1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 21 /** 22 * DOC: Wireless regulatory infrastructure 23 * 24 * The usual implementation is for a driver to read a device EEPROM to 25 * determine which regulatory domain it should be operating under, then 26 * looking up the allowable channels in a driver-local table and finally 27 * registering those channels in the wiphy structure. 28 * 29 * Another set of compliance enforcement is for drivers to use their 30 * own compliance limits which can be stored on the EEPROM. The host 31 * driver or firmware may ensure these are used. 32 * 33 * In addition to all this we provide an extra layer of regulatory 34 * conformance. For drivers which do not have any regulatory 35 * information CRDA provides the complete regulatory solution. 36 * For others it provides a community effort on further restrictions 37 * to enhance compliance. 38 * 39 * Note: When number of rules --> infinity we will not be able to 40 * index on alpha2 any more, instead we'll probably have to 41 * rely on some SHA1 checksum of the regdomain for example. 42 * 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/kernel.h> 48 #include <linux/export.h> 49 #include <linux/slab.h> 50 #include <linux/list.h> 51 #include <linux/random.h> 52 #include <linux/ctype.h> 53 #include <linux/nl80211.h> 54 #include <linux/platform_device.h> 55 #include <linux/moduleparam.h> 56 #include <net/cfg80211.h> 57 #include "core.h" 58 #include "reg.h" 59 #include "regdb.h" 60 #include "nl80211.h" 61 62 #ifdef CONFIG_CFG80211_REG_DEBUG 63 #define REG_DBG_PRINT(format, args...) \ 64 printk(KERN_DEBUG pr_fmt(format), ##args) 65 #else 66 #define REG_DBG_PRINT(args...) 67 #endif 68 69 static struct regulatory_request core_request_world = { 70 .initiator = NL80211_REGDOM_SET_BY_CORE, 71 .alpha2[0] = '0', 72 .alpha2[1] = '0', 73 .intersect = false, 74 .processed = true, 75 .country_ie_env = ENVIRON_ANY, 76 }; 77 78 /* Receipt of information from last regulatory request */ 79 static struct regulatory_request *last_request = &core_request_world; 80 81 /* To trigger userspace events */ 82 static struct platform_device *reg_pdev; 83 84 static struct device_type reg_device_type = { 85 .uevent = reg_device_uevent, 86 }; 87 88 /* 89 * Central wireless core regulatory domains, we only need two, 90 * the current one and a world regulatory domain in case we have no 91 * information to give us an alpha2 92 */ 93 const struct ieee80211_regdomain *cfg80211_regdomain; 94 95 /* 96 * Protects static reg.c components: 97 * - cfg80211_world_regdom 98 * - cfg80211_regdom 99 * - last_request 100 * - reg_num_devs_support_basehint 101 */ 102 static DEFINE_MUTEX(reg_mutex); 103 104 /* 105 * Number of devices that registered to the core 106 * that support cellular base station regulatory hints 107 */ 108 static int reg_num_devs_support_basehint; 109 110 static inline void assert_reg_lock(void) 111 { 112 lockdep_assert_held(®_mutex); 113 } 114 115 /* Used to queue up regulatory hints */ 116 static LIST_HEAD(reg_requests_list); 117 static spinlock_t reg_requests_lock; 118 119 /* Used to queue up beacon hints for review */ 120 static LIST_HEAD(reg_pending_beacons); 121 static spinlock_t reg_pending_beacons_lock; 122 123 /* Used to keep track of processed beacon hints */ 124 static LIST_HEAD(reg_beacon_list); 125 126 struct reg_beacon { 127 struct list_head list; 128 struct ieee80211_channel chan; 129 }; 130 131 static void reg_todo(struct work_struct *work); 132 static DECLARE_WORK(reg_work, reg_todo); 133 134 static void reg_timeout_work(struct work_struct *work); 135 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); 136 137 /* We keep a static world regulatory domain in case of the absence of CRDA */ 138 static const struct ieee80211_regdomain world_regdom = { 139 .n_reg_rules = 6, 140 .alpha2 = "00", 141 .reg_rules = { 142 /* IEEE 802.11b/g, channels 1..11 */ 143 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 144 /* IEEE 802.11b/g, channels 12..13. No HT40 145 * channel fits here. */ 146 REG_RULE(2467-10, 2472+10, 20, 6, 20, 147 NL80211_RRF_PASSIVE_SCAN | 148 NL80211_RRF_NO_IBSS), 149 /* IEEE 802.11 channel 14 - Only JP enables 150 * this and for 802.11b only */ 151 REG_RULE(2484-10, 2484+10, 20, 6, 20, 152 NL80211_RRF_PASSIVE_SCAN | 153 NL80211_RRF_NO_IBSS | 154 NL80211_RRF_NO_OFDM), 155 /* IEEE 802.11a, channel 36..48 */ 156 REG_RULE(5180-10, 5240+10, 40, 6, 20, 157 NL80211_RRF_PASSIVE_SCAN | 158 NL80211_RRF_NO_IBSS), 159 160 /* NB: 5260 MHz - 5700 MHz requies DFS */ 161 162 /* IEEE 802.11a, channel 149..165 */ 163 REG_RULE(5745-10, 5825+10, 40, 6, 20, 164 NL80211_RRF_PASSIVE_SCAN | 165 NL80211_RRF_NO_IBSS), 166 167 /* IEEE 802.11ad (60gHz), channels 1..3 */ 168 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 169 } 170 }; 171 172 static const struct ieee80211_regdomain *cfg80211_world_regdom = 173 &world_regdom; 174 175 static char *ieee80211_regdom = "00"; 176 static char user_alpha2[2]; 177 178 module_param(ieee80211_regdom, charp, 0444); 179 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 180 181 static void reset_regdomains(bool full_reset) 182 { 183 /* avoid freeing static information or freeing something twice */ 184 if (cfg80211_regdomain == cfg80211_world_regdom) 185 cfg80211_regdomain = NULL; 186 if (cfg80211_world_regdom == &world_regdom) 187 cfg80211_world_regdom = NULL; 188 if (cfg80211_regdomain == &world_regdom) 189 cfg80211_regdomain = NULL; 190 191 kfree(cfg80211_regdomain); 192 kfree(cfg80211_world_regdom); 193 194 cfg80211_world_regdom = &world_regdom; 195 cfg80211_regdomain = NULL; 196 197 if (!full_reset) 198 return; 199 200 if (last_request != &core_request_world) 201 kfree(last_request); 202 last_request = &core_request_world; 203 } 204 205 /* 206 * Dynamic world regulatory domain requested by the wireless 207 * core upon initialization 208 */ 209 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 210 { 211 BUG_ON(!last_request); 212 213 reset_regdomains(false); 214 215 cfg80211_world_regdom = rd; 216 cfg80211_regdomain = rd; 217 } 218 219 bool is_world_regdom(const char *alpha2) 220 { 221 if (!alpha2) 222 return false; 223 if (alpha2[0] == '0' && alpha2[1] == '0') 224 return true; 225 return false; 226 } 227 228 static bool is_alpha2_set(const char *alpha2) 229 { 230 if (!alpha2) 231 return false; 232 if (alpha2[0] != 0 && alpha2[1] != 0) 233 return true; 234 return false; 235 } 236 237 static bool is_unknown_alpha2(const char *alpha2) 238 { 239 if (!alpha2) 240 return false; 241 /* 242 * Special case where regulatory domain was built by driver 243 * but a specific alpha2 cannot be determined 244 */ 245 if (alpha2[0] == '9' && alpha2[1] == '9') 246 return true; 247 return false; 248 } 249 250 static bool is_intersected_alpha2(const char *alpha2) 251 { 252 if (!alpha2) 253 return false; 254 /* 255 * Special case where regulatory domain is the 256 * result of an intersection between two regulatory domain 257 * structures 258 */ 259 if (alpha2[0] == '9' && alpha2[1] == '8') 260 return true; 261 return false; 262 } 263 264 static bool is_an_alpha2(const char *alpha2) 265 { 266 if (!alpha2) 267 return false; 268 if (isalpha(alpha2[0]) && isalpha(alpha2[1])) 269 return true; 270 return false; 271 } 272 273 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 274 { 275 if (!alpha2_x || !alpha2_y) 276 return false; 277 if (alpha2_x[0] == alpha2_y[0] && 278 alpha2_x[1] == alpha2_y[1]) 279 return true; 280 return false; 281 } 282 283 static bool regdom_changes(const char *alpha2) 284 { 285 assert_cfg80211_lock(); 286 287 if (!cfg80211_regdomain) 288 return true; 289 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2)) 290 return false; 291 return true; 292 } 293 294 /* 295 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 296 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 297 * has ever been issued. 