1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2023 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static DEFINE_SPINLOCK(reg_indoor_lock); 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 static void reg_process_hint(struct regulatory_request *reg_request); 137 138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 139 { 140 return rcu_dereference_rtnl(cfg80211_regdomain); 141 } 142 143 /* 144 * Returns the regulatory domain associated with the wiphy. 145 * 146 * Requires any of RTNL, wiphy mutex or RCU protection. 147 */ 148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 149 { 150 return rcu_dereference_check(wiphy->regd, 151 lockdep_is_held(&wiphy->mtx) || 152 lockdep_rtnl_is_held()); 153 } 154 EXPORT_SYMBOL(get_wiphy_regdom); 155 156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 157 { 158 switch (dfs_region) { 159 case NL80211_DFS_UNSET: 160 return "unset"; 161 case NL80211_DFS_FCC: 162 return "FCC"; 163 case NL80211_DFS_ETSI: 164 return "ETSI"; 165 case NL80211_DFS_JP: 166 return "JP"; 167 } 168 return "Unknown"; 169 } 170 171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 172 { 173 const struct ieee80211_regdomain *regd = NULL; 174 const struct ieee80211_regdomain *wiphy_regd = NULL; 175 enum nl80211_dfs_regions dfs_region; 176 177 rcu_read_lock(); 178 regd = get_cfg80211_regdom(); 179 dfs_region = regd->dfs_region; 180 181 if (!wiphy) 182 goto out; 183 184 wiphy_regd = get_wiphy_regdom(wiphy); 185 if (!wiphy_regd) 186 goto out; 187 188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 189 dfs_region = wiphy_regd->dfs_region; 190 goto out; 191 } 192 193 if (wiphy_regd->dfs_region == regd->dfs_region) 194 goto out; 195 196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 197 dev_name(&wiphy->dev), 198 reg_dfs_region_str(wiphy_regd->dfs_region), 199 reg_dfs_region_str(regd->dfs_region)); 200 201 out: 202 rcu_read_unlock(); 203 204 return dfs_region; 205 } 206 207 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 208 { 209 if (!r) 210 return; 211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 212 } 213 214 static struct regulatory_request *get_last_request(void) 215 { 216 return rcu_dereference_rtnl(last_request); 217 } 218 219 /* Used to queue up regulatory hints */ 220 static LIST_HEAD(reg_requests_list); 221 static DEFINE_SPINLOCK(reg_requests_lock); 222 223 /* Used to queue up beacon hints for review */ 224 static LIST_HEAD(reg_pending_beacons); 225 static DEFINE_SPINLOCK(reg_pending_beacons_lock); 226 227 /* Used to keep track of processed beacon hints */ 228 static LIST_HEAD(reg_beacon_list); 229 230 struct reg_beacon { 231 struct list_head list; 232 struct ieee80211_channel chan; 233 }; 234 235 static void reg_check_chans_work(struct work_struct *work); 236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 237 238 static void reg_todo(struct work_struct *work); 239 static DECLARE_WORK(reg_work, reg_todo); 240 241 /* We keep a static world regulatory domain in case of the absence of CRDA */ 242 static const struct ieee80211_regdomain world_regdom = { 243 .n_reg_rules = 8, 244 .alpha2 = "00", 245 .reg_rules = { 246 /* IEEE 802.11b/g, channels 1..11 */ 247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 248 /* IEEE 802.11b/g, channels 12..13. */ 249 REG_RULE(2467-10, 2472+10, 20, 6, 20, 250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 251 /* IEEE 802.11 channel 14 - Only JP enables 252 * this and for 802.11b only */ 253 REG_RULE(2484-10, 2484+10, 20, 6, 20, 254 NL80211_RRF_NO_IR | 255 NL80211_RRF_NO_OFDM), 256 /* IEEE 802.11a, channel 36..48 */ 257 REG_RULE(5180-10, 5240+10, 80, 6, 20, 258 NL80211_RRF_NO_IR | 259 NL80211_RRF_AUTO_BW), 260 261 /* IEEE 802.11a, channel 52..64 - DFS required */ 262 REG_RULE(5260-10, 5320+10, 80, 6, 20, 263 NL80211_RRF_NO_IR | 264 NL80211_RRF_AUTO_BW | 265 NL80211_RRF_DFS), 266 267 /* IEEE 802.11a, channel 100..144 - DFS required */ 268 REG_RULE(5500-10, 5720+10, 160, 6, 20, 269 NL80211_RRF_NO_IR | 270 NL80211_RRF_DFS), 271 272 /* IEEE 802.11a, channel 149..165 */ 273 REG_RULE(5745-10, 5825+10, 80, 6, 20, 274 NL80211_RRF_NO_IR), 275 276 /* IEEE 802.11ad (60GHz), channels 1..3 */ 277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 278 } 279 }; 280 281 /* protected by RTNL */ 282 static const struct ieee80211_regdomain *cfg80211_world_regdom = 283 &world_regdom; 284 285 static char *ieee80211_regdom = "00"; 286 static char user_alpha2[2]; 287 static const struct ieee80211_regdomain *cfg80211_user_regdom; 288 289 module_param(ieee80211_regdom, charp, 0444); 290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 291 292 static void reg_free_request(struct regulatory_request *request) 293 { 294 if (request == &core_request_world) 295 return; 296 297 if (request != get_last_request()) 298 kfree(request); 299 } 300 301 static void reg_free_last_request(void) 302 { 303 struct regulatory_request *lr = get_last_request(); 304 305 if (lr != &core_request_world && lr) 306 kfree_rcu(lr, rcu_head); 307 } 308 309 static void reg_update_last_request(struct regulatory_request *request) 310 { 311 struct regulatory_request *lr; 312 313 lr = get_last_request(); 314 if (lr == request) 315 return; 316 317 reg_free_last_request(); 318 rcu_assign_pointer(last_request, request); 319 } 320 321 static void reset_regdomains(bool full_reset, 322 const struct ieee80211_regdomain *new_regdom) 323 { 324 const struct ieee80211_regdomain *r; 325 326 ASSERT_RTNL(); 327 328 r = get_cfg80211_regdom(); 329 330 /* avoid freeing static information or freeing something twice */ 331 if (r == cfg80211_world_regdom) 332 r = NULL; 333 if (cfg80211_world_regdom == &world_regdom) 334 cfg80211_world_regdom = NULL; 335 if (r == &world_regdom) 336 r = NULL; 337 338 rcu_free_regdom(r); 339 rcu_free_regdom(cfg80211_world_regdom); 340 341 cfg80211_world_regdom = &world_regdom; 342 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 343 344 if (!full_reset) 345 return; 346 347 reg_update_last_request(&core_request_world); 348 } 349 350 /* 351 * Dynamic world regulatory domain requested by the wireless 352 * core upon initialization 353 */ 354 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 355 { 356 struct regulatory_request *lr; 357 358 lr = get_last_request(); 359 360 WARN_ON(!lr); 361 362 reset_regdomains(false, rd); 363 364 cfg80211_world_regdom = rd; 365 } 366 367 bool is_world_regdom(const char *alpha2) 368 { 369 if (!alpha2) 370 return false; 371 return alpha2[0] == '0' && alpha2[1] == '0'; 372 } 373 374 static bool is_alpha2_set(const char *alpha2) 375 { 376 if (!alpha2) 377 return false; 378 return alpha2[0] && alpha2[1]; 379 } 380 381 static bool is_unknown_alpha2(const char *alpha2) 382 { 383 if (!alpha2) 384 return false; 385 /* 386 * Special case where regulatory domain was built by driver 387 * but a specific alpha2 cannot be determined 388 */ 389 return alpha2[0] == '9' && alpha2[1] == '9'; 390 } 391 392 static bool is_intersected_alpha2(const char *alpha2) 393 { 394 if (!alpha2) 395 return false; 396 /* 397 * Special case where regulatory domain is the 398 * result of an intersection between two regulatory domain 399 * structures 400 */ 401 return alpha2[0] == '9' && alpha2[1] == '8'; 402 } 403 404 static bool is_an_alpha2(const char *alpha2) 405 { 406 if (!alpha2) 407 return false; 408 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 409 } 410 411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 412 { 413 if (!alpha2_x || !alpha2_y) 414 return false; 415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 416 } 417 418 static bool regdom_changes(const char *alpha2) 419 { 420 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 421 422 if (!r) 423 return true; 424 return !alpha2_equal(r->alpha2, alpha2); 425 } 426 427 /* 428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 430 * has ever been issued. 431 */ 432 static bool is_user_regdom_saved(void) 433 { 434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 435 return false; 436 437 /* This would indicate a mistake on the design */ 438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 439 "Unexpected user alpha2: %c%c\n", 440 user_alpha2[0], user_alpha2[1])) 441 return false; 442 443 return true; 444 } 445 446 static const struct ieee80211_regdomain * 447 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 448 { 449 struct ieee80211_regdomain *regd; 450 unsigned int i; 451 452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 453 GFP_KERNEL); 454 if (!regd) 455 return ERR_PTR(-ENOMEM); 456 457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 458 459 for (i = 0; i < src_regd->n_reg_rules; i++) 460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 461 sizeof(struct ieee80211_reg_rule)); 462 463 return regd; 464 } 465 466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 467 { 468 ASSERT_RTNL(); 469 470 if (!IS_ERR(cfg80211_user_regdom)) 471 kfree(cfg80211_user_regdom); 472 cfg80211_user_regdom = reg_copy_regd(rd); 473 } 474 475 struct reg_regdb_apply_request { 476 struct list_head list; 477 const struct ieee80211_regdomain *regdom; 478 }; 479 480 static LIST_HEAD(reg_regdb_apply_list); 481 static DEFINE_MUTEX(reg_regdb_apply_mutex); 482 483 static void reg_regdb_apply(struct work_struct *work) 484 { 485 struct reg_regdb_apply_request *request; 486 487 rtnl_lock(); 488 489 mutex_lock(®_regdb_apply_mutex); 490 while (!list_empty(®_regdb_apply_list)) { 491 request = list_first_entry(®_regdb_apply_list, 492 struct reg_regdb_apply_request, 493 list); 494 list_del(&request->list); 495 496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 497 kfree(request); 498 } 499 mutex_unlock(®_regdb_apply_mutex); 500 501 rtnl_unlock(); 502 } 503 504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 505 506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 507 { 508 struct reg_regdb_apply_request *request; 509 510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 511 if (!request) { 512 kfree(regdom); 513 return -ENOMEM; 514 } 515 516 request->regdom = regdom; 517 518 mutex_lock(®_regdb_apply_mutex); 519 list_add_tail(&request->list, ®_regdb_apply_list); 520 mutex_unlock(®_regdb_apply_mutex); 521 522 schedule_work(®_regdb_work); 523 return 0; 524 } 525 526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 527 /* Max number of consecutive attempts to communicate with CRDA */ 528 #define REG_MAX_CRDA_TIMEOUTS 10 529 530 static u32 reg_crda_timeouts; 531 532 static void crda_timeout_work(struct work_struct *work); 533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 534 535 static void crda_timeout_work(struct work_struct *work) 536 { 537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 538 rtnl_lock(); 539 reg_crda_timeouts++; 540 restore_regulatory_settings(true, false); 541 rtnl_unlock(); 542 } 543 544 static void cancel_crda_timeout(void) 545 { 546 cancel_delayed_work(&crda_timeout); 547 } 548 549 static void cancel_crda_timeout_sync(void) 550 { 551 cancel_delayed_work_sync(&crda_timeout); 552 } 553 554 static void reset_crda_timeouts(void) 555 { 556 reg_crda_timeouts = 0; 557 } 558 559 /* 560 * This lets us keep regulatory code which is updated on a regulatory 561 * basis in userspace. 562 */ 563 static int call_crda(const char *alpha2) 564 { 565 char country[12]; 566 char *env[] = { country, NULL }; 567 int ret; 568 569 snprintf(country, sizeof(country), "COUNTRY=%c%c", 570 alpha2[0], alpha2[1]); 571 572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 574 return -EINVAL; 575 } 576 577 if (!is_world_regdom((char *) alpha2)) 578 pr_debug("Calling CRDA for country: %c%c\n", 579 alpha2[0], alpha2[1]); 580 else 581 pr_debug("Calling CRDA to update world regulatory domain\n"); 582 583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 584 if (ret) 585 return ret; 586 587 queue_delayed_work(system_power_efficient_wq, 588 &crda_timeout, msecs_to_jiffies(3142)); 589 return 0; 590 } 591 #else 592 static inline void cancel_crda_timeout(void) {} 593 static inline void cancel_crda_timeout_sync(void) {} 594 static inline void reset_crda_timeouts(void) {} 595 static inline int call_crda(const char *alpha2) 596 { 597 return -ENODATA; 598 } 599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 600 601 /* code to directly load a firmware database through request_firmware */ 602 static const struct fwdb_header *regdb; 603 604 struct fwdb_country { 605 u8 alpha2[2]; 606 __be16 coll_ptr; 607 /* this struct cannot be extended */ 608 } __packed __aligned(4); 609 610 struct fwdb_collection { 611 u8 len; 612 u8 n_rules; 613 u8 dfs_region; 614 /* no optional data yet */ 615 /* aligned to 2, then followed by __be16 array of rule pointers */ 616 } __packed __aligned(4); 617 618 enum fwdb_flags { 619 FWDB_FLAG_NO_OFDM = BIT(0), 620 FWDB_FLAG_NO_OUTDOOR = BIT(1), 621 FWDB_FLAG_DFS = BIT(2), 622 FWDB_FLAG_NO_IR = BIT(3), 623 FWDB_FLAG_AUTO_BW = BIT(4), 624 }; 625 626 struct fwdb_wmm_ac { 627 u8 ecw; 628 u8 aifsn; 629 __be16 cot; 630 } __packed; 631 632 struct fwdb_wmm_rule { 633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 635 } __packed; 636 637 struct fwdb_rule { 638 u8 len; 639 u8 flags; 640 __be16 max_eirp; 641 __be32 start, end, max_bw; 642 /* start of optional data */ 643 __be16 cac_timeout; 644 __be16 wmm_ptr; 645 } __packed __aligned(4); 646 647 #define FWDB_MAGIC 0x52474442 648 #define FWDB_VERSION 20 649 650 struct fwdb_header { 651 __be32 magic; 652 __be32 version; 653 struct fwdb_country country[]; 654 } __packed __aligned(4); 655 656 static int ecw2cw(int ecw) 657 { 658 return (1 << ecw) - 1; 659 } 660 661 static bool valid_wmm(struct fwdb_wmm_rule *rule) 662 { 663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 664 int i; 665 666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 669 u8 aifsn = ac[i].aifsn; 670 671 if (cw_min >= cw_max) 672 return false; 673 674 if (aifsn < 1) 675 return false; 676 } 677 678 return true; 679 } 680 681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 682 { 683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 684 685 if ((u8 *)rule + sizeof(rule->len) > data + size) 686 return false; 687 688 /* mandatory fields */ 689 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 690 return false; 691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 693 struct fwdb_wmm_rule *wmm; 694 695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 696 return false; 697 698 wmm = (void *)(data + wmm_ptr); 699 700 if (!valid_wmm(wmm)) 701 return false; 702 } 703 return true; 704 } 705 706 static bool valid_country(const u8 *data, unsigned int size, 707 const struct fwdb_country *country) 708 { 709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 710 struct fwdb_collection *coll = (void *)(data + ptr); 711 __be16 *rules_ptr; 712 unsigned int i; 713 714 /* make sure we can read len/n_rules */ 715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 716 return false; 717 718 /* make sure base struct and all rules fit */ 719 if ((u8 *)coll + ALIGN(coll->len, 2) + 720 (coll->n_rules * 2) > data + size) 721 return false; 722 723 /* mandatory fields must exist */ 724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 725 return false; 726 727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 728 729 for (i = 0; i < coll->n_rules; i++) { 730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 