xref: /linux/net/wireless/reg.c (revision 89e47d3b8a273b0eac21e4bf6d7fdb86b654fa16)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60 
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...)			\
63 	printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67 
68 enum reg_request_treatment {
69 	REG_REQ_OK,
70 	REG_REQ_IGNORE,
71 	REG_REQ_INTERSECT,
72 	REG_REQ_ALREADY_SET,
73 };
74 
75 static struct regulatory_request core_request_world = {
76 	.initiator = NL80211_REGDOM_SET_BY_CORE,
77 	.alpha2[0] = '0',
78 	.alpha2[1] = '0',
79 	.intersect = false,
80 	.processed = true,
81 	.country_ie_env = ENVIRON_ANY,
82 };
83 
84 /*
85  * Receipt of information from last regulatory request,
86  * protected by RTNL (and can be accessed with RCU protection)
87  */
88 static struct regulatory_request __rcu *last_request =
89 	(void __rcu *)&core_request_world;
90 
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
93 
94 static struct device_type reg_device_type = {
95 	.uevent = reg_device_uevent,
96 };
97 
98 /*
99  * Central wireless core regulatory domains, we only need two,
100  * the current one and a world regulatory domain in case we have no
101  * information to give us an alpha2.
102  * (protected by RTNL, can be read under RCU)
103  */
104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
105 
106 /*
107  * Number of devices that registered to the core
108  * that support cellular base station regulatory hints
109  * (protected by RTNL)
110  */
111 static int reg_num_devs_support_basehint;
112 
113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
114 {
115 	return rtnl_dereference(cfg80211_regdomain);
116 }
117 
118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
119 {
120 	return rtnl_dereference(wiphy->regd);
121 }
122 
123 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
124 {
125 	switch (dfs_region) {
126 	case NL80211_DFS_UNSET:
127 		return "unset";
128 	case NL80211_DFS_FCC:
129 		return "FCC";
130 	case NL80211_DFS_ETSI:
131 		return "ETSI";
132 	case NL80211_DFS_JP:
133 		return "JP";
134 	}
135 	return "Unknown";
136 }
137 
138 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
139 {
140 	if (!r)
141 		return;
142 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
143 }
144 
145 static struct regulatory_request *get_last_request(void)
146 {
147 	return rcu_dereference_rtnl(last_request);
148 }
149 
150 /* Used to queue up regulatory hints */
151 static LIST_HEAD(reg_requests_list);
152 static spinlock_t reg_requests_lock;
153 
154 /* Used to queue up beacon hints for review */
155 static LIST_HEAD(reg_pending_beacons);
156 static spinlock_t reg_pending_beacons_lock;
157 
158 /* Used to keep track of processed beacon hints */
159 static LIST_HEAD(reg_beacon_list);
160 
161 struct reg_beacon {
162 	struct list_head list;
163 	struct ieee80211_channel chan;
164 };
165 
166 static void reg_todo(struct work_struct *work);
167 static DECLARE_WORK(reg_work, reg_todo);
168 
169 static void reg_timeout_work(struct work_struct *work);
170 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
171 
172 /* We keep a static world regulatory domain in case of the absence of CRDA */
173 static const struct ieee80211_regdomain world_regdom = {
174 	.n_reg_rules = 6,
175 	.alpha2 =  "00",
176 	.reg_rules = {
177 		/* IEEE 802.11b/g, channels 1..11 */
178 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
179 		/* IEEE 802.11b/g, channels 12..13. */
180 		REG_RULE(2467-10, 2472+10, 40, 6, 20,
181 			NL80211_RRF_NO_IR),
182 		/* IEEE 802.11 channel 14 - Only JP enables
183 		 * this and for 802.11b only */
184 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
185 			NL80211_RRF_NO_IR |
186 			NL80211_RRF_NO_OFDM),
187 		/* IEEE 802.11a, channel 36..48 */
188 		REG_RULE(5180-10, 5240+10, 160, 6, 20,
189                         NL80211_RRF_NO_IR),
190 
191 		/* IEEE 802.11a, channel 52..64 - DFS required */
192 		REG_RULE(5260-10, 5320+10, 160, 6, 20,
193 			NL80211_RRF_NO_IR |
194 			NL80211_RRF_DFS),
195 
196 		/* IEEE 802.11a, channel 100..144 - DFS required */
197 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
198 			NL80211_RRF_NO_IR |
199 			NL80211_RRF_DFS),
200 
201 		/* IEEE 802.11a, channel 149..165 */
202 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
203 			NL80211_RRF_NO_IR),
204 
205 		/* IEEE 802.11ad (60gHz), channels 1..3 */
206 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
207 	}
208 };
209 
210 /* protected by RTNL */
211 static const struct ieee80211_regdomain *cfg80211_world_regdom =
212 	&world_regdom;
213 
214 static char *ieee80211_regdom = "00";
215 static char user_alpha2[2];
216 
217 module_param(ieee80211_regdom, charp, 0444);
218 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
219 
220 static void reg_kfree_last_request(void)
221 {
222 	struct regulatory_request *lr;
223 
224 	lr = get_last_request();
225 
226 	if (lr != &core_request_world && lr)
227 		kfree_rcu(lr, rcu_head);
228 }
229 
230 static void reg_update_last_request(struct regulatory_request *request)
231 {
232 	reg_kfree_last_request();
233 	rcu_assign_pointer(last_request, request);
234 }
235 
236 static void reset_regdomains(bool full_reset,
237 			     const struct ieee80211_regdomain *new_regdom)
238 {
239 	const struct ieee80211_regdomain *r;
240 
241 	ASSERT_RTNL();
242 
243 	r = get_cfg80211_regdom();
244 
245 	/* avoid freeing static information or freeing something twice */
246 	if (r == cfg80211_world_regdom)
247 		r = NULL;
248 	if (cfg80211_world_regdom == &world_regdom)
249 		cfg80211_world_regdom = NULL;
250 	if (r == &world_regdom)
251 		r = NULL;
252 
253 	rcu_free_regdom(r);
254 	rcu_free_regdom(cfg80211_world_regdom);
255 
256 	cfg80211_world_regdom = &world_regdom;
257 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
258 
259 	if (!full_reset)
260 		return;
261 
262 	reg_update_last_request(&core_request_world);
263 }
264 
265 /*
266  * Dynamic world regulatory domain requested by the wireless
267  * core upon initialization
268  */
269 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
270 {
271 	struct regulatory_request *lr;
272 
273 	lr = get_last_request();
274 
275 	WARN_ON(!lr);
276 
277 	reset_regdomains(false, rd);
278 
279 	cfg80211_world_regdom = rd;
280 }
281 
282 bool is_world_regdom(const char *alpha2)
283 {
284 	if (!alpha2)
285 		return false;
286 	return alpha2[0] == '0' && alpha2[1] == '0';
287 }
288 
289 static bool is_alpha2_set(const char *alpha2)
290 {
291 	if (!alpha2)
292 		return false;
293 	return alpha2[0] && alpha2[1];
294 }
295 
296 static bool is_unknown_alpha2(const char *alpha2)
297 {
298 	if (!alpha2)
299 		return false;
300 	/*
301 	 * Special case where regulatory domain was built by driver
302 	 * but a specific alpha2 cannot be determined
303 	 */
304 	return alpha2[0] == '9' && alpha2[1] == '9';
305 }
306 
307 static bool is_intersected_alpha2(const char *alpha2)
308 {
309 	if (!alpha2)
310 		return false;
311 	/*
312 	 * Special case where regulatory domain is the
313 	 * result of an intersection between two regulatory domain
314 	 * structures
315 	 */
316 	return alpha2[0] == '9' && alpha2[1] == '8';
317 }
318 
319 static bool is_an_alpha2(const char *alpha2)
320 {
321 	if (!alpha2)
322 		return false;
323 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
324 }
325 
326 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
327 {
328 	if (!alpha2_x || !alpha2_y)
329 		return false;
330 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
331 }
332 
333 static bool regdom_changes(const char *alpha2)
334 {
335 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
336 
337 	if (!r)
338 		return true;
339 	return !alpha2_equal(r->alpha2, alpha2);
340 }
341 
342 /*
343  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
344  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
345  * has ever been issued.
