1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2023 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static DEFINE_SPINLOCK(reg_indoor_lock); 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 static void reg_process_hint(struct regulatory_request *reg_request); 137 138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 139 { 140 return rcu_dereference_rtnl(cfg80211_regdomain); 141 } 142 143 /* 144 * Returns the regulatory domain associated with the wiphy. 145 * 146 * Requires any of RTNL, wiphy mutex or RCU protection. 147 */ 148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 149 { 150 return rcu_dereference_check(wiphy->regd, 151 lockdep_is_held(&wiphy->mtx) || 152 lockdep_rtnl_is_held()); 153 } 154 EXPORT_SYMBOL(get_wiphy_regdom); 155 156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 157 { 158 switch (dfs_region) { 159 case NL80211_DFS_UNSET: 160 return "unset"; 161 case NL80211_DFS_FCC: 162 return "FCC"; 163 case NL80211_DFS_ETSI: 164 return "ETSI"; 165 case NL80211_DFS_JP: 166 return "JP"; 167 } 168 return "Unknown"; 169 } 170 171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 172 { 173 const struct ieee80211_regdomain *regd = NULL; 174 const struct ieee80211_regdomain *wiphy_regd = NULL; 175 enum nl80211_dfs_regions dfs_region; 176 177 rcu_read_lock(); 178 regd = get_cfg80211_regdom(); 179 dfs_region = regd->dfs_region; 180 181 if (!wiphy) 182 goto out; 183 184 wiphy_regd = get_wiphy_regdom(wiphy); 185 if (!wiphy_regd) 186 goto out; 187 188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 189 dfs_region = wiphy_regd->dfs_region; 190 goto out; 191 } 192 193 if (wiphy_regd->dfs_region == regd->dfs_region) 194 goto out; 195 196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 197 dev_name(&wiphy->dev), 198 reg_dfs_region_str(wiphy_regd->dfs_region), 199 reg_dfs_region_str(regd->dfs_region)); 200 201 out: 202 rcu_read_unlock(); 203 204 return dfs_region; 205 } 206 207 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 208 { 209 if (!r) 210 return; 211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 212 } 213 214 static struct regulatory_request *get_last_request(void) 215 { 216 return rcu_dereference_rtnl(last_request); 217 } 218 219 /* Used to queue up regulatory hints */ 220 static LIST_HEAD(reg_requests_list); 221 static DEFINE_SPINLOCK(reg_requests_lock); 222 223 /* Used to queue up beacon hints for review */ 224 static LIST_HEAD(reg_pending_beacons); 225 static DEFINE_SPINLOCK(reg_pending_beacons_lock); 226 227 /* Used to keep track of processed beacon hints */ 228 static LIST_HEAD(reg_beacon_list); 229 230 struct reg_beacon { 231 struct list_head list; 232 struct ieee80211_channel chan; 233 }; 234 235 static void reg_check_chans_work(struct work_struct *work); 236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 237 238 static void reg_todo(struct work_struct *work); 239 static DECLARE_WORK(reg_work, reg_todo); 240 241 /* We keep a static world regulatory domain in case of the absence of CRDA */ 242 static const struct ieee80211_regdomain world_regdom = { 243 .n_reg_rules = 8, 244 .alpha2 = "00", 245 .reg_rules = { 246 /* IEEE 802.11b/g, channels 1..11 */ 247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 248 /* IEEE 802.11b/g, channels 12..13. */ 249 REG_RULE(2467-10, 2472+10, 20, 6, 20, 250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 251 /* IEEE 802.11 channel 14 - Only JP enables 252 * this and for 802.11b only */ 253 REG_RULE(2484-10, 2484+10, 20, 6, 20, 254 NL80211_RRF_NO_IR | 255 NL80211_RRF_NO_OFDM), 256 /* IEEE 802.11a, channel 36..48 */ 257 REG_RULE(5180-10, 5240+10, 80, 6, 20, 258 NL80211_RRF_NO_IR | 259 NL80211_RRF_AUTO_BW), 260 261 /* IEEE 802.11a, channel 52..64 - DFS required */ 262 REG_RULE(5260-10, 5320+10, 80, 6, 20, 263 NL80211_RRF_NO_IR | 264 NL80211_RRF_AUTO_BW | 265 NL80211_RRF_DFS), 266 267 /* IEEE 802.11a, channel 100..144 - DFS required */ 268 REG_RULE(5500-10, 5720+10, 160, 6, 20, 269 NL80211_RRF_NO_IR | 270 NL80211_RRF_DFS), 271 272 /* IEEE 802.11a, channel 149..165 */ 273 REG_RULE(5745-10, 5825+10, 80, 6, 20, 274 NL80211_RRF_NO_IR), 275 276 /* IEEE 802.11ad (60GHz), channels 1..3 */ 277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 278 } 279 }; 280 281 /* protected by RTNL */ 282 static const struct ieee80211_regdomain *cfg80211_world_regdom = 283 &world_regdom; 284 285 static char *ieee80211_regdom = "00"; 286 static char user_alpha2[2]; 287 static const struct ieee80211_regdomain *cfg80211_user_regdom; 288 289 module_param(ieee80211_regdom, charp, 0444); 290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 291 292 static void reg_free_request(struct regulatory_request *request) 293 { 294 if (request == &core_request_world) 295 return; 296 297 if (request != get_last_request()) 298 kfree(request); 299 } 300 301 static void reg_free_last_request(void) 302 { 303 struct regulatory_request *lr = get_last_request(); 304 305 if (lr != &core_request_world && lr) 306 kfree_rcu(lr, rcu_head); 307 } 308 309 static void reg_update_last_request(struct regulatory_request *request) 310 { 311 struct regulatory_request *lr; 312 313 lr = get_last_request(); 314 if (lr == request) 315 return; 316 317 reg_free_last_request(); 318 rcu_assign_pointer(last_request, request); 319 } 320 321 static void reset_regdomains(bool full_reset, 322 const struct ieee80211_regdomain *new_regdom) 323 { 324 const struct ieee80211_regdomain *r; 325 326 ASSERT_RTNL(); 327 328 r = get_cfg80211_regdom(); 329 330 /* avoid freeing static information or freeing something twice */ 331 if (r == cfg80211_world_regdom) 332 r = NULL; 333 if (cfg80211_world_regdom == &world_regdom) 334 cfg80211_world_regdom = NULL; 335 if (r == &world_regdom) 336 r = NULL; 337 338 rcu_free_regdom(r); 339 rcu_free_regdom(cfg80211_world_regdom); 340 341 cfg80211_world_regdom = &world_regdom; 342 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 343 344 if (!full_reset) 345 return; 346 347 reg_update_last_request(&core_request_world); 348 } 349 350 /* 351 * Dynamic world regulatory domain requested by the wireless 352 * core upon initialization 353 */ 354 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 355 { 356 struct regulatory_request *lr; 357 358 lr = get_last_request(); 359 360 WARN_ON(!lr); 361 362 reset_regdomains(false, rd); 363 364 cfg80211_world_regdom = rd; 365 } 366 367 bool is_world_regdom(const char *alpha2) 368 { 369 if (!alpha2) 370 return false; 371 return alpha2[0] == '0' && alpha2[1] == '0'; 372 } 373 374 static bool is_alpha2_set(const char *alpha2) 375 { 376 if (!alpha2) 377 return false; 378 return alpha2[0] && alpha2[1]; 379 } 380 381 static bool is_unknown_alpha2(const char *alpha2) 382 { 383 if (!alpha2) 384 return false; 385 /* 386 * Special case where regulatory domain was built by driver 387 * but a specific alpha2 cannot be determined 388 */ 389 return alpha2[0] == '9' && alpha2[1] == '9'; 390 } 391 392 static bool is_intersected_alpha2(const char *alpha2) 393 { 394 if (!alpha2) 395 return false; 396 /* 397 * Special case where regulatory domain is the 398 * result of an intersection between two regulatory domain 399 * structures 400 */ 401 return alpha2[0] == '9' && alpha2[1] == '8'; 402 } 403 404 static bool is_an_alpha2(const char *alpha2) 405 { 406 if (!alpha2) 407 return false; 408 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 409 } 410 411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 412 { 413 if (!alpha2_x || !alpha2_y) 414 return false; 415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 416 } 417 418 static bool regdom_changes(const char *alpha2) 419 { 420 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 421 422 if (!r) 423 return true; 424 return !alpha2_equal(r->alpha2, alpha2); 425 } 426 427 /* 428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 430 * has ever been issued. 431 */ 432 static bool is_user_regdom_saved(void) 433 { 434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 435 return false; 436 437 /* This would indicate a mistake on the design */ 438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 439 "Unexpected user alpha2: %c%c\n", 440 user_alpha2[0], user_alpha2[1])) 441 return false; 442 443 return true; 444 } 445 446 static const struct ieee80211_regdomain * 447 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 448 { 449 struct ieee80211_regdomain *regd; 450 unsigned int i; 451 452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 453 GFP_KERNEL); 454 if (!regd) 455 return ERR_PTR(-ENOMEM); 456 457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 458 459 for (i = 0; i < src_regd->n_reg_rules; i++) 460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 461 sizeof(struct ieee80211_reg_rule)); 462 463 return regd; 464 } 465 466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 467 { 468 ASSERT_RTNL(); 469 470 if (!IS_ERR(cfg80211_user_regdom)) 471 kfree(cfg80211_user_regdom); 472 cfg80211_user_regdom = reg_copy_regd(rd); 473 } 474 475 struct reg_regdb_apply_request { 476 struct list_head list; 477 const struct ieee80211_regdomain *regdom; 478 }; 479 480 static LIST_HEAD(reg_regdb_apply_list); 481 static DEFINE_MUTEX(reg_regdb_apply_mutex); 482 483 static void reg_regdb_apply(struct work_struct *work) 484 { 485 struct reg_regdb_apply_request *request; 486 487 rtnl_lock(); 488 489 mutex_lock(®_regdb_apply_mutex); 490 while (!list_empty(®_regdb_apply_list)) { 491 request = list_first_entry(®_regdb_apply_list, 492 struct reg_regdb_apply_request, 493 list); 494 list_del(&request->list); 495 496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 497 kfree(request); 498 } 499 mutex_unlock(®_regdb_apply_mutex); 500 501 rtnl_unlock(); 502 } 503 504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 505 506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 507 { 508 struct reg_regdb_apply_request *request; 509 510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 511 if (!request) { 512 kfree(regdom); 513 return -ENOMEM; 514 } 515 516 request->regdom = regdom; 517 518 mutex_lock(®_regdb_apply_mutex); 519 list_add_tail(&request->list, ®_regdb_apply_list); 520 mutex_unlock(®_regdb_apply_mutex); 521 522 schedule_work(®_regdb_work); 523 return 0; 524 } 525 526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 527 /* Max number of consecutive attempts to communicate with CRDA */ 528 #define REG_MAX_CRDA_TIMEOUTS 10 529 530 static u32 reg_crda_timeouts; 531 532 static void crda_timeout_work(struct work_struct *work); 533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 534 535 static void crda_timeout_work(struct work_struct *work) 536 { 537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 538 rtnl_lock(); 539 reg_crda_timeouts++; 540 restore_regulatory_settings(true, false); 541 rtnl_unlock(); 542 } 543 544 static void cancel_crda_timeout(void) 545 { 546 cancel_delayed_work(&crda_timeout); 547 } 548 549 static void cancel_crda_timeout_sync(void) 550 { 551 cancel_delayed_work_sync(&crda_timeout); 552 } 553 554 static void reset_crda_timeouts(void) 555 { 556 reg_crda_timeouts = 0; 557 } 558 559 /* 560 * This lets us keep regulatory code which is updated on a regulatory 561 * basis in userspace. 562 */ 563 static int call_crda(const char *alpha2) 564 { 565 char country[12]; 566 char *env[] = { country, NULL }; 567 int ret; 568 569 snprintf(country, sizeof(country), "COUNTRY=%c%c", 570 alpha2[0], alpha2[1]); 571 572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 574 return -EINVAL; 575 } 576 577 if (!is_world_regdom((char *) alpha2)) 578 pr_debug("Calling CRDA for country: %c%c\n", 579 alpha2[0], alpha2[1]); 580 else 581 pr_debug("Calling CRDA to update world regulatory domain\n"); 582 583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 584 if (ret) 585 return ret; 586 587 queue_delayed_work(system_power_efficient_wq, 588 &crda_timeout, msecs_to_jiffies(3142)); 589 return 0; 590 } 591 #else 592 static inline void cancel_crda_timeout(void) {} 593 static inline void cancel_crda_timeout_sync(void) {} 594 static inline void reset_crda_timeouts(void) {} 595 static inline int call_crda(const char *alpha2) 596 { 597 return -ENODATA; 598 } 599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 600 601 /* code to directly load a firmware database through request_firmware */ 602 static const struct fwdb_header *regdb; 603 604 struct fwdb_country { 605 u8 alpha2[2]; 606 __be16 coll_ptr; 607 /* this struct cannot be extended */ 608 } __packed __aligned(4); 609 610 struct fwdb_collection { 611 u8 len; 612 u8 n_rules; 613 u8 dfs_region; 614 /* no optional data yet */ 615 /* aligned to 2, then followed by __be16 array of rule pointers */ 616 } __packed __aligned(4); 617 618 enum fwdb_flags { 619 FWDB_FLAG_NO_OFDM = BIT(0), 620 FWDB_FLAG_NO_OUTDOOR = BIT(1), 621 FWDB_FLAG_DFS = BIT(2), 622 FWDB_FLAG_NO_IR = BIT(3), 623 FWDB_FLAG_AUTO_BW = BIT(4), 624 }; 625 626 struct fwdb_wmm_ac { 627 u8 ecw; 628 u8 aifsn; 629 __be16 cot; 630 } __packed; 631 632 struct fwdb_wmm_rule { 633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 635 } __packed; 636 637 struct fwdb_rule { 638 u8 len; 639 u8 flags; 640 __be16 max_eirp; 641 __be32 start, end, max_bw; 642 /* start of optional data */ 643 __be16 cac_timeout; 644 __be16 wmm_ptr; 645 } __packed __aligned(4); 646 647 #define FWDB_MAGIC 0x52474442 648 #define FWDB_VERSION 20 649 650 struct fwdb_header { 651 __be32 magic; 652 __be32 version; 653 struct fwdb_country country[]; 654 } __packed __aligned(4); 655 656 static int ecw2cw(int ecw) 657 { 658 return (1 << ecw) - 1; 659 } 660 661 static bool valid_wmm(struct fwdb_wmm_rule *rule) 662 { 663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 664 int i; 665 666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 669 u8 aifsn = ac[i].aifsn; 670 671 if (cw_min >= cw_max) 672 return false; 673 674 if (aifsn < 1) 675 return false; 676 } 677 678 return true; 679 } 680 681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 682 { 683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 684 685 if ((u8 *)rule + sizeof(rule->len) > data + size) 686 return false; 687 688 /* mandatory fields */ 689 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 690 return false; 691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 693 struct fwdb_wmm_rule *wmm; 694 695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 696 return false; 697 698 wmm = (void *)(data + wmm_ptr); 699 700 if (!valid_wmm(wmm)) 701 return false; 702 } 703 return true; 704 } 705 706 static bool valid_country(const u8 *data, unsigned int size, 707 const struct fwdb_country *country) 708 { 709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 710 struct fwdb_collection *coll = (void *)(data + ptr); 711 __be16 *rules_ptr; 712 unsigned int i; 713 714 /* make sure we can read len/n_rules */ 715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 716 return false; 717 718 /* make sure base struct and all rules fit */ 719 if ((u8 *)coll + ALIGN(coll->len, 2) + 720 (coll->n_rules * 2) > data + size) 721 return false; 722 723 /* mandatory fields must exist */ 724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 725 return false; 726 727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 728 729 for (i = 0; i < coll->n_rules; i++) { 