1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2019 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static spinlock_t reg_indoor_lock; 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 138 { 139 return rcu_dereference_rtnl(cfg80211_regdomain); 140 } 141 142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 143 { 144 return rcu_dereference_rtnl(wiphy->regd); 145 } 146 147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 148 { 149 switch (dfs_region) { 150 case NL80211_DFS_UNSET: 151 return "unset"; 152 case NL80211_DFS_FCC: 153 return "FCC"; 154 case NL80211_DFS_ETSI: 155 return "ETSI"; 156 case NL80211_DFS_JP: 157 return "JP"; 158 } 159 return "Unknown"; 160 } 161 162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 163 { 164 const struct ieee80211_regdomain *regd = NULL; 165 const struct ieee80211_regdomain *wiphy_regd = NULL; 166 167 regd = get_cfg80211_regdom(); 168 if (!wiphy) 169 goto out; 170 171 wiphy_regd = get_wiphy_regdom(wiphy); 172 if (!wiphy_regd) 173 goto out; 174 175 if (wiphy_regd->dfs_region == regd->dfs_region) 176 goto out; 177 178 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 179 dev_name(&wiphy->dev), 180 reg_dfs_region_str(wiphy_regd->dfs_region), 181 reg_dfs_region_str(regd->dfs_region)); 182 183 out: 184 return regd->dfs_region; 185 } 186 187 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 188 { 189 if (!r) 190 return; 191 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 192 } 193 194 static struct regulatory_request *get_last_request(void) 195 { 196 return rcu_dereference_rtnl(last_request); 197 } 198 199 /* Used to queue up regulatory hints */ 200 static LIST_HEAD(reg_requests_list); 201 static spinlock_t reg_requests_lock; 202 203 /* Used to queue up beacon hints for review */ 204 static LIST_HEAD(reg_pending_beacons); 205 static spinlock_t reg_pending_beacons_lock; 206 207 /* Used to keep track of processed beacon hints */ 208 static LIST_HEAD(reg_beacon_list); 209 210 struct reg_beacon { 211 struct list_head list; 212 struct ieee80211_channel chan; 213 }; 214 215 static void reg_check_chans_work(struct work_struct *work); 216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 217 218 static void reg_todo(struct work_struct *work); 219 static DECLARE_WORK(reg_work, reg_todo); 220 221 /* We keep a static world regulatory domain in case of the absence of CRDA */ 222 static const struct ieee80211_regdomain world_regdom = { 223 .n_reg_rules = 8, 224 .alpha2 = "00", 225 .reg_rules = { 226 /* IEEE 802.11b/g, channels 1..11 */ 227 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 228 /* IEEE 802.11b/g, channels 12..13. */ 229 REG_RULE(2467-10, 2472+10, 20, 6, 20, 230 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 231 /* IEEE 802.11 channel 14 - Only JP enables 232 * this and for 802.11b only */ 233 REG_RULE(2484-10, 2484+10, 20, 6, 20, 234 NL80211_RRF_NO_IR | 235 NL80211_RRF_NO_OFDM), 236 /* IEEE 802.11a, channel 36..48 */ 237 REG_RULE(5180-10, 5240+10, 80, 6, 20, 238 NL80211_RRF_NO_IR | 239 NL80211_RRF_AUTO_BW), 240 241 /* IEEE 802.11a, channel 52..64 - DFS required */ 242 REG_RULE(5260-10, 5320+10, 80, 6, 20, 243 NL80211_RRF_NO_IR | 244 NL80211_RRF_AUTO_BW | 245 NL80211_RRF_DFS), 246 247 /* IEEE 802.11a, channel 100..144 - DFS required */ 248 REG_RULE(5500-10, 5720+10, 160, 6, 20, 249 NL80211_RRF_NO_IR | 250 NL80211_RRF_DFS), 251 252 /* IEEE 802.11a, channel 149..165 */ 253 REG_RULE(5745-10, 5825+10, 80, 6, 20, 254 NL80211_RRF_NO_IR), 255 256 /* IEEE 802.11ad (60GHz), channels 1..3 */ 257 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 258 } 259 }; 260 261 /* protected by RTNL */ 262 static const struct ieee80211_regdomain *cfg80211_world_regdom = 263 &world_regdom; 264 265 static char *ieee80211_regdom = "00"; 266 static char user_alpha2[2]; 267 static const struct ieee80211_regdomain *cfg80211_user_regdom; 268 269 module_param(ieee80211_regdom, charp, 0444); 270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 271 272 static void reg_free_request(struct regulatory_request *request) 273 { 274 if (request == &core_request_world) 275 return; 276 277 if (request != get_last_request()) 278 kfree(request); 279 } 280 281 static void reg_free_last_request(void) 282 { 283 struct regulatory_request *lr = get_last_request(); 284 285 if (lr != &core_request_world && lr) 286 kfree_rcu(lr, rcu_head); 287 } 288 289 static void reg_update_last_request(struct regulatory_request *request) 290 { 291 struct regulatory_request *lr; 292 293 lr = get_last_request(); 294 if (lr == request) 295 return; 296 297 reg_free_last_request(); 298 rcu_assign_pointer(last_request, request); 299 } 300 301 static void reset_regdomains(bool full_reset, 302 const struct ieee80211_regdomain *new_regdom) 303 { 304 const struct ieee80211_regdomain *r; 305 306 ASSERT_RTNL(); 307 308 r = get_cfg80211_regdom(); 309 310 /* avoid freeing static information or freeing something twice */ 311 if (r == cfg80211_world_regdom) 312 r = NULL; 313 if (cfg80211_world_regdom == &world_regdom) 314 cfg80211_world_regdom = NULL; 315 if (r == &world_regdom) 316 r = NULL; 317 318 rcu_free_regdom(r); 319 rcu_free_regdom(cfg80211_world_regdom); 320 321 cfg80211_world_regdom = &world_regdom; 322 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 323 324 if (!full_reset) 325 return; 326 327 reg_update_last_request(&core_request_world); 328 } 329 330 /* 331 * Dynamic world regulatory domain requested by the wireless 332 * core upon initialization 333 */ 334 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 335 { 336 struct regulatory_request *lr; 337 338 lr = get_last_request(); 339 340 WARN_ON(!lr); 341 342 reset_regdomains(false, rd); 343 344 cfg80211_world_regdom = rd; 345 } 346 347 bool is_world_regdom(const char *alpha2) 348 { 349 if (!alpha2) 350 return false; 351 return alpha2[0] == '0' && alpha2[1] == '0'; 352 } 353 354 static bool is_alpha2_set(const char *alpha2) 355 { 356 if (!alpha2) 357 return false; 358 return alpha2[0] && alpha2[1]; 359 } 360 361 static bool is_unknown_alpha2(const char *alpha2) 362 { 363 if (!alpha2) 364 return false; 365 /* 366 * Special case where regulatory domain was built by driver 367 * but a specific alpha2 cannot be determined 368 */ 369 return alpha2[0] == '9' && alpha2[1] == '9'; 370 } 371 372 static bool is_intersected_alpha2(const char *alpha2) 373 { 374 if (!alpha2) 375 return false; 376 /* 377 * Special case where regulatory domain is the 378 * result of an intersection between two regulatory domain 379 * structures 380 */ 381 return alpha2[0] == '9' && alpha2[1] == '8'; 382 } 383 384 static bool is_an_alpha2(const char *alpha2) 385 { 386 if (!alpha2) 387 return false; 388 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 389 } 390 391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 392 { 393 if (!alpha2_x || !alpha2_y) 394 return false; 395 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 396 } 397 398 static bool regdom_changes(const char *alpha2) 399 { 400 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 401 402 if (!r) 403 return true; 404 return !alpha2_equal(r->alpha2, alpha2); 405 } 406 407 /* 408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 410 * has ever been issued. 411 */ 412 static bool is_user_regdom_saved(void) 413 { 414 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 415 return false; 416 417 /* This would indicate a mistake on the design */ 418 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 419 "Unexpected user alpha2: %c%c\n", 420 user_alpha2[0], user_alpha2[1])) 421 return false; 422 423 return true; 424 } 425 426 static const struct ieee80211_regdomain * 427 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 428 { 429 struct ieee80211_regdomain *regd; 430 unsigned int i; 431 432 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 433 GFP_KERNEL); 434 if (!regd) 435 return ERR_PTR(-ENOMEM); 436 437 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 438 439 for (i = 0; i < src_regd->n_reg_rules; i++) 440 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 441 sizeof(struct ieee80211_reg_rule)); 442 443 return regd; 444 } 445 446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 447 { 448 ASSERT_RTNL(); 449 450 if (!IS_ERR(cfg80211_user_regdom)) 451 kfree(cfg80211_user_regdom); 452 cfg80211_user_regdom = reg_copy_regd(rd); 453 } 454 455 struct reg_regdb_apply_request { 456 struct list_head list; 457 const struct ieee80211_regdomain *regdom; 458 }; 459 460 static LIST_HEAD(reg_regdb_apply_list); 461 static DEFINE_MUTEX(reg_regdb_apply_mutex); 462 463 static void reg_regdb_apply(struct work_struct *work) 464 { 465 struct reg_regdb_apply_request *request; 466 467 rtnl_lock(); 468 469 mutex_lock(®_regdb_apply_mutex); 470 while (!list_empty(®_regdb_apply_list)) { 471 request = list_first_entry(®_regdb_apply_list, 472 struct reg_regdb_apply_request, 473 list); 474 list_del(&request->list); 475 476 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 477 kfree(request); 478 } 479 