1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 /** 13 * DOC: Wireless regulatory infrastructure 14 * 15 * The usual implementation is for a driver to read a device EEPROM to 16 * determine which regulatory domain it should be operating under, then 17 * looking up the allowable channels in a driver-local table and finally 18 * registering those channels in the wiphy structure. 19 * 20 * Another set of compliance enforcement is for drivers to use their 21 * own compliance limits which can be stored on the EEPROM. The host 22 * driver or firmware may ensure these are used. 23 * 24 * In addition to all this we provide an extra layer of regulatory 25 * conformance. For drivers which do not have any regulatory 26 * information CRDA provides the complete regulatory solution. 27 * For others it provides a community effort on further restrictions 28 * to enhance compliance. 29 * 30 * Note: When number of rules --> infinity we will not be able to 31 * index on alpha2 any more, instead we'll probably have to 32 * rely on some SHA1 checksum of the regdomain for example. 33 * 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/kernel.h> 39 #include <linux/slab.h> 40 #include <linux/list.h> 41 #include <linux/random.h> 42 #include <linux/ctype.h> 43 #include <linux/nl80211.h> 44 #include <linux/platform_device.h> 45 #include <net/cfg80211.h> 46 #include "core.h" 47 #include "reg.h" 48 #include "regdb.h" 49 #include "nl80211.h" 50 51 #ifdef CONFIG_CFG80211_REG_DEBUG 52 #define REG_DBG_PRINT(format, args...) \ 53 do { \ 54 printk(KERN_DEBUG pr_fmt(format), ##args); \ 55 } while (0) 56 #else 57 #define REG_DBG_PRINT(args...) 58 #endif 59 60 /* Receipt of information from last regulatory request */ 61 static struct regulatory_request *last_request; 62 63 /* To trigger userspace events */ 64 static struct platform_device *reg_pdev; 65 66 static struct device_type reg_device_type = { 67 .uevent = reg_device_uevent, 68 }; 69 70 /* 71 * Central wireless core regulatory domains, we only need two, 72 * the current one and a world regulatory domain in case we have no 73 * information to give us an alpha2 74 */ 75 const struct ieee80211_regdomain *cfg80211_regdomain; 76 77 /* 78 * Protects static reg.c components: 79 * - cfg80211_world_regdom 80 * - cfg80211_regdom 81 * - last_request 82 */ 83 static DEFINE_MUTEX(reg_mutex); 84 85 static inline void assert_reg_lock(void) 86 { 87 lockdep_assert_held(®_mutex); 88 } 89 90 /* Used to queue up regulatory hints */ 91 static LIST_HEAD(reg_requests_list); 92 static spinlock_t reg_requests_lock; 93 94 /* Used to queue up beacon hints for review */ 95 static LIST_HEAD(reg_pending_beacons); 96 static spinlock_t reg_pending_beacons_lock; 97 98 /* Used to keep track of processed beacon hints */ 99 static LIST_HEAD(reg_beacon_list); 100 101 struct reg_beacon { 102 struct list_head list; 103 struct ieee80211_channel chan; 104 }; 105 106 static void reg_todo(struct work_struct *work); 107 static DECLARE_WORK(reg_work, reg_todo); 108 109 static void reg_timeout_work(struct work_struct *work); 110 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); 111 112 /* We keep a static world regulatory domain in case of the absence of CRDA */ 113 static const struct ieee80211_regdomain world_regdom = { 114 .n_reg_rules = 5, 115 .alpha2 = "00", 116 .reg_rules = { 117 /* IEEE 802.11b/g, channels 1..11 */ 118 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 119 /* IEEE 802.11b/g, channels 12..13. No HT40 120 * channel fits here. */ 121 REG_RULE(2467-10, 2472+10, 20, 6, 20, 122 NL80211_RRF_PASSIVE_SCAN | 123 NL80211_RRF_NO_IBSS), 124 /* IEEE 802.11 channel 14 - Only JP enables 125 * this and for 802.11b only */ 126 REG_RULE(2484-10, 2484+10, 20, 6, 20, 127 NL80211_RRF_PASSIVE_SCAN | 128 NL80211_RRF_NO_IBSS | 129 NL80211_RRF_NO_OFDM), 130 /* IEEE 802.11a, channel 36..48 */ 131 REG_RULE(5180-10, 5240+10, 40, 6, 20, 132 NL80211_RRF_PASSIVE_SCAN | 133 NL80211_RRF_NO_IBSS), 134 135 /* NB: 5260 MHz - 5700 MHz requies DFS */ 136 137 /* IEEE 802.11a, channel 149..165 */ 138 REG_RULE(5745-10, 5825+10, 40, 6, 20, 139 NL80211_RRF_PASSIVE_SCAN | 140 NL80211_RRF_NO_IBSS), 141 } 142 }; 143 144 static const struct ieee80211_regdomain *cfg80211_world_regdom = 145 &world_regdom; 146 147 static char *ieee80211_regdom = "00"; 148 static char user_alpha2[2]; 149 150 module_param(ieee80211_regdom, charp, 0444); 151 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 152 153 static void reset_regdomains(void) 154 { 155 /* avoid freeing static information or freeing something twice */ 156 if (cfg80211_regdomain == cfg80211_world_regdom) 157 cfg80211_regdomain = NULL; 158 if (cfg80211_world_regdom == &world_regdom) 159 cfg80211_world_regdom = NULL; 160 if (cfg80211_regdomain == &world_regdom) 161 cfg80211_regdomain = NULL; 162 163 kfree(cfg80211_regdomain); 164 kfree(cfg80211_world_regdom); 165 166 cfg80211_world_regdom = &world_regdom; 167 cfg80211_regdomain = NULL; 168 } 169 170 /* 171 * Dynamic world regulatory domain requested by the wireless 172 * core upon initialization 173 */ 174 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 175 { 176 BUG_ON(!last_request); 177 178 reset_regdomains(); 179 180 cfg80211_world_regdom = rd; 181 cfg80211_regdomain = rd; 182 } 183 184 bool is_world_regdom(const char *alpha2) 185 { 186 if (!alpha2) 187 return false; 188 if (alpha2[0] == '0' && alpha2[1] == '0') 189 return true; 190 return false; 191 } 192 193 static bool is_alpha2_set(const char *alpha2) 194 { 195 if (!alpha2) 196 return false; 197 if (alpha2[0] != 0 && alpha2[1] != 0) 198 return true; 199 return false; 200 } 201 202 static bool is_unknown_alpha2(const char *alpha2) 203 { 204 if (!alpha2) 205 return false; 206 /* 207 * Special case where regulatory domain was built by driver 208 * but a specific alpha2 cannot be determined 209 */ 210 if (alpha2[0] == '9' && alpha2[1] == '9') 211 return true; 212 return false; 213 } 214 215 static bool is_intersected_alpha2(const char *alpha2) 216 { 217 if (!alpha2) 218 return false; 219 /* 220 * Special case where regulatory domain is the 221 * result of an intersection between two regulatory domain 222 * structures 223 */ 224 if (alpha2[0] == '9' && alpha2[1] == '8') 225 return true; 226 return false; 227 } 228 229 static bool is_an_alpha2(const char *alpha2) 230 { 231 if (!alpha2) 232 return false; 233 if (isalpha(alpha2[0]) && isalpha(alpha2[1])) 234 return true; 235 return false; 236 } 237 238 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 239 { 240 if (!alpha2_x || !alpha2_y) 241 return false; 242 if (alpha2_x[0] == alpha2_y[0] && 243 alpha2_x[1] == alpha2_y[1]) 244 return true; 245 return false; 246 } 247 248 static bool regdom_changes(const char *alpha2) 249 { 250 assert_cfg80211_lock(); 251 252 if (!cfg80211_regdomain) 253 return true; 254 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2)) 255 return false; 256 return true; 257 } 258 259 /* 260 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 261 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 262 * has ever been issued. 