730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 731 732 if (!valid_rule(data, size, rule_ptr)) 733 return false; 734 } 735 736 return true; 737 } 738 739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 740 #include <keys/asymmetric-type.h> 741 742 static struct key *builtin_regdb_keys; 743 744 static int __init load_builtin_regdb_keys(void) 745 { 746 builtin_regdb_keys = 747 keyring_alloc(".builtin_regdb_keys", 748 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 749 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 750 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 751 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 752 if (IS_ERR(builtin_regdb_keys)) 753 return PTR_ERR(builtin_regdb_keys); 754 755 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 756 757 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 758 x509_load_certificate_list(shipped_regdb_certs, 759 shipped_regdb_certs_len, 760 builtin_regdb_keys); 761 #endif 762 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 763 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 764 x509_load_certificate_list(extra_regdb_certs, 765 extra_regdb_certs_len, 766 builtin_regdb_keys); 767 #endif 768 769 return 0; 770 } 771 772 MODULE_FIRMWARE("regulatory.db.p7s"); 773 774 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 775 { 776 const struct firmware *sig; 777 bool result; 778 779 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 780 return false; 781 782 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 783 builtin_regdb_keys, 784 VERIFYING_UNSPECIFIED_SIGNATURE, 785 NULL, NULL) == 0; 786 787 release_firmware(sig); 788 789 return result; 790 } 791 792 static void free_regdb_keyring(void) 793 { 794 key_put(builtin_regdb_keys); 795 } 796 #else 797 static int load_builtin_regdb_keys(void) 798 { 799 return 0; 800 } 801 802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 803 { 804 return true; 805 } 806 807 static void free_regdb_keyring(void) 808 { 809 } 810 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 811 812 static bool valid_regdb(const u8 *data, unsigned int size) 813 { 814 const struct fwdb_header *hdr = (void *)data; 815 const struct fwdb_country *country; 816 817 if (size < sizeof(*hdr)) 818 return false; 819 820 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 821 return false; 822 823 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 824 return false; 825 826 if (!regdb_has_valid_signature(data, size)) 827 return false; 828 829 country = &hdr->country[0]; 830 while ((u8 *)(country + 1) <= data + size) { 831 if (!country->coll_ptr) 832 break; 833 if (!valid_country(data, size, country)) 834 return false; 835 country++; 836 } 837 838 return true; 839 } 840 841 static void set_wmm_rule(const struct fwdb_header *db, 842 const struct fwdb_country *country, 843 const struct fwdb_rule *rule, 844 struct ieee80211_reg_rule *rrule) 845 { 846 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 847 struct fwdb_wmm_rule *wmm; 848 unsigned int i, wmm_ptr; 849 850 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 851 wmm = (void *)((u8 *)db + wmm_ptr); 852 853 if (!valid_wmm(wmm)) { 854 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 855 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 856 country->alpha2[0], country->alpha2[1]); 857 return; 858 } 859 860 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 861 wmm_rule->client[i].cw_min = 862 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 863 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 864 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 865 wmm_rule->client[i].cot = 866 1000 * be16_to_cpu(wmm->client[i].cot); 867 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 868 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 869 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 870 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 871 } 872 873 rrule->has_wmm = true; 874 } 875 876 static int __regdb_query_wmm(const struct fwdb_header *db, 877 const struct fwdb_country *country, int freq, 878 struct ieee80211_reg_rule *rrule) 879 { 880 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 881 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 882 int i; 883 884 for (i = 0; i < coll->n_rules; i++) { 885 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 886 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 887 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 888 889 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 890 continue; 891 892 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 893 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 894 set_wmm_rule(db, country, rule, rrule); 895 return 0; 896 } 897 } 898 899 return -ENODATA; 900 } 901 902 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 903 { 904 const struct fwdb_header *hdr = regdb; 905 const struct fwdb_country *country; 906 907 if (!regdb) 908 return -ENODATA; 909 910 if (IS_ERR(regdb)) 911 return PTR_ERR(regdb); 912 913 country = &hdr->country[0]; 914 while (country->coll_ptr) { 915 if (alpha2_equal(alpha2, country->alpha2)) 916 return __regdb_query_wmm(regdb, country, freq, rule); 917 918 country++; 919 } 920 921 return -ENODATA; 922 } 923 EXPORT_SYMBOL(reg_query_regdb_wmm); 924 925 static int regdb_query_country(const struct fwdb_header *db, 926 const struct fwdb_country *country) 927 { 928 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 929 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 930 struct ieee80211_regdomain *regdom; 931 unsigned int i; 932 933 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 934 GFP_KERNEL); 935 if (!regdom) 936 return -ENOMEM; 937 938 regdom->n_reg_rules = coll->n_rules; 939 regdom->alpha2[0] = country->alpha2[0]; 940 regdom->alpha2[1] = country->alpha2[1]; 941 regdom->dfs_region = coll->dfs_region; 942 943 for (i = 0; i < regdom->n_reg_rules; i++) { 944 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 945 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 946 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 947 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 948 949 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 950 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 951 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 952 953 rrule->power_rule.max_antenna_gain = 0; 954 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 955 956 rrule->flags = 0; 957 if (rule->flags & FWDB_FLAG_NO_OFDM) 958 rrule->flags |= NL80211_RRF_NO_OFDM; 959 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 960 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 961 if (rule->flags & FWDB_FLAG_DFS) 962 rrule->flags |= NL80211_RRF_DFS; 963 if (rule->flags & FWDB_FLAG_NO_IR) 964 rrule->flags |= NL80211_RRF_NO_IR; 965 if (rule->flags & FWDB_FLAG_AUTO_BW) 966 rrule->flags |= NL80211_RRF_AUTO_BW; 967 968 rrule->dfs_cac_ms = 0; 969 970 /* handle optional data */ 971 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 972 rrule->dfs_cac_ms = 973 1000 * be16_to_cpu(rule->cac_timeout); 974 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 975 set_wmm_rule(db, country, rule, rrule); 976 } 977 978 return reg_schedule_apply(regdom); 979 } 980 981 static int query_regdb(const char *alpha2) 982 { 983 const struct fwdb_header *hdr = regdb; 984 const struct fwdb_country *country; 985 986 ASSERT_RTNL(); 987 988 if (IS_ERR(regdb)) 989 return PTR_ERR(regdb); 990 991 country = &hdr->country[0]; 992 while (country->coll_ptr) { 993 if (alpha2_equal(alpha2, country->alpha2)) 994 return regdb_query_country(regdb, country); 995 country++; 996 } 997 998 return -ENODATA; 999 } 1000 1001 static void regdb_fw_cb(const struct firmware *fw, void *context) 1002 { 1003 int set_error = 0; 1004 bool restore = true; 1005 void *db; 1006 1007 if (!fw) { 1008 pr_info("failed to load regulatory.db\n"); 1009 set_error = -ENODATA; 1010 } else if (!valid_regdb(fw->data, fw->size)) { 1011 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1012 set_error = -EINVAL; 1013 } 1014 1015 rtnl_lock(); 1016 if (regdb && !IS_ERR(regdb)) { 1017 /* negative case - a bug 1018 * positive case - can happen due to race in case of multiple cb's in 1019 * queue, due to usage of asynchronous callback 1020 * 1021 * Either case, just restore and free new db. 1022 */ 1023 } else if (set_error) { 1024 regdb = ERR_PTR(set_error); 1025 } else if (fw) { 1026 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1027 if (db) { 1028 regdb = db; 1029 restore = context && query_regdb(context); 1030 } else { 1031 restore = true; 1032 } 1033 } 1034 1035 if (restore) 1036 restore_regulatory_settings(true, false); 1037 1038 rtnl_unlock(); 1039 1040 kfree(context); 1041 1042 release_firmware(fw); 1043 } 1044 1045 MODULE_FIRMWARE("regulatory.db"); 1046 1047 static int query_regdb_file(const char *alpha2) 1048 { 1049 int err; 1050 1051 ASSERT_RTNL(); 1052 1053 if (regdb) 1054 return query_regdb(alpha2); 1055 1056 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1057 if (!alpha2) 1058 return -ENOMEM; 1059 1060 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1061 ®_pdev->dev, GFP_KERNEL, 1062 (void *)alpha2, regdb_fw_cb); 1063 if (err) 1064 kfree(alpha2); 1065 1066 return err; 1067 } 1068 1069 int reg_reload_regdb(void) 1070 { 1071 const struct firmware *fw; 1072 void *db; 1073 int err; 1074 const struct ieee80211_regdomain *current_regdomain; 1075 struct regulatory_request *request; 1076 1077 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1078 if (err) 1079 return err; 1080 1081 if (!valid_regdb(fw->data, fw->size)) { 1082 err = -ENODATA; 1083 goto out; 1084 } 1085 1086 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1087 if (!db) { 1088 err = -ENOMEM; 1089 goto out; 1090 } 1091 1092 rtnl_lock(); 1093 if (!IS_ERR_OR_NULL(regdb)) 1094 kfree(regdb); 1095 regdb = db; 1096 1097 /* reset regulatory domain */ 1098 current_regdomain = get_cfg80211_regdom(); 1099 1100 request = kzalloc(sizeof(*request), GFP_KERNEL); 1101 if (!request) { 1102 err = -ENOMEM; 1103 goto out_unlock; 1104 } 1105 1106 request->wiphy_idx = WIPHY_IDX_INVALID; 1107 request->alpha2[0] = current_regdomain->alpha2[0]; 1108 request->alpha2[1] = current_regdomain->alpha2[1]; 1109 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1110 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER; 1111 1112 reg_process_hint(request); 1113 1114 out_unlock: 1115 rtnl_unlock(); 1116 out: 1117 release_firmware(fw); 1118 return err; 1119 } 1120 1121 static bool reg_query_database(struct regulatory_request *request) 1122 { 1123 if (query_regdb_file(request->alpha2) == 0) 1124 return true; 1125 1126 if (call_crda(request->alpha2) == 0) 1127 return true; 1128 1129 return false; 1130 } 1131 1132 bool reg_is_valid_request(const char *alpha2) 1133 { 1134 struct regulatory_request *lr = get_last_request(); 1135 1136 if (!lr || lr->processed) 1137 return false; 1138 1139 return alpha2_equal(lr->alpha2, alpha2); 1140 } 1141 1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1143 { 1144 struct regulatory_request *lr = get_last_request(); 1145 1146 /* 1147 * Follow the driver's regulatory domain, if present, unless a country 1148 * IE has been processed or a user wants to help complaince further 1149 */ 1150 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1151 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1152 wiphy->regd) 1153 return get_wiphy_regdom(wiphy); 1154 1155 return get_cfg80211_regdom(); 1156 } 1157 1158 static unsigned int 1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1160 const struct ieee80211_reg_rule *rule) 1161 { 1162 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1163 const struct ieee80211_freq_range *freq_range_tmp; 1164 const struct ieee80211_reg_rule *tmp; 1165 u32 start_freq, end_freq, idx, no; 1166 1167 for (idx = 0; idx < rd->n_reg_rules; idx++) 1168 if (rule == &rd->reg_rules[idx]) 1169 break; 1170 1171 if (idx == rd->n_reg_rules) 1172 return 0; 1173 1174 /* get start_freq */ 1175 no = idx; 1176 1177 while (no) { 1178 tmp = &rd->reg_rules[--no]; 1179 freq_range_tmp = &tmp->freq_range; 1180 1181 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1182 break; 1183 1184 freq_range = freq_range_tmp; 1185 } 1186 1187 start_freq = freq_range->start_freq_khz; 1188 1189 /* get end_freq */ 1190 freq_range = &rule->freq_range; 1191 no = idx; 1192 1193 while (no < rd->n_reg_rules - 1) { 1194 tmp = &rd->reg_rules[++no]; 1195 freq_range_tmp = &tmp->freq_range; 1196 1197 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1198 break; 1199 1200 freq_range = freq_range_tmp; 1201 } 1202 1203 end_freq = freq_range->end_freq_khz; 1204 1205 return end_freq - start_freq; 1206 } 1207 1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1209 const struct ieee80211_reg_rule *rule) 1210 { 1211 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1212 1213 if (rule->flags & NL80211_RRF_NO_320MHZ) 1214 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160)); 1215 if (rule->flags & NL80211_RRF_NO_160MHZ) 1216 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1217 if (rule->flags & NL80211_RRF_NO_80MHZ) 1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1219 1220 /* 1221 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1222 * are not allowed. 1223 */ 1224 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1225 rule->flags & NL80211_RRF_NO_HT40PLUS) 1226 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1227 1228 return bw; 1229 } 1230 1231 /* Sanity check on a regulatory rule */ 1232 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1233 { 1234 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1235 u32 freq_diff; 1236 1237 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1238 return false; 1239 1240 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1241 return false; 1242 1243 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1244 1245 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1246 freq_range->max_bandwidth_khz > freq_diff) 1247 return false; 1248 1249 return true; 1250 } 1251 1252 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1253 { 1254 const struct ieee80211_reg_rule *reg_rule = NULL; 1255 unsigned int i; 1256 1257 if (!rd->n_reg_rules) 1258 return false; 1259 1260 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1261 return false; 1262 1263 for (i = 0; i < rd->n_reg_rules; i++) { 1264 reg_rule = &rd->reg_rules[i]; 1265 if (!is_valid_reg_rule(reg_rule)) 1266 return false; 1267 } 1268 1269 return true; 1270 } 1271 1272 /** 1273 * freq_in_rule_band - tells us if a frequency is in a frequency band 1274 * @freq_range: frequency rule we want to query 1275 * @freq_khz: frequency we are inquiring about 1276 * 1277 * This lets us know if a specific frequency rule is or is not relevant to 1278 * a specific frequency's band. Bands are device specific and artificial 1279 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1280 * however it is safe for now to assume that a frequency rule should not be 1281 * part of a frequency's band if the start freq or end freq are off by more 1282 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1283 * 60 GHz band. 1284 * This resolution can be lowered and should be considered as we add 1285 * regulatory rule support for other "bands". 