_range = NULL;
1581 	struct ieee80211_supported_band *sband;
1582 	struct ieee80211_channel *chan;
1583 
1584 	assert_reg_lock();
1585 
1586 	sband = wiphy->bands[band];
1587 	BUG_ON(chan_idx >= sband->n_channels);
1588 	chan = &sband->channels[chan_idx];
1589 
1590 	r = freq_reg_info_regd(wiphy,
1591 			       MHZ_TO_KHZ(chan->center_freq),
1592 			       desired_bw_khz,
1593 			       &reg_rule,
1594 			       regd);
1595 
1596 	if (r) {
1597 		chan->flags = IEEE80211_CHAN_DISABLED;
1598 		return;
1599 	}
1600 
1601 	power_rule = &reg_rule->power_rule;
1602 	freq_range = &reg_rule->freq_range;
1603 
1604 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1605 		bw_flags = IEEE80211_CHAN_NO_HT40;
1606 
1607 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1608 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1609 	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1610 }
1611 
1612 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1613 			       const struct ieee80211_regdomain *regd)
1614 {
1615 	unsigned int i;
1616 	struct ieee80211_supported_band *sband;
1617 
1618 	BUG_ON(!wiphy->bands[band]);
1619 	sband = wiphy->bands[band];
1620 
1621 	for (i = 0; i < sband->n_channels; i++)
1622 		handle_channel_custom(wiphy, band, i, regd);
1623 }
1624 
1625 /* Used by drivers prior to wiphy registration */
1626 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1627 				   const struct ieee80211_regdomain *regd)
1628 {
1629 	enum ieee80211_band band;
1630 	unsigned int bands_set = 0;
1631 
1632 	mutex_lock(&reg_mutex);
1633 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1634 		if (!wiphy->bands[band])
1635 			continue;
1636 		handle_band_custom(wiphy, band, regd);
1637 		bands_set++;
1638 	}
1639 	mutex_unlock(&reg_mutex);
1640 
1641 	/*
1642 	 * no point in calling this if it won't have any effect
1643 	 * on your device's supportd bands.
1644 	 */
1645 	WARN_ON(!bands_set);
1646 }
1647 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1648 
1649 /*
1650  * Return value which can be used by ignore_request() to indicate
1651  * it has been determined we should intersect two regulatory domains
1652  */
1653 #define REG_INTERSECT	1
1654 
1655 /* This has the logic which determines when a new request
1656  * should be ignored. */
1657 static int ignore_request(struct wiphy *wiphy,
1658 			  struct regulatory_request *pending_request)
1659 {
1660 	struct wiphy *last_wiphy = NULL;
1661 
1662 	assert_cfg80211_lock();
1663 
1664 	/* All initial requests are respected */
1665 	if (!last_request)
1666 		return 0;
1667 
1668 	switch (pending_request->initiator) {
1669 	case NL80211_REGDOM_SET_BY_CORE:
1670 		return 0;
1671 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1672 
1673 		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1674 
1675 		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1676 			return -EINVAL;
1677 		if (last_request->initiator ==
1678 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1679 			if (last_wiphy != wiphy) {
1680 				/*
1681 				 * Two cards with two APs claiming different
1682 				 * Country IE alpha2s. We could
1683 				 * intersect them, but that seems unlikely
1684 				 * to be correct. Reject second one for now.
1685 				 */
1686 				if (regdom_changes(pending_request->alpha2))
1687 					return -EOPNOTSUPP;
1688 				return -EALREADY;
1689 			}
1690 			/*
1691 			 * Two consecutive Country IE hints on the same wiphy.
1692 			 * This should be picked up early by the driver/stack
1693 			 */
1694 			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1695 				return 0;
1696 			return -EALREADY;
1697 		}
1698 		return REG_INTERSECT;
1699 	case NL80211_REGDOM_SET_BY_DRIVER:
1700 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1701 			if (regdom_changes(pending_request->alpha2))
1702 				return 0;
1703 			return -EALREADY;
1704 		}
1705 
1706 		/*
1707 		 * This would happen if you unplug and plug your card
1708 		 * back in or if you add a new device for which the previously
1709 		 * loaded card also agrees on the regulatory domain.
1710 		 */
1711 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1712 		    !regdom_changes(pending_request->alpha2))
1713 			return -EALREADY;
1714 
1715 		return REG_INTERSECT;
1716 	case NL80211_REGDOM_SET_BY_USER:
1717 		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1718 			return REG_INTERSECT;
1719 		/*
1720 		 * If the user knows better the user should set the regdom
1721 		 * to their country before the IE is picked up
1722 		 */
1723 		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1724 			  last_request->intersect)
1725 			return -EOPNOTSUPP;
1726 		/*
1727 		 * Process user requests only after previous user/driver/core
1728 		 * requests have been processed
1729 		 */
1730 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1731 		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1732 		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1733 			if (regdom_changes(last_request->alpha2))
1734 				return -EAGAIN;
1735 		}
1736 
1737 		if (!regdom_changes(pending_request->alpha2))
1738 			return -EALREADY;
1739 
1740 		return 0;
1741 	}
1742 
1743 	return -EINVAL;
1744 }
1745 
1746 /**
1747  * __regulatory_hint - hint to the wireless core a regulatory domain
1748  * @wiphy: if the hint comes from country information from an AP, this
1749  *	is required to be set to the wiphy that received the information
1750  * @pending_request: the regulatory request currently being processed
1751  *
1752  * The Wireless subsystem can use this function to hint to the wireless core
1753  * what it believes should be the current regulatory domain.