346  */
347 static bool is_user_regdom_saved(void)
348 {
349 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
350 		return false;
351 
352 	/* This would indicate a mistake on the design */
353 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
354 		 "Unexpected user alpha2: %c%c\n",
355 		 user_alpha2[0], user_alpha2[1]))
356 		return false;
357 
358 	return true;
359 }
360 
361 static const struct ieee80211_regdomain *
362 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
363 {
364 	struct ieee80211_regdomain *regd;
365 	int size_of_regd;
366 	unsigned int i;
367 
368 	size_of_regd =
369 		sizeof(struct ieee80211_regdomain) +
370 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
371 
372 	regd = kzalloc(size_of_regd, GFP_KERNEL);
373 	if (!regd)
374 		return ERR_PTR(-ENOMEM);
375 
376 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
377 
378 	for (i = 0; i < src_regd->n_reg_rules; i++)
379 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
380 		       sizeof(struct ieee80211_reg_rule));
381 
382 	return regd;
383 }
384 
385 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
386 struct reg_regdb_search_request {
387 	char alpha2[2];
388 	struct list_head list;
389 };
390 
391 static LIST_HEAD(reg_regdb_search_list);
392 static DEFINE_MUTEX(reg_regdb_search_mutex);
393 
394 static void reg_regdb_search(struct work_struct *work)
395 {
396 	struct reg_regdb_search_request *request;
397 	const struct ieee80211_regdomain *curdom, *regdom = NULL;
398 	int i;
399 
400 	rtnl_lock();
401 
402 	mutex_lock(&reg_regdb_search_mutex);
403 	while (!list_empty(&reg_regdb_search_list)) {
404 		request = list_first_entry(&reg_regdb_search_list,
405 					   struct reg_regdb_search_request,
406 					   list);
407 		list_del(&request->list);
408 
409 		for (i = 0; i < reg_regdb_size; i++) {
410 			curdom = reg_regdb[i];
411 
412 			if (alpha2_equal(request->alpha2, curdom->alpha2)) {
413 				regdom = reg_copy_regd(curdom);
414 				break;
415 			}
416 		}
417 
418 		kfree(request);
419 	}
420 	mutex_unlock(&reg_regdb_search_mutex);
421 
422 	if (!IS_ERR_OR_NULL(regdom))
423 		set_regdom(regdom);
424 
425 	rtnl_unlock();
426 }
427 
428 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
429 
430 static void reg_regdb_query(const char *alpha2)
431 {
432 	struct reg_regdb_search_request *request;
433 
434 	if (!alpha2)
435 		return;
436 
437 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
438 	if (!request)
439 		return;
440 
441 	memcpy(request->alpha2, alpha2, 2);
442 
443 	mutex_lock(&reg_regdb_search_mutex);
444 	list_add_tail(&request->list, &reg_regdb_search_list);
445 	mutex_unlock(&reg_regdb_search_mutex);
446 
447 	schedule_work(&reg_regdb_work);
448 }
449 
450 /* Feel free to add any other sanity checks here */
451 static void reg_regdb_size_check(void)
452 {
453 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
454 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
455 }
456 #else
457 static inline void reg_regdb_size_check(void) {}
458 static inline void reg_regdb_query(const char *alpha2) {}
459 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
460 
461 /*
462  * This lets us keep regulatory code which is updated on a regulatory
463  * basis in userspace. Country information is filled in by
464  * reg_device_uevent
465  */
466 static int call_crda(const char *alpha2)
467 {
468 	if (!is_world_regdom((char *) alpha2))
469 		pr_info("Calling CRDA for country: %c%c\n",
470 			alpha2[0], alpha2[1]);
471 	else
472 		pr_info("Calling CRDA to update world regulatory domain\n");
473 
474 	/* query internal regulatory database (if it exists) */
475 	reg_regdb_query(alpha2);
476 
477 	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
478 }
479 
480 static enum reg_request_treatment
481 reg_call_crda(struct regulatory_request *request)
482 {
483 	if (call_crda(request->alpha2))
484 		return REG_REQ_IGNORE;
485 	return REG_REQ_OK;
486 }
487 
488 bool reg_is_valid_request(const char *alpha2)
489 {
490 	struct regulatory_request *lr = get_last_request();
491 
492 	if (!lr || lr->processed)
493 		return false;
494 
495 	return alpha2_equal(lr->alpha2, alpha2);
496 }
497 
498 /* Sanity check on a regulatory rule */
499 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
500 {
501 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
502 	u32 freq_diff;
503 
504 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
505 		return false;
506 
507 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
508 		return false;
509 
510 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
511 
512 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
513 	    freq_range->max_bandwidth_khz > freq_diff)
514 		return false;
515 
516 	return true;
517 }
518 
519 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
520 {
521 	const struct ieee80211_reg_rule *reg_rule = NULL;
522 	unsigned int i;
523 
524 	if (!rd->n_reg_rules)
525 		return false;
526 
527 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
528 		return false;
529 
530 	for (i = 0; i < rd->n_reg_rules; i++) {
531 		reg_rule = &rd->reg_rules[i];
532 		if (!is_valid_reg_rule(reg_rule))
533 			return false;
534 	}
535 
536 	return true;
537 }
538 
539 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
540 			    u32 center_freq_khz, u32 bw_khz)
541 {
542 	u32 start_freq_khz, end_freq_khz;
543 
544 	start_freq_khz = center_freq_khz - (bw_khz/2);
545 	end_freq_khz = center_freq_khz + (bw_khz/2);
546 
547 	if (start_freq_khz >= freq_range->start_freq_khz &&
548 	    end_freq_khz <= freq_range->end_freq_khz)
549 		return true;
550 
551 	return false;
552 }
553 
554 /**
555  * freq_in_rule_band - tells us if a frequency is in a frequency band
556  * @freq_range: frequency rule we want to query
557  * @freq_khz: frequency we are inquiring about
558  *
559  * This lets us know if a specific frequency rule is or is not relevant to
560  * a specific frequency's band. Bands are device specific and artificial
561  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
562  * however it is safe for now to assume that a frequency rule should not be
563  * part of a frequency's band if the start freq or end freq are off by more
564  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
565  * 60 GHz band.
566  * This resolution can be lowered and should be considered as we add
567  * regulatory rule support for other "bands".
568  **/
569 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
570 			      u32 freq_khz)
571 {
572 #define ONE_GHZ_IN_KHZ	1000000
573 	/*
574 	 * From 802.11ad: directional multi-gigabit (DMG):
575 	 * Pertaining to operation in a frequency band containing a channel
576 	 * with the Channel starting frequency above 45 GHz.
577 	 */
578 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
579 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
580 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
581 		return true;
582 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
583 		return true;
584 	return false;
585 #undef ONE_GHZ_IN_KHZ
586 }
587 
588 /*
589  * Later on we can perhaps use the more restrictive DFS
590  * region but we don't have information for that yet so
591  * for now simply disallow conflicts.
592  */
593 static enum nl80211_dfs_regions
594 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
595 			 const enum nl80211_dfs_regions dfs_region2)
596 {
597 	if (dfs_region1 != dfs_region2)
598 		return NL80211_DFS_UNSET;
599 	return dfs_region1;
600 }
601 
602 /*
603  * Helper for regdom_intersect(), this does the real
604  * mathematical intersection fun
605  */
606 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
607 			       const struct ieee80211_reg_rule *rule2,
608 			       struct ieee80211_reg_rule *intersected_rule)
609 {
610 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
611 	struct ieee80211_freq_range *freq_range;
612 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
613 	struct ieee80211_power_rule *power_rule;
614 	u32 freq_diff;
615 
616 	freq_range1 = &rule1->freq_range;
617 	freq_range2 = &rule2->freq_range;
618 	freq_range = &intersected_rule->freq_range;
619 
620 	power_rule1 = &rule1->power_rule;
621 	power_rule2 = &rule2->power_rule;
622 	power_rule = &intersected_rule->power_rule;
623 
624 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
625 					 freq_range2->start_freq_khz);
626 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
627 				       freq_range2->end_freq_khz);
628 	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
629 					    freq_range2->max_bandwidth_khz);
630 
631 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
632 	if (freq_range->max_bandwidth_khz > freq_diff)
633 		freq_range->max_bandwidth_khz = freq_diff;
634 
635 	power_rule->max_eirp = min(power_rule1->max_eirp,
636 		power_rule2->max_eirp);
637 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
638 		power_rule2->max_antenna_gain);
639 
640 	intersected_rule->flags = rule1->flags | rule2->flags;
641 
642 	if (!is_valid_reg_rule(intersected_rule))
643 		return -EINVAL;
644 
645 	return 0;
646 }
647 
648 /**
649  * regdom_intersect - do the intersection between two regulatory domains
650  * @rd1: first regulatory domain
651  * @rd2: second regulatory domain
652  *
653  * Use this function to get the intersection between two regulatory domains.
654  * Once completed we will mark the alpha2 for the rd as intersected, "98",
655  * as no one single alpha2 can represent this regulatory domain.
656  *
657  * Returns a pointer to the regulatory domain structure which will hold the
658  * resulting intersection of rules between rd1 and rd2. We will
659  * kzalloc() this structure for you.
660  */
661 static struct ieee80211_regdomain *
662 regdom_intersect(const struct ieee80211_regdomain *rd1,
663 		 const struct ieee80211_regdomain *rd2)
664 {
665 	int r, size_of_regd;
666 	unsigned int x, y;
667 	unsigned int num_rules = 0, rule_idx = 0;
668 	const struct ieee80211_reg_rule *rule1, *rule2;
669 	struct ieee80211_reg_rule *intersected_rule;
670 	struct ieee80211_regdomain *rd;
671 	/* This is just a dummy holder to help us count */
672 	struct ieee80211_reg_rule dummy_rule;
673 
674 	if (!rd1 || !rd2)
675 		return NULL;
676 
677 	/*
678 	 * First we get a count of the rules we'll need, then we actually
679 	 * build them. This is to so we can malloc() and free() a
680 	 * regdomain once. The reason we use reg_rules_intersect() here
681 	 * is it will return -EINVAL if the rule computed makes no sense.
682 	 * All rules that do check out OK are valid.