1286 **/ 1287 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1288 u32 freq_khz) 1289 { 1290 #define ONE_GHZ_IN_KHZ 1000000 1291 /* 1292 * From 802.11ad: directional multi-gigabit (DMG): 1293 * Pertaining to operation in a frequency band containing a channel 1294 * with the Channel starting frequency above 45 GHz. 1295 */ 1296 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1297 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1298 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1299 return true; 1300 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1301 return true; 1302 return false; 1303 #undef ONE_GHZ_IN_KHZ 1304 } 1305 1306 /* 1307 * Later on we can perhaps use the more restrictive DFS 1308 * region but we don't have information for that yet so 1309 * for now simply disallow conflicts. 1310 */ 1311 static enum nl80211_dfs_regions 1312 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1313 const enum nl80211_dfs_regions dfs_region2) 1314 { 1315 if (dfs_region1 != dfs_region2) 1316 return NL80211_DFS_UNSET; 1317 return dfs_region1; 1318 } 1319 1320 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1321 const struct ieee80211_wmm_ac *wmm_ac2, 1322 struct ieee80211_wmm_ac *intersect) 1323 { 1324 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1325 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1326 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1327 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1328 } 1329 1330 /* 1331 * Helper for regdom_intersect(), this does the real 1332 * mathematical intersection fun 1333 */ 1334 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1335 const struct ieee80211_regdomain *rd2, 1336 const struct ieee80211_reg_rule *rule1, 1337 const struct ieee80211_reg_rule *rule2, 1338 struct ieee80211_reg_rule *intersected_rule) 1339 { 1340 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1341 struct ieee80211_freq_range *freq_range; 1342 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1343 struct ieee80211_power_rule *power_rule; 1344 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1345 struct ieee80211_wmm_rule *wmm_rule; 1346 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1347 1348 freq_range1 = &rule1->freq_range; 1349 freq_range2 = &rule2->freq_range; 1350 freq_range = &intersected_rule->freq_range; 1351 1352 power_rule1 = &rule1->power_rule; 1353 power_rule2 = &rule2->power_rule; 1354 power_rule = &intersected_rule->power_rule; 1355 1356 wmm_rule1 = &rule1->wmm_rule; 1357 wmm_rule2 = &rule2->wmm_rule; 1358 wmm_rule = &intersected_rule->wmm_rule; 1359 1360 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1361 freq_range2->start_freq_khz); 1362 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1363 freq_range2->end_freq_khz); 1364 1365 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1366 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1367 1368 if (rule1->flags & NL80211_RRF_AUTO_BW) 1369 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1370 if (rule2->flags & NL80211_RRF_AUTO_BW) 1371 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1372 1373 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1374 1375 intersected_rule->flags = rule1->flags | rule2->flags; 1376 1377 /* 1378 * In case NL80211_RRF_AUTO_BW requested for both rules 1379 * set AUTO_BW in intersected rule also. Next we will 1380 * calculate BW correctly in handle_channel function. 1381 * In other case remove AUTO_BW flag while we calculate 1382 * maximum bandwidth correctly and auto calculation is 1383 * not required. 1384 */ 1385 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1386 (rule2->flags & NL80211_RRF_AUTO_BW)) 1387 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1388 else 1389 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1390 1391 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1392 if (freq_range->max_bandwidth_khz > freq_diff) 1393 freq_range->max_bandwidth_khz = freq_diff; 1394 1395 power_rule->max_eirp = min(power_rule1->max_eirp, 1396 power_rule2->max_eirp); 1397 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1398 power_rule2->max_antenna_gain); 1399 1400 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1401 rule2->dfs_cac_ms); 1402 1403 if (rule1->has_wmm && rule2->has_wmm) { 1404 u8 ac; 1405 1406 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1407 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1408 &wmm_rule2->client[ac], 1409 &wmm_rule->client[ac]); 1410 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1411 &wmm_rule2->ap[ac], 1412 &wmm_rule->ap[ac]); 1413 } 1414 1415 intersected_rule->has_wmm = true; 1416 } else if (rule1->has_wmm) { 1417 *wmm_rule = *wmm_rule1; 1418 intersected_rule->has_wmm = true; 1419 } else if (rule2->has_wmm) { 1420 *wmm_rule = *wmm_rule2; 1421 intersected_rule->has_wmm = true; 1422 } else { 1423 intersected_rule->has_wmm = false; 1424 } 1425 1426 if (!is_valid_reg_rule(intersected_rule)) 1427 return -EINVAL; 1428 1429 return 0; 1430 } 1431 1432 /* check whether old rule contains new rule */ 1433 static bool rule_contains(struct ieee80211_reg_rule *r1, 1434 struct ieee80211_reg_rule *r2) 1435 { 1436 /* for simplicity, currently consider only same flags */ 1437 if (r1->flags != r2->flags) 1438 return false; 1439 1440 /* verify r1 is more restrictive */ 1441 if ((r1->power_rule.max_antenna_gain > 1442 r2->power_rule.max_antenna_gain) || 1443 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1444 return false; 1445 1446 /* make sure r2's range is contained within r1 */ 1447 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1448 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1449 return false; 1450 1451 /* and finally verify that r1.max_bw >= r2.max_bw */ 1452 if (r1->freq_range.max_bandwidth_khz < 1453 r2->freq_range.max_bandwidth_khz) 1454 return false; 1455 1456 return true; 1457 } 1458 1459 /* add or extend current rules. do nothing if rule is already contained */ 1460 static void add_rule(struct ieee80211_reg_rule *rule, 1461 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1462 { 1463 struct ieee80211_reg_rule *tmp_rule; 1464 int i; 1465 1466 for (i = 0; i < *n_rules; i++) { 1467 tmp_rule = ®_rules[i]; 1468 /* rule is already contained - do nothing */ 1469 if (rule_contains(tmp_rule, rule)) 1470 return; 1471 1472 /* extend rule if possible */ 1473 if (rule_contains(rule, tmp_rule)) { 1474 memcpy(tmp_rule, rule, sizeof(*rule)); 1475 return; 1476 } 1477 } 1478 1479 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1480 (*n_rules)++; 1481 } 1482 1483 /** 1484 * regdom_intersect - do the intersection between two regulatory domains 1485 * @rd1: first regulatory domain 1486 * @rd2: second regulatory domain 1487 * 1488 * Use this function to get the intersection between two regulatory domains. 1489 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1490 * as no one single alpha2 can represent this regulatory domain. 1491 * 1492 * Returns a pointer to the regulatory domain structure which will hold the 1493 * resulting intersection of rules between rd1 and rd2. We will 1494 * kzalloc() this structure for you. 1495 */ 1496 static struct ieee80211_regdomain * 1497 regdom_intersect(const struct ieee80211_regdomain *rd1, 1498 const struct ieee80211_regdomain *rd2) 1499 { 1500 int r; 1501 unsigned int x, y; 1502 unsigned int num_rules = 0; 1503 const struct ieee80211_reg_rule *rule1, *rule2; 1504 struct ieee80211_reg_rule intersected_rule; 1505 struct ieee80211_regdomain *rd; 1506 1507 if (!rd1 || !rd2) 1508 return NULL; 1509 1510 /* 1511 * First we get a count of the rules we'll need, then we actually 1512 * build them. This is to so we can malloc() and free() a 1513 * regdomain once. The reason we use reg_rules_intersect() here 1514 * is it will return -EINVAL if the rule computed makes no sense. 1515 * All rules that do check out OK are valid. 1516 */ 1517 1518 for (x = 0; x < rd1->n_reg_rules; x++) { 1519 rule1 = &rd1->reg_rules[x]; 1520 for (y = 0; y < rd2->n_reg_rules; y++) { 1521 rule2 = &rd2->reg_rules[y]; 1522 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1523 &intersected_rule)) 1524 num_rules++; 1525 } 1526 } 1527 1528 if (!num_rules) 1529 return NULL; 1530 1531 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1532 if (!rd) 1533 return NULL; 1534 1535 for (x = 0; x < rd1->n_reg_rules; x++) { 1536 rule1 = &rd1->reg_rules[x]; 1537 for (y = 0; y < rd2->n_reg_rules; y++) { 1538 rule2 = &rd2->reg_rules[y]; 1539 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1540 &intersected_rule); 1541 /* 1542 * No need to memset here the intersected rule here as 1543 * we're not using the stack anymore 1544 */ 1545 if (r) 1546 continue; 1547 1548 add_rule(&intersected_rule, rd->reg_rules, 1549 &rd->n_reg_rules); 1550 } 1551 } 1552 1553 rd->alpha2[0] = '9'; 1554 rd->alpha2[1] = '8'; 1555 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1556 rd2->dfs_region); 1557 1558 return rd; 1559 } 1560 1561 /* 1562 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1563 * want to just have the channel structure use these 1564 */ 1565 static u32 map_regdom_flags(u32 rd_flags) 1566 { 1567 u32 channel_flags = 0; 1568 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1569 channel_flags |= IEEE80211_CHAN_NO_IR; 1570 if (rd_flags & NL80211_RRF_DFS) 1571 channel_flags |= IEEE80211_CHAN_RADAR; 1572 if (rd_flags & NL80211_RRF_NO_OFDM) 1573 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1574 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1575 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1576 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1577 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1578 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1579 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1580 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1581 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1582 if (rd_flags & NL80211_RRF_NO_80MHZ) 1583 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1584 if (rd_flags & NL80211_RRF_NO_160MHZ) 1585 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1586 if (rd_flags & NL80211_RRF_NO_HE) 1587 channel_flags |= IEEE80211_CHAN_NO_HE; 1588 if (rd_flags & NL80211_RRF_NO_320MHZ) 1589 channel_flags |= IEEE80211_CHAN_NO_320MHZ; 1590 if (rd_flags & NL80211_RRF_NO_EHT) 1591 channel_flags |= IEEE80211_CHAN_NO_EHT; 1592 return channel_flags; 1593 } 1594 1595 static const struct ieee80211_reg_rule * 1596 freq_reg_info_regd(u32 center_freq, 1597 const struct ieee80211_regdomain *regd, u32 bw) 1598 { 1599 int i; 1600 bool band_rule_found = false; 1601 bool bw_fits = false; 1602 1603 if (!regd) 1604 return ERR_PTR(-EINVAL); 1605 1606 for (i = 0; i < regd->n_reg_rules; i++) { 1607 const struct ieee80211_reg_rule *rr; 1608 const struct ieee80211_freq_range *fr = NULL; 1609 1610 rr = ®d->reg_rules[i]; 1611 fr = &rr->freq_range; 1612 1613 /* 1614 * We only need to know if one frequency rule was 1615 * in center_freq's band, that's enough, so let's 1616 * not overwrite it once found 1617 */ 1618 if (!band_rule_found) 1619 band_rule_found = freq_in_rule_band(fr, center_freq); 1620 1621 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1622 1623 if (band_rule_found && bw_fits) 1624 return rr; 1625 } 1626 1627 if (!band_rule_found) 1628 return ERR_PTR(-ERANGE); 1629 1630 return ERR_PTR(-EINVAL); 1631 } 1632 1633 static const struct ieee80211_reg_rule * 1634 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1635 { 1636 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1637 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1638 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE); 1639 int i = ARRAY_SIZE(bws) - 1; 1640 u32 bw; 1641 1642 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1643 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1644 if (!IS_ERR(reg_rule)) 1645 return reg_rule; 1646 } 1647 1648 return reg_rule; 1649 } 1650 1651 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1652 u32 center_freq) 1653 { 1654 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1655 1656 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1657 } 1658 EXPORT_SYMBOL(freq_reg_info); 1659 1660 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1661 { 1662 switch (initiator) { 1663 case NL80211_REGDOM_SET_BY_CORE: 1664 return "core"; 1665 case NL80211_REGDOM_SET_BY_USER: 1666 return "user"; 1667 case NL80211_REGDOM_SET_BY_DRIVER: 1668 return "driver"; 1669 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1670 return "country element"; 1671 default: 1672 WARN_ON(1); 1673 return "bug"; 1674 } 1675 } 1676 EXPORT_SYMBOL(reg_initiator_name); 1677 1678 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1679 const struct ieee80211_reg_rule *reg_rule, 1680 const struct ieee80211_channel *chan) 1681 { 1682 const struct ieee80211_freq_range *freq_range = NULL; 1683 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1684 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1685 1686 freq_range = ®_rule->freq_range; 1687 1688 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1689 center_freq_khz = ieee80211_channel_to_khz(chan); 1690 /* Check if auto calculation requested */ 1691 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1692 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1693 1694 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1695 if (!cfg80211_does_bw_fit_range(freq_range, 1696 center_freq_khz, 1697 MHZ_TO_KHZ(10))) 1698 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1699 if (!cfg80211_does_bw_fit_range(freq_range, 1700 center_freq_khz, 1701 MHZ_TO_KHZ(20))) 1702 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1703 1704 if (is_s1g) { 1705 /* S1G is strict about non overlapping channels. We can 1706 * calculate which bandwidth is allowed per channel by finding 1707 * the largest bandwidth which cleanly divides the freq_range. 