298 */ 299 static bool is_user_regdom_saved(void) 300 { 301 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 302 return false; 303 304 /* This would indicate a mistake on the design */ 305 if (WARN((!is_world_regdom(user_alpha2) && 306 !is_an_alpha2(user_alpha2)), 307 "Unexpected user alpha2: %c%c\n", 308 user_alpha2[0], 309 user_alpha2[1])) 310 return false; 311 312 return true; 313 } 314 315 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd, 316 const struct ieee80211_regdomain *src_regd) 317 { 318 struct ieee80211_regdomain *regd; 319 int size_of_regd = 0; 320 unsigned int i; 321 322 size_of_regd = sizeof(struct ieee80211_regdomain) + 323 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule)); 324 325 regd = kzalloc(size_of_regd, GFP_KERNEL); 326 if (!regd) 327 return -ENOMEM; 328 329 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 330 331 for (i = 0; i < src_regd->n_reg_rules; i++) 332 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 333 sizeof(struct ieee80211_reg_rule)); 334 335 *dst_regd = regd; 336 return 0; 337 } 338 339 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 340 struct reg_regdb_search_request { 341 char alpha2[2]; 342 struct list_head list; 343 }; 344 345 static LIST_HEAD(reg_regdb_search_list); 346 static DEFINE_MUTEX(reg_regdb_search_mutex); 347 348 static void reg_regdb_search(struct work_struct *work) 349 { 350 struct reg_regdb_search_request *request; 351 const struct ieee80211_regdomain *curdom, *regdom; 352 int i, r; 353 354 mutex_lock(®_regdb_search_mutex); 355 while (!list_empty(®_regdb_search_list)) { 356 request = list_first_entry(®_regdb_search_list, 357 struct reg_regdb_search_request, 358 list); 359 list_del(&request->list); 360 361 for (i=0; i<reg_regdb_size; i++) { 362 curdom = reg_regdb[i]; 363 364 if (!memcmp(request->alpha2, curdom->alpha2, 2)) { 365 r = reg_copy_regd(®dom, curdom); 366 if (r) 367 break; 368 mutex_lock(&cfg80211_mutex); 369 set_regdom(regdom); 370 mutex_unlock(&cfg80211_mutex); 371 break; 372 } 373 } 374 375 kfree(request); 376 } 377 mutex_unlock(®_regdb_search_mutex); 378 } 379 380 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 381 382 static void reg_regdb_query(const char *alpha2) 383 { 384 struct reg_regdb_search_request *request; 385 386 if (!alpha2) 387 return; 388 389 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 390 if (!request) 391 return; 392 393 memcpy(request->alpha2, alpha2, 2); 394 395 mutex_lock(®_regdb_search_mutex); 396 list_add_tail(&request->list, ®_regdb_search_list); 397 mutex_unlock(®_regdb_search_mutex); 398 399 schedule_work(®_regdb_work); 400 } 401 402 /* Feel free to add any other sanity checks here */ 403 static void reg_regdb_size_check(void) 404 { 405 /* We should ideally BUILD_BUG_ON() but then random builds would fail */ 406 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); 407 } 408 #else 409 static inline void reg_regdb_size_check(void) {} 410 static inline void reg_regdb_query(const char *alpha2) {} 411 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 412 413 /* 414 * This lets us keep regulatory code which is updated on a regulatory 415 * basis in userspace. Country information is filled in by 416 * reg_device_uevent 417 */ 418 static int call_crda(const char *alpha2) 419 { 420 if (!is_world_regdom((char *) alpha2)) 421 pr_info("Calling CRDA for country: %c%c\n", 422 alpha2[0], alpha2[1]); 423 else 424 pr_info("Calling CRDA to update world regulatory domain\n"); 425 426 /* query internal regulatory database (if it exists) */ 427 reg_regdb_query(alpha2); 428 429 return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE); 430 } 431 432 /* Used by nl80211 before kmalloc'ing our regulatory domain */ 433 bool reg_is_valid_request(const char *alpha2) 434 { 435 assert_cfg80211_lock(); 436 437 if (!last_request) 438 return false; 439 440 return alpha2_equal(last_request->alpha2, alpha2); 441 } 442 443 /* Sanity check on a regulatory rule */ 444 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 445 { 446 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 447 u32 freq_diff; 448 449 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 450 return false; 451 452 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 453 return false; 454 455 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 456 457 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 458 freq_range->max_bandwidth_khz > freq_diff) 459 return false; 460 461 return true; 462 } 463 464 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 465 { 466 const struct ieee80211_reg_rule *reg_rule = NULL; 467 unsigned int i; 468 469 if (!rd->n_reg_rules) 470 return false; 471 472 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 473 return false; 474 475 for (i = 0; i < rd->n_reg_rules; i++) { 476 reg_rule = &rd->reg_rules[i]; 477 if (!is_valid_reg_rule(reg_rule)) 478 return false; 479 } 480 481 return true; 482 } 483 484 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 485 u32 center_freq_khz, 486 u32 bw_khz) 487 { 488 u32 start_freq_khz, end_freq_khz; 489 490 start_freq_khz = center_freq_khz - (bw_khz/2); 491 end_freq_khz = center_freq_khz + (bw_khz/2); 492 493 if (start_freq_khz >= freq_range->start_freq_khz && 494 end_freq_khz <= freq_range->end_freq_khz) 495 return true; 496 497 return false; 498 } 499 500 /** 501 * freq_in_rule_band - tells us if a frequency is in a frequency band 502 * @freq_range: frequency rule we want to query 503 * @freq_khz: frequency we are inquiring about 504 * 505 * This lets us know if a specific frequency rule is or is not relevant to 506 * a specific frequency's band. Bands are device specific and artificial 507 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is 508 * safe for now to assume that a frequency rule should not be part of a 509 * frequency's band if the start freq or end freq are off by more than 2 GHz. 510 * This resolution can be lowered and should be considered as we add 511 * regulatory rule support for other "bands". 512 **/ 513 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 514 u32 freq_khz) 515 { 516 #define ONE_GHZ_IN_KHZ 1000000 517 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 518 return true; 519 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 520 return true; 521 return false; 522 #undef ONE_GHZ_IN_KHZ 523 } 524 525 /* 526 * Helper for regdom_intersect(), this does the real 527 * mathematical intersection fun 528 */ 529 static int reg_rules_intersect( 530 const struct ieee80211_reg_rule *rule1, 531 const struct ieee80211_reg_rule *rule2, 532 struct ieee80211_reg_rule *intersected_rule) 533 { 534 const struct ieee80211_freq_range *freq_range1, *freq_range2; 535 struct ieee80211_freq_range *freq_range; 536 const struct ieee80211_power_rule *power_rule1, *power_rule2; 537 struct ieee80211_power_rule *power_rule; 538 u32 freq_diff; 539 540 freq_range1 = &rule1->freq_range; 541 freq_range2 = &rule2->freq_range; 542 freq_range = &intersected_rule->freq_range; 543 544 power_rule1 = &rule1->power_rule; 545 power_rule2 = &rule2->power_rule; 546 power_rule = &intersected_rule->power_rule; 547 548 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 549 freq_range2->start_freq_khz); 550 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 551 freq_range2->end_freq_khz); 552 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, 553 freq_range2->max_bandwidth_khz); 554 555 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 556 if (freq_range->max_bandwidth_khz > freq_diff) 557 freq_range->max_bandwidth_khz = freq_diff; 558 559 power_rule->max_eirp = min(power_rule1->max_eirp, 560 power_rule2->max_eirp); 561 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 562 power_rule2->max_antenna_gain); 563 564 intersected_rule->flags = (rule1->flags | rule2->flags); 565 566 if (!is_valid_reg_rule(intersected_rule)) 567 return -EINVAL; 568 569 return 0; 570 } 571 572 /** 573 * regdom_intersect - do the intersection between two regulatory domains 574 * @rd1: first regulatory domain 575 * @rd2: second regulatory domain 576 * 577 * Use this function to get the intersection between two regulatory domains. 578 * Once completed we will mark the alpha2 for the rd as intersected, "98", 579 * as no one single alpha2 can represent this regulatory domain. 580 * 581 * Returns a pointer to the regulatory domain structure which will hold the 582 * resulting intersection of rules between rd1 and rd2. We will 583 * kzalloc() this structure for you. 584 */ 585 static struct ieee80211_regdomain *regdom_intersect( 586 const struct ieee80211_regdomain *rd1, 587 const struct ieee80211_regdomain *rd2) 588 { 589 int r, size_of_regd; 590 unsigned int x, y; 591 unsigned int num_rules = 0, rule_idx = 0; 592 const struct ieee80211_reg_rule *rule1, *rule2; 593 struct ieee80211_reg_rule *intersected_rule; 594 struct ieee80211_regdomain *rd; 595 /* This is just a dummy holder to help us count */ 596 struct ieee80211_reg_rule irule; 597 598 /* Uses the stack temporarily for counter arithmetic */ 599 intersected_rule = &irule; 600 601 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule)); 602 603 if (!rd1 || !rd2) 604 return NULL; 605 606 /* 607 * First we get a count of the rules we'll need, then we actually 608 * build them. This is to so we can malloc() and free() a 609 * regdomain once. The reason we use reg_rules_intersect() here 610 * is it will return -EINVAL if the rule computed makes no sense. 611 * All rules that do check out OK are valid. 