xref: /linux/net/wireless/reg.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61 
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...)			\
64 	printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68 
69 static struct regulatory_request core_request_world = {
70 	.initiator = NL80211_REGDOM_SET_BY_CORE,
71 	.alpha2[0] = '0',
72 	.alpha2[1] = '0',
73 	.intersect = false,
74 	.processed = true,
75 	.country_ie_env = ENVIRON_ANY,
76 };
77 
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80 
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83 
84 static struct device_type reg_device_type = {
85 	.uevent = reg_device_uevent,
86 };
87 
88 /*
89  * Central wireless core regulatory domains, we only need two,
90  * the current one and a world regulatory domain in case we have no
91  * information to give us an alpha2
92  */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94 
95 /*
96  * Protects static reg.c components:
97  *     - cfg80211_world_regdom
98  *     - cfg80211_regdom
99  *     - last_request
100  *     - reg_num_devs_support_basehint
101  */
102 static DEFINE_MUTEX(reg_mutex);
103 
104 /*
105  * Number of devices that registered to the core
106  * that support cellular base station regulatory hints
107  */
108 static int reg_num_devs_support_basehint;
109 
110 static inline void assert_reg_lock(void)
111 {
112 	lockdep_assert_held(&reg_mutex);
113 }
114 
115 /* Used to queue up regulatory hints */
116 static LIST_HEAD(reg_requests_list);
117 static spinlock_t reg_requests_lock;
118 
119 /* Used to queue up beacon hints for review */
120 static LIST_HEAD(reg_pending_beacons);
121 static spinlock_t reg_pending_beacons_lock;
122 
123 /* Used to keep track of processed beacon hints */
124 static LIST_HEAD(reg_beacon_list);
125 
126 struct reg_beacon {
127 	struct list_head list;
128 	struct ieee80211_channel chan;
129 };
130 
131 static void reg_todo(struct work_struct *work);
132 static DECLARE_WORK(reg_work, reg_todo);
133 
134 static void reg_timeout_work(struct work_struct *work);
135 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
136 
137 /* We keep a static world regulatory domain in case of the absence of CRDA */
138 static const struct ieee80211_regdomain world_regdom = {
139 	.n_reg_rules = 6,
140 	.alpha2 =  "00",
141 	.reg_rules = {
142 		/* IEEE 802.11b/g, channels 1..11 */
143 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
144 		/* IEEE 802.11b/g, channels 12..13. No HT40
145 		 * channel fits here. */
146 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
147 			NL80211_RRF_PASSIVE_SCAN |
148 			NL80211_RRF_NO_IBSS),
149 		/* IEEE 802.11 channel 14 - Only JP enables
150 		 * this and for 802.11b only */
151 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
152 			NL80211_RRF_PASSIVE_SCAN |
153 			NL80211_RRF_NO_IBSS |
154 			NL80211_RRF_NO_OFDM),
155 		/* IEEE 802.11a, channel 36..48 */
156 		REG_RULE(5180-10, 5240+10, 40, 6, 20,
157                         NL80211_RRF_PASSIVE_SCAN |
158                         NL80211_RRF_NO_IBSS),
159 
160 		/* NB: 5260 MHz - 5700 MHz requies DFS */
161 
162 		/* IEEE 802.11a, channel 149..165 */
163 		REG_RULE(5745-10, 5825+10, 40, 6, 20,
164 			NL80211_RRF_PASSIVE_SCAN |
165 			NL80211_RRF_NO_IBSS),
166 
167 		/* IEEE 802.11ad (60gHz), channels 1..3 */
168 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
169 	}
170 };
171 
172 static const struct ieee80211_regdomain *cfg80211_world_regdom =
173 	&world_regdom;
174 
175 static char *ieee80211_regdom = "00";
176 static char user_alpha2[2];
177 
178 module_param(ieee80211_regdom, charp, 0444);
179 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
180 
181 static void reset_regdomains(bool full_reset)
182 {
183 	/* avoid freeing static information or freeing something twice */
184 	if (cfg80211_regdomain == cfg80211_world_regdom)
185 		cfg80211_regdomain = NULL;
186 	if (cfg80211_world_regdom == &world_regdom)
187 		cfg80211_world_regdom = NULL;
188 	if (cfg80211_regdomain == &world_regdom)
189 		cfg80211_regdomain = NULL;
190 
191 	kfree(cfg80211_regdomain);
192 	kfree(cfg80211_world_regdom);
193 
194 	cfg80211_world_regdom = &world_regdom;
195 	cfg80211_regdomain = NULL;
196 
197 	if (!full_reset)
198 		return;
199 
200 	if (last_request != &core_request_world)
201 		kfree(last_request);
202 	last_request = &core_request_world;
203 }
204 
205 /*
206  * Dynamic world regulatory domain requested by the wireless
207  * core upon initialization
208  */
209 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
210 {
211 	BUG_ON(!last_request);
212 
213 	reset_regdomains(false);
214 
215 	cfg80211_world_regdom = rd;
216 	cfg80211_regdomain = rd;
217 }
218 
219 bool is_world_regdom(const char *alpha2)
220 {
221 	if (!alpha2)
222 		return false;
223 	if (alpha2[0] == '0' && alpha2[1] == '0')
224 		return true;
225 	return false;
226 }
227 
228 static bool is_alpha2_set(const char *alpha2)
229 {
230 	if (!alpha2)
231 		return false;
232 	if (alpha2[0] != 0 && alpha2[1] != 0)
233 		return true;
234 	return false;
235 }
236 
237 static bool is_unknown_alpha2(const char *alpha2)
238 {
239 	if (!alpha2)
240 		return false;
241 	/*
242 	 * Special case where regulatory domain was built by driver
243 	 * but a specific alpha2 cannot be determined
244 	 */
245 	if (alpha2[0] == '9' && alpha2[1] == '9')
246 		return true;
247 	return false;
248 }
249 
250 static bool is_intersected_alpha2(const char *alpha2)
251 {
252 	if (!alpha2)
253 		return false;
254 	/*
255 	 * Special case where regulatory domain is the
256 	 * result of an intersection between two regulatory domain
257 	 * structures
258 	 */
259 	if (alpha2[0] == '9' && alpha2[1] == '8')
260 		return true;
261 	return false;
262 }
263 
264 static bool is_an_alpha2(const char *alpha2)
265 {
266 	if (!alpha2)
267 		return false;
268 	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
269 		return true;
270 	return false;
271 }
272 
273 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
274 {
275 	if (!alpha2_x || !alpha2_y)
276 		return false;
277 	if (alpha2_x[0] == alpha2_y[0] &&
278 		alpha2_x[1] == alpha2_y[1])
279 		return true;
280 	return false;
281 }
282 
283 static bool regdom_changes(const char *alpha2)
284 {
285 	assert_cfg80211_lock();
286 
287 	if (!cfg80211_regdomain)
288 		return true;
289 	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
290 		return false;
291 	return true;
292 }
293 
294 /*
295  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
296  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
297  * has ever been issued.