1754  *
1755  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1756  * already been set or other standard error codes.
1757  *
1758  * Caller must hold &cfg80211_mutex and &reg_mutex
1759  */
1760 static int __regulatory_hint(struct wiphy *wiphy,
1761 			     struct regulatory_request *pending_request)
1762 {
1763 	bool intersect = false;
1764 	int r = 0;
1765 
1766 	assert_cfg80211_lock();
1767 
1768 	r = ignore_request(wiphy, pending_request);
1769 
1770 	if (r == REG_INTERSECT) {
1771 		if (pending_request->initiator ==
1772 		    NL80211_REGDOM_SET_BY_DRIVER) {
1773 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1774 			if (r) {
1775 				kfree(pending_request);
1776 				return r;
1777 			}
1778 		}
1779 		intersect = true;
1780 	} else if (r) {
1781 		/*
1782 		 * If the regulatory domain being requested by the
1783 		 * driver has already been set just copy it to the
1784 		 * wiphy
1785 		 */
1786 		if (r == -EALREADY &&
1787 		    pending_request->initiator ==
1788 		    NL80211_REGDOM_SET_BY_DRIVER) {
1789 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1790 			if (r) {
1791 				kfree(pending_request);
1792 				return r;
1793 			}
1794 			r = -EALREADY;
1795 			goto new_request;
1796 		}
1797 		kfree(pending_request);
1798 		return r;
1799 	}
1800 
1801 new_request:
1802 	kfree(last_request);
1803 
1804 	last_request = pending_request;
1805 	last_request->intersect = intersect;
1806 
1807 	pending_request = NULL;
1808 
1809 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1810 		user_alpha2[0] = last_request->alpha2[0];
1811 		user_alpha2[1] = last_request->alpha2[1];
1812 	}
1813 
1814 	/* When r == REG_INTERSECT we do need to call CRDA */
1815 	if (r < 0) {
1816 		/*
1817 		 * Since CRDA will not be called in this case as we already
1818 		 * have applied the requested regulatory domain before we just
1819 		 * inform userspace we have processed the request
1820 		 */
1821 		if (r == -EALREADY)
1822 			nl80211_send_reg_change_event(last_request);
1823 		return r;
1824 	}
1825 
1826 	return call_crda(last_request->alpha2);
1827 }
1828 
1829 /* This processes *all* regulatory hints */
1830 static void reg_process_hint(struct regulatory_request *reg_request)
1831 {
1832 	int r = 0;
1833 	struct wiphy *wiphy = NULL;
1834 
1835 	BUG_ON(!reg_request->alpha2);
1836 
1837 	mutex_lock(&cfg80211_mutex);
1838 	mutex_lock(&reg_mutex);
1839 
1840 	if (wiphy_idx_valid(reg_request->wiphy_idx))
1841 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1842 
1843 	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1844 	    !wiphy) {
1845 		kfree(reg_request);
1846 		goto out;
1847 	}
1848 
1849 	r = __regulatory_hint(wiphy, reg_request);
1850 	/* This is required so that the orig_* parameters are saved */
1851 	if (r == -EALREADY && wiphy &&
1852 	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1853 		wiphy_update_regulatory(wiphy, reg_request->initiator);
1854 out:
1855 	mutex_unlock(&reg_mutex);
1856 	mutex_unlock(&cfg80211_mutex);
1857 }
1858 
1859 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1860 static void reg_process_pending_hints(void)
1861 	{
1862 	struct regulatory_request *reg_request;
1863 
1864 	spin_lock(&reg_requests_lock);
1865 	while (!list_empty(&reg_requests_list)) {
1866 		reg_request = list_first_entry(&reg_requests_list,
1867 					       struct regulatory_request,
1868 					       list);
1869 		list_del_init(&reg_request->list);
1870 
1871 		spin_unlock(&reg_requests_lock);
1872 		reg_process_hint(reg_request);
1873 		spin_lock(&reg_requests_lock);
1874 	}
1875 	spin_unlock(&reg_requests_lock);
1876 }
1877 
1878 /* Processes beacon hints -- this has nothing to do with country IEs */
1879 static void reg_process_pending_beacon_hints(void)
1880 {
1881 	struct cfg80211_registered_device *rdev;
1882 	struct reg_beacon *pending_beacon, *tmp;
1883 
1884 	/*
1885 	 * No need to hold the reg_mutex here as we just touch wiphys
1886 	 * and do not read or access regulatory variables.