683 	 */
684 
685 	for (x = 0; x < rd1->n_reg_rules; x++) {
686 		rule1 = &rd1->reg_rules[x];
687 		for (y = 0; y < rd2->n_reg_rules; y++) {
688 			rule2 = &rd2->reg_rules[y];
689 			if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
690 				num_rules++;
691 		}
692 	}
693 
694 	if (!num_rules)
695 		return NULL;
696 
697 	size_of_regd = sizeof(struct ieee80211_regdomain) +
698 		       num_rules * sizeof(struct ieee80211_reg_rule);
699 
700 	rd = kzalloc(size_of_regd, GFP_KERNEL);
701 	if (!rd)
702 		return NULL;
703 
704 	for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
705 		rule1 = &rd1->reg_rules[x];
706 		for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
707 			rule2 = &rd2->reg_rules[y];
708 			/*
709 			 * This time around instead of using the stack lets
710 			 * write to the target rule directly saving ourselves
711 			 * a memcpy()
712 			 */
713 			intersected_rule = &rd->reg_rules[rule_idx];
714 			r = reg_rules_intersect(rule1, rule2, intersected_rule);
715 			/*
716 			 * No need to memset here the intersected rule here as
717 			 * we're not using the stack anymore
718 			 */
719 			if (r)
720 				continue;
721 			rule_idx++;
722 		}
723 	}
724 
725 	if (rule_idx != num_rules) {
726 		kfree(rd);
727 		return NULL;
728 	}
729 
730 	rd->n_reg_rules = num_rules;
731 	rd->alpha2[0] = '9';
732 	rd->alpha2[1] = '8';
733 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
734 						  rd2->dfs_region);
735 
736 	return rd;
737 }
738 
739 /*
740  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
741  * want to just have the channel structure use these
742  */
743 static u32 map_regdom_flags(u32 rd_flags)
744 {
745 	u32 channel_flags = 0;
746 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
747 		channel_flags |= IEEE80211_CHAN_NO_IR;
748 	if (rd_flags & NL80211_RRF_DFS)
749 		channel_flags |= IEEE80211_CHAN_RADAR;
750 	if (rd_flags & NL80211_RRF_NO_OFDM)
751 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
752 	return channel_flags;
753 }
754 
755 static const struct ieee80211_reg_rule *
756 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
757 		   const struct ieee80211_regdomain *regd)
758 {
759 	int i;
760 	bool band_rule_found = false;
761 	bool bw_fits = false;
762 
763 	if (!regd)
764 		return ERR_PTR(-EINVAL);
765 
766 	for (i = 0; i < regd->n_reg_rules; i++) {
767 		const struct ieee80211_reg_rule *rr;
768 		const struct ieee80211_freq_range *fr = NULL;
769 
770 		rr = &regd->reg_rules[i];
771 		fr = &rr->freq_range;
772 
773 		/*
774 		 * We only need to know if one frequency rule was
775 		 * was in center_freq's band, that's enough, so lets
776 		 * not overwrite it once found
777 		 */
778 		if (!band_rule_found)
779 			band_rule_found = freq_in_rule_band(fr, center_freq);
780 
781 		bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
782 
783 		if (band_rule_found && bw_fits)
784 			return rr;
785 	}
786 
787 	if (!band_rule_found)
788 		return ERR_PTR(-ERANGE);
789 
790 	return ERR_PTR(-EINVAL);
791 }
792 
793 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
794 					       u32 center_freq)
795 {
796 	const struct ieee80211_regdomain *regd;
797 	struct regulatory_request *lr = get_last_request();
798 
799 	/*
800 	 * Follow the driver's regulatory domain, if present, unless a country
801 	 * IE has been processed or a user wants to help complaince further
802 	 */
803 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
804 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
805 	    wiphy->regd)
806 		regd = get_wiphy_regdom(wiphy);
807 	else
808 		regd = get_cfg80211_regdom();
809 
810 	return freq_reg_info_regd(wiphy, center_freq, regd);
811 }
812 EXPORT_SYMBOL(freq_reg_info);
813 
814 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
815 {
816 	switch (initiator) {
817 	case NL80211_REGDOM_SET_BY_CORE:
818 		return "core";
819 	case NL80211_REGDOM_SET_BY_USER:
820 		return "user";
821 	case NL80211_REGDOM_SET_BY_DRIVER:
822 		return "driver";
823 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
824 		return "country IE";
825 	default:
826 		WARN_ON(1);
827 		return "bug";
828 	}
829 }
830 EXPORT_SYMBOL(reg_initiator_name);
831 
832 #ifdef CONFIG_CFG80211_REG_DEBUG
833 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
834 				    const struct ieee80211_reg_rule *reg_rule)
835 {
836 	const struct ieee80211_power_rule *power_rule;
837 	const struct ieee80211_freq_range *freq_range;
838 	char max_antenna_gain[32];
839 
840 	power_rule = &reg_rule->power_rule;
841 	freq_range = &reg_rule->freq_range;
842 
843 	if (!power_rule->max_antenna_gain)
844 		snprintf(max_antenna_gain, 32, "N/A");
845 	else
846 		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
847 
848 	REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
849 		      chan->center_freq);
850 
851 	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
852 		      freq_range->start_freq_khz, freq_range->end_freq_khz,
853 		      freq_range->max_bandwidth_khz, max_antenna_gain,
854 		      power_rule->max_eirp);
855 }
856 #else
857 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
858 				    const struct ieee80211_reg_rule *reg_rule)
859 {
860 	return;
861 }
862 #endif
863 
864 /*
865  * Note that right now we assume the desired channel bandwidth
866  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
867  * per channel, the primary and the extension channel).
868  */
869 static void handle_channel(struct wiphy *wiphy,
870 			   enum nl80211_reg_initiator initiator,
871 			   struct ieee80211_channel *chan)
872 {
873 	u32 flags, bw_flags = 0;
874 	const struct ieee80211_reg_rule *reg_rule = NULL;
875 	const struct ieee80211_power_rule *power_rule = NULL;
876 	const struct ieee80211_freq_range *freq_range = NULL;
877 	struct wiphy *request_wiphy = NULL;
878 	struct regulatory_request *lr = get_last_request();
879 
880 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
881 
882 	flags = chan->orig_flags;
883 
884 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
885 	if (IS_ERR(reg_rule)) {
886 		/*
887 		 * We will disable all channels that do not match our
888 		 * received regulatory rule unless the hint is coming
889 		 * from a Country IE and the Country IE had no information
890 		 * about a band. The IEEE 802.11 spec allows for an AP
891 		 * to send only a subset of the regulatory rules allowed,
892 		 * so an AP in the US that only supports 2.4 GHz may only send
893 		 * a country IE with information for the 2.4 GHz band
894 		 * while 5 GHz is still supported.
895 		 */
896 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
897 		    PTR_ERR(reg_rule) == -ERANGE)
898 			return;
899 
900 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
901 		    request_wiphy && request_wiphy == wiphy &&
902 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
903 			REG_DBG_PRINT("Disabling freq %d MHz for good\n",
904 				      chan->center_freq);
905 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
906 			chan->flags = chan->orig_flags;
907 		} else {
908 			REG_DBG_PRINT("Disabling freq %d MHz\n",
909 				      chan->center_freq);
910 			chan->flags |= IEEE80211_CHAN_DISABLED;
911 		}
912 		return;
913 	}
914 
915 	chan_reg_rule_print_dbg(chan, reg_rule);
916 
917 	power_rule = &reg_rule->power_rule;
918 	freq_range = &reg_rule->freq_range;
919 
920 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
921 		bw_flags = IEEE80211_CHAN_NO_HT40;
922 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
923 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
924 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
925 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
926 
927 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
928 	    request_wiphy && request_wiphy == wiphy &&
929 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
930 		/*
931 		 * This guarantees the driver's requested regulatory domain
932 		 * will always be used as a base for further regulatory
933 		 * settings
934 		 */
935 		chan->flags = chan->orig_flags =
936 			map_regdom_flags(reg_rule->flags) | bw_flags;
937 		chan->max_antenna_gain = chan->orig_mag =
938 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
939 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
940 			(int) MBM_TO_DBM(power_rule->max_eirp);
941 		return;
942 	}
943 
944 	chan->dfs_state = NL80211_DFS_USABLE;
945 	chan->dfs_state_entered = jiffies;
946 
947 	chan->beacon_found = false;
948 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
949 	chan->max_antenna_gain =
950 		min_t(int, chan->orig_mag,
951 		      MBI_TO_DBI(power_rule->max_antenna_gain));
952 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
953 	if (chan->orig_mpwr) {
954 		/*
955 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
956 		 * will always follow the passed country IE power settings.
