1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 21 /** 22 * DOC: Wireless regulatory infrastructure 23 * 24 * The usual implementation is for a driver to read a device EEPROM to 25 * determine which regulatory domain it should be operating under, then 26 * looking up the allowable channels in a driver-local table and finally 27 * registering those channels in the wiphy structure. 28 * 29 * Another set of compliance enforcement is for drivers to use their 30 * own compliance limits which can be stored on the EEPROM. The host 31 * driver or firmware may ensure these are used. 32 * 33 * In addition to all this we provide an extra layer of regulatory 34 * conformance. For drivers which do not have any regulatory 35 * information CRDA provides the complete regulatory solution. 36 * For others it provides a community effort on further restrictions 37 * to enhance compliance. 38 * 39 * Note: When number of rules --> infinity we will not be able to 40 * index on alpha2 any more, instead we'll probably have to 41 * rely on some SHA1 checksum of the regdomain for example. 42 * 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/kernel.h> 48 #include <linux/export.h> 49 #include <linux/slab.h> 50 #include <linux/list.h> 51 #include <linux/ctype.h> 52 #include <linux/nl80211.h> 53 #include <linux/platform_device.h> 54 #include <linux/moduleparam.h> 55 #include <net/cfg80211.h> 56 #include "core.h" 57 #include "reg.h" 58 #include "regdb.h" 59 #include "nl80211.h" 60 61 #ifdef CONFIG_CFG80211_REG_DEBUG 62 #define REG_DBG_PRINT(format, args...) \ 63 printk(KERN_DEBUG pr_fmt(format), ##args) 64 #else 65 #define REG_DBG_PRINT(args...) 66 #endif 67 68 enum reg_request_treatment { 69 REG_REQ_OK, 70 REG_REQ_IGNORE, 71 REG_REQ_INTERSECT, 72 REG_REQ_ALREADY_SET, 73 }; 74 75 static struct regulatory_request core_request_world = { 76 .initiator = NL80211_REGDOM_SET_BY_CORE, 77 .alpha2[0] = '0', 78 .alpha2[1] = '0', 79 .intersect = false, 80 .processed = true, 81 .country_ie_env = ENVIRON_ANY, 82 }; 83 84 /* 85 * Receipt of information from last regulatory request, 86 * protected by RTNL (and can be accessed with RCU protection) 87 */ 88 static struct regulatory_request __rcu *last_request = 89 (void __rcu *)&core_request_world; 90 91 /* To trigger userspace events */ 92 static struct platform_device *reg_pdev; 93 94 static struct device_type reg_device_type = { 95 .uevent = reg_device_uevent, 96 }; 97 98 /* 99 * Central wireless core regulatory domains, we only need two, 100 * the current one and a world regulatory domain in case we have no 101 * information to give us an alpha2. 102 * (protected by RTNL, can be read under RCU) 103 */ 104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 105 106 /* 107 * Number of devices that registered to the core 108 * that support cellular base station regulatory hints 109 * (protected by RTNL) 110 */ 111 static int reg_num_devs_support_basehint; 112 113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 114 { 115 return rtnl_dereference(cfg80211_regdomain); 116 } 117 118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 119 { 120 return rtnl_dereference(wiphy->regd); 121 } 122 123 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 124 { 125 switch (dfs_region) { 126 case NL80211_DFS_UNSET: 127 return "unset"; 128 case NL80211_DFS_FCC: 129 return "FCC"; 130 case NL80211_DFS_ETSI: 131 return "ETSI"; 132 case NL80211_DFS_JP: 133 return "JP"; 134 } 135 return "Unknown"; 136 } 137 138 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 139 { 140 if (!r) 141 return; 142 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 143 } 144 145 static struct regulatory_request *get_last_request(void) 146 { 147 return rcu_dereference_rtnl(last_request); 148 } 149 150 /* Used to queue up regulatory hints */ 151 static LIST_HEAD(reg_requests_list); 152 static spinlock_t reg_requests_lock; 153 154 /* Used to queue up beacon hints for review */ 155 static LIST_HEAD(reg_pending_beacons); 156 static spinlock_t reg_pending_beacons_lock; 157 158 /* Used to keep track of processed beacon hints */ 159 static LIST_HEAD(reg_beacon_list); 160 161 struct reg_beacon { 162 struct list_head list; 163 struct ieee80211_channel chan; 164 }; 165 166 static void reg_todo(struct work_struct *work); 167 static DECLARE_WORK(reg_work, reg_todo); 168 169 static void reg_timeout_work(struct work_struct *work); 170 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); 171 172 /* We keep a static world regulatory domain in case of the absence of CRDA */ 173 static const struct ieee80211_regdomain world_regdom = { 174 .n_reg_rules = 6, 175 .alpha2 = "00", 176 .reg_rules = { 177 /* IEEE 802.11b/g, channels 1..11 */ 178 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 179 /* IEEE 802.11b/g, channels 12..13. */ 180 REG_RULE(2467-10, 2472+10, 40, 6, 20, 181 NL80211_RRF_NO_IR), 182 /* IEEE 802.11 channel 14 - Only JP enables 183 * this and for 802.11b only */ 184 REG_RULE(2484-10, 2484+10, 20, 6, 20, 185 NL80211_RRF_NO_IR | 186 NL80211_RRF_NO_OFDM), 187 /* IEEE 802.11a, channel 36..48 */ 188 REG_RULE(5180-10, 5240+10, 160, 6, 20, 189 NL80211_RRF_NO_IR), 190 191 /* IEEE 802.11a, channel 52..64 - DFS required */ 192 REG_RULE(5260-10, 5320+10, 160, 6, 20, 193 NL80211_RRF_NO_IR | 194 NL80211_RRF_DFS), 195 196 /* IEEE 802.11a, channel 100..144 - DFS required */ 197 REG_RULE(5500-10, 5720+10, 160, 6, 20, 198 NL80211_RRF_NO_IR | 199 NL80211_RRF_DFS), 200 201 /* IEEE 802.11a, channel 149..165 */ 202 REG_RULE(5745-10, 5825+10, 80, 6, 20, 203 NL80211_RRF_NO_IR), 204 205 /* IEEE 802.11ad (60gHz), channels 1..3 */ 206 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 207 } 208 }; 209 210 /* protected by RTNL */ 211 static const struct ieee80211_regdomain *cfg80211_world_regdom = 212 &world_regdom; 213 214 static char *ieee80211_regdom = "00"; 215 static char user_alpha2[2]; 216 217 module_param(ieee80211_regdom, charp, 0444); 218 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 219 220 static void reg_kfree_last_request(void) 221 { 222 struct regulatory_request *lr; 223 224 lr = get_last_request(); 225 226 if (lr != &core_request_world && lr) 227 kfree_rcu(lr, rcu_head); 228 } 229 230 static void reg_update_last_request(struct regulatory_request *request) 231 { 232 reg_kfree_last_request(); 233 rcu_assign_pointer(last_request, request); 234 } 235 236 static void reset_regdomains(bool full_reset, 237 const struct ieee80211_regdomain *new_regdom) 238 { 239 const struct ieee80211_regdomain *r; 240 241 ASSERT_RTNL(); 242 243 r = get_cfg80211_regdom(); 244 245 /* avoid freeing static information or freeing something twice */ 246 if (r == cfg80211_world_regdom) 247 r = NULL; 248 if (cfg80211_world_regdom == &world_regdom) 249 cfg80211_world_regdom = NULL; 250 if (r == &world_regdom) 251 r = NULL; 252 253 rcu_free_regdom(r); 254 rcu_free_regdom(cfg80211_world_regdom); 255 256 cfg80211_world_regdom = &world_regdom; 257 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 258 259 if (!full_reset) 260 return; 261 262 reg_update_last_request(&core_request_world); 263 } 264 265 /* 266 * Dynamic world regulatory domain requested by the wireless 267 * core upon initialization 268 */ 269 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 270 { 271 struct regulatory_request *lr; 272 273 lr = get_last_request(); 274 275 WARN_ON(!lr); 276 277 reset_regdomains(false, rd); 278 279 cfg80211_world_regdom = rd; 280 } 281 282 bool is_world_regdom(const char *alpha2) 283 { 284 if (!alpha2) 285 return false; 286 return alpha2[0] == '0' && alpha2[1] == '0'; 287 } 288 289 static bool is_alpha2_set(const char *alpha2) 290 { 291 if (!alpha2) 292 return false; 293 return alpha2[0] && alpha2[1]; 294 } 295 296 static bool is_unknown_alpha2(const char *alpha2) 297 { 298 if (!alpha2) 299 return false; 300 /* 301 * Special case where regulatory domain was built by driver 302 * but a specific alpha2 cannot be determined 303 */ 304 return alpha2[0] == '9' && alpha2[1] == '9'; 305 } 306 307 static bool is_intersected_alpha2(const char *alpha2) 308 { 309 if (!alpha2) 310 return false; 311 /* 312 * Special case where regulatory domain is the 313 * result of an intersection between two regulatory domain 314 * structures 315 */ 316 return alpha2[0] == '9' && alpha2[1] == '8'; 317 } 318 319 static bool is_an_alpha2(const char *alpha2) 320 { 321 if (!alpha2) 322 return false; 323 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 324 } 325 326 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 327 { 328 if (!alpha2_x || !alpha2_y) 329 return false; 330 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 331 } 332 333 static bool regdom_changes(const char *alpha2) 334 { 335 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 336 337 if (!r) 338 return true; 339 return !alpha2_equal(r->alpha2, alpha2); 340 } 341 342 /* 343 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 344 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 345 * has ever been issued. 