298  */
299 static bool is_user_regdom_saved(void)
300 {
301 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
302 		return false;
303 
304 	/* This would indicate a mistake on the design */
305 	if (WARN((!is_world_regdom(user_alpha2) &&
306 		  !is_an_alpha2(user_alpha2)),
307 		 "Unexpected user alpha2: %c%c\n",
308 		 user_alpha2[0],
309 	         user_alpha2[1]))
310 		return false;
311 
312 	return true;
313 }
314 
315 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
316 			 const struct ieee80211_regdomain *src_regd)
317 {
318 	struct ieee80211_regdomain *regd;
319 	int size_of_regd = 0;
320 	unsigned int i;
321 
322 	size_of_regd = sizeof(struct ieee80211_regdomain) +
323 	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
324 
325 	regd = kzalloc(size_of_regd, GFP_KERNEL);
326 	if (!regd)
327 		return -ENOMEM;
328 
329 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
330 
331 	for (i = 0; i < src_regd->n_reg_rules; i++)
332 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
333 			sizeof(struct ieee80211_reg_rule));
334 
335 	*dst_regd = regd;
336 	return 0;
337 }
338 
339 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
340 struct reg_regdb_search_request {
341 	char alpha2[2];
342 	struct list_head list;
343 };
344 
345 static LIST_HEAD(reg_regdb_search_list);
346 static DEFINE_MUTEX(reg_regdb_search_mutex);
347 
348 static void reg_regdb_search(struct work_struct *work)
349 {
350 	struct reg_regdb_search_request *request;
351 	const struct ieee80211_regdomain *curdom, *regdom;
352 	int i, r;
353 
354 	mutex_lock(&reg_regdb_search_mutex);
355 	while (!list_empty(&reg_regdb_search_list)) {
356 		request = list_first_entry(&reg_regdb_search_list,
357 					   struct reg_regdb_search_request,
358 					   list);
359 		list_del(&request->list);
360 
361 		for (i=0; i<reg_regdb_size; i++) {
362 			curdom = reg_regdb[i];
363 
364 			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
365 				r = reg_copy_regd(&regdom, curdom);
366 				if (r)
367 					break;
368 				mutex_lock(&cfg80211_mutex);
369 				set_regdom(regdom);
370 				mutex_unlock(&cfg80211_mutex);
371 				break;
372 			}
373 		}
374 
375 		kfree(request);
376 	}
377 	mutex_unlock(&reg_regdb_search_mutex);
378 }
379 
380 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
381 
382 static void reg_regdb_query(const char *alpha2)
383 {
384 	struct reg_regdb_search_request *request;
385 
386 	if (!alpha2)
387 		return;
388 
389 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
390 	if (!request)
391 		return;
392 
393 	memcpy(request->alpha2, alpha2, 2);
394 
395 	mutex_lock(&reg_regdb_search_mutex);
396 	list_add_tail(&request->list, &reg_regdb_search_list);
397 	mutex_unlock(&reg_regdb_search_mutex);
398 
399 	schedule_work(&reg_regdb_work);
400 }
401 
402 /* Feel free to add any other sanity checks here */
403 static void reg_regdb_size_check(void)
404 {
405 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
406 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
407 }
408 #else
409 static inline void reg_regdb_size_check(void) {}
410 static inline void reg_regdb_query(const char *alpha2) {}
411 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
412 
413 /*
414  * This lets us keep regulatory code which is updated on a regulatory
415  * basis in userspace. Country information is filled in by
416  * reg_device_uevent
417  */
418 static int call_crda(const char *alpha2)
419 {
420 	if (!is_world_regdom((char *) alpha2))
421 		pr_info("Calling CRDA for country: %c%c\n",
422 			alpha2[0], alpha2[1]);
423 	else
424 		pr_info("Calling CRDA to update world regulatory domain\n");
425 
426 	/* query internal regulatory database (if it exists) */
427 	reg_regdb_query(alpha2);
428 
429 	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
430 }
431 
432 /* Used by nl80211 before kmalloc'ing our regulatory domain */
433 bool reg_is_valid_request(const char *alpha2)
434 {
435 	assert_cfg80211_lock();
436 
437 	if (!last_request)
438 		return false;
439 
440 	return alpha2_equal(last_request->alpha2, alpha2);
441 }
442 
443 /* Sanity check on a regulatory rule */
444 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
445 {
446 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
447 	u32 freq_diff;
448 
449 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
450 		return false;
451 
452 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
453 		return false;
454 
455 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
456 
457 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
458 			freq_range->max_bandwidth_khz > freq_diff)
459 		return false;
460 
461 	return true;
462 }
463 
464 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
465 {
466 	const struct ieee80211_reg_rule *reg_rule = NULL;
467 	unsigned int i;
468 
469 	if (!rd->n_reg_rules)
470 		return false;
471 
472 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
473 		return false;
474 
475 	for (i = 0; i < rd->n_reg_rules; i++) {
476 		reg_rule = &rd->reg_rules[i];
477 		if (!is_valid_reg_rule(reg_rule))
478 			return false;
479 	}
480 
481 	return true;
482 }
483 
484 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
485 			    u32 center_freq_khz,
486 			    u32 bw_khz)
487 {
488 	u32 start_freq_khz, end_freq_khz;
489 
490 	start_freq_khz = center_freq_khz - (bw_khz/2);
491 	end_freq_khz = center_freq_khz + (bw_khz/2);
492 
493 	if (start_freq_khz >= freq_range->start_freq_khz &&
494 	    end_freq_khz <= freq_range->end_freq_khz)
495 		return true;
496 
497 	return false;
498 }
499 
500 /**
501  * freq_in_rule_band - tells us if a frequency is in a frequency band
502  * @freq_range: frequency rule we want to query
503  * @freq_khz: frequency we are inquiring about
504  *
505  * This lets us know if a specific frequency rule is or is not relevant to
506  * a specific frequency's band. Bands are device specific and artificial
507  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
508  * safe for now to assume that a frequency rule should not be part of a
509  * frequency's band if the start freq or end freq are off by more than 2 GHz.
510  * This resolution can be lowered and should be considered as we add
511  * regulatory rule support for other "bands".
512  **/
513 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
514 	u32 freq_khz)
515 {
516 #define ONE_GHZ_IN_KHZ	1000000
517 	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
518 		return true;
519 	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
520 		return true;
521 	return false;
522 #undef ONE_GHZ_IN_KHZ
523 }
524 
525 /*
526  * Helper for regdom_intersect(), this does the real
527  * mathematical intersection fun
528  */
529 static int reg_rules_intersect(
530 	const struct ieee80211_reg_rule *rule1,
531 	const struct ieee80211_reg_rule *rule2,
532 	struct ieee80211_reg_rule *intersected_rule)
533 {
534 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
535 	struct ieee80211_freq_range *freq_range;
536 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
537 	struct ieee80211_power_rule *power_rule;
538 	u32 freq_diff;
539 
540 	freq_range1 = &rule1->freq_range;
541 	freq_range2 = &rule2->freq_range;
542 	freq_range = &intersected_rule->freq_range;
543 
544 	power_rule1 = &rule1->power_rule;
545 	power_rule2 = &rule2->power_rule;
546 	power_rule = &intersected_rule->power_rule;
547 
548 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
549 		freq_range2->start_freq_khz);
550 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
551 		freq_range2->end_freq_khz);
552 	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
553 		freq_range2->max_bandwidth_khz);
554 
555 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
556 	if (freq_range->max_bandwidth_khz > freq_diff)
557 		freq_range->max_bandwidth_khz = freq_diff;
558 
559 	power_rule->max_eirp = min(power_rule1->max_eirp,
560 		power_rule2->max_eirp);
561 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
562 		power_rule2->max_antenna_gain);
563 
564 	intersected_rule->flags = (rule1->flags | rule2->flags);
565 
566 	if (!is_valid_reg_rule(intersected_rule))
567 		return -EINVAL;
568 
569 	return 0;
570 }
571 
572 /**
573  * regdom_intersect - do the intersection between two regulatory domains
574  * @rd1: first regulatory domain
575  * @rd2: second regulatory domain
576  *
577  * Use this function to get the intersection between two regulatory domains.
578  * Once completed we will mark the alpha2 for the rd as intersected, "98",
579  * as no one single alpha2 can represent this regulatory domain.
580  *
581  * Returns a pointer to the regulatory domain structure which will hold the
582  * resulting intersection of rules between rd1 and rd2. We will
583  * kzalloc() this structure for you.
584  */
585 static struct ieee80211_regdomain *regdom_intersect(
586 	const struct ieee80211_regdomain *rd1,
587 	const struct ieee80211_regdomain *rd2)
588 {
589 	int r, size_of_regd;
590 	unsigned int x, y;
591 	unsigned int num_rules = 0, rule_idx = 0;
592 	const struct ieee80211_reg_rule *rule1, *rule2;
593 	struct ieee80211_reg_rule *intersected_rule;
594 	struct ieee80211_regdomain *rd;
595 	/* This is just a dummy holder to help us count */
596 	struct ieee80211_reg_rule irule;
597 
598 	/* Uses the stack temporarily for counter arithmetic */
599 	intersected_rule = &irule;
600 
601 	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
602 
603 	if (!rd1 || !rd2)
604 		return NULL;
605 
606 	/*
607 	 * First we get a count of the rules we'll need, then we actually
608 	 * build them. This is to so we can malloc() and free() a
609 	 * regdomain once. The reason we use reg_rules_intersect() here
610 	 * is it will return -EINVAL if the rule computed makes no sense.
611 	 * All rules that do check out OK are valid.
612 	 */
613 
614 	for (x = 0; x < rd1->n_reg_rules; x++) {
615 		rule1 = &rd1->reg_rules[x];
616 		for (y = 0; y < rd2->n_reg_rules; y++) {
617 			rule2 = &rd2->reg_rules[y];
618 			if (!reg_rules_intersect(rule1, rule2,
619 					intersected_rule))
620 				num_rules++;
621 			memset(intersected_rule, 0,
622 					sizeof(struct ieee80211_reg_rule));
623 		}
624 	}
625 
626 	if (!num_rules)
627 		return NULL;
628 
629 	size_of_regd = sizeof(struct ieee80211_regdomain) +
630 		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
631 
632 	rd = kzalloc(size_of_regd, GFP_KERNEL);
633 	if (!rd)
634 		return NULL;
635 
636 	for (x = 0; x < rd1->n_reg_rules; x++) {
637 		rule1 = &rd1->reg_rules[x];
638 		for (y = 0; y < rd2->n_reg_rules; y++) {
639 			rule2 = &rd2->reg_rules[y];
640 			/*
641 			 * This time around instead of using the stack lets
642 			 * write to the target rule directly saving ourselves
643 			 * a memcpy()
644 			 */
645 			intersected_rule = &rd->reg_rules[rule_idx];