1708 */ 1709 int edge_offset; 1710 int ch_bw = max_bandwidth_khz; 1711 1712 while (ch_bw) { 1713 edge_offset = (center_freq_khz - ch_bw / 2) - 1714 freq_range->start_freq_khz; 1715 if (edge_offset % ch_bw == 0) { 1716 switch (KHZ_TO_MHZ(ch_bw)) { 1717 case 1: 1718 bw_flags |= IEEE80211_CHAN_1MHZ; 1719 break; 1720 case 2: 1721 bw_flags |= IEEE80211_CHAN_2MHZ; 1722 break; 1723 case 4: 1724 bw_flags |= IEEE80211_CHAN_4MHZ; 1725 break; 1726 case 8: 1727 bw_flags |= IEEE80211_CHAN_8MHZ; 1728 break; 1729 case 16: 1730 bw_flags |= IEEE80211_CHAN_16MHZ; 1731 break; 1732 default: 1733 /* If we got here, no bandwidths fit on 1734 * this frequency, ie. band edge. 1735 */ 1736 bw_flags |= IEEE80211_CHAN_DISABLED; 1737 break; 1738 } 1739 break; 1740 } 1741 ch_bw /= 2; 1742 } 1743 } else { 1744 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1745 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1746 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1747 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1748 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1749 bw_flags |= IEEE80211_CHAN_NO_HT40; 1750 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1751 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1752 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1753 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1754 if (max_bandwidth_khz < MHZ_TO_KHZ(320)) 1755 bw_flags |= IEEE80211_CHAN_NO_320MHZ; 1756 } 1757 return bw_flags; 1758 } 1759 1760 static void handle_channel_single_rule(struct wiphy *wiphy, 1761 enum nl80211_reg_initiator initiator, 1762 struct ieee80211_channel *chan, 1763 u32 flags, 1764 struct regulatory_request *lr, 1765 struct wiphy *request_wiphy, 1766 const struct ieee80211_reg_rule *reg_rule) 1767 { 1768 u32 bw_flags = 0; 1769 const struct ieee80211_power_rule *power_rule = NULL; 1770 const struct ieee80211_regdomain *regd; 1771 1772 regd = reg_get_regdomain(wiphy); 1773 1774 power_rule = ®_rule->power_rule; 1775 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1776 1777 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1778 request_wiphy && request_wiphy == wiphy && 1779 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1780 /* 1781 * This guarantees the driver's requested regulatory domain 1782 * will always be used as a base for further regulatory 1783 * settings 1784 */ 1785 chan->flags = chan->orig_flags = 1786 map_regdom_flags(reg_rule->flags) | bw_flags; 1787 chan->max_antenna_gain = chan->orig_mag = 1788 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1789 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1790 (int) MBM_TO_DBM(power_rule->max_eirp); 1791 1792 if (chan->flags & IEEE80211_CHAN_RADAR) { 1793 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1794 if (reg_rule->dfs_cac_ms) 1795 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1796 } 1797 1798 return; 1799 } 1800 1801 chan->dfs_state = NL80211_DFS_USABLE; 1802 chan->dfs_state_entered = jiffies; 1803 1804 chan->beacon_found = false; 1805 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1806 chan->max_antenna_gain = 1807 min_t(int, chan->orig_mag, 1808 MBI_TO_DBI(power_rule->max_antenna_gain)); 1809 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1810 1811 if (chan->flags & IEEE80211_CHAN_RADAR) { 1812 if (reg_rule->dfs_cac_ms) 1813 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1814 else 1815 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1816 } 1817 1818 if (chan->orig_mpwr) { 1819 /* 1820 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1821 * will always follow the passed country IE power settings. 1822 */ 1823 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1824 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1825 chan->max_power = chan->max_reg_power; 1826 else 1827 chan->max_power = min(chan->orig_mpwr, 1828 chan->max_reg_power); 1829 } else 1830 chan->max_power = chan->max_reg_power; 1831 } 1832 1833 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1834 enum nl80211_reg_initiator initiator, 1835 struct ieee80211_channel *chan, 1836 u32 flags, 1837 struct regulatory_request *lr, 1838 struct wiphy *request_wiphy, 1839 const struct ieee80211_reg_rule *rrule1, 1840 const struct ieee80211_reg_rule *rrule2, 1841 struct ieee80211_freq_range *comb_range) 1842 { 1843 u32 bw_flags1 = 0; 1844 u32 bw_flags2 = 0; 1845 const struct ieee80211_power_rule *power_rule1 = NULL; 1846 const struct ieee80211_power_rule *power_rule2 = NULL; 1847 const struct ieee80211_regdomain *regd; 1848 1849 regd = reg_get_regdomain(wiphy); 1850 1851 power_rule1 = &rrule1->power_rule; 1852 power_rule2 = &rrule2->power_rule; 1853 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1854 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1855 1856 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1857 request_wiphy && request_wiphy == wiphy && 1858 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1859 /* This guarantees the driver's requested regulatory domain 1860 * will always be used as a base for further regulatory 1861 * settings 1862 */ 1863 chan->flags = 1864 map_regdom_flags(rrule1->flags) | 1865 map_regdom_flags(rrule2->flags) | 1866 bw_flags1 | 1867 bw_flags2; 1868 chan->orig_flags = chan->flags; 1869 chan->max_antenna_gain = 1870 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1871 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1872 chan->orig_mag = chan->max_antenna_gain; 1873 chan->max_reg_power = 1874 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1875 MBM_TO_DBM(power_rule2->max_eirp)); 1876 chan->max_power = chan->max_reg_power; 1877 chan->orig_mpwr = chan->max_reg_power; 1878 1879 if (chan->flags & IEEE80211_CHAN_RADAR) { 1880 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1881 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1882 chan->dfs_cac_ms = max_t(unsigned int, 1883 rrule1->dfs_cac_ms, 1884 rrule2->dfs_cac_ms); 1885 } 1886 1887 return; 1888 } 1889 1890 chan->dfs_state = NL80211_DFS_USABLE; 1891 chan->dfs_state_entered = jiffies; 1892 1893 chan->beacon_found = false; 1894 chan->flags = flags | bw_flags1 | bw_flags2 | 1895 map_regdom_flags(rrule1->flags) | 1896 map_regdom_flags(rrule2->flags); 1897 1898 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1899 * (otherwise no adj. rule case), recheck therefore 1900 */ 1901 if (cfg80211_does_bw_fit_range(comb_range, 1902 ieee80211_channel_to_khz(chan), 1903 MHZ_TO_KHZ(10))) 1904 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1905 if (cfg80211_does_bw_fit_range(comb_range, 1906 ieee80211_channel_to_khz(chan), 1907 MHZ_TO_KHZ(20))) 1908 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1909 1910 chan->max_antenna_gain = 1911 min_t(int, chan->orig_mag, 1912 min_t(int, 1913 MBI_TO_DBI(power_rule1->max_antenna_gain), 1914 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1915 chan->max_reg_power = min_t(int, 1916 MBM_TO_DBM(power_rule1->max_eirp), 1917 MBM_TO_DBM(power_rule2->max_eirp)); 1918 1919 if (chan->flags & IEEE80211_CHAN_RADAR) { 1920 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1921 chan->dfs_cac_ms = max_t(unsigned int, 1922 rrule1->dfs_cac_ms, 1923 rrule2->dfs_cac_ms); 1924 else 1925 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1926 } 1927 1928 if (chan->orig_mpwr) { 1929 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1930 * will always follow the passed country IE power settings. 1931 */ 1932 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1933 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1934 chan->max_power = chan->max_reg_power; 1935 else 1936 chan->max_power = min(chan->orig_mpwr, 1937 chan->max_reg_power); 1938 } else { 1939 chan->max_power = chan->max_reg_power; 1940 } 1941 } 1942 1943 /* Note that right now we assume the desired channel bandwidth 1944 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1945 * per channel, the primary and the extension channel). 1946 */ 1947 static void handle_channel(struct wiphy *wiphy, 1948 enum nl80211_reg_initiator initiator, 1949 struct ieee80211_channel *chan) 1950 { 1951 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1952 struct regulatory_request *lr = get_last_request(); 1953 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1954 const struct ieee80211_reg_rule *rrule = NULL; 1955 const struct ieee80211_reg_rule *rrule1 = NULL; 1956 const struct ieee80211_reg_rule *rrule2 = NULL; 1957 1958 u32 flags = chan->orig_flags; 1959 1960 rrule = freq_reg_info(wiphy, orig_chan_freq); 1961 if (IS_ERR(rrule)) { 1962 /* check for adjacent match, therefore get rules for 1963 * chan - 20 MHz and chan + 20 MHz and test 1964 * if reg rules are adjacent 1965 */ 1966 rrule1 = freq_reg_info(wiphy, 1967 orig_chan_freq - MHZ_TO_KHZ(20)); 1968 rrule2 = freq_reg_info(wiphy, 1969 orig_chan_freq + MHZ_TO_KHZ(20)); 1970 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 1971 struct ieee80211_freq_range comb_range; 1972 1973 if (rrule1->freq_range.end_freq_khz != 1974 rrule2->freq_range.start_freq_khz) 1975 goto disable_chan; 1976 1977 comb_range.start_freq_khz = 1978 rrule1->freq_range.start_freq_khz; 1979 comb_range.end_freq_khz = 1980 rrule2->freq_range.end_freq_khz; 1981 comb_range.max_bandwidth_khz = 1982 min_t(u32, 1983 rrule1->freq_range.max_bandwidth_khz, 1984 rrule2->freq_range.max_bandwidth_khz); 1985 1986 if (!cfg80211_does_bw_fit_range(&comb_range, 1987 orig_chan_freq, 1988 MHZ_TO_KHZ(20))) 1989 goto disable_chan; 1990 1991 handle_channel_adjacent_rules(wiphy, initiator, chan, 1992 flags, lr, request_wiphy, 1993 rrule1, rrule2, 1994 &comb_range); 1995 return; 1996 } 1997 1998 disable_chan: 1999 /* We will disable all channels that do not match our 2000 * received regulatory rule unless the hint is coming 2001 * from a Country IE and the Country IE had no information 2002 * about a band. The IEEE 802.11 spec allows for an AP 2003 * to send only a subset of the regulatory rules allowed, 2004 * so an AP in the US that only supports 2.4 GHz may only send 2005 * a country IE with information for the 2.4 GHz band 2006 * while 5 GHz is still supported. 2007 */ 2008 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2009 PTR_ERR(rrule) == -ERANGE) 2010 return; 2011 2012 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2013 request_wiphy && request_wiphy == wiphy && 2014 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2015 pr_debug("Disabling freq %d.%03d MHz for good\n", 2016 chan->center_freq, chan->freq_offset); 2017 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2018 chan->flags = chan->orig_flags; 2019 } else { 2020 pr_debug("Disabling freq %d.%03d MHz\n", 2021 chan->center_freq, chan->freq_offset); 2022 chan->flags |= IEEE80211_CHAN_DISABLED; 2023 } 2024 return; 2025 } 2026 2027 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2028 request_wiphy, rrule); 2029 } 2030 2031 static void handle_band(struct wiphy *wiphy, 2032 enum nl80211_reg_initiator initiator, 2033 struct ieee80211_supported_band *sband) 2034 { 2035 unsigned int i; 2036 2037 if (!sband) 2038 return; 2039 2040 for (i = 0; i < sband->n_channels; i++) 2041 handle_channel(wiphy, initiator, &sband->channels[i]); 2042 } 2043 2044 static bool reg_request_cell_base(struct regulatory_request *request) 2045 { 2046 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2047 return false; 2048 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2049 } 2050 2051 bool reg_last_request_cell_base(void) 2052 { 2053 return reg_request_cell_base(get_last_request()); 2054 } 2055 2056 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2057 /* Core specific check */ 2058 static enum reg_request_treatment 2059 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2060 { 2061 struct regulatory_request *lr = get_last_request(); 2062 2063 if (!reg_num_devs_support_basehint) 2064 return REG_REQ_IGNORE; 2065 2066 if (reg_request_cell_base(lr) && 2067 !regdom_changes(pending_request->alpha2)) 2068 return REG_REQ_ALREADY_SET; 2069 2070 return REG_REQ_OK; 2071 } 2072 2073 /* Device specific check */ 2074 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2075 { 2076 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2077 } 2078 #else 2079 static enum reg_request_treatment 2080 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2081 { 2082 return REG_REQ_IGNORE; 2083 } 2084 2085 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2086 { 2087 return true; 2088 } 2089 #endif 2090 2091 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2092 { 2093 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2094 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2095 return true; 2096 return false; 2097 } 2098 2099 static bool ignore_reg_update(struct wiphy *wiphy, 2100 enum nl80211_reg_initiator initiator) 2101 { 2102 struct regulatory_request *lr = get_last_request(); 2103 2104 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2105 return true; 2106 2107 if (!lr) { 2108 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2109 reg_initiator_name(initiator)); 2110 return true; 2111 } 2112 2113 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2114 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2115 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2116 reg_initiator_name(initiator)); 2117 return true; 2118 } 2119 2120 /* 2121 * wiphy->regd will be set once the device has its own 2122 * desired regulatory domain set 2123 */ 2124 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2125 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2126 !is_world_regdom(lr->alpha2)) { 2127 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2128 reg_initiator_name(initiator)); 2129 return true; 2130 } 2131 2132 if (reg_request_cell_base(lr)) 2133 return reg_dev_ignore_cell_hint(wiphy); 2134 2135 return false; 2136 } 2137 2138 static bool reg_is_world_roaming(struct wiphy *wiphy) 2139 { 2140 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2141 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2142 struct regulatory_request *lr = get_last_request(); 2143 2144 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2145 return true; 2146 2147 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2148 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2149 return true; 2150 2151 return false; 2152 } 2153 2154 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2155 struct reg_beacon *reg_beacon) 2156 { 2157 struct ieee80211_supported_band *sband; 2158 struct ieee80211_channel *chan; 2159 bool channel_changed = false; 2160 struct ieee80211_channel chan_before; 2161 2162 sband = wiphy->bands[reg_beacon->chan.band]; 2163 chan = &sband->channels[chan_idx]; 2164 2165 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2166 return; 2167 2168 if (chan->beacon_found) 2169 return; 2170 2171 chan->beacon_found = true; 2172 2173 if (!reg_is_world_roaming(wiphy)) 2174 return; 2175 2176 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2177 return; 2178 2179 chan_before = *chan; 2180 2181 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2182 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2183 channel_changed = true; 2184 } 2185 2186 if (channel_changed) 2187 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2188 } 2189 2190 /* 2191 * Called when a scan on a wiphy finds a beacon on 2192 * new channel 2193 */ 2194 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2195 struct reg_beacon *reg_beacon) 2196 { 2197 unsigned int i; 2198 struct ieee80211_supported_band *sband; 2199 2200 if (!wiphy->bands[reg_beacon->chan.band]) 2201 return; 2202 2203 sband = wiphy->bands[reg_beacon->chan.band]; 2204 2205 for (i = 0; i < sband->n_channels; i++) 2206 handle_reg_beacon(wiphy, i, reg_beacon); 2207 } 2208 2209 /* 2210 * Called upon reg changes or a new wiphy is added 2211 */ 2212 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2213 { 2214 unsigned int i; 2215 struct ieee80211_supported_band *sband; 2216 struct reg_beacon *reg_beacon; 2217 2218 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2219 if (!wiphy->bands[reg_beacon->chan.band]) 2220 continue; 2221 sband = wiphy->bands[reg_beacon->chan.band]; 2222 for (i = 0; i < sband->n_channels; i++) 2223 handle_reg_beacon(wiphy, i, reg_beacon); 2224 } 2225 } 2226 2227 /* Reap the advantages of previously found beacons */ 2228 static void reg_process_beacons(struct wiphy *wiphy) 2229 { 2230 /* 2231 * Means we are just firing up cfg80211, so no beacons would 2232 * have been processed yet. 2233 */ 2234 if (!last_request) 