1887 	 */
1888 	mutex_lock(&cfg80211_mutex);
1889 
1890 	/* This goes through the _pending_ beacon list */
1891 	spin_lock_bh(&reg_pending_beacons_lock);
1892 
1893 	if (list_empty(&reg_pending_beacons)) {
1894 		spin_unlock_bh(&reg_pending_beacons_lock);
1895 		goto out;
1896 	}
1897 
1898 	list_for_each_entry_safe(pending_beacon, tmp,
1899 				 &reg_pending_beacons, list) {
1900 
1901 		list_del_init(&pending_beacon->list);
1902 
1903 		/* Applies the beacon hint to current wiphys */
1904 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1905 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1906 
1907 		/* Remembers the beacon hint for new wiphys or reg changes */
1908 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1909 	}
1910 
1911 	spin_unlock_bh(&reg_pending_beacons_lock);
1912 out:
1913 	mutex_unlock(&cfg80211_mutex);
1914 }
1915 
1916 static void reg_todo(struct work_struct *work)
1917 {
1918 	reg_process_pending_hints();
1919 	reg_process_pending_beacon_hints();
1920 }
1921 
1922 static DECLARE_WORK(reg_work, reg_todo);
1923 
1924 static void queue_regulatory_request(struct regulatory_request *request)
1925 {
1926 	spin_lock(&reg_requests_lock);
1927 	list_add_tail(&request->list, &reg_requests_list);
1928 	spin_unlock(&reg_requests_lock);
1929 
1930 	schedule_work(&reg_work);
1931 }
1932 
1933 /*
1934  * Core regulatory hint -- happens during cfg80211_init()
1935  * and when we restore regulatory settings.
1936  */
1937 static int regulatory_hint_core(const char *alpha2)
1938 {
1939 	struct regulatory_request *request;
1940 
1941 	kfree(last_request);
1942 	last_request = NULL;
1943 
1944 	request = kzalloc(sizeof(struct regulatory_request),
1945 			  GFP_KERNEL);
1946 	if (!request)
1947 		return -ENOMEM;
1948 
1949 	request->alpha2[0] = alpha2[0];
1950 	request->alpha2[1] = alpha2[1];
1951 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1952 
1953 	/*
1954 	 * This ensures last_request is populated once modules
1955 	 * come swinging in and calling regulatory hints and
1956 	 * wiphy_apply_custom_regulatory().
1957 	 */
1958 	reg_process_hint(request);
1959 
1960 	return 0;
1961 }
1962 
1963 /* User hints */
1964 int regulatory_hint_user(const char *alpha2)
1965 {
1966 	struct regulatory_request *request;
1967 
1968 	BUG_ON(!alpha2);
1969 
1970 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1971 	if (!request)
1972 		return -ENOMEM;
1973 
1974 	request->wiphy_idx = WIPHY_IDX_STALE;
1975 	request->alpha2[0] = alpha2[0];
1976 	request->alpha2[1] = alpha2[1];
1977 	request->initiator = NL80211_REGDOM_SET_BY_USER;
1978 
1979 	queue_regulatory_request(request);
1980 
1981 	return 0;
1982 }
1983 
1984 /* Driver hints */
1985 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1986 {
1987 	struct regulatory_request *request;
1988 
1989 	BUG_ON(!alpha2);
1990 	BUG_ON(!wiphy);
1991 
1992 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1993 	if (!request)
1994 		return -ENOMEM;
1995 
1996 	request->wiphy_idx = get_wiphy_idx(wiphy);
1997 
1998 	/* Must have registered wiphy first */
1999 	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
2000 
2001 	request->alpha2[0] = alpha2[0];
2002 	request->alpha2[1] = alpha2[1];
2003 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2004 
2005 	queue_regulatory_request(request);
2006 
2007 	return 0;
2008 }
2009 EXPORT_SYMBOL(regulatory_hint);
2010 
2011 /* Caller must hold reg_mutex */
2012 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
2013 			u32 country_ie_checksum)
2014 {
2015 	struct wiphy *request_wiphy;
2016 
2017 	assert_reg_lock();
2018 
2019 	if (unlikely(last_request->initiator !=
2020 	    NL80211_REGDOM_SET_BY_COUNTRY_IE))
2021 		return false;
2022 
2023 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2024 
2025 	if (!request_wiphy)
2026 		return false;
2027 
2028 	if (likely(request_wiphy != wiphy))
2029 		return !country_ie_integrity_changes(country_ie_checksum);
2030 	/*
2031 	 * We should not have let these through at this point, they
2032 	 * should have been picked up earlier by the first alpha2 check
2033 	 * on the device
2034 	 */
2035 	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
2036 		return true;
2037 	return false;
2038 }
2039 
2040 /*
2041  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
2042  * therefore cannot iterate over the rdev list here.
