xref: /linux/net/wireless/reg.c (revision 9f2c9170934eace462499ba0bfe042cc72900173)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2022 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137 
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140 	return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142 
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 	return rcu_dereference_check(wiphy->regd,
151 				     lockdep_is_held(&wiphy->mtx) ||
152 				     lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155 
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158 	switch (dfs_region) {
159 	case NL80211_DFS_UNSET:
160 		return "unset";
161 	case NL80211_DFS_FCC:
162 		return "FCC";
163 	case NL80211_DFS_ETSI:
164 		return "ETSI";
165 	case NL80211_DFS_JP:
166 		return "JP";
167 	}
168 	return "Unknown";
169 }
170 
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173 	const struct ieee80211_regdomain *regd = NULL;
174 	const struct ieee80211_regdomain *wiphy_regd = NULL;
175 	enum nl80211_dfs_regions dfs_region;
176 
177 	rcu_read_lock();
178 	regd = get_cfg80211_regdom();
179 	dfs_region = regd->dfs_region;
180 
181 	if (!wiphy)
182 		goto out;
183 
184 	wiphy_regd = get_wiphy_regdom(wiphy);
185 	if (!wiphy_regd)
186 		goto out;
187 
188 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 		dfs_region = wiphy_regd->dfs_region;
190 		goto out;
191 	}
192 
193 	if (wiphy_regd->dfs_region == regd->dfs_region)
194 		goto out;
195 
196 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 		 dev_name(&wiphy->dev),
198 		 reg_dfs_region_str(wiphy_regd->dfs_region),
199 		 reg_dfs_region_str(regd->dfs_region));
200 
201 out:
202 	rcu_read_unlock();
203 
204 	return dfs_region;
205 }
206 
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209 	if (!r)
210 		return;
211 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213 
214 static struct regulatory_request *get_last_request(void)
215 {
216 	return rcu_dereference_rtnl(last_request);
217 }
218 
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222 
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226 
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229 
230 struct reg_beacon {
231 	struct list_head list;
232 	struct ieee80211_channel chan;
233 };
234 
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237 
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240 
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243 	.n_reg_rules = 8,
244 	.alpha2 =  "00",
245 	.reg_rules = {
246 		/* IEEE 802.11b/g, channels 1..11 */
247 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 		/* IEEE 802.11b/g, channels 12..13. */
249 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 		/* IEEE 802.11 channel 14 - Only JP enables
252 		 * this and for 802.11b only */
253 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 			NL80211_RRF_NO_IR |
255 			NL80211_RRF_NO_OFDM),
256 		/* IEEE 802.11a, channel 36..48 */
257 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260 
261 		/* IEEE 802.11a, channel 52..64 - DFS required */
262 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 			NL80211_RRF_NO_IR |
264 			NL80211_RRF_AUTO_BW |
265 			NL80211_RRF_DFS),
266 
267 		/* IEEE 802.11a, channel 100..144 - DFS required */
268 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 			NL80211_RRF_NO_IR |
270 			NL80211_RRF_DFS),
271 
272 		/* IEEE 802.11a, channel 149..165 */
273 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 			NL80211_RRF_NO_IR),
275 
276 		/* IEEE 802.11ad (60GHz), channels 1..3 */
277 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 	}
279 };
280 
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 	&world_regdom;
284 
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288 
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291 
292 static void reg_free_request(struct regulatory_request *request)
293 {
294 	if (request == &core_request_world)
295 		return;
296 
297 	if (request != get_last_request())
298 		kfree(request);
299 }
300 
301 static void reg_free_last_request(void)
302 {
303 	struct regulatory_request *lr = get_last_request();
304 
305 	if (lr != &core_request_world && lr)
306 		kfree_rcu(lr, rcu_head);
307 }
308 
309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311 	struct regulatory_request *lr;
312 
313 	lr = get_last_request();
314 	if (lr == request)
315 		return;
316 
317 	reg_free_last_request();
318 	rcu_assign_pointer(last_request, request);
319 }
320 
321 static void reset_regdomains(bool full_reset,
322 			     const struct ieee80211_regdomain *new_regdom)
323 {
324 	const struct ieee80211_regdomain *r;
325 
326 	ASSERT_RTNL();
327 
328 	r = get_cfg80211_regdom();
329 
330 	/* avoid freeing static information or freeing something twice */
331 	if (r == cfg80211_world_regdom)
332 		r = NULL;
333 	if (cfg80211_world_regdom == &world_regdom)
334 		cfg80211_world_regdom = NULL;
335 	if (r == &world_regdom)
336 		r = NULL;
337 
338 	rcu_free_regdom(r);
339 	rcu_free_regdom(cfg80211_world_regdom);
340 
341 	cfg80211_world_regdom = &world_regdom;
342 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343 
344 	if (!full_reset)
345 		return;
346 
347 	reg_update_last_request(&core_request_world);
348 }
349 
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356 	struct regulatory_request *lr;
357 
358 	lr = get_last_request();
359 
360 	WARN_ON(!lr);
361 
362 	reset_regdomains(false, rd);
363 
364 	cfg80211_world_regdom = rd;
365 }
366 
367 bool is_world_regdom(const char *alpha2)
368 {
369 	if (!alpha2)
370 		return false;
371 	return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373 
374 static bool is_alpha2_set(const char *alpha2)
375 {
376 	if (!alpha2)
377 		return false;
378 	return alpha2[0] && alpha2[1];
379 }
380 
381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383 	if (!alpha2)
384 		return false;
385 	/*
386 	 * Special case where regulatory domain was built by driver
387 	 * but a specific alpha2 cannot be determined
388 	 */
389 	return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391 
392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394 	if (!alpha2)
395 		return false;
396 	/*
397 	 * Special case where regulatory domain is the
398 	 * result of an intersection between two regulatory domain
399 	 * structures
400 	 */
401 	return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403 
404 static bool is_an_alpha2(const char *alpha2)
405 {
406 	if (!alpha2)
407 		return false;
408 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410 
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413 	if (!alpha2_x || !alpha2_y)
414 		return false;
415 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417 
418 static bool regdom_changes(const char *alpha2)
419 {
420 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421 
422 	if (!r)
423 		return true;
424 	return !alpha2_equal(r->alpha2, alpha2);
425 }
426 
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
432 static bool is_user_regdom_saved(void)
433 {
434 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 		return false;
436 
437 	/* This would indicate a mistake on the design */
438 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 		 "Unexpected user alpha2: %c%c\n",
440 		 user_alpha2[0], user_alpha2[1]))
441 		return false;
442 
443 	return true;
444 }
445 
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449 	struct ieee80211_regdomain *regd;
450 	unsigned int i;
451 
452 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 		       GFP_KERNEL);
454 	if (!regd)
455 		return ERR_PTR(-ENOMEM);
456 
457 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458 
459 	for (i = 0; i < src_regd->n_reg_rules; i++)
460 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461 		       sizeof(struct ieee80211_reg_rule));
462 
463 	return regd;
464 }
465 
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468 	ASSERT_RTNL();
469 
470 	if (!IS_ERR(cfg80211_user_regdom))
471 		kfree(cfg80211_user_regdom);
472 	cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474 
475 struct reg_regdb_apply_request {
476 	struct list_head list;
477 	const struct ieee80211_regdomain *regdom;
478 };
479 
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482 
483 static void reg_regdb_apply(struct work_struct *work)
484 {
485 	struct reg_regdb_apply_request *request;
486 
487 	rtnl_lock();
488 
489 	mutex_lock(&reg_regdb_apply_mutex);
490 	while (!list_empty(&reg_regdb_apply_list)) {
491 		request = list_first_entry(&reg_regdb_apply_list,
492 					   struct reg_regdb_apply_request,
493 					   list);
494 		list_del(&request->list);
495 
496 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 		kfree(request);
498 	}
499 	mutex_unlock(&reg_regdb_apply_mutex);
500 
501 	rtnl_unlock();
502 }
503 
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505 
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508 	struct reg_regdb_apply_request *request;
509 
510 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 	if (!request) {
512 		kfree(regdom);
513 		return -ENOMEM;
514 	}
515 
516 	request->regdom = regdom;
517 
518 	mutex_lock(&reg_regdb_apply_mutex);
519 	list_add_tail(&request->list, &reg_regdb_apply_list);
520 	mutex_unlock(&reg_regdb_apply_mutex);
521 
522 	schedule_work(&reg_regdb_work);
523 	return 0;
524 }
525 
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529 
530 static u32 reg_crda_timeouts;
531 
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534 
535 static void crda_timeout_work(struct work_struct *work)
536 {
537 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 	rtnl_lock();
539 	reg_crda_timeouts++;
540 	restore_regulatory_settings(true, false);
541 	rtnl_unlock();
542 }
543 
544 static void cancel_crda_timeout(void)
545 {
546 	cancel_delayed_work(&crda_timeout);
547 }
548 
549 static void cancel_crda_timeout_sync(void)
550 {
551 	cancel_delayed_work_sync(&crda_timeout);
552 }
553 
554 static void reset_crda_timeouts(void)
555 {
556 	reg_crda_timeouts = 0;
557 }
558 
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565 	char country[12];
566 	char *env[] = { country, NULL };
567 	int ret;
568 
569 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 		 alpha2[0], alpha2[1]);
571 
572 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 		return -EINVAL;
575 	}
576 
577 	if (!is_world_regdom((char *) alpha2))
578 		pr_debug("Calling CRDA for country: %c%c\n",
579 			 alpha2[0], alpha2[1]);
580 	else
581 		pr_debug("Calling CRDA to update world regulatory domain\n");
582 
583 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584 	if (ret)
585 		return ret;
586 
587 	queue_delayed_work(system_power_efficient_wq,
588 			   &crda_timeout, msecs_to_jiffies(3142));
589 	return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597 	return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600 
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603 
604 struct fwdb_country {
605 	u8 alpha2[2];
606 	__be16 coll_ptr;
607 	/* this struct cannot be extended */
608 } __packed __aligned(4);
609 
610 struct fwdb_collection {
611 	u8 len;
612 	u8 n_rules;
613 	u8 dfs_region;
614 	/* no optional data yet */
615 	/* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617 
618 enum fwdb_flags {
619 	FWDB_FLAG_NO_OFDM	= BIT(0),
620 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
621 	FWDB_FLAG_DFS		= BIT(2),
622 	FWDB_FLAG_NO_IR		= BIT(3),
623 	FWDB_FLAG_AUTO_BW	= BIT(4),
624 };
625 
626 struct fwdb_wmm_ac {
627 	u8 ecw;
628 	u8 aifsn;
629 	__be16 cot;
630 } __packed;
631 
632 struct fwdb_wmm_rule {
633 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636 
637 struct fwdb_rule {
638 	u8 len;
639 	u8 flags;
640 	__be16 max_eirp;
641 	__be32 start, end, max_bw;
642 	/* start of optional data */
643 	__be16 cac_timeout;
644 	__be16 wmm_ptr;
645 } __packed __aligned(4);
646 
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649 
650 struct fwdb_header {
651 	__be32 magic;
652 	__be32 version;
653 	struct fwdb_country country[];
654 } __packed __aligned(4);
655 
656 static int ecw2cw(int ecw)
657 {
658 	return (1 << ecw) - 1;
659 }
660 
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 	int i;
665 
666 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 		u8 aifsn = ac[i].aifsn;
670 
671 		if (cw_min >= cw_max)
672 			return false;
673 
674 		if (aifsn < 1)
675 			return false;
676 	}
677 
678 	return true;
679 }
680 
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684 
685 	if ((u8 *)rule + sizeof(rule->len) > data + size)
686 		return false;
687 
688 	/* mandatory fields */
689 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 		return false;
691 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 		struct fwdb_wmm_rule *wmm;
694 
695 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 			return false;
697 
698 		wmm = (void *)(data + wmm_ptr);
699 
700 		if (!valid_wmm(wmm))
701 			return false;
702 	}
703 	return true;
704 }
705 
706 static bool valid_country(const u8 *data, unsigned int size,
707 			  const struct fwdb_country *country)
708 {
709 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 	struct fwdb_collection *coll = (void *)(data + ptr);
711 	__be16 *rules_ptr;
712 	unsigned int i;
713 
714 	/* make sure we can read len/n_rules */
715 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 		return false;
717 
718 	/* make sure base struct and all rules fit */
719 	if ((u8 *)coll + ALIGN(coll->len, 2) +
720 	    (coll->n_rules * 2) > data + size)
721 		return false;
722 
723 	/* mandatory fields must exist */
724 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 		return false;
726 
727 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728 
729 	for (i = 0; i < coll->n_rules; i++) {
730 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731 
732 		if (!valid_rule(data, size, rule_ptr))
733 			return false;
734 	}
735 
736 	return true;
737 }
738 
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 static struct key *builtin_regdb_keys;
741 
742 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
743 {
744 	const u8 *end = p + buflen;
745 	size_t plen;
746 	key_ref_t key;
747 
748 	while (p < end) {
749 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
750 		 * than 256 bytes in size.