mutex_unlock(®_regdb_apply_mutex); 480 481 rtnl_unlock(); 482 } 483 484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 485 486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 487 { 488 struct reg_regdb_apply_request *request; 489 490 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 491 if (!request) { 492 kfree(regdom); 493 return -ENOMEM; 494 } 495 496 request->regdom = regdom; 497 498 mutex_lock(®_regdb_apply_mutex); 499 list_add_tail(&request->list, ®_regdb_apply_list); 500 mutex_unlock(®_regdb_apply_mutex); 501 502 schedule_work(®_regdb_work); 503 return 0; 504 } 505 506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 507 /* Max number of consecutive attempts to communicate with CRDA */ 508 #define REG_MAX_CRDA_TIMEOUTS 10 509 510 static u32 reg_crda_timeouts; 511 512 static void crda_timeout_work(struct work_struct *work); 513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 514 515 static void crda_timeout_work(struct work_struct *work) 516 { 517 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 518 rtnl_lock(); 519 reg_crda_timeouts++; 520 restore_regulatory_settings(true, false); 521 rtnl_unlock(); 522 } 523 524 static void cancel_crda_timeout(void) 525 { 526 cancel_delayed_work(&crda_timeout); 527 } 528 529 static void cancel_crda_timeout_sync(void) 530 { 531 cancel_delayed_work_sync(&crda_timeout); 532 } 533 534 static void reset_crda_timeouts(void) 535 { 536 reg_crda_timeouts = 0; 537 } 538 539 /* 540 * This lets us keep regulatory code which is updated on a regulatory 541 * basis in userspace. 542 */ 543 static int call_crda(const char *alpha2) 544 { 545 char country[12]; 546 char *env[] = { country, NULL }; 547 int ret; 548 549 snprintf(country, sizeof(country), "COUNTRY=%c%c", 550 alpha2[0], alpha2[1]); 551 552 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 553 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 554 return -EINVAL; 555 } 556 557 if (!is_world_regdom((char *) alpha2)) 558 pr_debug("Calling CRDA for country: %c%c\n", 559 alpha2[0], alpha2[1]); 560 else 561 pr_debug("Calling CRDA to update world regulatory domain\n"); 562 563 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 564 if (ret) 565 return ret; 566 567 queue_delayed_work(system_power_efficient_wq, 568 &crda_timeout, msecs_to_jiffies(3142)); 569 return 0; 570 } 571 #else 572 static inline void cancel_crda_timeout(void) {} 573 static inline void cancel_crda_timeout_sync(void) {} 574 static inline void reset_crda_timeouts(void) {} 575 static inline int call_crda(const char *alpha2) 576 { 577 return -ENODATA; 578 } 579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 580 581 /* code to directly load a firmware database through request_firmware */ 582 static const struct fwdb_header *regdb; 583 584 struct fwdb_country { 585 u8 alpha2[2]; 586 __be16 coll_ptr; 587 /* this struct cannot be extended */ 588 } __packed __aligned(4); 589 590 struct fwdb_collection { 591 u8 len; 592 u8 n_rules; 593 u8 dfs_region; 594 /* no optional data yet */ 595 /* aligned to 2, then followed by __be16 array of rule pointers */ 596 } __packed __aligned(4); 597 598 enum fwdb_flags { 599 FWDB_FLAG_NO_OFDM = BIT(0), 600 FWDB_FLAG_NO_OUTDOOR = BIT(1), 601 FWDB_FLAG_DFS = BIT(2), 602 FWDB_FLAG_NO_IR = BIT(3), 603 FWDB_FLAG_AUTO_BW = BIT(4), 604 }; 605 606 struct fwdb_wmm_ac { 607 u8 ecw; 608 u8 aifsn; 609 __be16 cot; 610 } __packed; 611 612 struct fwdb_wmm_rule { 613 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 614 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 615 } __packed; 616 617 struct fwdb_rule { 618 u8 len; 619 u8 flags; 620 __be16 max_eirp; 621 __be32 start, end, max_bw; 622 /* start of optional data */ 623 __be16 cac_timeout; 624 __be16 wmm_ptr; 625 } __packed __aligned(4); 626 627 #define FWDB_MAGIC 0x52474442 628 #define FWDB_VERSION 20 629 630 struct fwdb_header { 631 __be32 magic; 632 __be32 version; 633 struct fwdb_country country[]; 634 } __packed __aligned(4); 635 636 static int ecw2cw(int ecw) 637 { 638 return (1 << ecw) - 1; 639 } 640 641 static bool valid_wmm(struct fwdb_wmm_rule *rule) 642 { 643 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 644 int i; 645 646 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 647 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 648 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 649 u8 aifsn = ac[i].aifsn; 650 651 if (cw_min >= cw_max) 652 return false; 653 654 if (aifsn < 1) 655 return false; 656 } 657 658 return true; 659 } 660 