263 */ 264 static bool is_user_regdom_saved(void) 265 { 266 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 267 return false; 268 269 /* This would indicate a mistake on the design */ 270 if (WARN((!is_world_regdom(user_alpha2) && 271 !is_an_alpha2(user_alpha2)), 272 "Unexpected user alpha2: %c%c\n", 273 user_alpha2[0], 274 user_alpha2[1])) 275 return false; 276 277 return true; 278 } 279 280 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd, 281 const struct ieee80211_regdomain *src_regd) 282 { 283 struct ieee80211_regdomain *regd; 284 int size_of_regd = 0; 285 unsigned int i; 286 287 size_of_regd = sizeof(struct ieee80211_regdomain) + 288 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule)); 289 290 regd = kzalloc(size_of_regd, GFP_KERNEL); 291 if (!regd) 292 return -ENOMEM; 293 294 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 295 296 for (i = 0; i < src_regd->n_reg_rules; i++) 297 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 298 sizeof(struct ieee80211_reg_rule)); 299 300 *dst_regd = regd; 301 return 0; 302 } 303 304 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 305 struct reg_regdb_search_request { 306 char alpha2[2]; 307 struct list_head list; 308 }; 309 310 static LIST_HEAD(reg_regdb_search_list); 311 static DEFINE_MUTEX(reg_regdb_search_mutex); 312 313 static void reg_regdb_search(struct work_struct *work) 314 { 315 struct reg_regdb_search_request *request; 316 const struct ieee80211_regdomain *curdom, *regdom; 317 int i, r; 318 319 mutex_lock(®_regdb_search_mutex); 320 while (!list_empty(®_regdb_search_list)) { 321 request = list_first_entry(®_regdb_search_list, 322 struct reg_regdb_search_request, 323 list); 324 list_del(&request->list); 325 326 for (i=0; i<reg_regdb_size; i++) { 327 curdom = reg_regdb[i]; 328 329 if (!memcmp(request->alpha2, curdom->alpha2, 2)) { 330 r = reg_copy_regd(®dom, curdom); 331 if (r) 332 break; 333 mutex_lock(&cfg80211_mutex); 334 set_regdom(regdom); 335 mutex_unlock(&cfg80211_mutex); 336 break; 337 } 338 } 339 340 kfree(request); 341 } 342 mutex_unlock(®_regdb_search_mutex); 343 } 344 345 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 346 347 static void reg_regdb_query(const char *alpha2) 348 { 349 struct reg_regdb_search_request *request; 350 351 if (!alpha2) 352 return; 353 354 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 355 if (!request) 356 return; 357 358 memcpy(request->alpha2, alpha2, 2); 359 360 mutex_lock(®_regdb_search_mutex); 361 list_add_tail(&request->list, ®_regdb_search_list); 362 mutex_unlock(®_regdb_search_mutex); 363 364 schedule_work(®_regdb_work); 365 } 366 #else 367 static inline void reg_regdb_query(const char *alpha2) {} 368 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 369 370 /* 371 * This lets us keep regulatory code which is updated on a regulatory 372 * basis in userspace. Country information is filled in by 373 * reg_device_uevent 374 */ 375 static int call_crda(const char *alpha2) 376 { 377 if (!is_world_regdom((char *) alpha2)) 378 pr_info("Calling CRDA for country: %c%c\n", 379 alpha2[0], alpha2[1]); 380 else 381 pr_info("Calling CRDA to update world regulatory domain\n"); 382 383 /* query internal regulatory database (if it exists) */ 384 reg_regdb_query(alpha2); 385 386 return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE); 387 } 388 389 /* Used by nl80211 before kmalloc'ing our regulatory domain */ 390 bool reg_is_valid_request(const char *alpha2) 391 { 392 assert_cfg80211_lock(); 393 394 if (!last_request) 395 return false; 396 397 return alpha2_equal(last_request->alpha2, alpha2); 398 } 399 400 /* Sanity check on a regulatory rule */ 401 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 402 { 403 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 404 u32 freq_diff; 405 406 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 407 return false; 408 409 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 410 return false; 411 412 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 413 414 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 415 freq_range->max_bandwidth_khz > freq_diff) 416 return false; 417 418 return true; 419 } 420 421 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 422 { 423 const struct ieee80211_reg_rule *reg_rule = NULL; 424 unsigned int i; 425 426 if (!rd->n_reg_rules) 427 return false; 428 429 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 430 return false; 431 432 for (i = 0; i < rd->n_reg_rules; i++) { 433 reg_rule = &rd->reg_rules[i]; 434 if (!is_valid_reg_rule(reg_rule)) 435 return false; 436 } 437 438 return true; 439 } 440 441 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 442 u32 center_freq_khz, 443 u32 bw_khz) 444 { 445 u32 start_freq_khz, end_freq_khz; 446 447 start_freq_khz = center_freq_khz - (bw_khz/2); 448 end_freq_khz = center_freq_khz + (bw_khz/2); 449 450 if (start_freq_khz >= freq_range->start_freq_khz && 451 end_freq_khz <= freq_range->end_freq_khz) 452 return true; 453 454 return false; 455 } 456 457 /** 458 * freq_in_rule_band - tells us if a frequency is in a frequency band 459 * @freq_range: frequency rule we want to query 460 * @freq_khz: frequency we are inquiring about 461 * 462 * This lets us know if a specific frequency rule is or is not relevant to 463 * a specific frequency's band. Bands are device specific and artificial 464 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is 465 * safe for now to assume that a frequency rule should not be part of a 466 * frequency's band if the start freq or end freq are off by more than 2 GHz. 467 * This resolution can be lowered and should be considered as we add 468 * regulatory rule support for other "bands". 469 **/ 470 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 471 u32 freq_khz) 472 { 473 #define ONE_GHZ_IN_KHZ 1000000 474 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 475 return true; 476 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 477 return true; 478 return false; 479 #undef ONE_GHZ_IN_KHZ 480 } 481 482 /* 483 * Helper for regdom_intersect(), this does the real 484 * mathematical intersection fun 485 */ 486 static int reg_rules_intersect( 487 const struct ieee80211_reg_rule *rule1, 488 const struct ieee80211_reg_rule *rule2, 489 struct ieee80211_reg_rule *intersected_rule) 490 { 491 const struct ieee80211_freq_range *freq_range1, *freq_range2; 492 struct ieee80211_freq_range *freq_range; 493 const struct ieee80211_power_rule *power_rule1, *power_rule2; 494 struct ieee80211_power_rule *power_rule; 495 u32 freq_diff; 496 497 freq_range1 = &rule1->freq_range; 498 freq_range2 = &rule2->freq_range; 499 freq_range = &intersected_rule->freq_range; 500 501 power_rule1 = &rule1->power_rule; 502 power_rule2 = &rule2->power_rule; 503 power_rule = &intersected_rule->power_rule; 504 505 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 506 freq_range2->start_freq_khz); 507 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 508 freq_range2->end_freq_khz); 509 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, 510 freq_range2->max_bandwidth_khz); 511 512 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 513 if (freq_range->max_bandwidth_khz > freq_diff) 514 freq_range->max_bandwidth_khz = freq_diff; 515 516 power_rule->max_eirp = min(power_rule1->max_eirp, 517 power_rule2->max_eirp); 518 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 519 power_rule2->max_antenna_gain); 520 521 intersected_rule->flags = (rule1->flags | rule2->flags); 522 523 if (!is_valid_reg_rule(intersected_rule)) 524 return -EINVAL; 525 526 return 0; 527 } 528 529 /** 530 * regdom_intersect - do the intersection between two regulatory domains 531 * @rd1: first regulatory domain 532 * @rd2: second regulatory domain 533 * 534 * Use this function to get the intersection between two regulatory domains. 535 * Once completed we will mark the alpha2 for the rd as intersected, "98", 536 * as no one single alpha2 can represent this regulatory domain. 537 * 538 * Returns a pointer to the regulatory domain structure which will hold the 539 * resulting intersection of rules between rd1 and rd2. We will 540 * kzalloc() this structure for you. 541 */ 542 static struct ieee80211_regdomain *regdom_intersect( 543 const struct ieee80211_regdomain *rd1, 544 const struct ieee80211_regdomain *rd2) 545 { 546 int r, size_of_regd; 547 unsigned int x, y; 548 unsigned int num_rules = 0, rule_idx = 0; 549 const struct ieee80211_reg_rule *rule1, *rule2; 550 struct ieee80211_reg_rule *intersected_rule; 551 struct ieee80211_regdomain *rd; 552 /* This is just a dummy holder to help us count */ 553 struct ieee80211_reg_rule irule; 554 555 /* Uses the stack temporarily for counter arithmetic */ 556 intersected_rule = &irule; 557 558 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule)); 559 560 if (!rd1 || !rd2) 561 return NULL; 562 563 /* 564 * First we get a count of the rules we'll need, then we actually 565 * build them. This is to so we can malloc() and free() a 566 * regdomain once. The reason we use reg_rules_intersect() here 567 * is it will return -EINVAL if the rule computed makes no sense. 568 * All rules that do check out OK are valid. 