957 		 */
958 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
959 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
960 			chan->max_power = chan->max_reg_power;
961 		else
962 			chan->max_power = min(chan->orig_mpwr,
963 					      chan->max_reg_power);
964 	} else
965 		chan->max_power = chan->max_reg_power;
966 }
967 
968 static void handle_band(struct wiphy *wiphy,
969 			enum nl80211_reg_initiator initiator,
970 			struct ieee80211_supported_band *sband)
971 {
972 	unsigned int i;
973 
974 	if (!sband)
975 		return;
976 
977 	for (i = 0; i < sband->n_channels; i++)
978 		handle_channel(wiphy, initiator, &sband->channels[i]);
979 }
980 
981 static bool reg_request_cell_base(struct regulatory_request *request)
982 {
983 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
984 		return false;
985 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
986 }
987 
988 bool reg_last_request_cell_base(void)
989 {
990 	return reg_request_cell_base(get_last_request());
991 }
992 
993 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
994 /* Core specific check */
995 static enum reg_request_treatment
996 reg_ignore_cell_hint(struct regulatory_request *pending_request)
997 {
998 	struct regulatory_request *lr = get_last_request();
999 
1000 	if (!reg_num_devs_support_basehint)
1001 		return REG_REQ_IGNORE;
1002 
1003 	if (reg_request_cell_base(lr) &&
1004 	    !regdom_changes(pending_request->alpha2))
1005 		return REG_REQ_ALREADY_SET;
1006 
1007 	return REG_REQ_OK;
1008 }
1009 
1010 /* Device specific check */
1011 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1012 {
1013 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1014 }
1015 #else
1016 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1017 {
1018 	return REG_REQ_IGNORE;
1019 }
1020 
1021 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1022 {
1023 	return true;
1024 }
1025 #endif
1026 
1027 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1028 {
1029 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1030 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1031 		return true;
1032 	return false;
1033 }
1034 
1035 static bool ignore_reg_update(struct wiphy *wiphy,
1036 			      enum nl80211_reg_initiator initiator)
1037 {
1038 	struct regulatory_request *lr = get_last_request();
1039 
1040 	if (!lr) {
1041 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1042 			      "since last_request is not set\n",
1043 			      reg_initiator_name(initiator));
1044 		return true;
1045 	}
1046 
1047 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1048 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1049 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1050 			      "since the driver uses its own custom "
1051 			      "regulatory domain\n",
1052 			      reg_initiator_name(initiator));
1053 		return true;
1054 	}
1055 
1056 	/*
1057 	 * wiphy->regd will be set once the device has its own
1058 	 * desired regulatory domain set
1059 	 */
1060 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1061 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1062 	    !is_world_regdom(lr->alpha2)) {
1063 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1064 			      "since the driver requires its own regulatory "
1065 			      "domain to be set first\n",
1066 			      reg_initiator_name(initiator));
1067 		return true;
1068 	}
1069 
1070 	if (reg_request_cell_base(lr))
1071 		return reg_dev_ignore_cell_hint(wiphy);
1072 
1073 	return false;
1074 }
1075 
1076 static bool reg_is_world_roaming(struct wiphy *wiphy)
1077 {
1078 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1079 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1080 	struct regulatory_request *lr = get_last_request();
1081 
1082 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1083 		return true;
1084 
1085 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1086 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1087 		return true;
1088 
1089 	return false;
1090 }
1091 
1092 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1093 			      struct reg_beacon *reg_beacon)
1094 {
1095 	struct ieee80211_supported_band *sband;
1096 	struct ieee80211_channel *chan;
1097 	bool channel_changed = false;
1098 	struct ieee80211_channel chan_before;
1099 
1100 	sband = wiphy->bands[reg_beacon->chan.band];
1101 	chan = &sband->channels[chan_idx];
1102 
1103 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1104 		return;
1105 
1106 	if (chan->beacon_found)
1107 		return;
1108 
1109 	chan->beacon_found = true;
1110 
1111 	if (!reg_is_world_roaming(wiphy))
1112 		return;
1113 
1114 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1115 		return;
1116 
1117 	chan_before.center_freq = chan->center_freq;
1118 	chan_before.flags = chan->flags;
1119 
1120 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1121 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1122 		channel_changed = true;
1123 	}
1124 
1125 	if (channel_changed)
1126 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1127 }
1128 
1129 /*
1130  * Called when a scan on a wiphy finds a beacon on
1131  * new channel
1132  */
1133 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1134 				    struct reg_beacon *reg_beacon)
1135 {
1136 	unsigned int i;
1137 	struct ieee80211_supported_band *sband;
1138 
1139 	if (!wiphy->bands[reg_beacon->chan.band])
1140 		return;
1141 
1142 	sband = wiphy->bands[reg_beacon->chan.band];
1143 
1144 	for (i = 0; i < sband->n_channels; i++)
1145 		handle_reg_beacon(wiphy, i, reg_beacon);
1146 }
1147 
1148 /*
1149  * Called upon reg changes or a new wiphy is added
1150  */
1151 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1152 {
1153 	unsigned int i;
1154 	struct ieee80211_supported_band *sband;
1155 	struct reg_beacon *reg_beacon;
1156 
1157 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1158 		if (!wiphy->bands[reg_beacon->chan.band])
1159 			continue;
1160 		sband = wiphy->bands[reg_beacon->chan.band];
1161 		for (i = 0; i < sband->n_channels; i++)
1162 			handle_reg_beacon(wiphy, i, reg_beacon);
1163 	}
1164 }
1165 
1166 /* Reap the advantages of previously found beacons */
1167 static void reg_process_beacons(struct wiphy *wiphy)
1168 {
1169 	/*
1170 	 * Means we are just firing up cfg80211, so no beacons would
1171 	 * have been processed yet.
1172 	 */
1173 	if (!last_request)
1174 		return;
1175 	wiphy_update_beacon_reg(wiphy);
1176 }
1177 
1178 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1179 {
1180 	if (!chan)
1181 		return false;
1182 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1183 		return false;
1184 	/* This would happen when regulatory rules disallow HT40 completely */
1185 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1186 		return false;
1187 	return true;
1188 }
1189 
1190 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1191 					 struct ieee80211_channel *channel)
1192 {
1193 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1194 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1195 	unsigned int i;
1196 
1197 	if (!is_ht40_allowed(channel)) {
1198 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1199 		return;
1200 	}
1201 
1202 	/*
1203 	 * We need to ensure the extension channels exist to
1204 	 * be able to use HT40- or HT40+, this finds them (or not)
1205 	 */
1206 	for (i = 0; i < sband->n_channels; i++) {
1207 		struct ieee80211_channel *c = &sband->channels[i];
1208 
1209 		if (c->center_freq == (channel->center_freq - 20))
1210 			channel_before = c;
1211 		if (c->center_freq == (channel->center_freq + 20))
1212 			channel_after = c;
1213 	}
1214 
1215 	/*
1216 	 * Please note that this assumes target bandwidth is 20 MHz,
1217 	 * if that ever changes we also need to change the below logic
1218 	 * to include that as well.
1219 	 */
1220 	if (!is_ht40_allowed(channel_before))
1221 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1222 	else
1223 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1224 
1225 	if (!is_ht40_allowed(channel_after))
1226 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1227 	else
1228 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1229 }
1230 
1231 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1232 				      struct ieee80211_supported_band *sband)
1233 {
1234 	unsigned int i;
1235 
1236 	if (!sband)
1237 		return;
1238 
1239 	for (i = 0; i < sband->n_channels; i++)
1240 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1241 }
1242 
1243 static void reg_process_ht_flags(struct wiphy *wiphy)
1244 {
1245 	enum ieee80211_band band;
1246 
1247 	if (!wiphy)
1248 		return;
1249 
1250 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1251 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1252 }
1253 
1254 static void reg_call_notifier(struct wiphy *wiphy,
1255 			      struct regulatory_request *request)
1256 {
1257 	if (wiphy->reg_notifier)
1258 		wiphy->reg_notifier(wiphy, request);
1259 }
1260 
1261 static void wiphy_update_regulatory(struct wiphy *wiphy,
1262 				    enum nl80211_reg_initiator initiator)
1263 {
1264 	enum ieee80211_band band;
1265 	struct regulatory_request *lr = get_last_request();
1266 
1267 	if (ignore_reg_update(wiphy, initiator)) {
1268 		/*
1269 		 * Regulatory updates set by CORE are ignored for custom
1270 		 * regulatory cards. Let us notify the changes to the driver,
1271 		 * as some drivers used this to restore its orig_* reg domain.
1272 		 */
1273 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1274 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1275 			reg_call_notifier(wiphy, lr);
1276 		return;
1277 	}
1278 
1279 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1280 
1281 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1282 		handle_band(wiphy, initiator, wiphy->bands[band]);
1283 
1284 	reg_process_beacons(wiphy);
1285 	reg_process_ht_flags(wiphy);
1286 	reg_call_notifier(wiphy, lr);
1287 }
1288 
1289 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1290 {
1291 	struct cfg80211_registered_device *rdev;
1292 	struct wiphy *wiphy;
1293 
1294 	ASSERT_RTNL();
1295 
1296 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1297 		wiphy = &rdev->wiphy;
1298 		wiphy_update_regulatory(wiphy, initiator);
1299 	}
1300 }
1301 
1302 static void handle_channel_custom(struct wiphy *wiphy,
1303 				  struct ieee80211_channel *chan,
1304 				  const struct ieee80211_regdomain *regd)
1305 {
1306 	u32 bw_flags = 0;
1307 	const struct ieee80211_reg_rule *reg_rule = NULL;
1308 	const struct ieee80211_power_rule *power_rule = NULL;
1309 	const struct ieee80211_freq_range *freq_range = NULL;
1310 
1311 	reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1312 				      regd);
1313 
1314 	if (IS_ERR(reg_rule)) {
1315 		REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1316 			      chan->center_freq);
1317 		chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1318 		chan->flags = chan->orig_flags;
1319 		return;
1320 	}
1321 
1322 	chan_reg_rule_print_dbg(chan, reg_rule);
1323 
1324 	power_rule = &reg_rule->power_rule;
1325 	freq_range = &reg_rule->freq_range;
1326 
1327 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1328 		bw_flags = IEEE80211_CHAN_NO_HT40;
1329 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
1330 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1331 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
1332 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1333 
1334 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1335 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1336 	chan->max_reg_power = chan->max_power =
1337 		(int) MBM_TO_DBM(power_rule->max_eirp);
1338 }
1339 
1340 static void handle_band_custom(struct wiphy *wiphy,
1341 			       struct ieee80211_supported_band *sband,
1342 			       const struct ieee80211_regdomain *regd)
1343 {
1344 	unsigned int i;
1345 
1346 	if (!sband)
1347 		return;
1348 
1349 	for (i = 0; i < sband->n_channels; i++)
1350 		handle_channel_custom(wiphy, &sband->channels[i], regd);
1351 }
1352 
1353 /* Used by drivers prior to wiphy registration */
1354 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1355 				   const struct ieee80211_regdomain *regd)
1356 {
1357 	enum ieee80211_band band;
1358 	unsigned int bands_set = 0;
1359 
1360 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1361 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
1362 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1363 
1364 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1365 		if (!wiphy->bands[band])
1366 			continue;
1367 		handle_band_custom(wiphy, wiphy->bands[band], regd);
1368 		bands_set++;
1369 	}
1370 
1371 	/*
1372 	 * no point in calling this if it won't have any effect
1373 	 * on your device's supported bands.