612 */ 613 614 for (x = 0; x < rd1->n_reg_rules; x++) { 615 rule1 = &rd1->reg_rules[x]; 616 for (y = 0; y < rd2->n_reg_rules; y++) { 617 rule2 = &rd2->reg_rules[y]; 618 if (!reg_rules_intersect(rule1, rule2, 619 intersected_rule)) 620 num_rules++; 621 memset(intersected_rule, 0, 622 sizeof(struct ieee80211_reg_rule)); 623 } 624 } 625 626 if (!num_rules) 627 return NULL; 628 629 size_of_regd = sizeof(struct ieee80211_regdomain) + 630 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule)); 631 632 rd = kzalloc(size_of_regd, GFP_KERNEL); 633 if (!rd) 634 return NULL; 635 636 for (x = 0; x < rd1->n_reg_rules; x++) { 637 rule1 = &rd1->reg_rules[x]; 638 for (y = 0; y < rd2->n_reg_rules; y++) { 639 rule2 = &rd2->reg_rules[y]; 640 /* 641 * This time around instead of using the stack lets 642 * write to the target rule directly saving ourselves 643 * a memcpy() 644 */ 645 intersected_rule = &rd->reg_rules[rule_idx]; 646 r = reg_rules_intersect(rule1, rule2, 647 intersected_rule); 648 /* 649 * No need to memset here the intersected rule here as 650 * we're not using the stack anymore 651 */ 652 if (r) 653 continue; 654 rule_idx++; 655 } 656 } 657 658 if (rule_idx != num_rules) { 659 kfree(rd); 660 return NULL; 661 } 662 663 rd->n_reg_rules = num_rules; 664 rd->alpha2[0] = '9'; 665 rd->alpha2[1] = '8'; 666 667 return rd; 668 } 669 670 /* 671 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 672 * want to just have the channel structure use these 673 */ 674 static u32 map_regdom_flags(u32 rd_flags) 675 { 676 u32 channel_flags = 0; 677 if (rd_flags & NL80211_RRF_PASSIVE_SCAN) 678 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; 679 if (rd_flags & NL80211_RRF_NO_IBSS) 680 channel_flags |= IEEE80211_CHAN_NO_IBSS; 681 if (rd_flags & NL80211_RRF_DFS) 682 channel_flags |= IEEE80211_CHAN_RADAR; 683 if (rd_flags & NL80211_RRF_NO_OFDM) 684 channel_flags |= IEEE80211_CHAN_NO_OFDM; 685 return channel_flags; 686 } 687 688 static int freq_reg_info_regd(struct wiphy *wiphy, 689 u32 center_freq, 690 u32 desired_bw_khz, 691 const struct ieee80211_reg_rule **reg_rule, 692 const struct ieee80211_regdomain *custom_regd) 693 { 694 int i; 695 bool band_rule_found = false; 696 const struct ieee80211_regdomain *regd; 697 bool bw_fits = false; 698 699 if (!desired_bw_khz) 700 desired_bw_khz = MHZ_TO_KHZ(20); 701 702 regd = custom_regd ? custom_regd : cfg80211_regdomain; 703 704 /* 705 * Follow the driver's regulatory domain, if present, unless a country 706 * IE has been processed or a user wants to help complaince further 707 */ 708 if (!custom_regd && 709 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 710 last_request->initiator != NL80211_REGDOM_SET_BY_USER && 711 wiphy->regd) 712 regd = wiphy->regd; 713 714 if (!regd) 715 return -EINVAL; 716 717 for (i = 0; i < regd->n_reg_rules; i++) { 718 const struct ieee80211_reg_rule *rr; 719 const struct ieee80211_freq_range *fr = NULL; 720 721 rr = ®d->reg_rules[i]; 722 fr = &rr->freq_range; 723 724 /* 725 * We only need to know if one frequency rule was 726 * was in center_freq's band, that's enough, so lets 727 * not overwrite it once found 728 */ 729 if (!band_rule_found) 730 band_rule_found = freq_in_rule_band(fr, center_freq); 731 732 bw_fits = reg_does_bw_fit(fr, 733 center_freq, 734 desired_bw_khz); 735 736 if (band_rule_found && bw_fits) { 737 *reg_rule = rr; 738 return 0; 739 } 740 } 741 742 if (!band_rule_found) 743 return -ERANGE; 744 745 return -EINVAL; 746 } 747 748 int freq_reg_info(struct wiphy *wiphy, 749 u32 center_freq, 750 u32 desired_bw_khz, 751 const struct ieee80211_reg_rule **reg_rule) 752 { 753 assert_cfg80211_lock(); 754 return freq_reg_info_regd(wiphy, 755 center_freq, 756 desired_bw_khz, 757 reg_rule, 758 NULL); 759 } 760 EXPORT_SYMBOL(freq_reg_info); 761 762 #ifdef CONFIG_CFG80211_REG_DEBUG 763 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 764 { 765 switch (initiator) { 766 case NL80211_REGDOM_SET_BY_CORE: 767 return "Set by core"; 768 case NL80211_REGDOM_SET_BY_USER: 769 return "Set by user"; 770 case NL80211_REGDOM_SET_BY_DRIVER: 771 return "Set by driver"; 772 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 773 return "Set by country IE"; 774 default: 775 WARN_ON(1); 776 return "Set by bug"; 777 } 778 } 779 780 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 781 u32 desired_bw_khz, 782 const struct ieee80211_reg_rule *reg_rule) 783 { 784 const struct ieee80211_power_rule *power_rule; 785 const struct ieee80211_freq_range *freq_range; 786 char max_antenna_gain[32]; 787 788 power_rule = ®_rule->power_rule; 789 freq_range = ®_rule->freq_range; 790 791 if (!power_rule->max_antenna_gain) 792 snprintf(max_antenna_gain, 32, "N/A"); 793 else 794 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain); 795 796 REG_DBG_PRINT("Updating information on frequency %d MHz " 797 "for a %d MHz width channel with regulatory rule:\n", 798 chan->center_freq, 799 KHZ_TO_MHZ(desired_bw_khz)); 800 801 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n", 802 freq_range->start_freq_khz, 803 freq_range->end_freq_khz, 804 freq_range->max_bandwidth_khz, 805 max_antenna_gain, 806 power_rule->max_eirp); 807 } 808 #else 809 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 810 u32 desired_bw_khz, 811 const struct ieee80211_reg_rule *reg_rule) 812 { 813 return; 814 } 815 #endif 816 817 /* 818 * Note that right now we assume the desired channel bandwidth 819 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 820 * per channel, the primary and the extension channel). To support 821 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a 822 * new ieee80211_channel.target_bw and re run the regulatory check 823 * on the wiphy with the target_bw specified. Then we can simply use 824 * that below for the desired_bw_khz below. 825 */ 826 static void handle_channel(struct wiphy *wiphy, 827 enum nl80211_reg_initiator initiator, 828 enum ieee80211_band band, 829 unsigned int chan_idx) 830 { 831 int r; 832 u32 flags, bw_flags = 0; 833 u32 desired_bw_khz = MHZ_TO_KHZ(20); 834 const struct ieee80211_reg_rule *reg_rule = NULL; 835 const struct ieee80211_power_rule *power_rule = NULL; 836 const struct ieee80211_freq_range *freq_range = NULL; 837 struct ieee80211_supported_band *sband; 838 struct ieee80211_channel *chan; 839 struct wiphy *request_wiphy = NULL; 840 841 assert_cfg80211_lock(); 842 843 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 844 845 sband = wiphy->bands[band]; 846 BUG_ON(chan_idx >= sband->n_channels); 847 chan = &sband->channels[chan_idx]; 848 849 flags = chan->orig_flags; 850 851 r = freq_reg_info(wiphy, 852 MHZ_TO_KHZ(chan->center_freq), 853 desired_bw_khz, 854 ®_rule); 855 856 if (r) { 857 /* 858 * We will disable all channels that do not match our 859 * received regulatory rule unless the hint is coming 860 * from a Country IE and the Country IE had no information 861 * about a band. The IEEE 802.11 spec allows for an AP 862 * to send only a subset of the regulatory rules allowed, 863 * so an AP in the US that only supports 2.4 GHz may only send 864 * a country IE with information for the 2.4 GHz band 865 * while 5 GHz is still supported. 866 */ 867 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 868 r == -ERANGE) 869 return; 870 871 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq); 872 chan->flags = IEEE80211_CHAN_DISABLED; 873 return; 874 } 875 876 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 877 878 power_rule = ®_rule->power_rule; 879 freq_range = ®_rule->freq_range; 880 881 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 882 bw_flags = IEEE80211_CHAN_NO_HT40; 883 884 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 885 request_wiphy && request_wiphy == wiphy && 886 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 887 /* 888 * This guarantees the driver's requested regulatory domain 889 * will always be used as a base for further regulatory 890 * settings 891 */ 892 chan->flags = chan->orig_flags = 893 map_regdom_flags(reg_rule->flags) | bw_flags; 894 chan->max_antenna_gain = chan->orig_mag = 895 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 896 chan->max_power = chan->orig_mpwr = 897 (int) MBM_TO_DBM(power_rule->max_eirp); 898 return; 899 } 900 901 chan->beacon_found = false; 902 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 903 chan->max_antenna_gain = min(chan->orig_mag, 904 (int) MBI_TO_DBI(power_rule->max_antenna_gain)); 905 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 906 if (chan->orig_mpwr) { 907 /* 908 * Devices that have their own custom regulatory domain 909 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the 910 * passed country IE power settings. 911 */ 912 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 913 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY && 914 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) 915 chan->max_power = chan->max_reg_power; 916 else 917 chan->max_power = min(chan->orig_mpwr, 918 chan->max_reg_power); 919 } else 920 chan->max_power = chan->max_reg_power; 921 } 922 923 static void handle_band(struct wiphy *wiphy, 924 enum ieee80211_band band, 925 enum nl80211_reg_initiator initiator) 926 { 927 unsigned int i; 928 struct ieee80211_supported_band *sband; 929 930 BUG_ON(!wiphy->bands[band]); 931 sband = wiphy->bands[band]; 932 933 for (i = 0; i < sband->n_channels; i++) 934 handle_channel(wiphy, initiator, band, i); 935 } 936 937 static bool reg_request_cell_base(struct regulatory_request *request) 938 { 939 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 940 return false; 941 if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE) 942 return false; 943 return true; 944 } 945 946 bool reg_last_request_cell_base(void) 947 { 948 bool val; 949 assert_cfg80211_lock(); 950 951 mutex_lock(®_mutex); 952 val = reg_request_cell_base(last_request); 953 mutex_unlock(®_mutex); 954 return val; 955 } 956 957 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS 958 959 /* Core specific check */ 960 static int reg_ignore_cell_hint(struct regulatory_request *pending_request) 961 { 962 if (!reg_num_devs_support_basehint) 963 return -EOPNOTSUPP; 964 965 if (reg_request_cell_base(last_request)) { 966 if (!regdom_changes(pending_request->alpha2)) 967 return -EALREADY; 968 return 0; 969 } 970 return 0; 971 } 972 973 /* Device specific check */ 974 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 975 { 976 if (!