751 		 */
752 		if (end - p < 4)
753 			goto dodgy_cert;
754 		if (p[0] != 0x30 &&
755 		    p[1] != 0x82)
756 			goto dodgy_cert;
757 		plen = (p[2] << 8) | p[3];
758 		plen += 4;
759 		if (plen > end - p)
760 			goto dodgy_cert;
761 
762 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
763 					   "asymmetric", NULL, p, plen,
764 					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 					    KEY_USR_VIEW | KEY_USR_READ),
766 					   KEY_ALLOC_NOT_IN_QUOTA |
767 					   KEY_ALLOC_BUILT_IN |
768 					   KEY_ALLOC_BYPASS_RESTRICTION);
769 		if (IS_ERR(key)) {
770 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
771 			       PTR_ERR(key));
772 		} else {
773 			pr_notice("Loaded X.509 cert '%s'\n",
774 				  key_ref_to_ptr(key)->description);
775 			key_ref_put(key);
776 		}
777 		p += plen;
778 	}
779 
780 	return;
781 
782 dodgy_cert:
783 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
784 }
785 
786 static int __init load_builtin_regdb_keys(void)
787 {
788 	builtin_regdb_keys =
789 		keyring_alloc(".builtin_regdb_keys",
790 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
791 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
792 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
793 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
794 	if (IS_ERR(builtin_regdb_keys))
795 		return PTR_ERR(builtin_regdb_keys);
796 
797 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
798 
799 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
800 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
801 #endif
802 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
803 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
804 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
805 #endif
806 
807 	return 0;
808 }
809 
810 MODULE_FIRMWARE("regulatory.db.p7s");
811 
812 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
813 {
814 	const struct firmware *sig;
815 	bool result;
816 
817 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
818 		return false;
819 
820 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
821 					builtin_regdb_keys,
822 					VERIFYING_UNSPECIFIED_SIGNATURE,
823 					NULL, NULL) == 0;
824 
825 	release_firmware(sig);
826 
827 	return result;
828 }
829 
830 static void free_regdb_keyring(void)
831 {
832 	key_put(builtin_regdb_keys);
833 }
834 #else
835 static int load_builtin_regdb_keys(void)
836 {
837 	return 0;
838 }
839 
840 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
841 {
842 	return true;
843 }
844 
845 static void free_regdb_keyring(void)
846 {
847 }
848 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
849 
850 static bool valid_regdb(const u8 *data, unsigned int size)
851 {
852 	const struct fwdb_header *hdr = (void *)data;
853 	const struct fwdb_country *country;
854 
855 	if (size < sizeof(*hdr))
856 		return false;
857 
858 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
859 		return false;
860 
861 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
862 		return false;
863 
864 	if (!regdb_has_valid_signature(data, size))
865 		return false;
866 
867 	country = &hdr->country[0];
868 	while ((u8 *)(country + 1) <= data + size) {
869 		if (!country->coll_ptr)
870 			break;
871 		if (!valid_country(data, size, country))
872 			return false;
873 		country++;
874 	}
875 
876 	return true;
877 }
878 
879 static void set_wmm_rule(const struct fwdb_header *db,
880 			 const struct fwdb_country *country,
881 			 const struct fwdb_rule *rule,
882 			 struct ieee80211_reg_rule *rrule)
883 {
884 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
885 	struct fwdb_wmm_rule *wmm;
886 	unsigned int i, wmm_ptr;
887 
888 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
889 	wmm = (void *)((u8 *)db + wmm_ptr);
890 
891 	if (!valid_wmm(wmm)) {
892 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
893 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
894 		       country->alpha2[0], country->alpha2[1]);
895 		return;
896 	}
897 
898 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
899 		wmm_rule->client[i].cw_min =
900 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
901 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
902 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
903 		wmm_rule->client[i].cot =
904 			1000 * be16_to_cpu(wmm->client[i].cot);
905 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
906 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
907 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
908 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
909 	}
910 
911 	rrule->has_wmm = true;
912 }
913 
914 static int __regdb_query_wmm(const struct fwdb_header *db,
915 			     const struct fwdb_country *country, int freq,
916 			     struct ieee80211_reg_rule *rrule)
917 {
918 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
919 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
920 	int i;
921 
922 	for (i = 0; i < coll->n_rules; i++) {
923 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
924 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
925 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
926 
927 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
928 			continue;
929 
930 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
931 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
932 			set_wmm_rule(db, country, rule, rrule);
933 			return 0;
934 		}
935 	}
936 
937 	return -ENODATA;
938 }
939 
940 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
941 {
942 	const struct fwdb_header *hdr = regdb;
943 	const struct fwdb_country *country;
944 
945 	if (!regdb)
946 		return -ENODATA;
947 
948 	if (IS_ERR(regdb))
949 		return PTR_ERR(regdb);
950 
951 	country = &hdr->country[0];
952 	while (country->coll_ptr) {
953 		if (alpha2_equal(alpha2, country->alpha2))
954 			return __regdb_query_wmm(regdb, country, freq, rule);
955 
956 		country++;
957 	}
958 
959 	return -ENODATA;
960 }
961 EXPORT_SYMBOL(reg_query_regdb_wmm);
962 
963 static int regdb_query_country(const struct fwdb_header *db,
964 			       const struct fwdb_country *country)
965 {
966 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
967 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
968 	struct ieee80211_regdomain *regdom;
969 	unsigned int i;
970 
971 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
972 			 GFP_KERNEL);
973 	if (!regdom)
974 		return -ENOMEM;
975 
976 	regdom->n_reg_rules = coll->n_rules;
977 	regdom->alpha2[0] = country->alpha2[0];
978 	regdom->alpha2[1] = country->alpha2[1];
979 	regdom->dfs_region = coll->dfs_region;
980 
981 	for (i = 0; i < regdom->n_reg_rules; i++) {
982 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
983 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
984 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
985 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
986 
987 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
988 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
989 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
990 
991 		rrule->power_rule.max_antenna_gain = 0;
992 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
993 
994 		rrule->flags = 0;
995 		if (rule->flags & FWDB_FLAG_NO_OFDM)
996 			rrule->flags |= NL80211_RRF_NO_OFDM;
997 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
998 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
999 		if (rule->flags & FWDB_FLAG_DFS)
1000 			rrule->flags |= NL80211_RRF_DFS;
1001 		if (rule->flags & FWDB_FLAG_NO_IR)
1002 			rrule->flags |= NL80211_RRF_NO_IR;
1003 		if (rule->flags & FWDB_FLAG_AUTO_BW)
1004 			rrule->flags |= NL80211_RRF_AUTO_BW;
1005 
1006 		rrule->dfs_cac_ms = 0;
1007 
1008 		/* handle optional data */
1009 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1010 			rrule->dfs_cac_ms =
1011 				1000 * be16_to_cpu(rule->cac_timeout);
1012 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1013 			set_wmm_rule(db, country, rule, rrule);
1014 	}
1015 
1016 	return reg_schedule_apply(regdom);
1017 }
1018 
1019 static int query_regdb(const char *alpha2)
1020 {
1021 	const struct fwdb_header *hdr = regdb;
1022 	const struct fwdb_country *country;
1023 
1024 	ASSERT_RTNL();
1025 
1026 	if (IS_ERR(regdb))
1027 		return PTR_ERR(regdb);
1028 
1029 	country = &hdr->country[0];
1030 	while (country->coll_ptr) {
1031 		if (alpha2_equal(alpha2, country->alpha2))
1032 			return regdb_query_country(regdb, country);
1033 		country++;
1034 	}
1035 
1036 	return -ENODATA;
1037 }
1038 
1039 static void regdb_fw_cb(const struct firmware *fw, void *context)
1040 {
1041 	int set_error = 0;
1042 	bool restore = true;
1043 	void *db;
1044 
1045 	if (!fw) {
1046 		pr_info("failed to load regulatory.db\n");
1047 		set_error = -ENODATA;
1048 	} else if (!valid_regdb(fw->data, fw->size)) {
1049 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1050 		set_error = -EINVAL;
1051 	}
1052 
1053 	rtnl_lock();
1054 	if (regdb && !IS_ERR(regdb)) {
1055 		/* negative case - a bug
1056 		 * positive case - can happen due to race in case of multiple cb's in
1057 		 * queue, due to usage of asynchronous callback
1058 		 *
1059 		 * Either case, just restore and free new db.
1060 		 */
1061 	} else if (set_error) {
1062 		regdb = ERR_PTR(set_error);
1063 	} else if (fw) {
1064 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1065 		if (db) {
1066 			regdb = db;
1067 			restore = context && query_regdb(context);
1068 		} else {
1069 			restore = true;
1070 		}
1071 	}
1072 
1073 	if (restore)
1074 		restore_regulatory_settings(true, false);
1075 
1076 	rtnl_unlock();
1077 
1078 	kfree(context);
1079 
1080 	release_firmware(fw);
1081 }
1082 
1083 MODULE_FIRMWARE("regulatory.db");
1084 
1085 static int query_regdb_file(const char *alpha2)
1086 {
1087 	int err;
1088 
1089 	ASSERT_RTNL();
1090 
1091 	if (regdb)
1092 		return query_regdb(alpha2);
1093 
1094 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1095 	if (!alpha2)
1096 		return -ENOMEM;
1097 
1098 	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1099 				      &reg_pdev->dev, GFP_KERNEL,
1100 				      (void *)alpha2, regdb_fw_cb);
1101 	if (err)
1102 		kfree(alpha2);
1103 
1104 	return err;
1105 }
1106 
1107 int reg_reload_regdb(void)
1108 {
1109 	const struct firmware *fw;
1110 	void *db;
1111 	int err;
1112 	const struct ieee80211_regdomain *current_regdomain;
1113 	struct regulatory_request *request;
1114 
1115 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1116 	if (err)
1117 		return err;
1118 
1119 	if (!valid_regdb(fw->data, fw->size)) {
1120 		err = -ENODATA;
1121 		goto out;
1122 	}
1123 
1124 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1125 	if (!db) {
1126 		err = -ENOMEM;
1127 		goto out;
1128 	}
1129 
1130 	rtnl_lock();
1131 	if (!IS_ERR_OR_NULL(regdb))
1132 		kfree(regdb);
1133 	regdb = db;
1134 
1135 	/* reset regulatory domain */
1136 	current_regdomain = get_cfg80211_regdom();
1137 
1138 	request = kzalloc(sizeof(*request), GFP_KERNEL);
1139 	if (!request) {
1140 		err = -ENOMEM;
1141 		goto out_unlock;
1142 	}
1143 
1144 	request->wiphy_idx = WIPHY_IDX_INVALID;
1145 	request->alpha2[0] = current_regdomain->alpha2[0];
1146 	request->alpha2[1] = current_regdomain->alpha2[1];
1147 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1148 	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1149 
1150 	reg_process_hint(request);
1151 
1152 out_unlock:
1153 	rtnl_unlock();
1154  out:
1155 	release_firmware(fw);
1156 	return err;
1157 }
1158 
1159 static bool reg_query_database(struct regulatory_request *request)
1160 {
1161 	if (query_regdb_file(request->alpha2) == 0)
1162 		return true;
1163 
1164 	if (call_crda(request->alpha2) == 0)
1165 		return true;
1166 
1167 	return false;
1168 }
1169 
1170 bool reg_is_valid_request(const char *alpha2)
1171 {
1172 	struct regulatory_request *lr = get_last_request();
1173 
1174 	if (!lr || lr->processed)
1175 		return false;
1176 
1177 	return alpha2_equal(lr->alpha2, alpha2);
1178 }
1179 
1180 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1181 {
1182 	struct regulatory_request *lr = get_last_request();
1183 
1184 	/*
1185 	 * Follow the driver's regulatory domain, if present, unless a country
1186 	 * IE has been processed or a user wants to help complaince further
1187 	 */
1188 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1189 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1190 	    wiphy->regd)
1191 		return get_wiphy_regdom(wiphy);
1192 
1193 	return get_cfg80211_regdom();
1194 }
1195 
1196 static unsigned int
1197 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1198 				 const struct ieee80211_reg_rule *rule)
1199 {
1200 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1201 	const struct ieee80211_freq_range *freq_range_tmp;
1202 	const struct ieee80211_reg_rule *tmp;
1203 	u32 start_freq, end_freq, idx, no;
1204 
1205 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1206 		if (rule == &rd->reg_rules[idx])
1207 			break;
1208 
1209 	if (idx == rd->n_reg_rules)
1210 		return 0;
1211 
1212 	/* get start_freq */
1213 	no = idx;
1214 
1215 	while (no) {
1216 		tmp = &rd->reg_rules[--no];
1217 		freq_range_tmp = &tmp->freq_range;
1218 
1219 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1220 			break;
1221 
1222 		freq_range = freq_range_tmp;
1223 	}
1224 
1225 	start_freq = freq_range->start_freq_khz;
1226 
1227 	/* get end_freq */
1228 	freq_range = &rule->freq_range;
1229 	no = idx;
1230 
1231 	while (no < rd->n_reg_rules - 1) {
1232 		tmp = &rd->reg_rules[++no];
1233 		freq_range_tmp = &tmp->freq_range;
1234 
1235 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1236 			break;
1237 
1238 		freq_range = freq_range_tmp;
1239 	}
1240 
1241 	end_freq = freq_range->end_freq_khz;
1242 
1243 	return end_freq - start_freq;
1244 }
1245 
1246 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1247 				   const struct ieee80211_reg_rule *rule)
1248 {
1249 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1250 
1251 	if (rule->flags & NL80211_RRF_NO_320MHZ)
1252 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1253 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1254 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1255 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1256 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1257 
1258 	/*
1259 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1260 	 * are not allowed.
1261 	 */
1262 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1263 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1264 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1265 
1266 	return bw;
1267 }
1268 
1269 /* Sanity check on a regulatory rule */
1270 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1271 {
1272 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1273 	u32 freq_diff;
1274 
1275 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1276 		return false;
1277 
1278 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1279 		return false;
1280 
1281 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1282 
1283 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1284 	    freq_range->max_bandwidth_khz > freq_diff)
1285 		return false;
1286 
1287 	return true;
1288 }
1289 
1290 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1291 {
1292 	const struct ieee80211_reg_rule *reg_rule = NULL;
1293 	unsigned int i;
1294 
1295 	if (!rd->n_reg_rules)
1296 		return false;
1297 
1298 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1299 		return false;
1300 
1301 	for (i = 0; i < rd->n_reg_rules; i++) {
1302 		reg_rule = &rd->reg_rules[i];
1303 		if (!is_valid_reg_rule(reg_rule))
1304 			return false;
1305 	}
1306 
1307 	return true;
1308 }
1309 
1310 /**
1311  * freq_in_rule_band - tells us if a frequency is in a frequency band
1312  * @freq_range: frequency rule we want to query
1313  * @freq_khz: frequency we are inquiring about
1314  *
1315  * This lets us know if a specific frequency rule is or is not relevant to
1316  * a specific frequency's band. Bands are device specific and artificial
1317  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1318  * however it is safe for now to assume that a frequency rule should not be
1319  * part of a frequency's band if the start freq or end freq are off by more
1320  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1321  * 60 GHz band.
1322  * This resolution can be lowered and should be considered as we add
1323  * regulatory rule support for other "bands".
1324  **/
1325 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1326 			      u32 freq_khz)
1327 {
1328 #define ONE_GHZ_IN_KHZ	1000000
1329 	/*
1330 	 * From 802.11ad: directional multi-gigabit (DMG):
1331 	 * Pertaining to operation in a frequency band containing a channel
1332 	 * with the Channel starting frequency above 45 GHz.
1333 	 */
1334 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1335 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1336 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1337 		return true;
1338 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1339 		return true;
1340 	return false;
1341 #undef ONE_GHZ_IN_KHZ
1342 }
1343 
1344 /*
1345  * Later on we can perhaps use the more restrictive DFS
1346  * region but we don't have information for that yet so
1347  * for now simply disallow conflicts.
1348  */
1349 static enum nl80211_dfs_regions
1350 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1351 			 const enum nl80211_dfs_regions dfs_region2)
1352 {
1353 	if (dfs_region1 != dfs_region2)
1354 		return NL80211_DFS_UNSET;
1355 	return dfs_region1;
1356 }
1357 
1358 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1359 				    const struct ieee80211_wmm_ac *wmm_ac2,
1360 				    struct ieee80211_wmm_ac *intersect)
1361 {
1362 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1363 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1364 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1365 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1366 }
1367 
1368 /*
1369  * Helper for regdom_intersect(), this does the real
1370  * mathematical intersection fun
1371  */
1372 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1373 			       const struct ieee80211_regdomain *rd2,
1374 			       const struct ieee80211_reg_rule *rule1,
1375 			       const struct ieee80211_reg_rule *rule2,
1376 			       struct ieee80211_reg_rule *intersected_rule)
1377 {
1378 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1379 	struct ieee80211_freq_range *freq_range;
1380 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1381 	struct ieee80211_power_rule *power_rule;
1382 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1383 	struct ieee80211_wmm_rule *wmm_rule;
1384 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1385 
1386 	freq_range1 = &rule1->freq_range;
1387 	freq_range2 = &rule2->freq_range;
1388 	freq_range = &intersected_rule->freq_range;
1389 
1390 	power_rule1 = &rule1->power_rule;
1391 	power_rule2 = &rule2->power_rule;
1392 	power_rule = &intersected_rule->power_rule;
1393 
1394 	wmm_rule1 = &rule1->wmm_rule;
1395 	wmm_rule2 = &rule2->wmm_rule;
1396 	wmm_rule = &intersected_rule->wmm_rule;
1397 
1398 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1399 					 freq_range2->start_freq_khz);
1400 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1401 				       freq_range2->end_freq_khz);
1402 
1403 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1404 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1405 
1406 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1407 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1408 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1409 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1410 
1411 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1412 
1413 	intersected_rule->flags = rule1->flags | rule2->flags;
1414 
1415 	/*
1416 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1417 	 * set AUTO_BW in intersected rule also. Next we will
1418 	 * calculate BW correctly in handle_channel function.
1419 	 * In other case remove AUTO_BW flag while we calculate
1420 	 * maximum bandwidth correctly and auto calculation is
1421 	 * not required.