646 			r = reg_rules_intersect(rule1, rule2,
647 				intersected_rule);
648 			/*
649 			 * No need to memset here the intersected rule here as
650 			 * we're not using the stack anymore
651 			 */
652 			if (r)
653 				continue;
654 			rule_idx++;
655 		}
656 	}
657 
658 	if (rule_idx != num_rules) {
659 		kfree(rd);
660 		return NULL;
661 	}
662 
663 	rd->n_reg_rules = num_rules;
664 	rd->alpha2[0] = '9';
665 	rd->alpha2[1] = '8';
666 
667 	return rd;
668 }
669 
670 /*
671  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
672  * want to just have the channel structure use these
673  */
674 static u32 map_regdom_flags(u32 rd_flags)
675 {
676 	u32 channel_flags = 0;
677 	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
678 		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
679 	if (rd_flags & NL80211_RRF_NO_IBSS)
680 		channel_flags |= IEEE80211_CHAN_NO_IBSS;
681 	if (rd_flags & NL80211_RRF_DFS)
682 		channel_flags |= IEEE80211_CHAN_RADAR;
683 	if (rd_flags & NL80211_RRF_NO_OFDM)
684 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
685 	return channel_flags;
686 }
687 
688 static int freq_reg_info_regd(struct wiphy *wiphy,
689 			      u32 center_freq,
690 			      u32 desired_bw_khz,
691 			      const struct ieee80211_reg_rule **reg_rule,
692 			      const struct ieee80211_regdomain *custom_regd)
693 {
694 	int i;
695 	bool band_rule_found = false;
696 	const struct ieee80211_regdomain *regd;
697 	bool bw_fits = false;
698 
699 	if (!desired_bw_khz)
700 		desired_bw_khz = MHZ_TO_KHZ(20);
701 
702 	regd = custom_regd ? custom_regd : cfg80211_regdomain;
703 
704 	/*
705 	 * Follow the driver's regulatory domain, if present, unless a country
706 	 * IE has been processed or a user wants to help complaince further
707 	 */
708 	if (!custom_regd &&
709 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
710 	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
711 	    wiphy->regd)
712 		regd = wiphy->regd;
713 
714 	if (!regd)
715 		return -EINVAL;
716 
717 	for (i = 0; i < regd->n_reg_rules; i++) {
718 		const struct ieee80211_reg_rule *rr;
719 		const struct ieee80211_freq_range *fr = NULL;
720 
721 		rr = &regd->reg_rules[i];
722 		fr = &rr->freq_range;
723 
724 		/*
725 		 * We only need to know if one frequency rule was
726 		 * was in center_freq's band, that's enough, so lets
727 		 * not overwrite it once found
728 		 */
729 		if (!band_rule_found)
730 			band_rule_found = freq_in_rule_band(fr, center_freq);
731 
732 		bw_fits = reg_does_bw_fit(fr,
733 					  center_freq,
734 					  desired_bw_khz);
735 
736 		if (band_rule_found && bw_fits) {
737 			*reg_rule = rr;
738 			return 0;
739 		}
740 	}
741 
742 	if (!band_rule_found)
743 		return -ERANGE;
744 
745 	return -EINVAL;
746 }
747 
748 int freq_reg_info(struct wiphy *wiphy,
749 		  u32 center_freq,
750 		  u32 desired_bw_khz,
751 		  const struct ieee80211_reg_rule **reg_rule)
752 {
753 	assert_cfg80211_lock();
754 	return freq_reg_info_regd(wiphy,
755 				  center_freq,
756 				  desired_bw_khz,
757 				  reg_rule,
758 				  NULL);
759 }
760 EXPORT_SYMBOL(freq_reg_info);
761 
762 #ifdef CONFIG_CFG80211_REG_DEBUG
763 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
764 {
765 	switch (initiator) {
766 	case NL80211_REGDOM_SET_BY_CORE:
767 		return "Set by core";
768 	case NL80211_REGDOM_SET_BY_USER:
769 		return "Set by user";
770 	case NL80211_REGDOM_SET_BY_DRIVER:
771 		return "Set by driver";
772 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
773 		return "Set by country IE";
774 	default:
775 		WARN_ON(1);
776 		return "Set by bug";
777 	}
778 }
779 
780 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
781 				    u32 desired_bw_khz,
782 				    const struct ieee80211_reg_rule *reg_rule)
783 {
784 	const struct ieee80211_power_rule *power_rule;
785 	const struct ieee80211_freq_range *freq_range;
786 	char max_antenna_gain[32];
787 
788 	power_rule = &reg_rule->power_rule;
789 	freq_range = &reg_rule->freq_range;
790 
791 	if (!power_rule->max_antenna_gain)
792 		snprintf(max_antenna_gain, 32, "N/A");
793 	else
794 		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
795 
796 	REG_DBG_PRINT("Updating information on frequency %d MHz "
797 		      "for a %d MHz width channel with regulatory rule:\n",
798 		      chan->center_freq,
799 		      KHZ_TO_MHZ(desired_bw_khz));
800 
801 	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
802 		      freq_range->start_freq_khz,
803 		      freq_range->end_freq_khz,
804 		      freq_range->max_bandwidth_khz,
805 		      max_antenna_gain,
806 		      power_rule->max_eirp);
807 }
808 #else
809 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
810 				    u32 desired_bw_khz,
811 				    const struct ieee80211_reg_rule *reg_rule)
812 {
813 	return;
814 }
815 #endif
816 
817 /*
818  * Note that right now we assume the desired channel bandwidth
819  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
820  * per channel, the primary and the extension channel). To support
821  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
822  * new ieee80211_channel.target_bw and re run the regulatory check
823  * on the wiphy with the target_bw specified. Then we can simply use
824  * that below for the desired_bw_khz below.
825  */
826 static void handle_channel(struct wiphy *wiphy,
827 			   enum nl80211_reg_initiator initiator,
828 			   enum ieee80211_band band,
829 			   unsigned int chan_idx)
830 {
831 	int r;
832 	u32 flags, bw_flags = 0;
833 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
834 	const struct ieee80211_reg_rule *reg_rule = NULL;
835 	const struct ieee80211_power_rule *power_rule = NULL;
836 	const struct ieee80211_freq_range *freq_range = NULL;
837 	struct ieee80211_supported_band *sband;
838 	struct ieee80211_channel *chan;
839 	struct wiphy *request_wiphy = NULL;
840 
841 	assert_cfg80211_lock();
842 
843 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
844 
845 	sband = wiphy->bands[band];
846 	BUG_ON(chan_idx >= sband->n_channels);
847 	chan = &sband->channels[chan_idx];
848 
849 	flags = chan->orig_flags;
850 
851 	r = freq_reg_info(wiphy,
852 			  MHZ_TO_KHZ(chan->center_freq),
853 			  desired_bw_khz,
854 			  &reg_rule);
855 
856 	if (r) {
857 		/*
858 		 * We will disable all channels that do not match our
859 		 * received regulatory rule unless the hint is coming
860 		 * from a Country IE and the Country IE had no information
861 		 * about a band. The IEEE 802.11 spec allows for an AP
862 		 * to send only a subset of the regulatory rules allowed,
863 		 * so an AP in the US that only supports 2.4 GHz may only send
864 		 * a country IE with information for the 2.4 GHz band
865 		 * while 5 GHz is still supported.
866 		 */
867 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
868 		    r == -ERANGE)
869 			return;
870 
871 		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
872 		chan->flags = IEEE80211_CHAN_DISABLED;
873 		return;
874 	}
875 
876 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
877 
878 	power_rule = &reg_rule->power_rule;
879 	freq_range = &reg_rule->freq_range;
880 
881 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
882 		bw_flags = IEEE80211_CHAN_NO_HT40;
883 
884 	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
885 	    request_wiphy && request_wiphy == wiphy &&
886 	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
887 		/*
888 		 * This guarantees the driver's requested regulatory domain
889 		 * will always be used as a base for further regulatory
890 		 * settings
891 		 */
892 		chan->flags = chan->orig_flags =
893 			map_regdom_flags(reg_rule->flags) | bw_flags;
894 		chan->max_antenna_gain = chan->orig_mag =
895 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
896 		chan->max_power = chan->orig_mpwr =
897 			(int) MBM_TO_DBM(power_rule->max_eirp);
898 		return;
899 	}
900 
901 	chan->beacon_found = false;
902 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
903 	chan->max_antenna_gain = min(chan->orig_mag,
904 		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
905 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
906 	if (chan->orig_mpwr) {
907 		/*
908 		 * Devices that have their own custom regulatory domain
909 		 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
910 		 * passed country IE power settings.
911 		 */
912 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
913 		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
914 		    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
915 			chan->max_power = chan->max_reg_power;
916 		else
917 			chan->max_power = min(chan->orig_mpwr,
918 					      chan->max_reg_power);
919 	} else
920 		chan->max_power = chan->max_reg_power;
921 }
922 
923 static void handle_band(struct wiphy *wiphy,
924 			enum ieee80211_band band,
925 			enum nl80211_reg_initiator initiator)
926 {
927 	unsigned int i;
928 	struct ieee80211_supported_band *sband;
929 
930 	BUG_ON(!wiphy->bands[band]);
931 	sband = wiphy->bands[band];
932 
933 	for (i = 0; i < sband->n_channels; i++)
934 		handle_channel(wiphy, initiator, band, i);
935 }
936 
937 static bool reg_request_cell_base(struct regulatory_request *request)
938 {
939 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
940 		return false;
941 	if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE)
942 		return false;
943 	return true;
944 }
945 
946 bool reg_last_request_cell_base(void)
947 {
948 	bool val;
949 	assert_cfg80211_lock();
950 
951 	mutex_lock(&reg_mutex);
952 	val = reg_request_cell_base(last_request);
953 	mutex_unlock(&reg_mutex);
954 	return val;
955 }
956 
957 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
958 
959 /* Core specific check */
960 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
961 {
962 	if (!reg_num_devs_support_basehint)
963 		return -EOPNOTSUPP;
964 
965 	if (reg_request_cell_base(last_request)) {
966 		if (!regdom_changes(pending_request->alpha2))
967 			return -EALREADY;
968 		return 0;
969 	}
970 	return 0;
971 }
972 
973 /* Device specific check */
974 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
975 {
976 	if (!(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS))
977 		return true;
978 	return false;
979 }
980 #else
981 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
982 {
983 	return -EOPNOTSUPP;
984 }
985 static int reg_dev_ignore_cell_hint(struct wiphy *wiphy)
986 {
987 	return true;
988 }
989 #endif
990 
991 
992 static bool ignore_reg_update(struct wiphy *wiphy,
993 			      enum nl80211_reg_initiator initiator)
994 {
995 	if (!last_request) {
996 		REG_DBG_PRINT("Ignoring regulatory request %s since "
997 			      "last_request is not set\n",
998 			      reg_initiator_name(initiator));
999 		return true;
1000 	}
1001 