731 732 if (!valid_rule(data, size, rule_ptr)) 733 return false; 734 } 735 736 return true; 737 } 738 739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 740 #include <keys/asymmetric-type.h> 741 742 static struct key *builtin_regdb_keys; 743 744 static int __init load_builtin_regdb_keys(void) 745 { 746 builtin_regdb_keys = 747 keyring_alloc(".builtin_regdb_keys", 748 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 749 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 750 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 751 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 752 if (IS_ERR(builtin_regdb_keys)) 753 return PTR_ERR(builtin_regdb_keys); 754 755 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 756 757 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 758 x509_load_certificate_list(shipped_regdb_certs, 759 shipped_regdb_certs_len, 760 builtin_regdb_keys); 761 #endif 762 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 763 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 764 x509_load_certificate_list(extra_regdb_certs, 765 extra_regdb_certs_len, 766 builtin_regdb_keys); 767 #endif 768 769 return 0; 770 } 771 772 MODULE_FIRMWARE("regulatory.db.p7s"); 773 774 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 775 { 776 const struct firmware *sig; 777 bool result; 778 779 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 780 return false; 781 782 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 783 builtin_regdb_keys, 784 VERIFYING_UNSPECIFIED_SIGNATURE, 785 NULL, NULL) == 0; 786 787 release_firmware(sig); 788 789 return result; 790 } 791 792 static void free_regdb_keyring(void) 793 { 794 key_put(builtin_regdb_keys); 795 } 796 #else 797 static int load_builtin_regdb_keys(void) 798 { 799 return 0; 800 } 801 802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 803 { 804 return true; 805 } 806 807 static void free_regdb_keyring(void) 808 { 809 } 810 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 811 812 static bool valid_regdb(const u8 *data, unsigned int size) 813 { 814 const struct fwdb_header *hdr = (void *)data; 815 const struct fwdb_country *country; 816 817 if (size < sizeof(*hdr)) 818 return false; 819 820 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 821 return false; 822 823 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 824 return false; 825 826 if (!regdb_has_valid_signature(data, size)) 827 return false; 828 829 country = &hdr->country[0]; 830 while ((u8 *)(country + 1) <= data + size) { 831 if (!country->coll_ptr) 832 break; 833 if (!valid_country(data, size, country)) 834 return false; 835 country++; 836 } 837 838 return true; 839 } 840 841 static void set_wmm_rule(const struct fwdb_header *db, 842 const struct fwdb_country *country, 843 const struct fwdb_rule *rule, 844 struct ieee80211_reg_rule *rrule) 845 { 846 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 847 struct fwdb_wmm_rule *wmm; 848 unsigned int i, wmm_ptr; 849 850 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 851 wmm = (void *)((u8 *)db + wmm_ptr); 852 853 if (!valid_wmm(wmm)) { 854 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 855 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 856 country->alpha2[0], country->alpha2[1]); 857 return; 858 } 859 860 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 861 wmm_rule->client[i].cw_min = 862 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 863 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 864 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 865 wmm_rule->client[i].cot = 866 1000 * be16_to_cpu(wmm->client[i].cot); 867 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 868 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 869 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 870 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 871 } 872 873 rrule->has_wmm = true; 874 } 875 876 static int __regdb_query_wmm(const struct fwdb_header *db, 877 const struct fwdb_country *country, int freq, 878 struct ieee80211_reg_rule *rrule) 879 { 880 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 881 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 882 int i; 883 884 for (i = 0; i < coll->n_rules; i++) { 885 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 886 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 887 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 888 889 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 890 continue; 891 892 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 893 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 894 set_wmm_rule(db, country, rule, rrule); 895 return 0; 896 } 897 } 898 899 return -ENODATA; 900 } 901 902 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 903 { 904 const struct fwdb_header *hdr = regdb; 905 const struct fwdb_country *country; 906 907 if (!regdb) 908 return -ENODATA; 909 910 if (IS_ERR(regdb)) 911 return PTR_ERR(regdb); 912 913 country = &hdr->country[0]; 914 while (country->coll_ptr) { 915 if (alpha2_equal(alpha2, country->alpha2)) 916 return __regdb_query_wmm(regdb, country, freq, rule); 917 918 country++; 919 } 920 921 return -ENODATA; 922 } 923 EXPORT_SYMBOL(reg_query_regdb_wmm); 924 925 static int regdb_query_country(const struct fwdb_header *db, 926 const struct fwdb_country *country) 927 { 928 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 929 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 930 struct ieee80211_regdomain *regdom; 931 unsigned int i; 932 933 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 934 GFP_KERNEL); 935 if (!regdom) 936 return -ENOMEM; 937 938 regdom->n_reg_rules = coll->n_rules; 939 regdom->alpha2[0] = country->alpha2[0]; 940 regdom->alpha2[1] = country->alpha2[1]; 941 regdom->dfs_region = coll->dfs_region; 942 943 for (i = 0; i < regdom->n_reg_rules; i++) { 944 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 945 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 946 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 947 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 948 949 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 950 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 951 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 952 953 rrule->power_rule.max_antenna_gain = 0; 954 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 955 956 rrule->flags = 0; 957 if (rule->flags & FWDB_FLAG_NO_OFDM) 958 rrule->flags |= NL80211_RRF_NO_OFDM; 959 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 960 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 961 if (rule->flags & FWDB_FLAG_DFS) 962 rrule->flags |= NL80211_RRF_DFS; 963 if (rule->flags & FWDB_FLAG_NO_IR) 964 rrule->flags |= NL80211_RRF_NO_IR; 965 if (rule->flags & FWDB_FLAG_AUTO_BW) 966 rrule->flags |= NL80211_RRF_AUTO_BW; 967 968 rrule->dfs_cac_ms = 0; 969 970 /* handle optional data */ 971 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 972 rrule->dfs_cac_ms = 973 1000 * be16_to_cpu(rule->cac_timeout); 974 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 975 set_wmm_rule(db, country, rule, rrule); 976 } 977 978 return reg_schedule_apply(regdom); 979 } 980 981 static int query_regdb(const char *alpha2) 982 { 983 const struct fwdb_header *hdr = regdb; 984 const struct fwdb_country *country; 985 986 ASSERT_RTNL(); 987 988 if (IS_ERR(regdb)) 989 return PTR_ERR(regdb); 990 991 country = &hdr->country[0]; 992 while (country->coll_ptr) { 993 if (alpha2_equal(alpha2, country->alpha2)) 994 return regdb_query_country(regdb, country); 995 country++; 996 } 997 998 return -ENODATA; 999 } 1000 1001 static void regdb_fw_cb(const struct firmware *fw, void *context) 1002 { 1003 int set_error = 0; 1004 bool restore = true; 1005 void *db; 1006 1007 if (!fw) { 1008 pr_info("failed to load regulatory.db\n"); 1009 set_error = -ENODATA; 1010 } else if (!valid_regdb(fw->data, fw->size)) { 1011 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1012 set_error = -EINVAL; 1013 } 1014 1015 rtnl_lock(); 1016 if (regdb && !IS_ERR(regdb)) { 1017 /* negative case - a bug 1018 * positive case - can happen due to race in case of multiple cb's in 1019 * queue, due to usage of asynchronous callback 1020 * 1021 * Either case, just restore and free new db. 1022 */ 1023 } else if (set_error) { 1024 regdb = ERR_PTR(set_error); 1025 } else if (fw) { 1026 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1027 if (db) { 1028 regdb = db; 1029 restore = context && query_regdb(context); 1030 } else { 1031 restore = true; 1032 } 1033 } 1034 1035 if (restore) 1036 restore_regulatory_settings(true, false); 1037 1038 rtnl_unlock(); 1039 1040 kfree(context); 1041 1042 release_firmware(fw); 1043 } 1044 1045 MODULE_FIRMWARE("regulatory.db"); 1046 1047 static int query_regdb_file(const char *alpha2) 1048 { 1049 int err; 1050 1051 ASSERT_RTNL(); 1052 1053 if (regdb) 1054 return query_regdb(alpha2); 1055 1056 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1057 if (!alpha2) 1058 return -ENOMEM; 1059 1060 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1061 ®_pdev->dev, GFP_KERNEL, 1062 (void *)alpha2, regdb_fw_cb); 1063 if (err) 1064 kfree(alpha2); 1065 1066 return err; 1067 } 1068 1069 int reg_reload_regdb(void) 1070 { 1071 const struct firmware *fw; 1072 void *db; 1073 int err; 1074 const struct ieee80211_regdomain *current_regdomain; 1075 struct regulatory_request *request; 1076 1077 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1078 if (err) 1079 return err; 1080 1081 if (!valid_regdb(fw->data, fw->size)) { 1082 err = -ENODATA; 1083 goto out; 1084 } 1085 1086 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1087 if (!db) { 1088 err = -ENOMEM; 1089 goto out; 1090 } 1091 1092 rtnl_lock(); 1093 if (!IS_ERR_OR_NULL(regdb)) 1094 kfree(regdb); 1095 regdb = db; 1096 1097 /* reset regulatory domain */ 1098 current_regdomain = get_cfg80211_regdom(); 1099 1100 request = kzalloc(sizeof(*request), GFP_KERNEL); 1101 if (!request) { 1102 err = -ENOMEM; 1103 goto out_unlock; 1104 } 1105 1106 request->wiphy_idx = WIPHY_IDX_INVALID; 1107 request->alpha2[0] = current_regdomain->alpha2[0]; 1108 request->alpha2[1] = current_regdomain->alpha2[1]; 1109 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1110 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER; 1111 1112 reg_process_hint(request); 1113 1114 out_unlock: 1115 rtnl_unlock(); 1116 out: 1117 release_firmware(fw); 1118 return err; 1119 } 1120 1121 static bool reg_query_database(struct regulatory_request *request) 1122 { 1123 if (query_regdb_file(request->alpha2) == 0) 1124 return true; 1125 1126 if (call_crda(request->alpha2) == 0) 1127 return true; 1128 1129 return false; 1130 } 1131 1132 bool reg_is_valid_request(const char *alpha2) 1133 { 1134 struct regulatory_request *lr = get_last_request(); 1135 1136 if (!lr || lr->processed) 1137 return false; 1138 1139 return alpha2_equal(lr->alpha2, alpha2); 1140 } 1141 1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1143 { 1144 struct regulatory_request *lr = get_last_request(); 1145 1146 /* 1147 * Follow the driver's regulatory domain, if present, unless a country 1148 * IE has been processed or a user wants to help complaince further 1149 */ 1150 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1151 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1152 wiphy->regd) 1153 return get_wiphy_regdom(wiphy); 1154 1155 return get_cfg80211_regdom(); 1156 } 1157 1158 static unsigned int 1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1160 const struct ieee80211_reg_rule *rule) 1161 { 1162 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1163 const struct ieee80211_freq_range *freq_range_tmp; 1164 const struct ieee80211_reg_rule *tmp; 1165 u32 start_freq, end_freq, idx, no; 1166 1167 for (idx = 0; idx < rd->n_reg_rules; idx++) 1168 if (rule == &rd->reg_rules[idx]) 1169 break; 1170 1171 if (idx == rd->n_reg_rules) 1172 return 0; 1173 1174 /* get start_freq */ 1175 no = idx; 1176 1177 while (no) { 1178 tmp = &rd->reg_rules[--no]; 1179 freq_range_tmp = &tmp->freq_range; 1180 1181 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1182 break; 1183 1184 freq_range = freq_range_tmp; 1185 } 1186 1187 start_freq = freq_range->start_freq_khz; 1188 1189 /* get end_freq */ 1190 freq_range = &rule->freq_range; 1191 no = idx; 1192 1193 while (no < rd->n_reg_rules - 1) { 1194 tmp = &rd->reg_rules[++no]; 1195 freq_range_tmp = &tmp->freq_range; 1196 1197 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1198 break; 1199 1200 freq_range = freq_range_tmp; 1201 } 1202 1203 end_freq = freq_range->end_freq_khz; 1204 1205 return end_freq - start_freq; 1206 } 1207 1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1209 const struct ieee80211_reg_rule *rule) 1210 { 1211 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1212 1213 if (rule->flags & NL80211_RRF_NO_320MHZ) 1214 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160)); 1215 if (rule->flags & NL80211_RRF_NO_160MHZ) 1216 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1217 if (rule->flags & NL80211_RRF_NO_80MHZ) 1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1219 1220 /* 1221 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1222 * are not allowed. 1223 */ 1224 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1225 rule->flags & NL80211_RRF_NO_HT40PLUS) 1226 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1227 1228 return bw; 1229 } 1230 1231 /* Sanity check on a regulatory rule */ 1232 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1233 { 1234 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1235 u32 freq_diff; 1236 1237 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1238 return false; 1239 1240 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1241 return false; 1242 1243 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1244 1245 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1246 freq_range->max_bandwidth_khz > freq_diff) 1247 return false; 1248 1249 return true; 1250 } 1251 1252 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1253 { 1254 const struct ieee80211_reg_rule *reg_rule = NULL; 1255 unsigned int i; 1256 1257 if (!rd->n_reg_rules) 1258 return false; 1259 1260 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1261 return false; 1262 1263 for (i = 0; i < rd->n_reg_rules; i++) { 1264 reg_rule = &rd->reg_rules[i]; 1265 if (!is_valid_reg_rule(reg_rule)) 1266 return false; 1267 } 1268 1269 return true; 1270 } 1271 1272 /** 1273 * freq_in_rule_band - tells us if a frequency is in a frequency band 1274 * @freq_range: frequency rule we want to query 1275 * @freq_khz: frequency we are inquiring about 1276 * 1277 * This lets us know if a specific frequency rule is or is not relevant to 1278 * a specific frequency's band. Bands are device specific and artificial 1279 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1280 * however it is safe for now to assume that a frequency rule should not be 1281 * part of a frequency's band if the start freq or end freq are off by more 1282 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1283 * 60 GHz band. 1284 * This resolution can be lowered and should be considered as we add 1285 * regulatory rule support for other "bands". 