2043  */
2044 void regulatory_hint_11d(struct wiphy *wiphy,
2045 			 enum ieee80211_band band,
2046 			 u8 *country_ie,
2047 			 u8 country_ie_len)
2048 {
2049 	struct ieee80211_regdomain *rd = NULL;
2050 	char alpha2[2];
2051 	u32 checksum = 0;
2052 	enum environment_cap env = ENVIRON_ANY;
2053 	struct regulatory_request *request;
2054 
2055 	mutex_lock(&reg_mutex);
2056 
2057 	if (unlikely(!last_request))
2058 		goto out;
2059 
2060 	/* IE len must be evenly divisible by 2 */
2061 	if (country_ie_len & 0x01)
2062 		goto out;
2063 
2064 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2065 		goto out;
2066 
2067 	/*
2068 	 * Pending country IE processing, this can happen after we
2069 	 * call CRDA and wait for a response if a beacon was received before
2070 	 * we were able to process the last regulatory_hint_11d() call
2071 	 */
2072 	if (country_ie_regdomain)
2073 		goto out;
2074 
2075 	alpha2[0] = country_ie[0];
2076 	alpha2[1] = country_ie[1];
2077 
2078 	if (country_ie[2] == 'I')
2079 		env = ENVIRON_INDOOR;
2080 	else if (country_ie[2] == 'O')
2081 		env = ENVIRON_OUTDOOR;
2082 
2083 	/*
2084 	 * We will run this only upon a successful connection on cfg80211.
2085 	 * We leave conflict resolution to the workqueue, where can hold
2086 	 * cfg80211_mutex.
2087 	 */
2088 	if (likely(last_request->initiator ==
2089 	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2090 	    wiphy_idx_valid(last_request->wiphy_idx)))
2091 		goto out;
2092 
2093 	rd = country_ie_2_rd(band, country_ie, country_ie_len, &checksum);
2094 	if (!rd) {
2095 		REG_DBG_PRINT("cfg80211: Ignoring bogus country IE\n");
2096 		goto out;
2097 	}
2098 
2099 	/*
2100 	 * This will not happen right now but we leave it here for the
2101 	 * the future when we want to add suspend/resume support and having
2102 	 * the user move to another country after doing so, or having the user
2103 	 * move to another AP. Right now we just trust the first AP.
2104 	 *
2105 	 * If we hit this before we add this support we want to be informed of
2106 	 * it as it would indicate a mistake in the current design
2107 	 */
2108 	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
2109 		goto free_rd_out;
2110 
2111 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2112 	if (!request)
2113 		goto free_rd_out;
2114 
2115 	/*
2116 	 * We keep this around for when CRDA comes back with a response so
2117 	 * we can intersect with that
2118 	 */
2119 	country_ie_regdomain = rd;
2120 
2121 	request->wiphy_idx = get_wiphy_idx(wiphy);
2122 	request->alpha2[0] = rd->alpha2[0];
2123 	request->alpha2[1] = rd->alpha2[1];
2124 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2125 	request->country_ie_checksum = checksum;
2126 	request->country_ie_env = env;
2127 
2128 	mutex_unlock(&reg_mutex);
2129 
2130 	queue_regulatory_request(request);
2131 
2132 	return;
2133 
2134 free_rd_out:
2135 	kfree(rd);
2136 out:
2137 	mutex_unlock(&reg_mutex);
2138 }
2139 
2140 static void restore_alpha2(char *alpha2, bool reset_user)
2141 {
2142 	/* indicates there is no alpha2 to consider for restoration */
2143 	alpha2[0] = '9';
2144 	alpha2[1] = '7';
2145 
2146 	/* The user setting has precedence over the module parameter */
2147 	if (is_user_regdom_saved()) {
2148 		/* Unless we're asked to ignore it and reset it */
2149 		if (reset_user) {
2150 			REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
2151 			       "including user preference\n");
2152 			user_alpha2[0] = '9';
2153 			user_alpha2[1] = '7';
2154 
2155 			/*
2156 			 * If we're ignoring user settings, we still need to
2157 			 * check the module parameter to ensure we put things
2158 			 * back as they were for a full restore.