569 */ 570 571 for (x = 0; x < rd1->n_reg_rules; x++) { 572 rule1 = &rd1->reg_rules[x]; 573 for (y = 0; y < rd2->n_reg_rules; y++) { 574 rule2 = &rd2->reg_rules[y]; 575 if (!reg_rules_intersect(rule1, rule2, 576 intersected_rule)) 577 num_rules++; 578 memset(intersected_rule, 0, 579 sizeof(struct ieee80211_reg_rule)); 580 } 581 } 582 583 if (!num_rules) 584 return NULL; 585 586 size_of_regd = sizeof(struct ieee80211_regdomain) + 587 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule)); 588 589 rd = kzalloc(size_of_regd, GFP_KERNEL); 590 if (!rd) 591 return NULL; 592 593 for (x = 0; x < rd1->n_reg_rules; x++) { 594 rule1 = &rd1->reg_rules[x]; 595 for (y = 0; y < rd2->n_reg_rules; y++) { 596 rule2 = &rd2->reg_rules[y]; 597 /* 598 * This time around instead of using the stack lets 599 * write to the target rule directly saving ourselves 600 * a memcpy() 601 */ 602 intersected_rule = &rd->reg_rules[rule_idx]; 603 r = reg_rules_intersect(rule1, rule2, 604 intersected_rule); 605 /* 606 * No need to memset here the intersected rule here as 607 * we're not using the stack anymore 608 */ 609 if (r) 610 continue; 611 rule_idx++; 612 } 613 } 614 615 if (rule_idx != num_rules) { 616 kfree(rd); 617 return NULL; 618 } 619 620 rd->n_reg_rules = num_rules; 621 rd->alpha2[0] = '9'; 622 rd->alpha2[1] = '8'; 623 624 return rd; 625 } 626 627 /* 628 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 629 * want to just have the channel structure use these 630 */ 631 static u32 map_regdom_flags(u32 rd_flags) 632 { 633 u32 channel_flags = 0; 634 if (rd_flags & NL80211_RRF_PASSIVE_SCAN) 635 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; 636 if (rd_flags & NL80211_RRF_NO_IBSS) 637 channel_flags |= IEEE80211_CHAN_NO_IBSS; 638 if (rd_flags & NL80211_RRF_DFS) 639 channel_flags |= IEEE80211_CHAN_RADAR; 640 return channel_flags; 641 } 642 643 static int freq_reg_info_regd(struct wiphy *wiphy, 644 u32 center_freq, 645 u32 desired_bw_khz, 646 const struct ieee80211_reg_rule **reg_rule, 647 const struct ieee80211_regdomain *custom_regd) 648 { 649 int i; 650 bool band_rule_found = false; 651 const struct ieee80211_regdomain *regd; 652 bool bw_fits = false; 653 654 if (!desired_bw_khz) 655 desired_bw_khz = MHZ_TO_KHZ(20); 656 657 regd = custom_regd ? custom_regd : cfg80211_regdomain; 658 659 /* 660 * Follow the driver's regulatory domain, if present, unless a country 661 * IE has been processed or a user wants to help complaince further 662 */ 663 if (!custom_regd && 664 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 665 last_request->initiator != NL80211_REGDOM_SET_BY_USER && 666 wiphy->regd) 667 regd = wiphy->regd; 668 669 if (!regd) 670 return -EINVAL; 671 672 for (i = 0; i < regd->n_reg_rules; i++) { 673 const struct ieee80211_reg_rule *rr; 674 const struct ieee80211_freq_range *fr = NULL; 675 676 rr = ®d->reg_rules[i]; 677 fr = &rr->freq_range; 678 679 /* 680 * We only need to know if one frequency rule was 681 * was in center_freq's band, that's enough, so lets 682 * not overwrite it once found 683 */ 684 if (!band_rule_found) 685 band_rule_found = freq_in_rule_band(fr, center_freq); 686 687 bw_fits = reg_does_bw_fit(fr, 688 center_freq, 689 desired_bw_khz); 690 691 if (band_rule_found && bw_fits) { 692 *reg_rule = rr; 693 return 0; 694 } 695 } 696 697 if (!band_rule_found) 698 return -ERANGE; 699 700 return -EINVAL; 701 } 702 703 int freq_reg_info(struct wiphy *wiphy, 704 u32 center_freq, 705 u32 desired_bw_khz, 706 const struct ieee80211_reg_rule **reg_rule) 707 { 708 assert_cfg80211_lock(); 709 return freq_reg_info_regd(wiphy, 710 center_freq, 711 desired_bw_khz, 712 reg_rule, 713 NULL); 714 } 715 EXPORT_SYMBOL(freq_reg_info); 716 717 #ifdef CONFIG_CFG80211_REG_DEBUG 718 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 719 { 720 switch (initiator) { 721 case NL80211_REGDOM_SET_BY_CORE: 722 return "Set by core"; 723 case NL80211_REGDOM_SET_BY_USER: 724 return "Set by user"; 725 case NL80211_REGDOM_SET_BY_DRIVER: 726 return "Set by driver"; 727 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 728 return "Set by country IE"; 729 default: 730 WARN_ON(1); 731 return "Set by bug"; 732 } 733 } 734 735 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 736 u32 desired_bw_khz, 737 const struct ieee80211_reg_rule *reg_rule) 738 { 739 const struct ieee80211_power_rule *power_rule; 740 const struct ieee80211_freq_range *freq_range; 741 char max_antenna_gain[32]; 742 743 power_rule = ®_rule->power_rule; 744 freq_range = ®_rule->freq_range; 745 746 if (!power_rule->max_antenna_gain) 747 snprintf(max_antenna_gain, 32, "N/A"); 748 else 749 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain); 750 751 REG_DBG_PRINT("Updating information on frequency %d MHz " 752 "for a %d MHz width channel with regulatory rule:\n", 753 chan->center_freq, 754 KHZ_TO_MHZ(desired_bw_khz)); 755 756 REG_DBG_PRINT("%d KHz - %d KHz @ KHz), (%s mBi, %d mBm)\n", 757 freq_range->start_freq_khz, 758 freq_range->end_freq_khz, 759 max_antenna_gain, 760 power_rule->max_eirp); 761 } 762 #else 763 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 764 u32 desired_bw_khz, 765 const struct ieee80211_reg_rule *reg_rule) 766 { 767 return; 768 } 769 #endif 770 771 /* 772 * Note that right now we assume the desired channel bandwidth 773 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 774 * per channel, the primary and the extension channel). To support 775 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a 776 * new ieee80211_channel.target_bw and re run the regulatory check 777 * on the wiphy with the target_bw specified. Then we can simply use 778 * that below for the desired_bw_khz below. 779 */ 780 static void handle_channel(struct wiphy *wiphy, 781 enum nl80211_reg_initiator initiator, 782 enum ieee80211_band band, 783 unsigned int chan_idx) 784 { 785 int r; 786 u32 flags, bw_flags = 0; 787 u32 desired_bw_khz = MHZ_TO_KHZ(20); 788 const struct ieee80211_reg_rule *reg_rule = NULL; 789 const struct ieee80211_power_rule *power_rule = NULL; 790 const struct ieee80211_freq_range *freq_range = NULL; 791 struct ieee80211_supported_band *sband; 792 struct ieee80211_channel *chan; 793 struct wiphy *request_wiphy = NULL; 794 795 assert_cfg80211_lock(); 796 797 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 798 799 sband = wiphy->bands[band]; 800 BUG_ON(chan_idx >= sband->n_channels); 801 chan = &sband->channels[chan_idx]; 802 803 flags = chan->orig_flags; 804 805 r = freq_reg_info(wiphy, 806 MHZ_TO_KHZ(chan->center_freq), 807 desired_bw_khz, 808 ®_rule); 809 810 if (r) { 811 /* 812 * We will disable all channels that do not match our 813 * received regulatory rule unless the hint is coming 814 * from a Country IE and the Country IE had no information 815 * about a band. The IEEE 802.11 spec allows for an AP 816 * to send only a subset of the regulatory rules allowed, 817 * so an AP in the US that only supports 2.4 GHz may only send 818 * a country IE with information for the 2.4 GHz band 819 * while 5 GHz is still supported. 