1374 	 */
1375 	WARN_ON(!bands_set);
1376 }
1377 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1378 
1379 static void reg_set_request_processed(void)
1380 {
1381 	bool need_more_processing = false;
1382 	struct regulatory_request *lr = get_last_request();
1383 
1384 	lr->processed = true;
1385 
1386 	spin_lock(&reg_requests_lock);
1387 	if (!list_empty(&reg_requests_list))
1388 		need_more_processing = true;
1389 	spin_unlock(&reg_requests_lock);
1390 
1391 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1392 		cancel_delayed_work(&reg_timeout);
1393 
1394 	if (need_more_processing)
1395 		schedule_work(&reg_work);
1396 }
1397 
1398 /**
1399  * reg_process_hint_core - process core regulatory requests
1400  * @pending_request: a pending core regulatory request
1401  *
1402  * The wireless subsystem can use this function to process
1403  * a regulatory request issued by the regulatory core.
1404  *
1405  * Returns one of the different reg request treatment values.
1406  */
1407 static enum reg_request_treatment
1408 reg_process_hint_core(struct regulatory_request *core_request)
1409 {
1410 
1411 	core_request->intersect = false;
1412 	core_request->processed = false;
1413 
1414 	reg_update_last_request(core_request);
1415 
1416 	return reg_call_crda(core_request);
1417 }
1418 
1419 static enum reg_request_treatment
1420 __reg_process_hint_user(struct regulatory_request *user_request)
1421 {
1422 	struct regulatory_request *lr = get_last_request();
1423 
1424 	if (reg_request_cell_base(user_request))
1425 		return reg_ignore_cell_hint(user_request);
1426 
1427 	if (reg_request_cell_base(lr))
1428 		return REG_REQ_IGNORE;
1429 
1430 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1431 		return REG_REQ_INTERSECT;
1432 	/*
1433 	 * If the user knows better the user should set the regdom
1434 	 * to their country before the IE is picked up
1435 	 */
1436 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1437 	    lr->intersect)
1438 		return REG_REQ_IGNORE;
1439 	/*
1440 	 * Process user requests only after previous user/driver/core
1441 	 * requests have been processed
1442 	 */
1443 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1444 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1445 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1446 	    regdom_changes(lr->alpha2))
1447 		return REG_REQ_IGNORE;
1448 
1449 	if (!regdom_changes(user_request->alpha2))
1450 		return REG_REQ_ALREADY_SET;
1451 
1452 	return REG_REQ_OK;
1453 }
1454 
1455 /**
1456  * reg_process_hint_user - process user regulatory requests
1457  * @user_request: a pending user regulatory request
1458  *
1459  * The wireless subsystem can use this function to process
1460  * a regulatory request initiated by userspace.
1461  *
1462  * Returns one of the different reg request treatment values.
1463  */
1464 static enum reg_request_treatment
1465 reg_process_hint_user(struct regulatory_request *user_request)
1466 {
1467 	enum reg_request_treatment treatment;
1468 
1469 	treatment = __reg_process_hint_user(user_request);
1470 	if (treatment == REG_REQ_IGNORE ||
1471 	    treatment == REG_REQ_ALREADY_SET) {
1472 		kfree(user_request);
1473 		return treatment;
1474 	}
1475 
1476 	user_request->intersect = treatment == REG_REQ_INTERSECT;
1477 	user_request->processed = false;
1478 
1479 	reg_update_last_request(user_request);
1480 
1481 	user_alpha2[0] = user_request->alpha2[0];
1482 	user_alpha2[1] = user_request->alpha2[1];
1483 
1484 	return reg_call_crda(user_request);
1485 }
1486 
1487 static enum reg_request_treatment
1488 __reg_process_hint_driver(struct regulatory_request *driver_request)
1489 {
1490 	struct regulatory_request *lr = get_last_request();
1491 
1492 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1493 		if (regdom_changes(driver_request->alpha2))
1494 			return REG_REQ_OK;
1495 		return REG_REQ_ALREADY_SET;
1496 	}
1497 
1498 	/*
1499 	 * This would happen if you unplug and plug your card
1500 	 * back in or if you add a new device for which the previously
1501 	 * loaded card also agrees on the regulatory domain.
1502 	 */
1503 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1504 	    !regdom_changes(driver_request->alpha2))
1505 		return REG_REQ_ALREADY_SET;
1506 
1507 	return REG_REQ_INTERSECT;
1508 }
1509 
1510 /**
1511  * reg_process_hint_driver - process driver regulatory requests
1512  * @driver_request: a pending driver regulatory request
1513  *
1514  * The wireless subsystem can use this function to process
1515  * a regulatory request issued by an 802.11 driver.
1516  *
1517  * Returns one of the different reg request treatment values.
1518  */
1519 static enum reg_request_treatment
1520 reg_process_hint_driver(struct wiphy *wiphy,
1521 			struct regulatory_request *driver_request)
1522 {
1523 	const struct ieee80211_regdomain *regd;
1524 	enum reg_request_treatment treatment;
1525 
1526 	treatment = __reg_process_hint_driver(driver_request);
1527 
1528 	switch (treatment) {
1529 	case REG_REQ_OK:
1530 		break;
1531 	case REG_REQ_IGNORE:
1532 		kfree(driver_request);
1533 		return treatment;
1534 	case REG_REQ_INTERSECT:
1535 		/* fall through */
1536 	case REG_REQ_ALREADY_SET:
1537 		regd = reg_copy_regd(get_cfg80211_regdom());
1538 		if (IS_ERR(regd)) {
1539 			kfree(driver_request);
1540 			return REG_REQ_IGNORE;
1541 		}
1542 		rcu_assign_pointer(wiphy->regd, regd);
1543 	}
1544 
1545 
1546 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
1547 	driver_request->processed = false;
1548 
1549 	reg_update_last_request(driver_request);
1550 
1551 	/*
1552 	 * Since CRDA will not be called in this case as we already
1553 	 * have applied the requested regulatory domain before we just
1554 	 * inform userspace we have processed the request
1555 	 */
1556 	if (treatment == REG_REQ_ALREADY_SET) {
1557 		nl80211_send_reg_change_event(driver_request);
1558 		reg_set_request_processed();
1559 		return treatment;
1560 	}
1561 
1562 	return reg_call_crda(driver_request);
1563 }
1564 
1565 static enum reg_request_treatment
1566 __reg_process_hint_country_ie(struct wiphy *wiphy,
1567 			      struct regulatory_request *country_ie_request)
1568 {
1569 	struct wiphy *last_wiphy = NULL;
1570 	struct regulatory_request *lr = get_last_request();
1571 
1572 	if (reg_request_cell_base(lr)) {
1573 		/* Trust a Cell base station over the AP's country IE */
1574 		if (regdom_changes(country_ie_request->alpha2))
1575 			return REG_REQ_IGNORE;
1576 		return REG_REQ_ALREADY_SET;
1577 	} else {
1578 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1579 			return REG_REQ_IGNORE;
1580 	}
1581 
1582 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1583 		return -EINVAL;
1584 
1585 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1586 		return REG_REQ_OK;
1587 
1588 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1589 
1590 	if (last_wiphy != wiphy) {
1591 		/*
1592 		 * Two cards with two APs claiming different
1593 		 * Country IE alpha2s. We could
1594 		 * intersect them, but that seems unlikely
1595 		 * to be correct. Reject second one for now.
1596 		 */
1597 		if (regdom_changes(country_ie_request->alpha2))
1598 			return REG_REQ_IGNORE;
1599 		return REG_REQ_ALREADY_SET;
1600 	}
1601 	/*
1602 	 * Two consecutive Country IE hints on the same wiphy.
1603 	 * This should be picked up early by the driver/stack
1604 	 */
1605 	if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1606 		return REG_REQ_OK;
1607 	return REG_REQ_ALREADY_SET;
1608 }
1609 
1610 /**
1611  * reg_process_hint_country_ie - process regulatory requests from country IEs
1612  * @country_ie_request: a regulatory request from a country IE
1613  *
1614  * The wireless subsystem can use this function to process
1615  * a regulatory request issued by a country Information Element.
1616  *
1617  * Returns one of the different reg request treatment values.
1618  */
1619 static enum reg_request_treatment
1620 reg_process_hint_country_ie(struct wiphy *wiphy,
1621 			    struct regulatory_request *country_ie_request)
1622 {
1623 	enum reg_request_treatment treatment;
1624 
1625 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1626 
1627 	switch (treatment) {
1628 	case REG_REQ_OK:
1629 		break;
1630 	case REG_REQ_IGNORE:
1631 		/* fall through */
1632 	case REG_REQ_ALREADY_SET:
1633 		kfree(country_ie_request);
1634 		return treatment;
1635 	case REG_REQ_INTERSECT:
1636 		kfree(country_ie_request);
1637 		/*
1638 		 * This doesn't happen yet, not sure we
1639 		 * ever want to support it for this case.