2159 			 */
2160 			if (!is_world_regdom(ieee80211_regdom)) {
2161 				REG_DBG_PRINT("cfg80211: Keeping preference on "
2162 				       "module parameter ieee80211_regdom: %c%c\n",
2163 				       ieee80211_regdom[0],
2164 				       ieee80211_regdom[1]);
2165 				alpha2[0] = ieee80211_regdom[0];
2166 				alpha2[1] = ieee80211_regdom[1];
2167 			}
2168 		} else {
2169 			REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
2170 			       "while preserving user preference for: %c%c\n",
2171 			       user_alpha2[0],
2172 			       user_alpha2[1]);
2173 			alpha2[0] = user_alpha2[0];
2174 			alpha2[1] = user_alpha2[1];
2175 		}
2176 	} else if (!is_world_regdom(ieee80211_regdom)) {
2177 		REG_DBG_PRINT("cfg80211: Keeping preference on "
2178 		       "module parameter ieee80211_regdom: %c%c\n",
2179 		       ieee80211_regdom[0],
2180 		       ieee80211_regdom[1]);
2181 		alpha2[0] = ieee80211_regdom[0];
2182 		alpha2[1] = ieee80211_regdom[1];
2183 	} else
2184 		REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
2185 }
2186 
2187 /*
2188  * Restoring regulatory settings involves ingoring any
2189  * possibly stale country IE information and user regulatory
2190  * settings if so desired, this includes any beacon hints
2191  * learned as we could have traveled outside to another country
2192  * after disconnection. To restore regulatory settings we do
2193  * exactly what we did at bootup:
2194  *
2195  *   - send a core regulatory hint
2196  *   - send a user regulatory hint if applicable
2197  *
2198  * Device drivers that send a regulatory hint for a specific country
2199  * keep their own regulatory domain on wiphy->regd so that does does
2200  * not need to be remembered.
2201  */
2202 static void restore_regulatory_settings(bool reset_user)
2203 {
2204 	char alpha2[2];
2205 	struct reg_beacon *reg_beacon, *btmp;
2206 
2207 	mutex_lock(&cfg80211_mutex);
2208 	mutex_lock(&reg_mutex);
2209 
2210 	reset_regdomains();
2211 	restore_alpha2(alpha2, reset_user);
2212 
2213 	/* Clear beacon hints */
2214 	spin_lock_bh(&reg_pending_beacons_lock);
2215 	if (!list_empty(&reg_pending_beacons)) {
2216 		list_for_each_entry_safe(reg_beacon, btmp,
2217 					 &reg_pending_beacons, list) {
2218 			list_del(&reg_beacon->list);
2219 			kfree(reg_beacon);
2220 		}
2221 	}
2222 	spin_unlock_bh(&reg_pending_beacons_lock);
2223 
2224 	if (!list_empty(&reg_beacon_list)) {
2225 		list_for_each_entry_safe(reg_beacon, btmp,
2226 					 &reg_beacon_list, list) {
2227 			list_del(&reg_beacon->list);
2228 			kfree(reg_beacon);
2229 		}
2230 	}
2231 
2232 	/* First restore to the basic regulatory settings */
2233 	cfg80211_regdomain = cfg80211_world_regdom;
2234 
2235 	mutex_unlock(&reg_mutex);
2236 	mutex_unlock(&cfg80211_mutex);
2237 
2238 	regulatory_hint_core(cfg80211_regdomain->alpha2);
2239 
2240 	/*
2241 	 * This restores the ieee80211_regdom module parameter
2242 	 * preference or the last user requested regulatory
2243 	 * settings, user regulatory settings takes precedence.
2244 	 */
2245 	if (is_an_alpha2(alpha2))
2246 		regulatory_hint_user(user_alpha2);
2247 }
2248 
2249 
2250 void regulatory_hint_disconnect(void)
2251 {
2252 	REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
2253 		      "restore regulatory settings\n");
2254 	restore_regulatory_settings(false);
2255 }
2256 
2257 static bool freq_is_chan_12_13_14(u16 freq)
2258 {
2259 	if (freq == ieee80211_channel_to_frequency(12) ||
2260 	    freq == ieee80211_channel_to_frequency(13) ||
2261 	    freq == ieee80211_channel_to_frequency(14))
2262 		return true;
2263 	return false;
2264 }
2265 
2266 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2267 				 struct ieee80211_channel *beacon_chan,
2268 				 gfp_t gfp)
2269 {
2270 	struct reg_beacon *reg_beacon;
2271 
2272 	if (likely((beacon_chan->beacon_found ||
2273 	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
2274 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2275 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
2276 		return 0;
2277 
2278 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2279 	if (!reg_beacon)
2280 		return -ENOMEM;
2281 
2282 	REG_DBG_PRINT("cfg80211: Found new beacon on "
2283 		      "frequency: %d MHz (Ch %d) on %s\n",
2284 		      beacon_chan->center_freq,
2285 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