820 */ 821 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 822 r == -ERANGE) 823 return; 824 825 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq); 826 chan->flags = IEEE80211_CHAN_DISABLED; 827 return; 828 } 829 830 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 831 832 power_rule = ®_rule->power_rule; 833 freq_range = ®_rule->freq_range; 834 835 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 836 bw_flags = IEEE80211_CHAN_NO_HT40; 837 838 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 839 request_wiphy && request_wiphy == wiphy && 840 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 841 /* 842 * This guarantees the driver's requested regulatory domain 843 * will always be used as a base for further regulatory 844 * settings 845 */ 846 chan->flags = chan->orig_flags = 847 map_regdom_flags(reg_rule->flags) | bw_flags; 848 chan->max_antenna_gain = chan->orig_mag = 849 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 850 chan->max_power = chan->orig_mpwr = 851 (int) MBM_TO_DBM(power_rule->max_eirp); 852 return; 853 } 854 855 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 856 chan->max_antenna_gain = min(chan->orig_mag, 857 (int) MBI_TO_DBI(power_rule->max_antenna_gain)); 858 if (chan->orig_mpwr) 859 chan->max_power = min(chan->orig_mpwr, 860 (int) MBM_TO_DBM(power_rule->max_eirp)); 861 else 862 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 863 } 864 865 static void handle_band(struct wiphy *wiphy, 866 enum ieee80211_band band, 867 enum nl80211_reg_initiator initiator) 868 { 869 unsigned int i; 870 struct ieee80211_supported_band *sband; 871 872 BUG_ON(!wiphy->bands[band]); 873 sband = wiphy->bands[band]; 874 875 for (i = 0; i < sband->n_channels; i++) 876 handle_channel(wiphy, initiator, band, i); 877 } 878 879 static bool ignore_reg_update(struct wiphy *wiphy, 880 enum nl80211_reg_initiator initiator) 881 { 882 if (!last_request) { 883 REG_DBG_PRINT("Ignoring regulatory request %s since " 884 "last_request is not set\n", 885 reg_initiator_name(initiator)); 886 return true; 887 } 888 889 if (initiator == NL80211_REGDOM_SET_BY_CORE && 890 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) { 891 REG_DBG_PRINT("Ignoring regulatory request %s " 892 "since the driver uses its own custom " 893 "regulatory domain ", 894 reg_initiator_name(initiator)); 895 return true; 896 } 897 898 /* 899 * wiphy->regd will be set once the device has its own 900 * desired regulatory domain set 901 */ 902 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd && 903 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 904 !is_world_regdom(last_request->alpha2)) { 905 REG_DBG_PRINT("Ignoring regulatory request %s " 906 "since the driver requires its own regulatory " 907 "domain to be set first", 908 reg_initiator_name(initiator)); 909 return true; 910 } 911 912 return false; 913 } 914 915 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 916 { 917 struct cfg80211_registered_device *rdev; 918 919 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 920 wiphy_update_regulatory(&rdev->wiphy, initiator); 921 } 922 923 static void handle_reg_beacon(struct wiphy *wiphy, 924 unsigned int chan_idx, 925 struct reg_beacon *reg_beacon) 926 { 927 struct ieee80211_supported_band *sband; 928 struct ieee80211_channel *chan; 929 bool channel_changed = false; 930 struct ieee80211_channel chan_before; 931 932 assert_cfg80211_lock(); 933 934 sband = wiphy->bands[reg_beacon->chan.band]; 935 chan = &sband->channels[chan_idx]; 936 937 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 938 return; 939 940 if (chan->beacon_found) 941 return; 942 943 chan->beacon_found = true; 944 945 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS) 946 return; 947 948 chan_before.center_freq = chan->center_freq; 949 chan_before.flags = chan->flags; 950 951 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) { 952 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN; 953 channel_changed = true; 954 } 955 956 if (chan->flags & IEEE80211_CHAN_NO_IBSS) { 957 chan->flags &= ~IEEE80211_CHAN_NO_IBSS; 958 channel_changed = true; 959 } 960 961 if (channel_changed) 962 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 963 } 964 965 /* 966 * Called when a scan on a wiphy finds a beacon on 967 * new channel 968 */ 969 static void wiphy_update_new_beacon(struct wiphy *wiphy, 970 struct reg_beacon *reg_beacon) 971 { 972 unsigned int i; 973 struct ieee80211_supported_band *sband; 974 975 assert_cfg80211_lock(); 976 977 if (!wiphy->bands[reg_beacon->chan.band]) 978 return; 979 980 sband = wiphy->bands[reg_beacon->chan.band]; 981 982 for (i = 0; i < sband->n_channels; i++) 983 handle_reg_beacon(wiphy, i, reg_beacon); 984 } 985 986 /* 987 * Called upon reg changes or a new wiphy is added 988 */ 989 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 990 { 991 unsigned int i; 992 struct ieee80211_supported_band *sband; 993 struct reg_beacon *reg_beacon; 994 995 assert_cfg80211_lock(); 996 997 if (list_empty(®_beacon_list)) 998 return; 999 1000 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1001 if (!wiphy->bands[reg_beacon->chan.band]) 1002 continue; 1003 sband = wiphy->bands[reg_beacon->chan.band]; 1004 for (i = 0; i < sband->n_channels; i++) 1005 handle_reg_beacon(wiphy, i, reg_beacon); 1006 } 1007 } 1008 1009 static bool reg_is_world_roaming(struct wiphy *wiphy) 1010 { 1011 if (is_world_regdom(cfg80211_regdomain->alpha2) || 1012 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2))) 1013 return true; 1014 if (last_request && 1015 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1016 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1017 return true; 1018 return false; 1019 } 1020 1021 /* Reap the advantages of previously found beacons */ 1022 static void reg_process_beacons(struct wiphy *wiphy) 1023 { 1024 /* 1025 * Means we are just firing up cfg80211, so no beacons would 1026 * have been processed yet. 1027 */ 1028 if (!last_request) 1029 return; 1030 if (!reg_is_world_roaming(wiphy)) 1031 return; 1032 wiphy_update_beacon_reg(wiphy); 1033 } 1034 1035 static bool is_ht40_not_allowed(struct ieee80211_channel *chan) 1036 { 1037 if (!chan) 1038 return true; 1039 if (chan->flags & IEEE80211_CHAN_DISABLED) 1040 return true; 1041 /* This would happen when regulatory rules disallow HT40 completely */ 1042 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40))) 1043 return true; 1044 return false; 1045 } 1046 1047 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1048 enum ieee80211_band band, 1049 unsigned int chan_idx) 1050 { 1051 struct ieee80211_supported_band *sband; 1052 struct ieee80211_channel *channel; 1053 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1054 unsigned int i; 1055 1056 assert_cfg80211_lock(); 1057 1058 sband = wiphy->bands[band]; 1059 BUG_ON(chan_idx >= sband->n_channels); 1060 channel = &sband->channels[chan_idx]; 1061 1062 if (is_ht40_not_allowed(channel)) { 1063 channel->flags |= IEEE80211_CHAN_NO_HT40; 1064 return; 1065 } 1066 1067 /* 1068 * We need to ensure the extension channels exist to 1069 * be able to use HT40- or HT40+, this finds them (or not) 1070 */ 1071 for (i = 0; i < sband->n_channels; i++) { 1072 struct ieee80211_channel *c = &sband->channels[i]; 1073 if (c->center_freq == (channel->center_freq - 20)) 1074 channel_before = c; 1075 if (c->center_freq == (channel->center_freq + 20)) 1076 channel_after = c; 1077 } 1078 1079 /* 1080 * Please note that this assumes target bandwidth is 20 MHz, 1081 * if that ever changes we also need to change the below logic 1082 * to include that as well. 1083 */ 1084 if (is_ht40_not_allowed(channel_before)) 1085 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1086 else 1087 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1088 1089 if (is_ht40_not_allowed(channel_after)) 1090 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1091 else 1092 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1093 } 1094 1095 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1096 enum ieee80211_band band) 1097 { 1098 unsigned int i; 1099 struct ieee80211_supported_band *sband; 1100 1101 BUG_ON(!wiphy->bands[band]); 1102 sband = wiphy->bands[band]; 1103 1104 for (i = 0; i < sband->n_channels; i++) 1105 reg_process_ht_flags_channel(wiphy, band, i); 1106 } 1107 1108 static void reg_process_ht_flags(struct wiphy *wiphy) 1109 { 1110 enum ieee80211_band band; 1111 1112 if (!wiphy) 1113 return; 1114 1115 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1116 if (wiphy->bands[band]) 1117 reg_process_ht_flags_band(wiphy, band); 1118 } 1119 1120 } 1121 1122 void wiphy_update_regulatory(struct wiphy *wiphy, 1123 enum nl80211_reg_initiator initiator) 1124 { 1125 enum ieee80211_band band; 1126 1127 if (ignore_reg_update(wiphy, initiator)) 1128 return; 1129 1130 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1131 if (wiphy->bands[band]) 1132 handle_band(wiphy, band, initiator); 1133 } 1134 1135 reg_process_beacons(wiphy); 1136 reg_process_ht_flags(wiphy); 1137 if (wiphy->reg_notifier) 1138 wiphy->reg_notifier(wiphy, last_request); 1139 } 1140 1141 static void handle_channel_custom(struct wiphy *wiphy, 1142 enum ieee80211_band band, 1143 unsigned int chan_idx, 1144 const struct ieee80211_regdomain *regd) 1145 { 1146 int r; 1147 u32 desired_bw_khz = MHZ_TO_KHZ(20); 1148 u32 bw_flags = 0; 1149 const struct ieee80211_reg_rule *reg_rule = NULL; 1150 const struct ieee80211_power_rule *power_rule = NULL; 1151 const struct ieee80211_freq_range *freq_range = NULL; 1152 struct ieee80211_supported_band *sband; 1153 struct ieee80211_channel *chan; 1154 1155 assert_reg_lock(); 1156 1157 sband = wiphy->bands[band]; 1158 BUG_ON(chan_idx >= sband->n_channels); 1159 chan = &sband->channels[chan_idx]; 1160 1161 r = freq_reg_info_regd(wiphy, 1162 MHZ_TO_KHZ(chan->center_freq), 1163 desired_bw_khz, 1164 ®_rule, 1165 regd); 1166 1167 if (r) { 1168 REG_DBG_PRINT("Disabling freq %d MHz as custom " 1169 "regd has no rule that fits a %d MHz " 1170 "wide channel\n", 1171 chan->center_freq, 1172 KHZ_TO_MHZ(desired_bw_khz)); 1173 chan->flags = IEEE80211_CHAN_DISABLED; 1174 return; 1175 } 1176 1177 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 1178 1179 power_rule = ®_rule->power_rule; 1180 freq_range = ®_rule->freq_range; 1181 1182 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 1183 bw_flags = IEEE80211_CHAN_NO_HT40; 1184 1185 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1186 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1187 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1188 } 1189 1190 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band, 1191 const struct ieee80211_regdomain *regd) 1192 { 1193 unsigned int i; 1194 struct ieee80211_supported_band *sband; 1195 1196 BUG_ON(!wiphy->bands[band]); 1197 sband = wiphy->bands[band]; 1198 1199 for (i = 0; i < sband->n_channels; i++) 1200 handle_channel_custom(wiphy, band, i, regd); 1201 } 1202 1203 /* Used by drivers prior to wiphy registration */ 1204 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1205 const struct ieee80211_regdomain *regd) 1206 { 1207 enum ieee80211_band band; 1208 unsigned int bands_set = 0; 1209 1210 mutex_lock(®_mutex); 1211 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1212 if (!wiphy->bands[band]) 1213 continue; 1214 handle_band_custom(wiphy, band, regd); 1215 bands_set++; 1216 } 1217 mutex_unlock(®_mutex); 1218 1219 /* 1220 * no point in calling this if it won't have any effect 1221 * on your device's supportd bands. 1222 */ 1223 WARN_ON(!bands_set); 1224 } 1225 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1226 1227 /* 1228 * Return value which can be used by ignore_request() to indicate 1229 * it has been determined we should intersect two regulatory domains 1230 */ 1231 #define REG_INTERSECT 1 1232 1233 /* This has the logic which determines when a new request 1234 * should be ignored. */ 1235 static int ignore_request(struct wiphy *wiphy, 1236 struct regulatory_request *pending_request) 1237 { 1238 struct wiphy *last_wiphy = NULL; 1239 1240 assert_cfg80211_lock(); 1241 1242 /* All initial requests are respected */ 1243 if (!last_request) 1244 return 0; 1245 1246 switch (pending_request->initiator) { 1247 case NL80211_REGDOM_SET_BY_CORE: 1248 return 0; 1249 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1250 1251 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 1252 1253 if (unlikely(!is_an_alpha2(pending_request->alpha2))) 1254 return -EINVAL; 1255 if (last_request->initiator == 1256 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1257 if (last_wiphy != wiphy) { 1258 /* 1259 * Two cards with two APs claiming different 1260 * Country IE alpha2s. We could 1261 * intersect them, but that seems unlikely 1262 * to be correct. Reject second one for now. 1263 */ 1264 if (regdom_changes(pending_request->alpha2)) 1265 return -EOPNOTSUPP; 1266 return -EALREADY; 1267 } 1268 /* 1269 * Two consecutive Country IE hints on the same wiphy. 1270 * This should be picked up early by the driver/stack 1271 */ 1272 if (WARN_ON(regdom_changes(pending_request->alpha2))) 1273 return 0; 1274 return -EALREADY; 1275 } 1276 return 0; 1277 case NL80211_REGDOM_SET_BY_DRIVER: 1278 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) { 1279 if (regdom_changes(pending_request->alpha2)) 1280 return 0; 1281 return -EALREADY; 1282 } 1283 1284 /* 1285 * This would happen if you unplug and plug your card 1286 * back in or if you add a new device for which the previously 1287 * loaded card also agrees on the regulatory domain. 1288 */ 1289 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1290 !regdom_changes(pending_request->alpha2)) 1291 return -EALREADY; 1292 1293 return REG_INTERSECT; 1294 case NL80211_REGDOM_SET_BY_USER: 1295 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1296 return REG_INTERSECT; 1297 /* 1298 * If the user knows better the user should set the regdom 1299 * to their country before the IE is picked up 1300 */ 1301 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER && 1302 last_request->intersect) 1303 return -EOPNOTSUPP; 1304 /* 1305 * Process user requests only after previous user/driver/core 1306 * requests have been processed 1307 */ 1308 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE || 1309 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1310 last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1311 if (regdom_changes(last_request->alpha2)) 1312 return -EAGAIN; 1313 } 1314 1315 if (!regdom_changes(pending_request->alpha2)) 1316 return -EALREADY; 1317 1318 return 0; 1319 } 1320 1321 return -EINVAL; 1322 } 1323 1324 static void reg_set_request_processed(void) 1325 { 1326 bool need_more_processing = false; 1327 1328 last_request->processed = true; 1329 1330 spin_lock(®_requests_lock); 1331 if (!list_empty(®_requests_list)) 1332 need_more_processing = true; 1333 spin_unlock(®_requests_lock); 1334 1335 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) 1336 cancel_delayed_work_sync(®_timeout); 1337 1338 if (need_more_processing) 1339 schedule_work(®_work); 1340 } 1341 1342 /** 1343 * __regulatory_hint - hint to the wireless core a regulatory domain 1344 * @wiphy: if the hint comes from country information from an AP, this 1345 * is required to be set to the wiphy that received the information 1346 * @pending_request: the regulatory request currently being processed 1347 * 1348 * The Wireless subsystem can use this function to hint to the wireless core 1349 * what it believes should be the current regulatory domain. 1350 * 1351 * Returns zero if all went fine, %-EALREADY if a regulatory domain had 1352 * already been set or other standard error codes. 1353 * 1354 * Caller must hold &cfg80211_mutex and ®_mutex 1355 */ 1356 static int __regulatory_hint(struct wiphy *wiphy, 1357 struct regulatory_request *pending_request) 1358 { 1359 bool intersect = false; 1360 int r = 0; 1361 1362 assert_cfg80211_lock(); 1363 1364 r = ignore_request(wiphy, pending_request); 1365 1366 if (r == REG_INTERSECT) { 1367 if (pending_request->initiator == 1368 NL80211_REGDOM_SET_BY_DRIVER) { 1369 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1370 if (r) { 1371 kfree(pending_request); 1372 return r; 1373 } 1374 } 1375 intersect = true; 1376 } else if (r) { 1377 /* 1378 * If the regulatory domain being requested by the 1379 * driver has already been set just copy it to the 1380 * wiphy 1381 */ 1382 if (r == -EALREADY && 1383 pending_request->initiator == 1384 NL80211_REGDOM_SET_BY_DRIVER) { 1385 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1386 if (r) { 1387 kfree(pending_request); 1388 return r; 1389 } 1390 r = -EALREADY; 1391 goto new_request; 1392 } 1393 kfree(pending_request); 1394 return r; 1395 } 1396 1397 new_request: 1398 kfree(last_request); 1399 1400 last_request = pending_request; 1401 last_request->intersect = intersect; 1402 1403 pending_request = NULL; 1404 1405 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1406 user_alpha2[0] = last_request->alpha2[0]; 1407 user_alpha2[1] = last_request->alpha2[1]; 1408 } 1409 1410 /* When r == REG_INTERSECT we do need to call CRDA */ 1411 if (r < 0) { 1412 /* 1413 * Since CRDA will not be called in this case as we already 1414 * have applied the requested regulatory domain before we just 1415 * inform userspace we have processed the request 1416 */ 1417 if (r == -EALREADY) { 1418 nl80211_send_reg_change_event(last_request); 1419 reg_set_request_processed(); 1420 } 1421 return r; 1422 } 1423 1424 return call_crda(last_request->alpha2); 1425 } 1426 1427 /* This processes *all* regulatory hints */ 1428 static void reg_process_hint(struct regulatory_request *reg_request) 1429 { 1430 int r = 0; 1431 struct wiphy *wiphy = NULL; 1432 enum nl80211_reg_initiator initiator = reg_request->initiator; 1433 1434 BUG_ON(!reg_request->alpha2); 1435 1436 if (wiphy_idx_valid(reg_request->wiphy_idx)) 1437 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1438 1439 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1440 !wiphy) { 1441 kfree(reg_request); 1442 return; 1443 } 1444 1445 r = __regulatory_hint(wiphy, reg_request); 1446 /* This is required so that the orig_* parameters are saved */ 1447 if (r == -EALREADY && wiphy && 1448 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 1449 wiphy_update_regulatory(wiphy, initiator); 1450 return; 1451 } 1452 1453 /* 1454 * We only time out user hints, given that they should be the only 1455 * source of bogus requests. 