2235 return; 2236 wiphy_update_beacon_reg(wiphy); 2237 } 2238 2239 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2240 { 2241 if (!chan) 2242 return false; 2243 if (chan->flags & IEEE80211_CHAN_DISABLED) 2244 return false; 2245 /* This would happen when regulatory rules disallow HT40 completely */ 2246 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2247 return false; 2248 return true; 2249 } 2250 2251 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2252 struct ieee80211_channel *channel) 2253 { 2254 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2255 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2256 const struct ieee80211_regdomain *regd; 2257 unsigned int i; 2258 u32 flags; 2259 2260 if (!is_ht40_allowed(channel)) { 2261 channel->flags |= IEEE80211_CHAN_NO_HT40; 2262 return; 2263 } 2264 2265 /* 2266 * We need to ensure the extension channels exist to 2267 * be able to use HT40- or HT40+, this finds them (or not) 2268 */ 2269 for (i = 0; i < sband->n_channels; i++) { 2270 struct ieee80211_channel *c = &sband->channels[i]; 2271 2272 if (c->center_freq == (channel->center_freq - 20)) 2273 channel_before = c; 2274 if (c->center_freq == (channel->center_freq + 20)) 2275 channel_after = c; 2276 } 2277 2278 flags = 0; 2279 regd = get_wiphy_regdom(wiphy); 2280 if (regd) { 2281 const struct ieee80211_reg_rule *reg_rule = 2282 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2283 regd, MHZ_TO_KHZ(20)); 2284 2285 if (!IS_ERR(reg_rule)) 2286 flags = reg_rule->flags; 2287 } 2288 2289 /* 2290 * Please note that this assumes target bandwidth is 20 MHz, 2291 * if that ever changes we also need to change the below logic 2292 * to include that as well. 2293 */ 2294 if (!is_ht40_allowed(channel_before) || 2295 flags & NL80211_RRF_NO_HT40MINUS) 2296 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2297 else 2298 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2299 2300 if (!is_ht40_allowed(channel_after) || 2301 flags & NL80211_RRF_NO_HT40PLUS) 2302 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2303 else 2304 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2305 } 2306 2307 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2308 struct ieee80211_supported_band *sband) 2309 { 2310 unsigned int i; 2311 2312 if (!sband) 2313 return; 2314 2315 for (i = 0; i < sband->n_channels; i++) 2316 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2317 } 2318 2319 static void reg_process_ht_flags(struct wiphy *wiphy) 2320 { 2321 enum nl80211_band band; 2322 2323 if (!wiphy) 2324 return; 2325 2326 for (band = 0; band < NUM_NL80211_BANDS; band++) 2327 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2328 } 2329 2330 static void reg_call_notifier(struct wiphy *wiphy, 2331 struct regulatory_request *request) 2332 { 2333 if (wiphy->reg_notifier) 2334 wiphy->reg_notifier(wiphy, request); 2335 } 2336 2337 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2338 { 2339 struct cfg80211_chan_def chandef = {}; 2340 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2341 enum nl80211_iftype iftype; 2342 bool ret; 2343 int link; 2344 2345 iftype = wdev->iftype; 2346 2347 /* make sure the interface is active */ 2348 if (!wdev->netdev || !netif_running(wdev->netdev)) 2349 return true; 2350 2351 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) { 2352 struct ieee80211_channel *chan; 2353 2354 if (!wdev->valid_links && link > 0) 2355 break; 2356 if (wdev->valid_links && !(wdev->valid_links & BIT(link))) 2357 continue; 2358 switch (iftype) { 2359 case NL80211_IFTYPE_AP: 2360 case NL80211_IFTYPE_P2P_GO: 2361 if (!wdev->links[link].ap.beacon_interval) 2362 continue; 2363 chandef = wdev->links[link].ap.chandef; 2364 break; 2365 case NL80211_IFTYPE_MESH_POINT: 2366 if (!wdev->u.mesh.beacon_interval) 2367 continue; 2368 chandef = wdev->u.mesh.chandef; 2369 break; 2370 case NL80211_IFTYPE_ADHOC: 2371 if (!wdev->u.ibss.ssid_len) 2372 continue; 2373 chandef = wdev->u.ibss.chandef; 2374 break; 2375 case NL80211_IFTYPE_STATION: 2376 case NL80211_IFTYPE_P2P_CLIENT: 2377 /* Maybe we could consider disabling that link only? */ 2378 if (!wdev->links[link].client.current_bss) 2379 continue; 2380 2381 chan = wdev->links[link].client.current_bss->pub.channel; 2382 if (!chan) 2383 continue; 2384 2385 if (!rdev->ops->get_channel || 2386 rdev_get_channel(rdev, wdev, link, &chandef)) 2387 cfg80211_chandef_create(&chandef, chan, 2388 NL80211_CHAN_NO_HT); 2389 break; 2390 case NL80211_IFTYPE_MONITOR: 2391 case NL80211_IFTYPE_AP_VLAN: 2392 case NL80211_IFTYPE_P2P_DEVICE: 2393 /* no enforcement required */ 2394 break; 2395 case NL80211_IFTYPE_OCB: 2396 if (!wdev->u.ocb.chandef.chan) 2397 continue; 2398 chandef = wdev->u.ocb.chandef; 2399 break; 2400 case NL80211_IFTYPE_NAN: 2401 /* we have no info, but NAN is also pretty universal */ 2402 continue; 2403 default: 2404 /* others not implemented for now */ 2405 WARN_ON_ONCE(1); 2406 break; 2407 } 2408 2409 switch (iftype) { 2410 case NL80211_IFTYPE_AP: 2411 case NL80211_IFTYPE_P2P_GO: 2412 case NL80211_IFTYPE_ADHOC: 2413 case NL80211_IFTYPE_MESH_POINT: 2414 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, 2415 iftype); 2416 if (!ret) 2417 return ret; 2418 break; 2419 case NL80211_IFTYPE_STATION: 2420 case NL80211_IFTYPE_P2P_CLIENT: 2421 ret = cfg80211_chandef_usable(wiphy, &chandef, 2422 IEEE80211_CHAN_DISABLED); 2423 if (!ret) 2424 return ret; 2425 break; 2426 default: 2427 break; 2428 } 2429 } 2430 2431 return true; 2432 } 2433 2434 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2435 { 2436 struct wireless_dev *wdev; 2437 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2438 2439 wiphy_lock(wiphy); 2440 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2441 if (!reg_wdev_chan_valid(wiphy, wdev)) 2442 cfg80211_leave(rdev, wdev); 2443 wiphy_unlock(wiphy); 2444 } 2445 2446 static void reg_check_chans_work(struct work_struct *work) 2447 { 2448 struct cfg80211_registered_device *rdev; 2449 2450 pr_debug("Verifying active interfaces after reg change\n"); 2451 rtnl_lock(); 2452 2453 for_each_rdev(rdev) 2454 reg_leave_invalid_chans(&rdev->wiphy); 2455 2456 rtnl_unlock(); 2457 } 2458 2459 static void reg_check_channels(void) 2460 { 2461 /* 2462 * Give usermode a chance to do something nicer (move to another 2463 * channel, orderly disconnection), before forcing a disconnection. 2464 */ 2465 mod_delayed_work(system_power_efficient_wq, 2466 ®_check_chans, 2467 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2468 } 2469 2470 static void wiphy_update_regulatory(struct wiphy *wiphy, 2471 enum nl80211_reg_initiator initiator) 2472 { 2473 enum nl80211_band band; 2474 struct regulatory_request *lr = get_last_request(); 2475 2476 if (ignore_reg_update(wiphy, initiator)) { 2477 /* 2478 * Regulatory updates set by CORE are ignored for custom 2479 * regulatory cards. Let us notify the changes to the driver, 2480 * as some drivers used this to restore its orig_* reg domain. 2481 */ 2482 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2483 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2484 !(wiphy->regulatory_flags & 2485 REGULATORY_WIPHY_SELF_MANAGED)) 2486 reg_call_notifier(wiphy, lr); 2487 return; 2488 } 2489 2490 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2491 2492 for (band = 0; band < NUM_NL80211_BANDS; band++) 2493 handle_band(wiphy, initiator, wiphy->bands[band]); 2494 2495 reg_process_beacons(wiphy); 2496 reg_process_ht_flags(wiphy); 2497 reg_call_notifier(wiphy, lr); 2498 } 2499 2500 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2501 { 2502 struct cfg80211_registered_device *rdev; 2503 struct wiphy *wiphy; 2504 2505 ASSERT_RTNL(); 2506 2507 for_each_rdev(rdev) { 2508 wiphy = &rdev->wiphy; 2509 wiphy_update_regulatory(wiphy, initiator); 2510 } 2511 2512 reg_check_channels(); 2513 } 2514 2515 static void handle_channel_custom(struct wiphy *wiphy, 2516 struct ieee80211_channel *chan, 2517 const struct ieee80211_regdomain *regd, 2518 u32 min_bw) 2519 { 2520 u32 bw_flags = 0; 2521 const struct ieee80211_reg_rule *reg_rule = NULL; 2522 const struct ieee80211_power_rule *power_rule = NULL; 2523 u32 bw, center_freq_khz; 2524 2525 center_freq_khz = ieee80211_channel_to_khz(chan); 2526 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2527 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2528 if (!IS_ERR(reg_rule)) 2529 break; 2530 } 2531 2532 if (IS_ERR_OR_NULL(reg_rule)) { 2533 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2534 chan->center_freq, chan->freq_offset); 2535 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2536 chan->flags |= IEEE80211_CHAN_DISABLED; 2537 } else { 2538 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2539 chan->flags = chan->orig_flags; 2540 } 2541 return; 2542 } 2543 2544 power_rule = ®_rule->power_rule; 2545 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2546 2547 chan->dfs_state_entered = jiffies; 2548 chan->dfs_state = NL80211_DFS_USABLE; 2549 2550 chan->beacon_found = false; 2551 2552 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2553 chan->flags = chan->orig_flags | bw_flags | 2554 map_regdom_flags(reg_rule->flags); 2555 else 2556 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2557 2558 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2559 chan->max_reg_power = chan->max_power = 2560 (int) MBM_TO_DBM(power_rule->max_eirp); 2561 2562 if (chan->flags & IEEE80211_CHAN_RADAR) { 2563 if (reg_rule->dfs_cac_ms) 2564 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2565 else 2566 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2567 } 2568 2569 chan->max_power = chan->max_reg_power; 2570 } 2571 2572 static void handle_band_custom(struct wiphy *wiphy, 2573 struct ieee80211_supported_band *sband, 2574 const struct ieee80211_regdomain *regd) 2575 { 2576 unsigned int i; 2577 2578 if (!sband) 2579 return; 2580 2581 /* 2582 * We currently assume that you always want at least 20 MHz, 2583 * otherwise channel 12 might get enabled if this rule is 2584 * compatible to US, which permits 2402 - 2472 MHz. 2585 */ 2586 for (i = 0; i < sband->n_channels; i++) 2587 handle_channel_custom(wiphy, &sband->channels[i], regd, 2588 MHZ_TO_KHZ(20)); 2589 } 2590 2591 /* Used by drivers prior to wiphy registration */ 2592 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2593 const struct ieee80211_regdomain *regd) 2594 { 2595 const struct ieee80211_regdomain *new_regd, *tmp; 2596 enum nl80211_band band; 2597 unsigned int bands_set = 0; 2598 2599 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2600 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2601 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2602 2603 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2604 if (!wiphy->bands[band]) 2605 continue; 2606 handle_band_custom(wiphy, wiphy->bands[band], regd); 2607 bands_set++; 2608 } 2609 2610 /* 2611 * no point in calling this if it won't have any effect 2612 * on your device's supported bands. 2613 */ 2614 WARN_ON(!bands_set); 2615 new_regd = reg_copy_regd(regd); 2616 if (IS_ERR(new_regd)) 2617 return; 2618 2619 rtnl_lock(); 2620 wiphy_lock(wiphy); 2621 2622 tmp = get_wiphy_regdom(wiphy); 2623 rcu_assign_pointer(wiphy->regd, new_regd); 2624 rcu_free_regdom(tmp); 2625 2626 wiphy_unlock(wiphy); 2627 rtnl_unlock(); 2628 } 2629 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2630 2631 static void reg_set_request_processed(void) 2632 { 2633 bool need_more_processing = false; 2634 struct regulatory_request *lr = get_last_request(); 2635 2636 lr->processed = true; 2637 2638 spin_lock(®_requests_lock); 2639 if (!list_empty(®_requests_list)) 2640 need_more_processing = true; 2641 spin_unlock(®_requests_lock); 2642 2643 cancel_crda_timeout(); 2644 2645 if (need_more_processing) 2646 schedule_work(®_work); 2647 } 2648 2649 /** 2650 * reg_process_hint_core - process core regulatory requests 2651 * @core_request: a pending core regulatory request 2652 * 2653 * The wireless subsystem can use this function to process 2654 * a regulatory request issued by the regulatory core. 2655 */ 2656 static enum reg_request_treatment 2657 reg_process_hint_core(struct regulatory_request *core_request) 2658 { 2659 if (reg_query_database(core_request)) { 2660 core_request->intersect = false; 2661 core_request->processed = false; 2662 reg_update_last_request(core_request); 2663 return REG_REQ_OK; 2664 } 2665 2666 return REG_REQ_IGNORE; 2667 } 2668 2669 static enum reg_request_treatment 2670 __reg_process_hint_user(struct regulatory_request *user_request) 2671 { 2672 struct regulatory_request *lr = get_last_request(); 2673 2674 if (reg_request_cell_base(user_request)) 2675 return reg_ignore_cell_hint(user_request); 2676 2677 if (reg_request_cell_base(lr)) 2678 return REG_REQ_IGNORE; 2679 2680 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2681 return REG_REQ_INTERSECT; 2682 /* 2683 * If the user knows better the user should set the regdom 2684 * to their country before the IE is picked up 2685 */ 2686 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2687 lr->intersect) 2688 return REG_REQ_IGNORE; 2689 /* 2690 * Process user requests only after previous user/driver/core 2691 * requests have been processed 2692 */ 2693 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2694 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2695 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2696 regdom_changes(lr->alpha2)) 2697 return REG_REQ_IGNORE; 2698 2699 if (!regdom_changes(user_request->alpha2)) 2700 return REG_REQ_ALREADY_SET; 2701 2702 return REG_REQ_OK; 2703 } 2704 2705 /** 2706 * reg_process_hint_user - process user regulatory requests 2707 * @user_request: a pending user regulatory request 2708 * 2709 * The wireless subsystem can use this function to process 2710 * a regulatory request initiated by userspace. 2711 */ 2712 static enum reg_request_treatment 2713 reg_process_hint_user(struct regulatory_request *user_request) 2714 { 2715 enum reg_request_treatment treatment; 2716 2717 treatment = __reg_process_hint_user(user_request); 2718 if (treatment == REG_REQ_IGNORE || 2719 treatment == REG_REQ_ALREADY_SET) 2720 return REG_REQ_IGNORE; 2721 2722 user_request->intersect = treatment == REG_REQ_INTERSECT; 2723 user_request->processed = false; 2724 2725 if (reg_query_database(user_request)) { 2726 reg_update_last_request(user_request); 2727 user_alpha2[0] = user_request->alpha2[0]; 2728 user_alpha2[1] = user_request->alpha2[1]; 2729 return REG_REQ_OK; 2730 } 2731 2732 return REG_REQ_IGNORE; 2733 } 2734 2735 static enum reg_request_treatment 2736 __reg_process_hint_driver(struct regulatory_request *driver_request) 2737 { 2738 struct regulatory_request *lr = get_last_request(); 2739 2740 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2741 if (regdom_changes(driver_request->alpha2)) 2742 return REG_REQ_OK; 2743 return REG_REQ_ALREADY_SET; 2744 } 2745 2746 /* 2747 * This would happen if you unplug and plug your card 2748 * back in or if you add a new device for which the previously 2749 * loaded card also agrees on the regulatory domain. 