2286 		      wiphy_name(wiphy));
2287 
2288 	memcpy(&reg_beacon->chan, beacon_chan,
2289 		sizeof(struct ieee80211_channel));
2290 
2291 
2292 	/*
2293 	 * Since we can be called from BH or and non-BH context
2294 	 * we must use spin_lock_bh()
2295 	 */
2296 	spin_lock_bh(&reg_pending_beacons_lock);
2297 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2298 	spin_unlock_bh(&reg_pending_beacons_lock);
2299 
2300 	schedule_work(&reg_work);
2301 
2302 	return 0;
2303 }
2304 
2305 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2306 {
2307 	unsigned int i;
2308 	const struct ieee80211_reg_rule *reg_rule = NULL;
2309 	const struct ieee80211_freq_range *freq_range = NULL;
2310 	const struct ieee80211_power_rule *power_rule = NULL;
2311 
2312 	printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
2313 		"(max_antenna_gain, max_eirp)\n");
2314 
2315 	for (i = 0; i < rd->n_reg_rules; i++) {
2316 		reg_rule = &rd->reg_rules[i];
2317 		freq_range = &reg_rule->freq_range;
2318 		power_rule = &reg_rule->power_rule;
2319 
2320 		/*
2321 		 * There may not be documentation for max antenna gain
2322 		 * in certain regions
2323 		 */
2324 		if (power_rule->max_antenna_gain)
2325 			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2326 				"(%d mBi, %d mBm)\n",
2327 				freq_range->start_freq_khz,
2328 				freq_range->end_freq_khz,
2329 				freq_range->max_bandwidth_khz,
2330 				power_rule->max_antenna_gain,
2331 				power_rule->max_eirp);
2332 		else
2333 			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2334 				"(N/A, %d mBm)\n",
2335 				freq_range->start_freq_khz,
2336 				freq_range->end_freq_khz,
2337 				freq_range->max_bandwidth_khz,
2338 				power_rule->max_eirp);
2339 	}
2340 }
2341 
2342 static void print_regdomain(const struct ieee80211_regdomain *rd)
2343 {
2344 
2345 	if (is_intersected_alpha2(rd->alpha2)) {
2346 
2347 		if (last_request->initiator ==
2348 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2349 			struct cfg80211_registered_device *rdev;
2350 			rdev = cfg80211_rdev_by_wiphy_idx(
2351 				last_request->wiphy_idx);
2352 			if (rdev) {
2353 				printk(KERN_INFO "cfg80211: Current regulatory "
2354 					"domain updated by AP to: %c%c\n",
2355 					rdev->country_ie_alpha2[0],
2356 					rdev->country_ie_alpha2[1]);
2357 			} else
2358 				printk(KERN_INFO "cfg80211: Current regulatory "
2359 					"domain intersected: \n");
2360 		} else
2361 				printk(KERN_INFO "cfg80211: Current regulatory "
2362 					"domain intersected: \n");
2363 	} else if (is_world_regdom(rd->alpha2))
2364 		printk(KERN_INFO "cfg80211: World regulatory "
2365 			"domain updated:\n");
2366 	else {
2367 		if (is_unknown_alpha2(rd->alpha2))
2368 			printk(KERN_INFO "cfg80211: Regulatory domain "
2369 				"changed to driver built-in settings "
2370 				"(unknown country)\n");
2371 		else
2372 			printk(KERN_INFO "cfg80211: Regulatory domain "
2373 				"changed to country: %c%c\n",
2374 				rd->alpha2[0], rd->alpha2[1]);
2375 	}
2376 	print_rd_rules(rd);
2377 }
2378 
2379 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2380 {
2381 	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
2382 		rd->alpha2[0], rd->alpha2[1]);
2383 	print_rd_rules(rd);
2384 }
2385 
2386 #ifdef CONFIG_CFG80211_REG_DEBUG
2387 static void reg_country_ie_process_debug(
2388 	const struct ieee80211_regdomain *rd,
2389 	const struct ieee80211_regdomain *country_ie_regdomain,
2390 	const struct ieee80211_regdomain *intersected_rd)
2391 {
2392 	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
2393 	print_regdomain_info(country_ie_regdomain);
2394 	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
2395 	print_regdomain_info(rd);
2396 	if (intersected_rd) {
2397 		printk(KERN_DEBUG "cfg80211: We intersect both of these "
2398 			"and get:\n");
2399 		print_regdomain_info(intersected_rd);
2400 		return;
2401 	}
2402 	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2403 }
2404 #else
2405 static inline void reg_country_ie_process_debug(
2406 	const struct ieee80211_regdomain *rd,
2407 	const struct ieee80211_regdomain *country_ie_regdomain,
2408 	const struct ieee80211_regdomain *intersected_rd)
2409 {
2410 }
2411 #endif
2412 
2413 /* Takes ownership of rd only if it doesn't fail */
2414 static int __set_regdom(const struct ieee80211_regdomain *rd)
2415 {
2416 	const struct ieee80211_regdomain *intersected_rd = NULL;