1002 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1003 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
1004 		REG_DBG_PRINT("Ignoring regulatory request %s "
1005 			      "since the driver uses its own custom "
1006 			      "regulatory domain\n",
1007 			      reg_initiator_name(initiator));
1008 		return true;
1009 	}
1010 
1011 	/*
1012 	 * wiphy->regd will be set once the device has its own
1013 	 * desired regulatory domain set
1014 	 */
1015 	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1016 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1017 	    !is_world_regdom(last_request->alpha2)) {
1018 		REG_DBG_PRINT("Ignoring regulatory request %s "
1019 			      "since the driver requires its own regulatory "
1020 			      "domain to be set first\n",
1021 			      reg_initiator_name(initiator));
1022 		return true;
1023 	}
1024 
1025 	if (reg_request_cell_base(last_request))
1026 		return reg_dev_ignore_cell_hint(wiphy);
1027 
1028 	return false;
1029 }
1030 
1031 static void handle_reg_beacon(struct wiphy *wiphy,
1032 			      unsigned int chan_idx,
1033 			      struct reg_beacon *reg_beacon)
1034 {
1035 	struct ieee80211_supported_band *sband;
1036 	struct ieee80211_channel *chan;
1037 	bool channel_changed = false;
1038 	struct ieee80211_channel chan_before;
1039 
1040 	assert_cfg80211_lock();
1041 
1042 	sband = wiphy->bands[reg_beacon->chan.band];
1043 	chan = &sband->channels[chan_idx];
1044 
1045 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1046 		return;
1047 
1048 	if (chan->beacon_found)
1049 		return;
1050 
1051 	chan->beacon_found = true;
1052 
1053 	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1054 		return;
1055 
1056 	chan_before.center_freq = chan->center_freq;
1057 	chan_before.flags = chan->flags;
1058 
1059 	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1060 		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1061 		channel_changed = true;
1062 	}
1063 
1064 	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1065 		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1066 		channel_changed = true;
1067 	}
1068 
1069 	if (channel_changed)
1070 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1071 }
1072 
1073 /*
1074  * Called when a scan on a wiphy finds a beacon on
1075  * new channel
1076  */
1077 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1078 				    struct reg_beacon *reg_beacon)
1079 {
1080 	unsigned int i;
1081 	struct ieee80211_supported_band *sband;
1082 
1083 	assert_cfg80211_lock();
1084 
1085 	if (!wiphy->bands[reg_beacon->chan.band])
1086 		return;
1087 
1088 	sband = wiphy->bands[reg_beacon->chan.band];
1089 
1090 	for (i = 0; i < sband->n_channels; i++)
1091 		handle_reg_beacon(wiphy, i, reg_beacon);
1092 }
1093 
1094 /*
1095  * Called upon reg changes or a new wiphy is added
1096  */
1097 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1098 {
1099 	unsigned int i;
1100 	struct ieee80211_supported_band *sband;
1101 	struct reg_beacon *reg_beacon;
1102 
1103 	assert_cfg80211_lock();
1104 
1105 	if (list_empty(&reg_beacon_list))
1106 		return;
1107 
1108 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1109 		if (!wiphy->bands[reg_beacon->chan.band])
1110 			continue;
1111 		sband = wiphy->bands[reg_beacon->chan.band];
1112 		for (i = 0; i < sband->n_channels; i++)
1113 			handle_reg_beacon(wiphy, i, reg_beacon);
1114 	}
1115 }
1116 
1117 static bool reg_is_world_roaming(struct wiphy *wiphy)
1118 {
1119 	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1120 	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1121 		return true;
1122 	if (last_request &&
1123 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1124 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1125 		return true;
1126 	return false;
1127 }
1128 
1129 /* Reap the advantages of previously found beacons */
1130 static void reg_process_beacons(struct wiphy *wiphy)
1131 {
1132 	/*
1133 	 * Means we are just firing up cfg80211, so no beacons would
1134 	 * have been processed yet.
1135 	 */
1136 	if (!last_request)
1137 		return;
1138 	if (!reg_is_world_roaming(wiphy))
1139 		return;
1140 	wiphy_update_beacon_reg(wiphy);
1141 }
1142 
1143 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1144 {
1145 	if (!chan)
1146 		return true;
1147 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1148 		return true;
1149 	/* This would happen when regulatory rules disallow HT40 completely */
1150 	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1151 		return true;
1152 	return false;
1153 }
1154 
1155 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1156 					 enum ieee80211_band band,
1157 					 unsigned int chan_idx)
1158 {
1159 	struct ieee80211_supported_band *sband;
1160 	struct ieee80211_channel *channel;
1161 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1162 	unsigned int i;
1163 
1164 	assert_cfg80211_lock();
1165 
1166 	sband = wiphy->bands[band];
1167 	BUG_ON(chan_idx >= sband->n_channels);
1168 	channel = &sband->channels[chan_idx];
1169 
1170 	if (is_ht40_not_allowed(channel)) {
1171 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1172 		return;
1173 	}
1174 
1175 	/*
1176 	 * We need to ensure the extension channels exist to
1177 	 * be able to use HT40- or HT40+, this finds them (or not)
1178 	 */
1179 	for (i = 0; i < sband->n_channels; i++) {
1180 		struct ieee80211_channel *c = &sband->channels[i];
1181 		if (c->center_freq == (channel->center_freq - 20))
1182 			channel_before = c;
1183 		if (c->center_freq == (channel->center_freq + 20))
1184 			channel_after = c;
1185 	}
1186 
1187 	/*
1188 	 * Please note that this assumes target bandwidth is 20 MHz,
1189 	 * if that ever changes we also need to change the below logic
1190 	 * to include that as well.
1191 	 */
1192 	if (is_ht40_not_allowed(channel_before))
1193 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1194 	else
1195 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1196 
1197 	if (is_ht40_not_allowed(channel_after))
1198 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1199 	else
1200 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1201 }
1202 
1203 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1204 				      enum ieee80211_band band)
1205 {
1206 	unsigned int i;
1207 	struct ieee80211_supported_band *sband;
1208 
1209 	BUG_ON(!wiphy->bands[band]);
1210 	sband = wiphy->bands[band];
1211 
1212 	for (i = 0; i < sband->n_channels; i++)
1213 		reg_process_ht_flags_channel(wiphy, band, i);
1214 }
1215 
1216 static void reg_process_ht_flags(struct wiphy *wiphy)
1217 {
1218 	enum ieee80211_band band;
1219 
1220 	if (!wiphy)
1221 		return;
1222 
1223 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1224 		if (wiphy->bands[band])
1225 			reg_process_ht_flags_band(wiphy, band);
1226 	}
1227 
1228 }
1229 
1230 static void wiphy_update_regulatory(struct wiphy *wiphy,
1231 				    enum nl80211_reg_initiator initiator)
1232 {
1233 	enum ieee80211_band band;
1234 
1235 	assert_reg_lock();
1236 
1237 	if (ignore_reg_update(wiphy, initiator))
1238 		return;
1239 
1240 	last_request->dfs_region = cfg80211_regdomain->dfs_region;
1241 
1242 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1243 		if (wiphy->bands[band])
1244 			handle_band(wiphy, band, initiator);
1245 	}
1246 
1247 	reg_process_beacons(wiphy);
1248 	reg_process_ht_flags(wiphy);
1249 	if (wiphy->reg_notifier)
1250 		wiphy->reg_notifier(wiphy, last_request);
1251 }
1252 
1253 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1254 {
1255 	struct cfg80211_registered_device *rdev;
1256 	struct wiphy *wiphy;
1257 
1258 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1259 		wiphy = &rdev->wiphy;
1260 		wiphy_update_regulatory(wiphy, initiator);
1261 		/*
1262 		 * Regulatory updates set by CORE are ignored for custom
1263 		 * regulatory cards. Let us notify the changes to the driver,
1264 		 * as some drivers used this to restore its orig_* reg domain.
1265 		 */
1266 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1267 		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1268 		    wiphy->reg_notifier)
1269 			wiphy->reg_notifier(wiphy, last_request);
1270 	}
1271 }
1272 
1273 static void handle_channel_custom(struct wiphy *wiphy,
1274 				  enum ieee80211_band band,
1275 				  unsigned int chan_idx,
1276 				  const struct ieee80211_regdomain *regd)
1277 {
1278 	int r;
1279 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1280 	u32 bw_flags = 0;
1281 	const struct ieee80211_reg_rule *reg_rule = NULL;
1282 	const struct ieee80211_power_rule *power_rule = NULL;
1283 	const struct ieee80211_freq_range *freq_range = NULL;
1284 	struct ieee80211_supported_band *sband;
1285 	struct ieee80211_channel *chan;
1286 
1287 	assert_reg_lock();
1288 
1289 	sband = wiphy->bands[band];
1290 	BUG_ON(chan_idx >= sband->n_channels);
1291 	chan = &sband->channels[chan_idx];
1292 
1293 	r = freq_reg_info_regd(wiphy,
1294 			       MHZ_TO_KHZ(chan->center_freq),
1295 			       desired_bw_khz,
1296 			       &reg_rule,
1297 			       regd);
1298 
1299 	if (r) {
1300 		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1301 			      "regd has no rule that fits a %d MHz "
1302 			      "wide channel\n",
1303 			      chan->center_freq,
1304 			      KHZ_TO_MHZ(desired_bw_khz));
1305 		chan->flags = IEEE80211_CHAN_DISABLED;
1306 		return;
1307 	}
1308 
1309 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1310 
1311 	power_rule = &reg_rule->power_rule;
1312 	freq_range = &reg_rule->freq_range;
1313 
1314 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1315 		bw_flags = IEEE80211_CHAN_NO_HT40;
1316 
1317 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1318 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1319 	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1320 }
1321 
1322 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1323 			       const struct ieee80211_regdomain *regd)
1324 {
1325 	unsigned int i;
1326 	struct ieee80211_supported_band *sband;
1327 
1328 	BUG_ON(!wiphy->bands[band]);
1329 	sband = wiphy->bands[band];
1330 
1331 	for (i = 0; i < sband->n_channels; i++)
1332 		handle_channel_custom(wiphy, band, i, regd);
1333 }
1334 
1335 /* Used by drivers prior to wiphy registration */
1336 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1337 				   const struct ieee80211_regdomain *regd)
1338 {
1339 	enum ieee80211_band band;
1340 	unsigned int bands_set = 0;
1341 
1342 	mutex_lock(&reg_mutex);
1343 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1344 		if (!wiphy->bands[band])
1345 			continue;
1346 		handle_band_custom(wiphy, band, regd);
1347 		bands_set++;
1348 	}
1349 	mutex_unlock(&reg_mutex);
1350 
1351 	/*
1352 	 * no point in calling this if it won't have any effect
1353 	 * on your device's supportd bands.