1286 **/ 1287 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1288 u32 freq_khz) 1289 { 1290 #define ONE_GHZ_IN_KHZ 1000000 1291 /* 1292 * From 802.11ad: directional multi-gigabit (DMG): 1293 * Pertaining to operation in a frequency band containing a channel 1294 * with the Channel starting frequency above 45 GHz. 1295 */ 1296 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1297 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1298 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1299 return true; 1300 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1301 return true; 1302 return false; 1303 #undef ONE_GHZ_IN_KHZ 1304 } 1305 1306 /* 1307 * Later on we can perhaps use the more restrictive DFS 1308 * region but we don't have information for that yet so 1309 * for now simply disallow conflicts. 1310 */ 1311 static enum nl80211_dfs_regions 1312 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1313 const enum nl80211_dfs_regions dfs_region2) 1314 { 1315 if (dfs_region1 != dfs_region2) 1316 return NL80211_DFS_UNSET; 1317 return dfs_region1; 1318 } 1319 1320 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1321 const struct ieee80211_wmm_ac *wmm_ac2, 1322 struct ieee80211_wmm_ac *intersect) 1323 { 1324 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1325 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1326 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1327 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1328 } 1329 1330 /* 1331 * Helper for regdom_intersect(), this does the real 1332 * mathematical intersection fun 1333 */ 1334 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1335 const struct ieee80211_regdomain *rd2, 1336 const struct ieee80211_reg_rule *rule1, 1337 const struct ieee80211_reg_rule *rule2, 1338 struct ieee80211_reg_rule *intersected_rule) 1339 { 1340 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1341 struct ieee80211_freq_range *freq_range; 1342 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1343 struct ieee80211_power_rule *power_rule; 1344 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1345 struct ieee80211_wmm_rule *wmm_rule; 1346 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1347 1348 freq_range1 = &rule1->freq_range; 1349 freq_range2 = &rule2->freq_range; 1350 freq_range = &intersected_rule->freq_range; 1351 1352 power_rule1 = &rule1->power_rule; 1353 power_rule2 = &rule2->power_rule; 1354 power_rule = &intersected_rule->power_rule; 1355 1356 wmm_rule1 = &rule1->wmm_rule; 1357 wmm_rule2 = &rule2->wmm_rule; 1358 wmm_rule = &intersected_rule->wmm_rule; 1359 1360 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1361 freq_range2->start_freq_khz); 1362 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1363 freq_range2->end_freq_khz); 1364 1365 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1366 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1367 1368 if (rule1->flags & NL80211_RRF_AUTO_BW) 1369 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1370 if (rule2->flags & NL80211_RRF_AUTO_BW) 1371 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1372 1373 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1374 1375 intersected_rule->flags = rule1->flags | rule2->flags; 1376 1377 /* 1378 * In case NL80211_RRF_AUTO_BW requested for both rules 1379 * set AUTO_BW in intersected rule also. Next we will 1380 * calculate BW correctly in handle_channel function. 1381 * In other case remove AUTO_BW flag while we calculate 1382 * maximum bandwidth correctly and auto calculation is 1383 * not required. 1384 */ 1385 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1386 (rule2->flags & NL80211_RRF_AUTO_BW)) 1387 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1388 else 1389 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1390 1391 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1392 if (freq_range->max_bandwidth_khz > freq_diff) 1393 freq_range->max_bandwidth_khz = freq_diff; 1394 1395 power_rule->max_eirp = min(power_rule1->max_eirp, 1396 power_rule2->max_eirp); 1397 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1398 power_rule2->max_antenna_gain); 1399 1400 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1401 rule2->dfs_cac_ms); 1402 1403 if (rule1->has_wmm && rule2->has_wmm) { 1404 u8 ac; 1405 1406 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1407 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1408 &wmm_rule2->client[ac], 1409 &wmm_rule->client[ac]); 1410 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1411 &wmm_rule2->ap[ac], 1412 &wmm_rule->ap[ac]); 1413 } 1414 1415 intersected_rule->has_wmm = true; 1416 } else if (rule1->has_wmm) { 1417 *wmm_rule = *wmm_rule1; 1418 intersected_rule->has_wmm = true; 1419 } else if (rule2->has_wmm) { 1420 *wmm_rule = *wmm_rule2; 1421 intersected_rule->has_wmm = true; 1422 } else { 1423 intersected_rule->has_wmm = false; 1424 } 1425 1426 if (!is_valid_reg_rule(intersected_rule)) 1427 return -EINVAL; 1428 1429 return 0; 1430 } 1431 1432 /* check whether old rule contains new rule */ 1433 static bool rule_contains(struct ieee80211_reg_rule *r1, 1434 struct ieee80211_reg_rule *r2) 1435 { 1436 /* for simplicity, currently consider only same flags */ 1437 if (r1->flags != r2->flags) 1438 return false; 1439 1440 /* verify r1 is more restrictive */ 1441 if ((r1->power_rule.max_antenna_gain > 1442 r2->power_rule.max_antenna_gain) || 1443 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1444 return false; 1445 1446 /* make sure r2's range is contained within r1 */ 1447 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1448 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1449 return false; 1450 1451 /* and finally verify that r1.max_bw >= r2.max_bw */ 1452 if (r1->freq_range.max_bandwidth_khz < 1453 r2->freq_range.max_bandwidth_khz) 1454 return false; 1455 1456 return true; 1457 } 1458 1459 /* add or extend current rules. do nothing if rule is already contained */ 1460 static void add_rule(struct ieee80211_reg_rule *rule, 1461 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1462 { 1463 struct ieee80211_reg_rule *tmp_rule; 1464 int i; 1465 1466 for (i = 0; i < *n_rules; i++) { 1467 tmp_rule = ®_rules[i]; 1468 /* rule is already contained - do nothing */ 1469 if (rule_contains(tmp_rule, rule)) 1470 return; 1471 1472 /* extend rule if possible */ 1473 if (rule_contains(rule, tmp_rule)) { 1474 memcpy(tmp_rule, rule, sizeof(*rule)); 1475 return; 1476 } 1477 } 1478 1479 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1480 (*n_rules)++; 1481 } 1482 1483 /** 1484 * regdom_intersect - do the intersection between two regulatory domains 1485 * @rd1: first regulatory domain 1486 * @rd2: second regulatory domain 1487 * 1488 * Use this function to get the intersection between two regulatory domains. 1489 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1490 * as no one single alpha2 can represent this regulatory domain. 1491 * 1492 * Returns a pointer to the regulatory domain structure which will hold the 1493 * resulting intersection of rules between rd1 and rd2. We will 1494 * kzalloc() this structure for you. 1495 */ 1496 static struct ieee80211_regdomain * 1497 regdom_intersect(const struct ieee80211_regdomain *rd1, 1498 const struct ieee80211_regdomain *rd2) 1499 { 1500 int r; 1501 unsigned int x, y; 1502 unsigned int num_rules = 0; 1503 const struct ieee80211_reg_rule *rule1, *rule2; 1504 struct ieee80211_reg_rule intersected_rule; 1505 struct ieee80211_regdomain *rd; 1506 1507 if (!rd1 || !rd2) 1508 return NULL; 1509 1510 /* 1511 * First we get a count of the rules we'll need, then we actually 1512 * build them. This is to so we can malloc() and free() a 1513 * regdomain once. The reason we use reg_rules_intersect() here 1514 * is it will return -EINVAL if the rule computed makes no sense. 1515 * All rules that do check out OK are valid. 1516 */ 1517 1518 for (x = 0; x < rd1->n_reg_rules; x++) { 1519 rule1 = &rd1->reg_rules[x]; 1520 for (y = 0; y < rd2->n_reg_rules; y++) { 1521 rule2 = &rd2->reg_rules[y]; 1522 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1523 &intersected_rule)) 1524 num_rules++; 1525 } 1526 } 1527 1528 if (!num_rules) 1529 return NULL; 1530 1531 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1532 if (!rd) 1533 return NULL; 1534 1535 for (x = 0; x < rd1->n_reg_rules; x++) { 1536 rule1 = &rd1->reg_rules[x]; 1537 for (y = 0; y < rd2->n_reg_rules; y++) { 1538 rule2 = &rd2->reg_rules[y]; 1539 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1540 &intersected_rule); 1541 /* 1542 * No need to memset here the intersected rule here as 1543 * we're not using the stack anymore 1544 */ 1545 if (r) 1546 continue; 1547 1548 add_rule(&intersected_rule, rd->reg_rules, 1549 &rd->n_reg_rules); 1550 } 1551 } 1552 1553 rd->alpha2[0] = '9'; 1554 rd->alpha2[1] = '8'; 1555 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1556 rd2->dfs_region); 1557 1558 return rd; 1559 } 1560 1561 /* 1562 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1563 * want to just have the channel structure use these 1564 */ 1565 static u32 map_regdom_flags(u32 rd_flags) 1566 { 1567 u32 channel_flags = 0; 1568 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1569 channel_flags |= IEEE80211_CHAN_NO_IR; 1570 if (rd_flags & NL80211_RRF_DFS) 1571 channel_flags |= IEEE80211_CHAN_RADAR; 1572 if (rd_flags & NL80211_RRF_NO_OFDM) 1573 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1574 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1575 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1576 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1577 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1578 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1579 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1580 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1581 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1582 if (rd_flags & NL80211_RRF_NO_80MHZ) 1583 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1584 if (rd_flags & NL80211_RRF_NO_160MHZ) 1585 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1586 if (rd_flags & NL80211_RRF_NO_HE) 1587 channel_flags |= IEEE80211_CHAN_NO_HE; 1588 if (rd_flags & NL80211_RRF_NO_320MHZ) 1589 channel_flags |= IEEE80211_CHAN_NO_320MHZ; 1590 if (rd_flags & NL80211_RRF_NO_EHT) 1591 channel_flags |= IEEE80211_CHAN_NO_EHT; 1592 return channel_flags; 1593 } 1594 1595 static const struct ieee80211_reg_rule * 1596 freq_reg_info_regd(u32 center_freq, 1597 const struct ieee80211_regdomain *regd, u32 bw) 1598 { 1599 int i; 1600 bool band_rule_found = false; 1601 bool bw_fits = false; 1602 1603 if (!regd) 1604 return ERR_PTR(-EINVAL); 1605 1606 for (i = 0; i < regd->n_reg_rules; i++) { 1607 const struct ieee80211_reg_rule *rr; 1608 const struct ieee80211_freq_range *fr = NULL; 1609 1610 rr = ®d->reg_rules[i]; 1611 fr = &rr->freq_range; 1612 1613 /* 1614 * We only need to know if one frequency rule was 1615 * in center_freq's band, that's enough, so let's 1616 * not overwrite it once found 1617 */ 1618 if (!band_rule_found) 1619 band_rule_found = freq_in_rule_band(fr, center_freq); 1620 1621 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1622 1623 if (band_rule_found && bw_fits) 1624 return rr; 1625 } 1626 1627 if (!band_rule_found) 1628 return ERR_PTR(-ERANGE); 1629 1630 return ERR_PTR(-EINVAL); 1631 } 1632 1633 static const struct ieee80211_reg_rule * 1634 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1635 { 1636 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1637 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1638 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE); 1639 int i = ARRAY_SIZE(bws) - 1; 1640 u32 bw; 1641 1642 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1643 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1644 if (!IS_ERR(reg_rule)) 1645 return reg_rule; 1646 } 1647 1648 return reg_rule; 1649 } 1650 1651 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1652 u32 center_freq) 1653 { 1654 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1655 1656 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1657 } 1658 EXPORT_SYMBOL(freq_reg_info); 1659 1660 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1661 { 1662 switch (initiator) { 1663 case NL80211_REGDOM_SET_BY_CORE: 1664 return "core"; 1665 case NL80211_REGDOM_SET_BY_USER: 1666 return "user"; 1667 case NL80211_REGDOM_SET_BY_DRIVER: 1668 return "driver"; 1669 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1670 return "country element"; 1671 default: 1672 WARN_ON(1); 1673 return "bug"; 1674 } 1675 } 1676 EXPORT_SYMBOL(reg_initiator_name); 1677 1678 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1679 const struct ieee80211_reg_rule *reg_rule, 1680 const struct ieee80211_channel *chan) 1681 { 1682 const struct ieee80211_freq_range *freq_range = NULL; 1683 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1684 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1685 1686 freq_range = ®_rule->freq_range; 1687 1688 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1689 center_freq_khz = ieee80211_channel_to_khz(chan); 1690 /* Check if auto calculation requested */ 1691 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1692 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1693 1694 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1695 if (!cfg80211_does_bw_fit_range(freq_range, 1696 center_freq_khz, 1697 MHZ_TO_KHZ(10))) 1698 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1699 if (!cfg80211_does_bw_fit_range(freq_range, 1700 center_freq_khz, 1701 MHZ_TO_KHZ(20))) 1702 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1703 1704 if (is_s1g) { 1705 /* S1G is strict about non overlapping channels. We can 1706 * calculate which bandwidth is allowed per channel by finding 1707 * the largest bandwidth which cleanly divides the freq_range. 