2750 */ 2751 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2752 !regdom_changes(driver_request->alpha2)) 2753 return REG_REQ_ALREADY_SET; 2754 2755 return REG_REQ_INTERSECT; 2756 } 2757 2758 /** 2759 * reg_process_hint_driver - process driver regulatory requests 2760 * @wiphy: the wireless device for the regulatory request 2761 * @driver_request: a pending driver regulatory request 2762 * 2763 * The wireless subsystem can use this function to process 2764 * a regulatory request issued by an 802.11 driver. 2765 * 2766 * Returns one of the different reg request treatment values. 2767 */ 2768 static enum reg_request_treatment 2769 reg_process_hint_driver(struct wiphy *wiphy, 2770 struct regulatory_request *driver_request) 2771 { 2772 const struct ieee80211_regdomain *regd, *tmp; 2773 enum reg_request_treatment treatment; 2774 2775 treatment = __reg_process_hint_driver(driver_request); 2776 2777 switch (treatment) { 2778 case REG_REQ_OK: 2779 break; 2780 case REG_REQ_IGNORE: 2781 return REG_REQ_IGNORE; 2782 case REG_REQ_INTERSECT: 2783 case REG_REQ_ALREADY_SET: 2784 regd = reg_copy_regd(get_cfg80211_regdom()); 2785 if (IS_ERR(regd)) 2786 return REG_REQ_IGNORE; 2787 2788 tmp = get_wiphy_regdom(wiphy); 2789 ASSERT_RTNL(); 2790 wiphy_lock(wiphy); 2791 rcu_assign_pointer(wiphy->regd, regd); 2792 wiphy_unlock(wiphy); 2793 rcu_free_regdom(tmp); 2794 } 2795 2796 2797 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2798 driver_request->processed = false; 2799 2800 /* 2801 * Since CRDA will not be called in this case as we already 2802 * have applied the requested regulatory domain before we just 2803 * inform userspace we have processed the request 2804 */ 2805 if (treatment == REG_REQ_ALREADY_SET) { 2806 nl80211_send_reg_change_event(driver_request); 2807 reg_update_last_request(driver_request); 2808 reg_set_request_processed(); 2809 return REG_REQ_ALREADY_SET; 2810 } 2811 2812 if (reg_query_database(driver_request)) { 2813 reg_update_last_request(driver_request); 2814 return REG_REQ_OK; 2815 } 2816 2817 return REG_REQ_IGNORE; 2818 } 2819 2820 static enum reg_request_treatment 2821 __reg_process_hint_country_ie(struct wiphy *wiphy, 2822 struct regulatory_request *country_ie_request) 2823 { 2824 struct wiphy *last_wiphy = NULL; 2825 struct regulatory_request *lr = get_last_request(); 2826 2827 if (reg_request_cell_base(lr)) { 2828 /* Trust a Cell base station over the AP's country IE */ 2829 if (regdom_changes(country_ie_request->alpha2)) 2830 return REG_REQ_IGNORE; 2831 return REG_REQ_ALREADY_SET; 2832 } else { 2833 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2834 return REG_REQ_IGNORE; 2835 } 2836 2837 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2838 return -EINVAL; 2839 2840 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2841 return REG_REQ_OK; 2842 2843 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2844 2845 if (last_wiphy != wiphy) { 2846 /* 2847 * Two cards with two APs claiming different 2848 * Country IE alpha2s. We could 2849 * intersect them, but that seems unlikely 2850 * to be correct. Reject second one for now. 2851 */ 2852 if (regdom_changes(country_ie_request->alpha2)) 2853 return REG_REQ_IGNORE; 2854 return REG_REQ_ALREADY_SET; 2855 } 2856 2857 if (regdom_changes(country_ie_request->alpha2)) 2858 return REG_REQ_OK; 2859 return REG_REQ_ALREADY_SET; 2860 } 2861 2862 /** 2863 * reg_process_hint_country_ie - process regulatory requests from country IEs 2864 * @wiphy: the wireless device for the regulatory request 2865 * @country_ie_request: a regulatory request from a country IE 2866 * 2867 * The wireless subsystem can use this function to process 2868 * a regulatory request issued by a country Information Element. 2869 * 2870 * Returns one of the different reg request treatment values. 2871 */ 2872 static enum reg_request_treatment 2873 reg_process_hint_country_ie(struct wiphy *wiphy, 2874 struct regulatory_request *country_ie_request) 2875 { 2876 enum reg_request_treatment treatment; 2877 2878 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2879 2880 switch (treatment) { 2881 case REG_REQ_OK: 2882 break; 2883 case REG_REQ_IGNORE: 2884 return REG_REQ_IGNORE; 2885 case REG_REQ_ALREADY_SET: 2886 reg_free_request(country_ie_request); 2887 return REG_REQ_ALREADY_SET; 2888 case REG_REQ_INTERSECT: 2889 /* 2890 * This doesn't happen yet, not sure we 2891 * ever want to support it for this case. 2892 */ 2893 WARN_ONCE(1, "Unexpected intersection for country elements"); 2894 return REG_REQ_IGNORE; 2895 } 2896 2897 country_ie_request->intersect = false; 2898 country_ie_request->processed = false; 2899 2900 if (reg_query_database(country_ie_request)) { 2901 reg_update_last_request(country_ie_request); 2902 return REG_REQ_OK; 2903 } 2904 2905 return REG_REQ_IGNORE; 2906 } 2907 2908 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2909 { 2910 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2911 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2912 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2913 bool dfs_domain_same; 2914 2915 rcu_read_lock(); 2916 2917 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2918 wiphy1_regd = rcu_dereference(wiphy1->regd); 2919 if (!wiphy1_regd) 2920 wiphy1_regd = cfg80211_regd; 2921 2922 wiphy2_regd = rcu_dereference(wiphy2->regd); 2923 if (!wiphy2_regd) 2924 wiphy2_regd = cfg80211_regd; 2925 2926 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2927 2928 rcu_read_unlock(); 2929 2930 return dfs_domain_same; 2931 } 2932 2933 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2934 struct ieee80211_channel *src_chan) 2935 { 2936 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2937 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2938 return; 2939 2940 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2941 src_chan->flags & IEEE80211_CHAN_DISABLED) 2942 return; 2943 2944 if (src_chan->center_freq == dst_chan->center_freq && 2945 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2946 dst_chan->dfs_state = src_chan->dfs_state; 2947 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2948 } 2949 } 2950 2951 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2952 struct wiphy *src_wiphy) 2953 { 2954 struct ieee80211_supported_band *src_sband, *dst_sband; 2955 struct ieee80211_channel *src_chan, *dst_chan; 2956 int i, j, band; 2957 2958 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2959 return; 2960 2961 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2962 dst_sband = dst_wiphy->bands[band]; 2963 src_sband = src_wiphy->bands[band]; 2964 if (!dst_sband || !src_sband) 2965 continue; 2966 2967 for (i = 0; i < dst_sband->n_channels; i++) { 2968 dst_chan = &dst_sband->channels[i]; 2969 for (j = 0; j < src_sband->n_channels; j++) { 2970 src_chan = &src_sband->channels[j]; 2971 reg_copy_dfs_chan_state(dst_chan, src_chan); 2972 } 2973 } 2974 } 2975 } 2976 2977 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2978 { 2979 struct cfg80211_registered_device *rdev; 2980 2981 ASSERT_RTNL(); 2982 2983 for_each_rdev(rdev) { 2984 if (wiphy == &rdev->wiphy) 2985 continue; 2986 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2987 } 2988 } 2989 2990 /* This processes *all* regulatory hints */ 2991 static void reg_process_hint(struct regulatory_request *reg_request) 2992 { 2993 struct wiphy *wiphy = NULL; 2994 enum reg_request_treatment treatment; 2995 enum nl80211_reg_initiator initiator = reg_request->initiator; 2996 2997 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2998 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2999 3000 switch (initiator) { 3001 case NL80211_REGDOM_SET_BY_CORE: 3002 treatment = reg_process_hint_core(reg_request); 3003 break; 3004 case NL80211_REGDOM_SET_BY_USER: 3005 treatment = reg_process_hint_user(reg_request); 3006 break; 3007 case NL80211_REGDOM_SET_BY_DRIVER: 3008 if (!wiphy) 3009 goto out_free; 3010 treatment = reg_process_hint_driver(wiphy, reg_request); 3011 break; 3012 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3013 if (!wiphy) 3014 goto out_free; 3015 treatment = reg_process_hint_country_ie(wiphy, reg_request); 3016 break; 3017 default: 3018 WARN(1, "invalid initiator %d\n", initiator); 3019 goto out_free; 3020 } 3021 3022 if (treatment == REG_REQ_IGNORE) 3023 goto out_free; 3024 3025 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 3026 "unexpected treatment value %d\n", treatment); 3027 3028 /* This is required so that the orig_* parameters are saved. 3029 * NOTE: treatment must be set for any case that reaches here! 3030 */ 3031 if (treatment == REG_REQ_ALREADY_SET && wiphy && 3032 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 3033 wiphy_update_regulatory(wiphy, initiator); 3034 wiphy_all_share_dfs_chan_state(wiphy); 3035 reg_check_channels(); 3036 } 3037 3038 return; 3039 3040 out_free: 3041 reg_free_request(reg_request); 3042 } 3043 3044 static void notify_self_managed_wiphys(struct regulatory_request *request) 3045 { 3046 struct cfg80211_registered_device *rdev; 3047 struct wiphy *wiphy; 3048 3049 for_each_rdev(rdev) { 3050 wiphy = &rdev->wiphy; 3051 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 3052 request->initiator == NL80211_REGDOM_SET_BY_USER) 3053 reg_call_notifier(wiphy, request); 3054 } 3055 } 3056 3057 /* 3058 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 3059 * Regulatory hints come on a first come first serve basis and we 3060 * must process each one atomically. 3061 */ 3062 static void reg_process_pending_hints(void) 3063 { 3064 struct regulatory_request *reg_request, *lr; 3065 3066 lr = get_last_request(); 3067 3068 /* When last_request->processed becomes true this will be rescheduled */ 3069 if (lr && !lr->processed) { 3070 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3071 return; 3072 } 3073 3074 spin_lock(®_requests_lock); 3075 3076 if (list_empty(®_requests_list)) { 3077 spin_unlock(®_requests_lock); 3078 return; 3079 } 3080 3081 reg_request = list_first_entry(®_requests_list, 3082 struct regulatory_request, 3083 list); 3084 list_del_init(®_request->list); 3085 3086 spin_unlock(®_requests_lock); 3087 3088 notify_self_managed_wiphys(reg_request); 3089 3090 reg_process_hint(reg_request); 3091 3092 lr = get_last_request(); 3093 3094 spin_lock(®_requests_lock); 3095 if (!list_empty(®_requests_list) && lr && lr->processed) 3096 schedule_work(®_work); 3097 spin_unlock(®_requests_lock); 3098 } 3099 3100 /* Processes beacon hints -- this has nothing to do with country IEs */ 3101 static void reg_process_pending_beacon_hints(void) 3102 { 3103 struct cfg80211_registered_device *rdev; 3104 struct reg_beacon *pending_beacon, *tmp; 3105 3106 /* This goes through the _pending_ beacon list */ 3107 spin_lock_bh(®_pending_beacons_lock); 3108 3109 list_for_each_entry_safe(pending_beacon, tmp, 3110 ®_pending_beacons, list) { 3111 list_del_init(&pending_beacon->list); 3112 3113 /* Applies the beacon hint to current wiphys */ 3114 for_each_rdev(rdev) 3115 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3116 3117 /* Remembers the beacon hint for new wiphys or reg changes */ 3118 list_add_tail(&pending_beacon->list, ®_beacon_list); 3119 } 3120 3121 spin_unlock_bh(®_pending_beacons_lock); 3122 } 3123 3124 static void reg_process_self_managed_hint(struct wiphy *wiphy) 3125 { 3126 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3127 const struct ieee80211_regdomain *tmp; 3128 const struct ieee80211_regdomain *regd; 3129 enum nl80211_band band; 3130 struct regulatory_request request = {}; 3131 3132 ASSERT_RTNL(); 3133 lockdep_assert_wiphy(wiphy); 3134 3135 spin_lock(®_requests_lock); 3136 regd = rdev->requested_regd; 3137 rdev->requested_regd = NULL; 3138 spin_unlock(®_requests_lock); 3139 3140 if (!regd) 3141 return; 3142 3143 tmp = get_wiphy_regdom(wiphy); 3144 rcu_assign_pointer(wiphy->regd, regd); 3145 rcu_free_regdom(tmp); 3146 3147 for (band = 0; band < NUM_NL80211_BANDS; band++) 3148 handle_band_custom(wiphy, wiphy->bands[band], regd); 3149 3150 reg_process_ht_flags(wiphy); 3151 3152 request.wiphy_idx = get_wiphy_idx(wiphy); 3153 request.alpha2[0] = regd->alpha2[0]; 3154 request.alpha2[1] = regd->alpha2[1]; 3155 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3156 3157 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER) 3158 reg_call_notifier(wiphy, &request); 3159 3160 nl80211_send_wiphy_reg_change_event(&request); 3161 } 3162 3163 static void reg_process_self_managed_hints(void) 3164 { 3165 struct cfg80211_registered_device *rdev; 3166 3167 ASSERT_RTNL(); 3168 3169 for_each_rdev(rdev) { 3170 wiphy_lock(&rdev->wiphy); 3171 reg_process_self_managed_hint(&rdev->wiphy); 3172 wiphy_unlock(&rdev->wiphy); 3173 } 3174 3175 reg_check_channels(); 3176 } 3177 3178 static void reg_todo(struct work_struct *work) 3179 { 3180 rtnl_lock(); 3181 reg_process_pending_hints(); 3182 reg_process_pending_beacon_hints(); 3183 reg_process_self_managed_hints(); 3184 rtnl_unlock(); 3185 } 3186 3187 static void queue_regulatory_request(struct regulatory_request *request) 3188 { 3189 request->alpha2[0] = toupper(request->alpha2[0]); 3190 request->alpha2[1] = toupper(request->alpha2[1]); 3191 3192 spin_lock(®_requests_lock); 3193 list_add_tail(&request->list, ®_requests_list); 3194 spin_unlock(®_requests_lock); 3195 3196 schedule_work(®_work); 3197 } 3198 3199 /* 3200 * Core regulatory hint -- happens during cfg80211_init() 3201 * and when we restore regulatory settings. 3202 */ 3203 static int regulatory_hint_core(const char *alpha2) 3204 { 3205 struct regulatory_request *request; 3206 3207 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3208 if (!request) 3209 return -ENOMEM; 3210 3211 request->alpha2[0] = alpha2[0]; 3212 request->alpha2[1] = alpha2[1]; 3213 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3214 request->wiphy_idx = WIPHY_IDX_INVALID; 3215 3216 queue_regulatory_request(request); 3217 3218 return 0; 3219 } 3220 3221 /* User hints */ 3222 int regulatory_hint_user(const char *alpha2, 3223 enum nl80211_user_reg_hint_type user_reg_hint_type) 3224 { 3225 struct regulatory_request *request; 3226 3227 if (WARN_ON(!alpha2)) 3228 return -EINVAL; 3229 3230 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3231 return -EINVAL; 3232 3233 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3234 if (!request) 3235 return -ENOMEM; 3236 3237 request->wiphy_idx = WIPHY_IDX_INVALID; 3238 request->alpha2[0] = alpha2[0]; 3239 request->alpha2[1] = alpha2[1]; 3240 request->initiator = NL80211_REGDOM_SET_BY_USER; 3241 request->user_reg_hint_type = user_reg_hint_type; 3242 3243 /* Allow calling CRDA again */ 3244 reset_crda_timeouts(); 3245 3246 queue_regulatory_request(request); 3247 3248 return 0; 3249 } 3250 3251 int regulatory_hint_indoor(bool is_indoor, u32 portid) 3252 { 3253 spin_lock(®_indoor_lock); 3254 3255 /* It is possible that more than one user space process is trying to 3256 * configure the indoor setting. To handle such cases, clear the indoor 3257 * setting in case that some process does not think that the device 3258 * is operating in an indoor environment. In addition, if a user space 3259 * process indicates that it is controlling the indoor setting, save its 3260 * portid, i.e., make it the owner. 