1640 		 */
1641 		WARN_ONCE(1, "Unexpected intersection for country IEs");
1642 		return REG_REQ_IGNORE;
1643 	}
1644 
1645 	country_ie_request->intersect = false;
1646 	country_ie_request->processed = false;
1647 
1648 	reg_update_last_request(country_ie_request);
1649 
1650 	return reg_call_crda(country_ie_request);
1651 }
1652 
1653 /* This processes *all* regulatory hints */
1654 static void reg_process_hint(struct regulatory_request *reg_request)
1655 {
1656 	struct wiphy *wiphy = NULL;
1657 	enum reg_request_treatment treatment;
1658 
1659 	if (WARN_ON(!reg_request->alpha2))
1660 		return;
1661 
1662 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1663 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1664 
1665 	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1666 		kfree(reg_request);
1667 		return;
1668 	}
1669 
1670 	switch (reg_request->initiator) {
1671 	case NL80211_REGDOM_SET_BY_CORE:
1672 		reg_process_hint_core(reg_request);
1673 		return;
1674 	case NL80211_REGDOM_SET_BY_USER:
1675 		treatment = reg_process_hint_user(reg_request);
1676 		if (treatment == REG_REQ_OK ||
1677 		    treatment == REG_REQ_ALREADY_SET)
1678 			return;
1679 		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1680 		return;
1681 	case NL80211_REGDOM_SET_BY_DRIVER:
1682 		treatment = reg_process_hint_driver(wiphy, reg_request);
1683 		break;
1684 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1685 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
1686 		break;
1687 	default:
1688 		WARN(1, "invalid initiator %d\n", reg_request->initiator);
1689 		return;
1690 	}
1691 
1692 	/* This is required so that the orig_* parameters are saved */
1693 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1694 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1695 		wiphy_update_regulatory(wiphy, reg_request->initiator);
1696 }
1697 
1698 /*
1699  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1700  * Regulatory hints come on a first come first serve basis and we
1701  * must process each one atomically.
1702  */
1703 static void reg_process_pending_hints(void)
1704 {
1705 	struct regulatory_request *reg_request, *lr;
1706 
1707 	lr = get_last_request();
1708 
1709 	/* When last_request->processed becomes true this will be rescheduled */
1710 	if (lr && !lr->processed) {
1711 		REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1712 		return;
1713 	}
1714 
1715 	spin_lock(&reg_requests_lock);
1716 
1717 	if (list_empty(&reg_requests_list)) {
1718 		spin_unlock(&reg_requests_lock);
1719 		return;
1720 	}
1721 
1722 	reg_request = list_first_entry(&reg_requests_list,
1723 				       struct regulatory_request,
1724 				       list);
1725 	list_del_init(&reg_request->list);
1726 
1727 	spin_unlock(&reg_requests_lock);
1728 
1729 	reg_process_hint(reg_request);
1730 }
1731 
1732 /* Processes beacon hints -- this has nothing to do with country IEs */
1733 static void reg_process_pending_beacon_hints(void)
1734 {
1735 	struct cfg80211_registered_device *rdev;
1736 	struct reg_beacon *pending_beacon, *tmp;
1737 
1738 	/* This goes through the _pending_ beacon list */
1739 	spin_lock_bh(&reg_pending_beacons_lock);
1740 
1741 	list_for_each_entry_safe(pending_beacon, tmp,
1742 				 &reg_pending_beacons, list) {
1743 		list_del_init(&pending_beacon->list);
1744 
1745 		/* Applies the beacon hint to current wiphys */
1746 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1747 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1748 
1749 		/* Remembers the beacon hint for new wiphys or reg changes */
1750 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1751 	}
1752 
1753 	spin_unlock_bh(&reg_pending_beacons_lock);
1754 }
1755 
1756 static void reg_todo(struct work_struct *work)
1757 {
1758 	rtnl_lock();
1759 	reg_process_pending_hints();
1760 	reg_process_pending_beacon_hints();
1761 	rtnl_unlock();
1762 }
1763 
1764 static void queue_regulatory_request(struct regulatory_request *request)
1765 {
1766 	request->alpha2[0] = toupper(request->alpha2[0]);
1767 	request->alpha2[1] = toupper(request->alpha2[1]);
1768 
1769 	spin_lock(&reg_requests_lock);
1770 	list_add_tail(&request->list, &reg_requests_list);
1771 	spin_unlock(&reg_requests_lock);
1772 
1773 	schedule_work(&reg_work);
1774 }
1775 
1776 /*
1777  * Core regulatory hint -- happens during cfg80211_init()
1778  * and when we restore regulatory settings.
1779  */
1780 static int regulatory_hint_core(const char *alpha2)
1781 {
1782 	struct regulatory_request *request;
1783 
1784 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1785 	if (!request)
1786 		return -ENOMEM;
1787 
1788 	request->alpha2[0] = alpha2[0];
1789 	request->alpha2[1] = alpha2[1];
1790 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1791 
1792 	queue_regulatory_request(request);
1793 
1794 	return 0;
1795 }
1796 
1797 /* User hints */
1798 int regulatory_hint_user(const char *alpha2,
1799 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
1800 {
1801 	struct regulatory_request *request;
1802 
1803 	if (WARN_ON(!alpha2))
1804 		return -EINVAL;
1805 
1806 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1807 	if (!request)
1808 		return -ENOMEM;
1809 
1810 	request->wiphy_idx = WIPHY_IDX_INVALID;
1811 	request->alpha2[0] = alpha2[0];
1812 	request->alpha2[1] = alpha2[1];
1813 	request->initiator = NL80211_REGDOM_SET_BY_USER;
1814 	request->user_reg_hint_type = user_reg_hint_type;
1815 
1816 	queue_regulatory_request(request);
1817 
1818 	return 0;
1819 }
1820 
1821 /* Driver hints */
1822 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1823 {
1824 	struct regulatory_request *request;
1825 
1826 	if (WARN_ON(!alpha2 || !wiphy))
1827 		return -EINVAL;
1828 
1829 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1830 	if (!request)
1831 		return -ENOMEM;
1832 
1833 	request->wiphy_idx = get_wiphy_idx(wiphy);
1834 
1835 	request->alpha2[0] = alpha2[0];
1836 	request->alpha2[1] = alpha2[1];
1837 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1838 
1839 	queue_regulatory_request(request);
1840 
1841 	return 0;
1842 }
1843 EXPORT_SYMBOL(regulatory_hint);
1844 
1845 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1846 				const u8 *country_ie, u8 country_ie_len)
1847 {
1848 	char alpha2[2];
1849 	enum environment_cap env = ENVIRON_ANY;
1850 	struct regulatory_request *request = NULL, *lr;
1851 
1852 	/* IE len must be evenly divisible by 2 */
1853 	if (country_ie_len & 0x01)
1854 		return;
1855 
1856 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1857 		return;
1858 
1859 	request = kzalloc(sizeof(*request), GFP_KERNEL);
1860 	if (!request)
1861 		return;
1862 
1863 	alpha2[0] = country_ie[0];
1864 	alpha2[1] = country_ie[1];
1865 
1866 	if (country_ie[2] == 'I')
1867 		env = ENVIRON_INDOOR;
1868 	else if (country_ie[2] == 'O')
1869 		env = ENVIRON_OUTDOOR;
1870 
1871 	rcu_read_lock();
1872 	lr = get_last_request();
1873 
1874 	if (unlikely(!lr))
1875 		goto out;
1876 
1877 	/*
1878 	 * We will run this only upon a successful connection on cfg80211.
1879 	 * We leave conflict resolution to the workqueue, where can hold
1880 	 * the RTNL.
1881 	 */
1882 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1883 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
1884 		goto out;
1885 
1886 	request->wiphy_idx = get_wiphy_idx(wiphy);
1887 	request->alpha2[0] = alpha2[0];
1888 	request->alpha2[1] = alpha2[1];
1889 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1890 	request->country_ie_env = env;
1891 
1892 	queue_regulatory_request(request);
1893 	request = NULL;
1894 out:
1895 	kfree(request);
1896 	rcu_read_unlock();
1897 }
1898 
1899 static void restore_alpha2(char *alpha2, bool reset_user)
1900 {
1901 	/* indicates there is no alpha2 to consider for restoration */
1902 	alpha2[0] = '9';
1903 	alpha2[1] = '7';
1904 
1905 	/* The user setting has precedence over the module parameter */
1906 	if (is_user_regdom_saved()) {
1907 		/* Unless we're asked to ignore it and reset it */
1908 		if (reset_user) {
1909 			REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1910 			user_alpha2[0] = '9';
1911 			user_alpha2[1] = '7';
1912 
1913 			/*
1914 			 * If we're ignoring user settings, we still need to
1915 			 * check the module parameter to ensure we put things
1916 			 * back as they were for a full restore.