1708 */ 1709 int edge_offset; 1710 int ch_bw = max_bandwidth_khz; 1711 1712 while (ch_bw) { 1713 edge_offset = (center_freq_khz - ch_bw / 2) - 1714 freq_range->start_freq_khz; 1715 if (edge_offset % ch_bw == 0) { 1716 switch (KHZ_TO_MHZ(ch_bw)) { 1717 case 1: 1718 bw_flags |= IEEE80211_CHAN_1MHZ; 1719 break; 1720 case 2: 1721 bw_flags |= IEEE80211_CHAN_2MHZ; 1722 break; 1723 case 4: 1724 bw_flags |= IEEE80211_CHAN_4MHZ; 1725 break; 1726 case 8: 1727 bw_flags |= IEEE80211_CHAN_8MHZ; 1728 break; 1729 case 16: 1730 bw_flags |= IEEE80211_CHAN_16MHZ; 1731 break; 1732 default: 1733 /* If we got here, no bandwidths fit on 1734 * this frequency, ie. band edge. 1735 */ 1736 bw_flags |= IEEE80211_CHAN_DISABLED; 1737 break; 1738 } 1739 break; 1740 } 1741 ch_bw /= 2; 1742 } 1743 } else { 1744 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1745 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1746 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1747 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1748 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1749 bw_flags |= IEEE80211_CHAN_NO_HT40; 1750 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1751 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1752 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1753 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1754 if (max_bandwidth_khz < MHZ_TO_KHZ(320)) 1755 bw_flags |= IEEE80211_CHAN_NO_320MHZ; 1756 } 1757 return bw_flags; 1758 } 1759 1760 static void handle_channel_single_rule(struct wiphy *wiphy, 1761 enum nl80211_reg_initiator initiator, 1762 struct ieee80211_channel *chan, 1763 u32 flags, 1764 struct regulatory_request *lr, 1765 struct wiphy *request_wiphy, 1766 const struct ieee80211_reg_rule *reg_rule) 1767 { 1768 u32 bw_flags = 0; 1769 const struct ieee80211_power_rule *power_rule = NULL; 1770 const struct ieee80211_regdomain *regd; 1771 1772 regd = reg_get_regdomain(wiphy); 1773 1774 power_rule = ®_rule->power_rule; 1775 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1776 1777 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1778 request_wiphy && request_wiphy == wiphy && 1779 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1780 /* 1781 * This guarantees the driver's requested regulatory domain 1782 * will always be used as a base for further regulatory 1783 * settings 1784 */ 1785 chan->flags = chan->orig_flags = 1786 map_regdom_flags(reg_rule->flags) | bw_flags; 1787 chan->max_antenna_gain = chan->orig_mag = 1788 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1789 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1790 (int) MBM_TO_DBM(power_rule->max_eirp); 1791 1792 if (chan->flags & IEEE80211_CHAN_RADAR) { 1793 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1794 if (reg_rule->dfs_cac_ms) 1795 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1796 } 1797 1798 return; 1799 } 1800 1801 chan->dfs_state = NL80211_DFS_USABLE; 1802 chan->dfs_state_entered = jiffies; 1803 1804 chan->beacon_found = false; 1805 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1806 chan->max_antenna_gain = 1807 min_t(int, chan->orig_mag, 1808 MBI_TO_DBI(power_rule->max_antenna_gain)); 1809 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1810 1811 if (chan->flags & IEEE80211_CHAN_RADAR) { 1812 if (reg_rule->dfs_cac_ms) 1813 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1814 else 1815 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1816 } 1817 1818 if (chan->orig_mpwr) { 1819 /* 1820 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1821 * will always follow the passed country IE power settings. 1822 */ 1823 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1824 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1825 chan->max_power = chan->max_reg_power; 1826 else 1827 chan->max_power = min(chan->orig_mpwr, 1828 chan->max_reg_power); 1829 } else 1830 chan->max_power = chan->max_reg_power; 1831 } 1832 1833 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1834 enum nl80211_reg_initiator initiator, 1835 struct ieee80211_channel *chan, 1836 u32 flags, 1837 struct regulatory_request *lr, 1838 struct wiphy *request_wiphy, 1839 const struct ieee80211_reg_rule *rrule1, 1840 const struct ieee80211_reg_rule *rrule2, 1841 struct ieee80211_freq_range *comb_range) 1842 { 1843 u32 bw_flags1 = 0; 1844 u32 bw_flags2 = 0; 1845 const struct ieee80211_power_rule *power_rule1 = NULL; 1846 const struct ieee80211_power_rule *power_rule2 = NULL; 1847 const struct ieee80211_regdomain *regd; 1848 1849 regd = reg_get_regdomain(wiphy); 1850 1851 power_rule1 = &rrule1->power_rule; 1852 power_rule2 = &rrule2->power_rule; 1853 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1854 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1855 1856 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1857 request_wiphy && request_wiphy == wiphy && 1858 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1859 /* This guarantees the driver's requested regulatory domain 1860 * will always be used as a base for further regulatory 1861 * settings 1862 */ 1863 chan->flags = 1864 map_regdom_flags(rrule1->flags) | 1865 map_regdom_flags(rrule2->flags) | 1866 bw_flags1 | 1867 bw_flags2; 1868 chan->orig_flags = chan->flags; 1869 chan->max_antenna_gain = 1870 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1871 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1872 chan->orig_mag = chan->max_antenna_gain; 1873 chan->max_reg_power = 1874 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1875 MBM_TO_DBM(power_rule2->max_eirp)); 1876 chan->max_power = chan->max_reg_power; 1877 chan->orig_mpwr = chan->max_reg_power; 1878 1879 if (chan->flags & IEEE80211_CHAN_RADAR) { 1880 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1881 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1882 chan->dfs_cac_ms = max_t(unsigned int, 1883 rrule1->dfs_cac_ms, 1884 rrule2->dfs_cac_ms); 1885 } 1886 1887 return; 1888 } 1889 1890 chan->dfs_state = NL80211_DFS_USABLE; 1891 chan->dfs_state_entered = jiffies; 1892 1893 chan->beacon_found = false; 1894 chan->flags = flags | bw_flags1 | bw_flags2 | 1895 map_regdom_flags(rrule1->flags) | 1896 map_regdom_flags(rrule2->flags); 1897 1898 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1899 * (otherwise no adj. rule case), recheck therefore 1900 */ 1901 if (cfg80211_does_bw_fit_range(comb_range, 1902 ieee80211_channel_to_khz(chan), 1903 MHZ_TO_KHZ(10))) 1904 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1905 if (cfg80211_does_bw_fit_range(comb_range, 1906 ieee80211_channel_to_khz(chan), 1907 MHZ_TO_KHZ(20))) 1908 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1909 1910 chan->max_antenna_gain = 1911 min_t(int, chan->orig_mag, 1912 min_t(int, 1913 MBI_TO_DBI(power_rule1->max_antenna_gain), 1914 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1915 chan->max_reg_power = min_t(int, 1916 MBM_TO_DBM(power_rule1->max_eirp), 1917 MBM_TO_DBM(power_rule2->max_eirp)); 1918 1919 if (chan->flags & IEEE80211_CHAN_RADAR) { 1920 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1921 chan->dfs_cac_ms = max_t(unsigned int, 1922 rrule1->dfs_cac_ms, 1923 rrule2->dfs_cac_ms); 1924 else 1925 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1926 } 1927 1928 if (chan->orig_mpwr) { 1929 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1930 * will always follow the passed country IE power settings. 1931 */ 1932 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1933 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1934 chan->max_power = chan->max_reg_power; 1935 else 1936 chan->max_power = min(chan->orig_mpwr, 1937 chan->max_reg_power); 1938 } else { 1939 chan->max_power = chan->max_reg_power; 1940 } 1941 } 1942 1943 /* Note that right now we assume the desired channel bandwidth 1944 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1945 * per channel, the primary and the extension channel). 1946 */ 1947 static void handle_channel(struct wiphy *wiphy, 1948 enum nl80211_reg_initiator initiator, 1949 struct ieee80211_channel *chan) 1950 { 1951 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1952 struct regulatory_request *lr = get_last_request(); 1953 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1954 const struct ieee80211_reg_rule *rrule = NULL; 1955 const struct ieee80211_reg_rule *rrule1 = NULL; 1956 const struct ieee80211_reg_rule *rrule2 = NULL; 1957 1958 u32 flags = chan->orig_flags; 1959 1960 rrule = freq_reg_info(wiphy, orig_chan_freq); 1961 if (IS_ERR(rrule)) { 1962 /* check for adjacent match, therefore get rules for 1963 * chan - 20 MHz and chan + 20 MHz and test 1964 * if reg rules are adjacent 1965 */ 1966 rrule1 = freq_reg_info(wiphy, 1967 orig_chan_freq - MHZ_TO_KHZ(20)); 1968 rrule2 = freq_reg_info(wiphy, 1969 orig_chan_freq + MHZ_TO_KHZ(20)); 1970 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 1971 struct ieee80211_freq_range comb_range; 1972 1973 if (rrule1->freq_range.end_freq_khz != 1974 rrule2->freq_range.start_freq_khz) 1975 goto disable_chan; 1976 1977 comb_range.start_freq_khz = 1978 rrule1->freq_range.start_freq_khz; 1979 comb_range.end_freq_khz = 1980 rrule2->freq_range.end_freq_khz; 1981 comb_range.max_bandwidth_khz = 1982 min_t(u32, 1983 rrule1->freq_range.max_bandwidth_khz, 1984 rrule2->freq_range.max_bandwidth_khz); 1985 1986 if (!cfg80211_does_bw_fit_range(&comb_range, 1987 orig_chan_freq, 1988 MHZ_TO_KHZ(20))) 1989 goto disable_chan; 1990 1991 handle_channel_adjacent_rules(wiphy, initiator, chan, 1992 flags, lr, request_wiphy, 1993 rrule1, rrule2, 1994 &comb_range); 1995 return; 1996 } 1997 1998 disable_chan: 1999 /* We will disable all channels that do not match our 2000 * received regulatory rule unless the hint is coming 2001 * from a Country IE and the Country IE had no information 2002 * about a band. The IEEE 802.11 spec allows for an AP 2003 * to send only a subset of the regulatory rules allowed, 2004 * so an AP in the US that only supports 2.4 GHz may only send 2005 * a country IE with information for the 2.4 GHz band 2006 * while 5 GHz is still supported. 2007 */ 2008 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2009 PTR_ERR(rrule) == -ERANGE) 2010 return; 2011 2012 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2013 request_wiphy && request_wiphy == wiphy && 2014 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2015 pr_debug("Disabling freq %d.%03d MHz for good\n", 2016 chan->center_freq, chan->freq_offset); 2017 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2018 chan->flags = chan->orig_flags; 2019 } else { 2020 pr_debug("Disabling freq %d.%03d MHz\n", 2021 chan->center_freq, chan->freq_offset); 2022 chan->flags |= IEEE80211_CHAN_DISABLED; 2023 } 2024 return; 2025 } 2026 2027 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2028 request_wiphy, rrule); 2029 } 2030 2031 static void handle_band(struct wiphy *wiphy, 2032 enum nl80211_reg_initiator initiator, 2033 struct ieee80211_supported_band *sband) 2034 { 2035 unsigned int i; 2036 2037 if (!sband) 2038 return; 2039 2040 for (i = 0; i < sband->n_channels; i++) 2041 handle_channel(wiphy, initiator, &sband->channels[i]); 2042 } 2043 2044 static bool reg_request_cell_base(struct regulatory_request *request) 2045 { 2046 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2047 return false; 2048 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2049 } 2050 2051 bool reg_last_request_cell_base(void) 2052 { 2053 return reg_request_cell_base(get_last_request()); 2054 } 2055 2056 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2057 /* Core specific check */ 2058 static enum reg_request_treatment 2059 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2060 { 2061 struct regulatory_request *lr = get_last_request(); 2062 2063 if (!reg_num_devs_support_basehint) 2064 return REG_REQ_IGNORE; 2065 2066 if (reg_request_cell_base(lr) && 2067 !regdom_changes(pending_request->alpha2)) 2068 return REG_REQ_ALREADY_SET; 2069 2070 return REG_REQ_OK; 2071 } 2072 2073 /* Device specific check */ 2074 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2075 { 2076 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2077 } 2078 #else 2079 static enum reg_request_treatment 2080 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2081 { 2082 return REG_REQ_IGNORE; 2083 } 2084 2085 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2086 { 2087 return true; 2088 } 2089 #endif 2090 2091 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2092 { 2093 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2094 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2095 return true; 2096 return false; 2097 } 2098 2099 static bool ignore_reg_update(struct wiphy *wiphy, 2100 enum nl80211_reg_initiator initiator) 2101 { 2102 struct regulatory_request *lr = get_last_request(); 2103 2104 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2105 return true; 2106 2107 if (!lr) { 2108 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2109 reg_initiator_name(initiator)); 2110 return true; 2111 } 2112 2113 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2114 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2115 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2116 reg_initiator_name(initiator)); 2117 return true; 2118 } 2119 2120 /* 2121 * wiphy->regd will be set once the device has its own 2122 * desired regulatory domain set 2123 */ 2124 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2125 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2126 !is_world_regdom(lr->alpha2)) { 2127 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2128 reg_initiator_name(initiator)); 2129 return true; 2130 } 2131 2132 if (reg_request_cell_base(lr)) 2133 return reg_dev_ignore_cell_hint(wiphy); 2134 2135 return false; 2136 } 2137 2138 static bool reg_is_world_roaming(struct wiphy *wiphy) 2139 { 2140 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2141 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2142 struct regulatory_request *lr = get_last_request(); 2143 2144 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2145 return true; 2146 2147 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2148 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2149 return true; 2150 2151 return false; 2152 } 2153 2154 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2155 struct reg_beacon *reg_beacon) 2156 { 2157 struct ieee80211_supported_band *sband; 2158 struct ieee80211_channel *chan; 2159 bool channel_changed = false; 2160 struct ieee80211_channel chan_before; 2161 2162 sband = wiphy->bands[reg_beacon->chan.band]; 2163 chan = &sband->channels[chan_idx]; 2164 2165 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2166 return; 2167 2168 if (chan->beacon_found) 2169 return; 2170 2171 chan->beacon_found = true; 2172 2173 if (!reg_is_world_roaming(wiphy)) 2174 return; 2175 2176 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2177 return; 2178 2179 chan_before = *chan; 2180 2181 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2182 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2183 channel_changed = true; 2184 } 2185 2186 if (channel_changed) 2187 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2188 } 2189 2190 /* 2191 * Called when a scan on a wiphy finds a beacon on 2192 * new channel 2193 */ 2194 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2195 struct reg_beacon *reg_beacon) 2196 { 2197 unsigned int i; 2198 struct ieee80211_supported_band *sband; 2199 2200 if (!wiphy->bands[reg_beacon->chan.band]) 2201 return; 2202 2203 sband = wiphy->bands[reg_beacon->chan.band]; 2204 2205 for (i = 0; i < sband->n_channels; i++) 2206 handle_reg_beacon(wiphy, i, reg_beacon); 2207 } 2208 2209 /* 2210 * Called upon reg changes or a new wiphy is added 2211 */ 2212 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2213 { 2214 unsigned int i; 2215 struct ieee80211_supported_band *sband; 2216 struct reg_beacon *reg_beacon; 2217 2218 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2219 if (!wiphy->bands[reg_beacon->chan.band]) 2220 continue; 2221 sband = wiphy->bands[reg_beacon->chan.band]; 2222 for (i = 0; i < sband->n_channels; i++) 2223 handle_reg_beacon(wiphy, i, reg_beacon); 2224 } 2225 } 2226 2227 /* Reap the advantages of previously found beacons */ 2228 static void reg_process_beacons(struct wiphy *wiphy) 2229 { 2230 /* 2231 * Means we are just firing up cfg80211, so no beacons would 2232 * have been processed yet. 2233 */ 2234 if (!last_request) 2235 return; 2236 wiphy_update_beacon_reg(wiphy); 2237 } 2238 2239 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2240 { 2241 if (!chan) 2242 return false; 2243 if (chan->flags & IEEE80211_CHAN_DISABLED) 2244 return false; 