(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS)) 977 return true; 978 return false; 979 } 980 #else 981 static int reg_ignore_cell_hint(struct regulatory_request *pending_request) 982 { 983 return -EOPNOTSUPP; 984 } 985 static int reg_dev_ignore_cell_hint(struct wiphy *wiphy) 986 { 987 return true; 988 } 989 #endif 990 991 992 static bool ignore_reg_update(struct wiphy *wiphy, 993 enum nl80211_reg_initiator initiator) 994 { 995 if (!last_request) { 996 REG_DBG_PRINT("Ignoring regulatory request %s since " 997 "last_request is not set\n", 998 reg_initiator_name(initiator)); 999 return true; 1000 } 1001 1002 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1003 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) { 1004 REG_DBG_PRINT("Ignoring regulatory request %s " 1005 "since the driver uses its own custom " 1006 "regulatory domain\n", 1007 reg_initiator_name(initiator)); 1008 return true; 1009 } 1010 1011 /* 1012 * wiphy->regd will be set once the device has its own 1013 * desired regulatory domain set 1014 */ 1015 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd && 1016 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1017 !is_world_regdom(last_request->alpha2)) { 1018 REG_DBG_PRINT("Ignoring regulatory request %s " 1019 "since the driver requires its own regulatory " 1020 "domain to be set first\n", 1021 reg_initiator_name(initiator)); 1022 return true; 1023 } 1024 1025 if (reg_request_cell_base(last_request)) 1026 return reg_dev_ignore_cell_hint(wiphy); 1027 1028 return false; 1029 } 1030 1031 static void handle_reg_beacon(struct wiphy *wiphy, 1032 unsigned int chan_idx, 1033 struct reg_beacon *reg_beacon) 1034 { 1035 struct ieee80211_supported_band *sband; 1036 struct ieee80211_channel *chan; 1037 bool channel_changed = false; 1038 struct ieee80211_channel chan_before; 1039 1040 assert_cfg80211_lock(); 1041 1042 sband = wiphy->bands[reg_beacon->chan.band]; 1043 chan = &sband->channels[chan_idx]; 1044 1045 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1046 return; 1047 1048 if (chan->beacon_found) 1049 return; 1050 1051 chan->beacon_found = true; 1052 1053 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS) 1054 return; 1055 1056 chan_before.center_freq = chan->center_freq; 1057 chan_before.flags = chan->flags; 1058 1059 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) { 1060 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN; 1061 channel_changed = true; 1062 } 1063 1064 if (chan->flags & IEEE80211_CHAN_NO_IBSS) { 1065 chan->flags &= ~IEEE80211_CHAN_NO_IBSS; 1066 channel_changed = true; 1067 } 1068 1069 if (channel_changed) 1070 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1071 } 1072 1073 /* 1074 * Called when a scan on a wiphy finds a beacon on 1075 * new channel 1076 */ 1077 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1078 struct reg_beacon *reg_beacon) 1079 { 1080 unsigned int i; 1081 struct ieee80211_supported_band *sband; 1082 1083 assert_cfg80211_lock(); 1084 1085 if (!wiphy->bands[reg_beacon->chan.band]) 1086 return; 1087 1088 sband = wiphy->bands[reg_beacon->chan.band]; 1089 1090 for (i = 0; i < sband->n_channels; i++) 1091 handle_reg_beacon(wiphy, i, reg_beacon); 1092 } 1093 1094 /* 1095 * Called upon reg changes or a new wiphy is added 1096 */ 1097 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1098 { 1099 unsigned int i; 1100 struct ieee80211_supported_band *sband; 1101 struct reg_beacon *reg_beacon; 1102 1103 assert_cfg80211_lock(); 1104 1105 if (list_empty(®_beacon_list)) 1106 return; 1107 1108 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1109 if (!wiphy->bands[reg_beacon->chan.band]) 1110 continue; 1111 sband = wiphy->bands[reg_beacon->chan.band]; 1112 for (i = 0; i < sband->n_channels; i++) 1113 handle_reg_beacon(wiphy, i, reg_beacon); 1114 } 1115 } 1116 1117 static bool reg_is_world_roaming(struct wiphy *wiphy) 1118 { 1119 if (is_world_regdom(cfg80211_regdomain->alpha2) || 1120 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2))) 1121 return true; 1122 if (last_request && 1123 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1124 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1125 return true; 1126 return false; 1127 } 1128 1129 /* Reap the advantages of previously found beacons */ 1130 static void reg_process_beacons(struct wiphy *wiphy) 1131 { 1132 /* 1133 * Means we are just firing up cfg80211, so no beacons would 1134 * have been processed yet. 1135 */ 1136 if (!last_request) 1137 return; 1138 if (!reg_is_world_roaming(wiphy)) 1139 return; 1140 wiphy_update_beacon_reg(wiphy); 1141 } 1142 1143 static bool is_ht40_not_allowed(struct ieee80211_channel *chan) 1144 { 1145 if (!chan) 1146 return true; 1147 if (chan->flags & IEEE80211_CHAN_DISABLED) 1148 return true; 1149 /* This would happen when regulatory rules disallow HT40 completely */ 1150 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40))) 1151 return true; 1152 return false; 1153 } 1154 1155 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1156 enum ieee80211_band band, 1157 unsigned int chan_idx) 1158 { 1159 struct ieee80211_supported_band *sband; 1160 struct ieee80211_channel *channel; 1161 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1162 unsigned int i; 1163 1164 assert_cfg80211_lock(); 1165 1166 sband = wiphy->bands[band]; 1167 BUG_ON(chan_idx >= sband->n_channels); 1168 channel = &sband->channels[chan_idx]; 1169 1170 if (is_ht40_not_allowed(channel)) { 1171 channel->flags |= IEEE80211_CHAN_NO_HT40; 1172 return; 1173 } 1174 1175 /* 1176 * We need to ensure the extension channels exist to 1177 * be able to use HT40- or HT40+, this finds them (or not) 1178 */ 1179 for (i = 0; i < sband->n_channels; i++) { 1180 struct ieee80211_channel *c = &sband->channels[i]; 1181 if (c->center_freq == (channel->center_freq - 20)) 1182 channel_before = c; 1183 if (c->center_freq == (channel->center_freq + 20)) 1184 channel_after = c; 1185 } 1186 1187 /* 1188 * Please note that this assumes target bandwidth is 20 MHz, 1189 * if that ever changes we also need to change the below logic 1190 * to include that as well. 1191 */ 1192 if (is_ht40_not_allowed(channel_before)) 1193 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1194 else 1195 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1196 1197 if (is_ht40_not_allowed(channel_after)) 1198 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1199 else 1200 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1201 } 1202 1203 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1204 enum ieee80211_band band) 1205 { 1206 unsigned int i; 1207 struct ieee80211_supported_band *sband; 1208 1209 BUG_ON(!wiphy->bands[band]); 1210 sband = wiphy->bands[band]; 1211 1212 for (i = 0; i < sband->n_channels; i++) 1213 reg_process_ht_flags_channel(wiphy, band, i); 1214 } 1215 1216 static void reg_process_ht_flags(struct wiphy *wiphy) 1217 { 1218 enum ieee80211_band band; 1219 1220 if (!wiphy) 1221 return; 1222 1223 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1224 if (wiphy->bands[band]) 1225 reg_process_ht_flags_band(wiphy, band); 1226 } 1227 1228 } 1229 1230 static void wiphy_update_regulatory(struct wiphy *wiphy, 1231 enum nl80211_reg_initiator initiator) 1232 { 1233 enum ieee80211_band band; 1234 1235 assert_reg_lock(); 1236 1237 if (ignore_reg_update(wiphy, initiator)) 1238 return; 1239 1240 last_request->dfs_region = cfg80211_regdomain->dfs_region; 1241 1242 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1243 if (wiphy->bands[band]) 1244 handle_band(wiphy, band, initiator); 1245 } 1246 1247 reg_process_beacons(wiphy); 1248 reg_process_ht_flags(wiphy); 1249 if (wiphy->reg_notifier) 1250 wiphy->reg_notifier(wiphy, last_request); 1251 } 1252 1253 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1254 { 1255 struct cfg80211_registered_device *rdev; 1256 struct wiphy *wiphy; 1257 1258 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1259 wiphy = &rdev->wiphy; 1260 wiphy_update_regulatory(wiphy, initiator); 1261 /* 1262 * Regulatory updates set by CORE are ignored for custom 1263 * regulatory cards. Let us notify the changes to the driver, 1264 * as some drivers used this to restore its orig_* reg domain. 