1456 */ 1457 if (r != -EALREADY && 1458 reg_request->initiator == NL80211_REGDOM_SET_BY_USER) 1459 schedule_delayed_work(®_timeout, msecs_to_jiffies(3142)); 1460 } 1461 1462 /* 1463 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 1464 * Regulatory hints come on a first come first serve basis and we 1465 * must process each one atomically. 1466 */ 1467 static void reg_process_pending_hints(void) 1468 { 1469 struct regulatory_request *reg_request; 1470 1471 mutex_lock(&cfg80211_mutex); 1472 mutex_lock(®_mutex); 1473 1474 /* When last_request->processed becomes true this will be rescheduled */ 1475 if (last_request && !last_request->processed) { 1476 REG_DBG_PRINT("Pending regulatory request, waiting " 1477 "for it to be processed..."); 1478 goto out; 1479 } 1480 1481 spin_lock(®_requests_lock); 1482 1483 if (list_empty(®_requests_list)) { 1484 spin_unlock(®_requests_lock); 1485 goto out; 1486 } 1487 1488 reg_request = list_first_entry(®_requests_list, 1489 struct regulatory_request, 1490 list); 1491 list_del_init(®_request->list); 1492 1493 spin_unlock(®_requests_lock); 1494 1495 reg_process_hint(reg_request); 1496 1497 out: 1498 mutex_unlock(®_mutex); 1499 mutex_unlock(&cfg80211_mutex); 1500 } 1501 1502 /* Processes beacon hints -- this has nothing to do with country IEs */ 1503 static void reg_process_pending_beacon_hints(void) 1504 { 1505 struct cfg80211_registered_device *rdev; 1506 struct reg_beacon *pending_beacon, *tmp; 1507 1508 /* 1509 * No need to hold the reg_mutex here as we just touch wiphys 1510 * and do not read or access regulatory variables. 1511 */ 1512 mutex_lock(&cfg80211_mutex); 1513 1514 /* This goes through the _pending_ beacon list */ 1515 spin_lock_bh(®_pending_beacons_lock); 1516 1517 if (list_empty(®_pending_beacons)) { 1518 spin_unlock_bh(®_pending_beacons_lock); 1519 goto out; 1520 } 1521 1522 list_for_each_entry_safe(pending_beacon, tmp, 1523 ®_pending_beacons, list) { 1524 1525 list_del_init(&pending_beacon->list); 1526 1527 /* Applies the beacon hint to current wiphys */ 1528 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1529 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 1530 1531 /* Remembers the beacon hint for new wiphys or reg changes */ 1532 list_add_tail(&pending_beacon->list, ®_beacon_list); 1533 } 1534 1535 spin_unlock_bh(®_pending_beacons_lock); 1536 out: 1537 mutex_unlock(&cfg80211_mutex); 1538 } 1539 1540 static void reg_todo(struct work_struct *work) 1541 { 1542 reg_process_pending_hints(); 1543 reg_process_pending_beacon_hints(); 1544 } 1545 1546 static void queue_regulatory_request(struct regulatory_request *request) 1547 { 1548 if (isalpha(request->alpha2[0])) 1549 request->alpha2[0] = toupper(request->alpha2[0]); 1550 if (isalpha(request->alpha2[1])) 1551 request->alpha2[1] = toupper(request->alpha2[1]); 1552 1553 spin_lock(®_requests_lock); 1554 list_add_tail(&request->list, ®_requests_list); 1555 spin_unlock(®_requests_lock); 1556 1557 schedule_work(®_work); 1558 } 1559 1560 /* 1561 * Core regulatory hint -- happens during cfg80211_init() 1562 * and when we restore regulatory settings. 1563 */ 1564 static int regulatory_hint_core(const char *alpha2) 1565 { 1566 struct regulatory_request *request; 1567 1568 kfree(last_request); 1569 last_request = NULL; 1570 1571 request = kzalloc(sizeof(struct regulatory_request), 1572 GFP_KERNEL); 1573 if (!request) 1574 return -ENOMEM; 1575 1576 request->alpha2[0] = alpha2[0]; 1577 request->alpha2[1] = alpha2[1]; 1578 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1579 1580 queue_regulatory_request(request); 1581 1582 return 0; 1583 } 1584 1585 /* User hints */ 1586 int regulatory_hint_user(const char *alpha2) 1587 { 1588 struct regulatory_request *request; 1589 1590 BUG_ON(!alpha2); 1591 1592 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1593 if (!request) 1594 return -ENOMEM; 1595 1596 request->wiphy_idx = WIPHY_IDX_STALE; 1597 request->alpha2[0] = alpha2[0]; 1598 request->alpha2[1] = alpha2[1]; 1599 request->initiator = NL80211_REGDOM_SET_BY_USER; 1600 1601 queue_regulatory_request(request); 1602 1603 return 0; 1604 } 1605 1606 /* Driver hints */ 1607 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 1608 { 1609 struct regulatory_request *request; 1610 1611 BUG_ON(!alpha2); 1612 BUG_ON(!wiphy); 1613 1614 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1615 if (!request) 1616 return -ENOMEM; 1617 1618 request->wiphy_idx = get_wiphy_idx(wiphy); 1619 1620 /* Must have registered wiphy first */ 1621 BUG_ON(!wiphy_idx_valid(request->wiphy_idx)); 1622 1623 request->alpha2[0] = alpha2[0]; 1624 request->alpha2[1] = alpha2[1]; 1625 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 1626 1627 queue_regulatory_request(request); 1628 1629 return 0; 1630 } 1631 EXPORT_SYMBOL(regulatory_hint); 1632 1633 /* 1634 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and 1635 * therefore cannot iterate over the rdev list here. 1636 */ 1637 void regulatory_hint_11d(struct wiphy *wiphy, 1638 enum ieee80211_band band, 1639 u8 *country_ie, 1640 u8 country_ie_len) 1641 { 1642 char alpha2[2]; 1643 enum environment_cap env = ENVIRON_ANY; 1644 struct regulatory_request *request; 1645 1646 mutex_lock(®_mutex); 1647 1648 if (unlikely(!last_request)) 1649 goto out; 1650 1651 /* IE len must be evenly divisible by 2 */ 1652 if (country_ie_len & 0x01) 1653 goto out; 1654 1655 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 1656 goto out; 1657 1658 alpha2[0] = country_ie[0]; 1659 alpha2[1] = country_ie[1]; 1660 1661 if (country_ie[2] == 'I') 1662 env = ENVIRON_INDOOR; 1663 else if (country_ie[2] == 'O') 1664 env = ENVIRON_OUTDOOR; 1665 1666 /* 1667 * We will run this only upon a successful connection on cfg80211. 1668 * We leave conflict resolution to the workqueue, where can hold 1669 * cfg80211_mutex. 1670 */ 1671 if (likely(last_request->initiator == 1672 NL80211_REGDOM_SET_BY_COUNTRY_IE && 1673 wiphy_idx_valid(last_request->wiphy_idx))) 1674 goto out; 1675 1676 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1677 if (!request) 1678 goto out; 1679 1680 request->wiphy_idx = get_wiphy_idx(wiphy); 1681 request->alpha2[0] = alpha2[0]; 1682 request->alpha2[1] = alpha2[1]; 1683 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 1684 request->country_ie_env = env; 1685 1686 mutex_unlock(®_mutex); 1687 1688 queue_regulatory_request(request); 1689 1690 return; 1691 1692 out: 1693 mutex_unlock(®_mutex); 1694 } 1695 1696 static void restore_alpha2(char *alpha2, bool reset_user) 1697 { 1698 /* indicates there is no alpha2 to consider for restoration */ 1699 alpha2[0] = '9'; 1700 alpha2[1] = '7'; 1701 1702 /* The user setting has precedence over the module parameter */ 1703 if (is_user_regdom_saved()) { 1704 /* Unless we're asked to ignore it and reset it */ 1705 if (reset_user) { 1706 REG_DBG_PRINT("Restoring regulatory settings " 1707 "including user preference\n"); 1708 user_alpha2[0] = '9'; 1709 user_alpha2[1] = '7'; 1710 1711 /* 1712 * If we're ignoring user settings, we still need to 1713 * check the module parameter to ensure we put things 1714 * back as they were for a full restore. 