2245 /* This would happen when regulatory rules disallow HT40 completely */ 2246 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2247 return false; 2248 return true; 2249 } 2250 2251 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2252 struct ieee80211_channel *channel) 2253 { 2254 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2255 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2256 const struct ieee80211_regdomain *regd; 2257 unsigned int i; 2258 u32 flags; 2259 2260 if (!is_ht40_allowed(channel)) { 2261 channel->flags |= IEEE80211_CHAN_NO_HT40; 2262 return; 2263 } 2264 2265 /* 2266 * We need to ensure the extension channels exist to 2267 * be able to use HT40- or HT40+, this finds them (or not) 2268 */ 2269 for (i = 0; i < sband->n_channels; i++) { 2270 struct ieee80211_channel *c = &sband->channels[i]; 2271 2272 if (c->center_freq == (channel->center_freq - 20)) 2273 channel_before = c; 2274 if (c->center_freq == (channel->center_freq + 20)) 2275 channel_after = c; 2276 } 2277 2278 flags = 0; 2279 regd = get_wiphy_regdom(wiphy); 2280 if (regd) { 2281 const struct ieee80211_reg_rule *reg_rule = 2282 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2283 regd, MHZ_TO_KHZ(20)); 2284 2285 if (!IS_ERR(reg_rule)) 2286 flags = reg_rule->flags; 2287 } 2288 2289 /* 2290 * Please note that this assumes target bandwidth is 20 MHz, 2291 * if that ever changes we also need to change the below logic 2292 * to include that as well. 2293 */ 2294 if (!is_ht40_allowed(channel_before) || 2295 flags & NL80211_RRF_NO_HT40MINUS) 2296 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2297 else 2298 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2299 2300 if (!is_ht40_allowed(channel_after) || 2301 flags & NL80211_RRF_NO_HT40PLUS) 2302 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2303 else 2304 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2305 } 2306 2307 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2308 struct ieee80211_supported_band *sband) 2309 { 2310 unsigned int i; 2311 2312 if (!sband) 2313 return; 2314 2315 for (i = 0; i < sband->n_channels; i++) 2316 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2317 } 2318 2319 static void reg_process_ht_flags(struct wiphy *wiphy) 2320 { 2321 enum nl80211_band band; 2322 2323 if (!wiphy) 2324 return; 2325 2326 for (band = 0; band < NUM_NL80211_BANDS; band++) 2327 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2328 } 2329 2330 static void reg_call_notifier(struct wiphy *wiphy, 2331 struct regulatory_request *request) 2332 { 2333 if (wiphy->reg_notifier) 2334 wiphy->reg_notifier(wiphy, request); 2335 } 2336 2337 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2338 { 2339 struct cfg80211_chan_def chandef = {}; 2340 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2341 enum nl80211_iftype iftype; 2342 bool ret; 2343 int link; 2344 2345 wdev_lock(wdev); 2346 iftype = wdev->iftype; 2347 2348 /* make sure the interface is active */ 2349 if (!wdev->netdev || !netif_running(wdev->netdev)) 2350 goto wdev_inactive_unlock; 2351 2352 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) { 2353 struct ieee80211_channel *chan; 2354 2355 if (!wdev->valid_links && link > 0) 2356 break; 2357 if (wdev->valid_links && !(wdev->valid_links & BIT(link))) 2358 continue; 2359 switch (iftype) { 2360 case NL80211_IFTYPE_AP: 2361 case NL80211_IFTYPE_P2P_GO: 2362 if (!wdev->links[link].ap.beacon_interval) 2363 continue; 2364 chandef = wdev->links[link].ap.chandef; 2365 break; 2366 case NL80211_IFTYPE_MESH_POINT: 2367 if (!wdev->u.mesh.beacon_interval) 2368 continue; 2369 chandef = wdev->u.mesh.chandef; 2370 break; 2371 case NL80211_IFTYPE_ADHOC: 2372 if (!wdev->u.ibss.ssid_len) 2373 continue; 2374 chandef = wdev->u.ibss.chandef; 2375 break; 2376 case NL80211_IFTYPE_STATION: 2377 case NL80211_IFTYPE_P2P_CLIENT: 2378 /* Maybe we could consider disabling that link only? */ 2379 if (!wdev->links[link].client.current_bss) 2380 continue; 2381 2382 chan = wdev->links[link].client.current_bss->pub.channel; 2383 if (!chan) 2384 continue; 2385 2386 if (!rdev->ops->get_channel || 2387 rdev_get_channel(rdev, wdev, link, &chandef)) 2388 cfg80211_chandef_create(&chandef, chan, 2389 NL80211_CHAN_NO_HT); 2390 break; 2391 case NL80211_IFTYPE_MONITOR: 2392 case NL80211_IFTYPE_AP_VLAN: 2393 case NL80211_IFTYPE_P2P_DEVICE: 2394 /* no enforcement required */ 2395 break; 2396 case NL80211_IFTYPE_OCB: 2397 if (!wdev->u.ocb.chandef.chan) 2398 continue; 2399 chandef = wdev->u.ocb.chandef; 2400 break; 2401 case NL80211_IFTYPE_NAN: 2402 /* we have no info, but NAN is also pretty universal */ 2403 continue; 2404 default: 2405 /* others not implemented for now */ 2406 WARN_ON_ONCE(1); 2407 break; 2408 } 2409 2410 wdev_unlock(wdev); 2411 2412 switch (iftype) { 2413 case NL80211_IFTYPE_AP: 2414 case NL80211_IFTYPE_P2P_GO: 2415 case NL80211_IFTYPE_ADHOC: 2416 case NL80211_IFTYPE_MESH_POINT: 2417 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, 2418 iftype); 2419 if (!ret) 2420 return ret; 2421 break; 2422 case NL80211_IFTYPE_STATION: 2423 case NL80211_IFTYPE_P2P_CLIENT: 2424 ret = cfg80211_chandef_usable(wiphy, &chandef, 2425 IEEE80211_CHAN_DISABLED); 2426 if (!ret) 2427 return ret; 2428 break; 2429 default: 2430 break; 2431 } 2432 2433 wdev_lock(wdev); 2434 } 2435 2436 wdev_unlock(wdev); 2437 2438 return true; 2439 2440 wdev_inactive_unlock: 2441 wdev_unlock(wdev); 2442 return true; 2443 } 2444 2445 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2446 { 2447 struct wireless_dev *wdev; 2448 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2449 2450 wiphy_lock(wiphy); 2451 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2452 if (!reg_wdev_chan_valid(wiphy, wdev)) 2453 cfg80211_leave(rdev, wdev); 2454 wiphy_unlock(wiphy); 2455 } 2456 2457 static void reg_check_chans_work(struct work_struct *work) 2458 { 2459 struct cfg80211_registered_device *rdev; 2460 2461 pr_debug("Verifying active interfaces after reg change\n"); 2462 rtnl_lock(); 2463 2464 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2465 reg_leave_invalid_chans(&rdev->wiphy); 2466 2467 rtnl_unlock(); 2468 } 2469 2470 static void reg_check_channels(void) 2471 { 2472 /* 2473 * Give usermode a chance to do something nicer (move to another 2474 * channel, orderly disconnection), before forcing a disconnection. 2475 */ 2476 mod_delayed_work(system_power_efficient_wq, 2477 ®_check_chans, 2478 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2479 } 2480 2481 static void wiphy_update_regulatory(struct wiphy *wiphy, 2482 enum nl80211_reg_initiator initiator) 2483 { 2484 enum nl80211_band band; 2485 struct regulatory_request *lr = get_last_request(); 2486 2487 if (ignore_reg_update(wiphy, initiator)) { 2488 /* 2489 * Regulatory updates set by CORE are ignored for custom 2490 * regulatory cards. Let us notify the changes to the driver, 2491 * as some drivers used this to restore its orig_* reg domain. 2492 */ 2493 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2494 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2495 !(wiphy->regulatory_flags & 2496 REGULATORY_WIPHY_SELF_MANAGED)) 2497 reg_call_notifier(wiphy, lr); 2498 return; 2499 } 2500 2501 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2502 2503 for (band = 0; band < NUM_NL80211_BANDS; band++) 2504 handle_band(wiphy, initiator, wiphy->bands[band]); 2505 2506 reg_process_beacons(wiphy); 2507 reg_process_ht_flags(wiphy); 2508 reg_call_notifier(wiphy, lr); 2509 } 2510 2511 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2512 { 2513 struct cfg80211_registered_device *rdev; 2514 struct wiphy *wiphy; 2515 2516 ASSERT_RTNL(); 2517 2518 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2519 wiphy = &rdev->wiphy; 2520 wiphy_update_regulatory(wiphy, initiator); 2521 } 2522 2523 reg_check_channels(); 2524 } 2525 2526 static void handle_channel_custom(struct wiphy *wiphy, 2527 struct ieee80211_channel *chan, 2528 const struct ieee80211_regdomain *regd, 2529 u32 min_bw) 2530 { 2531 u32 bw_flags = 0; 2532 const struct ieee80211_reg_rule *reg_rule = NULL; 2533 const struct ieee80211_power_rule *power_rule = NULL; 2534 u32 bw, center_freq_khz; 2535 2536 center_freq_khz = ieee80211_channel_to_khz(chan); 2537 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2538 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2539 if (!IS_ERR(reg_rule)) 2540 break; 2541 } 2542 2543 if (IS_ERR_OR_NULL(reg_rule)) { 2544 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2545 chan->center_freq, chan->freq_offset); 2546 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2547 chan->flags |= IEEE80211_CHAN_DISABLED; 2548 } else { 2549 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2550 chan->flags = chan->orig_flags; 2551 } 2552 return; 2553 } 2554 2555 power_rule = ®_rule->power_rule; 2556 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2557 2558 chan->dfs_state_entered = jiffies; 2559 chan->dfs_state = NL80211_DFS_USABLE; 2560 2561 chan->beacon_found = false; 2562 2563 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2564 chan->flags = chan->orig_flags | bw_flags | 2565 map_regdom_flags(reg_rule->flags); 2566 else 2567 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2568 2569 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2570 chan->max_reg_power = chan->max_power = 2571 (int) MBM_TO_DBM(power_rule->max_eirp); 2572 2573 if (chan->flags & IEEE80211_CHAN_RADAR) { 2574 if (reg_rule->dfs_cac_ms) 2575 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2576 else 2577 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2578 } 2579 2580 chan->max_power = chan->max_reg_power; 2581 } 2582 2583 static void handle_band_custom(struct wiphy *wiphy, 2584 struct ieee80211_supported_band *sband, 2585 const struct ieee80211_regdomain *regd) 2586 { 2587 unsigned int i; 2588 2589 if (!sband) 2590 return; 2591 2592 /* 2593 * We currently assume that you always want at least 20 MHz, 2594 * otherwise channel 12 might get enabled if this rule is 2595 * compatible to US, which permits 2402 - 2472 MHz. 2596 */ 2597 for (i = 0; i < sband->n_channels; i++) 2598 handle_channel_custom(wiphy, &sband->channels[i], regd, 2599 MHZ_TO_KHZ(20)); 2600 } 2601 2602 /* Used by drivers prior to wiphy registration */ 2603 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2604 const struct ieee80211_regdomain *regd) 2605 { 2606 const struct ieee80211_regdomain *new_regd, *tmp; 2607 enum nl80211_band band; 2608 unsigned int bands_set = 0; 2609 2610 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2611 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2612 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2613 2614 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2615 if (!wiphy->bands[band]) 2616 continue; 2617 handle_band_custom(wiphy, wiphy->bands[band], regd); 2618 bands_set++; 2619 } 2620 2621 /* 2622 * no point in calling this if it won't have any effect 2623 * on your device's supported bands. 2624 */ 2625 WARN_ON(!bands_set); 2626 new_regd = reg_copy_regd(regd); 2627 if (IS_ERR(new_regd)) 2628 return; 2629 2630 rtnl_lock(); 2631 wiphy_lock(wiphy); 2632 2633 tmp = get_wiphy_regdom(wiphy); 2634 rcu_assign_pointer(wiphy->regd, new_regd); 2635 rcu_free_regdom(tmp); 2636 2637 wiphy_unlock(wiphy); 2638 rtnl_unlock(); 2639 } 2640 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2641 2642 static void reg_set_request_processed(void) 2643 { 2644 bool need_more_processing = false; 2645 struct regulatory_request *lr = get_last_request(); 2646 2647 lr->processed = true; 2648 2649 spin_lock(®_requests_lock); 2650 if (!list_empty(®_requests_list)) 2651 need_more_processing = true; 2652 spin_unlock(®_requests_lock); 2653 2654 cancel_crda_timeout(); 2655 2656 if (need_more_processing) 2657 schedule_work(®_work); 2658 } 2659 2660 /** 2661 * reg_process_hint_core - process core regulatory requests 2662 * @core_request: a pending core regulatory request 2663 * 2664 * The wireless subsystem can use this function to process 2665 * a regulatory request issued by the regulatory core. 2666 */ 2667 static enum reg_request_treatment 2668 reg_process_hint_core(struct regulatory_request *core_request) 2669 { 2670 if (reg_query_database(core_request)) { 2671 core_request->intersect = false; 2672 core_request->processed = false; 2673 reg_update_last_request(core_request); 2674 return REG_REQ_OK; 2675 } 2676 2677 return REG_REQ_IGNORE; 2678 } 2679 2680 static enum reg_request_treatment 2681 __reg_process_hint_user(struct regulatory_request *user_request) 2682 { 2683 struct regulatory_request *lr = get_last_request(); 2684 2685 if (reg_request_cell_base(user_request)) 2686 return reg_ignore_cell_hint(user_request); 2687 2688 if (reg_request_cell_base(lr)) 2689 return REG_REQ_IGNORE; 2690 2691 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2692 return REG_REQ_INTERSECT; 2693 /* 2694 * If the user knows better the user should set the regdom 2695 * to their country before the IE is picked up 2696 */ 2697 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2698 lr->intersect) 2699 return REG_REQ_IGNORE; 2700 /* 2701 * Process user requests only after previous user/driver/core 2702 * requests have been processed 2703 */ 2704 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2705 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2706 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2707 regdom_changes(lr->alpha2)) 2708 return REG_REQ_IGNORE; 2709 2710 if (!regdom_changes(user_request->alpha2)) 2711 return REG_REQ_ALREADY_SET; 2712 2713 return REG_REQ_OK; 2714 } 2715 2716 /** 2717 * reg_process_hint_user - process user regulatory requests 2718 * @user_request: a pending user regulatory request 2719 * 2720 * The wireless subsystem can use this function to process 2721 * a regulatory request initiated by userspace. 2722 */ 2723 static enum reg_request_treatment 2724 reg_process_hint_user(struct regulatory_request *user_request) 2725 { 2726 enum reg_request_treatment treatment; 2727 2728 treatment = __reg_process_hint_user(user_request); 2729 if (treatment == REG_REQ_IGNORE || 2730 treatment == REG_REQ_ALREADY_SET) 2731 return REG_REQ_IGNORE; 2732 2733 user_request->intersect = treatment == REG_REQ_INTERSECT; 2734 user_request->processed = false; 2735 2736 if (reg_query_database(user_request)) { 2737 reg_update_last_request(user_request); 2738 user_alpha2[0] = user_request->alpha2[0]; 2739 user_alpha2[1] = user_request->alpha2[1]; 2740 return REG_REQ_OK; 2741 } 2742 2743 return REG_REQ_IGNORE; 2744 } 2745 2746 static enum reg_request_treatment 2747 __reg_process_hint_driver(struct regulatory_request *driver_request) 2748 { 2749 struct regulatory_request *lr = get_last_request(); 2750 2751 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2752 if (regdom_changes(driver_request->alpha2)) 2753 return REG_REQ_OK; 2754 return REG_REQ_ALREADY_SET; 2755 } 2756 2757 /* 2758 * This would happen if you unplug and plug your card 2759 * back in or if you add a new device for which the previously 2760 * loaded card also agrees on the regulatory domain. 