1422 	 */
1423 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1424 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1425 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1426 	else
1427 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1428 
1429 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1430 	if (freq_range->max_bandwidth_khz > freq_diff)
1431 		freq_range->max_bandwidth_khz = freq_diff;
1432 
1433 	power_rule->max_eirp = min(power_rule1->max_eirp,
1434 		power_rule2->max_eirp);
1435 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1436 		power_rule2->max_antenna_gain);
1437 
1438 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1439 					   rule2->dfs_cac_ms);
1440 
1441 	if (rule1->has_wmm && rule2->has_wmm) {
1442 		u8 ac;
1443 
1444 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1445 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1446 						&wmm_rule2->client[ac],
1447 						&wmm_rule->client[ac]);
1448 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1449 						&wmm_rule2->ap[ac],
1450 						&wmm_rule->ap[ac]);
1451 		}
1452 
1453 		intersected_rule->has_wmm = true;
1454 	} else if (rule1->has_wmm) {
1455 		*wmm_rule = *wmm_rule1;
1456 		intersected_rule->has_wmm = true;
1457 	} else if (rule2->has_wmm) {
1458 		*wmm_rule = *wmm_rule2;
1459 		intersected_rule->has_wmm = true;
1460 	} else {
1461 		intersected_rule->has_wmm = false;
1462 	}
1463 
1464 	if (!is_valid_reg_rule(intersected_rule))
1465 		return -EINVAL;
1466 
1467 	return 0;
1468 }
1469 
1470 /* check whether old rule contains new rule */
1471 static bool rule_contains(struct ieee80211_reg_rule *r1,
1472 			  struct ieee80211_reg_rule *r2)
1473 {
1474 	/* for simplicity, currently consider only same flags */
1475 	if (r1->flags != r2->flags)
1476 		return false;
1477 
1478 	/* verify r1 is more restrictive */
1479 	if ((r1->power_rule.max_antenna_gain >
1480 	     r2->power_rule.max_antenna_gain) ||
1481 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1482 		return false;
1483 
1484 	/* make sure r2's range is contained within r1 */
1485 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1486 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1487 		return false;
1488 
1489 	/* and finally verify that r1.max_bw >= r2.max_bw */
1490 	if (r1->freq_range.max_bandwidth_khz <
1491 	    r2->freq_range.max_bandwidth_khz)
1492 		return false;
1493 
1494 	return true;
1495 }
1496 
1497 /* add or extend current rules. do nothing if rule is already contained */
1498 static void add_rule(struct ieee80211_reg_rule *rule,
1499 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1500 {
1501 	struct ieee80211_reg_rule *tmp_rule;
1502 	int i;
1503 
1504 	for (i = 0; i < *n_rules; i++) {
1505 		tmp_rule = &reg_rules[i];
1506 		/* rule is already contained - do nothing */
1507 		if (rule_contains(tmp_rule, rule))
1508 			return;
1509 
1510 		/* extend rule if possible */
1511 		if (rule_contains(rule, tmp_rule)) {
1512 			memcpy(tmp_rule, rule, sizeof(*rule));
1513 			return;
1514 		}
1515 	}
1516 
1517 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1518 	(*n_rules)++;
1519 }
1520 
1521 /**
1522  * regdom_intersect - do the intersection between two regulatory domains
1523  * @rd1: first regulatory domain
1524  * @rd2: second regulatory domain
1525  *
1526  * Use this function to get the intersection between two regulatory domains.
1527  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1528  * as no one single alpha2 can represent this regulatory domain.
1529  *
1530  * Returns a pointer to the regulatory domain structure which will hold the
1531  * resulting intersection of rules between rd1 and rd2. We will
1532  * kzalloc() this structure for you.
1533  */
1534 static struct ieee80211_regdomain *
1535 regdom_intersect(const struct ieee80211_regdomain *rd1,
1536 		 const struct ieee80211_regdomain *rd2)
1537 {
1538 	int r;
1539 	unsigned int x, y;
1540 	unsigned int num_rules = 0;
1541 	const struct ieee80211_reg_rule *rule1, *rule2;
1542 	struct ieee80211_reg_rule intersected_rule;
1543 	struct ieee80211_regdomain *rd;
1544 
1545 	if (!rd1 || !rd2)
1546 		return NULL;
1547 
1548 	/*
1549 	 * First we get a count of the rules we'll need, then we actually
1550 	 * build them. This is to so we can malloc() and free() a
1551 	 * regdomain once. The reason we use reg_rules_intersect() here
1552 	 * is it will return -EINVAL if the rule computed makes no sense.
1553 	 * All rules that do check out OK are valid.
1554 	 */
1555 
1556 	for (x = 0; x < rd1->n_reg_rules; x++) {
1557 		rule1 = &rd1->reg_rules[x];
1558 		for (y = 0; y < rd2->n_reg_rules; y++) {
1559 			rule2 = &rd2->reg_rules[y];
1560 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1561 						 &intersected_rule))
1562 				num_rules++;
1563 		}
1564 	}
1565 
1566 	if (!num_rules)
1567 		return NULL;
1568 
1569 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1570 	if (!rd)
1571 		return NULL;
1572 
1573 	for (x = 0; x < rd1->n_reg_rules; x++) {
1574 		rule1 = &rd1->reg_rules[x];
1575 		for (y = 0; y < rd2->n_reg_rules; y++) {
1576 			rule2 = &rd2->reg_rules[y];
1577 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1578 						&intersected_rule);
1579 			/*
1580 			 * No need to memset here the intersected rule here as
1581 			 * we're not using the stack anymore
1582 			 */
1583 			if (r)
1584 				continue;
1585 
1586 			add_rule(&intersected_rule, rd->reg_rules,
1587 				 &rd->n_reg_rules);
1588 		}
1589 	}
1590 
1591 	rd->alpha2[0] = '9';
1592 	rd->alpha2[1] = '8';
1593 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1594 						  rd2->dfs_region);
1595 
1596 	return rd;
1597 }
1598 
1599 /*
1600  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1601  * want to just have the channel structure use these
1602  */
1603 static u32 map_regdom_flags(u32 rd_flags)
1604 {
1605 	u32 channel_flags = 0;
1606 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1607 		channel_flags |= IEEE80211_CHAN_NO_IR;
1608 	if (rd_flags & NL80211_RRF_DFS)
1609 		channel_flags |= IEEE80211_CHAN_RADAR;
1610 	if (rd_flags & NL80211_RRF_NO_OFDM)
1611 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1612 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1613 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1614 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1615 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1616 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1617 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1618 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1619 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1620 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1621 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1622 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1623 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1624 	if (rd_flags & NL80211_RRF_NO_HE)
1625 		channel_flags |= IEEE80211_CHAN_NO_HE;
1626 	if (rd_flags & NL80211_RRF_NO_320MHZ)
1627 		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1628 	return channel_flags;
1629 }
1630 
1631 static const struct ieee80211_reg_rule *
1632 freq_reg_info_regd(u32 center_freq,
1633 		   const struct ieee80211_regdomain *regd, u32 bw)
1634 {
1635 	int i;
1636 	bool band_rule_found = false;
1637 	bool bw_fits = false;
1638 
1639 	if (!regd)
1640 		return ERR_PTR(-EINVAL);
1641 
1642 	for (i = 0; i < regd->n_reg_rules; i++) {
1643 		const struct ieee80211_reg_rule *rr;
1644 		const struct ieee80211_freq_range *fr = NULL;
1645 
1646 		rr = &regd->reg_rules[i];
1647 		fr = &rr->freq_range;
1648 
1649 		/*
1650 		 * We only need to know if one frequency rule was
1651 		 * in center_freq's band, that's enough, so let's
1652 		 * not overwrite it once found
1653 		 */
1654 		if (!band_rule_found)
1655 			band_rule_found = freq_in_rule_band(fr, center_freq);
1656 
1657 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1658 
1659 		if (band_rule_found && bw_fits)
1660 			return rr;
1661 	}
1662 
1663 	if (!band_rule_found)
1664 		return ERR_PTR(-ERANGE);
1665 
1666 	return ERR_PTR(-EINVAL);
1667 }
1668 
1669 static const struct ieee80211_reg_rule *
1670 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1671 {
1672 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1673 	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1674 	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1675 	int i = ARRAY_SIZE(bws) - 1;
1676 	u32 bw;
1677 
1678 	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1679 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1680 		if (!IS_ERR(reg_rule))
1681 			return reg_rule;
1682 	}
1683 
1684 	return reg_rule;
1685 }
1686 
1687 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1688 					       u32 center_freq)
1689 {
1690 	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1691 
1692 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1693 }
1694 EXPORT_SYMBOL(freq_reg_info);
1695 
1696 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1697 {
1698 	switch (initiator) {
1699 	case NL80211_REGDOM_SET_BY_CORE:
1700 		return "core";
1701 	case NL80211_REGDOM_SET_BY_USER:
1702 		return "user";
1703 	case NL80211_REGDOM_SET_BY_DRIVER:
1704 		return "driver";
1705 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1706 		return "country element";
1707 	default:
1708 		WARN_ON(1);
1709 		return "bug";
1710 	}
1711 }
1712 EXPORT_SYMBOL(reg_initiator_name);
1713 
1714 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1715 					  const struct ieee80211_reg_rule *reg_rule,
1716 					  const struct ieee80211_channel *chan)
1717 {
1718 	const struct ieee80211_freq_range *freq_range = NULL;
1719 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1720 	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1721 
1722 	freq_range = &reg_rule->freq_range;
1723 
1724 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1725 	center_freq_khz = ieee80211_channel_to_khz(chan);
1726 	/* Check if auto calculation requested */
1727 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1728 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1729 
1730 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1731 	if (!cfg80211_does_bw_fit_range(freq_range,
1732 					center_freq_khz,
1733 					MHZ_TO_KHZ(10)))
1734 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1735 	if (!cfg80211_does_bw_fit_range(freq_range,
1736 					center_freq_khz,
1737 					MHZ_TO_KHZ(20)))
1738 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1739 
1740 	if (is_s1g) {
1741 		/* S1G is strict about non overlapping channels. We can
1742 		 * calculate which bandwidth is allowed per channel by finding
1743 		 * the largest bandwidth which cleanly divides the freq_range.
1744 		 */
1745 		int edge_offset;
1746 		int ch_bw = max_bandwidth_khz;
1747 
1748 		while (ch_bw) {
1749 			edge_offset = (center_freq_khz - ch_bw / 2) -
1750 				      freq_range->start_freq_khz;
1751 			if (edge_offset % ch_bw == 0) {
1752 				switch (KHZ_TO_MHZ(ch_bw)) {
1753 				case 1:
1754 					bw_flags |= IEEE80211_CHAN_1MHZ;
1755 					break;
1756 				case 2:
1757 					bw_flags |= IEEE80211_CHAN_2MHZ;
1758 					break;
1759 				case 4:
1760 					bw_flags |= IEEE80211_CHAN_4MHZ;
1761 					break;
1762 				case 8:
1763 					bw_flags |= IEEE80211_CHAN_8MHZ;
1764 					break;
1765 				case 16:
1766 					bw_flags |= IEEE80211_CHAN_16MHZ;
1767 					break;
1768 				default:
1769 					/* If we got here, no bandwidths fit on
1770 					 * this frequency, ie. band edge.
1771 					 */
1772 					bw_flags |= IEEE80211_CHAN_DISABLED;
1773 					break;
1774 				}
1775 				break;
1776 			}
1777 			ch_bw /= 2;
1778 		}
1779 	} else {
1780 		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1781 			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1782 		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1783 			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1784 		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1785 			bw_flags |= IEEE80211_CHAN_NO_HT40;
1786 		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1787 			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1788 		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1789 			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1790 		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1791 			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1792 	}
1793 	return bw_flags;
1794 }
1795 
1796 static void handle_channel_single_rule(struct wiphy *wiphy,
1797 				       enum nl80211_reg_initiator initiator,
1798 				       struct ieee80211_channel *chan,
1799 				       u32 flags,
1800 				       struct regulatory_request *lr,
1801 				       struct wiphy *request_wiphy,
1802 				       const struct ieee80211_reg_rule *reg_rule)
1803 {
1804 	u32 bw_flags = 0;
1805 	const struct ieee80211_power_rule *power_rule = NULL;
1806 	const struct ieee80211_regdomain *regd;
1807 
1808 	regd = reg_get_regdomain(wiphy);
1809 
1810 	power_rule = &reg_rule->power_rule;
1811 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1812 
1813 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1814 	    request_wiphy && request_wiphy == wiphy &&
1815 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1816 		/*
1817 		 * This guarantees the driver's requested regulatory domain
1818 		 * will always be used as a base for further regulatory
1819 		 * settings
1820 		 */
1821 		chan->flags = chan->orig_flags =
1822 			map_regdom_flags(reg_rule->flags) | bw_flags;
1823 		chan->max_antenna_gain = chan->orig_mag =
1824 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1825 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1826 			(int) MBM_TO_DBM(power_rule->max_eirp);
1827 
1828 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1829 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1830 			if (reg_rule->dfs_cac_ms)
1831 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1832 		}
1833 
1834 		return;
1835 	}
1836 
1837 	chan->dfs_state = NL80211_DFS_USABLE;
1838 	chan->dfs_state_entered = jiffies;
1839 
1840 	chan->beacon_found = false;
1841 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1842 	chan->max_antenna_gain =
1843 		min_t(int, chan->orig_mag,
1844 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1845 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1846 
1847 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1848 		if (reg_rule->dfs_cac_ms)
1849 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1850 		else
1851 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1852 	}
1853 
1854 	if (chan->orig_mpwr) {
1855 		/*
1856 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1857 		 * will always follow the passed country IE power settings.
1858 		 */
1859 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1860 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1861 			chan->max_power = chan->max_reg_power;
1862 		else
1863 			chan->max_power = min(chan->orig_mpwr,
1864 					      chan->max_reg_power);
1865 	} else
1866 		chan->max_power = chan->max_reg_power;
1867 }
1868 
1869 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1870 					  enum nl80211_reg_initiator initiator,
1871 					  struct ieee80211_channel *chan,
1872 					  u32 flags,
1873 					  struct regulatory_request *lr,
1874 					  struct wiphy *request_wiphy,
1875 					  const struct ieee80211_reg_rule *rrule1,
1876 					  const struct ieee80211_reg_rule *rrule2,
1877 					  struct ieee80211_freq_range *comb_range)
1878 {
1879 	u32 bw_flags1 = 0;
1880 	u32 bw_flags2 = 0;
1881 	const struct ieee80211_power_rule *power_rule1 = NULL;
1882 	const struct ieee80211_power_rule *power_rule2 = NULL;
1883 	const struct ieee80211_regdomain *regd;
1884 
1885 	regd = reg_get_regdomain(wiphy);
1886 
1887 	power_rule1 = &rrule1->power_rule;
1888 	power_rule2 = &rrule2->power_rule;
1889 	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1890 	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1891 
1892 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1893 	    request_wiphy && request_wiphy == wiphy &&
1894 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1895 		/* This guarantees the driver's requested regulatory domain
1896 		 * will always be used as a base for further regulatory
1897 		 * settings
1898 		 */
1899 		chan->flags =
1900 			map_regdom_flags(rrule1->flags) |
1901 			map_regdom_flags(rrule2->flags) |
1902 			bw_flags1 |
1903 			bw_flags2;
1904 		chan->orig_flags = chan->flags;
1905 		chan->max_antenna_gain =
1906 			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1907 			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1908 		chan->orig_mag = chan->max_antenna_gain;
1909 		chan->max_reg_power =
1910 			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1911 			      MBM_TO_DBM(power_rule2->max_eirp));
1912 		chan->max_power = chan->max_reg_power;
1913 		chan->orig_mpwr = chan->max_reg_power;
1914 
1915 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1916 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1917 			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1918 				chan->dfs_cac_ms = max_t(unsigned int,
1919 							 rrule1->dfs_cac_ms,
1920 							 rrule2->dfs_cac_ms);
1921 		}
1922 
1923 		return;
1924 	}
1925 
1926 	chan->dfs_state = NL80211_DFS_USABLE;
1927 	chan->dfs_state_entered = jiffies;
1928 
1929 	chan->beacon_found = false;
1930 	chan->flags = flags | bw_flags1 | bw_flags2 |
1931 		      map_regdom_flags(rrule1->flags) |
1932 		      map_regdom_flags(rrule2->flags);
1933 
1934 	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1935 	 * (otherwise no adj. rule case), recheck therefore
1936 	 */
1937 	if (cfg80211_does_bw_fit_range(comb_range,
1938 				       ieee80211_channel_to_khz(chan),
1939 				       MHZ_TO_KHZ(10)))
1940 		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1941 	if (cfg80211_does_bw_fit_range(comb_range,
1942 				       ieee80211_channel_to_khz(chan),
1943 				       MHZ_TO_KHZ(20)))
1944 		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1945 
1946 	chan->max_antenna_gain =
1947 		min_t(int, chan->orig_mag,
1948 		      min_t(int,
1949 			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1950 			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1951 	chan->max_reg_power = min_t(int,
1952 				    MBM_TO_DBM(power_rule1->max_eirp),
1953 				    MBM_TO_DBM(power_rule2->max_eirp));
1954 
1955 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1956 		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1957 			chan->dfs_cac_ms = max_t(unsigned int,
1958 						 rrule1->dfs_cac_ms,
1959 						 rrule2->dfs_cac_ms);
1960 		else
1961 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1962 	}
1963 
1964 	if (chan->orig_mpwr) {
1965 		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1966 		 * will always follow the passed country IE power settings.