346 */ 347 static bool is_user_regdom_saved(void) 348 { 349 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 350 return false; 351 352 /* This would indicate a mistake on the design */ 353 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 354 "Unexpected user alpha2: %c%c\n", 355 user_alpha2[0], user_alpha2[1])) 356 return false; 357 358 return true; 359 } 360 361 static const struct ieee80211_regdomain * 362 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 363 { 364 struct ieee80211_regdomain *regd; 365 int size_of_regd; 366 unsigned int i; 367 368 size_of_regd = 369 sizeof(struct ieee80211_regdomain) + 370 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 371 372 regd = kzalloc(size_of_regd, GFP_KERNEL); 373 if (!regd) 374 return ERR_PTR(-ENOMEM); 375 376 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 377 378 for (i = 0; i < src_regd->n_reg_rules; i++) 379 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 380 sizeof(struct ieee80211_reg_rule)); 381 382 return regd; 383 } 384 385 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 386 struct reg_regdb_search_request { 387 char alpha2[2]; 388 struct list_head list; 389 }; 390 391 static LIST_HEAD(reg_regdb_search_list); 392 static DEFINE_MUTEX(reg_regdb_search_mutex); 393 394 static void reg_regdb_search(struct work_struct *work) 395 { 396 struct reg_regdb_search_request *request; 397 const struct ieee80211_regdomain *curdom, *regdom = NULL; 398 int i; 399 400 rtnl_lock(); 401 402 mutex_lock(®_regdb_search_mutex); 403 while (!list_empty(®_regdb_search_list)) { 404 request = list_first_entry(®_regdb_search_list, 405 struct reg_regdb_search_request, 406 list); 407 list_del(&request->list); 408 409 for (i = 0; i < reg_regdb_size; i++) { 410 curdom = reg_regdb[i]; 411 412 if (alpha2_equal(request->alpha2, curdom->alpha2)) { 413 regdom = reg_copy_regd(curdom); 414 break; 415 } 416 } 417 418 kfree(request); 419 } 420 mutex_unlock(®_regdb_search_mutex); 421 422 if (!IS_ERR_OR_NULL(regdom)) 423 set_regdom(regdom); 424 425 rtnl_unlock(); 426 } 427 428 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 429 430 static void reg_regdb_query(const char *alpha2) 431 { 432 struct reg_regdb_search_request *request; 433 434 if (!alpha2) 435 return; 436 437 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 438 if (!request) 439 return; 440 441 memcpy(request->alpha2, alpha2, 2); 442 443 mutex_lock(®_regdb_search_mutex); 444 list_add_tail(&request->list, ®_regdb_search_list); 445 mutex_unlock(®_regdb_search_mutex); 446 447 schedule_work(®_regdb_work); 448 } 449 450 /* Feel free to add any other sanity checks here */ 451 static void reg_regdb_size_check(void) 452 { 453 /* We should ideally BUILD_BUG_ON() but then random builds would fail */ 454 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); 455 } 456 #else 457 static inline void reg_regdb_size_check(void) {} 458 static inline void reg_regdb_query(const char *alpha2) {} 459 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 460 461 /* 462 * This lets us keep regulatory code which is updated on a regulatory 463 * basis in userspace. Country information is filled in by 464 * reg_device_uevent 465 */ 466 static int call_crda(const char *alpha2) 467 { 468 if (!is_world_regdom((char *) alpha2)) 469 pr_info("Calling CRDA for country: %c%c\n", 470 alpha2[0], alpha2[1]); 471 else 472 pr_info("Calling CRDA to update world regulatory domain\n"); 473 474 /* query internal regulatory database (if it exists) */ 475 reg_regdb_query(alpha2); 476 477 return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE); 478 } 479 480 static enum reg_request_treatment 481 reg_call_crda(struct regulatory_request *request) 482 { 483 if (call_crda(request->alpha2)) 484 return REG_REQ_IGNORE; 485 return REG_REQ_OK; 486 } 487 488 bool reg_is_valid_request(const char *alpha2) 489 { 490 struct regulatory_request *lr = get_last_request(); 491 492 if (!lr || lr->processed) 493 return false; 494 495 return alpha2_equal(lr->alpha2, alpha2); 496 } 497 498 /* Sanity check on a regulatory rule */ 499 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 500 { 501 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 502 u32 freq_diff; 503 504 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 505 return false; 506 507 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 508 return false; 509 510 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 511 512 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 513 freq_range->max_bandwidth_khz > freq_diff) 514 return false; 515 516 return true; 517 } 518 519 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 520 { 521 const struct ieee80211_reg_rule *reg_rule = NULL; 522 unsigned int i; 523 524 if (!rd->n_reg_rules) 525 return false; 526 527 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 528 return false; 529 530 for (i = 0; i < rd->n_reg_rules; i++) { 531 reg_rule = &rd->reg_rules[i]; 532 if (!is_valid_reg_rule(reg_rule)) 533 return false; 534 } 535 536 return true; 537 } 538 539 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 540 u32 center_freq_khz, u32 bw_khz) 541 { 542 u32 start_freq_khz, end_freq_khz; 543 544 start_freq_khz = center_freq_khz - (bw_khz/2); 545 end_freq_khz = center_freq_khz + (bw_khz/2); 546 547 if (start_freq_khz >= freq_range->start_freq_khz && 548 end_freq_khz <= freq_range->end_freq_khz) 549 return true; 550 551 return false; 552 } 553 554 /** 555 * freq_in_rule_band - tells us if a frequency is in a frequency band 556 * @freq_range: frequency rule we want to query 557 * @freq_khz: frequency we are inquiring about 558 * 559 * This lets us know if a specific frequency rule is or is not relevant to 560 * a specific frequency's band. Bands are device specific and artificial 561 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 562 * however it is safe for now to assume that a frequency rule should not be 563 * part of a frequency's band if the start freq or end freq are off by more 564 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 565 * 60 GHz band. 566 * This resolution can be lowered and should be considered as we add 567 * regulatory rule support for other "bands". 568 **/ 569 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 570 u32 freq_khz) 571 { 572 #define ONE_GHZ_IN_KHZ 1000000 573 /* 574 * From 802.11ad: directional multi-gigabit (DMG): 575 * Pertaining to operation in a frequency band containing a channel 576 * with the Channel starting frequency above 45 GHz. 577 */ 578 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 579 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 580 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 581 return true; 582 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 583 return true; 584 return false; 585 #undef ONE_GHZ_IN_KHZ 586 } 587 588 /* 589 * Later on we can perhaps use the more restrictive DFS 590 * region but we don't have information for that yet so 591 * for now simply disallow conflicts. 592 */ 593 static enum nl80211_dfs_regions 594 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 595 const enum nl80211_dfs_regions dfs_region2) 596 { 597 if (dfs_region1 != dfs_region2) 598 return NL80211_DFS_UNSET; 599 return dfs_region1; 600 } 601 602 /* 603 * Helper for regdom_intersect(), this does the real 604 * mathematical intersection fun 605 */ 606 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1, 607 const struct ieee80211_reg_rule *rule2, 608 struct ieee80211_reg_rule *intersected_rule) 609 { 610 const struct ieee80211_freq_range *freq_range1, *freq_range2; 611 struct ieee80211_freq_range *freq_range; 612 const struct ieee80211_power_rule *power_rule1, *power_rule2; 613 struct ieee80211_power_rule *power_rule; 614 u32 freq_diff; 615 616 freq_range1 = &rule1->freq_range; 617 freq_range2 = &rule2->freq_range; 618 freq_range = &intersected_rule->freq_range; 619 620 power_rule1 = &rule1->power_rule; 621 power_rule2 = &rule2->power_rule; 622 power_rule = &intersected_rule->power_rule; 623 624 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 625 freq_range2->start_freq_khz); 626 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 627 freq_range2->end_freq_khz); 628 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, 629 freq_range2->max_bandwidth_khz); 630 631 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 632 if (freq_range->max_bandwidth_khz > freq_diff) 633 freq_range->max_bandwidth_khz = freq_diff; 634 635 power_rule->max_eirp = min(power_rule1->max_eirp, 636 power_rule2->max_eirp); 637 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 638 power_rule2->max_antenna_gain); 639 640 intersected_rule->flags = rule1->flags | rule2->flags; 641 642 if (!is_valid_reg_rule(intersected_rule)) 643 return -EINVAL; 644 645 return 0; 646 } 647 648 /** 649 * regdom_intersect - do the intersection between two regulatory domains 650 * @rd1: first regulatory domain 651 * @rd2: second regulatory domain 652 * 653 * Use this function to get the intersection between two regulatory domains. 654 * Once completed we will mark the alpha2 for the rd as intersected, "98", 655 * as no one single alpha2 can represent this regulatory domain. 