2761 */ 2762 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2763 !regdom_changes(driver_request->alpha2)) 2764 return REG_REQ_ALREADY_SET; 2765 2766 return REG_REQ_INTERSECT; 2767 } 2768 2769 /** 2770 * reg_process_hint_driver - process driver regulatory requests 2771 * @wiphy: the wireless device for the regulatory request 2772 * @driver_request: a pending driver regulatory request 2773 * 2774 * The wireless subsystem can use this function to process 2775 * a regulatory request issued by an 802.11 driver. 2776 * 2777 * Returns one of the different reg request treatment values. 2778 */ 2779 static enum reg_request_treatment 2780 reg_process_hint_driver(struct wiphy *wiphy, 2781 struct regulatory_request *driver_request) 2782 { 2783 const struct ieee80211_regdomain *regd, *tmp; 2784 enum reg_request_treatment treatment; 2785 2786 treatment = __reg_process_hint_driver(driver_request); 2787 2788 switch (treatment) { 2789 case REG_REQ_OK: 2790 break; 2791 case REG_REQ_IGNORE: 2792 return REG_REQ_IGNORE; 2793 case REG_REQ_INTERSECT: 2794 case REG_REQ_ALREADY_SET: 2795 regd = reg_copy_regd(get_cfg80211_regdom()); 2796 if (IS_ERR(regd)) 2797 return REG_REQ_IGNORE; 2798 2799 tmp = get_wiphy_regdom(wiphy); 2800 ASSERT_RTNL(); 2801 wiphy_lock(wiphy); 2802 rcu_assign_pointer(wiphy->regd, regd); 2803 wiphy_unlock(wiphy); 2804 rcu_free_regdom(tmp); 2805 } 2806 2807 2808 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2809 driver_request->processed = false; 2810 2811 /* 2812 * Since CRDA will not be called in this case as we already 2813 * have applied the requested regulatory domain before we just 2814 * inform userspace we have processed the request 2815 */ 2816 if (treatment == REG_REQ_ALREADY_SET) { 2817 nl80211_send_reg_change_event(driver_request); 2818 reg_update_last_request(driver_request); 2819 reg_set_request_processed(); 2820 return REG_REQ_ALREADY_SET; 2821 } 2822 2823 if (reg_query_database(driver_request)) { 2824 reg_update_last_request(driver_request); 2825 return REG_REQ_OK; 2826 } 2827 2828 return REG_REQ_IGNORE; 2829 } 2830 2831 static enum reg_request_treatment 2832 __reg_process_hint_country_ie(struct wiphy *wiphy, 2833 struct regulatory_request *country_ie_request) 2834 { 2835 struct wiphy *last_wiphy = NULL; 2836 struct regulatory_request *lr = get_last_request(); 2837 2838 if (reg_request_cell_base(lr)) { 2839 /* Trust a Cell base station over the AP's country IE */ 2840 if (regdom_changes(country_ie_request->alpha2)) 2841 return REG_REQ_IGNORE; 2842 return REG_REQ_ALREADY_SET; 2843 } else { 2844 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2845 return REG_REQ_IGNORE; 2846 } 2847 2848 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2849 return -EINVAL; 2850 2851 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2852 return REG_REQ_OK; 2853 2854 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2855 2856 if (last_wiphy != wiphy) { 2857 /* 2858 * Two cards with two APs claiming different 2859 * Country IE alpha2s. We could 2860 * intersect them, but that seems unlikely 2861 * to be correct. Reject second one for now. 2862 */ 2863 if (regdom_changes(country_ie_request->alpha2)) 2864 return REG_REQ_IGNORE; 2865 return REG_REQ_ALREADY_SET; 2866 } 2867 2868 if (regdom_changes(country_ie_request->alpha2)) 2869 return REG_REQ_OK; 2870 return REG_REQ_ALREADY_SET; 2871 } 2872 2873 /** 2874 * reg_process_hint_country_ie - process regulatory requests from country IEs 2875 * @wiphy: the wireless device for the regulatory request 2876 * @country_ie_request: a regulatory request from a country IE 2877 * 2878 * The wireless subsystem can use this function to process 2879 * a regulatory request issued by a country Information Element. 2880 * 2881 * Returns one of the different reg request treatment values. 2882 */ 2883 static enum reg_request_treatment 2884 reg_process_hint_country_ie(struct wiphy *wiphy, 2885 struct regulatory_request *country_ie_request) 2886 { 2887 enum reg_request_treatment treatment; 2888 2889 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2890 2891 switch (treatment) { 2892 case REG_REQ_OK: 2893 break; 2894 case REG_REQ_IGNORE: 2895 return REG_REQ_IGNORE; 2896 case REG_REQ_ALREADY_SET: 2897 reg_free_request(country_ie_request); 2898 return REG_REQ_ALREADY_SET; 2899 case REG_REQ_INTERSECT: 2900 /* 2901 * This doesn't happen yet, not sure we 2902 * ever want to support it for this case. 2903 */ 2904 WARN_ONCE(1, "Unexpected intersection for country elements"); 2905 return REG_REQ_IGNORE; 2906 } 2907 2908 country_ie_request->intersect = false; 2909 country_ie_request->processed = false; 2910 2911 if (reg_query_database(country_ie_request)) { 2912 reg_update_last_request(country_ie_request); 2913 return REG_REQ_OK; 2914 } 2915 2916 return REG_REQ_IGNORE; 2917 } 2918 2919 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2920 { 2921 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2922 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2923 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2924 bool dfs_domain_same; 2925 2926 rcu_read_lock(); 2927 2928 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2929 wiphy1_regd = rcu_dereference(wiphy1->regd); 2930 if (!wiphy1_regd) 2931 wiphy1_regd = cfg80211_regd; 2932 2933 wiphy2_regd = rcu_dereference(wiphy2->regd); 2934 if (!wiphy2_regd) 2935 wiphy2_regd = cfg80211_regd; 2936 2937 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2938 2939 rcu_read_unlock(); 2940 2941 return dfs_domain_same; 2942 } 2943 2944 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2945 struct ieee80211_channel *src_chan) 2946 { 2947 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2948 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2949 return; 2950 2951 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2952 src_chan->flags & IEEE80211_CHAN_DISABLED) 2953 return; 2954 2955 if (src_chan->center_freq == dst_chan->center_freq && 2956 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2957 dst_chan->dfs_state = src_chan->dfs_state; 2958 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2959 } 2960 } 2961 2962 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2963 struct wiphy *src_wiphy) 2964 { 2965 struct ieee80211_supported_band *src_sband, *dst_sband; 2966 struct ieee80211_channel *src_chan, *dst_chan; 2967 int i, j, band; 2968 2969 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2970 return; 2971 2972 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2973 dst_sband = dst_wiphy->bands[band]; 2974 src_sband = src_wiphy->bands[band]; 2975 if (!dst_sband || !src_sband) 2976 continue; 2977 2978 for (i = 0; i < dst_sband->n_channels; i++) { 2979 dst_chan = &dst_sband->channels[i]; 2980 for (j = 0; j < src_sband->n_channels; j++) { 2981 src_chan = &src_sband->channels[j]; 2982 reg_copy_dfs_chan_state(dst_chan, src_chan); 2983 } 2984 } 2985 } 2986 } 2987 2988 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2989 { 2990 struct cfg80211_registered_device *rdev; 2991 2992 ASSERT_RTNL(); 2993 2994 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2995 if (wiphy == &rdev->wiphy) 2996 continue; 2997 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2998 } 2999 } 3000 3001 /* This processes *all* regulatory hints */ 3002 static void reg_process_hint(struct regulatory_request *reg_request) 3003 { 3004 struct wiphy *wiphy = NULL; 3005 enum reg_request_treatment treatment; 3006 enum nl80211_reg_initiator initiator = reg_request->initiator; 3007 3008 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 3009 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 3010 3011 switch (initiator) { 3012 case NL80211_REGDOM_SET_BY_CORE: 3013 treatment = reg_process_hint_core(reg_request); 3014 break; 3015 case NL80211_REGDOM_SET_BY_USER: 3016 treatment = reg_process_hint_user(reg_request); 3017 break; 3018 case NL80211_REGDOM_SET_BY_DRIVER: 3019 if (!wiphy) 3020 goto out_free; 3021 treatment = reg_process_hint_driver(wiphy, reg_request); 3022 break; 3023 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3024 if (!wiphy) 3025 goto out_free; 3026 treatment = reg_process_hint_country_ie(wiphy, reg_request); 3027 break; 3028 default: 3029 WARN(1, "invalid initiator %d\n", initiator); 3030 goto out_free; 3031 } 3032 3033 if (treatment == REG_REQ_IGNORE) 3034 goto out_free; 3035 3036 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 3037 "unexpected treatment value %d\n", treatment); 3038 3039 /* This is required so that the orig_* parameters are saved. 3040 * NOTE: treatment must be set for any case that reaches here! 3041 */ 3042 if (treatment == REG_REQ_ALREADY_SET && wiphy && 3043 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 3044 wiphy_update_regulatory(wiphy, initiator); 3045 wiphy_all_share_dfs_chan_state(wiphy); 3046 reg_check_channels(); 3047 } 3048 3049 return; 3050 3051 out_free: 3052 reg_free_request(reg_request); 3053 } 3054 3055 static void notify_self_managed_wiphys(struct regulatory_request *request) 3056 { 3057 struct cfg80211_registered_device *rdev; 3058 struct wiphy *wiphy; 3059 3060 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3061 wiphy = &rdev->wiphy; 3062 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 3063 request->initiator == NL80211_REGDOM_SET_BY_USER) 3064 reg_call_notifier(wiphy, request); 3065 } 3066 } 3067 3068 /* 3069 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 3070 * Regulatory hints come on a first come first serve basis and we 3071 * must process each one atomically. 3072 */ 3073 static void reg_process_pending_hints(void) 3074 { 3075 struct regulatory_request *reg_request, *lr; 3076 3077 lr = get_last_request(); 3078 3079 /* When last_request->processed becomes true this will be rescheduled */ 3080 if (lr && !lr->processed) { 3081 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3082 return; 3083 } 3084 3085 spin_lock(®_requests_lock); 3086 3087 if (list_empty(®_requests_list)) { 3088 spin_unlock(®_requests_lock); 3089 return; 3090 } 3091 3092 reg_request = list_first_entry(®_requests_list, 3093 struct regulatory_request, 3094 list); 3095 list_del_init(®_request->list); 3096 3097 spin_unlock(®_requests_lock); 3098 3099 notify_self_managed_wiphys(reg_request); 3100 3101 reg_process_hint(reg_request); 3102 3103 lr = get_last_request(); 3104 3105 spin_lock(®_requests_lock); 3106 if (!list_empty(®_requests_list) && lr && lr->processed) 3107 schedule_work(®_work); 3108 spin_unlock(®_requests_lock); 3109 } 3110 3111 /* Processes beacon hints -- this has nothing to do with country IEs */ 3112 static void reg_process_pending_beacon_hints(void) 3113 { 3114 struct cfg80211_registered_device *rdev; 3115 struct reg_beacon *pending_beacon, *tmp; 3116 3117 /* This goes through the _pending_ beacon list */ 3118 spin_lock_bh(®_pending_beacons_lock); 3119 3120 list_for_each_entry_safe(pending_beacon, tmp, 3121 ®_pending_beacons, list) { 3122 list_del_init(&pending_beacon->list); 3123 3124 /* Applies the beacon hint to current wiphys */ 3125 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 3126 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3127 3128 /* Remembers the beacon hint for new wiphys or reg changes */ 3129 list_add_tail(&pending_beacon->list, ®_beacon_list); 3130 } 3131 3132 spin_unlock_bh(®_pending_beacons_lock); 3133 } 3134 3135 static void reg_process_self_managed_hint(struct wiphy *wiphy) 3136 { 3137 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3138 const struct ieee80211_regdomain *tmp; 3139 const struct ieee80211_regdomain *regd; 3140 enum nl80211_band band; 3141 struct regulatory_request request = {}; 3142 3143 ASSERT_RTNL(); 3144 lockdep_assert_wiphy(wiphy); 3145 3146 spin_lock(®_requests_lock); 3147 regd = rdev->requested_regd; 3148 rdev->requested_regd = NULL; 3149 spin_unlock(®_requests_lock); 3150 3151 if (!regd) 3152 return; 3153 3154 tmp = get_wiphy_regdom(wiphy); 3155 rcu_assign_pointer(wiphy->regd, regd); 3156 rcu_free_regdom(tmp); 3157 3158 for (band = 0; band < NUM_NL80211_BANDS; band++) 3159 handle_band_custom(wiphy, wiphy->bands[band], regd); 3160 3161 reg_process_ht_flags(wiphy); 3162 3163 request.wiphy_idx = get_wiphy_idx(wiphy); 3164 request.alpha2[0] = regd->alpha2[0]; 3165 request.alpha2[1] = regd->alpha2[1]; 3166 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3167 3168 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER) 3169 reg_call_notifier(wiphy, &request); 3170 3171 nl80211_send_wiphy_reg_change_event(&request); 3172 } 3173 3174 static void reg_process_self_managed_hints(void) 3175 { 3176 struct cfg80211_registered_device *rdev; 3177 3178 ASSERT_RTNL(); 3179 3180 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3181 wiphy_lock(&rdev->wiphy); 3182 reg_process_self_managed_hint(&rdev->wiphy); 3183 wiphy_unlock(&rdev->wiphy); 3184 } 3185 3186 reg_check_channels(); 3187 } 3188 3189 static void reg_todo(struct work_struct *work) 3190 { 3191 rtnl_lock(); 3192 reg_process_pending_hints(); 3193 reg_process_pending_beacon_hints(); 3194 reg_process_self_managed_hints(); 3195 rtnl_unlock(); 3196 } 3197 3198 static void queue_regulatory_request(struct regulatory_request *request) 3199 { 3200 request->alpha2[0] = toupper(request->alpha2[0]); 3201 request->alpha2[1] = toupper(request->alpha2[1]); 3202 3203 spin_lock(®_requests_lock); 3204 list_add_tail(&request->list, ®_requests_list); 3205 spin_unlock(®_requests_lock); 3206 3207 schedule_work(®_work); 3208 } 3209 3210 /* 3211 * Core regulatory hint -- happens during cfg80211_init() 3212 * and when we restore regulatory settings. 3213 */ 3214 static int regulatory_hint_core(const char *alpha2) 3215 { 3216 struct regulatory_request *request; 3217 3218 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3219 if (!request) 3220 return -ENOMEM; 3221 3222 request->alpha2[0] = alpha2[0]; 3223 request->alpha2[1] = alpha2[1]; 3224 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3225 request->wiphy_idx = WIPHY_IDX_INVALID; 3226 3227 queue_regulatory_request(request); 3228 3229 return 0; 3230 } 3231 3232 /* User hints */ 3233 int regulatory_hint_user(const char *alpha2, 3234 enum nl80211_user_reg_hint_type user_reg_hint_type) 3235 { 3236 struct regulatory_request *request; 3237 3238 if (WARN_ON(!alpha2)) 3239 return -EINVAL; 3240 3241 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3242 return -EINVAL; 3243 3244 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3245 if (!request) 3246 return -ENOMEM; 3247 3248 request->wiphy_idx = WIPHY_IDX_INVALID; 3249 request->alpha2[0] = alpha2[0]; 3250 request->alpha2[1] = alpha2[1]; 3251 request->initiator = NL80211_REGDOM_SET_BY_USER; 3252 request->user_reg_hint_type = user_reg_hint_type; 3253 3254 /* Allow calling CRDA again */ 3255 reset_crda_timeouts(); 3256 3257 queue_regulatory_request(request); 3258 3259 return 0; 3260 } 3261 3262 int regulatory_hint_indoor(bool is_indoor, u32 portid) 3263 { 3264 spin_lock(®_indoor_lock); 3265 3266 /* It is possible that more than one user space process is trying to 3267 * configure the indoor setting. To handle such cases, clear the indoor 3268 * setting in case that some process does not think that the device 3269 * is operating in an indoor environment. In addition, if a user space 3270 * process indicates that it is controlling the indoor setting, save its 3271 * portid, i.e., make it the owner. 