1715 */ 1716 if (!is_world_regdom(ieee80211_regdom)) { 1717 REG_DBG_PRINT("Keeping preference on " 1718 "module parameter ieee80211_regdom: %c%c\n", 1719 ieee80211_regdom[0], 1720 ieee80211_regdom[1]); 1721 alpha2[0] = ieee80211_regdom[0]; 1722 alpha2[1] = ieee80211_regdom[1]; 1723 } 1724 } else { 1725 REG_DBG_PRINT("Restoring regulatory settings " 1726 "while preserving user preference for: %c%c\n", 1727 user_alpha2[0], 1728 user_alpha2[1]); 1729 alpha2[0] = user_alpha2[0]; 1730 alpha2[1] = user_alpha2[1]; 1731 } 1732 } else if (!is_world_regdom(ieee80211_regdom)) { 1733 REG_DBG_PRINT("Keeping preference on " 1734 "module parameter ieee80211_regdom: %c%c\n", 1735 ieee80211_regdom[0], 1736 ieee80211_regdom[1]); 1737 alpha2[0] = ieee80211_regdom[0]; 1738 alpha2[1] = ieee80211_regdom[1]; 1739 } else 1740 REG_DBG_PRINT("Restoring regulatory settings\n"); 1741 } 1742 1743 /* 1744 * Restoring regulatory settings involves ingoring any 1745 * possibly stale country IE information and user regulatory 1746 * settings if so desired, this includes any beacon hints 1747 * learned as we could have traveled outside to another country 1748 * after disconnection. To restore regulatory settings we do 1749 * exactly what we did at bootup: 1750 * 1751 * - send a core regulatory hint 1752 * - send a user regulatory hint if applicable 1753 * 1754 * Device drivers that send a regulatory hint for a specific country 1755 * keep their own regulatory domain on wiphy->regd so that does does 1756 * not need to be remembered. 1757 */ 1758 static void restore_regulatory_settings(bool reset_user) 1759 { 1760 char alpha2[2]; 1761 struct reg_beacon *reg_beacon, *btmp; 1762 struct regulatory_request *reg_request, *tmp; 1763 LIST_HEAD(tmp_reg_req_list); 1764 1765 mutex_lock(&cfg80211_mutex); 1766 mutex_lock(®_mutex); 1767 1768 reset_regdomains(); 1769 restore_alpha2(alpha2, reset_user); 1770 1771 /* 1772 * If there's any pending requests we simply 1773 * stash them to a temporary pending queue and 1774 * add then after we've restored regulatory 1775 * settings. 1776 */ 1777 spin_lock(®_requests_lock); 1778 if (!list_empty(®_requests_list)) { 1779 list_for_each_entry_safe(reg_request, tmp, 1780 ®_requests_list, list) { 1781 if (reg_request->initiator != 1782 NL80211_REGDOM_SET_BY_USER) 1783 continue; 1784 list_del(®_request->list); 1785 list_add_tail(®_request->list, &tmp_reg_req_list); 1786 } 1787 } 1788 spin_unlock(®_requests_lock); 1789 1790 /* Clear beacon hints */ 1791 spin_lock_bh(®_pending_beacons_lock); 1792 if (!list_empty(®_pending_beacons)) { 1793 list_for_each_entry_safe(reg_beacon, btmp, 1794 ®_pending_beacons, list) { 1795 list_del(®_beacon->list); 1796 kfree(reg_beacon); 1797 } 1798 } 1799 spin_unlock_bh(®_pending_beacons_lock); 1800 1801 if (!list_empty(®_beacon_list)) { 1802 list_for_each_entry_safe(reg_beacon, btmp, 1803 ®_beacon_list, list) { 1804 list_del(®_beacon->list); 1805 kfree(reg_beacon); 1806 } 1807 } 1808 1809 /* First restore to the basic regulatory settings */ 1810 cfg80211_regdomain = cfg80211_world_regdom; 1811 1812 mutex_unlock(®_mutex); 1813 mutex_unlock(&cfg80211_mutex); 1814 1815 regulatory_hint_core(cfg80211_regdomain->alpha2); 1816 1817 /* 1818 * This restores the ieee80211_regdom module parameter 1819 * preference or the last user requested regulatory 1820 * settings, user regulatory settings takes precedence. 1821 */ 1822 if (is_an_alpha2(alpha2)) 1823 regulatory_hint_user(user_alpha2); 1824 1825 if (list_empty(&tmp_reg_req_list)) 1826 return; 1827 1828 mutex_lock(&cfg80211_mutex); 1829 mutex_lock(®_mutex); 1830 1831 spin_lock(®_requests_lock); 1832 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) { 1833 REG_DBG_PRINT("Adding request for country %c%c back " 1834 "into the queue\n", 1835 reg_request->alpha2[0], 1836 reg_request->alpha2[1]); 1837 list_del(®_request->list); 1838 list_add_tail(®_request->list, ®_requests_list); 1839 } 1840 spin_unlock(®_requests_lock); 1841 1842 mutex_unlock(®_mutex); 1843 mutex_unlock(&cfg80211_mutex); 1844 1845 REG_DBG_PRINT("Kicking the queue\n"); 1846 1847 schedule_work(®_work); 1848 } 1849 1850 void regulatory_hint_disconnect(void) 1851 { 1852 REG_DBG_PRINT("All devices are disconnected, going to " 1853 "restore regulatory settings\n"); 1854 restore_regulatory_settings(false); 1855 } 1856 1857 static bool freq_is_chan_12_13_14(u16 freq) 1858 { 1859 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 1860 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 1861 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 1862 return true; 1863 return false; 1864 } 1865 1866 int regulatory_hint_found_beacon(struct wiphy *wiphy, 1867 struct ieee80211_channel *beacon_chan, 1868 gfp_t gfp) 1869 { 1870 struct reg_beacon *reg_beacon; 1871 1872 if (likely((beacon_chan->beacon_found || 1873 (beacon_chan->flags & IEEE80211_CHAN_RADAR) || 1874 (beacon_chan->band == IEEE80211_BAND_2GHZ && 1875 !freq_is_chan_12_13_14(beacon_chan->center_freq))))) 1876 return 0; 1877 1878 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 1879 if (!reg_beacon) 1880 return -ENOMEM; 1881 1882 REG_DBG_PRINT("Found new beacon on " 1883 "frequency: %d MHz (Ch %d) on %s\n", 1884 beacon_chan->center_freq, 1885 ieee80211_frequency_to_channel(beacon_chan->center_freq), 1886 wiphy_name(wiphy)); 1887 1888 memcpy(®_beacon->chan, beacon_chan, 1889 sizeof(struct ieee80211_channel)); 1890 1891 1892 /* 1893 * Since we can be called from BH or and non-BH context 1894 * we must use spin_lock_bh() 1895 */ 1896 spin_lock_bh(®_pending_beacons_lock); 1897 list_add_tail(®_beacon->list, ®_pending_beacons); 1898 spin_unlock_bh(®_pending_beacons_lock); 1899 1900 schedule_work(®_work); 1901 1902 return 0; 1903 } 1904 1905 static void print_rd_rules(const struct ieee80211_regdomain *rd) 1906 { 1907 unsigned int i; 1908 const struct ieee80211_reg_rule *reg_rule = NULL; 1909 const struct ieee80211_freq_range *freq_range = NULL; 1910 const struct ieee80211_power_rule *power_rule = NULL; 1911 1912 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n"); 1913 1914 for (i = 0; i < rd->n_reg_rules; i++) { 1915 reg_rule = &rd->reg_rules[i]; 1916 freq_range = ®_rule->freq_range; 1917 power_rule = ®_rule->power_rule; 1918 1919 /* 1920 * There may not be documentation for max antenna gain 1921 * in certain regions 1922 */ 1923 if (power_rule->max_antenna_gain) 1924 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n", 1925 freq_range->start_freq_khz, 1926 freq_range->end_freq_khz, 1927 freq_range->max_bandwidth_khz, 1928 power_rule->max_antenna_gain, 1929 power_rule->max_eirp); 1930 else 1931 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n", 1932 freq_range->start_freq_khz, 1933 freq_range->end_freq_khz, 1934 freq_range->max_bandwidth_khz, 1935 power_rule->max_eirp); 1936 } 1937 } 1938 1939 static void print_regdomain(const struct ieee80211_regdomain *rd) 1940 { 1941 1942 if (is_intersected_alpha2(rd->alpha2)) { 1943 1944 if (last_request->initiator == 1945 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1946 struct cfg80211_registered_device *rdev; 1947 rdev = cfg80211_rdev_by_wiphy_idx( 1948 last_request->wiphy_idx); 1949 if (rdev) { 1950 pr_info("Current regulatory domain updated by AP to: %c%c\n", 1951 rdev->country_ie_alpha2[0], 1952 rdev->country_ie_alpha2[1]); 1953 } else 1954 pr_info("Current regulatory domain intersected:\n"); 1955 } else 1956 pr_info("Current regulatory domain intersected:\n"); 1957 } else if (is_world_regdom(rd->alpha2)) 1958 pr_info("World regulatory domain updated:\n"); 1959 else { 1960 if (is_unknown_alpha2(rd->alpha2)) 1961 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 1962 else 1963 pr_info("Regulatory domain changed to country: %c%c\n", 1964 rd->alpha2[0], rd->alpha2[1]); 1965 } 1966 print_rd_rules(rd); 1967 } 1968 1969 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 1970 { 1971 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 1972 print_rd_rules(rd); 1973 } 1974 1975 /* Takes ownership of rd only if it doesn't fail */ 1976 static int __set_regdom(const struct ieee80211_regdomain *rd) 