1917 			 */
1918 			if (!is_world_regdom(ieee80211_regdom)) {
1919 				REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1920 					      ieee80211_regdom[0], ieee80211_regdom[1]);
1921 				alpha2[0] = ieee80211_regdom[0];
1922 				alpha2[1] = ieee80211_regdom[1];
1923 			}
1924 		} else {
1925 			REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1926 				      user_alpha2[0], user_alpha2[1]);
1927 			alpha2[0] = user_alpha2[0];
1928 			alpha2[1] = user_alpha2[1];
1929 		}
1930 	} else if (!is_world_regdom(ieee80211_regdom)) {
1931 		REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1932 			      ieee80211_regdom[0], ieee80211_regdom[1]);
1933 		alpha2[0] = ieee80211_regdom[0];
1934 		alpha2[1] = ieee80211_regdom[1];
1935 	} else
1936 		REG_DBG_PRINT("Restoring regulatory settings\n");
1937 }
1938 
1939 static void restore_custom_reg_settings(struct wiphy *wiphy)
1940 {
1941 	struct ieee80211_supported_band *sband;
1942 	enum ieee80211_band band;
1943 	struct ieee80211_channel *chan;
1944 	int i;
1945 
1946 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1947 		sband = wiphy->bands[band];
1948 		if (!sband)
1949 			continue;
1950 		for (i = 0; i < sband->n_channels; i++) {
1951 			chan = &sband->channels[i];
1952 			chan->flags = chan->orig_flags;
1953 			chan->max_antenna_gain = chan->orig_mag;
1954 			chan->max_power = chan->orig_mpwr;
1955 			chan->beacon_found = false;
1956 		}
1957 	}
1958 }
1959 
1960 /*
1961  * Restoring regulatory settings involves ingoring any
1962  * possibly stale country IE information and user regulatory
1963  * settings if so desired, this includes any beacon hints
1964  * learned as we could have traveled outside to another country
1965  * after disconnection. To restore regulatory settings we do
1966  * exactly what we did at bootup:
1967  *
1968  *   - send a core regulatory hint
1969  *   - send a user regulatory hint if applicable
1970  *
1971  * Device drivers that send a regulatory hint for a specific country
1972  * keep their own regulatory domain on wiphy->regd so that does does
1973  * not need to be remembered.
1974  */
1975 static void restore_regulatory_settings(bool reset_user)
1976 {
1977 	char alpha2[2];
1978 	char world_alpha2[2];
1979 	struct reg_beacon *reg_beacon, *btmp;
1980 	struct regulatory_request *reg_request, *tmp;
1981 	LIST_HEAD(tmp_reg_req_list);
1982 	struct cfg80211_registered_device *rdev;
1983 
1984 	ASSERT_RTNL();
1985 
1986 	reset_regdomains(true, &world_regdom);
1987 	restore_alpha2(alpha2, reset_user);
1988 
1989 	/*
1990 	 * If there's any pending requests we simply
1991 	 * stash them to a temporary pending queue and
1992 	 * add then after we've restored regulatory
1993 	 * settings.
1994 	 */
1995 	spin_lock(&reg_requests_lock);
1996 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1997 		if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1998 			continue;
1999 		list_move_tail(&reg_request->list, &tmp_reg_req_list);
2000 	}
2001 	spin_unlock(&reg_requests_lock);
2002 
2003 	/* Clear beacon hints */
2004 	spin_lock_bh(&reg_pending_beacons_lock);
2005 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2006 		list_del(&reg_beacon->list);
2007 		kfree(reg_beacon);
2008 	}
2009 	spin_unlock_bh(&reg_pending_beacons_lock);
2010 
2011 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2012 		list_del(&reg_beacon->list);
2013 		kfree(reg_beacon);
2014 	}
2015 
2016 	/* First restore to the basic regulatory settings */
2017 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2018 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2019 
2020 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2021 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2022 			restore_custom_reg_settings(&rdev->wiphy);
2023 	}
2024 
2025 	regulatory_hint_core(world_alpha2);
2026 
2027 	/*
2028 	 * This restores the ieee80211_regdom module parameter
2029 	 * preference or the last user requested regulatory
2030 	 * settings, user regulatory settings takes precedence.
2031 	 */
2032 	if (is_an_alpha2(alpha2))
2033 		regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2034 
2035 	spin_lock(&reg_requests_lock);
2036 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2037 	spin_unlock(&reg_requests_lock);
2038 
2039 	REG_DBG_PRINT("Kicking the queue\n");
2040 
2041 	schedule_work(&reg_work);
2042 }
2043 
2044 void regulatory_hint_disconnect(void)
2045 {
2046 	REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2047 	restore_regulatory_settings(false);
2048 }
2049 
2050 static bool freq_is_chan_12_13_14(u16 freq)
2051 {
2052 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2053 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2054 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2055 		return true;
2056 	return false;
2057 }
2058 
2059 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2060 {
2061 	struct reg_beacon *pending_beacon;
2062 
2063 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2064 		if (beacon_chan->center_freq ==
2065 		    pending_beacon->chan.center_freq)
2066 			return true;
2067 	return false;
2068 }
2069 
2070 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2071 				 struct ieee80211_channel *beacon_chan,
2072 				 gfp_t gfp)
2073 {
2074 	struct reg_beacon *reg_beacon;
2075 	bool processing;
2076 
2077 	if (beacon_chan->beacon_found ||
2078 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2079 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2080 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2081 		return 0;
2082 
2083 	spin_lock_bh(&reg_pending_beacons_lock);
2084 	processing = pending_reg_beacon(beacon_chan);
2085 	spin_unlock_bh(&reg_pending_beacons_lock);
2086 
2087 	if (processing)
2088 		return 0;
2089 
2090 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2091 	if (!reg_beacon)
2092 		return -ENOMEM;
2093 
2094 	REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2095 		      beacon_chan->center_freq,
2096 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
2097 		      wiphy_name(wiphy));
2098 
2099 	memcpy(&reg_beacon->chan, beacon_chan,
2100 	       sizeof(struct ieee80211_channel));
2101 
2102 	/*
2103 	 * Since we can be called from BH or and non-BH context
2104 	 * we must use spin_lock_bh()
2105 	 */
2106 	spin_lock_bh(&reg_pending_beacons_lock);
2107 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2108 	spin_unlock_bh(&reg_pending_beacons_lock);
2109 
2110 	schedule_work(&reg_work);
2111 
2112 	return 0;
2113 }
2114 
2115 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2116 {
2117 	unsigned int i;
2118 	const struct ieee80211_reg_rule *reg_rule = NULL;
2119 	const struct ieee80211_freq_range *freq_range = NULL;
2120 	const struct ieee80211_power_rule *power_rule = NULL;
2121 
2122 	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2123 
2124 	for (i = 0; i < rd->n_reg_rules; i++) {
2125 		reg_rule = &rd->reg_rules[i];
2126 		freq_range = &reg_rule->freq_range;
2127 		power_rule = &reg_rule->power_rule;
2128 
2129 		/*
2130 		 * There may not be documentation for max antenna gain
2131 		 * in certain regions
2132 		 */
2133 		if (power_rule->max_antenna_gain)
2134 			pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2135 				freq_range->start_freq_khz,
2136 				freq_range->end_freq_khz,
2137 				freq_range->max_bandwidth_khz,
2138 				power_rule->max_antenna_gain,
2139 				power_rule->max_eirp);
2140 		else
2141 			pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2142 				freq_range->start_freq_khz,
2143 				freq_range->end_freq_khz,
2144 				freq_range->max_bandwidth_khz,
2145 				power_rule->max_eirp);
2146 	}
2147 }
2148 
2149 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2150 {
2151 	switch (dfs_region) {
2152 	case NL80211_DFS_UNSET:
2153 	case NL80211_DFS_FCC:
2154 	case NL80211_DFS_ETSI:
2155 	case NL80211_DFS_JP:
2156 		return true;
2157 	default:
2158 		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2159 			      dfs_region);
2160 		return false;
2161 	}
2162 }
2163 
2164 static void print_regdomain(const struct ieee80211_regdomain *rd)
2165 {
2166 	struct regulatory_request *lr = get_last_request();
2167 
2168 	if (is_intersected_alpha2(rd->alpha2)) {
2169 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2170 			struct cfg80211_registered_device *rdev;
2171 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2172 			if (rdev) {
2173 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2174 					rdev->country_ie_alpha2[0],
2175 					rdev->country_ie_alpha2[1]);
2176 			} else
2177 				pr_info("Current regulatory domain intersected:\n");
2178 		} else
2179 			pr_info("Current regulatory domain intersected:\n");
2180 	} else if (is_world_regdom(rd->alpha2)) {
2181 		pr_info("World regulatory domain updated:\n");
2182 	} else {
2183 		if (is_unknown_alpha2(rd->alpha2))
2184 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2185 		else {
2186 			if (reg_request_cell_base(lr))
2187 				pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2188 					rd->alpha2[0], rd->alpha2[1]);
2189 			else
2190 				pr_info("Regulatory domain changed to country: %c%c\n",
2191 					rd->alpha2[0], rd->alpha2[1]);
2192 		}
2193 	}
2194 
2195 	pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2196 	print_rd_rules(rd);
2197 }
2198 
2199 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2200 {
2201 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2202 	print_rd_rules(rd);
2203 }
2204 
2205 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2206 {
2207 	if (!is_world_regdom(rd->alpha2))
2208 		return -EINVAL;
2209 	update_world_regdomain(rd);
2210 	return 0;
2211 }
2212 
2213 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2214 			   struct regulatory_request *user_request)
2215 {
2216 	const struct ieee80211_regdomain *intersected_rd = NULL;
2217 
2218 	if (is_world_regdom(rd->alpha2))
2219 		return -EINVAL;
2220 
2221 	if (!regdom_changes(rd->alpha2))
2222 		return -EALREADY;
2223 
2224 	if (!is_valid_rd(rd)) {
2225 		pr_err("Invalid regulatory domain detected:\n");
2226 		print_regdomain_info(rd);
2227 		return -EINVAL;
2228 	}
2229 
2230 	if (!user_request->intersect) {
2231 		reset_regdomains(false, rd);
2232 		return 0;
2233 	}
2234 
2235 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2236 	if (!intersected_rd)
2237 		return -EINVAL;
2238 
2239 	kfree(rd);
2240 	rd = NULL;
2241 	reset_regdomains(false, intersected_rd);
2242 
2243 	return 0;
2244 }
2245 
2246 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2247 			     struct regulatory_request *driver_request)
2248 {
2249 	const struct ieee80211_regdomain *regd;
2250 	const struct ieee80211_regdomain *intersected_rd = NULL;
2251 	const struct ieee80211_regdomain *tmp;
2252 	struct wiphy *request_wiphy;
2253 
2254 	if (is_world_regdom(rd->alpha2))
2255 		return -EINVAL;
2256 
2257 	if (!regdom_changes(rd->alpha2))
2258 		return -EALREADY;
2259 
2260 	if (!is_valid_rd(rd)) {
2261 		pr_err("Invalid regulatory domain detected:\n");
2262 		print_regdomain_info(rd);
2263 		return -EINVAL;
2264 	}
2265 
2266 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2267 	if (!request_wiphy) {
2268 		schedule_delayed_work(&reg_timeout, 0);
2269 		return -ENODEV;
2270 	}
2271 
2272 	if (!driver_request->intersect) {
2273 		if (request_wiphy->regd)
2274 			return -EALREADY;
2275 
2276 		regd = reg_copy_regd(rd);
2277 		if (IS_ERR(regd))
2278 			return PTR_ERR(regd);
2279 
2280 		rcu_assign_pointer(request_wiphy->regd, regd);
2281 		reset_regdomains(false, rd);
2282 		return 0;
2283 	}
2284 
2285 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2286 	if (!intersected_rd)
2287 		return -EINVAL;
2288 
2289 	/*
2290 	 * We can trash what CRDA provided now.