1265 */ 1266 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1267 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY && 1268 wiphy->reg_notifier) 1269 wiphy->reg_notifier(wiphy, last_request); 1270 } 1271 } 1272 1273 static void handle_channel_custom(struct wiphy *wiphy, 1274 enum ieee80211_band band, 1275 unsigned int chan_idx, 1276 const struct ieee80211_regdomain *regd) 1277 { 1278 int r; 1279 u32 desired_bw_khz = MHZ_TO_KHZ(20); 1280 u32 bw_flags = 0; 1281 const struct ieee80211_reg_rule *reg_rule = NULL; 1282 const struct ieee80211_power_rule *power_rule = NULL; 1283 const struct ieee80211_freq_range *freq_range = NULL; 1284 struct ieee80211_supported_band *sband; 1285 struct ieee80211_channel *chan; 1286 1287 assert_reg_lock(); 1288 1289 sband = wiphy->bands[band]; 1290 BUG_ON(chan_idx >= sband->n_channels); 1291 chan = &sband->channels[chan_idx]; 1292 1293 r = freq_reg_info_regd(wiphy, 1294 MHZ_TO_KHZ(chan->center_freq), 1295 desired_bw_khz, 1296 ®_rule, 1297 regd); 1298 1299 if (r) { 1300 REG_DBG_PRINT("Disabling freq %d MHz as custom " 1301 "regd has no rule that fits a %d MHz " 1302 "wide channel\n", 1303 chan->center_freq, 1304 KHZ_TO_MHZ(desired_bw_khz)); 1305 chan->flags = IEEE80211_CHAN_DISABLED; 1306 return; 1307 } 1308 1309 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 1310 1311 power_rule = ®_rule->power_rule; 1312 freq_range = ®_rule->freq_range; 1313 1314 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 1315 bw_flags = IEEE80211_CHAN_NO_HT40; 1316 1317 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1318 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1319 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1320 } 1321 1322 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band, 1323 const struct ieee80211_regdomain *regd) 1324 { 1325 unsigned int i; 1326 struct ieee80211_supported_band *sband; 1327 1328 BUG_ON(!wiphy->bands[band]); 1329 sband = wiphy->bands[band]; 1330 1331 for (i = 0; i < sband->n_channels; i++) 1332 handle_channel_custom(wiphy, band, i, regd); 1333 } 1334 1335 /* Used by drivers prior to wiphy registration */ 1336 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1337 const struct ieee80211_regdomain *regd) 1338 { 1339 enum ieee80211_band band; 1340 unsigned int bands_set = 0; 1341 1342 mutex_lock(®_mutex); 1343 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1344 if (!wiphy->bands[band]) 1345 continue; 1346 handle_band_custom(wiphy, band, regd); 1347 bands_set++; 1348 } 1349 mutex_unlock(®_mutex); 1350 1351 /* 1352 * no point in calling this if it won't have any effect 1353 * on your device's supportd bands. 1354 */ 1355 WARN_ON(!bands_set); 1356 } 1357 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1358 1359 /* 1360 * Return value which can be used by ignore_request() to indicate 1361 * it has been determined we should intersect two regulatory domains 1362 */ 1363 #define REG_INTERSECT 1 1364 1365 /* This has the logic which determines when a new request 1366 * should be ignored. */ 1367 static int ignore_request(struct wiphy *wiphy, 1368 struct regulatory_request *pending_request) 1369 { 1370 struct wiphy *last_wiphy = NULL; 1371 1372 assert_cfg80211_lock(); 1373 1374 /* All initial requests are respected */ 1375 if (!last_request) 1376 return 0; 1377 1378 switch (pending_request->initiator) { 1379 case NL80211_REGDOM_SET_BY_CORE: 1380 return 0; 1381 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1382 1383 if (reg_request_cell_base(last_request)) { 1384 /* Trust a Cell base station over the AP's country IE */ 1385 if (regdom_changes(pending_request->alpha2)) 1386 return -EOPNOTSUPP; 1387 return -EALREADY; 1388 } 1389 1390 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 1391 1392 if (unlikely(!is_an_alpha2(pending_request->alpha2))) 1393 return -EINVAL; 1394 if (last_request->initiator == 1395 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1396 if (last_wiphy != wiphy) { 1397 /* 1398 * Two cards with two APs claiming different 1399 * Country IE alpha2s. We could 1400 * intersect them, but that seems unlikely 1401 * to be correct. Reject second one for now. 1402 */ 1403 if (regdom_changes(pending_request->alpha2)) 1404 return -EOPNOTSUPP; 1405 return -EALREADY; 1406 } 1407 /* 1408 * Two consecutive Country IE hints on the same wiphy. 1409 * This should be picked up early by the driver/stack 1410 */ 1411 if (WARN_ON(regdom_changes(pending_request->alpha2))) 1412 return 0; 1413 return -EALREADY; 1414 } 1415 return 0; 1416 case NL80211_REGDOM_SET_BY_DRIVER: 1417 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) { 1418 if (regdom_changes(pending_request->alpha2)) 1419 return 0; 1420 return -EALREADY; 1421 } 1422 1423 /* 1424 * This would happen if you unplug and plug your card 1425 * back in or if you add a new device for which the previously 1426 * loaded card also agrees on the regulatory domain. 1427 */ 1428 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1429 !regdom_changes(pending_request->alpha2)) 1430 return -EALREADY; 1431 1432 return REG_INTERSECT; 1433 case NL80211_REGDOM_SET_BY_USER: 1434 if (reg_request_cell_base(pending_request)) 1435 return reg_ignore_cell_hint(pending_request); 1436 1437 if (reg_request_cell_base(last_request)) 1438 return -EOPNOTSUPP; 1439 1440 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1441 return REG_INTERSECT; 1442 /* 1443 * If the user knows better the user should set the regdom 1444 * to their country before the IE is picked up 1445 */ 1446 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER && 1447 last_request->intersect) 1448 return -EOPNOTSUPP; 1449 /* 1450 * Process user requests only after previous user/driver/core 1451 * requests have been processed 1452 */ 1453 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE || 1454 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1455 last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1456 if (regdom_changes(last_request->alpha2)) 1457 return -EAGAIN; 1458 } 1459 1460 if (!regdom_changes(pending_request->alpha2)) 1461 return -EALREADY; 1462 1463 return 0; 1464 } 1465 1466 return -EINVAL; 1467 } 1468 1469 static void reg_set_request_processed(void) 1470 { 1471 bool need_more_processing = false; 1472 1473 last_request->processed = true; 1474 1475 spin_lock(®_requests_lock); 1476 if (!list_empty(®_requests_list)) 1477 need_more_processing = true; 1478 spin_unlock(®_requests_lock); 1479 1480 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) 1481 cancel_delayed_work(®_timeout); 1482 1483 if (need_more_processing) 1484 schedule_work(®_work); 1485 } 1486 1487 /** 1488 * __regulatory_hint - hint to the wireless core a regulatory domain 1489 * @wiphy: if the hint comes from country information from an AP, this 1490 * is required to be set to the wiphy that received the information 1491 * @pending_request: the regulatory request currently being processed 1492 * 1493 * The Wireless subsystem can use this function to hint to the wireless core 1494 * what it believes should be the current regulatory domain. 1495 * 1496 * Returns zero if all went fine, %-EALREADY if a regulatory domain had 1497 * already been set or other standard error codes. 1498 * 1499 * Caller must hold &cfg80211_mutex and ®_mutex 1500 */ 1501 static int __regulatory_hint(struct wiphy *wiphy, 1502 struct regulatory_request *pending_request) 1503 { 1504 bool intersect = false; 1505 int r = 0; 1506 1507 assert_cfg80211_lock(); 1508 1509 r = ignore_request(wiphy, pending_request); 1510 1511 if (r == REG_INTERSECT) { 1512 if (pending_request->initiator == 1513 NL80211_REGDOM_SET_BY_DRIVER) { 1514 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1515 if (r) { 1516 kfree(pending_request); 1517 return r; 1518 } 1519 } 1520 intersect = true; 1521 } else if (r) { 1522 /* 1523 * If the regulatory domain being requested by the 1524 * driver has already been set just copy it to the 1525 * wiphy 1526 */ 1527 if (r == -EALREADY && 1528 pending_request->initiator == 1529 NL80211_REGDOM_SET_BY_DRIVER) { 1530 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1531 if (r) { 1532 kfree(pending_request); 1533 return r; 1534 } 1535 r = -EALREADY; 1536 goto new_request; 1537 } 1538 kfree(pending_request); 1539 return r; 1540 } 1541 1542 new_request: 1543 if (last_request != &core_request_world) 1544 kfree(last_request); 1545 1546 last_request = pending_request; 1547 last_request->intersect = intersect; 1548 1549 pending_request = NULL; 1550 1551 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1552 user_alpha2[0] = last_request->alpha2[0]; 1553 user_alpha2[1] = last_request->alpha2[1]; 1554 } 1555 1556 /* When r == REG_INTERSECT we do need to call CRDA */ 1557 if (r < 0) { 1558 /* 1559 * Since CRDA will not be called in this case as we already 1560 * have applied the requested regulatory domain before we just 1561 * inform userspace we have processed the request 1562 */ 1563 if (r == -EALREADY) { 1564 nl80211_send_reg_change_event(last_request); 1565 reg_set_request_processed(); 1566 } 1567 return r; 1568 } 1569 1570 return call_crda(last_request->alpha2); 1571 } 1572 1573 /* This processes *all* regulatory hints */ 1574 static void reg_process_hint(struct regulatory_request *reg_request, 1575 enum nl80211_reg_initiator reg_initiator) 1576 { 1577 int r = 0; 1578 struct wiphy *wiphy = NULL; 1579 1580 BUG_ON(!reg_request->alpha2); 1581 1582 if (wiphy_idx_valid(reg_request->wiphy_idx)) 1583 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1584 1585 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && 1586 !wiphy) { 1587 kfree(reg_request); 1588 return; 1589 } 1590 1591 r = __regulatory_hint(wiphy, reg_request); 1592 /* This is required so that the orig_* parameters are saved */ 1593 if (r == -EALREADY && wiphy && 1594 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 1595 wiphy_update_regulatory(wiphy, reg_initiator); 1596 return; 1597 } 1598 1599 /* 1600 * We only time out user hints, given that they should be the only 1601 * source of bogus requests. 