3261 */ 3262 reg_is_indoor = is_indoor; 3263 if (reg_is_indoor) { 3264 if (!reg_is_indoor_portid) 3265 reg_is_indoor_portid = portid; 3266 } else { 3267 reg_is_indoor_portid = 0; 3268 } 3269 3270 spin_unlock(®_indoor_lock); 3271 3272 if (!is_indoor) 3273 reg_check_channels(); 3274 3275 return 0; 3276 } 3277 3278 void regulatory_netlink_notify(u32 portid) 3279 { 3280 spin_lock(®_indoor_lock); 3281 3282 if (reg_is_indoor_portid != portid) { 3283 spin_unlock(®_indoor_lock); 3284 return; 3285 } 3286 3287 reg_is_indoor = false; 3288 reg_is_indoor_portid = 0; 3289 3290 spin_unlock(®_indoor_lock); 3291 3292 reg_check_channels(); 3293 } 3294 3295 /* Driver hints */ 3296 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3297 { 3298 struct regulatory_request *request; 3299 3300 if (WARN_ON(!alpha2 || !wiphy)) 3301 return -EINVAL; 3302 3303 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3304 3305 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3306 if (!request) 3307 return -ENOMEM; 3308 3309 request->wiphy_idx = get_wiphy_idx(wiphy); 3310 3311 request->alpha2[0] = alpha2[0]; 3312 request->alpha2[1] = alpha2[1]; 3313 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3314 3315 /* Allow calling CRDA again */ 3316 reset_crda_timeouts(); 3317 3318 queue_regulatory_request(request); 3319 3320 return 0; 3321 } 3322 EXPORT_SYMBOL(regulatory_hint); 3323 3324 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3325 const u8 *country_ie, u8 country_ie_len) 3326 { 3327 char alpha2[2]; 3328 enum environment_cap env = ENVIRON_ANY; 3329 struct regulatory_request *request = NULL, *lr; 3330 3331 /* IE len must be evenly divisible by 2 */ 3332 if (country_ie_len & 0x01) 3333 return; 3334 3335 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3336 return; 3337 3338 request = kzalloc(sizeof(*request), GFP_KERNEL); 3339 if (!request) 3340 return; 3341 3342 alpha2[0] = country_ie[0]; 3343 alpha2[1] = country_ie[1]; 3344 3345 if (country_ie[2] == 'I') 3346 env = ENVIRON_INDOOR; 3347 else if (country_ie[2] == 'O') 3348 env = ENVIRON_OUTDOOR; 3349 3350 rcu_read_lock(); 3351 lr = get_last_request(); 3352 3353 if (unlikely(!lr)) 3354 goto out; 3355 3356 /* 3357 * We will run this only upon a successful connection on cfg80211. 3358 * We leave conflict resolution to the workqueue, where can hold 3359 * the RTNL. 3360 */ 3361 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3362 lr->wiphy_idx != WIPHY_IDX_INVALID) 3363 goto out; 3364 3365 request->wiphy_idx = get_wiphy_idx(wiphy); 3366 request->alpha2[0] = alpha2[0]; 3367 request->alpha2[1] = alpha2[1]; 3368 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3369 request->country_ie_env = env; 3370 3371 /* Allow calling CRDA again */ 3372 reset_crda_timeouts(); 3373 3374 queue_regulatory_request(request); 3375 request = NULL; 3376 out: 3377 kfree(request); 3378 rcu_read_unlock(); 3379 } 3380 3381 static void restore_alpha2(char *alpha2, bool reset_user) 3382 { 3383 /* indicates there is no alpha2 to consider for restoration */ 3384 alpha2[0] = '9'; 3385 alpha2[1] = '7'; 3386 3387 /* The user setting has precedence over the module parameter */ 3388 if (is_user_regdom_saved()) { 3389 /* Unless we're asked to ignore it and reset it */ 3390 if (reset_user) { 3391 pr_debug("Restoring regulatory settings including user preference\n"); 3392 user_alpha2[0] = '9'; 3393 user_alpha2[1] = '7'; 3394 3395 /* 3396 * If we're ignoring user settings, we still need to 3397 * check the module parameter to ensure we put things 3398 * back as they were for a full restore. 3399 */ 3400 if (!is_world_regdom(ieee80211_regdom)) { 3401 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3402 ieee80211_regdom[0], ieee80211_regdom[1]); 3403 alpha2[0] = ieee80211_regdom[0]; 3404 alpha2[1] = ieee80211_regdom[1]; 3405 } 3406 } else { 3407 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3408 user_alpha2[0], user_alpha2[1]); 3409 alpha2[0] = user_alpha2[0]; 3410 alpha2[1] = user_alpha2[1]; 3411 } 3412 } else if (!is_world_regdom(ieee80211_regdom)) { 3413 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3414 ieee80211_regdom[0], ieee80211_regdom[1]); 3415 alpha2[0] = ieee80211_regdom[0]; 3416 alpha2[1] = ieee80211_regdom[1]; 3417 } else 3418 pr_debug("Restoring regulatory settings\n"); 3419 } 3420 3421 static void restore_custom_reg_settings(struct wiphy *wiphy) 3422 { 3423 struct ieee80211_supported_band *sband; 3424 enum nl80211_band band; 3425 struct ieee80211_channel *chan; 3426 int i; 3427 3428 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3429 sband = wiphy->bands[band]; 3430 if (!sband) 3431 continue; 3432 for (i = 0; i < sband->n_channels; i++) { 3433 chan = &sband->channels[i]; 3434 chan->flags = chan->orig_flags; 3435 chan->max_antenna_gain = chan->orig_mag; 3436 chan->max_power = chan->orig_mpwr; 3437 chan->beacon_found = false; 3438 } 3439 } 3440 } 3441 3442 /* 3443 * Restoring regulatory settings involves ignoring any 3444 * possibly stale country IE information and user regulatory 3445 * settings if so desired, this includes any beacon hints 3446 * learned as we could have traveled outside to another country 3447 * after disconnection. To restore regulatory settings we do 3448 * exactly what we did at bootup: 3449 * 3450 * - send a core regulatory hint 3451 * - send a user regulatory hint if applicable 3452 * 3453 * Device drivers that send a regulatory hint for a specific country 3454 * keep their own regulatory domain on wiphy->regd so that does 3455 * not need to be remembered. 3456 */ 3457 static void restore_regulatory_settings(bool reset_user, bool cached) 3458 { 3459 char alpha2[2]; 3460 char world_alpha2[2]; 3461 struct reg_beacon *reg_beacon, *btmp; 3462 LIST_HEAD(tmp_reg_req_list); 3463 struct cfg80211_registered_device *rdev; 3464 3465 ASSERT_RTNL(); 3466 3467 /* 3468 * Clear the indoor setting in case that it is not controlled by user 3469 * space, as otherwise there is no guarantee that the device is still 3470 * operating in an indoor environment. 3471 */ 3472 spin_lock(®_indoor_lock); 3473 if (reg_is_indoor && !reg_is_indoor_portid) { 3474 reg_is_indoor = false; 3475 reg_check_channels(); 3476 } 3477 spin_unlock(®_indoor_lock); 3478 3479 reset_regdomains(true, &world_regdom); 3480 restore_alpha2(alpha2, reset_user); 3481 3482 /* 3483 * If there's any pending requests we simply 3484 * stash them to a temporary pending queue and 3485 * add then after we've restored regulatory 3486 * settings. 3487 */ 3488 spin_lock(®_requests_lock); 3489 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3490 spin_unlock(®_requests_lock); 3491 3492 /* Clear beacon hints */ 3493 spin_lock_bh(®_pending_beacons_lock); 3494 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3495 list_del(®_beacon->list); 3496 kfree(reg_beacon); 3497 } 3498 spin_unlock_bh(®_pending_beacons_lock); 3499 3500 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3501 list_del(®_beacon->list); 3502 kfree(reg_beacon); 3503 } 3504 3505 /* First restore to the basic regulatory settings */ 3506 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3507 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3508 3509 for_each_rdev(rdev) { 3510 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3511 continue; 3512 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3513 restore_custom_reg_settings(&rdev->wiphy); 3514 } 3515 3516 if (cached && (!is_an_alpha2(alpha2) || 3517 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3518 reset_regdomains(false, cfg80211_world_regdom); 3519 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3520 print_regdomain(get_cfg80211_regdom()); 3521 nl80211_send_reg_change_event(&core_request_world); 3522 reg_set_request_processed(); 3523 3524 if (is_an_alpha2(alpha2) && 3525 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3526 struct regulatory_request *ureq; 3527 3528 spin_lock(®_requests_lock); 3529 ureq = list_last_entry(®_requests_list, 3530 struct regulatory_request, 3531 list); 3532 list_del(&ureq->list); 3533 spin_unlock(®_requests_lock); 3534 3535 notify_self_managed_wiphys(ureq); 3536 reg_update_last_request(ureq); 3537 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3538 REGD_SOURCE_CACHED); 3539 } 3540 } else { 3541 regulatory_hint_core(world_alpha2); 3542 3543 /* 3544 * This restores the ieee80211_regdom module parameter 3545 * preference or the last user requested regulatory 3546 * settings, user regulatory settings takes precedence. 3547 */ 3548 if (is_an_alpha2(alpha2)) 3549 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3550 } 3551 3552 spin_lock(®_requests_lock); 3553 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3554 spin_unlock(®_requests_lock); 3555 3556 pr_debug("Kicking the queue\n"); 3557 3558 schedule_work(®_work); 3559 } 3560 3561 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3562 { 3563 struct cfg80211_registered_device *rdev; 3564 struct wireless_dev *wdev; 3565 3566 for_each_rdev(rdev) { 3567 wiphy_lock(&rdev->wiphy); 3568 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3569 if (!(wdev->wiphy->regulatory_flags & flag)) { 3570 wiphy_unlock(&rdev->wiphy); 3571 return false; 3572 } 3573 } 3574 wiphy_unlock(&rdev->wiphy); 3575 } 3576 3577 return true; 3578 } 3579 3580 void regulatory_hint_disconnect(void) 3581 { 3582 /* Restore of regulatory settings is not required when wiphy(s) 3583 * ignore IE from connected access point but clearance of beacon hints 3584 * is required when wiphy(s) supports beacon hints. 3585 */ 3586 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3587 struct reg_beacon *reg_beacon, *btmp; 3588 3589 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3590 return; 3591 3592 spin_lock_bh(®_pending_beacons_lock); 3593 list_for_each_entry_safe(reg_beacon, btmp, 3594 ®_pending_beacons, list) { 3595 list_del(®_beacon->list); 3596 kfree(reg_beacon); 3597 } 3598 spin_unlock_bh(®_pending_beacons_lock); 3599 3600 list_for_each_entry_safe(reg_beacon, btmp, 3601 ®_beacon_list, list) { 3602 list_del(®_beacon->list); 3603 kfree(reg_beacon); 3604 } 3605 3606 return; 3607 } 3608 3609 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3610 restore_regulatory_settings(false, true); 3611 } 3612 3613 static bool freq_is_chan_12_13_14(u32 freq) 3614 { 3615 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3616 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3617 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3618 return true; 3619 return false; 3620 } 3621 3622 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3623 { 3624 struct reg_beacon *pending_beacon; 3625 3626 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3627 if (ieee80211_channel_equal(beacon_chan, 3628 &pending_beacon->chan)) 3629 return true; 3630 return false; 3631 } 3632 3633 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3634 struct ieee80211_channel *beacon_chan, 3635 gfp_t gfp) 3636 { 3637 struct reg_beacon *reg_beacon; 3638 bool processing; 3639 3640 if (beacon_chan->beacon_found || 3641 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3642 (beacon_chan->band == NL80211_BAND_2GHZ && 3643 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3644 return 0; 3645 3646 spin_lock_bh(®_pending_beacons_lock); 3647 processing = pending_reg_beacon(beacon_chan); 3648 spin_unlock_bh(®_pending_beacons_lock); 3649 3650 if (processing) 3651 return 0; 3652 3653 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3654 if (!reg_beacon) 3655 return -ENOMEM; 3656 3657 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3658 beacon_chan->center_freq, beacon_chan->freq_offset, 3659 ieee80211_freq_khz_to_channel( 3660 ieee80211_channel_to_khz(beacon_chan)), 3661 wiphy_name(wiphy)); 3662 3663 memcpy(®_beacon->chan, beacon_chan, 3664 sizeof(struct ieee80211_channel)); 3665 3666 /* 3667 * Since we can be called from BH or and non-BH context 3668 * we must use spin_lock_bh() 3669 */ 3670 spin_lock_bh(®_pending_beacons_lock); 3671 list_add_tail(®_beacon->list, ®_pending_beacons); 3672 spin_unlock_bh(®_pending_beacons_lock); 3673 3674 schedule_work(®_work); 3675 3676 return 0; 3677 } 3678 3679 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3680 { 3681 unsigned int i; 3682 const struct ieee80211_reg_rule *reg_rule = NULL; 3683 const struct ieee80211_freq_range *freq_range = NULL; 3684 const struct ieee80211_power_rule *power_rule = NULL; 3685 char bw[32], cac_time[32]; 3686 3687 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3688 3689 for (i = 0; i < rd->n_reg_rules; i++) { 3690 reg_rule = &rd->reg_rules[i]; 3691 freq_range = ®_rule->freq_range; 3692 power_rule = ®_rule->power_rule; 3693 3694 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3695 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", 3696 freq_range->max_bandwidth_khz, 3697 reg_get_max_bandwidth(rd, reg_rule)); 3698 else 3699 snprintf(bw, sizeof(bw), "%d KHz", 3700 freq_range->max_bandwidth_khz); 3701 3702 if (reg_rule->flags & NL80211_RRF_DFS) 3703 scnprintf(cac_time, sizeof(cac_time), "%u s", 3704 reg_rule->dfs_cac_ms/1000); 3705 else 3706 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3707 3708 3709 /* 3710 * There may not be documentation for max antenna gain 3711 * in certain regions 3712 */ 3713 if (power_rule->max_antenna_gain) 3714 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3715 freq_range->start_freq_khz, 3716 freq_range->end_freq_khz, 3717 bw, 3718 power_rule->max_antenna_gain, 3719 power_rule->max_eirp, 3720 cac_time); 3721 else 3722 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3723 freq_range->start_freq_khz, 3724 freq_range->end_freq_khz, 3725 bw, 3726 power_rule->max_eirp, 3727 cac_time); 3728 } 3729 } 3730 3731 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3732 { 3733 switch (dfs_region) { 3734 case NL80211_DFS_UNSET: 3735 case NL80211_DFS_FCC: 3736 case NL80211_DFS_ETSI: 3737 case NL80211_DFS_JP: 3738 return true; 3739 default: 3740 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3741 return false; 3742 } 3743 } 3744 3745 static void print_regdomain(const struct ieee80211_regdomain *rd) 3746 { 3747 struct regulatory_request *lr = get_last_request(); 3748 3749 if (is_intersected_alpha2(rd->alpha2)) { 3750 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3751 struct cfg80211_registered_device *rdev; 3752 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3753 if (rdev) { 3754 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3755 rdev->country_ie_alpha2[0], 3756 rdev->country_ie_alpha2[1]); 3757 } else 3758 pr_debug("Current regulatory domain intersected:\n"); 3759 } else 3760 pr_debug("Current regulatory domain intersected:\n"); 3761 } else if (is_world_regdom(rd->alpha2)) { 3762 pr_debug("World regulatory domain updated:\n"); 3763 } else { 3764 if (is_unknown_alpha2(rd->alpha2)) 3765 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3766 else { 3767 if (reg_request_cell_base(lr)) 3768 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3769 rd->alpha2[0], rd->alpha2[1]); 3770 else 3771 pr_debug("Regulatory domain changed to country: %c%c\n", 3772 rd->alpha2[0], rd->alpha2[1]); 3773 } 3774 } 3775 3776 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3777 print_rd_rules(rd); 3778 } 3779 3780 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3781 { 3782 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3783 print_rd_rules(rd); 3784 } 3785 3786 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3787 { 3788 if (!is_world_regdom(rd->alpha2)) 3789 return -EINVAL; 3790 update_world_regdomain(rd); 3791 return 0; 3792 } 3793 3794 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3795 struct regulatory_request *user_request) 3796 { 3797 const struct ieee80211_regdomain *intersected_rd = NULL; 3798 3799 if (!regdom_changes(rd->alpha2)) 3800 return -EALREADY; 3801 3802 if (!is_valid_rd(rd)) { 3803 pr_err("Invalid regulatory domain detected: %c%c\n", 3804 rd->alpha2[0], rd->alpha2[1]); 3805 print_regdomain_info(rd); 3806 return -EINVAL; 3807 } 3808 3809 if (!user_request->intersect) { 3810 reset_regdomains(false, rd); 3811 return 0; 3812 } 3813 3814 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3815 if (!intersected_rd) 3816 return -EINVAL; 3817 3818 kfree(rd); 3819 rd = NULL; 3820 reset_regdomains(false, intersected_rd); 3821 3822 return 0; 3823 } 3824 3825 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3826 struct regulatory_request *driver_request) 3827 { 3828 const struct ieee80211_regdomain *regd; 3829 const struct ieee80211_regdomain *intersected_rd = NULL; 3830 const struct ieee80211_regdomain *tmp; 3831 struct wiphy *request_wiphy; 3832 3833 if (is_world_regdom(rd->alpha2)) 3834 return -EINVAL; 3835 3836 if (!regdom_changes(rd->alpha2)) 3837 return -EALREADY; 3838 3839 if (!is_valid_rd(rd)) { 3840 pr_err("Invalid regulatory domain detected: %c%c\n", 3841 rd->alpha2[0], rd->alpha2[1]); 3842 print_regdomain_info(rd); 3843 return -EINVAL; 3844 } 3845 3846 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3847 if (!request_wiphy) 3848 return -ENODEV; 3849 3850 if (!driver_request->intersect) { 3851 ASSERT_RTNL(); 3852 wiphy_lock(request_wiphy); 3853 if (request_wiphy->regd) { 3854 wiphy_unlock(request_wiphy); 3855 return -EALREADY; 3856 } 3857 3858 regd = reg_copy_regd(rd); 3859 if (IS_ERR(regd)) { 3860 wiphy_unlock(request_wiphy); 3861 return PTR_ERR(regd); 3862 } 3863 3864 rcu_assign_pointer(request_wiphy->regd, regd); 3865 wiphy_unlock(request_wiphy); 3866 reset_regdomains(false, rd); 3867 return 0; 3868 } 3869 3870 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3871 if (!intersected_rd) 3872 return -EINVAL; 3873 3874 /* 3875 * We can trash what CRDA provided now. 3876 * However if a driver requested this specific regulatory 3877 * domain we keep it for its private use 3878 */ 3879 tmp = get_wiphy_regdom(request_wiphy); 3880 rcu_assign_pointer(request_wiphy->regd, rd); 3881 rcu_free_regdom(tmp); 3882 3883 rd = NULL; 3884 3885 reset_regdomains(false, intersected_rd); 3886 3887 return 0; 3888 } 3889 3890 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3891 struct regulatory_request *country_ie_request) 3892 { 3893 struct wiphy *request_wiphy; 3894 3895 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3896 !is_unknown_alpha2(rd->alpha2)) 3897 return -EINVAL; 3898 3899 /* 3900 * Lets only bother proceeding on the same alpha2 if the current 3901 * rd is non static (it means CRDA was present and was used last) 3902 * and the pending request came in from a country IE 3903 */ 3904 3905 if (!is_valid_rd(rd)) { 3906 pr_err("Invalid regulatory domain detected: %c%c\n", 3907 rd->alpha2[0], rd->alpha2[1]); 3908 print_regdomain_info(rd); 3909 return -EINVAL; 3910 } 3911 3912 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3913 if (!request_wiphy) 3914 return -ENODEV; 3915 3916 if (country_ie_request->intersect) 3917 return -EINVAL; 3918 3919 reset_regdomains(false, rd); 3920 return 0; 3921 } 3922 3923 /* 3924 * Use this call to set the current regulatory domain. Conflicts with 3925 * multiple drivers can be ironed out later. Caller must've already 3926 * kmalloc'd the rd structure. 3927 */ 3928 int set_regdom(const struct ieee80211_regdomain *rd, 3929 enum ieee80211_regd_source regd_src) 3930 { 3931 struct regulatory_request *lr; 3932 bool user_reset = false; 3933 int r; 3934 3935 if (IS_ERR_OR_NULL(rd)) 3936 return -ENODATA; 3937 3938 if (!reg_is_valid_request(rd->alpha2)) { 3939 kfree(rd); 3940 return -EINVAL; 3941 } 3942 3943 if (regd_src == REGD_SOURCE_CRDA) 3944 reset_crda_timeouts(); 3945 3946 lr = get_last_request(); 3947 3948 /* Note that this doesn't update the wiphys, this is done below */ 3949 switch (lr->initiator) { 3950 case NL80211_REGDOM_SET_BY_CORE: 3951 r = reg_set_rd_core(rd); 3952 break; 3953 case NL80211_REGDOM_SET_BY_USER: 3954 cfg80211_save_user_regdom(rd); 3955 r = reg_set_rd_user(rd, lr); 3956 user_reset = true; 3957 break; 3958 case NL80211_REGDOM_SET_BY_DRIVER: 3959 r = reg_set_rd_driver(rd, lr); 3960 break; 3961 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3962 r = reg_set_rd_country_ie(rd, lr); 3963 break; 3964 default: 3965 WARN(1, "invalid initiator %d\n", lr->initiator); 3966 kfree(rd); 3967 return -EINVAL; 3968 } 3969 3970 if (r) { 3971 switch (r) { 3972 case -EALREADY: 3973 reg_set_request_processed(); 3974 break; 3975 default: 3976 /* Back to world regulatory in case of errors */ 3977 restore_regulatory_settings(user_reset, false); 3978 } 3979 3980 kfree(rd); 3981 return r; 3982 } 3983 3984 /* This would make this whole thing pointless */ 3985 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3986 return -EINVAL; 3987 3988 /* update all wiphys now with the new established regulatory domain */ 3989 update_all_wiphy_regulatory(lr->initiator); 3990 3991 print_regdomain(get_cfg80211_regdom()); 3992 3993 nl80211_send_reg_change_event(lr); 3994 3995 reg_set_request_processed(); 3996 3997 return 0; 3998 } 3999 4000 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 4001 struct ieee80211_regdomain *rd) 4002 { 4003 const struct ieee80211_regdomain *regd; 4004 const struct ieee80211_regdomain *prev_regd; 4005 struct cfg80211_registered_device *rdev; 4006 4007 if (WARN_ON(!wiphy || !rd)) 4008 return -EINVAL; 4009 4010 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 4011 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 4012 return -EPERM; 4013 4014 if (WARN(!is_valid_rd(rd), 4015 "Invalid regulatory domain detected: %c%c\n", 4016 rd->alpha2[0], rd->alpha2[1])) { 4017 print_regdomain_info(rd); 4018 return -EINVAL; 4019 } 4020 4021 regd = reg_copy_regd(rd); 4022 if (IS_ERR(regd)) 4023 return PTR_ERR(regd); 4024 4025 rdev = wiphy_to_rdev(wiphy); 4026 4027 spin_lock(®_requests_lock); 4028 prev_regd = rdev->requested_regd; 4029 rdev->requested_regd = regd; 4030 spin_unlock(®_requests_lock); 4031 4032 kfree(prev_regd); 4033 return 0; 4034 } 4035 4036 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 4037 struct ieee80211_regdomain *rd) 4038 { 4039 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 4040 4041 if (ret) 4042 return ret; 4043 4044 schedule_work(®_work); 4045 return 0; 4046 } 4047 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 4048 4049 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 4050 struct ieee80211_regdomain *rd) 4051 { 4052 int ret; 4053 4054 ASSERT_RTNL(); 4055 4056 ret = __regulatory_set_wiphy_regd(wiphy, rd); 4057 if (ret) 4058 return ret; 4059 4060 /* process the request immediately */ 4061 reg_process_self_managed_hint(wiphy); 4062 reg_check_channels(); 4063 return 0; 4064 } 4065 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync); 4066 4067 void wiphy_regulatory_register(struct wiphy *wiphy) 4068 { 4069 struct regulatory_request *lr = get_last_request(); 4070 4071 /* self-managed devices ignore beacon hints and country IE */ 4072 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 4073 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 4074 REGULATORY_COUNTRY_IE_IGNORE; 4075 4076 /* 4077 * The last request may have been received before this 4078 * registration call. Call the driver notifier if 4079 * initiator is USER. 4080 */ 4081 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 4082 reg_call_notifier(wiphy, lr); 4083 } 4084 4085 if (!reg_dev_ignore_cell_hint(wiphy)) 4086 reg_num_devs_support_basehint++; 4087 4088 wiphy_update_regulatory(wiphy, lr->initiator); 4089 wiphy_all_share_dfs_chan_state(wiphy); 4090 reg_process_self_managed_hints(); 4091 } 4092 4093 void wiphy_regulatory_deregister(struct wiphy *wiphy) 4094 { 4095 struct wiphy *request_wiphy = NULL; 4096 struct regulatory_request *lr; 4097 4098 lr = get_last_request(); 4099 4100 if (!reg_dev_ignore_cell_hint(wiphy)) 4101 reg_num_devs_support_basehint--; 4102 4103 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4104 RCU_INIT_POINTER(wiphy->regd, NULL); 4105 4106 if (lr) 4107 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4108 4109 if (!request_wiphy || request_wiphy != wiphy) 4110 return; 4111 4112 lr->wiphy_idx = WIPHY_IDX_INVALID; 4113 lr->country_ie_env = ENVIRON_ANY; 4114 } 4115 4116 /* 4117 * See FCC notices for UNII band definitions 4118 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4119 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4120 */ 4121 int cfg80211_get_unii(int freq) 4122 { 4123 /* UNII-1 */ 4124 if (freq >= 5150 && freq <= 5250) 4125 return 0; 4126 4127 /* UNII-2A */ 4128 if (freq > 5250 && freq <= 5350) 4129 return 1; 4130 4131 /* UNII-2B */ 4132 if (freq > 5350 && freq <= 5470) 4133 return 2; 4134 4135 /* UNII-2C */ 4136 if (freq > 5470 && freq <= 5725) 4137 return 3; 4138 4139 /* UNII-3 */ 4140 if (freq > 5725 && freq <= 5825) 4141 return 4; 4142 4143 /* UNII-5 */ 4144 if (freq > 5925 && freq <= 6425) 4145 return 5; 4146 4147 /* UNII-6 */ 4148 if (freq > 6425 && freq <= 6525) 4149 return 6; 4150 4151 /* UNII-7 */ 4152 if (freq > 6525 && freq <= 6875) 4153 return 7; 4154 4155 /* UNII-8 */ 4156 if (freq > 6875 && freq <= 7125) 4157 return 8; 4158 4159 return -EINVAL; 4160 } 4161 4162 bool regulatory_indoor_allowed(void) 4163 { 4164 return reg_is_indoor; 4165 } 4166 4167 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4168 { 4169 const struct ieee80211_regdomain *regd = NULL; 4170 const struct ieee80211_regdomain *wiphy_regd = NULL; 4171 bool pre_cac_allowed = false; 4172 4173 rcu_read_lock(); 4174 4175 regd = rcu_dereference(cfg80211_regdomain); 4176 wiphy_regd = rcu_dereference(wiphy->regd); 4177 if (!wiphy_regd) { 4178 if (regd->dfs_region == NL80211_DFS_ETSI) 4179 pre_cac_allowed = true; 4180 4181 rcu_read_unlock(); 4182 4183 return pre_cac_allowed; 4184 } 4185 4186 if (regd->dfs_region == wiphy_regd->dfs_region && 4187 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4188 pre_cac_allowed = true; 4189 4190 rcu_read_unlock(); 4191 4192 return pre_cac_allowed; 4193 } 4194 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4195 4196 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4197 { 4198 struct wireless_dev *wdev; 4199 /* If we finished CAC or received radar, we should end any 4200 * CAC running on the same channels. 4201 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4202 * either all channels are available - those the CAC_FINISHED 4203 * event has effected another wdev state, or there is a channel 4204 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4205 * event has effected another wdev state. 4206 * In both cases we should end the CAC on the wdev. 4207 */ 4208 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4209 struct cfg80211_chan_def *chandef; 4210 4211 if (!wdev->cac_started) 4212 continue; 4213 4214 /* FIXME: radar detection is tied to link 0 for now */ 4215 chandef = wdev_chandef(wdev, 0); 4216 if (!chandef) 4217 continue; 4218 4219 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef)) 4220 rdev_end_cac(rdev, wdev->netdev); 4221 } 4222 } 4223 4224 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4225 struct cfg80211_chan_def *chandef, 4226 enum nl80211_dfs_state dfs_state, 4227 enum nl80211_radar_event event) 4228 { 4229 struct cfg80211_registered_device *rdev; 4230 4231 ASSERT_RTNL(); 4232 4233 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4234 return; 4235 4236 for_each_rdev(rdev) { 4237 if (wiphy == &rdev->wiphy) 4238 continue; 4239 4240 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4241 continue; 4242 4243 if (!ieee80211_get_channel(&rdev->wiphy, 4244 chandef->chan->center_freq)) 4245 continue; 4246 4247 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4248 4249 if (event == NL80211_RADAR_DETECTED || 4250 event == NL80211_RADAR_CAC_FINISHED) { 4251 cfg80211_sched_dfs_chan_update(rdev); 4252 cfg80211_check_and_end_cac(rdev); 4253 } 4254 4255 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4256 } 4257 } 4258 4259 static int __init regulatory_init_db(void) 4260 { 4261 int err; 4262 4263 /* 4264 * It's possible that - due to other bugs/issues - cfg80211 4265 * never called regulatory_init() below, or that it failed; 4266 * in that case, don't try to do any further work here as 4267 * it's doomed to lead to crashes. 4268 */ 4269 if (IS_ERR_OR_NULL(reg_pdev)) 4270 return -EINVAL; 4271 4272 err = load_builtin_regdb_keys(); 4273 if (err) { 4274 platform_device_unregister(reg_pdev); 4275 return err; 4276 } 4277 4278 /* We always try to get an update for the static regdomain */ 4279 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4280 if (err) { 4281 if (err == -ENOMEM) { 4282 platform_device_unregister(reg_pdev); 4283 return err; 4284 } 4285 /* 4286 * N.B. kobject_uevent_env() can fail mainly for when we're out 4287 * memory which is handled and propagated appropriately above 4288 * but it can also fail during a netlink_broadcast() or during 4289 * early boot for call_usermodehelper(). For now treat these 4290 * errors as non-fatal. 4291 */ 4292 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4293 } 4294 4295 /* 4296 * Finally, if the user set the module parameter treat it 4297 * as a user hint. 4298 */ 4299 if (!is_world_regdom(ieee80211_regdom)) 4300 regulatory_hint_user(ieee80211_regdom, 4301 NL80211_USER_REG_HINT_USER); 4302 4303 return 0; 4304 } 4305 #ifndef MODULE 4306 late_initcall(regulatory_init_db); 4307 #endif 4308 4309 int __init regulatory_init(void) 4310 { 4311 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4312 if (IS_ERR(reg_pdev)) 4313 return PTR_ERR(reg_pdev); 4314 4315 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4316 4317 user_alpha2[0] = '9'; 4318 user_alpha2[1] = '7'; 4319 4320 #ifdef MODULE 4321 return regulatory_init_db(); 4322 #else 4323 return 0; 4324 #endif 4325 } 4326 4327 void regulatory_exit(void) 4328 { 4329 struct regulatory_request *reg_request, *tmp; 4330 struct reg_beacon *reg_beacon, *btmp; 4331 4332 cancel_work_sync(®_work); 4333 cancel_crda_timeout_sync(); 4334 cancel_delayed_work_sync(®_check_chans); 4335 4336 /* Lock to suppress warnings */ 4337 rtnl_lock(); 4338 reset_regdomains(true, NULL); 4339 rtnl_unlock(); 4340 4341 dev_set_uevent_suppress(®_pdev->dev, true); 4342 4343 platform_device_unregister(reg_pdev); 4344 4345 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4346 list_del(®_beacon->list); 4347 kfree(reg_beacon); 4348 } 4349 4350 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4351 list_del(®_beacon->list); 4352 kfree(reg_beacon); 4353 } 4354 4355 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4356 list_del(®_request->list); 4357 kfree(reg_request); 4358 } 4359 4360 if (!IS_ERR_OR_NULL(regdb)) 4361 kfree(regdb); 4362 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4363 kfree(cfg80211_user_regdom); 4364 4365 free_regdb_keyring(); 4366 } 4367