656 * 657 * Returns a pointer to the regulatory domain structure which will hold the 658 * resulting intersection of rules between rd1 and rd2. We will 659 * kzalloc() this structure for you. 660 */ 661 static struct ieee80211_regdomain * 662 regdom_intersect(const struct ieee80211_regdomain *rd1, 663 const struct ieee80211_regdomain *rd2) 664 { 665 int r, size_of_regd; 666 unsigned int x, y; 667 unsigned int num_rules = 0, rule_idx = 0; 668 const struct ieee80211_reg_rule *rule1, *rule2; 669 struct ieee80211_reg_rule *intersected_rule; 670 struct ieee80211_regdomain *rd; 671 /* This is just a dummy holder to help us count */ 672 struct ieee80211_reg_rule dummy_rule; 673 674 if (!rd1 || !rd2) 675 return NULL; 676 677 /* 678 * First we get a count of the rules we'll need, then we actually 679 * build them. This is to so we can malloc() and free() a 680 * regdomain once. The reason we use reg_rules_intersect() here 681 * is it will return -EINVAL if the rule computed makes no sense. 682 * All rules that do check out OK are valid. 683 */ 684 685 for (x = 0; x < rd1->n_reg_rules; x++) { 686 rule1 = &rd1->reg_rules[x]; 687 for (y = 0; y < rd2->n_reg_rules; y++) { 688 rule2 = &rd2->reg_rules[y]; 689 if (!reg_rules_intersect(rule1, rule2, &dummy_rule)) 690 num_rules++; 691 } 692 } 693 694 if (!num_rules) 695 return NULL; 696 697 size_of_regd = sizeof(struct ieee80211_regdomain) + 698 num_rules * sizeof(struct ieee80211_reg_rule); 699 700 rd = kzalloc(size_of_regd, GFP_KERNEL); 701 if (!rd) 702 return NULL; 703 704 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) { 705 rule1 = &rd1->reg_rules[x]; 706 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) { 707 rule2 = &rd2->reg_rules[y]; 708 /* 709 * This time around instead of using the stack lets 710 * write to the target rule directly saving ourselves 711 * a memcpy() 712 */ 713 intersected_rule = &rd->reg_rules[rule_idx]; 714 r = reg_rules_intersect(rule1, rule2, intersected_rule); 715 /* 716 * No need to memset here the intersected rule here as 717 * we're not using the stack anymore 718 */ 719 if (r) 720 continue; 721 rule_idx++; 722 } 723 } 724 725 if (rule_idx != num_rules) { 726 kfree(rd); 727 return NULL; 728 } 729 730 rd->n_reg_rules = num_rules; 731 rd->alpha2[0] = '9'; 732 rd->alpha2[1] = '8'; 733 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 734 rd2->dfs_region); 735 736 return rd; 737 } 738 739 /* 740 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 741 * want to just have the channel structure use these 742 */ 743 static u32 map_regdom_flags(u32 rd_flags) 744 { 745 u32 channel_flags = 0; 746 if (rd_flags & NL80211_RRF_NO_IR_ALL) 747 channel_flags |= IEEE80211_CHAN_NO_IR; 748 if (rd_flags & NL80211_RRF_DFS) 749 channel_flags |= IEEE80211_CHAN_RADAR; 750 if (rd_flags & NL80211_RRF_NO_OFDM) 751 channel_flags |= IEEE80211_CHAN_NO_OFDM; 752 return channel_flags; 753 } 754 755 static const struct ieee80211_reg_rule * 756 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq, 757 const struct ieee80211_regdomain *regd) 758 { 759 int i; 760 bool band_rule_found = false; 761 bool bw_fits = false; 762 763 if (!regd) 764 return ERR_PTR(-EINVAL); 765 766 for (i = 0; i < regd->n_reg_rules; i++) { 767 const struct ieee80211_reg_rule *rr; 768 const struct ieee80211_freq_range *fr = NULL; 769 770 rr = ®d->reg_rules[i]; 771 fr = &rr->freq_range; 772 773 /* 774 * We only need to know if one frequency rule was 775 * was in center_freq's band, that's enough, so lets 776 * not overwrite it once found 777 */ 778 if (!band_rule_found) 779 band_rule_found = freq_in_rule_band(fr, center_freq); 780 781 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20)); 782 783 if (band_rule_found && bw_fits) 784 return rr; 785 } 786 787 if (!band_rule_found) 788 return ERR_PTR(-ERANGE); 789 790 return ERR_PTR(-EINVAL); 791 } 792 793 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 794 u32 center_freq) 795 { 796 const struct ieee80211_regdomain *regd; 797 struct regulatory_request *lr = get_last_request(); 798 799 /* 800 * Follow the driver's regulatory domain, if present, unless a country 801 * IE has been processed or a user wants to help complaince further 802 */ 803 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 804 lr->initiator != NL80211_REGDOM_SET_BY_USER && 805 wiphy->regd) 806 regd = get_wiphy_regdom(wiphy); 807 else 808 regd = get_cfg80211_regdom(); 809 810 return freq_reg_info_regd(wiphy, center_freq, regd); 811 } 812 EXPORT_SYMBOL(freq_reg_info); 813 814 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 815 { 816 switch (initiator) { 817 case NL80211_REGDOM_SET_BY_CORE: 818 return "core"; 819 case NL80211_REGDOM_SET_BY_USER: 820 return "user"; 821 case NL80211_REGDOM_SET_BY_DRIVER: 822 return "driver"; 823 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 824 return "country IE"; 825 default: 826 WARN_ON(1); 827 return "bug"; 828 } 829 } 830 EXPORT_SYMBOL(reg_initiator_name); 831 832 #ifdef CONFIG_CFG80211_REG_DEBUG 833 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 834 const struct ieee80211_reg_rule *reg_rule) 835 { 836 const struct ieee80211_power_rule *power_rule; 837 const struct ieee80211_freq_range *freq_range; 838 char max_antenna_gain[32]; 839 840 power_rule = ®_rule->power_rule; 841 freq_range = ®_rule->freq_range; 842 843 if (!power_rule->max_antenna_gain) 844 snprintf(max_antenna_gain, 32, "N/A"); 845 else 846 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain); 847 848 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n", 849 chan->center_freq); 850 851 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n", 852 freq_range->start_freq_khz, freq_range->end_freq_khz, 853 freq_range->max_bandwidth_khz, max_antenna_gain, 854 power_rule->max_eirp); 855 } 856 #else 857 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 858 const struct ieee80211_reg_rule *reg_rule) 859 { 860 return; 861 } 862 #endif 863 864 /* 865 * Note that right now we assume the desired channel bandwidth 866 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 867 * per channel, the primary and the extension channel). 868 */ 869 static void handle_channel(struct wiphy *wiphy, 870 enum nl80211_reg_initiator initiator, 871 struct ieee80211_channel *chan) 872 { 873 u32 flags, bw_flags = 0; 874 const struct ieee80211_reg_rule *reg_rule = NULL; 875 const struct ieee80211_power_rule *power_rule = NULL; 876 const struct ieee80211_freq_range *freq_range = NULL; 877 struct wiphy *request_wiphy = NULL; 878 struct regulatory_request *lr = get_last_request(); 879 880 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 881 882 flags = chan->orig_flags; 883 884 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 885 if (IS_ERR(reg_rule)) { 886 /* 887 * We will disable all channels that do not match our 888 * received regulatory rule unless the hint is coming 889 * from a Country IE and the Country IE had no information 890 * about a band. The IEEE 802.11 spec allows for an AP 891 * to send only a subset of the regulatory rules allowed, 892 * so an AP in the US that only supports 2.4 GHz may only send 893 * a country IE with information for the 2.4 GHz band 894 * while 5 GHz is still supported. 895 */ 896 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 897 PTR_ERR(reg_rule) == -ERANGE) 898 return; 899 900 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 901 request_wiphy && request_wiphy == wiphy && 902 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 903 REG_DBG_PRINT("Disabling freq %d MHz for good\n", 904 chan->center_freq); 905 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 906 chan->flags = chan->orig_flags; 907 } else { 908 REG_DBG_PRINT("Disabling freq %d MHz\n", 909 chan->center_freq); 910 chan->flags |= IEEE80211_CHAN_DISABLED; 911 } 912 return; 913 } 914 915 chan_reg_rule_print_dbg(chan, reg_rule); 916 917 power_rule = ®_rule->power_rule; 918 freq_range = ®_rule->freq_range; 919 920 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 921 bw_flags = IEEE80211_CHAN_NO_HT40; 922 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80)) 923 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 924 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160)) 925 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 926 927 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 928 request_wiphy && request_wiphy == wiphy && 929 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 930 /* 931 * This guarantees the driver's requested regulatory domain 932 * will always be used as a base for further regulatory 933 * settings 934 */ 935 chan->flags = chan->orig_flags = 936 map_regdom_flags(reg_rule->flags) | bw_flags; 937 chan->max_antenna_gain = chan->orig_mag = 938 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 939 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 940 (int) MBM_TO_DBM(power_rule->max_eirp); 941 return; 942 } 943 944 chan->dfs_state = NL80211_DFS_USABLE; 945 chan->dfs_state_entered = jiffies; 946 947 chan->beacon_found = false; 948 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 949 chan->max_antenna_gain = 950 min_t(int, chan->orig_mag, 951 MBI_TO_DBI(power_rule->max_antenna_gain)); 952 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 953 if (chan->orig_mpwr) { 954 /* 955 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 956 * will always follow the passed country IE power settings. 