3272 */ 3273 reg_is_indoor = is_indoor; 3274 if (reg_is_indoor) { 3275 if (!reg_is_indoor_portid) 3276 reg_is_indoor_portid = portid; 3277 } else { 3278 reg_is_indoor_portid = 0; 3279 } 3280 3281 spin_unlock(®_indoor_lock); 3282 3283 if (!is_indoor) 3284 reg_check_channels(); 3285 3286 return 0; 3287 } 3288 3289 void regulatory_netlink_notify(u32 portid) 3290 { 3291 spin_lock(®_indoor_lock); 3292 3293 if (reg_is_indoor_portid != portid) { 3294 spin_unlock(®_indoor_lock); 3295 return; 3296 } 3297 3298 reg_is_indoor = false; 3299 reg_is_indoor_portid = 0; 3300 3301 spin_unlock(®_indoor_lock); 3302 3303 reg_check_channels(); 3304 } 3305 3306 /* Driver hints */ 3307 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3308 { 3309 struct regulatory_request *request; 3310 3311 if (WARN_ON(!alpha2 || !wiphy)) 3312 return -EINVAL; 3313 3314 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3315 3316 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3317 if (!request) 3318 return -ENOMEM; 3319 3320 request->wiphy_idx = get_wiphy_idx(wiphy); 3321 3322 request->alpha2[0] = alpha2[0]; 3323 request->alpha2[1] = alpha2[1]; 3324 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3325 3326 /* Allow calling CRDA again */ 3327 reset_crda_timeouts(); 3328 3329 queue_regulatory_request(request); 3330 3331 return 0; 3332 } 3333 EXPORT_SYMBOL(regulatory_hint); 3334 3335 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3336 const u8 *country_ie, u8 country_ie_len) 3337 { 3338 char alpha2[2]; 3339 enum environment_cap env = ENVIRON_ANY; 3340 struct regulatory_request *request = NULL, *lr; 3341 3342 /* IE len must be evenly divisible by 2 */ 3343 if (country_ie_len & 0x01) 3344 return; 3345 3346 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3347 return; 3348 3349 request = kzalloc(sizeof(*request), GFP_KERNEL); 3350 if (!request) 3351 return; 3352 3353 alpha2[0] = country_ie[0]; 3354 alpha2[1] = country_ie[1]; 3355 3356 if (country_ie[2] == 'I') 3357 env = ENVIRON_INDOOR; 3358 else if (country_ie[2] == 'O') 3359 env = ENVIRON_OUTDOOR; 3360 3361 rcu_read_lock(); 3362 lr = get_last_request(); 3363 3364 if (unlikely(!lr)) 3365 goto out; 3366 3367 /* 3368 * We will run this only upon a successful connection on cfg80211. 3369 * We leave conflict resolution to the workqueue, where can hold 3370 * the RTNL. 3371 */ 3372 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3373 lr->wiphy_idx != WIPHY_IDX_INVALID) 3374 goto out; 3375 3376 request->wiphy_idx = get_wiphy_idx(wiphy); 3377 request->alpha2[0] = alpha2[0]; 3378 request->alpha2[1] = alpha2[1]; 3379 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3380 request->country_ie_env = env; 3381 3382 /* Allow calling CRDA again */ 3383 reset_crda_timeouts(); 3384 3385 queue_regulatory_request(request); 3386 request = NULL; 3387 out: 3388 kfree(request); 3389 rcu_read_unlock(); 3390 } 3391 3392 static void restore_alpha2(char *alpha2, bool reset_user) 3393 { 3394 /* indicates there is no alpha2 to consider for restoration */ 3395 alpha2[0] = '9'; 3396 alpha2[1] = '7'; 3397 3398 /* The user setting has precedence over the module parameter */ 3399 if (is_user_regdom_saved()) { 3400 /* Unless we're asked to ignore it and reset it */ 3401 if (reset_user) { 3402 pr_debug("Restoring regulatory settings including user preference\n"); 3403 user_alpha2[0] = '9'; 3404 user_alpha2[1] = '7'; 3405 3406 /* 3407 * If we're ignoring user settings, we still need to 3408 * check the module parameter to ensure we put things 3409 * back as they were for a full restore. 3410 */ 3411 if (!is_world_regdom(ieee80211_regdom)) { 3412 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3413 ieee80211_regdom[0], ieee80211_regdom[1]); 3414 alpha2[0] = ieee80211_regdom[0]; 3415 alpha2[1] = ieee80211_regdom[1]; 3416 } 3417 } else { 3418 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3419 user_alpha2[0], user_alpha2[1]); 3420 alpha2[0] = user_alpha2[0]; 3421 alpha2[1] = user_alpha2[1]; 3422 } 3423 } else if (!is_world_regdom(ieee80211_regdom)) { 3424 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3425 ieee80211_regdom[0], ieee80211_regdom[1]); 3426 alpha2[0] = ieee80211_regdom[0]; 3427 alpha2[1] = ieee80211_regdom[1]; 3428 } else 3429 pr_debug("Restoring regulatory settings\n"); 3430 } 3431 3432 static void restore_custom_reg_settings(struct wiphy *wiphy) 3433 { 3434 struct ieee80211_supported_band *sband; 3435 enum nl80211_band band; 3436 struct ieee80211_channel *chan; 3437 int i; 3438 3439 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3440 sband = wiphy->bands[band]; 3441 if (!sband) 3442 continue; 3443 for (i = 0; i < sband->n_channels; i++) { 3444 chan = &sband->channels[i]; 3445 chan->flags = chan->orig_flags; 3446 chan->max_antenna_gain = chan->orig_mag; 3447 chan->max_power = chan->orig_mpwr; 3448 chan->beacon_found = false; 3449 } 3450 } 3451 } 3452 3453 /* 3454 * Restoring regulatory settings involves ignoring any 3455 * possibly stale country IE information and user regulatory 3456 * settings if so desired, this includes any beacon hints 3457 * learned as we could have traveled outside to another country 3458 * after disconnection. To restore regulatory settings we do 3459 * exactly what we did at bootup: 3460 * 3461 * - send a core regulatory hint 3462 * - send a user regulatory hint if applicable 3463 * 3464 * Device drivers that send a regulatory hint for a specific country 3465 * keep their own regulatory domain on wiphy->regd so that does 3466 * not need to be remembered. 3467 */ 3468 static void restore_regulatory_settings(bool reset_user, bool cached) 3469 { 3470 char alpha2[2]; 3471 char world_alpha2[2]; 3472 struct reg_beacon *reg_beacon, *btmp; 3473 LIST_HEAD(tmp_reg_req_list); 3474 struct cfg80211_registered_device *rdev; 3475 3476 ASSERT_RTNL(); 3477 3478 /* 3479 * Clear the indoor setting in case that it is not controlled by user 3480 * space, as otherwise there is no guarantee that the device is still 3481 * operating in an indoor environment. 3482 */ 3483 spin_lock(®_indoor_lock); 3484 if (reg_is_indoor && !reg_is_indoor_portid) { 3485 reg_is_indoor = false; 3486 reg_check_channels(); 3487 } 3488 spin_unlock(®_indoor_lock); 3489 3490 reset_regdomains(true, &world_regdom); 3491 restore_alpha2(alpha2, reset_user); 3492 3493 /* 3494 * If there's any pending requests we simply 3495 * stash them to a temporary pending queue and 3496 * add then after we've restored regulatory 3497 * settings. 3498 */ 3499 spin_lock(®_requests_lock); 3500 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3501 spin_unlock(®_requests_lock); 3502 3503 /* Clear beacon hints */ 3504 spin_lock_bh(®_pending_beacons_lock); 3505 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3506 list_del(®_beacon->list); 3507 kfree(reg_beacon); 3508 } 3509 spin_unlock_bh(®_pending_beacons_lock); 3510 3511 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3512 list_del(®_beacon->list); 3513 kfree(reg_beacon); 3514 } 3515 3516 /* First restore to the basic regulatory settings */ 3517 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3518 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3519 3520 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3521 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3522 continue; 3523 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3524 restore_custom_reg_settings(&rdev->wiphy); 3525 } 3526 3527 if (cached && (!is_an_alpha2(alpha2) || 3528 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3529 reset_regdomains(false, cfg80211_world_regdom); 3530 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3531 print_regdomain(get_cfg80211_regdom()); 3532 nl80211_send_reg_change_event(&core_request_world); 3533 reg_set_request_processed(); 3534 3535 if (is_an_alpha2(alpha2) && 3536 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3537 struct regulatory_request *ureq; 3538 3539 spin_lock(®_requests_lock); 3540 ureq = list_last_entry(®_requests_list, 3541 struct regulatory_request, 3542 list); 3543 list_del(&ureq->list); 3544 spin_unlock(®_requests_lock); 3545 3546 notify_self_managed_wiphys(ureq); 3547 reg_update_last_request(ureq); 3548 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3549 REGD_SOURCE_CACHED); 3550 } 3551 } else { 3552 regulatory_hint_core(world_alpha2); 3553 3554 /* 3555 * This restores the ieee80211_regdom module parameter 3556 * preference or the last user requested regulatory 3557 * settings, user regulatory settings takes precedence. 3558 */ 3559 if (is_an_alpha2(alpha2)) 3560 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3561 } 3562 3563 spin_lock(®_requests_lock); 3564 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3565 spin_unlock(®_requests_lock); 3566 3567 pr_debug("Kicking the queue\n"); 3568 3569 schedule_work(®_work); 3570 } 3571 3572 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3573 { 3574 struct cfg80211_registered_device *rdev; 3575 struct wireless_dev *wdev; 3576 3577 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3578 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3579 wdev_lock(wdev); 3580 if (!(wdev->wiphy->regulatory_flags & flag)) { 3581 wdev_unlock(wdev); 3582 return false; 3583 } 3584 wdev_unlock(wdev); 3585 } 3586 } 3587 3588 return true; 3589 } 3590 3591 void regulatory_hint_disconnect(void) 3592 { 3593 /* Restore of regulatory settings is not required when wiphy(s) 3594 * ignore IE from connected access point but clearance of beacon hints 3595 * is required when wiphy(s) supports beacon hints. 3596 */ 3597 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3598 struct reg_beacon *reg_beacon, *btmp; 3599 3600 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3601 return; 3602 3603 spin_lock_bh(®_pending_beacons_lock); 3604 list_for_each_entry_safe(reg_beacon, btmp, 3605 ®_pending_beacons, list) { 3606 list_del(®_beacon->list); 3607 kfree(reg_beacon); 3608 } 3609 spin_unlock_bh(®_pending_beacons_lock); 3610 3611 list_for_each_entry_safe(reg_beacon, btmp, 3612 ®_beacon_list, list) { 3613 list_del(®_beacon->list); 3614 kfree(reg_beacon); 3615 } 3616 3617 return; 3618 } 3619 3620 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3621 restore_regulatory_settings(false, true); 3622 } 3623 3624 static bool freq_is_chan_12_13_14(u32 freq) 3625 { 3626 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3627 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3628 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3629 return true; 3630 return false; 3631 } 3632 3633 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3634 { 3635 struct reg_beacon *pending_beacon; 3636 3637 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3638 if (ieee80211_channel_equal(beacon_chan, 3639 &pending_beacon->chan)) 3640 return true; 3641 return false; 3642 } 3643 3644 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3645 struct ieee80211_channel *beacon_chan, 3646 gfp_t gfp) 3647 { 3648 struct reg_beacon *reg_beacon; 3649 bool processing; 3650 3651 if (beacon_chan->beacon_found || 3652 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3653 (beacon_chan->band == NL80211_BAND_2GHZ && 3654 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3655 return 0; 3656 3657 spin_lock_bh(®_pending_beacons_lock); 3658 processing = pending_reg_beacon(beacon_chan); 3659 spin_unlock_bh(®_pending_beacons_lock); 3660 3661 if (processing) 3662 return 0; 3663 3664 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3665 if (!reg_beacon) 3666 return -ENOMEM; 3667 3668 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3669 beacon_chan->center_freq, beacon_chan->freq_offset, 3670 ieee80211_freq_khz_to_channel( 3671 ieee80211_channel_to_khz(beacon_chan)), 3672 wiphy_name(wiphy)); 3673 3674 memcpy(®_beacon->chan, beacon_chan, 3675 sizeof(struct ieee80211_channel)); 3676 3677 /* 3678 * Since we can be called from BH or and non-BH context 3679 * we must use spin_lock_bh() 3680 */ 3681 spin_lock_bh(®_pending_beacons_lock); 3682 list_add_tail(®_beacon->list, ®_pending_beacons); 3683 spin_unlock_bh(®_pending_beacons_lock); 3684 3685 schedule_work(®_work); 3686 3687 return 0; 3688 } 3689 3690 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3691 { 3692 unsigned int i; 3693 const struct ieee80211_reg_rule *reg_rule = NULL; 3694 const struct ieee80211_freq_range *freq_range = NULL; 3695 const struct ieee80211_power_rule *power_rule = NULL; 3696 char bw[32], cac_time[32]; 3697 3698 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3699 3700 for (i = 0; i < rd->n_reg_rules; i++) { 3701 reg_rule = &rd->reg_rules[i]; 3702 freq_range = ®_rule->freq_range; 3703 power_rule = ®_rule->power_rule; 3704 3705 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3706 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", 3707 freq_range->max_bandwidth_khz, 3708 reg_get_max_bandwidth(rd, reg_rule)); 3709 else 3710 snprintf(bw, sizeof(bw), "%d KHz", 3711 freq_range->max_bandwidth_khz); 3712 3713 if (reg_rule->flags & NL80211_RRF_DFS) 3714 scnprintf(cac_time, sizeof(cac_time), "%u s", 3715 reg_rule->dfs_cac_ms/1000); 3716 else 3717 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3718 3719 3720 /* 3721 * There may not be documentation for max antenna gain 3722 * in certain regions 3723 */ 3724 if (power_rule->max_antenna_gain) 3725 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3726 freq_range->start_freq_khz, 3727 freq_range->end_freq_khz, 3728 bw, 3729 power_rule->max_antenna_gain, 3730 power_rule->max_eirp, 3731 cac_time); 3732 else 3733 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3734 freq_range->start_freq_khz, 3735 freq_range->end_freq_khz, 3736 bw, 3737 power_rule->max_eirp, 3738 cac_time); 3739 } 3740 } 3741 3742 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3743 { 3744 switch (dfs_region) { 3745 case NL80211_DFS_UNSET: 3746 case NL80211_DFS_FCC: 3747 case NL80211_DFS_ETSI: 3748 case NL80211_DFS_JP: 3749 return true; 3750 default: 3751 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3752 return false; 3753 } 3754 } 3755 3756 static void print_regdomain(const struct ieee80211_regdomain *rd) 3757 { 3758 struct regulatory_request *lr = get_last_request(); 3759 3760 if (is_intersected_alpha2(rd->alpha2)) { 3761 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3762 struct cfg80211_registered_device *rdev; 3763 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3764 if (rdev) { 3765 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3766 rdev->country_ie_alpha2[0], 3767 rdev->country_ie_alpha2[1]); 3768 } else 3769 pr_debug("Current regulatory domain intersected:\n"); 3770 } else 3771 pr_debug("Current regulatory domain intersected:\n"); 3772 } else if (is_world_regdom(rd->alpha2)) { 3773 pr_debug("World regulatory domain updated:\n"); 3774 } else { 3775 if (is_unknown_alpha2(rd->alpha2)) 3776 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3777 else { 3778 if (reg_request_cell_base(lr)) 3779 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3780 rd->alpha2[0], rd->alpha2[1]); 3781 else 3782 pr_debug("Regulatory domain changed to country: %c%c\n", 3783 rd->alpha2[0], rd->alpha2[1]); 3784 } 3785 } 3786 3787 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3788 print_rd_rules(rd); 3789 } 3790 3791 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3792 { 3793 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3794 print_rd_rules(rd); 3795 } 3796 3797 