1354 	 */
1355 	WARN_ON(!bands_set);
1356 }
1357 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1358 
1359 /*
1360  * Return value which can be used by ignore_request() to indicate
1361  * it has been determined we should intersect two regulatory domains
1362  */
1363 #define REG_INTERSECT	1
1364 
1365 /* This has the logic which determines when a new request
1366  * should be ignored. */
1367 static int ignore_request(struct wiphy *wiphy,
1368 			  struct regulatory_request *pending_request)
1369 {
1370 	struct wiphy *last_wiphy = NULL;
1371 
1372 	assert_cfg80211_lock();
1373 
1374 	/* All initial requests are respected */
1375 	if (!last_request)
1376 		return 0;
1377 
1378 	switch (pending_request->initiator) {
1379 	case NL80211_REGDOM_SET_BY_CORE:
1380 		return 0;
1381 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1382 
1383 		if (reg_request_cell_base(last_request)) {
1384 			/* Trust a Cell base station over the AP's country IE */
1385 			if (regdom_changes(pending_request->alpha2))
1386 				return -EOPNOTSUPP;
1387 			return -EALREADY;
1388 		}
1389 
1390 		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1391 
1392 		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1393 			return -EINVAL;
1394 		if (last_request->initiator ==
1395 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1396 			if (last_wiphy != wiphy) {
1397 				/*
1398 				 * Two cards with two APs claiming different
1399 				 * Country IE alpha2s. We could
1400 				 * intersect them, but that seems unlikely
1401 				 * to be correct. Reject second one for now.
1402 				 */
1403 				if (regdom_changes(pending_request->alpha2))
1404 					return -EOPNOTSUPP;
1405 				return -EALREADY;
1406 			}
1407 			/*
1408 			 * Two consecutive Country IE hints on the same wiphy.
1409 			 * This should be picked up early by the driver/stack
1410 			 */
1411 			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1412 				return 0;
1413 			return -EALREADY;
1414 		}
1415 		return 0;
1416 	case NL80211_REGDOM_SET_BY_DRIVER:
1417 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1418 			if (regdom_changes(pending_request->alpha2))
1419 				return 0;
1420 			return -EALREADY;
1421 		}
1422 
1423 		/*
1424 		 * This would happen if you unplug and plug your card
1425 		 * back in or if you add a new device for which the previously
1426 		 * loaded card also agrees on the regulatory domain.
1427 		 */
1428 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1429 		    !regdom_changes(pending_request->alpha2))
1430 			return -EALREADY;
1431 
1432 		return REG_INTERSECT;
1433 	case NL80211_REGDOM_SET_BY_USER:
1434 		if (reg_request_cell_base(pending_request))
1435 			return reg_ignore_cell_hint(pending_request);
1436 
1437 		if (reg_request_cell_base(last_request))
1438 			return -EOPNOTSUPP;
1439 
1440 		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1441 			return REG_INTERSECT;
1442 		/*
1443 		 * If the user knows better the user should set the regdom
1444 		 * to their country before the IE is picked up
1445 		 */
1446 		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1447 			  last_request->intersect)
1448 			return -EOPNOTSUPP;
1449 		/*
1450 		 * Process user requests only after previous user/driver/core
1451 		 * requests have been processed
1452 		 */
1453 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1454 		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1455 		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1456 			if (regdom_changes(last_request->alpha2))
1457 				return -EAGAIN;
1458 		}
1459 
1460 		if (!regdom_changes(pending_request->alpha2))
1461 			return -EALREADY;
1462 
1463 		return 0;
1464 	}
1465 
1466 	return -EINVAL;
1467 }
1468 
1469 static void reg_set_request_processed(void)
1470 {
1471 	bool need_more_processing = false;
1472 
1473 	last_request->processed = true;
1474 
1475 	spin_lock(&reg_requests_lock);
1476 	if (!list_empty(&reg_requests_list))
1477 		need_more_processing = true;
1478 	spin_unlock(&reg_requests_lock);
1479 
1480 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1481 		cancel_delayed_work(&reg_timeout);
1482 
1483 	if (need_more_processing)
1484 		schedule_work(&reg_work);
1485 }
1486 
1487 /**
1488  * __regulatory_hint - hint to the wireless core a regulatory domain
1489  * @wiphy: if the hint comes from country information from an AP, this
1490  *	is required to be set to the wiphy that received the information
1491  * @pending_request: the regulatory request currently being processed
1492  *
1493  * The Wireless subsystem can use this function to hint to the wireless core
1494  * what it believes should be the current regulatory domain.
1495  *
1496  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1497  * already been set or other standard error codes.
1498  *
1499  * Caller must hold &cfg80211_mutex and &reg_mutex
1500  */
1501 static int __regulatory_hint(struct wiphy *wiphy,
1502 			     struct regulatory_request *pending_request)
1503 {
1504 	bool intersect = false;
1505 	int r = 0;
1506 
1507 	assert_cfg80211_lock();
1508 
1509 	r = ignore_request(wiphy, pending_request);
1510 
1511 	if (r == REG_INTERSECT) {
1512 		if (pending_request->initiator ==
1513 		    NL80211_REGDOM_SET_BY_DRIVER) {
1514 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1515 			if (r) {
1516 				kfree(pending_request);
1517 				return r;
1518 			}
1519 		}
1520 		intersect = true;
1521 	} else if (r) {
1522 		/*
1523 		 * If the regulatory domain being requested by the
1524 		 * driver has already been set just copy it to the
1525 		 * wiphy
1526 		 */
1527 		if (r == -EALREADY &&
1528 		    pending_request->initiator ==
1529 		    NL80211_REGDOM_SET_BY_DRIVER) {
1530 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1531 			if (r) {
1532 				kfree(pending_request);
1533 				return r;
1534 			}
1535 			r = -EALREADY;
1536 			goto new_request;
1537 		}
1538 		kfree(pending_request);
1539 		return r;
1540 	}
1541 
1542 new_request:
1543 	if (last_request != &core_request_world)
1544 		kfree(last_request);
1545 
1546 	last_request = pending_request;
1547 	last_request->intersect = intersect;
1548 
1549 	pending_request = NULL;
1550 
1551 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1552 		user_alpha2[0] = last_request->alpha2[0];
1553 		user_alpha2[1] = last_request->alpha2[1];
1554 	}
1555 
1556 	/* When r == REG_INTERSECT we do need to call CRDA */
1557 	if (r < 0) {
1558 		/*
1559 		 * Since CRDA will not be called in this case as we already
1560 		 * have applied the requested regulatory domain before we just
1561 		 * inform userspace we have processed the request
1562 		 */
1563 		if (r == -EALREADY) {
1564 			nl80211_send_reg_change_event(last_request);
1565 			reg_set_request_processed();
1566 		}
1567 		return r;
1568 	}
1569 
1570 	return call_crda(last_request->alpha2);
1571 }
1572 
1573 /* This processes *all* regulatory hints */
1574 static void reg_process_hint(struct regulatory_request *reg_request,
1575 			     enum nl80211_reg_initiator reg_initiator)
1576 {
1577 	int r = 0;
1578 	struct wiphy *wiphy = NULL;
1579 
1580 	BUG_ON(!reg_request->alpha2);
1581 
1582 	if (wiphy_idx_valid(reg_request->wiphy_idx))
1583 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1584 
1585 	if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1586 	    !wiphy) {
1587 		kfree(reg_request);
1588 		return;
1589 	}
1590 
1591 	r = __regulatory_hint(wiphy, reg_request);
1592 	/* This is required so that the orig_* parameters are saved */
1593 	if (r == -EALREADY && wiphy &&
1594 	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1595 		wiphy_update_regulatory(wiphy, reg_initiator);
1596 		return;
1597 	}
1598 
1599 	/*
1600 	 * We only time out user hints, given that they should be the only
1601 	 * source of bogus requests.
1602 	 */
1603 	if (r != -EALREADY &&
1604 	    reg_initiator == NL80211_REGDOM_SET_BY_USER)
1605 		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1606 }
1607 
1608 /*
1609  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1610  * Regulatory hints come on a first come first serve basis and we
1611  * must process each one atomically.
1612  */
1613 static void reg_process_pending_hints(void)
1614 {
1615 	struct regulatory_request *reg_request;
1616 
1617 	mutex_lock(&cfg80211_mutex);
1618 	mutex_lock(&reg_mutex);
1619 
1620 	/* When last_request->processed becomes true this will be rescheduled */
1621 	if (last_request && !last_request->processed) {
1622 		REG_DBG_PRINT("Pending regulatory request, waiting "
1623 			      "for it to be processed...\n");
1624 		goto out;
1625 	}
1626 
1627 	spin_lock(&reg_requests_lock);
1628 
1629 	if (list_empty(&reg_requests_list)) {
1630 		spin_unlock(&reg_requests_lock);
1631 		goto out;
1632 	}
1633 
1634 	reg_request = list_first_entry(&reg_requests_list,
1635 				       struct regulatory_request,
1636 				       list);
1637 	list_del_init(&reg_request->list);
1638 
1639 	spin_unlock(&reg_requests_lock);
1640 
1641 	reg_process_hint(reg_request, reg_request->initiator);
1642 
1643 out:
1644 	mutex_unlock(&reg_mutex);
1645 	mutex_unlock(&cfg80211_mutex);
1646 }
1647 
1648 /* Processes beacon hints -- this has nothing to do with country IEs */
1649 static void reg_process_pending_beacon_hints(void)
1650 {
1651 	struct cfg80211_registered_device *rdev;
1652 	struct reg_beacon *pending_beacon, *tmp;
1653 
1654 	/*
1655 	 * No need to hold the reg_mutex here as we just touch wiphys
1656 	 * and do not read or access regulatory variables.