957 */ 958 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 959 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 960 chan->max_power = chan->max_reg_power; 961 else 962 chan->max_power = min(chan->orig_mpwr, 963 chan->max_reg_power); 964 } else 965 chan->max_power = chan->max_reg_power; 966 } 967 968 static void handle_band(struct wiphy *wiphy, 969 enum nl80211_reg_initiator initiator, 970 struct ieee80211_supported_band *sband) 971 { 972 unsigned int i; 973 974 if (!sband) 975 return; 976 977 for (i = 0; i < sband->n_channels; i++) 978 handle_channel(wiphy, initiator, &sband->channels[i]); 979 } 980 981 static bool reg_request_cell_base(struct regulatory_request *request) 982 { 983 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 984 return false; 985 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 986 } 987 988 bool reg_last_request_cell_base(void) 989 { 990 return reg_request_cell_base(get_last_request()); 991 } 992 993 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS 994 /* Core specific check */ 995 static enum reg_request_treatment 996 reg_ignore_cell_hint(struct regulatory_request *pending_request) 997 { 998 struct regulatory_request *lr = get_last_request(); 999 1000 if (!reg_num_devs_support_basehint) 1001 return REG_REQ_IGNORE; 1002 1003 if (reg_request_cell_base(lr) && 1004 !regdom_changes(pending_request->alpha2)) 1005 return REG_REQ_ALREADY_SET; 1006 1007 return REG_REQ_OK; 1008 } 1009 1010 /* Device specific check */ 1011 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1012 { 1013 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1014 } 1015 #else 1016 static int reg_ignore_cell_hint(struct regulatory_request *pending_request) 1017 { 1018 return REG_REQ_IGNORE; 1019 } 1020 1021 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1022 { 1023 return true; 1024 } 1025 #endif 1026 1027 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1028 { 1029 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1030 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1031 return true; 1032 return false; 1033 } 1034 1035 static bool ignore_reg_update(struct wiphy *wiphy, 1036 enum nl80211_reg_initiator initiator) 1037 { 1038 struct regulatory_request *lr = get_last_request(); 1039 1040 if (!lr) { 1041 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1042 "since last_request is not set\n", 1043 reg_initiator_name(initiator)); 1044 return true; 1045 } 1046 1047 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1048 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1049 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1050 "since the driver uses its own custom " 1051 "regulatory domain\n", 1052 reg_initiator_name(initiator)); 1053 return true; 1054 } 1055 1056 /* 1057 * wiphy->regd will be set once the device has its own 1058 * desired regulatory domain set 1059 */ 1060 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1061 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1062 !is_world_regdom(lr->alpha2)) { 1063 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1064 "since the driver requires its own regulatory " 1065 "domain to be set first\n", 1066 reg_initiator_name(initiator)); 1067 return true; 1068 } 1069 1070 if (reg_request_cell_base(lr)) 1071 return reg_dev_ignore_cell_hint(wiphy); 1072 1073 return false; 1074 } 1075 1076 static bool reg_is_world_roaming(struct wiphy *wiphy) 1077 { 1078 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1079 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1080 struct regulatory_request *lr = get_last_request(); 1081 1082 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1083 return true; 1084 1085 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1086 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1087 return true; 1088 1089 return false; 1090 } 1091 1092 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1093 struct reg_beacon *reg_beacon) 1094 { 1095 struct ieee80211_supported_band *sband; 1096 struct ieee80211_channel *chan; 1097 bool channel_changed = false; 1098 struct ieee80211_channel chan_before; 1099 1100 sband = wiphy->bands[reg_beacon->chan.band]; 1101 chan = &sband->channels[chan_idx]; 1102 1103 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1104 return; 1105 1106 if (chan->beacon_found) 1107 return; 1108 1109 chan->beacon_found = true; 1110 1111 if (!reg_is_world_roaming(wiphy)) 1112 return; 1113 1114 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1115 return; 1116 1117 chan_before.center_freq = chan->center_freq; 1118 chan_before.flags = chan->flags; 1119 1120 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1121 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1122 channel_changed = true; 1123 } 1124 1125 if (channel_changed) 1126 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1127 } 1128 1129 /* 1130 * Called when a scan on a wiphy finds a beacon on 1131 * new channel 1132 */ 1133 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1134 struct reg_beacon *reg_beacon) 1135 { 1136 unsigned int i; 1137 struct ieee80211_supported_band *sband; 1138 1139 if (!wiphy->bands[reg_beacon->chan.band]) 1140 return; 1141 1142 sband = wiphy->bands[reg_beacon->chan.band]; 1143 1144 for (i = 0; i < sband->n_channels; i++) 1145 handle_reg_beacon(wiphy, i, reg_beacon); 1146 } 1147 1148 /* 1149 * Called upon reg changes or a new wiphy is added 1150 */ 1151 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1152 { 1153 unsigned int i; 1154 struct ieee80211_supported_band *sband; 1155 struct reg_beacon *reg_beacon; 1156 1157 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1158 if (!wiphy->bands[reg_beacon->chan.band]) 1159 continue; 1160 sband = wiphy->bands[reg_beacon->chan.band]; 1161 for (i = 0; i < sband->n_channels; i++) 1162 handle_reg_beacon(wiphy, i, reg_beacon); 1163 } 1164 } 1165 1166 /* Reap the advantages of previously found beacons */ 1167 static void reg_process_beacons(struct wiphy *wiphy) 1168 { 1169 /* 1170 * Means we are just firing up cfg80211, so no beacons would 1171 * have been processed yet. 1172 */ 1173 if (!last_request) 1174 return; 1175 wiphy_update_beacon_reg(wiphy); 1176 } 1177 1178 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1179 { 1180 if (!chan) 1181 return false; 1182 if (chan->flags & IEEE80211_CHAN_DISABLED) 1183 return false; 1184 /* This would happen when regulatory rules disallow HT40 completely */ 1185 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1186 return false; 1187 return true; 1188 } 1189 1190 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1191 struct ieee80211_channel *channel) 1192 { 1193 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1194 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1195 unsigned int i; 1196 1197 if (!is_ht40_allowed(channel)) { 1198 channel->flags |= IEEE80211_CHAN_NO_HT40; 1199 return; 1200 } 1201 1202 /* 1203 * We need to ensure the extension channels exist to 1204 * be able to use HT40- or HT40+, this finds them (or not) 1205 */ 1206 for (i = 0; i < sband->n_channels; i++) { 1207 struct ieee80211_channel *c = &sband->channels[i]; 1208 1209 if (c->center_freq == (channel->center_freq - 20)) 1210 channel_before = c; 1211 if (c->center_freq == (channel->center_freq + 20)) 1212 channel_after = c; 1213 } 1214 1215 /* 1216 * Please note that this assumes target bandwidth is 20 MHz, 1217 * if that ever changes we also need to change the below logic 1218 * to include that as well. 1219 */ 1220 if (!is_ht40_allowed(channel_before)) 1221 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1222 else 1223 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1224 1225 if (!is_ht40_allowed(channel_after)) 1226 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1227 else 1228 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1229 } 1230 1231 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1232 struct ieee80211_supported_band *sband) 1233 { 1234 unsigned int i; 1235 1236 if (!sband) 1237 return; 1238 1239 for (i = 0; i < sband->n_channels; i++) 1240 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 1241 } 1242 1243 static void reg_process_ht_flags(struct wiphy *wiphy) 1244 { 1245 enum ieee80211_band band; 1246 1247 if (!wiphy) 1248 return; 1249 1250 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1251 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 1252 } 1253 1254 static void reg_call_notifier(struct wiphy *wiphy, 1255 struct regulatory_request *request) 1256 { 1257 if (wiphy->reg_notifier) 1258 wiphy->reg_notifier(wiphy, request); 1259 } 1260 1261 static void wiphy_update_regulatory(struct wiphy *wiphy, 1262 enum nl80211_reg_initiator initiator) 1263 { 1264 enum ieee80211_band band; 1265 struct regulatory_request *lr = get_last_request(); 1266 1267 if (ignore_reg_update(wiphy, initiator)) { 1268 /* 1269 * Regulatory updates set by CORE are ignored for custom 1270 * regulatory cards. Let us notify the changes to the driver, 1271 * as some drivers used this to restore its orig_* reg domain. 