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3798 { 3799 if (!is_world_regdom(rd->alpha2)) 3800 return -EINVAL; 3801 update_world_regdomain(rd); 3802 return 0; 3803 } 3804 3805 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3806 struct regulatory_request *user_request) 3807 { 3808 const struct ieee80211_regdomain *intersected_rd = NULL; 3809 3810 if (!regdom_changes(rd->alpha2)) 3811 return -EALREADY; 3812 3813 if (!is_valid_rd(rd)) { 3814 pr_err("Invalid regulatory domain detected: %c%c\n", 3815 rd->alpha2[0], rd->alpha2[1]); 3816 print_regdomain_info(rd); 3817 return -EINVAL; 3818 } 3819 3820 if (!user_request->intersect) { 3821 reset_regdomains(false, rd); 3822 return 0; 3823 } 3824 3825 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3826 if (!intersected_rd) 3827 return -EINVAL; 3828 3829 kfree(rd); 3830 rd = NULL; 3831 reset_regdomains(false, intersected_rd); 3832 3833 return 0; 3834 } 3835 3836 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3837 struct regulatory_request *driver_request) 3838 { 3839 const struct ieee80211_regdomain *regd; 3840 const struct ieee80211_regdomain *intersected_rd = NULL; 3841 const struct ieee80211_regdomain *tmp; 3842 struct wiphy *request_wiphy; 3843 3844 if (is_world_regdom(rd->alpha2)) 3845 return -EINVAL; 3846 3847 if (!regdom_changes(rd->alpha2)) 3848 return -EALREADY; 3849 3850 if (!is_valid_rd(rd)) { 3851 pr_err("Invalid regulatory domain detected: %c%c\n", 3852 rd->alpha2[0], rd->alpha2[1]); 3853 print_regdomain_info(rd); 3854 return -EINVAL; 3855 } 3856 3857 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3858 if (!request_wiphy) 3859 return -ENODEV; 3860 3861 if (!driver_request->intersect) { 3862 ASSERT_RTNL(); 3863 wiphy_lock(request_wiphy); 3864 if (request_wiphy->regd) { 3865 wiphy_unlock(request_wiphy); 3866 return -EALREADY; 3867 } 3868 3869 regd = reg_copy_regd(rd); 3870 if (IS_ERR(regd)) { 3871 wiphy_unlock(request_wiphy); 3872 return PTR_ERR(regd); 3873 } 3874 3875 rcu_assign_pointer(request_wiphy->regd, regd); 3876 wiphy_unlock(request_wiphy); 3877 reset_regdomains(false, rd); 3878 return 0; 3879 } 3880 3881 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3882 if (!intersected_rd) 3883 return -EINVAL; 3884 3885 /* 3886 * We can trash what CRDA provided now. 3887 * However if a driver requested this specific regulatory 3888 * domain we keep it for its private use 3889 */ 3890 tmp = get_wiphy_regdom(request_wiphy); 3891 rcu_assign_pointer(request_wiphy->regd, rd); 3892 rcu_free_regdom(tmp); 3893 3894 rd = NULL; 3895 3896 reset_regdomains(false, intersected_rd); 3897 3898 return 0; 3899 } 3900 3901 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3902 struct regulatory_request *country_ie_request) 3903 { 3904 struct wiphy *request_wiphy; 3905 3906 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3907 !is_unknown_alpha2(rd->alpha2)) 3908 return -EINVAL; 3909 3910 /* 3911 * Lets only bother proceeding on the same alpha2 if the current 3912 * rd is non static (it means CRDA was present and was used last) 3913 * and the pending request came in from a country IE 3914 */ 3915 3916 if (!is_valid_rd(rd)) { 3917 pr_err("Invalid regulatory domain detected: %c%c\n", 3918 rd->alpha2[0], rd->alpha2[1]); 3919 print_regdomain_info(rd); 3920 return -EINVAL; 3921 } 3922 3923 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3924 if (!request_wiphy) 3925 return -ENODEV; 3926 3927 if (country_ie_request->intersect) 3928 return -EINVAL; 3929 3930 reset_regdomains(false, rd); 3931 return 0; 3932 } 3933 3934 /* 3935 * Use this call to set the current regulatory domain. Conflicts with 3936 * multiple drivers can be ironed out later. Caller must've already 3937 * kmalloc'd the rd structure. 3938 */ 3939 int set_regdom(const struct ieee80211_regdomain *rd, 3940 enum ieee80211_regd_source regd_src) 3941 { 3942 struct regulatory_request *lr; 3943 bool user_reset = false; 3944 int r; 3945 3946 if (IS_ERR_OR_NULL(rd)) 3947 return -ENODATA; 3948 3949 if (!reg_is_valid_request(rd->alpha2)) { 3950 kfree(rd); 3951 return -EINVAL; 3952 } 3953 3954 if (regd_src == REGD_SOURCE_CRDA) 3955 reset_crda_timeouts(); 3956 3957 lr = get_last_request(); 3958 3959 /* Note that this doesn't update the wiphys, this is done below */ 3960 switch (lr->initiator) { 3961 case NL80211_REGDOM_SET_BY_CORE: 3962 r = reg_set_rd_core(rd); 3963 break; 3964 case NL80211_REGDOM_SET_BY_USER: 3965 cfg80211_save_user_regdom(rd); 3966 r = reg_set_rd_user(rd, lr); 3967 user_reset = true; 3968 break; 3969 case NL80211_REGDOM_SET_BY_DRIVER: 3970 r = reg_set_rd_driver(rd, lr); 3971 break; 3972 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3973 r = reg_set_rd_country_ie(rd, lr); 3974 break; 3975 default: 3976 WARN(1, "invalid initiator %d\n", lr->initiator); 3977 kfree(rd); 3978 return -EINVAL; 3979 } 3980 3981 if (r) { 3982 switch (r) { 3983 case -EALREADY: 3984 reg_set_request_processed(); 3985 break; 3986 default: 3987 /* Back to world regulatory in case of errors */ 3988 restore_regulatory_settings(user_reset, false); 3989 } 3990 3991 kfree(rd); 3992 return r; 3993 } 3994 3995 /* This would make this whole thing pointless */ 3996 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3997 return -EINVAL; 3998 3999 /* update all wiphys now with the new established regulatory domain */ 4000 update_all_wiphy_regulatory(lr->initiator); 4001 4002 print_regdomain(get_cfg80211_regdom()); 4003 4004 nl80211_send_reg_change_event(lr); 4005 4006 reg_set_request_processed(); 4007 4008 return 0; 4009 } 4010 4011 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 4012 struct ieee80211_regdomain *rd) 4013 { 4014 const struct ieee80211_regdomain *regd; 4015 const struct ieee80211_regdomain *prev_regd; 4016 struct cfg80211_registered_device *rdev; 4017 4018 if (WARN_ON(!wiphy || !rd)) 4019 return -EINVAL; 4020 4021 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 4022 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 4023 return -EPERM; 4024 4025 if (WARN(!is_valid_rd(rd), 4026 "Invalid regulatory domain detected: %c%c\n", 4027 rd->alpha2[0], rd->alpha2[1])) { 4028 print_regdomain_info(rd); 4029 return -EINVAL; 4030 } 4031 4032 regd = reg_copy_regd(rd); 4033 if (IS_ERR(regd)) 4034 return PTR_ERR(regd); 4035 4036 rdev = wiphy_to_rdev(wiphy); 4037 4038 spin_lock(®_requests_lock); 4039 prev_regd = rdev->requested_regd; 4040 rdev->requested_regd = regd; 4041 spin_unlock(®_requests_lock); 4042 4043 kfree(prev_regd); 4044 return 0; 4045 } 4046 4047 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 4048 struct ieee80211_regdomain *rd) 4049 { 4050 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 4051 4052 if (ret) 4053 return ret; 4054 4055 schedule_work(®_work); 4056 return 0; 4057 } 4058 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 4059 4060 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 4061 struct ieee80211_regdomain *rd) 4062 { 4063 int ret; 4064 4065 ASSERT_RTNL(); 4066 4067 ret = __regulatory_set_wiphy_regd(wiphy, rd); 4068 if (ret) 4069 return ret; 4070 4071 /* process the request immediately */ 4072 reg_process_self_managed_hint(wiphy); 4073 reg_check_channels(); 4074 return 0; 4075 } 4076 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync); 4077 4078 void wiphy_regulatory_register(struct wiphy *wiphy) 4079 { 4080 struct regulatory_request *lr = get_last_request(); 4081 4082 /* self-managed devices ignore beacon hints and country IE */ 4083 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 4084 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 4085 REGULATORY_COUNTRY_IE_IGNORE; 4086 4087 /* 4088 * The last request may have been received before this 4089 * registration call. Call the driver notifier if 4090 * initiator is USER. 4091 */ 4092 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 4093 reg_call_notifier(wiphy, lr); 4094 } 4095 4096 if (!reg_dev_ignore_cell_hint(wiphy)) 4097 reg_num_devs_support_basehint++; 4098 4099 wiphy_update_regulatory(wiphy, lr->initiator); 4100 wiphy_all_share_dfs_chan_state(wiphy); 4101 reg_process_self_managed_hints(); 4102 } 4103 4104 void wiphy_regulatory_deregister(struct wiphy *wiphy) 4105 { 4106 struct wiphy *request_wiphy = NULL; 4107 struct regulatory_request *lr; 4108 4109 lr = get_last_request(); 4110 4111 if (!reg_dev_ignore_cell_hint(wiphy)) 4112 reg_num_devs_support_basehint--; 4113 4114 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4115 RCU_INIT_POINTER(wiphy->regd, NULL); 4116 4117 if (lr) 4118 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4119 4120 if (!request_wiphy || request_wiphy != wiphy) 4121 return; 4122 4123 lr->wiphy_idx = WIPHY_IDX_INVALID; 4124 lr->country_ie_env = ENVIRON_ANY; 4125 } 4126 4127 /* 4128 * See FCC notices for UNII band definitions 4129 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4130 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4131 */ 4132 int cfg80211_get_unii(int freq) 4133 { 4134 /* UNII-1 */ 4135 if (freq >= 5150 && freq <= 5250) 4136 return 0; 4137 4138 /* UNII-2A */ 4139 if (freq > 5250 && freq <= 5350) 4140 return 1; 4141 4142 /* UNII-2B */ 4143 if (freq > 5350 && freq <= 5470) 4144 return 2; 4145 4146 /* UNII-2C */ 4147 if (freq > 5470 && freq <= 5725) 4148 return 3; 4149 4150 /* UNII-3 */ 4151 if (freq > 5725 && freq <= 5825) 4152 return 4; 4153 4154 /* UNII-5 */ 4155 if (freq > 5925 && freq <= 6425) 4156 return 5; 4157 4158 /* UNII-6 */ 4159 if (freq > 6425 && freq <= 6525) 4160 return 6; 4161 4162 /* UNII-7 */ 4163 if (freq > 6525 && freq <= 6875) 4164 return 7; 4165 4166 /* UNII-8 */ 4167 if (freq > 6875 && freq <= 7125) 4168 return 8; 4169 4170 return -EINVAL; 4171 } 4172 4173 bool regulatory_indoor_allowed(void) 4174 { 4175 return reg_is_indoor; 4176 } 4177 4178 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4179 { 4180 const struct ieee80211_regdomain *regd = NULL; 4181 const struct ieee80211_regdomain *wiphy_regd = NULL; 4182 bool pre_cac_allowed = false; 4183 4184 rcu_read_lock(); 4185 4186 regd = rcu_dereference(cfg80211_regdomain); 4187 wiphy_regd = rcu_dereference(wiphy->regd); 4188 if (!wiphy_regd) { 4189 if (regd->dfs_region == NL80211_DFS_ETSI) 4190 pre_cac_allowed = true; 4191 4192 rcu_read_unlock(); 4193 4194 return pre_cac_allowed; 4195 } 4196 4197 if (regd->dfs_region == wiphy_regd->dfs_region && 4198 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4199 pre_cac_allowed = true; 4200 4201 rcu_read_unlock(); 4202 4203 return pre_cac_allowed; 4204 } 4205 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4206 4207 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4208 { 4209 struct wireless_dev *wdev; 4210 /* If we finished CAC or received radar, we should end any 4211 * CAC running on the same channels. 4212 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4213 * either all channels are available - those the CAC_FINISHED 4214 * event has effected another wdev state, or there is a channel 4215 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4216 * event has effected another wdev state. 4217 * In both cases we should end the CAC on the wdev. 4218 */ 4219 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4220 struct cfg80211_chan_def *chandef; 4221 4222 if (!wdev->cac_started) 4223 continue; 4224 4225 /* FIXME: radar detection is tied to link 0 for now */ 4226 chandef = wdev_chandef(wdev, 0); 4227 if (!chandef) 4228 continue; 4229 4230 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef)) 4231 rdev_end_cac(rdev, wdev->netdev); 4232 } 4233 } 4234 4235 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4236 struct cfg80211_chan_def *chandef, 4237 enum nl80211_dfs_state dfs_state, 4238 enum nl80211_radar_event event) 4239 { 4240 struct cfg80211_registered_device *rdev; 4241 4242 ASSERT_RTNL(); 4243 4244 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4245 return; 4246 4247 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 4248 if (wiphy == &rdev->wiphy) 4249 continue; 4250 4251 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4252 continue; 4253 4254 if (!ieee80211_get_channel(&rdev->wiphy, 4255 chandef->chan->center_freq)) 4256 continue; 4257 4258 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4259 4260 if (event == NL80211_RADAR_DETECTED || 4261 event == NL80211_RADAR_CAC_FINISHED) { 4262 cfg80211_sched_dfs_chan_update(rdev); 4263 cfg80211_check_and_end_cac(rdev); 4264 } 4265 4266 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4267 } 4268 } 4269 4270 static int __init regulatory_init_db(void) 4271 { 4272 int err; 4273 4274 /* 4275 * It's possible that - due to other bugs/issues - cfg80211 4276 * never called regulatory_init() below, or that it failed; 4277 * in that case, don't try to do any further work here as 4278 * it's doomed to lead to crashes. 4279 */ 4280 if (IS_ERR_OR_NULL(reg_pdev)) 4281 return -EINVAL; 4282 4283 err = load_builtin_regdb_keys(); 4284 if (err) { 4285 platform_device_unregister(reg_pdev); 4286 return err; 4287 } 4288 4289 /* We always try to get an update for the static regdomain */ 4290 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4291 if (err) { 4292 if (err == -ENOMEM) { 4293 platform_device_unregister(reg_pdev); 4294 return err; 4295 } 4296 /* 4297 * N.B. kobject_uevent_env() can fail mainly for when we're out 4298 * memory which is handled and propagated appropriately above 4299 * but it can also fail during a netlink_broadcast() or during 4300 * early boot for call_usermodehelper(). For now treat these 4301 * errors as non-fatal. 4302 */ 4303 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4304 } 4305 4306 /* 4307 * Finally, if the user set the module parameter treat it 4308 * as a user hint. 4309 */ 4310 if (!is_world_regdom(ieee80211_regdom)) 4311 regulatory_hint_user(ieee80211_regdom, 4312 NL80211_USER_REG_HINT_USER); 4313 4314 return 0; 4315 } 4316 #ifndef MODULE 4317 late_initcall(regulatory_init_db); 4318 #endif 4319 4320 int __init regulatory_init(void) 4321 { 4322 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4323 if (IS_ERR(reg_pdev)) 4324 return PTR_ERR(reg_pdev); 4325 4326 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4327 4328 user_alpha2[0] = '9'; 4329 user_alpha2[1] = '7'; 4330 4331 #ifdef MODULE 4332 return regulatory_init_db(); 4333 #else 4334 return 0; 4335 #endif 4336 } 4337 4338 void regulatory_exit(void) 4339 { 4340 struct regulatory_request *reg_request, *tmp; 4341 struct reg_beacon *reg_beacon, *btmp; 4342 4343 cancel_work_sync(®_work); 4344 cancel_crda_timeout_sync(); 4345 cancel_delayed_work_sync(®_check_chans); 4346 4347 /* Lock to suppress warnings */ 4348 rtnl_lock(); 4349 reset_regdomains(true, NULL); 4350 rtnl_unlock(); 4351 4352 dev_set_uevent_suppress(®_pdev->dev, true); 4353 4354 platform_device_unregister(reg_pdev); 4355 4356 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4357 list_del(®_beacon->list); 4358 kfree(reg_beacon); 4359 } 4360 4361 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4362 list_del(®_beacon->list); 4363 kfree(reg_beacon); 4364 } 4365 4366 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4367 list_del(®_request->list); 4368 kfree(reg_request); 4369 } 4370 4371 if (!IS_ERR_OR_NULL(regdb)) 4372 kfree(regdb); 4373 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4374 kfree(cfg80211_user_regdom); 4375 4376 free_regdb_keyring(); 4377 } 4378