2417 	struct cfg80211_registered_device *rdev = NULL;
2418 	struct wiphy *request_wiphy;
2419 	/* Some basic sanity checks first */
2420 
2421 	if (is_world_regdom(rd->alpha2)) {
2422 		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2423 			return -EINVAL;
2424 		update_world_regdomain(rd);
2425 		return 0;
2426 	}
2427 
2428 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2429 			!is_unknown_alpha2(rd->alpha2))
2430 		return -EINVAL;
2431 
2432 	if (!last_request)
2433 		return -EINVAL;
2434 
2435 	/*
2436 	 * Lets only bother proceeding on the same alpha2 if the current
2437 	 * rd is non static (it means CRDA was present and was used last)
2438 	 * and the pending request came in from a country IE
2439 	 */
2440 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2441 		/*
2442 		 * If someone else asked us to change the rd lets only bother
2443 		 * checking if the alpha2 changes if CRDA was already called
2444 		 */
2445 		if (!regdom_changes(rd->alpha2))
2446 			return -EINVAL;
2447 	}
2448 
2449 	/*
2450 	 * Now lets set the regulatory domain, update all driver channels
2451 	 * and finally inform them of what we have done, in case they want
2452 	 * to review or adjust their own settings based on their own
2453 	 * internal EEPROM data
2454 	 */
2455 
2456 	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2457 		return -EINVAL;
2458 
2459 	if (!is_valid_rd(rd)) {
2460 		printk(KERN_ERR "cfg80211: Invalid "
2461 			"regulatory domain detected:\n");
2462 		print_regdomain_info(rd);
2463 		return -EINVAL;
2464 	}
2465 
2466 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2467 
2468 	if (!last_request->intersect) {
2469 		int r;
2470 
2471 		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2472 			reset_regdomains();
2473 			cfg80211_regdomain = rd;
2474 			return 0;
2475 		}
2476 
2477 		/*
2478 		 * For a driver hint, lets copy the regulatory domain the
2479 		 * driver wanted to the wiphy to deal with conflicts
2480 		 */
2481 
2482 		/*
2483 		 * Userspace could have sent two replies with only
2484 		 * one kernel request.
2485 		 */
2486 		if (request_wiphy->regd)
2487 			return -EALREADY;
2488 
2489 		r = reg_copy_regd(&request_wiphy->regd, rd);
2490 		if (r)
2491 			return r;
2492 
2493 		reset_regdomains();
2494 		cfg80211_regdomain = rd;
2495 		return 0;
2496 	}
2497 
2498 	/* Intersection requires a bit more work */
2499 
2500 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2501 
2502 		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2503 		if (!intersected_rd)
2504 			return -EINVAL;
2505 
2506 		/*
2507 		 * We can trash what CRDA provided now.
2508 		 * However if a driver requested this specific regulatory
2509 		 * domain we keep it for its private use
2510 		 */
2511 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2512 			request_wiphy->regd = rd;
2513 		else
2514 			kfree(rd);
2515 
2516 		rd = NULL;
2517 
2518 		reset_regdomains();
2519 		cfg80211_regdomain = intersected_rd;
2520 
2521 		return 0;
2522 	}
2523 
2524 	/*
2525 	 * Country IE requests are handled a bit differently, we intersect
2526 	 * the country IE rd with what CRDA believes that country should have
2527 	 */
2528 
2529 	/*
2530 	 * Userspace could have sent two replies with only
2531 	 * one kernel request. By the second reply we would have
2532 	 * already processed and consumed the country_ie_regdomain.
2533 	 */
2534 	if (!country_ie_regdomain)
2535 		return -EALREADY;
2536 	BUG_ON(rd == country_ie_regdomain);
2537 
2538 	/*
2539 	 * Intersect what CRDA returned and our what we
2540 	 * had built from the Country IE received
2541 	 */
2542 
2543 	intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2544 
2545 	reg_country_ie_process_debug(rd,
2546 				     country_ie_regdomain,
2547 				     intersected_rd);
2548 
2549 	kfree(country_ie_regdomain);
2550 	country_ie_regdomain = NULL;
2551 
2552 	if (!intersected_rd)
2553 		return -EINVAL;
2554 
2555 	rdev = wiphy_to_dev(request_wiphy);
2556 
2557 	rdev->country_ie_alpha2[0] = rd->alpha2[0];
2558 	rdev->country_ie_alpha2[1] = rd->alpha2[1];
2559 	rdev->env = last_request->country_ie_env;
2560 
2561 	BUG_ON(intersected_rd == rd);
2562 
2563 	kfree(rd);
2564 	rd = NULL;
2565 
2566 	reset_regdomains();
2567 	cfg80211_regdomain = intersected_rd;
2568 
2569 	return 0;
2570 }
2571 