1272 */ 1273 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1274 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1275 reg_call_notifier(wiphy, lr); 1276 return; 1277 } 1278 1279 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 1280 1281 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1282 handle_band(wiphy, initiator, wiphy->bands[band]); 1283 1284 reg_process_beacons(wiphy); 1285 reg_process_ht_flags(wiphy); 1286 reg_call_notifier(wiphy, lr); 1287 } 1288 1289 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1290 { 1291 struct cfg80211_registered_device *rdev; 1292 struct wiphy *wiphy; 1293 1294 ASSERT_RTNL(); 1295 1296 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1297 wiphy = &rdev->wiphy; 1298 wiphy_update_regulatory(wiphy, initiator); 1299 } 1300 } 1301 1302 static void handle_channel_custom(struct wiphy *wiphy, 1303 struct ieee80211_channel *chan, 1304 const struct ieee80211_regdomain *regd) 1305 { 1306 u32 bw_flags = 0; 1307 const struct ieee80211_reg_rule *reg_rule = NULL; 1308 const struct ieee80211_power_rule *power_rule = NULL; 1309 const struct ieee80211_freq_range *freq_range = NULL; 1310 1311 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq), 1312 regd); 1313 1314 if (IS_ERR(reg_rule)) { 1315 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n", 1316 chan->center_freq); 1317 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1318 chan->flags = chan->orig_flags; 1319 return; 1320 } 1321 1322 chan_reg_rule_print_dbg(chan, reg_rule); 1323 1324 power_rule = ®_rule->power_rule; 1325 freq_range = ®_rule->freq_range; 1326 1327 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 1328 bw_flags = IEEE80211_CHAN_NO_HT40; 1329 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80)) 1330 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1331 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160)) 1332 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1333 1334 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1335 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1336 chan->max_reg_power = chan->max_power = 1337 (int) MBM_TO_DBM(power_rule->max_eirp); 1338 } 1339 1340 static void handle_band_custom(struct wiphy *wiphy, 1341 struct ieee80211_supported_band *sband, 1342 const struct ieee80211_regdomain *regd) 1343 { 1344 unsigned int i; 1345 1346 if (!sband) 1347 return; 1348 1349 for (i = 0; i < sband->n_channels; i++) 1350 handle_channel_custom(wiphy, &sband->channels[i], regd); 1351 } 1352 1353 /* Used by drivers prior to wiphy registration */ 1354 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1355 const struct ieee80211_regdomain *regd) 1356 { 1357 enum ieee80211_band band; 1358 unsigned int bands_set = 0; 1359 1360 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 1361 "wiphy should have REGULATORY_CUSTOM_REG\n"); 1362 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 1363 1364 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1365 if (!wiphy->bands[band]) 1366 continue; 1367 handle_band_custom(wiphy, wiphy->bands[band], regd); 1368 bands_set++; 1369 } 1370 1371 /* 1372 * no point in calling this if it won't have any effect 1373 * on your device's supported bands. 1374 */ 1375 WARN_ON(!bands_set); 1376 } 1377 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1378 1379 static void reg_set_request_processed(void) 1380 { 1381 bool need_more_processing = false; 1382 struct regulatory_request *lr = get_last_request(); 1383 1384 lr->processed = true; 1385 1386 spin_lock(®_requests_lock); 1387 if (!list_empty(®_requests_list)) 1388 need_more_processing = true; 1389 spin_unlock(®_requests_lock); 1390 1391 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 1392 cancel_delayed_work(®_timeout); 1393 1394 if (need_more_processing) 1395 schedule_work(®_work); 1396 } 1397 1398 /** 1399 * reg_process_hint_core - process core regulatory requests 1400 * @pending_request: a pending core regulatory request 1401 * 1402 * The wireless subsystem can use this function to process 1403 * a regulatory request issued by the regulatory core. 1404 * 1405 * Returns one of the different reg request treatment values. 1406 */ 1407 static enum reg_request_treatment 1408 reg_process_hint_core(struct regulatory_request *core_request) 1409 { 1410 1411 core_request->intersect = false; 1412 core_request->processed = false; 1413 1414 reg_update_last_request(core_request); 1415 1416 return reg_call_crda(core_request); 1417 } 1418 1419 static enum reg_request_treatment 1420 __reg_process_hint_user(struct regulatory_request *user_request) 1421 { 1422 struct regulatory_request *lr = get_last_request(); 1423 1424 if (reg_request_cell_base(user_request)) 1425 return reg_ignore_cell_hint(user_request); 1426 1427 if (reg_request_cell_base(lr)) 1428 return REG_REQ_IGNORE; 1429 1430 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1431 return REG_REQ_INTERSECT; 1432 /* 1433 * If the user knows better the user should set the regdom 1434 * to their country before the IE is picked up 1435 */ 1436 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 1437 lr->intersect) 1438 return REG_REQ_IGNORE; 1439 /* 1440 * Process user requests only after previous user/driver/core 1441 * requests have been processed 1442 */ 1443 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 1444 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1445 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 1446 regdom_changes(lr->alpha2)) 1447 return REG_REQ_IGNORE; 1448 1449 if (!regdom_changes(user_request->alpha2)) 1450 return REG_REQ_ALREADY_SET; 1451 1452 return REG_REQ_OK; 1453 } 1454 1455 /** 1456 * reg_process_hint_user - process user regulatory requests 1457 * @user_request: a pending user regulatory request 1458 * 1459 * The wireless subsystem can use this function to process 1460 * a regulatory request initiated by userspace. 1461 * 1462 * Returns one of the different reg request treatment values. 1463 */ 1464 static enum reg_request_treatment 1465 reg_process_hint_user(struct regulatory_request *user_request) 1466 { 1467 enum reg_request_treatment treatment; 1468 1469 treatment = __reg_process_hint_user(user_request); 1470 if (treatment == REG_REQ_IGNORE || 1471 treatment == REG_REQ_ALREADY_SET) { 1472 kfree(user_request); 1473 return treatment; 1474 } 1475 1476 user_request->intersect = treatment == REG_REQ_INTERSECT; 1477 user_request->processed = false; 1478 1479 reg_update_last_request(user_request); 1480 1481 user_alpha2[0] = user_request->alpha2[0]; 1482 user_alpha2[1] = user_request->alpha2[1]; 1483 1484 return reg_call_crda(user_request); 1485 } 1486 1487 static enum reg_request_treatment 1488 __reg_process_hint_driver(struct regulatory_request *driver_request) 1489 { 1490 struct regulatory_request *lr = get_last_request(); 1491 1492 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 1493 if (regdom_changes(driver_request->alpha2)) 1494 return REG_REQ_OK; 1495 return REG_REQ_ALREADY_SET; 1496 } 1497 1498 /* 1499 * This would happen if you unplug and plug your card 1500 * back in or if you add a new device for which the previously 1501 * loaded card also agrees on the regulatory domain. 1502 */ 1503 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1504 !regdom_changes(driver_request->alpha2)) 1505 return REG_REQ_ALREADY_SET; 1506 1507 return REG_REQ_INTERSECT; 1508 } 1509 1510 /** 1511 * reg_process_hint_driver - process driver regulatory requests 1512 * @driver_request: a pending driver regulatory request 1513 * 1514 * The wireless subsystem can use this function to process 1515 * a regulatory request issued by an 802.11 driver. 1516 * 1517 * Returns one of the different reg request treatment values. 1518 */ 1519 static enum reg_request_treatment 1520 reg_process_hint_driver(struct wiphy *wiphy, 1521 struct regulatory_request *driver_request) 1522 { 1523 const struct ieee80211_regdomain *regd; 1524 enum reg_request_treatment treatment; 1525 1526 treatment = __reg_process_hint_driver(driver_request); 1527 1528 switch (treatment) { 1529 case REG_REQ_OK: 1530 break; 1531 case REG_REQ_IGNORE: 1532 kfree(driver_request); 1533 return treatment; 1534 case REG_REQ_INTERSECT: 1535 /* fall through */ 1536 case REG_REQ_ALREADY_SET: 1537 regd = reg_copy_regd(get_cfg80211_regdom()); 1538 if (IS_ERR(regd)) { 1539 kfree(driver_request); 1540 return REG_REQ_IGNORE; 1541 } 1542 rcu_assign_pointer(wiphy->regd, regd); 1543 } 1544 1545 1546 driver_request->intersect = treatment == REG_REQ_INTERSECT; 1547 driver_request->processed = false; 1548 1549 reg_update_last_request(driver_request); 1550 1551 /* 1552 * Since CRDA will not be called in this case as we already 1553 * have applied the requested regulatory domain before we just 1554 * inform userspace we have processed the request 1555 */ 1556 if (treatment == REG_REQ_ALREADY_SET) { 1557 nl80211_send_reg_change_event(driver_request); 1558 reg_set_request_processed(); 1559 return treatment; 1560 } 1561 1562 return reg_call_crda(driver_request); 1563 } 1564 1565 static enum reg_request_treatment 1566 __reg_process_hint_country_ie(struct wiphy *wiphy, 1567 struct regulatory_request *country_ie_request) 1568 { 1569 struct wiphy *last_wiphy = NULL; 1570 struct regulatory_request *lr = get_last_request(); 1571 1572 if (reg_request_cell_base(lr)) { 1573 /* Trust a Cell base station over the AP's country IE */ 1574 if (regdom_changes(country_ie_request->alpha2)) 1575 return REG_REQ_IGNORE; 1576 return REG_REQ_ALREADY_SET; 1577 } else { 1578 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 1579 return REG_REQ_IGNORE; 1580 } 1581 1582 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 1583 return -EINVAL; 1584 1585 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 1586 return REG_REQ_OK; 1587 1588 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1589 1590 if (last_wiphy != wiphy) { 1591 /* 1592 * Two cards with two APs claiming different 1593 * Country IE alpha2s. We could 1594 * intersect them, but that seems unlikely 1595 * to be correct. Reject second one for now. 1596 */ 1597 if (regdom_changes(country_ie_request->alpha2)) 1598 return REG_REQ_IGNORE; 1599 return REG_REQ_ALREADY_SET; 1600 } 1601 /* 1602 * Two consecutive Country IE hints on the same wiphy. 