1657 	 */
1658 	mutex_lock(&cfg80211_mutex);
1659 
1660 	/* This goes through the _pending_ beacon list */
1661 	spin_lock_bh(&reg_pending_beacons_lock);
1662 
1663 	if (list_empty(&reg_pending_beacons)) {
1664 		spin_unlock_bh(&reg_pending_beacons_lock);
1665 		goto out;
1666 	}
1667 
1668 	list_for_each_entry_safe(pending_beacon, tmp,
1669 				 &reg_pending_beacons, list) {
1670 
1671 		list_del_init(&pending_beacon->list);
1672 
1673 		/* Applies the beacon hint to current wiphys */
1674 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1675 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1676 
1677 		/* Remembers the beacon hint for new wiphys or reg changes */
1678 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1679 	}
1680 
1681 	spin_unlock_bh(&reg_pending_beacons_lock);
1682 out:
1683 	mutex_unlock(&cfg80211_mutex);
1684 }
1685 
1686 static void reg_todo(struct work_struct *work)
1687 {
1688 	reg_process_pending_hints();
1689 	reg_process_pending_beacon_hints();
1690 }
1691 
1692 static void queue_regulatory_request(struct regulatory_request *request)
1693 {
1694 	if (isalpha(request->alpha2[0]))
1695 		request->alpha2[0] = toupper(request->alpha2[0]);
1696 	if (isalpha(request->alpha2[1]))
1697 		request->alpha2[1] = toupper(request->alpha2[1]);
1698 
1699 	spin_lock(&reg_requests_lock);
1700 	list_add_tail(&request->list, &reg_requests_list);
1701 	spin_unlock(&reg_requests_lock);
1702 
1703 	schedule_work(&reg_work);
1704 }
1705 
1706 /*
1707  * Core regulatory hint -- happens during cfg80211_init()
1708  * and when we restore regulatory settings.
1709  */
1710 static int regulatory_hint_core(const char *alpha2)
1711 {
1712 	struct regulatory_request *request;
1713 
1714 	request = kzalloc(sizeof(struct regulatory_request),
1715 			  GFP_KERNEL);
1716 	if (!request)
1717 		return -ENOMEM;
1718 
1719 	request->alpha2[0] = alpha2[0];
1720 	request->alpha2[1] = alpha2[1];
1721 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1722 
1723 	queue_regulatory_request(request);
1724 
1725 	return 0;
1726 }
1727 
1728 /* User hints */
1729 int regulatory_hint_user(const char *alpha2,
1730 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
1731 {
1732 	struct regulatory_request *request;
1733 
1734 	BUG_ON(!alpha2);
1735 
1736 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1737 	if (!request)
1738 		return -ENOMEM;
1739 
1740 	request->wiphy_idx = WIPHY_IDX_STALE;
1741 	request->alpha2[0] = alpha2[0];
1742 	request->alpha2[1] = alpha2[1];
1743 	request->initiator = NL80211_REGDOM_SET_BY_USER;
1744 	request->user_reg_hint_type = user_reg_hint_type;
1745 
1746 	queue_regulatory_request(request);
1747 
1748 	return 0;
1749 }
1750 
1751 /* Driver hints */
1752 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1753 {
1754 	struct regulatory_request *request;
1755 
1756 	BUG_ON(!alpha2);
1757 	BUG_ON(!wiphy);
1758 
1759 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1760 	if (!request)
1761 		return -ENOMEM;
1762 
1763 	request->wiphy_idx = get_wiphy_idx(wiphy);
1764 
1765 	/* Must have registered wiphy first */
1766 	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1767 
1768 	request->alpha2[0] = alpha2[0];
1769 	request->alpha2[1] = alpha2[1];
1770 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1771 
1772 	queue_regulatory_request(request);
1773 
1774 	return 0;
1775 }
1776 EXPORT_SYMBOL(regulatory_hint);
1777 
1778 /*
1779  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1780  * therefore cannot iterate over the rdev list here.
1781  */
1782 void regulatory_hint_11d(struct wiphy *wiphy,
1783 			 enum ieee80211_band band,
1784 			 u8 *country_ie,
1785 			 u8 country_ie_len)
1786 {
1787 	char alpha2[2];
1788 	enum environment_cap env = ENVIRON_ANY;
1789 	struct regulatory_request *request;
1790 
1791 	mutex_lock(&reg_mutex);
1792 
1793 	if (unlikely(!last_request))
1794 		goto out;
1795 
1796 	/* IE len must be evenly divisible by 2 */
1797 	if (country_ie_len & 0x01)
1798 		goto out;
1799 
1800 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1801 		goto out;
1802 
1803 	alpha2[0] = country_ie[0];
1804 	alpha2[1] = country_ie[1];
1805 
1806 	if (country_ie[2] == 'I')
1807 		env = ENVIRON_INDOOR;
1808 	else if (country_ie[2] == 'O')
1809 		env = ENVIRON_OUTDOOR;
1810 
1811 	/*
1812 	 * We will run this only upon a successful connection on cfg80211.
1813 	 * We leave conflict resolution to the workqueue, where can hold
1814 	 * cfg80211_mutex.
1815 	 */
1816 	if (likely(last_request->initiator ==
1817 	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1818 	    wiphy_idx_valid(last_request->wiphy_idx)))
1819 		goto out;
1820 
1821 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1822 	if (!request)
1823 		goto out;
1824 
1825 	request->wiphy_idx = get_wiphy_idx(wiphy);
1826 	request->alpha2[0] = alpha2[0];
1827 	request->alpha2[1] = alpha2[1];
1828 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1829 	request->country_ie_env = env;
1830 
1831 	mutex_unlock(&reg_mutex);
1832 
1833 	queue_regulatory_request(request);
1834 
1835 	return;
1836 
1837 out:
1838 	mutex_unlock(&reg_mutex);
1839 }
1840 
1841 static void restore_alpha2(char *alpha2, bool reset_user)
1842 {
1843 	/* indicates there is no alpha2 to consider for restoration */
1844 	alpha2[0] = '9';
1845 	alpha2[1] = '7';
1846 
1847 	/* The user setting has precedence over the module parameter */
1848 	if (is_user_regdom_saved()) {
1849 		/* Unless we're asked to ignore it and reset it */
1850 		if (reset_user) {
1851 			REG_DBG_PRINT("Restoring regulatory settings "
1852 			       "including user preference\n");
1853 			user_alpha2[0] = '9';
1854 			user_alpha2[1] = '7';
1855 
1856 			/*
1857 			 * If we're ignoring user settings, we still need to
1858 			 * check the module parameter to ensure we put things
1859 			 * back as they were for a full restore.
1860 			 */
1861 			if (!is_world_regdom(ieee80211_regdom)) {
1862 				REG_DBG_PRINT("Keeping preference on "
1863 				       "module parameter ieee80211_regdom: %c%c\n",
1864 				       ieee80211_regdom[0],
1865 				       ieee80211_regdom[1]);
1866 				alpha2[0] = ieee80211_regdom[0];
1867 				alpha2[1] = ieee80211_regdom[1];
1868 			}
1869 		} else {
1870 			REG_DBG_PRINT("Restoring regulatory settings "
1871 			       "while preserving user preference for: %c%c\n",
1872 			       user_alpha2[0],
1873 			       user_alpha2[1]);
1874 			alpha2[0] = user_alpha2[0];
1875 			alpha2[1] = user_alpha2[1];
1876 		}
1877 	} else if (!is_world_regdom(ieee80211_regdom)) {
1878 		REG_DBG_PRINT("Keeping preference on "
1879 		       "module parameter ieee80211_regdom: %c%c\n",
1880 		       ieee80211_regdom[0],
1881 		       ieee80211_regdom[1]);
1882 		alpha2[0] = ieee80211_regdom[0];
1883 		alpha2[1] = ieee80211_regdom[1];
1884 	} else
1885 		REG_DBG_PRINT("Restoring regulatory settings\n");
1886 }
1887 
1888 static void restore_custom_reg_settings(struct wiphy *wiphy)
1889 {
1890 	struct ieee80211_supported_band *sband;
1891 	enum ieee80211_band band;
1892 	struct ieee80211_channel *chan;
1893 	int i;
1894 
1895 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1896 		sband = wiphy->bands[band];
1897 		if (!sband)
1898 			continue;
1899 		for (i = 0; i < sband->n_channels; i++) {
1900 			chan = &sband->channels[i];
1901 			chan->flags = chan->orig_flags;
1902 			chan->max_antenna_gain = chan->orig_mag;
1903 			chan->max_power = chan->orig_mpwr;
1904 			chan->beacon_found = false;
1905 		}
1906 	}
1907 }
1908 
1909 /*
1910  * Restoring regulatory settings involves ingoring any
1911  * possibly stale country IE information and user regulatory
1912  * settings if so desired, this includes any beacon hints
1913  * learned as we could have traveled outside to another country
1914  * after disconnection. To restore regulatory settings we do
1915  * exactly what we did at bootup:
1916  *
1917  *   - send a core regulatory hint
1918  *   - send a user regulatory hint if applicable
1919  *
1920  * Device drivers that send a regulatory hint for a specific country
1921  * keep their own regulatory domain on wiphy->regd so that does does
1922  * not need to be remembered.
1923  */
1924 static void restore_regulatory_settings(bool reset_user)
1925 {
1926 	char alpha2[2];
1927 	char world_alpha2[2];
1928 	struct reg_beacon *reg_beacon, *btmp;
1929 	struct regulatory_request *reg_request, *tmp;
1930 	LIST_HEAD(tmp_reg_req_list);
1931 	struct cfg80211_registered_device *rdev;
1932 
1933 	mutex_lock(&cfg80211_mutex);
1934 	mutex_lock(&reg_mutex);
1935 
1936 	reset_regdomains(true);
1937 	restore_alpha2(alpha2, reset_user);
1938 
1939 	/*
1940 	 * If there's any pending requests we simply
1941 	 * stash them to a temporary pending queue and
1942 	 * add then after we've restored regulatory
1943 	 * settings.