1967 		 */
1968 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1969 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1970 			chan->max_power = chan->max_reg_power;
1971 		else
1972 			chan->max_power = min(chan->orig_mpwr,
1973 					      chan->max_reg_power);
1974 	} else {
1975 		chan->max_power = chan->max_reg_power;
1976 	}
1977 }
1978 
1979 /* Note that right now we assume the desired channel bandwidth
1980  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1981  * per channel, the primary and the extension channel).
1982  */
1983 static void handle_channel(struct wiphy *wiphy,
1984 			   enum nl80211_reg_initiator initiator,
1985 			   struct ieee80211_channel *chan)
1986 {
1987 	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1988 	struct regulatory_request *lr = get_last_request();
1989 	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1990 	const struct ieee80211_reg_rule *rrule = NULL;
1991 	const struct ieee80211_reg_rule *rrule1 = NULL;
1992 	const struct ieee80211_reg_rule *rrule2 = NULL;
1993 
1994 	u32 flags = chan->orig_flags;
1995 
1996 	rrule = freq_reg_info(wiphy, orig_chan_freq);
1997 	if (IS_ERR(rrule)) {
1998 		/* check for adjacent match, therefore get rules for
1999 		 * chan - 20 MHz and chan + 20 MHz and test
2000 		 * if reg rules are adjacent
2001 		 */
2002 		rrule1 = freq_reg_info(wiphy,
2003 				       orig_chan_freq - MHZ_TO_KHZ(20));
2004 		rrule2 = freq_reg_info(wiphy,
2005 				       orig_chan_freq + MHZ_TO_KHZ(20));
2006 		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
2007 			struct ieee80211_freq_range comb_range;
2008 
2009 			if (rrule1->freq_range.end_freq_khz !=
2010 			    rrule2->freq_range.start_freq_khz)
2011 				goto disable_chan;
2012 
2013 			comb_range.start_freq_khz =
2014 				rrule1->freq_range.start_freq_khz;
2015 			comb_range.end_freq_khz =
2016 				rrule2->freq_range.end_freq_khz;
2017 			comb_range.max_bandwidth_khz =
2018 				min_t(u32,
2019 				      rrule1->freq_range.max_bandwidth_khz,
2020 				      rrule2->freq_range.max_bandwidth_khz);
2021 
2022 			if (!cfg80211_does_bw_fit_range(&comb_range,
2023 							orig_chan_freq,
2024 							MHZ_TO_KHZ(20)))
2025 				goto disable_chan;
2026 
2027 			handle_channel_adjacent_rules(wiphy, initiator, chan,
2028 						      flags, lr, request_wiphy,
2029 						      rrule1, rrule2,
2030 						      &comb_range);
2031 			return;
2032 		}
2033 
2034 disable_chan:
2035 		/* We will disable all channels that do not match our
2036 		 * received regulatory rule unless the hint is coming
2037 		 * from a Country IE and the Country IE had no information
2038 		 * about a band. The IEEE 802.11 spec allows for an AP
2039 		 * to send only a subset of the regulatory rules allowed,
2040 		 * so an AP in the US that only supports 2.4 GHz may only send
2041 		 * a country IE with information for the 2.4 GHz band
2042 		 * while 5 GHz is still supported.
2043 		 */
2044 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2045 		    PTR_ERR(rrule) == -ERANGE)
2046 			return;
2047 
2048 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2049 		    request_wiphy && request_wiphy == wiphy &&
2050 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2051 			pr_debug("Disabling freq %d.%03d MHz for good\n",
2052 				 chan->center_freq, chan->freq_offset);
2053 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2054 			chan->flags = chan->orig_flags;
2055 		} else {
2056 			pr_debug("Disabling freq %d.%03d MHz\n",
2057 				 chan->center_freq, chan->freq_offset);
2058 			chan->flags |= IEEE80211_CHAN_DISABLED;
2059 		}
2060 		return;
2061 	}
2062 
2063 	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2064 				   request_wiphy, rrule);
2065 }
2066 
2067 static void handle_band(struct wiphy *wiphy,
2068 			enum nl80211_reg_initiator initiator,
2069 			struct ieee80211_supported_band *sband)
2070 {
2071 	unsigned int i;
2072 
2073 	if (!sband)
2074 		return;
2075 
2076 	for (i = 0; i < sband->n_channels; i++)
2077 		handle_channel(wiphy, initiator, &sband->channels[i]);
2078 }
2079 
2080 static bool reg_request_cell_base(struct regulatory_request *request)
2081 {
2082 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2083 		return false;
2084 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2085 }
2086 
2087 bool reg_last_request_cell_base(void)
2088 {
2089 	return reg_request_cell_base(get_last_request());
2090 }
2091 
2092 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2093 /* Core specific check */
2094 static enum reg_request_treatment
2095 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2096 {
2097 	struct regulatory_request *lr = get_last_request();
2098 
2099 	if (!reg_num_devs_support_basehint)
2100 		return REG_REQ_IGNORE;
2101 
2102 	if (reg_request_cell_base(lr) &&
2103 	    !regdom_changes(pending_request->alpha2))
2104 		return REG_REQ_ALREADY_SET;
2105 
2106 	return REG_REQ_OK;
2107 }
2108 
2109 /* Device specific check */
2110 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2111 {
2112 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2113 }
2114 #else
2115 static enum reg_request_treatment
2116 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2117 {
2118 	return REG_REQ_IGNORE;
2119 }
2120 
2121 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2122 {
2123 	return true;
2124 }
2125 #endif
2126 
2127 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2128 {
2129 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2130 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2131 		return true;
2132 	return false;
2133 }
2134 
2135 static bool ignore_reg_update(struct wiphy *wiphy,
2136 			      enum nl80211_reg_initiator initiator)
2137 {
2138 	struct regulatory_request *lr = get_last_request();
2139 
2140 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2141 		return true;
2142 
2143 	if (!lr) {
2144 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2145 			 reg_initiator_name(initiator));
2146 		return true;
2147 	}
2148 
2149 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2150 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2151 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2152 			 reg_initiator_name(initiator));
2153 		return true;
2154 	}
2155 
2156 	/*
2157 	 * wiphy->regd will be set once the device has its own
2158 	 * desired regulatory domain set
2159 	 */
2160 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2161 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2162 	    !is_world_regdom(lr->alpha2)) {
2163 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2164 			 reg_initiator_name(initiator));
2165 		return true;
2166 	}
2167 
2168 	if (reg_request_cell_base(lr))
2169 		return reg_dev_ignore_cell_hint(wiphy);
2170 
2171 	return false;
2172 }
2173 
2174 static bool reg_is_world_roaming(struct wiphy *wiphy)
2175 {
2176 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2177 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2178 	struct regulatory_request *lr = get_last_request();
2179 
2180 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2181 		return true;
2182 
2183 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2184 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2185 		return true;
2186 
2187 	return false;
2188 }
2189 
2190 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2191 			      struct reg_beacon *reg_beacon)
2192 {
2193 	struct ieee80211_supported_band *sband;
2194 	struct ieee80211_channel *chan;
2195 	bool channel_changed = false;
2196 	struct ieee80211_channel chan_before;
2197 
2198 	sband = wiphy->bands[reg_beacon->chan.band];
2199 	chan = &sband->channels[chan_idx];
2200 
2201 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2202 		return;
2203 
2204 	if (chan->beacon_found)
2205 		return;
2206 
2207 	chan->beacon_found = true;
2208 
2209 	if (!reg_is_world_roaming(wiphy))
2210 		return;
2211 
2212 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2213 		return;
2214 
2215 	chan_before = *chan;
2216 
2217 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2218 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2219 		channel_changed = true;
2220 	}
2221 
2222 	if (channel_changed)
2223 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2224 }
2225 
2226 /*
2227  * Called when a scan on a wiphy finds a beacon on
2228  * new channel
2229  */
2230 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2231 				    struct reg_beacon *reg_beacon)
2232 {
2233 	unsigned int i;
2234 	struct ieee80211_supported_band *sband;
2235 
2236 	if (!wiphy->bands[reg_beacon->chan.band])
2237 		return;
2238 
2239 	sband = wiphy->bands[reg_beacon->chan.band];
2240 
2241 	for (i = 0; i < sband->n_channels; i++)
2242 		handle_reg_beacon(wiphy, i, reg_beacon);
2243 }
2244 
2245 /*
2246  * Called upon reg changes or a new wiphy is added
2247  */
2248 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2249 {
2250 	unsigned int i;
2251 	struct ieee80211_supported_band *sband;
2252 	struct reg_beacon *reg_beacon;
2253 
2254 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2255 		if (!wiphy->bands[reg_beacon->chan.band])
2256 			continue;
2257 		sband = wiphy->bands[reg_beacon->chan.band];
2258 		for (i = 0; i < sband->n_channels; i++)
2259 			handle_reg_beacon(wiphy, i, reg_beacon);
2260 	}
2261 }
2262 
2263 /* Reap the advantages of previously found beacons */
2264 static void reg_process_beacons(struct wiphy *wiphy)
2265 {
2266 	/*
2267 	 * Means we are just firing up cfg80211, so no beacons would
2268 	 * have been processed yet.
2269 	 */
2270 	if (!last_request)
2271 		return;
2272 	wiphy_update_beacon_reg(wiphy);
2273 }
2274 
2275 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2276 {
2277 	if (!chan)
2278 		return false;
2279 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2280 		return false;
2281 	/* This would happen when regulatory rules disallow HT40 completely */
2282 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2283 		return false;
2284 	return true;
2285 }
2286 
2287 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2288 					 struct ieee80211_channel *channel)
2289 {
2290 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2291 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2292 	const struct ieee80211_regdomain *regd;
2293 	unsigned int i;
2294 	u32 flags;
2295 
2296 	if (!is_ht40_allowed(channel)) {
2297 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2298 		return;
2299 	}
2300 
2301 	/*
2302 	 * We need to ensure the extension channels exist to
2303 	 * be able to use HT40- or HT40+, this finds them (or not)
2304 	 */
2305 	for (i = 0; i < sband->n_channels; i++) {
2306 		struct ieee80211_channel *c = &sband->channels[i];
2307 
2308 		if (c->center_freq == (channel->center_freq - 20))
2309 			channel_before = c;
2310 		if (c->center_freq == (channel->center_freq + 20))
2311 			channel_after = c;
2312 	}
2313 
2314 	flags = 0;
2315 	regd = get_wiphy_regdom(wiphy);
2316 	if (regd) {
2317 		const struct ieee80211_reg_rule *reg_rule =
2318 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2319 					   regd, MHZ_TO_KHZ(20));
2320 
2321 		if (!IS_ERR(reg_rule))
2322 			flags = reg_rule->flags;
2323 	}
2324 
2325 	/*
2326 	 * Please note that this assumes target bandwidth is 20 MHz,
2327 	 * if that ever changes we also need to change the below logic
2328 	 * to include that as well.
2329 	 */
2330 	if (!is_ht40_allowed(channel_before) ||
2331 	    flags & NL80211_RRF_NO_HT40MINUS)
2332 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2333 	else
2334 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2335 
2336 	if (!is_ht40_allowed(channel_after) ||
2337 	    flags & NL80211_RRF_NO_HT40PLUS)
2338 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2339 	else
2340 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2341 }
2342 
2343 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2344 				      struct ieee80211_supported_band *sband)
2345 {
2346 	unsigned int i;
2347 
2348 	if (!sband)
2349 		return;
2350 
2351 	for (i = 0; i < sband->n_channels; i++)
2352 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2353 }
2354 
2355 static void reg_process_ht_flags(struct wiphy *wiphy)
2356 {
2357 	enum nl80211_band band;
2358 
2359 	if (!wiphy)
2360 		return;
2361 
2362 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2363 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2364 }
2365 
2366 static void reg_call_notifier(struct wiphy *wiphy,
2367 			      struct regulatory_request *request)
2368 {
2369 	if (wiphy->reg_notifier)
2370 		wiphy->reg_notifier(wiphy, request);
2371 }
2372 
2373 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2374 {
2375 	struct cfg80211_chan_def chandef = {};
2376 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2377 	enum nl80211_iftype iftype;
2378 	bool ret;
2379 	int link;
2380 
2381 	wdev_lock(wdev);
2382 	iftype = wdev->iftype;
2383 
2384 	/* make sure the interface is active */
2385 	if (!wdev->netdev || !netif_running(wdev->netdev))
2386 		goto wdev_inactive_unlock;
2387 
2388 	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2389 		struct ieee80211_channel *chan;
2390 
2391 		if (!wdev->valid_links && link > 0)
2392 			break;
2393 		if (!(wdev->valid_links & BIT(link)))
2394 			continue;
2395 		switch (iftype) {
2396 		case NL80211_IFTYPE_AP:
2397 		case NL80211_IFTYPE_P2P_GO:
2398 			if (!wdev->links[link].ap.beacon_interval)
2399 				continue;
2400 			chandef = wdev->links[link].ap.chandef;
2401 			break;
2402 		case NL80211_IFTYPE_MESH_POINT:
2403 			if (!wdev->u.mesh.beacon_interval)
2404 				continue;
2405 			chandef = wdev->u.mesh.chandef;
2406 			break;
2407 		case NL80211_IFTYPE_ADHOC:
2408 			if (!wdev->u.ibss.ssid_len)
2409 				continue;
2410 			chandef = wdev->u.ibss.chandef;
2411 			break;
2412 		case NL80211_IFTYPE_STATION:
2413 		case NL80211_IFTYPE_P2P_CLIENT:
2414 			/* Maybe we could consider disabling that link only? */
2415 			if (!wdev->links[link].client.current_bss)
2416 				continue;
2417 
2418 			chan = wdev->links[link].client.current_bss->pub.channel;
2419 			if (!chan)
2420 				continue;
2421 
2422 			if (!rdev->ops->get_channel ||
2423 			    rdev_get_channel(rdev, wdev, link, &chandef))
2424 				cfg80211_chandef_create(&chandef, chan,
2425 							NL80211_CHAN_NO_HT);
2426 			break;
2427 		case NL80211_IFTYPE_MONITOR:
2428 		case NL80211_IFTYPE_AP_VLAN:
2429 		case NL80211_IFTYPE_P2P_DEVICE:
2430 			/* no enforcement required */
2431 			break;
2432 		default:
2433 			/* others not implemented for now */
2434 			WARN_ON(1);
2435 			break;
2436 		}
2437 
2438 		wdev_unlock(wdev);
2439 
2440 		switch (iftype) {
2441 		case NL80211_IFTYPE_AP:
2442 		case NL80211_IFTYPE_P2P_GO:
2443 		case NL80211_IFTYPE_ADHOC:
2444 		case NL80211_IFTYPE_MESH_POINT:
2445 			wiphy_lock(wiphy);
2446 			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2447 							    iftype);
2448 			wiphy_unlock(wiphy);
2449 
2450 			if (!ret)
2451 				return ret;
2452 			break;
2453 		case NL80211_IFTYPE_STATION:
2454 		case NL80211_IFTYPE_P2P_CLIENT:
2455 			ret = cfg80211_chandef_usable(wiphy, &chandef,
2456 						      IEEE80211_CHAN_DISABLED);
2457 			if (!ret)
2458 				return ret;
2459 			break;
2460 		default:
2461 			break;
2462 		}
2463 
2464 		wdev_lock(wdev);
2465 	}
2466 
2467 	wdev_unlock(wdev);
2468 
2469 	return true;
2470 
2471 wdev_inactive_unlock:
2472 	wdev_unlock(wdev);
2473 	return true;
2474 }
2475 
2476 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2477 {
2478 	struct wireless_dev *wdev;
2479 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2480 
2481 	ASSERT_RTNL();
2482 
2483 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2484 		if (!reg_wdev_chan_valid(wiphy, wdev))
2485 			cfg80211_leave(rdev, wdev);
2486 }
2487 
2488 static void reg_check_chans_work(struct work_struct *work)
2489 {
2490 	struct cfg80211_registered_device *rdev;
2491 
2492 	pr_debug("Verifying active interfaces after reg change\n");
2493 	rtnl_lock();
2494 
2495 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2496 		if (!(rdev->wiphy.regulatory_flags &
2497 		      REGULATORY_IGNORE_STALE_KICKOFF))
2498 			reg_leave_invalid_chans(&rdev->wiphy);
2499 
2500 	rtnl_unlock();
2501 }
2502 
2503 static void reg_check_channels(void)
2504 {
2505 	/*
2506 	 * Give usermode a chance to do something nicer (move to another
2507 	 * channel, orderly disconnection), before forcing a disconnection.