1603 * This should be picked up early by the driver/stack 1604 */ 1605 if (WARN_ON(regdom_changes(country_ie_request->alpha2))) 1606 return REG_REQ_OK; 1607 return REG_REQ_ALREADY_SET; 1608 } 1609 1610 /** 1611 * reg_process_hint_country_ie - process regulatory requests from country IEs 1612 * @country_ie_request: a regulatory request from a country IE 1613 * 1614 * The wireless subsystem can use this function to process 1615 * a regulatory request issued by a country Information Element. 1616 * 1617 * Returns one of the different reg request treatment values. 1618 */ 1619 static enum reg_request_treatment 1620 reg_process_hint_country_ie(struct wiphy *wiphy, 1621 struct regulatory_request *country_ie_request) 1622 { 1623 enum reg_request_treatment treatment; 1624 1625 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 1626 1627 switch (treatment) { 1628 case REG_REQ_OK: 1629 break; 1630 case REG_REQ_IGNORE: 1631 /* fall through */ 1632 case REG_REQ_ALREADY_SET: 1633 kfree(country_ie_request); 1634 return treatment; 1635 case REG_REQ_INTERSECT: 1636 kfree(country_ie_request); 1637 /* 1638 * This doesn't happen yet, not sure we 1639 * ever want to support it for this case. 1640 */ 1641 WARN_ONCE(1, "Unexpected intersection for country IEs"); 1642 return REG_REQ_IGNORE; 1643 } 1644 1645 country_ie_request->intersect = false; 1646 country_ie_request->processed = false; 1647 1648 reg_update_last_request(country_ie_request); 1649 1650 return reg_call_crda(country_ie_request); 1651 } 1652 1653 /* This processes *all* regulatory hints */ 1654 static void reg_process_hint(struct regulatory_request *reg_request) 1655 { 1656 struct wiphy *wiphy = NULL; 1657 enum reg_request_treatment treatment; 1658 1659 if (WARN_ON(!reg_request->alpha2)) 1660 return; 1661 1662 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 1663 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1664 1665 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) { 1666 kfree(reg_request); 1667 return; 1668 } 1669 1670 switch (reg_request->initiator) { 1671 case NL80211_REGDOM_SET_BY_CORE: 1672 reg_process_hint_core(reg_request); 1673 return; 1674 case NL80211_REGDOM_SET_BY_USER: 1675 treatment = reg_process_hint_user(reg_request); 1676 if (treatment == REG_REQ_OK || 1677 treatment == REG_REQ_ALREADY_SET) 1678 return; 1679 schedule_delayed_work(®_timeout, msecs_to_jiffies(3142)); 1680 return; 1681 case NL80211_REGDOM_SET_BY_DRIVER: 1682 treatment = reg_process_hint_driver(wiphy, reg_request); 1683 break; 1684 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1685 treatment = reg_process_hint_country_ie(wiphy, reg_request); 1686 break; 1687 default: 1688 WARN(1, "invalid initiator %d\n", reg_request->initiator); 1689 return; 1690 } 1691 1692 /* This is required so that the orig_* parameters are saved */ 1693 if (treatment == REG_REQ_ALREADY_SET && wiphy && 1694 wiphy->regulatory_flags & REGULATORY_STRICT_REG) 1695 wiphy_update_regulatory(wiphy, reg_request->initiator); 1696 } 1697 1698 /* 1699 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 1700 * Regulatory hints come on a first come first serve basis and we 1701 * must process each one atomically. 1702 */ 1703 static void reg_process_pending_hints(void) 1704 { 1705 struct regulatory_request *reg_request, *lr; 1706 1707 lr = get_last_request(); 1708 1709 /* When last_request->processed becomes true this will be rescheduled */ 1710 if (lr && !lr->processed) { 1711 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n"); 1712 return; 1713 } 1714 1715 spin_lock(®_requests_lock); 1716 1717 if (list_empty(®_requests_list)) { 1718 spin_unlock(®_requests_lock); 1719 return; 1720 } 1721 1722 reg_request = list_first_entry(®_requests_list, 1723 struct regulatory_request, 1724 list); 1725 list_del_init(®_request->list); 1726 1727 spin_unlock(®_requests_lock); 1728 1729 reg_process_hint(reg_request); 1730 } 1731 1732 /* Processes beacon hints -- this has nothing to do with country IEs */ 1733 static void reg_process_pending_beacon_hints(void) 1734 { 1735 struct cfg80211_registered_device *rdev; 1736 struct reg_beacon *pending_beacon, *tmp; 1737 1738 /* This goes through the _pending_ beacon list */ 1739 spin_lock_bh(®_pending_beacons_lock); 1740 1741 list_for_each_entry_safe(pending_beacon, tmp, 1742 ®_pending_beacons, list) { 1743 list_del_init(&pending_beacon->list); 1744 1745 /* Applies the beacon hint to current wiphys */ 1746 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1747 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 1748 1749 /* Remembers the beacon hint for new wiphys or reg changes */ 1750 list_add_tail(&pending_beacon->list, ®_beacon_list); 1751 } 1752 1753 spin_unlock_bh(®_pending_beacons_lock); 1754 } 1755 1756 static void reg_todo(struct work_struct *work) 1757 { 1758 rtnl_lock(); 1759 reg_process_pending_hints(); 1760 reg_process_pending_beacon_hints(); 1761 rtnl_unlock(); 1762 } 1763 1764 static void queue_regulatory_request(struct regulatory_request *request) 1765 { 1766 request->alpha2[0] = toupper(request->alpha2[0]); 1767 request->alpha2[1] = toupper(request->alpha2[1]); 1768 1769 spin_lock(®_requests_lock); 1770 list_add_tail(&request->list, ®_requests_list); 1771 spin_unlock(®_requests_lock); 1772 1773 schedule_work(®_work); 1774 } 1775 1776 /* 1777 * Core regulatory hint -- happens during cfg80211_init() 1778 * and when we restore regulatory settings. 1779 */ 1780 static int regulatory_hint_core(const char *alpha2) 1781 { 1782 struct regulatory_request *request; 1783 1784 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1785 if (!request) 1786 return -ENOMEM; 1787 1788 request->alpha2[0] = alpha2[0]; 1789 request->alpha2[1] = alpha2[1]; 1790 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1791 1792 queue_regulatory_request(request); 1793 1794 return 0; 1795 } 1796 1797 /* User hints */ 1798 int regulatory_hint_user(const char *alpha2, 1799 enum nl80211_user_reg_hint_type user_reg_hint_type) 1800 { 1801 struct regulatory_request *request; 1802 1803 if (WARN_ON(!alpha2)) 1804 return -EINVAL; 1805 1806 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1807 if (!request) 1808 return -ENOMEM; 1809 1810 request->wiphy_idx = WIPHY_IDX_INVALID; 1811 request->alpha2[0] = alpha2[0]; 1812 request->alpha2[1] = alpha2[1]; 1813 request->initiator = NL80211_REGDOM_SET_BY_USER; 1814 request->user_reg_hint_type = user_reg_hint_type; 1815 1816 queue_regulatory_request(request); 1817 1818 return 0; 1819 } 1820 1821 /* Driver hints */ 1822 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 1823 { 1824 struct regulatory_request *request; 1825 1826 if (WARN_ON(!alpha2 || !wiphy)) 1827 return -EINVAL; 1828 1829 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1830 if (!request) 1831 return -ENOMEM; 1832 1833 request->wiphy_idx = get_wiphy_idx(wiphy); 1834 1835 request->alpha2[0] = alpha2[0]; 1836 request->alpha2[1] = alpha2[1]; 1837 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 1838 1839 queue_regulatory_request(request); 1840 1841 return 0; 1842 } 1843 EXPORT_SYMBOL(regulatory_hint); 1844 1845 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band, 1846 const u8 *country_ie, u8 country_ie_len) 1847 { 1848 char alpha2[2]; 1849 enum environment_cap env = ENVIRON_ANY; 1850 struct regulatory_request *request = NULL, *lr; 1851 1852 /* IE len must be evenly divisible by 2 */ 1853 if (country_ie_len & 0x01) 1854 return; 1855 1856 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 1857 return; 1858 1859 request = kzalloc(sizeof(*request), GFP_KERNEL); 1860 if (!request) 1861 return; 1862 1863 alpha2[0] = country_ie[0]; 1864 alpha2[1] = country_ie[1]; 1865 1866 if (country_ie[2] == 'I') 1867 env = ENVIRON_INDOOR; 1868 else if (country_ie[2] == 'O') 1869 env = ENVIRON_OUTDOOR; 1870 1871 rcu_read_lock(); 1872 lr = get_last_request(); 1873 1874 if (unlikely(!lr)) 1875 goto out; 1876 1877 /* 1878 * We will run this only upon a successful connection on cfg80211. 