1944 	 */
1945 	spin_lock(&reg_requests_lock);
1946 	if (!list_empty(&reg_requests_list)) {
1947 		list_for_each_entry_safe(reg_request, tmp,
1948 					 &reg_requests_list, list) {
1949 			if (reg_request->initiator !=
1950 			    NL80211_REGDOM_SET_BY_USER)
1951 				continue;
1952 			list_del(&reg_request->list);
1953 			list_add_tail(&reg_request->list, &tmp_reg_req_list);
1954 		}
1955 	}
1956 	spin_unlock(&reg_requests_lock);
1957 
1958 	/* Clear beacon hints */
1959 	spin_lock_bh(&reg_pending_beacons_lock);
1960 	if (!list_empty(&reg_pending_beacons)) {
1961 		list_for_each_entry_safe(reg_beacon, btmp,
1962 					 &reg_pending_beacons, list) {
1963 			list_del(&reg_beacon->list);
1964 			kfree(reg_beacon);
1965 		}
1966 	}
1967 	spin_unlock_bh(&reg_pending_beacons_lock);
1968 
1969 	if (!list_empty(&reg_beacon_list)) {
1970 		list_for_each_entry_safe(reg_beacon, btmp,
1971 					 &reg_beacon_list, list) {
1972 			list_del(&reg_beacon->list);
1973 			kfree(reg_beacon);
1974 		}
1975 	}
1976 
1977 	/* First restore to the basic regulatory settings */
1978 	cfg80211_regdomain = cfg80211_world_regdom;
1979 	world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1980 	world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1981 
1982 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1983 		if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1984 			restore_custom_reg_settings(&rdev->wiphy);
1985 	}
1986 
1987 	mutex_unlock(&reg_mutex);
1988 	mutex_unlock(&cfg80211_mutex);
1989 
1990 	regulatory_hint_core(world_alpha2);
1991 
1992 	/*
1993 	 * This restores the ieee80211_regdom module parameter
1994 	 * preference or the last user requested regulatory
1995 	 * settings, user regulatory settings takes precedence.
1996 	 */
1997 	if (is_an_alpha2(alpha2))
1998 		regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1999 
2000 	if (list_empty(&tmp_reg_req_list))
2001 		return;
2002 
2003 	mutex_lock(&cfg80211_mutex);
2004 	mutex_lock(&reg_mutex);
2005 
2006 	spin_lock(&reg_requests_lock);
2007 	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
2008 		REG_DBG_PRINT("Adding request for country %c%c back "
2009 			      "into the queue\n",
2010 			      reg_request->alpha2[0],
2011 			      reg_request->alpha2[1]);
2012 		list_del(&reg_request->list);
2013 		list_add_tail(&reg_request->list, &reg_requests_list);
2014 	}
2015 	spin_unlock(&reg_requests_lock);
2016 
2017 	mutex_unlock(&reg_mutex);
2018 	mutex_unlock(&cfg80211_mutex);
2019 
2020 	REG_DBG_PRINT("Kicking the queue\n");
2021 
2022 	schedule_work(&reg_work);
2023 }
2024 
2025 void regulatory_hint_disconnect(void)
2026 {
2027 	REG_DBG_PRINT("All devices are disconnected, going to "
2028 		      "restore regulatory settings\n");
2029 	restore_regulatory_settings(false);
2030 }
2031 
2032 static bool freq_is_chan_12_13_14(u16 freq)
2033 {
2034 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2035 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2036 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2037 		return true;
2038 	return false;
2039 }
2040 
2041 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2042 				 struct ieee80211_channel *beacon_chan,
2043 				 gfp_t gfp)
2044 {
2045 	struct reg_beacon *reg_beacon;
2046 
2047 	if (likely((beacon_chan->beacon_found ||
2048 	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
2049 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2050 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
2051 		return 0;
2052 
2053 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2054 	if (!reg_beacon)
2055 		return -ENOMEM;
2056 
2057 	REG_DBG_PRINT("Found new beacon on "
2058 		      "frequency: %d MHz (Ch %d) on %s\n",
2059 		      beacon_chan->center_freq,
2060 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
2061 		      wiphy_name(wiphy));
2062 
2063 	memcpy(&reg_beacon->chan, beacon_chan,
2064 		sizeof(struct ieee80211_channel));
2065 
2066 
2067 	/*
2068 	 * Since we can be called from BH or and non-BH context
2069 	 * we must use spin_lock_bh()
2070 	 */
2071 	spin_lock_bh(&reg_pending_beacons_lock);
2072 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2073 	spin_unlock_bh(&reg_pending_beacons_lock);
2074 
2075 	schedule_work(&reg_work);
2076 
2077 	return 0;
2078 }
2079 
2080 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2081 {
2082 	unsigned int i;
2083 	const struct ieee80211_reg_rule *reg_rule = NULL;
2084 	const struct ieee80211_freq_range *freq_range = NULL;
2085 	const struct ieee80211_power_rule *power_rule = NULL;
2086 
2087 	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2088 
2089 	for (i = 0; i < rd->n_reg_rules; i++) {
2090 		reg_rule = &rd->reg_rules[i];
2091 		freq_range = &reg_rule->freq_range;
2092 		power_rule = &reg_rule->power_rule;
2093 
2094 		/*
2095 		 * There may not be documentation for max antenna gain
2096 		 * in certain regions
2097 		 */
2098 		if (power_rule->max_antenna_gain)
2099 			pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2100 				freq_range->start_freq_khz,
2101 				freq_range->end_freq_khz,
2102 				freq_range->max_bandwidth_khz,
2103 				power_rule->max_antenna_gain,
2104 				power_rule->max_eirp);
2105 		else
2106 			pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2107 				freq_range->start_freq_khz,
2108 				freq_range->end_freq_khz,
2109 				freq_range->max_bandwidth_khz,
2110 				power_rule->max_eirp);
2111 	}
2112 }
2113 
2114 bool reg_supported_dfs_region(u8 dfs_region)
2115 {
2116 	switch (dfs_region) {
2117 	case NL80211_DFS_UNSET:
2118 	case NL80211_DFS_FCC:
2119 	case NL80211_DFS_ETSI:
2120 	case NL80211_DFS_JP:
2121 		return true;
2122 	default:
2123 		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2124 			      dfs_region);
2125 		return false;
2126 	}
2127 }
2128 
2129 static void print_dfs_region(u8 dfs_region)
2130 {
2131 	if (!dfs_region)
2132 		return;
2133 
2134 	switch (dfs_region) {
2135 	case NL80211_DFS_FCC:
2136 		pr_info(" DFS Master region FCC");
2137 		break;
2138 	case NL80211_DFS_ETSI:
2139 		pr_info(" DFS Master region ETSI");
2140 		break;
2141 	case NL80211_DFS_JP:
2142 		pr_info(" DFS Master region JP");
2143 		break;
2144 	default:
2145 		pr_info(" DFS Master region Uknown");
2146 		break;
2147 	}
2148 }
2149 
2150 static void print_regdomain(const struct ieee80211_regdomain *rd)
2151 {
2152 
2153 	if (is_intersected_alpha2(rd->alpha2)) {
2154 
2155 		if (last_request->initiator ==
2156 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2157 			struct cfg80211_registered_device *rdev;
2158 			rdev = cfg80211_rdev_by_wiphy_idx(
2159 				last_request->wiphy_idx);
2160 			if (rdev) {
2161 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2162 					rdev->country_ie_alpha2[0],
2163 					rdev->country_ie_alpha2[1]);
2164 			} else
2165 				pr_info("Current regulatory domain intersected:\n");
2166 		} else
2167 			pr_info("Current regulatory domain intersected:\n");
2168 	} else if (is_world_regdom(rd->alpha2))
2169 		pr_info("World regulatory domain updated:\n");
2170 	else {
2171 		if (is_unknown_alpha2(rd->alpha2))
2172 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2173 		else {
2174 			if (reg_request_cell_base(last_request))
2175 				pr_info("Regulatory domain changed "
2176 					"to country: %c%c by Cell Station\n",
2177 					rd->alpha2[0], rd->alpha2[1]);
2178 			else
2179 				pr_info("Regulatory domain changed "
2180 					"to country: %c%c\n",
2181 					rd->alpha2[0], rd->alpha2[1]);
2182 		}
2183 	}
2184 	print_dfs_region(rd->dfs_region);
2185 	print_rd_rules(rd);
2186 }
2187 
2188 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2189 {
2190 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2191 	print_rd_rules(rd);
2192 }
2193 
2194 /* Takes ownership of rd only if it doesn't fail */
2195 static int __set_regdom(const struct ieee80211_regdomain *rd)
2196 {
2197 	const struct ieee80211_regdomain *intersected_rd = NULL;
2198 	struct cfg80211_registered_device *rdev = NULL;
2199 	struct wiphy *request_wiphy;
2200 	/* Some basic sanity checks first */
2201 
2202 	if (is_world_regdom(rd->alpha2)) {
2203 		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2204 			return -EINVAL;
2205 		update_world_regdomain(rd);
2206 		return 0;
2207 	}
2208 
2209 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2210 			!is_unknown_alpha2(rd->alpha2))
2211 		return -EINVAL;
2212 
2213 	if (!last_request)
2214 		return -EINVAL;
2215 
2216 	/*
2217 	 * Lets only bother proceeding on the same alpha2 if the current
2218 	 * rd is non static (it means CRDA was present and was used last)
2219 	 * and the pending request came in from a country IE
2220 	 */
2221 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2222 		/*
2223 		 * If someone else asked us to change the rd lets only bother
2224 		 * checking if the alpha2 changes if CRDA was already called
2225 		 */
2226 		if (!regdom_changes(rd->alpha2))
2227 			return -EALREADY;
2228 	}
2229 
2230 	/*
2231 	 * Now lets set the regulatory domain, update all driver channels
2232 	 * and finally inform them of what we have done, in case they want
2233 	 * to review or adjust their own settings based on their own
2234 	 * internal EEPROM data
2235 	 */
2236 
2237 	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2238 		return -EINVAL;
2239 
2240 	if (!is_valid_rd(rd)) {
2241 		pr_err("Invalid regulatory domain detected:\n");
2242 		print_regdomain_info(rd);
2243 		return -EINVAL;
2244 	}
2245 
2246 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2247 	if (!request_wiphy &&
2248 	    (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2249 	     last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2250 		schedule_delayed_work(&reg_timeout, 0);
2251 		return -ENODEV;
2252 	}
2253 
2254 	if (!last_request->intersect) {
2255 		int r;
2256 
2257 		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2258 			reset_regdomains(false);
2259 			cfg80211_regdomain = rd;
2260 			return 0;
2261 		}
2262 
2263 		/*
2264 		 * For a driver hint, lets copy the regulatory domain the
2265 		 * driver wanted to the wiphy to deal with conflicts
2266 		 */
2267 
2268 		/*
2269 		 * Userspace could have sent two replies with only
2270 		 * one kernel request.