2508 	 */
2509 	mod_delayed_work(system_power_efficient_wq,
2510 			 &reg_check_chans,
2511 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2512 }
2513 
2514 static void wiphy_update_regulatory(struct wiphy *wiphy,
2515 				    enum nl80211_reg_initiator initiator)
2516 {
2517 	enum nl80211_band band;
2518 	struct regulatory_request *lr = get_last_request();
2519 
2520 	if (ignore_reg_update(wiphy, initiator)) {
2521 		/*
2522 		 * Regulatory updates set by CORE are ignored for custom
2523 		 * regulatory cards. Let us notify the changes to the driver,
2524 		 * as some drivers used this to restore its orig_* reg domain.
2525 		 */
2526 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2527 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2528 		    !(wiphy->regulatory_flags &
2529 		      REGULATORY_WIPHY_SELF_MANAGED))
2530 			reg_call_notifier(wiphy, lr);
2531 		return;
2532 	}
2533 
2534 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2535 
2536 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2537 		handle_band(wiphy, initiator, wiphy->bands[band]);
2538 
2539 	reg_process_beacons(wiphy);
2540 	reg_process_ht_flags(wiphy);
2541 	reg_call_notifier(wiphy, lr);
2542 }
2543 
2544 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2545 {
2546 	struct cfg80211_registered_device *rdev;
2547 	struct wiphy *wiphy;
2548 
2549 	ASSERT_RTNL();
2550 
2551 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2552 		wiphy = &rdev->wiphy;
2553 		wiphy_update_regulatory(wiphy, initiator);
2554 	}
2555 
2556 	reg_check_channels();
2557 }
2558 
2559 static void handle_channel_custom(struct wiphy *wiphy,
2560 				  struct ieee80211_channel *chan,
2561 				  const struct ieee80211_regdomain *regd,
2562 				  u32 min_bw)
2563 {
2564 	u32 bw_flags = 0;
2565 	const struct ieee80211_reg_rule *reg_rule = NULL;
2566 	const struct ieee80211_power_rule *power_rule = NULL;
2567 	u32 bw, center_freq_khz;
2568 
2569 	center_freq_khz = ieee80211_channel_to_khz(chan);
2570 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2571 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2572 		if (!IS_ERR(reg_rule))
2573 			break;
2574 	}
2575 
2576 	if (IS_ERR_OR_NULL(reg_rule)) {
2577 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2578 			 chan->center_freq, chan->freq_offset);
2579 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2580 			chan->flags |= IEEE80211_CHAN_DISABLED;
2581 		} else {
2582 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2583 			chan->flags = chan->orig_flags;
2584 		}
2585 		return;
2586 	}
2587 
2588 	power_rule = &reg_rule->power_rule;
2589 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2590 
2591 	chan->dfs_state_entered = jiffies;
2592 	chan->dfs_state = NL80211_DFS_USABLE;
2593 
2594 	chan->beacon_found = false;
2595 
2596 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2597 		chan->flags = chan->orig_flags | bw_flags |
2598 			      map_regdom_flags(reg_rule->flags);
2599 	else
2600 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2601 
2602 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2603 	chan->max_reg_power = chan->max_power =
2604 		(int) MBM_TO_DBM(power_rule->max_eirp);
2605 
2606 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2607 		if (reg_rule->dfs_cac_ms)
2608 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2609 		else
2610 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2611 	}
2612 
2613 	chan->max_power = chan->max_reg_power;
2614 }
2615 
2616 static void handle_band_custom(struct wiphy *wiphy,
2617 			       struct ieee80211_supported_band *sband,
2618 			       const struct ieee80211_regdomain *regd)
2619 {
2620 	unsigned int i;
2621 
2622 	if (!sband)
2623 		return;
2624 
2625 	/*
2626 	 * We currently assume that you always want at least 20 MHz,
2627 	 * otherwise channel 12 might get enabled if this rule is
2628 	 * compatible to US, which permits 2402 - 2472 MHz.
2629 	 */
2630 	for (i = 0; i < sband->n_channels; i++)
2631 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2632 				      MHZ_TO_KHZ(20));
2633 }
2634 
2635 /* Used by drivers prior to wiphy registration */
2636 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2637 				   const struct ieee80211_regdomain *regd)
2638 {
2639 	const struct ieee80211_regdomain *new_regd, *tmp;
2640 	enum nl80211_band band;
2641 	unsigned int bands_set = 0;
2642 
2643 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2644 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2645 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2646 
2647 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2648 		if (!wiphy->bands[band])
2649 			continue;
2650 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2651 		bands_set++;
2652 	}
2653 
2654 	/*
2655 	 * no point in calling this if it won't have any effect
2656 	 * on your device's supported bands.
2657 	 */
2658 	WARN_ON(!bands_set);
2659 	new_regd = reg_copy_regd(regd);
2660 	if (IS_ERR(new_regd))
2661 		return;
2662 
2663 	rtnl_lock();
2664 	wiphy_lock(wiphy);
2665 
2666 	tmp = get_wiphy_regdom(wiphy);
2667 	rcu_assign_pointer(wiphy->regd, new_regd);
2668 	rcu_free_regdom(tmp);
2669 
2670 	wiphy_unlock(wiphy);
2671 	rtnl_unlock();
2672 }
2673 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2674 
2675 static void reg_set_request_processed(void)
2676 {
2677 	bool need_more_processing = false;
2678 	struct regulatory_request *lr = get_last_request();
2679 
2680 	lr->processed = true;
2681 
2682 	spin_lock(&reg_requests_lock);
2683 	if (!list_empty(&reg_requests_list))
2684 		need_more_processing = true;
2685 	spin_unlock(&reg_requests_lock);
2686 
2687 	cancel_crda_timeout();
2688 
2689 	if (need_more_processing)
2690 		schedule_work(&reg_work);
2691 }
2692 
2693 /**
2694  * reg_process_hint_core - process core regulatory requests
2695  * @core_request: a pending core regulatory request
2696  *
2697  * The wireless subsystem can use this function to process
2698  * a regulatory request issued by the regulatory core.
2699  */
2700 static enum reg_request_treatment
2701 reg_process_hint_core(struct regulatory_request *core_request)
2702 {
2703 	if (reg_query_database(core_request)) {
2704 		core_request->intersect = false;
2705 		core_request->processed = false;
2706 		reg_update_last_request(core_request);
2707 		return REG_REQ_OK;
2708 	}
2709 
2710 	return REG_REQ_IGNORE;
2711 }
2712 
2713 static enum reg_request_treatment
2714 __reg_process_hint_user(struct regulatory_request *user_request)
2715 {
2716 	struct regulatory_request *lr = get_last_request();
2717 
2718 	if (reg_request_cell_base(user_request))
2719 		return reg_ignore_cell_hint(user_request);
2720 
2721 	if (reg_request_cell_base(lr))
2722 		return REG_REQ_IGNORE;
2723 
2724 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2725 		return REG_REQ_INTERSECT;
2726 	/*
2727 	 * If the user knows better the user should set the regdom
2728 	 * to their country before the IE is picked up
2729 	 */
2730 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2731 	    lr->intersect)
2732 		return REG_REQ_IGNORE;
2733 	/*
2734 	 * Process user requests only after previous user/driver/core
2735 	 * requests have been processed
2736 	 */
2737 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2738 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2739 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2740 	    regdom_changes(lr->alpha2))
2741 		return REG_REQ_IGNORE;
2742 
2743 	if (!regdom_changes(user_request->alpha2))
2744 		return REG_REQ_ALREADY_SET;
2745 
2746 	return REG_REQ_OK;
2747 }
2748 
2749 /**
2750  * reg_process_hint_user - process user regulatory requests
2751  * @user_request: a pending user regulatory request
2752  *
2753  * The wireless subsystem can use this function to process
2754  * a regulatory request initiated by userspace.
2755  */
2756 static enum reg_request_treatment
2757 reg_process_hint_user(struct regulatory_request *user_request)
2758 {
2759 	enum reg_request_treatment treatment;
2760 
2761 	treatment = __reg_process_hint_user(user_request);
2762 	if (treatment == REG_REQ_IGNORE ||
2763 	    treatment == REG_REQ_ALREADY_SET)
2764 		return REG_REQ_IGNORE;
2765 
2766 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2767 	user_request->processed = false;
2768 
2769 	if (reg_query_database(user_request)) {
2770 		reg_update_last_request(user_request);
2771 		user_alpha2[0] = user_request->alpha2[0];
2772 		user_alpha2[1] = user_request->alpha2[1];
2773 		return REG_REQ_OK;
2774 	}
2775 
2776 	return REG_REQ_IGNORE;
2777 }
2778 
2779 static enum reg_request_treatment
2780 __reg_process_hint_driver(struct regulatory_request *driver_request)
2781 {
2782 	struct regulatory_request *lr = get_last_request();
2783 
2784 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2785 		if (regdom_changes(driver_request->alpha2))
2786 			return REG_REQ_OK;
2787 		return REG_REQ_ALREADY_SET;
2788 	}
2789 
2790 	/*
2791 	 * This would happen if you unplug and plug your card
2792 	 * back in or if you add a new device for which the previously
2793 	 * loaded card also agrees on the regulatory domain.
2794 	 */
2795 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2796 	    !regdom_changes(driver_request->alpha2))
2797 		return REG_REQ_ALREADY_SET;
2798 
2799 	return REG_REQ_INTERSECT;
2800 }
2801 
2802 /**
2803  * reg_process_hint_driver - process driver regulatory requests
2804  * @wiphy: the wireless device for the regulatory request
2805  * @driver_request: a pending driver regulatory request
2806  *
2807  * The wireless subsystem can use this function to process
2808  * a regulatory request issued by an 802.11 driver.
2809  *
2810  * Returns one of the different reg request treatment values.
2811  */
2812 static enum reg_request_treatment
2813 reg_process_hint_driver(struct wiphy *wiphy,
2814 			struct regulatory_request *driver_request)
2815 {
2816 	const struct ieee80211_regdomain *regd, *tmp;
2817 	enum reg_request_treatment treatment;
2818 
2819 	treatment = __reg_process_hint_driver(driver_request);
2820 
2821 	switch (treatment) {
2822 	case REG_REQ_OK:
2823 		break;
2824 	case REG_REQ_IGNORE:
2825 		return REG_REQ_IGNORE;
2826 	case REG_REQ_INTERSECT:
2827 	case REG_REQ_ALREADY_SET:
2828 		regd = reg_copy_regd(get_cfg80211_regdom());
2829 		if (IS_ERR(regd))
2830 			return REG_REQ_IGNORE;
2831 
2832 		tmp = get_wiphy_regdom(wiphy);
2833 		ASSERT_RTNL();
2834 		wiphy_lock(wiphy);
2835 		rcu_assign_pointer(wiphy->regd, regd);
2836 		wiphy_unlock(wiphy);
2837 		rcu_free_regdom(tmp);
2838 	}
2839 
2840 
2841 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2842 	driver_request->processed = false;
2843 
2844 	/*
2845 	 * Since CRDA will not be called in this case as we already
2846 	 * have applied the requested regulatory domain before we just
2847 	 * inform userspace we have processed the request
2848 	 */
2849 	if (treatment == REG_REQ_ALREADY_SET) {
2850 		nl80211_send_reg_change_event(driver_request);
2851 		reg_update_last_request(driver_request);
2852 		reg_set_request_processed();
2853 		return REG_REQ_ALREADY_SET;
2854 	}
2855 
2856 	if (reg_query_database(driver_request)) {
2857 		reg_update_last_request(driver_request);
2858 		return REG_REQ_OK;
2859 	}
2860 
2861 	return REG_REQ_IGNORE;
2862 }
2863 
2864 static enum reg_request_treatment
2865 __reg_process_hint_country_ie(struct wiphy *wiphy,
2866 			      struct regulatory_request *country_ie_request)
2867 {
2868 	struct wiphy *last_wiphy = NULL;
2869 	struct regulatory_request *lr = get_last_request();
2870 
2871 	if (reg_request_cell_base(lr)) {
2872 		/* Trust a Cell base station over the AP's country IE */
2873 		if (regdom_changes(country_ie_request->alpha2))
2874 			return REG_REQ_IGNORE;
2875 		return REG_REQ_ALREADY_SET;
2876 	} else {
2877 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2878 			return REG_REQ_IGNORE;
2879 	}
2880 
2881 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2882 		return -EINVAL;
2883 
2884 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2885 		return REG_REQ_OK;
2886 
2887 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2888 
2889 	if (last_wiphy != wiphy) {
2890 		/*
2891 		 * Two cards with two APs claiming different
2892 		 * Country IE alpha2s. We could
2893 		 * intersect them, but that seems unlikely
2894 		 * to be correct. Reject second one for now.