2291 	 * However if a driver requested this specific regulatory
2292 	 * domain we keep it for its private use
2293 	 */
2294 	tmp = get_wiphy_regdom(request_wiphy);
2295 	rcu_assign_pointer(request_wiphy->regd, rd);
2296 	rcu_free_regdom(tmp);
2297 
2298 	rd = NULL;
2299 
2300 	reset_regdomains(false, intersected_rd);
2301 
2302 	return 0;
2303 }
2304 
2305 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2306 				 struct regulatory_request *country_ie_request)
2307 {
2308 	struct wiphy *request_wiphy;
2309 
2310 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2311 	    !is_unknown_alpha2(rd->alpha2))
2312 		return -EINVAL;
2313 
2314 	/*
2315 	 * Lets only bother proceeding on the same alpha2 if the current
2316 	 * rd is non static (it means CRDA was present and was used last)
2317 	 * and the pending request came in from a country IE
2318 	 */
2319 
2320 	if (!is_valid_rd(rd)) {
2321 		pr_err("Invalid regulatory domain detected:\n");
2322 		print_regdomain_info(rd);
2323 		return -EINVAL;
2324 	}
2325 
2326 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2327 	if (!request_wiphy) {
2328 		schedule_delayed_work(&reg_timeout, 0);
2329 		return -ENODEV;
2330 	}
2331 
2332 	if (country_ie_request->intersect)
2333 		return -EINVAL;
2334 
2335 	reset_regdomains(false, rd);
2336 	return 0;
2337 }
2338 
2339 /*
2340  * Use this call to set the current regulatory domain. Conflicts with
2341  * multiple drivers can be ironed out later. Caller must've already
2342  * kmalloc'd the rd structure.
2343  */
2344 int set_regdom(const struct ieee80211_regdomain *rd)
2345 {
2346 	struct regulatory_request *lr;
2347 	int r;
2348 
2349 	if (!reg_is_valid_request(rd->alpha2)) {
2350 		kfree(rd);
2351 		return -EINVAL;
2352 	}
2353 
2354 	lr = get_last_request();
2355 
2356 	/* Note that this doesn't update the wiphys, this is done below */
2357 	switch (lr->initiator) {
2358 	case NL80211_REGDOM_SET_BY_CORE:
2359 		r = reg_set_rd_core(rd);
2360 		break;
2361 	case NL80211_REGDOM_SET_BY_USER:
2362 		r = reg_set_rd_user(rd, lr);
2363 		break;
2364 	case NL80211_REGDOM_SET_BY_DRIVER:
2365 		r = reg_set_rd_driver(rd, lr);
2366 		break;
2367 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2368 		r = reg_set_rd_country_ie(rd, lr);
2369 		break;
2370 	default:
2371 		WARN(1, "invalid initiator %d\n", lr->initiator);
2372 		return -EINVAL;
2373 	}
2374 
2375 	if (r) {
2376 		if (r == -EALREADY)
2377 			reg_set_request_processed();
2378 
2379 		kfree(rd);
2380 		return r;
2381 	}
2382 
2383 	/* This would make this whole thing pointless */
2384 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2385 		return -EINVAL;
2386 
2387 	/* update all wiphys now with the new established regulatory domain */
2388 	update_all_wiphy_regulatory(lr->initiator);
2389 
2390 	print_regdomain(get_cfg80211_regdom());
2391 
2392 	nl80211_send_reg_change_event(lr);
2393 
2394 	reg_set_request_processed();
2395 
2396 	return 0;
2397 }
2398 
2399 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2400 {
2401 	struct regulatory_request *lr;
2402 	u8 alpha2[2];
2403 	bool add = false;
2404 
2405 	rcu_read_lock();
2406 	lr = get_last_request();
2407 	if (lr && !lr->processed) {
2408 		memcpy(alpha2, lr->alpha2, 2);
2409 		add = true;
2410 	}
2411 	rcu_read_unlock();
2412 
2413 	if (add)
2414 		return add_uevent_var(env, "COUNTRY=%c%c",
2415 				      alpha2[0], alpha2[1]);
2416 	return 0;
2417 }
2418 
2419 void wiphy_regulatory_register(struct wiphy *wiphy)
2420 {
2421 	struct regulatory_request *lr;
2422 
2423 	if (!reg_dev_ignore_cell_hint(wiphy))
2424 		reg_num_devs_support_basehint++;
2425 
2426 	lr = get_last_request();
2427 	wiphy_update_regulatory(wiphy, lr->initiator);
2428 }
2429 
2430 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2431 {
2432 	struct wiphy *request_wiphy = NULL;
2433 	struct regulatory_request *lr;
2434 
2435 	lr = get_last_request();
2436 
2437 	if (!reg_dev_ignore_cell_hint(wiphy))
2438 		reg_num_devs_support_basehint--;
2439 
2440 	rcu_free_regdom(get_wiphy_regdom(wiphy));
2441 	rcu_assign_pointer(wiphy->regd, NULL);
2442 
2443 	if (lr)
2444 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2445 
2446 	if (!request_wiphy || request_wiphy != wiphy)
2447 		return;
2448 
2449 	lr->wiphy_idx = WIPHY_IDX_INVALID;
2450 	lr->country_ie_env = ENVIRON_ANY;
2451 }
2452 
2453 static void reg_timeout_work(struct work_struct *work)
2454 {
2455 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2456 	rtnl_lock();
2457 	restore_regulatory_settings(true);
2458 	rtnl_unlock();
2459 }
2460 
2461 int __init regulatory_init(void)
2462 {
2463 	int err = 0;
2464 
2465 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2466 	if (IS_ERR(reg_pdev))
2467 		return PTR_ERR(reg_pdev);
2468 
2469 	reg_pdev->dev.type = &reg_device_type;
2470 
2471 	spin_lock_init(&reg_requests_lock);
2472 	spin_lock_init(&reg_pending_beacons_lock);
2473 
2474 	reg_regdb_size_check();
2475 
2476 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2477 
2478 	user_alpha2[0] = '9';
2479 	user_alpha2[1] = '7';
2480 
2481 	/* We always try to get an update for the static regdomain */
2482 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2483 	if (err) {
2484 		if (err == -ENOMEM)
2485 			return err;
2486 		/*
2487 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2488 		 * memory which is handled and propagated appropriately above
2489 		 * but it can also fail during a netlink_broadcast() or during
2490 		 * early boot for call_usermodehelper(). For now treat these
2491 		 * errors as non-fatal.
2492 		 */
2493 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2494 	}
2495 
2496 	/*
2497 	 * Finally, if the user set the module parameter treat it
2498 	 * as a user hint.
2499 	 */
2500 	if (!is_world_regdom(ieee80211_regdom))
2501 		regulatory_hint_user(ieee80211_regdom,
2502 				     NL80211_USER_REG_HINT_USER);
2503 
2504 	return 0;
2505 }
2506 
2507 void regulatory_exit(void)
2508 {
2509 	struct regulatory_request *reg_request, *tmp;
2510 	struct reg_beacon *reg_beacon, *btmp;
2511 
2512 	cancel_work_sync(&reg_work);
2513 	cancel_delayed_work_sync(&reg_timeout);
2514 
2515 	/* Lock to suppress warnings */
2516 	rtnl_lock();
2517 	reset_regdomains(true, NULL);
2518 	rtnl_unlock();
2519 
2520 	dev_set_uevent_suppress(&reg_pdev->dev, true);
2521 
2522 	platform_device_unregister(reg_pdev);
2523 
2524 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2525 		list_del(&reg_beacon->list);
2526 		kfree(reg_beacon);
2527 	}
2528 
2529 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2530 		list_del(&reg_beacon->list);
2531 		kfree(reg_beacon);
2532 	}
2533 
2534 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2535 		list_del(&reg_request->list);
2536 		kfree(reg_request);
2537 	}
2538 }
2539