2271 		 */
2272 		if (request_wiphy->regd)
2273 			return -EALREADY;
2274 
2275 		r = reg_copy_regd(&request_wiphy->regd, rd);
2276 		if (r)
2277 			return r;
2278 
2279 		reset_regdomains(false);
2280 		cfg80211_regdomain = rd;
2281 		return 0;
2282 	}
2283 
2284 	/* Intersection requires a bit more work */
2285 
2286 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2287 
2288 		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2289 		if (!intersected_rd)
2290 			return -EINVAL;
2291 
2292 		/*
2293 		 * We can trash what CRDA provided now.
2294 		 * However if a driver requested this specific regulatory
2295 		 * domain we keep it for its private use
2296 		 */
2297 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2298 			request_wiphy->regd = rd;
2299 		else
2300 			kfree(rd);
2301 
2302 		rd = NULL;
2303 
2304 		reset_regdomains(false);
2305 		cfg80211_regdomain = intersected_rd;
2306 
2307 		return 0;
2308 	}
2309 
2310 	if (!intersected_rd)
2311 		return -EINVAL;
2312 
2313 	rdev = wiphy_to_dev(request_wiphy);
2314 
2315 	rdev->country_ie_alpha2[0] = rd->alpha2[0];
2316 	rdev->country_ie_alpha2[1] = rd->alpha2[1];
2317 	rdev->env = last_request->country_ie_env;
2318 
2319 	BUG_ON(intersected_rd == rd);
2320 
2321 	kfree(rd);
2322 	rd = NULL;
2323 
2324 	reset_regdomains(false);
2325 	cfg80211_regdomain = intersected_rd;
2326 
2327 	return 0;
2328 }
2329 
2330 
2331 /*
2332  * Use this call to set the current regulatory domain. Conflicts with
2333  * multiple drivers can be ironed out later. Caller must've already
2334  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2335  */
2336 int set_regdom(const struct ieee80211_regdomain *rd)
2337 {
2338 	int r;
2339 
2340 	assert_cfg80211_lock();
2341 
2342 	mutex_lock(&reg_mutex);
2343 
2344 	/* Note that this doesn't update the wiphys, this is done below */
2345 	r = __set_regdom(rd);
2346 	if (r) {
2347 		if (r == -EALREADY)
2348 			reg_set_request_processed();
2349 
2350 		kfree(rd);
2351 		mutex_unlock(&reg_mutex);
2352 		return r;
2353 	}
2354 
2355 	/* This would make this whole thing pointless */
2356 	if (!last_request->intersect)
2357 		BUG_ON(rd != cfg80211_regdomain);
2358 
2359 	/* update all wiphys now with the new established regulatory domain */
2360 	update_all_wiphy_regulatory(last_request->initiator);
2361 
2362 	print_regdomain(cfg80211_regdomain);
2363 
2364 	nl80211_send_reg_change_event(last_request);
2365 
2366 	reg_set_request_processed();
2367 
2368 	mutex_unlock(&reg_mutex);
2369 
2370 	return r;
2371 }
2372 
2373 #ifdef CONFIG_HOTPLUG
2374 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2375 {
2376 	if (last_request && !last_request->processed) {
2377 		if (add_uevent_var(env, "COUNTRY=%c%c",
2378 				   last_request->alpha2[0],
2379 				   last_request->alpha2[1]))
2380 			return -ENOMEM;
2381 	}
2382 
2383 	return 0;
2384 }
2385 #else
2386 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2387 {
2388 	return -ENODEV;
2389 }
2390 #endif /* CONFIG_HOTPLUG */
2391 
2392 void wiphy_regulatory_register(struct wiphy *wiphy)
2393 {
2394 	assert_cfg80211_lock();
2395 
2396 	mutex_lock(&reg_mutex);
2397 
2398 	if (!reg_dev_ignore_cell_hint(wiphy))
2399 		reg_num_devs_support_basehint++;
2400 
2401 	wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2402 
2403 	mutex_unlock(&reg_mutex);
2404 }
2405 
2406 /* Caller must hold cfg80211_mutex */
2407 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2408 {
2409 	struct wiphy *request_wiphy = NULL;
2410 
2411 	assert_cfg80211_lock();
2412 
2413 	mutex_lock(&reg_mutex);
2414 
2415 	if (!reg_dev_ignore_cell_hint(wiphy))
2416 		reg_num_devs_support_basehint--;
2417 
2418 	kfree(wiphy->regd);
2419 
2420 	if (last_request)
2421 		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2422 
2423 	if (!request_wiphy || request_wiphy != wiphy)
2424 		goto out;
2425 
2426 	last_request->wiphy_idx = WIPHY_IDX_STALE;
2427 	last_request->country_ie_env = ENVIRON_ANY;
2428 out:
2429 	mutex_unlock(&reg_mutex);
2430 }
2431 
2432 static void reg_timeout_work(struct work_struct *work)
2433 {
2434 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2435 		      "restoring regulatory settings\n");
2436 	restore_regulatory_settings(true);
2437 }
2438 
2439 int __init regulatory_init(void)
2440 {
2441 	int err = 0;
2442 
2443 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2444 	if (IS_ERR(reg_pdev))
2445 		return PTR_ERR(reg_pdev);
2446 
2447 	reg_pdev->dev.type = &reg_device_type;
2448 
2449 	spin_lock_init(&reg_requests_lock);
2450 	spin_lock_init(&reg_pending_beacons_lock);
2451 
2452 	reg_regdb_size_check();
2453 
2454 	cfg80211_regdomain = cfg80211_world_regdom;
2455 
2456 	user_alpha2[0] = '9';
2457 	user_alpha2[1] = '7';
2458 
2459 	/* We always try to get an update for the static regdomain */
2460 	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2461 	if (err) {
2462 		if (err == -ENOMEM)
2463 			return err;
2464 		/*
2465 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2466 		 * memory which is handled and propagated appropriately above
2467 		 * but it can also fail during a netlink_broadcast() or during
2468 		 * early boot for call_usermodehelper(). For now treat these
2469 		 * errors as non-fatal.
2470 		 */
2471 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2472 #ifdef CONFIG_CFG80211_REG_DEBUG
2473 		/* We want to find out exactly why when debugging */
2474 		WARN_ON(err);
2475 #endif
2476 	}
2477 
2478 	/*
2479 	 * Finally, if the user set the module parameter treat it
2480 	 * as a user hint.
2481 	 */
2482 	if (!is_world_regdom(ieee80211_regdom))
2483 		regulatory_hint_user(ieee80211_regdom,
2484 				     NL80211_USER_REG_HINT_USER);
2485 
2486 	return 0;
2487 }
2488 
2489 void /* __init_or_exit */ regulatory_exit(void)
2490 {
2491 	struct regulatory_request *reg_request, *tmp;
2492 	struct reg_beacon *reg_beacon, *btmp;
2493 
2494 	cancel_work_sync(&reg_work);
2495 	cancel_delayed_work_sync(&reg_timeout);
2496 
2497 	mutex_lock(&cfg80211_mutex);
2498 	mutex_lock(&reg_mutex);
2499 
2500 	reset_regdomains(true);
2501 
2502 	dev_set_uevent_suppress(&reg_pdev->dev, true);
2503 
2504 	platform_device_unregister(reg_pdev);
2505 
2506 	spin_lock_bh(&reg_pending_beacons_lock);
2507 	if (!list_empty(&reg_pending_beacons)) {
2508 		list_for_each_entry_safe(reg_beacon, btmp,
2509 					 &reg_pending_beacons, list) {
2510 			list_del(&reg_beacon->list);
2511 			kfree(reg_beacon);
2512 		}
2513 	}
2514 	spin_unlock_bh(&reg_pending_beacons_lock);
2515 
2516 	if (!list_empty(&reg_beacon_list)) {
2517 		list_for_each_entry_safe(reg_beacon, btmp,
2518 					 &reg_beacon_list, list) {
2519 			list_del(&reg_beacon->list);
2520 			kfree(reg_beacon);
2521 		}
2522 	}
2523 
2524 	spin_lock(&reg_requests_lock);
2525 	if (!list_empty(&reg_requests_list)) {
2526 		list_for_each_entry_safe(reg_request, tmp,
2527 					 &reg_requests_list, list) {
2528 			list_del(&reg_request->list);
2529 			kfree(reg_request);
2530 		}
2531 	}
2532 	spin_unlock(&reg_requests_lock);
2533 
2534 	mutex_unlock(&reg_mutex);
2535 	mutex_unlock(&cfg80211_mutex);
2536 }
2537