2895 		 */
2896 		if (regdom_changes(country_ie_request->alpha2))
2897 			return REG_REQ_IGNORE;
2898 		return REG_REQ_ALREADY_SET;
2899 	}
2900 
2901 	if (regdom_changes(country_ie_request->alpha2))
2902 		return REG_REQ_OK;
2903 	return REG_REQ_ALREADY_SET;
2904 }
2905 
2906 /**
2907  * reg_process_hint_country_ie - process regulatory requests from country IEs
2908  * @wiphy: the wireless device for the regulatory request
2909  * @country_ie_request: a regulatory request from a country IE
2910  *
2911  * The wireless subsystem can use this function to process
2912  * a regulatory request issued by a country Information Element.
2913  *
2914  * Returns one of the different reg request treatment values.
2915  */
2916 static enum reg_request_treatment
2917 reg_process_hint_country_ie(struct wiphy *wiphy,
2918 			    struct regulatory_request *country_ie_request)
2919 {
2920 	enum reg_request_treatment treatment;
2921 
2922 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2923 
2924 	switch (treatment) {
2925 	case REG_REQ_OK:
2926 		break;
2927 	case REG_REQ_IGNORE:
2928 		return REG_REQ_IGNORE;
2929 	case REG_REQ_ALREADY_SET:
2930 		reg_free_request(country_ie_request);
2931 		return REG_REQ_ALREADY_SET;
2932 	case REG_REQ_INTERSECT:
2933 		/*
2934 		 * This doesn't happen yet, not sure we
2935 		 * ever want to support it for this case.
2936 		 */
2937 		WARN_ONCE(1, "Unexpected intersection for country elements");
2938 		return REG_REQ_IGNORE;
2939 	}
2940 
2941 	country_ie_request->intersect = false;
2942 	country_ie_request->processed = false;
2943 
2944 	if (reg_query_database(country_ie_request)) {
2945 		reg_update_last_request(country_ie_request);
2946 		return REG_REQ_OK;
2947 	}
2948 
2949 	return REG_REQ_IGNORE;
2950 }
2951 
2952 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2953 {
2954 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2955 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2956 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2957 	bool dfs_domain_same;
2958 
2959 	rcu_read_lock();
2960 
2961 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2962 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2963 	if (!wiphy1_regd)
2964 		wiphy1_regd = cfg80211_regd;
2965 
2966 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2967 	if (!wiphy2_regd)
2968 		wiphy2_regd = cfg80211_regd;
2969 
2970 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2971 
2972 	rcu_read_unlock();
2973 
2974 	return dfs_domain_same;
2975 }
2976 
2977 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2978 				    struct ieee80211_channel *src_chan)
2979 {
2980 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2981 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2982 		return;
2983 
2984 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2985 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2986 		return;
2987 
2988 	if (src_chan->center_freq == dst_chan->center_freq &&
2989 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2990 		dst_chan->dfs_state = src_chan->dfs_state;
2991 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2992 	}
2993 }
2994 
2995 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2996 				       struct wiphy *src_wiphy)
2997 {
2998 	struct ieee80211_supported_band *src_sband, *dst_sband;
2999 	struct ieee80211_channel *src_chan, *dst_chan;
3000 	int i, j, band;
3001 
3002 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
3003 		return;
3004 
3005 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3006 		dst_sband = dst_wiphy->bands[band];
3007 		src_sband = src_wiphy->bands[band];
3008 		if (!dst_sband || !src_sband)
3009 			continue;
3010 
3011 		for (i = 0; i < dst_sband->n_channels; i++) {
3012 			dst_chan = &dst_sband->channels[i];
3013 			for (j = 0; j < src_sband->n_channels; j++) {
3014 				src_chan = &src_sband->channels[j];
3015 				reg_copy_dfs_chan_state(dst_chan, src_chan);
3016 			}
3017 		}
3018 	}
3019 }
3020 
3021 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3022 {
3023 	struct cfg80211_registered_device *rdev;
3024 
3025 	ASSERT_RTNL();
3026 
3027 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3028 		if (wiphy == &rdev->wiphy)
3029 			continue;
3030 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3031 	}
3032 }
3033 
3034 /* This processes *all* regulatory hints */
3035 static void reg_process_hint(struct regulatory_request *reg_request)
3036 {
3037 	struct wiphy *wiphy = NULL;
3038 	enum reg_request_treatment treatment;
3039 	enum nl80211_reg_initiator initiator = reg_request->initiator;
3040 
3041 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3042 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3043 
3044 	switch (initiator) {
3045 	case NL80211_REGDOM_SET_BY_CORE:
3046 		treatment = reg_process_hint_core(reg_request);
3047 		break;
3048 	case NL80211_REGDOM_SET_BY_USER:
3049 		treatment = reg_process_hint_user(reg_request);
3050 		break;
3051 	case NL80211_REGDOM_SET_BY_DRIVER:
3052 		if (!wiphy)
3053 			goto out_free;
3054 		treatment = reg_process_hint_driver(wiphy, reg_request);
3055 		break;
3056 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3057 		if (!wiphy)
3058 			goto out_free;
3059 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3060 		break;
3061 	default:
3062 		WARN(1, "invalid initiator %d\n", initiator);
3063 		goto out_free;
3064 	}
3065 
3066 	if (treatment == REG_REQ_IGNORE)
3067 		goto out_free;
3068 
3069 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3070 	     "unexpected treatment value %d\n", treatment);
3071 
3072 	/* This is required so that the orig_* parameters are saved.
3073 	 * NOTE: treatment must be set for any case that reaches here!
3074 	 */
3075 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3076 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3077 		wiphy_update_regulatory(wiphy, initiator);
3078 		wiphy_all_share_dfs_chan_state(wiphy);
3079 		reg_check_channels();
3080 	}
3081 
3082 	return;
3083 
3084 out_free:
3085 	reg_free_request(reg_request);
3086 }
3087 
3088 static void notify_self_managed_wiphys(struct regulatory_request *request)
3089 {
3090 	struct cfg80211_registered_device *rdev;
3091 	struct wiphy *wiphy;
3092 
3093 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3094 		wiphy = &rdev->wiphy;
3095 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3096 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3097 			reg_call_notifier(wiphy, request);
3098 	}
3099 }
3100 
3101 /*
3102  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3103  * Regulatory hints come on a first come first serve basis and we
3104  * must process each one atomically.
3105  */
3106 static void reg_process_pending_hints(void)
3107 {
3108 	struct regulatory_request *reg_request, *lr;
3109 
3110 	lr = get_last_request();
3111 
3112 	/* When last_request->processed becomes true this will be rescheduled */
3113 	if (lr && !lr->processed) {
3114 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3115 		return;
3116 	}
3117 
3118 	spin_lock(&reg_requests_lock);
3119 
3120 	if (list_empty(&reg_requests_list)) {
3121 		spin_unlock(&reg_requests_lock);
3122 		return;
3123 	}
3124 
3125 	reg_request = list_first_entry(&reg_requests_list,
3126 				       struct regulatory_request,
3127 				       list);
3128 	list_del_init(&reg_request->list);
3129 
3130 	spin_unlock(&reg_requests_lock);
3131 
3132 	notify_self_managed_wiphys(reg_request);
3133 
3134 	reg_process_hint(reg_request);
3135 
3136 	lr = get_last_request();
3137 
3138 	spin_lock(&reg_requests_lock);
3139 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3140 		schedule_work(&reg_work);
3141 	spin_unlock(&reg_requests_lock);
3142 }
3143 
3144 /* Processes beacon hints -- this has nothing to do with country IEs */
3145 static void reg_process_pending_beacon_hints(void)
3146 {
3147 	struct cfg80211_registered_device *rdev;
3148 	struct reg_beacon *pending_beacon, *tmp;
3149 
3150 	/* This goes through the _pending_ beacon list */
3151 	spin_lock_bh(&reg_pending_beacons_lock);
3152 
3153 	list_for_each_entry_safe(pending_beacon, tmp,
3154 				 &reg_pending_beacons, list) {
3155 		list_del_init(&pending_beacon->list);
3156 
3157 		/* Applies the beacon hint to current wiphys */
3158 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3159 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3160 
3161 		/* Remembers the beacon hint for new wiphys or reg changes */
3162 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3163 	}
3164 
3165 	spin_unlock_bh(&reg_pending_beacons_lock);
3166 }
3167 
3168 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3169 {
3170 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3171 	const struct ieee80211_regdomain *tmp;
3172 	const struct ieee80211_regdomain *regd;
3173 	enum nl80211_band band;
3174 	struct regulatory_request request = {};
3175 
3176 	ASSERT_RTNL();
3177 	lockdep_assert_wiphy(wiphy);
3178 
3179 	spin_lock(&reg_requests_lock);
3180 	regd = rdev->requested_regd;
3181 	rdev->requested_regd = NULL;
3182 	spin_unlock(&reg_requests_lock);
3183 
3184 	if (!regd)
3185 		return;
3186 
3187 	tmp = get_wiphy_regdom(wiphy);
3188 	rcu_assign_pointer(wiphy->regd, regd);
3189 	rcu_free_regdom(tmp);
3190 
3191 	for (band = 0; band < NUM_NL80211_BANDS; band++)
3192 		handle_band_custom(wiphy, wiphy->bands[band], regd);
3193 
3194 	reg_process_ht_flags(wiphy);
3195 
3196 	request.wiphy_idx = get_wiphy_idx(wiphy);
3197 	request.alpha2[0] = regd->alpha2[0];
3198 	request.alpha2[1] = regd->alpha2[1];
3199 	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3200 
3201 	nl80211_send_wiphy_reg_change_event(&request);
3202 }
3203 
3204 static void reg_process_self_managed_hints(void)
3205 {
3206 	struct cfg80211_registered_device *rdev;
3207 
3208 	ASSERT_RTNL();
3209 
3210 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3211 		wiphy_lock(&rdev->wiphy);
3212 		reg_process_self_managed_hint(&rdev->wiphy);
3213 		wiphy_unlock(&rdev->wiphy);
3214 	}
3215 
3216 	reg_check_channels();
3217 }
3218 
3219 static void reg_todo(struct work_struct *work)
3220 {
3221 	rtnl_lock();
3222 	reg_process_pending_hints();
3223 	reg_process_pending_beacon_hints();
3224 	reg_process_self_managed_hints();
3225 	rtnl_unlock();
3226 }
3227 
3228 static void queue_regulatory_request(struct regulatory_request *request)
3229 {
3230 	request->alpha2[0] = toupper(request->alpha2[0]);
3231 	request->alpha2[1] = toupper(request->alpha2[1]);
3232 
3233 	spin_lock(&reg_requests_lock);
3234 	list_add_tail(&request->list, &reg_requests_list);
3235 	spin_unlock(&reg_requests_lock);
3236 
3237 	schedule_work(&reg_work);
3238 }
3239 
3240 /*
3241  * Core regulatory hint -- happens during cfg80211_init()
3242  * and when we restore regulatory settings.
3243  */
3244 static int regulatory_hint_core(const char *alpha2)
3245 {
3246 	struct regulatory_request *request;
3247 
3248 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3249 	if (!request)
3250 		return -ENOMEM;
3251 
3252 	request->alpha2[0] = alpha2[0];
3253 	request->alpha2[1] = alpha2[1];
3254 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3255 	request->wiphy_idx = WIPHY_IDX_INVALID;
3256 
3257 	queue_regulatory_request(request);
3258 
3259 	return 0;
3260 }
3261 
3262 /* User hints */
3263 int regulatory_hint_user(const char *alpha2,
3264 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3265 {
3266 	struct regulatory_request *request;
3267 
3268 	if (WARN_ON(!alpha2))
3269 		return -EINVAL;
3270 
3271 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3272 		return -EINVAL;
3273 
3274 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3275 	if (!request)
3276 		return -ENOMEM;
3277 
3278 	request->wiphy_idx = WIPHY_IDX_INVALID;
3279 	request->alpha2[0] = alpha2[0];
3280 	request->alpha2[1] = alpha2[1];
3281 	request->initiator = NL80211_REGDOM_SET_BY_USER;
3282 	request->user_reg_hint_type = user_reg_hint_type;
3283 
3284 	/* Allow calling CRDA again */
3285 	reset_crda_timeouts();
3286 
3287 	queue_regulatory_request(request);
3288 
3289 	return 0;
3290 }
3291 
3292 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3293 {
3294 	spin_lock(&reg_indoor_lock);
3295 
3296 	/* It is possible that more than one user space process is trying to
3297 	 * configure the indoor setting. To handle such cases, clear the indoor
3298 	 * setting in case that some process does not think that the device
3299 	 * is operating in an indoor environment. In addition, if a user space
3300 	 * process indicates that it is controlling the indoor setting, save its
3301 	 * portid, i.e., make it the owner.
3302 	 */
3303 	reg_is_indoor = is_indoor;
3304 	if (reg_is_indoor) {
3305 		if (!reg_is_indoor_portid)
3306 			reg_is_indoor_portid = portid;
3307 	} else {
3308 		reg_is_indoor_portid = 0;
3309 	}
3310 
3311 	spin_unlock(&reg_indoor_lock);
3312 
3313 	if (!is_indoor)
3314 		reg_check_channels();
3315 
3316 	return 0;
3317 }
3318 
3319 void regulatory_netlink_notify(u32 portid)
3320 {
3321 	spin_lock(&reg_indoor_lock);
3322 
3323 	if (reg_is_indoor_portid != portid) {
3324 		spin_unlock(&reg_indoor_lock);
3325 		return;
3326 	}
3327 
3328 	reg_is_indoor = false;
3329 	reg_is_indoor_portid = 0;
3330 
3331 	spin_unlock(&reg_indoor_lock);
3332 
3333 	reg_check_channels();
3334 }
3335 
3336 /* Driver hints */
3337 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3338 {
3339 	struct regulatory_request *request;
3340 
3341 	if (WARN_ON(!alpha2 || !wiphy))
3342 		return -EINVAL;
3343 
3344 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3345 
3346 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3347 	if (!request)
3348 		return -ENOMEM;
3349 
3350 	request->wiphy_idx = get_wiphy_idx(wiphy);
3351 
3352 	request->alpha2[0] = alpha2[0];
3353 	request->alpha2[1] = alpha2[1];
3354 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3355 
3356 	/* Allow calling CRDA again */
3357 	reset_crda_timeouts();
3358 
3359 	queue_regulatory_request(request);
3360 
3361 	return 0;
3362 }
3363 EXPORT_SYMBOL(regulatory_hint);
3364 
3365 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3366 				const u8 *country_ie, u8 country_ie_len)
3367 {
3368 	char alpha2[2];
3369 	enum environment_cap env = ENVIRON_ANY;
3370 	struct regulatory_request *request = NULL, *lr;
3371 
3372 	/* IE len must be evenly divisible by 2 */
3373 	if (country_ie_len & 0x01)
3374 		return;
3375 
3376 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3377 		return;
3378 
3379 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3380 	if (!request)
3381 		return;
3382 
3383 	alpha2[0] = country_ie[0];
3384 	alpha2[1] = country_ie[1];
3385 
3386 	if (country_ie[2] == 'I')
3387 		env = ENVIRON_INDOOR;
3388 	else if (country_ie[2] == 'O')
3389 		env = ENVIRON_OUTDOOR;
3390 
3391 	rcu_read_lock();
3392 	lr = get_last_request();
3393 
3394 	if (unlikely(!lr))
3395 		goto out;
3396 
3397 	/*
3398 	 * We will run this only upon a successful connection on cfg80211.
3399 	 * We leave conflict resolution to the workqueue, where can hold
3400 	 * the RTNL.