2572 
2573 /*
2574  * Use this call to set the current regulatory domain. Conflicts with
2575  * multiple drivers can be ironed out later. Caller must've already
2576  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2577  */
2578 int set_regdom(const struct ieee80211_regdomain *rd)
2579 {
2580 	int r;
2581 
2582 	assert_cfg80211_lock();
2583 
2584 	mutex_lock(&reg_mutex);
2585 
2586 	/* Note that this doesn't update the wiphys, this is done below */
2587 	r = __set_regdom(rd);
2588 	if (r) {
2589 		kfree(rd);
2590 		mutex_unlock(&reg_mutex);
2591 		return r;
2592 	}
2593 
2594 	/* This would make this whole thing pointless */
2595 	if (!last_request->intersect)
2596 		BUG_ON(rd != cfg80211_regdomain);
2597 
2598 	/* update all wiphys now with the new established regulatory domain */
2599 	update_all_wiphy_regulatory(last_request->initiator);
2600 
2601 	print_regdomain(cfg80211_regdomain);
2602 
2603 	nl80211_send_reg_change_event(last_request);
2604 
2605 	mutex_unlock(&reg_mutex);
2606 
2607 	return r;
2608 }
2609 
2610 /* Caller must hold cfg80211_mutex */
2611 void reg_device_remove(struct wiphy *wiphy)
2612 {
2613 	struct wiphy *request_wiphy = NULL;
2614 
2615 	assert_cfg80211_lock();
2616 
2617 	mutex_lock(&reg_mutex);
2618 
2619 	kfree(wiphy->regd);
2620 
2621 	if (last_request)
2622 		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2623 
2624 	if (!request_wiphy || request_wiphy != wiphy)
2625 		goto out;
2626 
2627 	last_request->wiphy_idx = WIPHY_IDX_STALE;
2628 	last_request->country_ie_env = ENVIRON_ANY;
2629 out:
2630 	mutex_unlock(&reg_mutex);
2631 }
2632 
2633 int regulatory_init(void)
2634 {
2635 	int err = 0;
2636 
2637 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2638 	if (IS_ERR(reg_pdev))
2639 		return PTR_ERR(reg_pdev);
2640 
2641 	spin_lock_init(&reg_requests_lock);
2642 	spin_lock_init(&reg_pending_beacons_lock);
2643 
2644 	cfg80211_regdomain = cfg80211_world_regdom;
2645 
2646 	user_alpha2[0] = '9';
2647 	user_alpha2[1] = '7';
2648 
2649 	/* We always try to get an update for the static regdomain */
2650 	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2651 	if (err) {
2652 		if (err == -ENOMEM)
2653 			return err;
2654 		/*
2655 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2656 		 * memory which is handled and propagated appropriately above
2657 		 * but it can also fail during a netlink_broadcast() or during
2658 		 * early boot for call_usermodehelper(). For now treat these
2659 		 * errors as non-fatal.
2660 		 */
2661 		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2662 			"to call CRDA during init");
2663 #ifdef CONFIG_CFG80211_REG_DEBUG
2664 		/* We want to find out exactly why when debugging */
2665 		WARN_ON(err);
2666 #endif
2667 	}
2668 
2669 	/*
2670 	 * Finally, if the user set the module parameter treat it
2671 	 * as a user hint.
2672 	 */
2673 	if (!is_world_regdom(ieee80211_regdom))
2674 		regulatory_hint_user(ieee80211_regdom);
2675 
2676 	return 0;
2677 }
2678 
2679 void regulatory_exit(void)
2680 {
2681 	struct regulatory_request *reg_request, *tmp;
2682 	struct reg_beacon *reg_beacon, *btmp;
2683 
2684 	cancel_work_sync(&reg_work);
2685 
2686 	mutex_lock(&cfg80211_mutex);
2687 	mutex_lock(&reg_mutex);
2688 
2689 	reset_regdomains();
2690 
2691 	kfree(country_ie_regdomain);
2692 	country_ie_regdomain = NULL;
2693 
2694 	kfree(last_request);
2695 
2696 	platform_device_unregister(reg_pdev);
2697 
2698 	spin_lock_bh(&reg_pending_beacons_lock);
2699 	if (!list_empty(&reg_pending_beacons)) {
2700 		list_for_each_entry_safe(reg_beacon, btmp,
2701 					 &reg_pending_beacons, list) {
2702 			list_del(&reg_beacon->list);
2703 			kfree(reg_beacon);
2704 		}
2705 	}
2706 	spin_unlock_bh(&reg_pending_beacons_lock);
2707 
2708 	if (!list_empty(&reg_beacon_list)) {
2709 		list_for_each_entry_safe(reg_beacon, btmp,
2710 					 &reg_beacon_list, list) {
2711 			list_del(&reg_beacon->list);
2712 			kfree(reg_beacon);
2713 		}
2714 	}
2715 
2716 	spin_lock(&reg_requests_lock);
2717 	if (!list_empty(&reg_requests_list)) {
2718 		list_for_each_entry_safe(reg_request, tmp,
2719 					 &reg_requests_list, list) {
2720 			list_del(&reg_request->list);
2721 			kfree(reg_request);
2722 		}
2723 	}
2724 	spin_unlock(&reg_requests_lock);
2725 
2726 	mutex_unlock(&reg_mutex);
2727 	mutex_unlock(&cfg80211_mutex);
2728 }
2729