1879 * We leave conflict resolution to the workqueue, where can hold 1880 * the RTNL. 1881 */ 1882 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1883 lr->wiphy_idx != WIPHY_IDX_INVALID) 1884 goto out; 1885 1886 request->wiphy_idx = get_wiphy_idx(wiphy); 1887 request->alpha2[0] = alpha2[0]; 1888 request->alpha2[1] = alpha2[1]; 1889 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 1890 request->country_ie_env = env; 1891 1892 queue_regulatory_request(request); 1893 request = NULL; 1894 out: 1895 kfree(request); 1896 rcu_read_unlock(); 1897 } 1898 1899 static void restore_alpha2(char *alpha2, bool reset_user) 1900 { 1901 /* indicates there is no alpha2 to consider for restoration */ 1902 alpha2[0] = '9'; 1903 alpha2[1] = '7'; 1904 1905 /* The user setting has precedence over the module parameter */ 1906 if (is_user_regdom_saved()) { 1907 /* Unless we're asked to ignore it and reset it */ 1908 if (reset_user) { 1909 REG_DBG_PRINT("Restoring regulatory settings including user preference\n"); 1910 user_alpha2[0] = '9'; 1911 user_alpha2[1] = '7'; 1912 1913 /* 1914 * If we're ignoring user settings, we still need to 1915 * check the module parameter to ensure we put things 1916 * back as they were for a full restore. 1917 */ 1918 if (!is_world_regdom(ieee80211_regdom)) { 1919 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 1920 ieee80211_regdom[0], ieee80211_regdom[1]); 1921 alpha2[0] = ieee80211_regdom[0]; 1922 alpha2[1] = ieee80211_regdom[1]; 1923 } 1924 } else { 1925 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n", 1926 user_alpha2[0], user_alpha2[1]); 1927 alpha2[0] = user_alpha2[0]; 1928 alpha2[1] = user_alpha2[1]; 1929 } 1930 } else if (!is_world_regdom(ieee80211_regdom)) { 1931 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 1932 ieee80211_regdom[0], ieee80211_regdom[1]); 1933 alpha2[0] = ieee80211_regdom[0]; 1934 alpha2[1] = ieee80211_regdom[1]; 1935 } else 1936 REG_DBG_PRINT("Restoring regulatory settings\n"); 1937 } 1938 1939 static void restore_custom_reg_settings(struct wiphy *wiphy) 1940 { 1941 struct ieee80211_supported_band *sband; 1942 enum ieee80211_band band; 1943 struct ieee80211_channel *chan; 1944 int i; 1945 1946 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1947 sband = wiphy->bands[band]; 1948 if (!sband) 1949 continue; 1950 for (i = 0; i < sband->n_channels; i++) { 1951 chan = &sband->channels[i]; 1952 chan->flags = chan->orig_flags; 1953 chan->max_antenna_gain = chan->orig_mag; 1954 chan->max_power = chan->orig_mpwr; 1955 chan->beacon_found = false; 1956 } 1957 } 1958 } 1959 1960 /* 1961 * Restoring regulatory settings involves ingoring any 1962 * possibly stale country IE information and user regulatory 1963 * settings if so desired, this includes any beacon hints 1964 * learned as we could have traveled outside to another country 1965 * after disconnection. To restore regulatory settings we do 1966 * exactly what we did at bootup: 1967 * 1968 * - send a core regulatory hint 1969 * - send a user regulatory hint if applicable 1970 * 1971 * Device drivers that send a regulatory hint for a specific country 1972 * keep their own regulatory domain on wiphy->regd so that does does 1973 * not need to be remembered. 1974 */ 1975 static void restore_regulatory_settings(bool reset_user) 1976 { 1977 char alpha2[2]; 1978 char world_alpha2[2]; 1979 struct reg_beacon *reg_beacon, *btmp; 1980 struct regulatory_request *reg_request, *tmp; 1981 LIST_HEAD(tmp_reg_req_list); 1982 struct cfg80211_registered_device *rdev; 1983 1984 ASSERT_RTNL(); 1985 1986 reset_regdomains(true, &world_regdom); 1987 restore_alpha2(alpha2, reset_user); 1988 1989 /* 1990 * If there's any pending requests we simply 1991 * stash them to a temporary pending queue and 1992 * add then after we've restored regulatory 1993 * settings. 1994 */ 1995 spin_lock(®_requests_lock); 1996 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 1997 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER) 1998 continue; 1999 list_move_tail(®_request->list, &tmp_reg_req_list); 2000 } 2001 spin_unlock(®_requests_lock); 2002 2003 /* Clear beacon hints */ 2004 spin_lock_bh(®_pending_beacons_lock); 2005 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2006 list_del(®_beacon->list); 2007 kfree(reg_beacon); 2008 } 2009 spin_unlock_bh(®_pending_beacons_lock); 2010 2011 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2012 list_del(®_beacon->list); 2013 kfree(reg_beacon); 2014 } 2015 2016 /* First restore to the basic regulatory settings */ 2017 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 2018 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 2019 2020 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2021 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 2022 restore_custom_reg_settings(&rdev->wiphy); 2023 } 2024 2025 regulatory_hint_core(world_alpha2); 2026 2027 /* 2028 * This restores the ieee80211_regdom module parameter 2029 * preference or the last user requested regulatory 2030 * settings, user regulatory settings takes precedence. 2031 */ 2032 if (is_an_alpha2(alpha2)) 2033 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER); 2034 2035 spin_lock(®_requests_lock); 2036 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 2037 spin_unlock(®_requests_lock); 2038 2039 REG_DBG_PRINT("Kicking the queue\n"); 2040 2041 schedule_work(®_work); 2042 } 2043 2044 void regulatory_hint_disconnect(void) 2045 { 2046 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n"); 2047 restore_regulatory_settings(false); 2048 } 2049 2050 static bool freq_is_chan_12_13_14(u16 freq) 2051 { 2052 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 2053 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 2054 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 2055 return true; 2056 return false; 2057 } 2058 2059 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 2060 { 2061 struct reg_beacon *pending_beacon; 2062 2063 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 2064 if (beacon_chan->center_freq == 2065 pending_beacon->chan.center_freq) 2066 return true; 2067 return false; 2068 } 2069 2070 int regulatory_hint_found_beacon(struct wiphy *wiphy, 2071 struct ieee80211_channel *beacon_chan, 2072 gfp_t gfp) 2073 { 2074 struct reg_beacon *reg_beacon; 2075 bool processing; 2076 2077 if (beacon_chan->beacon_found || 2078 beacon_chan->flags & IEEE80211_CHAN_RADAR || 2079 (beacon_chan->band == IEEE80211_BAND_2GHZ && 2080 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 2081 return 0; 2082 2083 spin_lock_bh(®_pending_beacons_lock); 2084 processing = pending_reg_beacon(beacon_chan); 2085 spin_unlock_bh(®_pending_beacons_lock); 2086 2087 if (processing) 2088 return 0; 2089 2090 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 2091 if (!reg_beacon) 2092 return -ENOMEM; 2093 2094 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 2095 beacon_chan->center_freq, 2096 ieee80211_frequency_to_channel(beacon_chan->center_freq), 2097 wiphy_name(wiphy)); 2098 2099 memcpy(®_beacon->chan, beacon_chan, 2100 sizeof(struct ieee80211_channel)); 2101 2102 /* 2103 * Since we can be called from BH or and non-BH context 2104 * we must use spin_lock_bh() 2105 */ 2106 spin_lock_bh(®_pending_beacons_lock); 2107 list_add_tail(®_beacon->list, ®_pending_beacons); 2108 spin_unlock_bh(®_pending_beacons_lock); 2109 2110 schedule_work(®_work); 2111 2112 return 0; 2113 } 2114 2115 static void print_rd_rules(const struct ieee80211_regdomain *rd) 2116 { 2117 unsigned int i; 2118 const struct ieee80211_reg_rule *reg_rule = NULL; 2119 const struct ieee80211_freq_range *freq_range = NULL; 2120 const struct ieee80211_power_rule *power_rule = NULL; 2121 2122 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n"); 2123 2124 for (i = 0; i < rd->n_reg_rules; i++) { 2125 reg_rule = &rd->reg_rules[i]; 2126 freq_range = ®_rule->freq_range; 2127 power_rule = ®_rule->power_rule; 2128 2129 /* 2130 * There may not be documentation for max antenna gain 2131 * in certain regions 2132 */ 2133 if (power_rule->max_antenna_gain) 2134 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n", 2135 freq_range->start_freq_khz, 2136 freq_range->end_freq_khz, 2137 freq_range->max_bandwidth_khz, 2138 power_rule->max_antenna_gain, 2139 power_rule->max_eirp); 2140 else 2141 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n", 2142 freq_range->start_freq_khz, 2143 freq_range->end_freq_khz, 2144 freq_range->max_bandwidth_khz, 2145 power_rule->max_eirp); 2146 } 2147 } 2148 2149 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 2150 { 2151 switch (dfs_region) { 2152 case NL80211_DFS_UNSET: 2153 case NL80211_DFS_FCC: 2154 case NL80211_DFS_ETSI: 2155 case NL80211_DFS_JP: 2156 return true; 2157 default: 2158 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", 2159 dfs_region); 2160 return false; 2161 } 2162 } 2163 2164 static void print_regdomain(const struct ieee80211_regdomain *rd) 2165 { 2166 struct regulatory_request *lr = get_last_request(); 2167 2168 if (is_intersected_alpha2(rd->alpha2)) { 2169 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2170 struct cfg80211_registered_device *rdev; 2171 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 2172 if (rdev) { 2173 pr_info("Current regulatory domain updated by AP to: %c%c\n", 2174 rdev->country_ie_alpha2[0], 2175 rdev->country_ie_alpha2[1]); 2176 } else 2177 pr_info("Current regulatory domain intersected:\n"); 2178 } else 2179 pr_info("Current regulatory domain intersected:\n"); 2180 } else if (is_world_regdom(rd->alpha2)) { 2181 pr_info("World regulatory domain updated:\n"); 2182 } else { 2183 if (is_unknown_alpha2(rd->alpha2)) 2184 