3401 	 */
3402 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3403 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3404 		goto out;
3405 
3406 	request->wiphy_idx = get_wiphy_idx(wiphy);
3407 	request->alpha2[0] = alpha2[0];
3408 	request->alpha2[1] = alpha2[1];
3409 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3410 	request->country_ie_env = env;
3411 
3412 	/* Allow calling CRDA again */
3413 	reset_crda_timeouts();
3414 
3415 	queue_regulatory_request(request);
3416 	request = NULL;
3417 out:
3418 	kfree(request);
3419 	rcu_read_unlock();
3420 }
3421 
3422 static void restore_alpha2(char *alpha2, bool reset_user)
3423 {
3424 	/* indicates there is no alpha2 to consider for restoration */
3425 	alpha2[0] = '9';
3426 	alpha2[1] = '7';
3427 
3428 	/* The user setting has precedence over the module parameter */
3429 	if (is_user_regdom_saved()) {
3430 		/* Unless we're asked to ignore it and reset it */
3431 		if (reset_user) {
3432 			pr_debug("Restoring regulatory settings including user preference\n");
3433 			user_alpha2[0] = '9';
3434 			user_alpha2[1] = '7';
3435 
3436 			/*
3437 			 * If we're ignoring user settings, we still need to
3438 			 * check the module parameter to ensure we put things
3439 			 * back as they were for a full restore.
3440 			 */
3441 			if (!is_world_regdom(ieee80211_regdom)) {
3442 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3443 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3444 				alpha2[0] = ieee80211_regdom[0];
3445 				alpha2[1] = ieee80211_regdom[1];
3446 			}
3447 		} else {
3448 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3449 				 user_alpha2[0], user_alpha2[1]);
3450 			alpha2[0] = user_alpha2[0];
3451 			alpha2[1] = user_alpha2[1];
3452 		}
3453 	} else if (!is_world_regdom(ieee80211_regdom)) {
3454 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3455 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3456 		alpha2[0] = ieee80211_regdom[0];
3457 		alpha2[1] = ieee80211_regdom[1];
3458 	} else
3459 		pr_debug("Restoring regulatory settings\n");
3460 }
3461 
3462 static void restore_custom_reg_settings(struct wiphy *wiphy)
3463 {
3464 	struct ieee80211_supported_band *sband;
3465 	enum nl80211_band band;
3466 	struct ieee80211_channel *chan;
3467 	int i;
3468 
3469 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3470 		sband = wiphy->bands[band];
3471 		if (!sband)
3472 			continue;
3473 		for (i = 0; i < sband->n_channels; i++) {
3474 			chan = &sband->channels[i];
3475 			chan->flags = chan->orig_flags;
3476 			chan->max_antenna_gain = chan->orig_mag;
3477 			chan->max_power = chan->orig_mpwr;
3478 			chan->beacon_found = false;
3479 		}
3480 	}
3481 }
3482 
3483 /*
3484  * Restoring regulatory settings involves ignoring any
3485  * possibly stale country IE information and user regulatory
3486  * settings if so desired, this includes any beacon hints
3487  * learned as we could have traveled outside to another country
3488  * after disconnection. To restore regulatory settings we do
3489  * exactly what we did at bootup:
3490  *
3491  *   - send a core regulatory hint
3492  *   - send a user regulatory hint if applicable
3493  *
3494  * Device drivers that send a regulatory hint for a specific country
3495  * keep their own regulatory domain on wiphy->regd so that does
3496  * not need to be remembered.
3497  */
3498 static void restore_regulatory_settings(bool reset_user, bool cached)
3499 {
3500 	char alpha2[2];
3501 	char world_alpha2[2];
3502 	struct reg_beacon *reg_beacon, *btmp;
3503 	LIST_HEAD(tmp_reg_req_list);
3504 	struct cfg80211_registered_device *rdev;
3505 
3506 	ASSERT_RTNL();
3507 
3508 	/*
3509 	 * Clear the indoor setting in case that it is not controlled by user
3510 	 * space, as otherwise there is no guarantee that the device is still
3511 	 * operating in an indoor environment.
3512 	 */
3513 	spin_lock(&reg_indoor_lock);
3514 	if (reg_is_indoor && !reg_is_indoor_portid) {
3515 		reg_is_indoor = false;
3516 		reg_check_channels();
3517 	}
3518 	spin_unlock(&reg_indoor_lock);
3519 
3520 	reset_regdomains(true, &world_regdom);
3521 	restore_alpha2(alpha2, reset_user);
3522 
3523 	/*
3524 	 * If there's any pending requests we simply
3525 	 * stash them to a temporary pending queue and
3526 	 * add then after we've restored regulatory
3527 	 * settings.
3528 	 */
3529 	spin_lock(&reg_requests_lock);
3530 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3531 	spin_unlock(&reg_requests_lock);
3532 
3533 	/* Clear beacon hints */
3534 	spin_lock_bh(&reg_pending_beacons_lock);
3535 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3536 		list_del(&reg_beacon->list);
3537 		kfree(reg_beacon);
3538 	}
3539 	spin_unlock_bh(&reg_pending_beacons_lock);
3540 
3541 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3542 		list_del(&reg_beacon->list);
3543 		kfree(reg_beacon);
3544 	}
3545 
3546 	/* First restore to the basic regulatory settings */
3547 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3548 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3549 
3550 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3551 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3552 			continue;
3553 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3554 			restore_custom_reg_settings(&rdev->wiphy);
3555 	}
3556 
3557 	if (cached && (!is_an_alpha2(alpha2) ||
3558 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3559 		reset_regdomains(false, cfg80211_world_regdom);
3560 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3561 		print_regdomain(get_cfg80211_regdom());
3562 		nl80211_send_reg_change_event(&core_request_world);
3563 		reg_set_request_processed();
3564 
3565 		if (is_an_alpha2(alpha2) &&
3566 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3567 			struct regulatory_request *ureq;
3568 
3569 			spin_lock(&reg_requests_lock);
3570 			ureq = list_last_entry(&reg_requests_list,
3571 					       struct regulatory_request,
3572 					       list);
3573 			list_del(&ureq->list);
3574 			spin_unlock(&reg_requests_lock);
3575 
3576 			notify_self_managed_wiphys(ureq);
3577 			reg_update_last_request(ureq);
3578 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3579 				   REGD_SOURCE_CACHED);
3580 		}
3581 	} else {
3582 		regulatory_hint_core(world_alpha2);
3583 
3584 		/*
3585 		 * This restores the ieee80211_regdom module parameter
3586 		 * preference or the last user requested regulatory
3587 		 * settings, user regulatory settings takes precedence.
3588 		 */
3589 		if (is_an_alpha2(alpha2))
3590 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3591 	}
3592 
3593 	spin_lock(&reg_requests_lock);
3594 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3595 	spin_unlock(&reg_requests_lock);
3596 
3597 	pr_debug("Kicking the queue\n");
3598 
3599 	schedule_work(&reg_work);
3600 }
3601 
3602 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3603 {
3604 	struct cfg80211_registered_device *rdev;
3605 	struct wireless_dev *wdev;
3606 
3607 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3608 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3609 			wdev_lock(wdev);
3610 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3611 				wdev_unlock(wdev);
3612 				return false;
3613 			}
3614 			wdev_unlock(wdev);
3615 		}
3616 	}
3617 
3618 	return true;
3619 }
3620 
3621 void regulatory_hint_disconnect(void)
3622 {
3623 	/* Restore of regulatory settings is not required when wiphy(s)
3624 	 * ignore IE from connected access point but clearance of beacon hints
3625 	 * is required when wiphy(s) supports beacon hints.
3626 	 */
3627 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3628 		struct reg_beacon *reg_beacon, *btmp;
3629 
3630 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3631 			return;
3632 
3633 		spin_lock_bh(&reg_pending_beacons_lock);
3634 		list_for_each_entry_safe(reg_beacon, btmp,
3635 					 &reg_pending_beacons, list) {
3636 			list_del(&reg_beacon->list);
3637 			kfree(reg_beacon);
3638 		}
3639 		spin_unlock_bh(&reg_pending_beacons_lock);
3640 
3641 		list_for_each_entry_safe(reg_beacon, btmp,
3642 					 &reg_beacon_list, list) {
3643 			list_del(&reg_beacon->list);
3644 			kfree(reg_beacon);
3645 		}
3646 
3647 		return;
3648 	}
3649 
3650 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3651 	restore_regulatory_settings(false, true);
3652 }
3653 
3654 static bool freq_is_chan_12_13_14(u32 freq)
3655 {
3656 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3657 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3658 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3659 		return true;
3660 	return false;
3661 }
3662 
3663 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3664 {
3665 	struct reg_beacon *pending_beacon;
3666 
3667 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3668 		if (ieee80211_channel_equal(beacon_chan,
3669 					    &pending_beacon->chan))
3670 			return true;
3671 	return false;
3672 }
3673 
3674 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3675 				 struct ieee80211_channel *beacon_chan,
3676 				 gfp_t gfp)
3677 {
3678 	struct reg_beacon *reg_beacon;
3679 	bool processing;
3680 
3681 	if (beacon_chan->beacon_found ||
3682 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3683 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3684 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3685 		return 0;
3686 
3687 	spin_lock_bh(&reg_pending_beacons_lock);
3688 	processing = pending_reg_beacon(beacon_chan);
3689 	spin_unlock_bh(&reg_pending_beacons_lock);
3690 
3691 	if (processing)
3692 		return 0;
3693 
3694 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3695 	if (!reg_beacon)
3696 		return -ENOMEM;
3697 
3698 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3699 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3700 		 ieee80211_freq_khz_to_channel(
3701 			 ieee80211_channel_to_khz(beacon_chan)),
3702 		 wiphy_name(wiphy));
3703 
3704 	memcpy(&reg_beacon->chan, beacon_chan,
3705 	       sizeof(struct ieee80211_channel));
3706 
3707 	/*
3708 	 * Since we can be called from BH or and non-BH context
3709 	 * we must use spin_lock_bh()
3710 	 */
3711 	spin_lock_bh(&reg_pending_beacons_lock);
3712 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3713 	spin_unlock_bh(&reg_pending_beacons_lock);
3714 
3715 	schedule_work(&reg_work);
3716 
3717 	return 0;
3718 }
3719 
3720 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3721 {
3722 	unsigned int i;
3723 	const struct ieee80211_reg_rule *reg_rule = NULL;
3724 	const struct ieee80211_freq_range *freq_range = NULL;
3725 	const struct ieee80211_power_rule *power_rule = NULL;
3726 	char bw[32], cac_time[32];
3727 
3728 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3729 
3730 	for (i = 0; i < rd->n_reg_rules; i++) {
3731 		reg_rule = &rd->reg_rules[i];
3732 		freq_range = &reg_rule->freq_range;
3733 		power_rule = &reg_rule->power_rule;
3734 
3735 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3736 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3737 				 freq_range->max_bandwidth_khz,
3738 				 reg_get_max_bandwidth(rd, reg_rule));
3739 		else
3740 			snprintf(bw, sizeof(bw), "%d KHz",
3741 				 freq_range->max_bandwidth_khz);
3742 
3743 		if (reg_rule->flags & NL80211_RRF_DFS)
3744 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3745 				  reg_rule->dfs_cac_ms/1000);
3746 		else
3747 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3748 
3749 
3750 		/*
3751 		 * There may not be documentation for max antenna gain
3752 		 * in certain regions
3753 		 */
3754 		if (power_rule->max_antenna_gain)
3755 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3756 				freq_range->start_freq_khz,
3757 				freq_range->end_freq_khz,
3758 				bw,
3759 				power_rule->max_antenna_gain,
3760 				power_rule->max_eirp,
3761 				cac_time);
3762 		else
3763 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3764 				freq_range->start_freq_khz,
3765 				freq_range->end_freq_khz,
3766 				bw,
3767 				power_rule->max_eirp,
3768 				cac_time);
3769 	}
3770 }
3771 
3772 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3773 {
3774 	switch (dfs_region) {
3775 	case NL80211_DFS_UNSET:
3776 	case NL80211_DFS_FCC:
3777 	case NL80211_DFS_ETSI:
3778 	case NL80211_DFS_JP:
3779 		return true;
3780 	default:
3781 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3782 		return false;
3783 	}
3784 }
3785 
3786 static void print_regdomain(const struct ieee80211_regdomain *rd)
3787 {
3788 	struct regulatory_request *lr = get_last_request();
3789 
3790 	if (is_intersected_alpha2(rd->alpha2)) {
3791 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3792 			struct cfg80211_registered_device *rdev;
3793 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3794 			if (rdev) {
3795 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3796 					rdev->country_ie_alpha2[0],
3797 					rdev->country_ie_alpha2[1]);
3798 			} else
3799 				pr_debug("Current regulatory domain intersected:\n");
3800 		} else
3801 			pr_debug("Current regulatory domain intersected:\n");
3802 	} else if (is_world_regdom(rd->alpha2)) {
3803 		pr_debug("World regulatory domain updated:\n");
3804 	} else {
3805 		if (is_unknown_alpha2(rd->alpha2))
3806 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3807 		else {
3808 			if (reg_request_cell_base(lr))
3809 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3810 					rd->alpha2[0], rd->alpha2[1]);
3811 			else
3812 				pr_debug("Regulatory domain changed to country: %c%c\n",
3813 					rd->alpha2[0], rd->alpha2[1]);
3814 		}
3815 	}
3816 
3817 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3818 	print_rd_rules(rd);
3819 }
3820 
3821 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3822 {
3823 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3824 	print_rd_rules(rd);
3825 }
3826 
3827 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3828 {
3829 	if (!is_world_regdom(rd->alpha2))
3830 		return -EINVAL;
3831 	update_world_regdomain(rd);
3832 	return 0;
3833 }
3834 
3835 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3836 			   struct regulatory_request *user_request)
3837 {
3838 	const struct ieee80211_regdomain *intersected_rd = NULL;
3839 
3840 	if (!regdom_changes(rd->alpha2))
3841 		return -EALREADY;
3842 
3843 	if (!is_valid_rd(rd)) {
3844 		pr_err("Invalid regulatory domain detected: %c%c\n",
3845 		       rd->alpha2[0], rd->alpha2[1]);
3846 		print_regdomain_info(rd);
3847 		return -EINVAL;
3848 	}
3849 
3850 	if (!user_request->intersect) {
3851 		reset_regdomains(false, rd);
3852 		return 0;
3853 	}
3854 
3855 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3856 	if (!intersected_rd)
3857 		return -EINVAL;
3858 
3859 	kfree(rd);
3860 	rd = NULL;
3861 	reset_regdomains(false, intersected_rd);
3862 
3863 	return 0;
3864 }
3865 
3866 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3867 			     struct regulatory_request *driver_request)
3868 {
3869 	const struct ieee80211_regdomain *regd;
3870 	const struct ieee80211_regdomain *intersected_rd = NULL;
3871 	const struct ieee80211_regdomain *tmp;
3872 	struct wiphy *request_wiphy;
3873 
3874 	if (is_world_regdom(rd->alpha2))
3875 		return -EINVAL;
3876 
3877 	if (!regdom_changes(rd->alpha2))
3878 		return -EALREADY;
3879 
3880 	if (!is_valid_rd(rd)) {
3881 		pr_err("Invalid regulatory domain detected: %c%c\n",
3882 		       rd->alpha2[0], rd->alpha2[1]);
3883 		print_regdomain_info(rd);
3884 		return -EINVAL;
3885 	}
3886 
3887 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3888 	if (!request_wiphy)
3889 		return -ENODEV;
3890 
3891 	if (!driver_request->intersect) {
3892 		ASSERT_RTNL();
3893 		wiphy_lock(request_wiphy);
3894 		if (request_wiphy->regd) {
3895 			wiphy_unlock(request_wiphy);
3896 			return -EALREADY;
3897 		}
3898 
3899 		regd = reg_copy_regd(rd);
3900 		if (IS_ERR(regd)) {
3901 			wiphy_unlock(request_wiphy);
3902 			return PTR_ERR(regd);
3903 		}
3904 
3905 		rcu_assign_pointer(request_wiphy->regd, regd);
3906 		wiphy_unlock(request_wiphy);
3907 		reset_regdomains(false, rd);
3908 		return 0;
3909 	}
3910 
3911 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3912 	if (!intersected_rd)
3913 		return -EINVAL;
3914 
3915 	/*
3916 	 * We can trash what CRDA provided now.