1977 { 1978 const struct ieee80211_regdomain *intersected_rd = NULL; 1979 struct cfg80211_registered_device *rdev = NULL; 1980 struct wiphy *request_wiphy; 1981 /* Some basic sanity checks first */ 1982 1983 if (is_world_regdom(rd->alpha2)) { 1984 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 1985 return -EINVAL; 1986 update_world_regdomain(rd); 1987 return 0; 1988 } 1989 1990 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 1991 !is_unknown_alpha2(rd->alpha2)) 1992 return -EINVAL; 1993 1994 if (!last_request) 1995 return -EINVAL; 1996 1997 /* 1998 * Lets only bother proceeding on the same alpha2 if the current 1999 * rd is non static (it means CRDA was present and was used last) 2000 * and the pending request came in from a country IE 2001 */ 2002 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2003 /* 2004 * If someone else asked us to change the rd lets only bother 2005 * checking if the alpha2 changes if CRDA was already called 2006 */ 2007 if (!regdom_changes(rd->alpha2)) 2008 return -EINVAL; 2009 } 2010 2011 /* 2012 * Now lets set the regulatory domain, update all driver channels 2013 * and finally inform them of what we have done, in case they want 2014 * to review or adjust their own settings based on their own 2015 * internal EEPROM data 2016 */ 2017 2018 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 2019 return -EINVAL; 2020 2021 if (!is_valid_rd(rd)) { 2022 pr_err("Invalid regulatory domain detected:\n"); 2023 print_regdomain_info(rd); 2024 return -EINVAL; 2025 } 2026 2027 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2028 2029 if (!last_request->intersect) { 2030 int r; 2031 2032 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) { 2033 reset_regdomains(); 2034 cfg80211_regdomain = rd; 2035 return 0; 2036 } 2037 2038 /* 2039 * For a driver hint, lets copy the regulatory domain the 2040 * driver wanted to the wiphy to deal with conflicts 2041 */ 2042 2043 /* 2044 * Userspace could have sent two replies with only 2045 * one kernel request. 2046 */ 2047 if (request_wiphy->regd) 2048 return -EALREADY; 2049 2050 r = reg_copy_regd(&request_wiphy->regd, rd); 2051 if (r) 2052 return r; 2053 2054 reset_regdomains(); 2055 cfg80211_regdomain = rd; 2056 return 0; 2057 } 2058 2059 /* Intersection requires a bit more work */ 2060 2061 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2062 2063 intersected_rd = regdom_intersect(rd, cfg80211_regdomain); 2064 if (!intersected_rd) 2065 return -EINVAL; 2066 2067 /* 2068 * We can trash what CRDA provided now. 2069 * However if a driver requested this specific regulatory 2070 * domain we keep it for its private use 2071 */ 2072 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) 2073 request_wiphy->regd = rd; 2074 else 2075 kfree(rd); 2076 2077 rd = NULL; 2078 2079 reset_regdomains(); 2080 cfg80211_regdomain = intersected_rd; 2081 2082 return 0; 2083 } 2084 2085 if (!intersected_rd) 2086 return -EINVAL; 2087 2088 rdev = wiphy_to_dev(request_wiphy); 2089 2090 rdev->country_ie_alpha2[0] = rd->alpha2[0]; 2091 rdev->country_ie_alpha2[1] = rd->alpha2[1]; 2092 rdev->env = last_request->country_ie_env; 2093 2094 BUG_ON(intersected_rd == rd); 2095 2096 kfree(rd); 2097 rd = NULL; 2098 2099 reset_regdomains(); 2100 cfg80211_regdomain = intersected_rd; 2101 2102 return 0; 2103 } 2104 2105 2106 /* 2107 * Use this call to set the current regulatory domain. Conflicts with 2108 * multiple drivers can be ironed out later. Caller must've already 2109 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex 2110 */ 2111 int set_regdom(const struct ieee80211_regdomain *rd) 2112 { 2113 int r; 2114 2115 assert_cfg80211_lock(); 2116 2117 mutex_lock(®_mutex); 2118 2119 /* Note that this doesn't update the wiphys, this is done below */ 2120 r = __set_regdom(rd); 2121 if (r) { 2122 kfree(rd); 2123 mutex_unlock(®_mutex); 2124 return r; 2125 } 2126 2127 /* This would make this whole thing pointless */ 2128 if (!last_request->intersect) 2129 BUG_ON(rd != cfg80211_regdomain); 2130 2131 /* update all wiphys now with the new established regulatory domain */ 2132 update_all_wiphy_regulatory(last_request->initiator); 2133 2134 print_regdomain(cfg80211_regdomain); 2135 2136 nl80211_send_reg_change_event(last_request); 2137 2138 reg_set_request_processed(); 2139 2140 mutex_unlock(®_mutex); 2141 2142 return r; 2143 } 2144 2145 #ifdef CONFIG_HOTPLUG 2146 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2147 { 2148 if (last_request && !last_request->processed) { 2149 if (add_uevent_var(env, "COUNTRY=%c%c", 2150 last_request->alpha2[0], 2151 last_request->alpha2[1])) 2152 return -ENOMEM; 2153 } 2154 2155 return 0; 2156 } 2157 #else 2158 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2159 { 2160 return -ENODEV; 2161 } 2162 #endif /* CONFIG_HOTPLUG */ 2163 2164 /* Caller must hold cfg80211_mutex */ 2165 void reg_device_remove(struct wiphy *wiphy) 2166 { 2167 struct wiphy *request_wiphy = NULL; 2168 2169 assert_cfg80211_lock(); 2170 2171 mutex_lock(®_mutex); 2172 2173 kfree(wiphy->regd); 2174 2175 if (last_request) 2176 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2177 2178 if (!request_wiphy || request_wiphy != wiphy) 2179 goto out; 2180 2181 last_request->wiphy_idx = WIPHY_IDX_STALE; 2182 last_request->country_ie_env = ENVIRON_ANY; 2183 out: 2184 mutex_unlock(®_mutex); 2185 } 2186 2187 static void reg_timeout_work(struct work_struct *work) 2188 { 2189 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, " 2190 "restoring regulatory settings"); 2191 restore_regulatory_settings(true); 2192 } 2193 2194 int __init regulatory_init(void) 2195 { 2196 int err = 0; 2197 2198 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2199 if (IS_ERR(reg_pdev)) 2200 return PTR_ERR(reg_pdev); 2201 2202 reg_pdev->dev.type = ®_device_type; 2203 2204 spin_lock_init(®_requests_lock); 2205 spin_lock_init(®_pending_beacons_lock); 2206 2207 cfg80211_regdomain = cfg80211_world_regdom; 2208 2209 user_alpha2[0] = '9'; 2210 user_alpha2[1] = '7'; 2211 2212 /* We always try to get an update for the static regdomain */ 2213 err = regulatory_hint_core(cfg80211_regdomain->alpha2); 2214 if (err) { 2215 if (err == -ENOMEM) 2216 return err; 2217 /* 2218 * N.B. kobject_uevent_env() can fail mainly for when we're out 2219 * memory which is handled and propagated appropriately above 2220 * but it can also fail during a netlink_broadcast() or during 2221 * early boot for call_usermodehelper(). For now treat these 2222 * errors as non-fatal. 2223 */ 2224 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 2225 #ifdef CONFIG_CFG80211_REG_DEBUG 2226 /* We want to find out exactly why when debugging */ 2227 WARN_ON(err); 2228 #endif 2229 } 2230 2231 /* 2232 * Finally, if the user set the module parameter treat it 2233 * as a user hint. 2234 */ 2235 if (!is_world_regdom(ieee80211_regdom)) 2236 regulatory_hint_user(ieee80211_regdom); 2237 2238 return 0; 2239 } 2240 2241 void /* __init_or_exit */ regulatory_exit(void) 2242 { 2243 struct regulatory_request *reg_request, *tmp; 2244 struct reg_beacon *reg_beacon, *btmp; 2245 2246 cancel_work_sync(®_work); 2247 cancel_delayed_work_sync(®_timeout); 2248 2249 mutex_lock(&cfg80211_mutex); 2250 mutex_lock(®_mutex); 2251 2252 reset_regdomains(); 2253 2254 kfree(last_request); 2255 2256 platform_device_unregister(reg_pdev); 2257 2258 spin_lock_bh(®_pending_beacons_lock); 2259 if (!list_empty(®_pending_beacons)) { 2260 list_for_each_entry_safe(reg_beacon, btmp, 2261 ®_pending_beacons, list) { 2262 list_del(®_beacon->list); 2263 kfree(reg_beacon); 2264 } 2265 } 2266 spin_unlock_bh(®_pending_beacons_lock); 2267 2268 if (!list_empty(®_beacon_list)) { 2269 list_for_each_entry_safe(reg_beacon, btmp, 2270 ®_beacon_list, list) { 2271 list_del(®_beacon->list); 2272 kfree(reg_beacon); 2273 } 2274 } 2275 2276 spin_lock(®_requests_lock); 2277 if (!list_empty(®_requests_list)) { 2278 list_for_each_entry_safe(reg_request, tmp, 2279 ®_requests_list, list) { 2280 list_del(®_request->list); 2281 kfree(reg_request); 2282 } 2283 } 2284 spin_unlock(®_requests_lock); 2285 2286 mutex_unlock(®_mutex); 2287 mutex_unlock(&cfg80211_mutex); 2288 } 2289