1602 */ 1603 if (r != -EALREADY && 1604 reg_initiator == NL80211_REGDOM_SET_BY_USER) 1605 schedule_delayed_work(®_timeout, msecs_to_jiffies(3142)); 1606 } 1607 1608 /* 1609 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 1610 * Regulatory hints come on a first come first serve basis and we 1611 * must process each one atomically. 1612 */ 1613 static void reg_process_pending_hints(void) 1614 { 1615 struct regulatory_request *reg_request; 1616 1617 mutex_lock(&cfg80211_mutex); 1618 mutex_lock(®_mutex); 1619 1620 /* When last_request->processed becomes true this will be rescheduled */ 1621 if (last_request && !last_request->processed) { 1622 REG_DBG_PRINT("Pending regulatory request, waiting " 1623 "for it to be processed...\n"); 1624 goto out; 1625 } 1626 1627 spin_lock(®_requests_lock); 1628 1629 if (list_empty(®_requests_list)) { 1630 spin_unlock(®_requests_lock); 1631 goto out; 1632 } 1633 1634 reg_request = list_first_entry(®_requests_list, 1635 struct regulatory_request, 1636 list); 1637 list_del_init(®_request->list); 1638 1639 spin_unlock(®_requests_lock); 1640 1641 reg_process_hint(reg_request, reg_request->initiator); 1642 1643 out: 1644 mutex_unlock(®_mutex); 1645 mutex_unlock(&cfg80211_mutex); 1646 } 1647 1648 /* Processes beacon hints -- this has nothing to do with country IEs */ 1649 static void reg_process_pending_beacon_hints(void) 1650 { 1651 struct cfg80211_registered_device *rdev; 1652 struct reg_beacon *pending_beacon, *tmp; 1653 1654 /* 1655 * No need to hold the reg_mutex here as we just touch wiphys 1656 * and do not read or access regulatory variables. 1657 */ 1658 mutex_lock(&cfg80211_mutex); 1659 1660 /* This goes through the _pending_ beacon list */ 1661 spin_lock_bh(®_pending_beacons_lock); 1662 1663 if (list_empty(®_pending_beacons)) { 1664 spin_unlock_bh(®_pending_beacons_lock); 1665 goto out; 1666 } 1667 1668 list_for_each_entry_safe(pending_beacon, tmp, 1669 ®_pending_beacons, list) { 1670 1671 list_del_init(&pending_beacon->list); 1672 1673 /* Applies the beacon hint to current wiphys */ 1674 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1675 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 1676 1677 /* Remembers the beacon hint for new wiphys or reg changes */ 1678 list_add_tail(&pending_beacon->list, ®_beacon_list); 1679 } 1680 1681 spin_unlock_bh(®_pending_beacons_lock); 1682 out: 1683 mutex_unlock(&cfg80211_mutex); 1684 } 1685 1686 static void reg_todo(struct work_struct *work) 1687 { 1688 reg_process_pending_hints(); 1689 reg_process_pending_beacon_hints(); 1690 } 1691 1692 static void queue_regulatory_request(struct regulatory_request *request) 1693 { 1694 if (isalpha(request->alpha2[0])) 1695 request->alpha2[0] = toupper(request->alpha2[0]); 1696 if (isalpha(request->alpha2[1])) 1697 request->alpha2[1] = toupper(request->alpha2[1]); 1698 1699 spin_lock(®_requests_lock); 1700 list_add_tail(&request->list, ®_requests_list); 1701 spin_unlock(®_requests_lock); 1702 1703 schedule_work(®_work); 1704 } 1705 1706 /* 1707 * Core regulatory hint -- happens during cfg80211_init() 1708 * and when we restore regulatory settings. 1709 */ 1710 static int regulatory_hint_core(const char *alpha2) 1711 { 1712 struct regulatory_request *request; 1713 1714 request = kzalloc(sizeof(struct regulatory_request), 1715 GFP_KERNEL); 1716 if (!request) 1717 return -ENOMEM; 1718 1719 request->alpha2[0] = alpha2[0]; 1720 request->alpha2[1] = alpha2[1]; 1721 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1722 1723 queue_regulatory_request(request); 1724 1725 return 0; 1726 } 1727 1728 /* User hints */ 1729 int regulatory_hint_user(const char *alpha2, 1730 enum nl80211_user_reg_hint_type user_reg_hint_type) 1731 { 1732 struct regulatory_request *request; 1733 1734 BUG_ON(!alpha2); 1735 1736 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1737 if (!request) 1738 return -ENOMEM; 1739 1740 request->wiphy_idx = WIPHY_IDX_STALE; 1741 request->alpha2[0] = alpha2[0]; 1742 request->alpha2[1] = alpha2[1]; 1743 request->initiator = NL80211_REGDOM_SET_BY_USER; 1744 request->user_reg_hint_type = user_reg_hint_type; 1745 1746 queue_regulatory_request(request); 1747 1748 return 0; 1749 } 1750 1751 /* Driver hints */ 1752 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 1753 { 1754 struct regulatory_request *request; 1755 1756 BUG_ON(!alpha2); 1757 BUG_ON(!wiphy); 1758 1759 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1760 if (!request) 1761 return -ENOMEM; 1762 1763 request->wiphy_idx = get_wiphy_idx(wiphy); 1764 1765 /* Must have registered wiphy first */ 1766 BUG_ON(!wiphy_idx_valid(request->wiphy_idx)); 1767 1768 request->alpha2[0] = alpha2[0]; 1769 request->alpha2[1] = alpha2[1]; 1770 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 1771 1772 queue_regulatory_request(request); 1773 1774 return 0; 1775 } 1776 EXPORT_SYMBOL(regulatory_hint); 1777 1778 /* 1779 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and 1780 * therefore cannot iterate over the rdev list here. 1781 */ 1782 void regulatory_hint_11d(struct wiphy *wiphy, 1783 enum ieee80211_band band, 1784 u8 *country_ie, 1785 u8 country_ie_len) 1786 { 1787 char alpha2[2]; 1788 enum environment_cap env = ENVIRON_ANY; 1789 struct regulatory_request *request; 1790 1791 mutex_lock(®_mutex); 1792 1793 if (unlikely(!last_request)) 1794 goto out; 1795 1796 /* IE len must be evenly divisible by 2 */ 1797 if (country_ie_len & 0x01) 1798 goto out; 1799 1800 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 1801 goto out; 1802 1803 alpha2[0] = country_ie[0]; 1804 alpha2[1] = country_ie[1]; 1805 1806 if (country_ie[2] == 'I') 1807 env = ENVIRON_INDOOR; 1808 else if (country_ie[2] == 'O') 1809 env = ENVIRON_OUTDOOR; 1810 1811 /* 1812 * We will run this only upon a successful connection on cfg80211. 1813 * We leave conflict resolution to the workqueue, where can hold 1814 * cfg80211_mutex. 1815 */ 1816 if (likely(last_request->initiator == 1817 NL80211_REGDOM_SET_BY_COUNTRY_IE && 1818 wiphy_idx_valid(last_request->wiphy_idx))) 1819 goto out; 1820 1821 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1822 if (!request) 1823 goto out; 1824 1825 request->wiphy_idx = get_wiphy_idx(wiphy); 1826 request->alpha2[0] = alpha2[0]; 1827 request->alpha2[1] = alpha2[1]; 1828 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 1829 request->country_ie_env = env; 1830 1831 mutex_unlock(®_mutex); 1832 1833 queue_regulatory_request(request); 1834 1835 return; 1836 1837 out: 1838 mutex_unlock(®_mutex); 1839 } 1840 1841 static void restore_alpha2(char *alpha2, bool reset_user) 1842 { 1843 /* indicates there is no alpha2 to consider for restoration */ 1844 alpha2[0] = '9'; 1845 alpha2[1] = '7'; 1846 1847 /* The user setting has precedence over the module parameter */ 1848 if (is_user_regdom_saved()) { 1849 /* Unless we're asked to ignore it and reset it */ 1850 if (reset_user) { 1851 REG_DBG_PRINT("Restoring regulatory settings " 1852 "including user preference\n"); 1853 user_alpha2[0] = '9'; 1854 user_alpha2[1] = '7'; 1855 1856 /* 1857 * If we're ignoring user settings, we still need to 1858 * check the module parameter to ensure we put things 1859 * back as they were for a full restore. 