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2185 else { 2186 if (reg_request_cell_base(lr)) 2187 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n", 2188 rd->alpha2[0], rd->alpha2[1]); 2189 else 2190 pr_info("Regulatory domain changed to country: %c%c\n", 2191 rd->alpha2[0], rd->alpha2[1]); 2192 } 2193 } 2194 2195 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 2196 print_rd_rules(rd); 2197 } 2198 2199 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2200 { 2201 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2202 print_rd_rules(rd); 2203 } 2204 2205 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 2206 { 2207 if (!is_world_regdom(rd->alpha2)) 2208 return -EINVAL; 2209 update_world_regdomain(rd); 2210 return 0; 2211 } 2212 2213 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 2214 struct regulatory_request *user_request) 2215 { 2216 const struct ieee80211_regdomain *intersected_rd = NULL; 2217 2218 if (is_world_regdom(rd->alpha2)) 2219 return -EINVAL; 2220 2221 if (!regdom_changes(rd->alpha2)) 2222 return -EALREADY; 2223 2224 if (!is_valid_rd(rd)) { 2225 pr_err("Invalid regulatory domain detected:\n"); 2226 print_regdomain_info(rd); 2227 return -EINVAL; 2228 } 2229 2230 if (!user_request->intersect) { 2231 reset_regdomains(false, rd); 2232 return 0; 2233 } 2234 2235 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2236 if (!intersected_rd) 2237 return -EINVAL; 2238 2239 kfree(rd); 2240 rd = NULL; 2241 reset_regdomains(false, intersected_rd); 2242 2243 return 0; 2244 } 2245 2246 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 2247 struct regulatory_request *driver_request) 2248 { 2249 const struct ieee80211_regdomain *regd; 2250 const struct ieee80211_regdomain *intersected_rd = NULL; 2251 const struct ieee80211_regdomain *tmp; 2252 struct wiphy *request_wiphy; 2253 2254 if (is_world_regdom(rd->alpha2)) 2255 return -EINVAL; 2256 2257 if (!regdom_changes(rd->alpha2)) 2258 return -EALREADY; 2259 2260 if (!is_valid_rd(rd)) { 2261 pr_err("Invalid regulatory domain detected:\n"); 2262 print_regdomain_info(rd); 2263 return -EINVAL; 2264 } 2265 2266 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 2267 if (!request_wiphy) { 2268 schedule_delayed_work(®_timeout, 0); 2269 return -ENODEV; 2270 } 2271 2272 if (!driver_request->intersect) { 2273 if (request_wiphy->regd) 2274 return -EALREADY; 2275 2276 regd = reg_copy_regd(rd); 2277 if (IS_ERR(regd)) 2278 return PTR_ERR(regd); 2279 2280 rcu_assign_pointer(request_wiphy->regd, regd); 2281 reset_regdomains(false, rd); 2282 return 0; 2283 } 2284 2285 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2286 if (!intersected_rd) 2287 return -EINVAL; 2288 2289 /* 2290 * We can trash what CRDA provided now. 2291 * However if a driver requested this specific regulatory 2292 * domain we keep it for its private use 2293 */ 2294 tmp = get_wiphy_regdom(request_wiphy); 2295 rcu_assign_pointer(request_wiphy->regd, rd); 2296 rcu_free_regdom(tmp); 2297 2298 rd = NULL; 2299 2300 reset_regdomains(false, intersected_rd); 2301 2302 return 0; 2303 } 2304 2305 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 2306 struct regulatory_request *country_ie_request) 2307 { 2308 struct wiphy *request_wiphy; 2309 2310 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2311 !is_unknown_alpha2(rd->alpha2)) 2312 return -EINVAL; 2313 2314 /* 2315 * Lets only bother proceeding on the same alpha2 if the current 2316 * rd is non static (it means CRDA was present and was used last) 2317 * and the pending request came in from a country IE 2318 */ 2319 2320 if (!is_valid_rd(rd)) { 2321 pr_err("Invalid regulatory domain detected:\n"); 2322 print_regdomain_info(rd); 2323 return -EINVAL; 2324 } 2325 2326 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 2327 if (!request_wiphy) { 2328 schedule_delayed_work(®_timeout, 0); 2329 return -ENODEV; 2330 } 2331 2332 if (country_ie_request->intersect) 2333 return -EINVAL; 2334 2335 reset_regdomains(false, rd); 2336 return 0; 2337 } 2338 2339 /* 2340 * Use this call to set the current regulatory domain. Conflicts with 2341 * multiple drivers can be ironed out later. Caller must've already 2342 * kmalloc'd the rd structure. 2343 */ 2344 int set_regdom(const struct ieee80211_regdomain *rd) 2345 { 2346 struct regulatory_request *lr; 2347 int r; 2348 2349 if (!reg_is_valid_request(rd->alpha2)) { 2350 kfree(rd); 2351 return -EINVAL; 2352 } 2353 2354 lr = get_last_request(); 2355 2356 /* Note that this doesn't update the wiphys, this is done below */ 2357 switch (lr->initiator) { 2358 case NL80211_REGDOM_SET_BY_CORE: 2359 r = reg_set_rd_core(rd); 2360 break; 2361 case NL80211_REGDOM_SET_BY_USER: 2362 r = reg_set_rd_user(rd, lr); 2363 break; 2364 case NL80211_REGDOM_SET_BY_DRIVER: 2365 r = reg_set_rd_driver(rd, lr); 2366 break; 2367 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2368 r = reg_set_rd_country_ie(rd, lr); 2369 break; 2370 default: 2371 WARN(1, "invalid initiator %d\n", lr->initiator); 2372 return -EINVAL; 2373 } 2374 2375 if (r) { 2376 if (r == -EALREADY) 2377 reg_set_request_processed(); 2378 2379 kfree(rd); 2380 return r; 2381 } 2382 2383 /* This would make this whole thing pointless */ 2384 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 2385 return -EINVAL; 2386 2387 /* update all wiphys now with the new established regulatory domain */ 2388 update_all_wiphy_regulatory(lr->initiator); 2389 2390 print_regdomain(get_cfg80211_regdom()); 2391 2392 nl80211_send_reg_change_event(lr); 2393 2394 reg_set_request_processed(); 2395 2396 return 0; 2397 } 2398 2399 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2400 { 2401 struct regulatory_request *lr; 2402 u8 alpha2[2]; 2403 bool add = false; 2404 2405 rcu_read_lock(); 2406 lr = get_last_request(); 2407 if (lr && !lr->processed) { 2408 memcpy(alpha2, lr->alpha2, 2); 2409 add = true; 2410 } 2411 rcu_read_unlock(); 2412 2413 if (add) 2414 return add_uevent_var(env, "COUNTRY=%c%c", 2415 alpha2[0], alpha2[1]); 2416 return 0; 2417 } 2418 2419 void wiphy_regulatory_register(struct wiphy *wiphy) 2420 { 2421 struct regulatory_request *lr; 2422 2423 if (!reg_dev_ignore_cell_hint(wiphy)) 2424 reg_num_devs_support_basehint++; 2425 2426 lr = get_last_request(); 2427 wiphy_update_regulatory(wiphy, lr->initiator); 2428 } 2429 2430 void wiphy_regulatory_deregister(struct wiphy *wiphy) 2431 { 2432 struct wiphy *request_wiphy = NULL; 2433 struct regulatory_request *lr; 2434 2435 lr = get_last_request(); 2436 2437 if (!reg_dev_ignore_cell_hint(wiphy)) 2438 reg_num_devs_support_basehint--; 2439 2440 rcu_free_regdom(get_wiphy_regdom(wiphy)); 2441 rcu_assign_pointer(wiphy->regd, NULL); 2442 2443 if (lr) 2444 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2445 2446 if (!request_wiphy || request_wiphy != wiphy) 2447 return; 2448 2449 lr->wiphy_idx = WIPHY_IDX_INVALID; 2450 lr->country_ie_env = ENVIRON_ANY; 2451 } 2452 2453 static void reg_timeout_work(struct work_struct *work) 2454 { 2455 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 2456 rtnl_lock(); 2457 restore_regulatory_settings(true); 2458 rtnl_unlock(); 2459 } 2460 2461 int __init regulatory_init(void) 2462 { 2463 int err = 0; 2464 2465 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2466 if (IS_ERR(reg_pdev)) 2467 return PTR_ERR(reg_pdev); 2468 2469 reg_pdev->dev.type = ®_device_type; 2470 2471 spin_lock_init(®_requests_lock); 2472 spin_lock_init(®_pending_beacons_lock); 2473 2474 reg_regdb_size_check(); 2475 2476 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 2477 2478 user_alpha2[0] = '9'; 2479 user_alpha2[1] = '7'; 2480 2481 /* We always try to get an update for the static regdomain */ 2482 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 2483 if (err) { 2484 if (err == -ENOMEM) 2485 return err; 2486 /* 2487 * N.B. kobject_uevent_env() can fail mainly for when we're out 2488 * memory which is handled and propagated appropriately above 2489 * but it can also fail during a netlink_broadcast() or during 2490 * early boot for call_usermodehelper(). For now treat these 2491 * errors as non-fatal. 2492 */ 2493 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 2494 } 2495 2496 /* 2497 * Finally, if the user set the module parameter treat it 2498 * as a user hint. 2499 */ 2500 if (!is_world_regdom(ieee80211_regdom)) 2501 regulatory_hint_user(ieee80211_regdom, 2502 NL80211_USER_REG_HINT_USER); 2503 2504 return 0; 2505 } 2506 2507 void regulatory_exit(void) 2508 { 2509 struct regulatory_request *reg_request, *tmp; 2510 struct reg_beacon *reg_beacon, *btmp; 2511 2512 cancel_work_sync(®_work); 2513 cancel_delayed_work_sync(®_timeout); 2514 2515 /* Lock to suppress warnings */ 2516 rtnl_lock(); 2517 reset_regdomains(true, NULL); 2518 rtnl_unlock(); 2519 2520 dev_set_uevent_suppress(®_pdev->dev, true); 2521 2522 platform_device_unregister(reg_pdev); 2523 2524 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2525 list_del(®_beacon->list); 2526 kfree(reg_beacon); 2527 } 2528 2529 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2530 list_del(®_beacon->list); 2531 kfree(reg_beacon); 2532 } 2533 2534 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 2535 list_del(®_request->list); 2536 kfree(reg_request); 2537 } 2538 } 2539