3917 	 * However if a driver requested this specific regulatory
3918 	 * domain we keep it for its private use
3919 	 */
3920 	tmp = get_wiphy_regdom(request_wiphy);
3921 	rcu_assign_pointer(request_wiphy->regd, rd);
3922 	rcu_free_regdom(tmp);
3923 
3924 	rd = NULL;
3925 
3926 	reset_regdomains(false, intersected_rd);
3927 
3928 	return 0;
3929 }
3930 
3931 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3932 				 struct regulatory_request *country_ie_request)
3933 {
3934 	struct wiphy *request_wiphy;
3935 
3936 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3937 	    !is_unknown_alpha2(rd->alpha2))
3938 		return -EINVAL;
3939 
3940 	/*
3941 	 * Lets only bother proceeding on the same alpha2 if the current
3942 	 * rd is non static (it means CRDA was present and was used last)
3943 	 * and the pending request came in from a country IE
3944 	 */
3945 
3946 	if (!is_valid_rd(rd)) {
3947 		pr_err("Invalid regulatory domain detected: %c%c\n",
3948 		       rd->alpha2[0], rd->alpha2[1]);
3949 		print_regdomain_info(rd);
3950 		return -EINVAL;
3951 	}
3952 
3953 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3954 	if (!request_wiphy)
3955 		return -ENODEV;
3956 
3957 	if (country_ie_request->intersect)
3958 		return -EINVAL;
3959 
3960 	reset_regdomains(false, rd);
3961 	return 0;
3962 }
3963 
3964 /*
3965  * Use this call to set the current regulatory domain. Conflicts with
3966  * multiple drivers can be ironed out later. Caller must've already
3967  * kmalloc'd the rd structure.
3968  */
3969 int set_regdom(const struct ieee80211_regdomain *rd,
3970 	       enum ieee80211_regd_source regd_src)
3971 {
3972 	struct regulatory_request *lr;
3973 	bool user_reset = false;
3974 	int r;
3975 
3976 	if (IS_ERR_OR_NULL(rd))
3977 		return -ENODATA;
3978 
3979 	if (!reg_is_valid_request(rd->alpha2)) {
3980 		kfree(rd);
3981 		return -EINVAL;
3982 	}
3983 
3984 	if (regd_src == REGD_SOURCE_CRDA)
3985 		reset_crda_timeouts();
3986 
3987 	lr = get_last_request();
3988 
3989 	/* Note that this doesn't update the wiphys, this is done below */
3990 	switch (lr->initiator) {
3991 	case NL80211_REGDOM_SET_BY_CORE:
3992 		r = reg_set_rd_core(rd);
3993 		break;
3994 	case NL80211_REGDOM_SET_BY_USER:
3995 		cfg80211_save_user_regdom(rd);
3996 		r = reg_set_rd_user(rd, lr);
3997 		user_reset = true;
3998 		break;
3999 	case NL80211_REGDOM_SET_BY_DRIVER:
4000 		r = reg_set_rd_driver(rd, lr);
4001 		break;
4002 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
4003 		r = reg_set_rd_country_ie(rd, lr);
4004 		break;
4005 	default:
4006 		WARN(1, "invalid initiator %d\n", lr->initiator);
4007 		kfree(rd);
4008 		return -EINVAL;
4009 	}
4010 
4011 	if (r) {
4012 		switch (r) {
4013 		case -EALREADY:
4014 			reg_set_request_processed();
4015 			break;
4016 		default:
4017 			/* Back to world regulatory in case of errors */
4018 			restore_regulatory_settings(user_reset, false);
4019 		}
4020 
4021 		kfree(rd);
4022 		return r;
4023 	}
4024 
4025 	/* This would make this whole thing pointless */
4026 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4027 		return -EINVAL;
4028 
4029 	/* update all wiphys now with the new established regulatory domain */
4030 	update_all_wiphy_regulatory(lr->initiator);
4031 
4032 	print_regdomain(get_cfg80211_regdom());
4033 
4034 	nl80211_send_reg_change_event(lr);
4035 
4036 	reg_set_request_processed();
4037 
4038 	return 0;
4039 }
4040 
4041 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4042 				       struct ieee80211_regdomain *rd)
4043 {
4044 	const struct ieee80211_regdomain *regd;
4045 	const struct ieee80211_regdomain *prev_regd;
4046 	struct cfg80211_registered_device *rdev;
4047 
4048 	if (WARN_ON(!wiphy || !rd))
4049 		return -EINVAL;
4050 
4051 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4052 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4053 		return -EPERM;
4054 
4055 	if (WARN(!is_valid_rd(rd),
4056 		 "Invalid regulatory domain detected: %c%c\n",
4057 		 rd->alpha2[0], rd->alpha2[1])) {
4058 		print_regdomain_info(rd);
4059 		return -EINVAL;
4060 	}
4061 
4062 	regd = reg_copy_regd(rd);
4063 	if (IS_ERR(regd))
4064 		return PTR_ERR(regd);
4065 
4066 	rdev = wiphy_to_rdev(wiphy);
4067 
4068 	spin_lock(&reg_requests_lock);
4069 	prev_regd = rdev->requested_regd;
4070 	rdev->requested_regd = regd;
4071 	spin_unlock(&reg_requests_lock);
4072 
4073 	kfree(prev_regd);
4074 	return 0;
4075 }
4076 
4077 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4078 			      struct ieee80211_regdomain *rd)
4079 {
4080 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4081 
4082 	if (ret)
4083 		return ret;
4084 
4085 	schedule_work(&reg_work);
4086 	return 0;
4087 }
4088 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4089 
4090 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4091 				   struct ieee80211_regdomain *rd)
4092 {
4093 	int ret;
4094 
4095 	ASSERT_RTNL();
4096 
4097 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4098 	if (ret)
4099 		return ret;
4100 
4101 	/* process the request immediately */
4102 	reg_process_self_managed_hint(wiphy);
4103 	reg_check_channels();
4104 	return 0;
4105 }
4106 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4107 
4108 void wiphy_regulatory_register(struct wiphy *wiphy)
4109 {
4110 	struct regulatory_request *lr = get_last_request();
4111 
4112 	/* self-managed devices ignore beacon hints and country IE */
4113 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4114 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4115 					   REGULATORY_COUNTRY_IE_IGNORE;
4116 
4117 		/*
4118 		 * The last request may have been received before this
4119 		 * registration call. Call the driver notifier if
4120 		 * initiator is USER.
4121 		 */
4122 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4123 			reg_call_notifier(wiphy, lr);
4124 	}
4125 
4126 	if (!reg_dev_ignore_cell_hint(wiphy))
4127 		reg_num_devs_support_basehint++;
4128 
4129 	wiphy_update_regulatory(wiphy, lr->initiator);
4130 	wiphy_all_share_dfs_chan_state(wiphy);
4131 	reg_process_self_managed_hints();
4132 }
4133 
4134 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4135 {
4136 	struct wiphy *request_wiphy = NULL;
4137 	struct regulatory_request *lr;
4138 
4139 	lr = get_last_request();
4140 
4141 	if (!reg_dev_ignore_cell_hint(wiphy))
4142 		reg_num_devs_support_basehint--;
4143 
4144 	rcu_free_regdom(get_wiphy_regdom(wiphy));
4145 	RCU_INIT_POINTER(wiphy->regd, NULL);
4146 
4147 	if (lr)
4148 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4149 
4150 	if (!request_wiphy || request_wiphy != wiphy)
4151 		return;
4152 
4153 	lr->wiphy_idx = WIPHY_IDX_INVALID;
4154 	lr->country_ie_env = ENVIRON_ANY;
4155 }
4156 
4157 /*
4158  * See FCC notices for UNII band definitions
4159  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4160  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4161  */
4162 int cfg80211_get_unii(int freq)
4163 {
4164 	/* UNII-1 */
4165 	if (freq >= 5150 && freq <= 5250)
4166 		return 0;
4167 
4168 	/* UNII-2A */
4169 	if (freq > 5250 && freq <= 5350)
4170 		return 1;
4171 
4172 	/* UNII-2B */
4173 	if (freq > 5350 && freq <= 5470)
4174 		return 2;
4175 
4176 	/* UNII-2C */
4177 	if (freq > 5470 && freq <= 5725)
4178 		return 3;
4179 
4180 	/* UNII-3 */
4181 	if (freq > 5725 && freq <= 5825)
4182 		return 4;
4183 
4184 	/* UNII-5 */
4185 	if (freq > 5925 && freq <= 6425)
4186 		return 5;
4187 
4188 	/* UNII-6 */
4189 	if (freq > 6425 && freq <= 6525)
4190 		return 6;
4191 
4192 	/* UNII-7 */
4193 	if (freq > 6525 && freq <= 6875)
4194 		return 7;
4195 
4196 	/* UNII-8 */
4197 	if (freq > 6875 && freq <= 7125)
4198 		return 8;
4199 
4200 	return -EINVAL;
4201 }
4202 
4203 bool regulatory_indoor_allowed(void)
4204 {
4205 	return reg_is_indoor;
4206 }
4207 
4208 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4209 {
4210 	const struct ieee80211_regdomain *regd = NULL;
4211 	const struct ieee80211_regdomain *wiphy_regd = NULL;
4212 	bool pre_cac_allowed = false;
4213 
4214 	rcu_read_lock();
4215 
4216 	regd = rcu_dereference(cfg80211_regdomain);
4217 	wiphy_regd = rcu_dereference(wiphy->regd);
4218 	if (!wiphy_regd) {
4219 		if (regd->dfs_region == NL80211_DFS_ETSI)
4220 			pre_cac_allowed = true;
4221 
4222 		rcu_read_unlock();
4223 
4224 		return pre_cac_allowed;
4225 	}
4226 
4227 	if (regd->dfs_region == wiphy_regd->dfs_region &&
4228 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4229 		pre_cac_allowed = true;
4230 
4231 	rcu_read_unlock();
4232 
4233 	return pre_cac_allowed;
4234 }
4235 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4236 
4237 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4238 {
4239 	struct wireless_dev *wdev;
4240 	/* If we finished CAC or received radar, we should end any
4241 	 * CAC running on the same channels.
4242 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4243 	 * either all channels are available - those the CAC_FINISHED
4244 	 * event has effected another wdev state, or there is a channel
4245 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4246 	 * event has effected another wdev state.
4247 	 * In both cases we should end the CAC on the wdev.
4248 	 */
4249 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4250 		struct cfg80211_chan_def *chandef;
4251 
4252 		if (!wdev->cac_started)
4253 			continue;
4254 
4255 		/* FIXME: radar detection is tied to link 0 for now */
4256 		chandef = wdev_chandef(wdev, 0);
4257 		if (!chandef)
4258 			continue;
4259 
4260 		if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4261 			rdev_end_cac(rdev, wdev->netdev);
4262 	}
4263 }
4264 
4265 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4266 				    struct cfg80211_chan_def *chandef,
4267 				    enum nl80211_dfs_state dfs_state,
4268 				    enum nl80211_radar_event event)
4269 {
4270 	struct cfg80211_registered_device *rdev;
4271 
4272 	ASSERT_RTNL();
4273 
4274 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4275 		return;
4276 
4277 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4278 		if (wiphy == &rdev->wiphy)
4279 			continue;
4280 
4281 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4282 			continue;
4283 
4284 		if (!ieee80211_get_channel(&rdev->wiphy,
4285 					   chandef->chan->center_freq))
4286 			continue;
4287 
4288 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4289 
4290 		if (event == NL80211_RADAR_DETECTED ||
4291 		    event == NL80211_RADAR_CAC_FINISHED) {
4292 			cfg80211_sched_dfs_chan_update(rdev);
4293 			cfg80211_check_and_end_cac(rdev);
4294 		}
4295 
4296 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4297 	}
4298 }
4299 
4300 static int __init regulatory_init_db(void)
4301 {
4302 	int err;
4303 
4304 	/*
4305 	 * It's possible that - due to other bugs/issues - cfg80211
4306 	 * never called regulatory_init() below, or that it failed;
4307 	 * in that case, don't try to do any further work here as
4308 	 * it's doomed to lead to crashes.
4309 	 */
4310 	if (IS_ERR_OR_NULL(reg_pdev))
4311 		return -EINVAL;
4312 
4313 	err = load_builtin_regdb_keys();
4314 	if (err) {
4315 		platform_device_unregister(reg_pdev);
4316 		return err;
4317 	}
4318 
4319 	/* We always try to get an update for the static regdomain */
4320 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4321 	if (err) {
4322 		if (err == -ENOMEM) {
4323 			platform_device_unregister(reg_pdev);
4324 			return err;
4325 		}
4326 		/*
4327 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4328 		 * memory which is handled and propagated appropriately above
4329 		 * but it can also fail during a netlink_broadcast() or during
4330 		 * early boot for call_usermodehelper(). For now treat these
4331 		 * errors as non-fatal.
4332 		 */
4333 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4334 	}
4335 
4336 	/*
4337 	 * Finally, if the user set the module parameter treat it
4338 	 * as a user hint.
4339 	 */
4340 	if (!is_world_regdom(ieee80211_regdom))
4341 		regulatory_hint_user(ieee80211_regdom,
4342 				     NL80211_USER_REG_HINT_USER);
4343 
4344 	return 0;
4345 }
4346 #ifndef MODULE
4347 late_initcall(regulatory_init_db);
4348 #endif
4349 
4350 int __init regulatory_init(void)
4351 {
4352 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4353 	if (IS_ERR(reg_pdev))
4354 		return PTR_ERR(reg_pdev);
4355 
4356 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4357 
4358 	user_alpha2[0] = '9';
4359 	user_alpha2[1] = '7';
4360 
4361 #ifdef MODULE
4362 	return regulatory_init_db();
4363 #else
4364 	return 0;
4365 #endif
4366 }
4367 
4368 void regulatory_exit(void)
4369 {
4370 	struct regulatory_request *reg_request, *tmp;
4371 	struct reg_beacon *reg_beacon, *btmp;
4372 
4373 	cancel_work_sync(&reg_work);
4374 	cancel_crda_timeout_sync();
4375 	cancel_delayed_work_sync(&reg_check_chans);
4376 
4377 	/* Lock to suppress warnings */
4378 	rtnl_lock();
4379 	reset_regdomains(true, NULL);
4380 	rtnl_unlock();
4381 
4382 	dev_set_uevent_suppress(&reg_pdev->dev, true);
4383 
4384 	platform_device_unregister(reg_pdev);
4385 
4386 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4387 		list_del(&reg_beacon->list);
4388 		kfree(reg_beacon);
4389 	}
4390 
4391 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4392 		list_del(&reg_beacon->list);
4393 		kfree(reg_beacon);
4394 	}
4395 
4396 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4397 		list_del(&reg_request->list);
4398 		kfree(reg_request);
4399 	}
4400 
4401 	if (!IS_ERR_OR_NULL(regdb))
4402 		kfree(regdb);
4403 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4404 		kfree(cfg80211_user_regdom);
4405 
4406 	free_regdb_keyring();
4407 }
4408