1860 */ 1861 if (!is_world_regdom(ieee80211_regdom)) { 1862 REG_DBG_PRINT("Keeping preference on " 1863 "module parameter ieee80211_regdom: %c%c\n", 1864 ieee80211_regdom[0], 1865 ieee80211_regdom[1]); 1866 alpha2[0] = ieee80211_regdom[0]; 1867 alpha2[1] = ieee80211_regdom[1]; 1868 } 1869 } else { 1870 REG_DBG_PRINT("Restoring regulatory settings " 1871 "while preserving user preference for: %c%c\n", 1872 user_alpha2[0], 1873 user_alpha2[1]); 1874 alpha2[0] = user_alpha2[0]; 1875 alpha2[1] = user_alpha2[1]; 1876 } 1877 } else if (!is_world_regdom(ieee80211_regdom)) { 1878 REG_DBG_PRINT("Keeping preference on " 1879 "module parameter ieee80211_regdom: %c%c\n", 1880 ieee80211_regdom[0], 1881 ieee80211_regdom[1]); 1882 alpha2[0] = ieee80211_regdom[0]; 1883 alpha2[1] = ieee80211_regdom[1]; 1884 } else 1885 REG_DBG_PRINT("Restoring regulatory settings\n"); 1886 } 1887 1888 static void restore_custom_reg_settings(struct wiphy *wiphy) 1889 { 1890 struct ieee80211_supported_band *sband; 1891 enum ieee80211_band band; 1892 struct ieee80211_channel *chan; 1893 int i; 1894 1895 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1896 sband = wiphy->bands[band]; 1897 if (!sband) 1898 continue; 1899 for (i = 0; i < sband->n_channels; i++) { 1900 chan = &sband->channels[i]; 1901 chan->flags = chan->orig_flags; 1902 chan->max_antenna_gain = chan->orig_mag; 1903 chan->max_power = chan->orig_mpwr; 1904 chan->beacon_found = false; 1905 } 1906 } 1907 } 1908 1909 /* 1910 * Restoring regulatory settings involves ingoring any 1911 * possibly stale country IE information and user regulatory 1912 * settings if so desired, this includes any beacon hints 1913 * learned as we could have traveled outside to another country 1914 * after disconnection. To restore regulatory settings we do 1915 * exactly what we did at bootup: 1916 * 1917 * - send a core regulatory hint 1918 * - send a user regulatory hint if applicable 1919 * 1920 * Device drivers that send a regulatory hint for a specific country 1921 * keep their own regulatory domain on wiphy->regd so that does does 1922 * not need to be remembered. 1923 */ 1924 static void restore_regulatory_settings(bool reset_user) 1925 { 1926 char alpha2[2]; 1927 char world_alpha2[2]; 1928 struct reg_beacon *reg_beacon, *btmp; 1929 struct regulatory_request *reg_request, *tmp; 1930 LIST_HEAD(tmp_reg_req_list); 1931 struct cfg80211_registered_device *rdev; 1932 1933 mutex_lock(&cfg80211_mutex); 1934 mutex_lock(®_mutex); 1935 1936 reset_regdomains(true); 1937 restore_alpha2(alpha2, reset_user); 1938 1939 /* 1940 * If there's any pending requests we simply 1941 * stash them to a temporary pending queue and 1942 * add then after we've restored regulatory 1943 * settings. 1944 */ 1945 spin_lock(®_requests_lock); 1946 if (!list_empty(®_requests_list)) { 1947 list_for_each_entry_safe(reg_request, tmp, 1948 ®_requests_list, list) { 1949 if (reg_request->initiator != 1950 NL80211_REGDOM_SET_BY_USER) 1951 continue; 1952 list_del(®_request->list); 1953 list_add_tail(®_request->list, &tmp_reg_req_list); 1954 } 1955 } 1956 spin_unlock(®_requests_lock); 1957 1958 /* Clear beacon hints */ 1959 spin_lock_bh(®_pending_beacons_lock); 1960 if (!list_empty(®_pending_beacons)) { 1961 list_for_each_entry_safe(reg_beacon, btmp, 1962 ®_pending_beacons, list) { 1963 list_del(®_beacon->list); 1964 kfree(reg_beacon); 1965 } 1966 } 1967 spin_unlock_bh(®_pending_beacons_lock); 1968 1969 if (!list_empty(®_beacon_list)) { 1970 list_for_each_entry_safe(reg_beacon, btmp, 1971 ®_beacon_list, list) { 1972 list_del(®_beacon->list); 1973 kfree(reg_beacon); 1974 } 1975 } 1976 1977 /* First restore to the basic regulatory settings */ 1978 cfg80211_regdomain = cfg80211_world_regdom; 1979 world_alpha2[0] = cfg80211_regdomain->alpha2[0]; 1980 world_alpha2[1] = cfg80211_regdomain->alpha2[1]; 1981 1982 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1983 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1984 restore_custom_reg_settings(&rdev->wiphy); 1985 } 1986 1987 mutex_unlock(®_mutex); 1988 mutex_unlock(&cfg80211_mutex); 1989 1990 regulatory_hint_core(world_alpha2); 1991 1992 /* 1993 * This restores the ieee80211_regdom module parameter 1994 * preference or the last user requested regulatory 1995 * settings, user regulatory settings takes precedence. 1996 */ 1997 if (is_an_alpha2(alpha2)) 1998 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER); 1999 2000 if (list_empty(&tmp_reg_req_list)) 2001 return; 2002 2003 mutex_lock(&cfg80211_mutex); 2004 mutex_lock(®_mutex); 2005 2006 spin_lock(®_requests_lock); 2007 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) { 2008 REG_DBG_PRINT("Adding request for country %c%c back " 2009 "into the queue\n", 2010 reg_request->alpha2[0], 2011 reg_request->alpha2[1]); 2012 list_del(®_request->list); 2013 list_add_tail(®_request->list, ®_requests_list); 2014 } 2015 spin_unlock(®_requests_lock); 2016 2017 mutex_unlock(®_mutex); 2018 mutex_unlock(&cfg80211_mutex); 2019 2020 REG_DBG_PRINT("Kicking the queue\n"); 2021 2022 schedule_work(®_work); 2023 } 2024 2025 void regulatory_hint_disconnect(void) 2026 { 2027 REG_DBG_PRINT("All devices are disconnected, going to " 2028 "restore regulatory settings\n"); 2029 restore_regulatory_settings(false); 2030 } 2031 2032 static bool freq_is_chan_12_13_14(u16 freq) 2033 { 2034 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 2035 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 2036 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 2037 return true; 2038 return false; 2039 } 2040 2041 int regulatory_hint_found_beacon(struct wiphy *wiphy, 2042 struct ieee80211_channel *beacon_chan, 2043 gfp_t gfp) 2044 { 2045 struct reg_beacon *reg_beacon; 2046 2047 if (likely((beacon_chan->beacon_found || 2048 (beacon_chan->flags & IEEE80211_CHAN_RADAR) || 2049 (beacon_chan->band == IEEE80211_BAND_2GHZ && 2050 !freq_is_chan_12_13_14(beacon_chan->center_freq))))) 2051 return 0; 2052 2053 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 2054 if (!reg_beacon) 2055 return -ENOMEM; 2056 2057 REG_DBG_PRINT("Found new beacon on " 2058 "frequency: %d MHz (Ch %d) on %s\n", 2059 beacon_chan->center_freq, 2060 ieee80211_frequency_to_channel(beacon_chan->center_freq), 2061 wiphy_name(wiphy)); 2062 2063 memcpy(®_beacon->chan, beacon_chan, 2064 sizeof(struct ieee80211_channel)); 2065 2066 2067 /* 2068 * Since we can be called from BH or and non-BH context 2069 * we must use spin_lock_bh() 2070 */ 2071 spin_lock_bh(®_pending_beacons_lock); 2072 list_add_tail(®_beacon->list, ®_pending_beacons); 2073 spin_unlock_bh(®_pending_beacons_lock); 2074 2075 schedule_work(®_work); 2076 2077 return 0; 2078 } 2079 2080 static void print_rd_rules(const struct ieee80211_regdomain *rd) 2081 { 2082 unsigned int i; 2083 const struct ieee80211_reg_rule *reg_rule = NULL; 2084 const struct ieee80211_freq_range *freq_range = NULL; 2085 const struct ieee80211_power_rule *power_rule = NULL; 2086 2087 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n"); 2088 2089 for (i = 0; i < rd->n_reg_rules; i++) { 2090 reg_rule = &rd->reg_rules[i]; 2091 freq_range = ®_rule->freq_range; 2092 power_rule = ®_rule->power_rule; 2093 2094 /* 2095 * There may not be documentation for max antenna gain 2096 * in certain regions 2097 */ 2098 if (power_rule->max_antenna_gain) 2099 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n", 2100 freq_range->start_freq_khz, 2101 freq_range->end_freq_khz, 2102 freq_range->max_bandwidth_khz, 2103 power_rule->max_antenna_gain, 2104 power_rule->max_eirp); 2105 else 2106 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n", 2107 freq_range->start_freq_khz, 2108 freq_range->end_freq_khz, 2109 freq_range->max_bandwidth_khz, 2110 power_rule->max_eirp); 2111 } 2112 } 2113 2114 bool reg_supported_dfs_region(u8 dfs_region) 2115 { 2116 switch (dfs_region) { 2117 case NL80211_DFS_UNSET: 2118 case NL80211_DFS_FCC: 2119 case NL80211_DFS_ETSI: 2120 case NL80211_DFS_JP: 2121 return true; 2122 default: 2123 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", 2124 dfs_region); 2125 return false; 2126 } 2127 } 2128 2129 static void print_dfs_region(u8 dfs_region) 2130 { 2131 if (!dfs_region) 2132 return; 2133 2134 switch (dfs_region) { 2135 case NL80211_DFS_FCC: 2136 pr_info(" DFS Master region FCC"); 2137 break; 2138 case NL80211_DFS_ETSI: 2139 pr_info(" DFS Master region ETSI"); 2140 break; 2141 case NL80211_DFS_JP: 2142 pr_info(" DFS Master region JP"); 2143 break; 2144 default: 2145 pr_info(" DFS Master region Uknown"); 2146 break; 2147 } 2148 } 2149 2150 static void print_regdomain(const struct ieee80211_regdomain *rd) 2151 { 2152 2153 if (is_intersected_alpha2(rd->alpha2)) { 2154 2155 if (last_request->initiator == 2156 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2157 struct cfg80211_registered_device *rdev; 2158 rdev = cfg80211_rdev_by_wiphy_idx( 2159 last_request->wiphy_idx); 2160 if (rdev) { 2161 pr_info("Current regulatory domain updated by AP to: %c%c\n", 2162 rdev->country_ie_alpha2[0], 2163 rdev->country_ie_alpha2[1]); 2164 } else 2165 pr_info("Current regulatory domain intersected:\n"); 2166 } else 2167 pr_info("Current regulatory domain intersected:\n"); 2168 } else if (is_world_regdom(rd->alpha2)) 2169 pr_info("World regulatory domain updated:\n"); 2170 else { 2171 if (is_unknown_alpha2(rd->alpha2)) 2172 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2173 else { 2174 if (reg_request_cell_base(last_request)) 2175 pr_info("Regulatory domain changed " 2176 "to country: %c%c by Cell Station\n", 2177 rd->alpha2[0], rd->alpha2[1]); 2178 else 2179 pr_info("Regulatory domain changed " 2180 "to country: %c%c\n", 2181 rd->alpha2[0], rd->alpha2[1]); 2182 } 2183 } 2184 print_dfs_region(rd->dfs_region); 2185 print_rd_rules(rd); 2186 } 2187 2188 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2189 { 2190 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2191 print_rd_rules(rd); 2192 } 2193 2194 /* Takes ownership of rd only if it doesn't fail */ 2195 static int __set_regdom(const struct ieee80211_regdomain *rd) 2196 { 2197 const struct ieee80211_regdomain *intersected_rd = NULL; 2198 struct cfg80211_registered_device *rdev = NULL; 2199 struct wiphy *request_wiphy; 2200 /* Some basic sanity checks first */ 2201 2202 if (is_world_regdom(rd->alpha2)) { 2203 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 2204 return -EINVAL; 2205 update_world_regdomain(rd); 2206 return 0; 2207 } 2208 2209 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2210 !is_unknown_alpha2(rd->alpha2)) 2211 return -EINVAL; 2212 2213 if (!last_request) 2214 return -EINVAL; 2215 2216 /* 2217 * Lets only bother proceeding on the same alpha2 if the current 2218 * rd is non static (it means CRDA was present and was used last) 2219 * and the pending request came in from a country IE 2220 */ 2221 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2222 /* 2223 * If someone else asked us to change the rd lets only bother 2224 * checking if the alpha2 changes if CRDA was already called 2225 */ 2226 if (!regdom_changes(rd->alpha2)) 2227 return -EALREADY; 2228 } 2229 2230 /* 2231 * Now lets set the regulatory domain, update all driver channels 2232 * and finally inform them of what we have done, in case they want 2233 * to review or adjust their own settings based on their own 2234 * internal EEPROM data 2235 */ 2236 2237 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 2238 return -EINVAL; 2239 2240 if (!is_valid_rd(rd)) { 2241 pr_err("Invalid regulatory domain detected:\n"); 2242 print_regdomain_info(rd); 2243 return -EINVAL; 2244 } 2245 2246 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2247 if (!request_wiphy && 2248 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2249 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) { 2250 schedule_delayed_work(®_timeout, 0); 2251 return -ENODEV; 2252 } 2253 2254 if (!last_request->intersect) { 2255 int r; 2256 2257 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) { 2258 reset_regdomains(false); 2259 cfg80211_regdomain = rd; 2260 return 0; 2261 } 2262 2263 /* 2264 * For a driver hint, lets copy the regulatory domain the 2265 * driver wanted to the wiphy to deal with conflicts 2266 */ 2267 2268 /* 2269 * Userspace could have sent two replies with only 2270 * one kernel request. 2271 */ 2272 if (request_wiphy->regd) 2273 return -EALREADY; 2274 2275 r = reg_copy_regd(&request_wiphy->regd, rd); 2276 if (r) 2277 return r; 2278 2279 reset_regdomains(false); 2280 cfg80211_regdomain = rd; 2281 return 0; 2282 } 2283 2284 /* Intersection requires a bit more work */ 2285 2286 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2287 2288 intersected_rd = regdom_intersect(rd, cfg80211_regdomain); 2289 if (!intersected_rd) 2290 return -EINVAL; 2291 2292 /* 2293 * We can trash what CRDA provided now. 2294 * However if a driver requested this specific regulatory 2295 * domain we keep it for its private use 2296 */ 2297 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) 2298 request_wiphy->regd = rd; 2299 else 2300 kfree(rd); 2301 2302 rd = NULL; 2303 2304 reset_regdomains(false); 2305 cfg80211_regdomain = intersected_rd; 2306 2307 return 0; 2308 } 2309 2310 if (!intersected_rd) 2311 return -EINVAL; 2312 2313 rdev = wiphy_to_dev(request_wiphy); 2314 2315 rdev->country_ie_alpha2[0] = rd->alpha2[0]; 2316 rdev->country_ie_alpha2[1] = rd->alpha2[1]; 2317 rdev->env = last_request->country_ie_env; 2318 2319 BUG_ON(intersected_rd == rd); 2320 2321 kfree(rd); 2322 rd = NULL; 2323 2324 reset_regdomains(false); 2325 cfg80211_regdomain = intersected_rd; 2326 2327 return 0; 2328 } 2329 2330 2331 /* 2332 * Use this call to set the current regulatory domain. Conflicts with 2333 * multiple drivers can be ironed out later. Caller must've already 2334 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex 2335 */ 2336 int set_regdom(const struct ieee80211_regdomain *rd) 2337 { 2338 int r; 2339 2340 assert_cfg80211_lock(); 2341 2342 mutex_lock(®_mutex); 2343 2344 /* Note that this doesn't update the wiphys, this is done below */ 2345 r = __set_regdom(rd); 2346 if (r) { 2347 if (r == -EALREADY) 2348 reg_set_request_processed(); 2349 2350 kfree(rd); 2351 mutex_unlock(®_mutex); 2352 return r; 2353 } 2354 2355 /* This would make this whole thing pointless */ 2356 if (!last_request->intersect) 2357 BUG_ON(rd != cfg80211_regdomain); 2358 2359 /* update all wiphys now with the new established regulatory domain */ 2360 update_all_wiphy_regulatory(last_request->initiator); 2361 2362 print_regdomain(cfg80211_regdomain); 2363 2364 nl80211_send_reg_change_event(last_request); 2365 2366 reg_set_request_processed(); 2367 2368 mutex_unlock(®_mutex); 2369 2370 return r; 2371 } 2372 2373 #ifdef CONFIG_HOTPLUG 2374 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2375 { 2376 if (last_request && !last_request->processed) { 2377 if (add_uevent_var(env, "COUNTRY=%c%c", 2378 last_request->alpha2[0], 2379 last_request->alpha2[1])) 2380 return -ENOMEM; 2381 } 2382 2383 return 0; 2384 } 2385 #else 2386 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2387 { 2388 return -ENODEV; 2389 } 2390 #endif /* CONFIG_HOTPLUG */ 2391 2392 void wiphy_regulatory_register(struct wiphy *wiphy) 2393 { 2394 assert_cfg80211_lock(); 2395 2396 mutex_lock(®_mutex); 2397 2398 if (!reg_dev_ignore_cell_hint(wiphy)) 2399 reg_num_devs_support_basehint++; 2400 2401 wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE); 2402 2403 mutex_unlock(®_mutex); 2404 } 2405 2406 /* Caller must hold cfg80211_mutex */ 2407 void wiphy_regulatory_deregister(struct wiphy *wiphy) 2408 { 2409 struct wiphy *request_wiphy = NULL; 2410 2411 assert_cfg80211_lock(); 2412 2413 mutex_lock(®_mutex); 2414 2415 if (!reg_dev_ignore_cell_hint(wiphy)) 2416 reg_num_devs_support_basehint--; 2417 2418 kfree(wiphy->regd); 2419 2420 if (last_request) 2421 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2422 2423 if (!request_wiphy || request_wiphy != wiphy) 2424 goto out; 2425 2426 last_request->wiphy_idx = WIPHY_IDX_STALE; 2427 last_request->country_ie_env = ENVIRON_ANY; 2428 out: 2429 mutex_unlock(®_mutex); 2430 } 2431 2432 static void reg_timeout_work(struct work_struct *work) 2433 { 2434 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, " 2435 "restoring regulatory settings\n"); 2436 restore_regulatory_settings(true); 2437 } 2438 2439 int __init regulatory_init(void) 2440 { 2441 int err = 0; 2442 2443 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2444 if (IS_ERR(reg_pdev)) 2445 return PTR_ERR(reg_pdev); 2446 2447 reg_pdev->dev.type = ®_device_type; 2448 2449 spin_lock_init(®_requests_lock); 2450 spin_lock_init(®_pending_beacons_lock); 2451 2452 reg_regdb_size_check(); 2453 2454 cfg80211_regdomain = cfg80211_world_regdom; 2455 2456 user_alpha2[0] = '9'; 2457 user_alpha2[1] = '7'; 2458 2459 /* We always try to get an update for the static regdomain */ 2460 err = regulatory_hint_core(cfg80211_regdomain->alpha2); 2461 if (err) { 2462 if (err == -ENOMEM) 2463 return err; 2464 /* 2465 * N.B. kobject_uevent_env() can fail mainly for when we're out 2466 * memory which is handled and propagated appropriately above 2467 * but it can also fail during a netlink_broadcast() or during 2468 * early boot for call_usermodehelper(). For now treat these 2469 * errors as non-fatal. 2470 */ 2471 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 2472 #ifdef CONFIG_CFG80211_REG_DEBUG 2473 /* We want to find out exactly why when debugging */ 2474 WARN_ON(err); 2475 #endif 2476 } 2477 2478 /* 2479 * Finally, if the user set the module parameter treat it 2480 * as a user hint. 2481 */ 2482 if (!is_world_regdom(ieee80211_regdom)) 2483 regulatory_hint_user(ieee80211_regdom, 2484 NL80211_USER_REG_HINT_USER); 2485 2486 return 0; 2487 } 2488 2489 void /* __init_or_exit */ regulatory_exit(void) 2490 { 2491 struct regulatory_request *reg_request, *tmp; 2492 struct reg_beacon *reg_beacon, *btmp; 2493 2494 cancel_work_sync(®_work); 2495 cancel_delayed_work_sync(®_timeout); 2496 2497 mutex_lock(&cfg80211_mutex); 2498 mutex_lock(®_mutex); 2499 2500 reset_regdomains(true); 2501 2502 dev_set_uevent_suppress(®_pdev->dev, true); 2503 2504 platform_device_unregister(reg_pdev); 2505 2506 spin_lock_bh(®_pending_beacons_lock); 2507 if (!list_empty(®_pending_beacons)) { 2508 list_for_each_entry_safe(reg_beacon, btmp, 2509 ®_pending_beacons, list) { 2510 list_del(®_beacon->list); 2511 kfree(reg_beacon); 2512 } 2513 } 2514 spin_unlock_bh(®_pending_beacons_lock); 2515 2516 if (!list_empty(®_beacon_list)) { 2517 list_for_each_entry_safe(reg_beacon, btmp, 2518 ®_beacon_list, list) { 2519 list_del(®_beacon->list); 2520 kfree(reg_beacon); 2521 } 2522 } 2523 2524 spin_lock(®_requests_lock); 2525 if (!list_empty(®_requests_list)) { 2526 list_for_each_entry_safe(reg_request, tmp, 2527 ®_requests_list, list) { 2528 list_del(®_request->list); 2529 kfree(reg_request); 2530 } 2531 } 2532 spin_unlock(®_requests_lock); 2533 2534 mutex_unlock(®_mutex); 2535 mutex_unlock(&cfg80211_mutex); 2536 } 2537