661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 662 { 663 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 664 665 if ((u8 *)rule + sizeof(rule->len) > data + size) 666 return false; 667 668 /* mandatory fields */ 669 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 670 return false; 671 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 672 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 673 struct fwdb_wmm_rule *wmm; 674 675 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 676 return false; 677 678 wmm = (void *)(data + wmm_ptr); 679 680 if (!valid_wmm(wmm)) 681 return false; 682 } 683 return true; 684 } 685 686 static bool valid_country(const u8 *data, unsigned int size, 687 const struct fwdb_country *country) 688 { 689 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 690 struct fwdb_collection *coll = (void *)(data + ptr); 691 __be16 *rules_ptr; 692 unsigned int i; 693 694 /* make sure we can read len/n_rules */ 695 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 696 return false; 697 698 /* make sure base struct and all rules fit */ 699 if ((u8 *)coll + ALIGN(coll->len, 2) + 700 (coll->n_rules * 2) > data + size) 701 return false; 702 703 /* mandatory fields must exist */ 704 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 705 return false; 706 707 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 708 709 for (i = 0; i < coll->n_rules; i++) { 710 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 711 712 if (!valid_rule(data, size, rule_ptr)) 713 return false; 714 } 715 716 return true; 717 } 718 719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 720 static struct key *builtin_regdb_keys; 721 722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 723 { 724 const u8 *end = p + buflen; 725 size_t plen; 726 key_ref_t key; 727 728 while (p < end) { 729 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 730 * than 256 bytes in size. 731 */ 732 if (end - p < 4) 733 goto dodgy_cert; 734 if (p[0] != 0x30 && 735 p[1] != 0x82) 736 goto dodgy_cert; 737 plen = (p[2] << 8) | p[3]; 738 plen += 4; 739 if (plen > end - p) 740 goto dodgy_cert; 741 742 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 743 "asymmetric", NULL, p, plen, 744 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 745 KEY_USR_VIEW | KEY_USR_READ), 746 KEY_ALLOC_NOT_IN_QUOTA | 747 KEY_ALLOC_BUILT_IN | 748 KEY_ALLOC_BYPASS_RESTRICTION); 749 if (IS_ERR(key)) { 750 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 751 PTR_ERR(key)); 752 } else { 753 pr_notice("Loaded X.509 cert '%s'\n", 754 key_ref_to_ptr(key)->description); 755 key_ref_put(key); 756 } 757 p += plen; 758 } 759 760 return; 761 762 dodgy_cert: 763 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 764 } 765 766 static int __init load_builtin_regdb_keys(void) 767 { 768 builtin_regdb_keys = 769 keyring_alloc(".builtin_regdb_keys", 770 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 771 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 772 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 773 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 774 if (IS_ERR(builtin_regdb_keys)) 775 return PTR_ERR(builtin_regdb_keys); 776 777 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 778 779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 780 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 781 #endif 782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 783 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 784 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 785 #endif 786 787 return 0; 788 } 789 790 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 791 { 792 const struct firmware *sig; 793 bool result; 794 795 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 796 return false; 797 798 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 799 builtin_regdb_keys, 800 VERIFYING_UNSPECIFIED_SIGNATURE, 801 NULL, NULL) == 0; 802 803 release_firmware(sig); 804 805 return result; 806 } 807 808 static void free_regdb_keyring(void) 809 { 810 key_put(builtin_regdb_keys); 811 } 812 #else 813 static int load_builtin_regdb_keys(void) 814 { 815 return 0; 816 } 817 818 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 819 { 820 return true; 821 } 822 823 static void free_regdb_keyring(void) 824 { 825 } 826 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 827 828 static bool valid_regdb(const u8 *data, unsigned int size) 829 { 830 const struct fwdb_header *hdr = (void *)data; 831 const struct fwdb_country *country; 832 833 if (size < sizeof(*hdr)) 834 return false; 835 836 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 837 return false; 838 839 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 840 return false; 841 842 if (!regdb_has_valid_signature(data, size)) 843 return false; 844 845 country = &hdr->country[0]; 846 while ((u8 *)(country + 1) <= data + size) { 847 if (!country->coll_ptr) 848 break; 849 if (!valid_country(data, size, country)) 850 return false; 851 country++; 852 } 853 854 return true; 855 } 856 857 static void set_wmm_rule(const struct fwdb_header *db, 858 const struct fwdb_country *country, 859 const struct fwdb_rule *rule, 860 struct ieee80211_reg_rule *rrule) 861 { 862 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 863 struct fwdb_wmm_rule *wmm; 864 unsigned int i, wmm_ptr; 865 866 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 867 wmm = (void *)((u8 *)db + wmm_ptr); 868 869 if (!valid_wmm(wmm)) { 870 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 871 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 872 country->alpha2[0], country->alpha2[1]); 873 return; 874 } 875 876 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 877 wmm_rule->client[i].cw_min = 878 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 879 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 880 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 881 wmm_rule->client[i].cot = 882 1000 * be16_to_cpu(wmm->client[i].cot); 883 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 884 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 885 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 886 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 887 } 888 889 rrule->has_wmm = true; 890 } 891 892 static int __regdb_query_wmm(const struct fwdb_header *db, 893 const struct fwdb_country *country, int freq, 894 struct ieee80211_reg_rule *rrule) 895 { 896 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 897 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 898 int i; 899 900 for (i = 0; i < coll->n_rules; i++) { 901 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 902 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 903 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 904 905 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 906 continue; 907 908 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 909 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 910 set_wmm_rule(db, country, rule, rrule); 911 return 0; 912 } 913 } 914 915 return -ENODATA; 916 } 917 918 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 919 { 920 const struct fwdb_header *hdr = regdb; 921 const struct fwdb_country *country; 922 923 if (!regdb) 924 return -ENODATA; 925 926 if (IS_ERR(regdb)) 927 return PTR_ERR(regdb); 928 929 country = &hdr->country[0]; 930 while (country->coll_ptr) { 931 if (alpha2_equal(alpha2, country->alpha2)) 932 return __regdb_query_wmm(regdb, country, freq, rule); 933 934 country++; 935 } 936 937 return -ENODATA; 938 } 939 EXPORT_SYMBOL(reg_query_regdb_wmm); 940 941 static int regdb_query_country(const struct fwdb_header *db, 942 const struct fwdb_country *country) 943 { 944 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 945 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 946 struct ieee80211_regdomain *regdom; 947 unsigned int i; 948 949 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 950 GFP_KERNEL); 951 if (!regdom) 952 return -ENOMEM; 953 954 regdom->n_reg_rules = coll->n_rules; 955 regdom->alpha2[0] = country->alpha2[0]; 956 regdom->alpha2[1] = country->alpha2[1]; 957 regdom->dfs_region = coll->dfs_region; 958 959 for (i = 0; i < regdom->n_reg_rules; i++) { 960 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 961 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 962 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 963 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 964 965 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 966 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 967 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 968 969 rrule->power_rule.max_antenna_gain = 0; 970 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 971 972 rrule->flags = 0; 973 if (rule->flags & FWDB_FLAG_NO_OFDM) 974 rrule->flags |= NL80211_RRF_NO_OFDM; 975 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 976 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 977 if (rule->flags & FWDB_FLAG_DFS) 978 rrule->flags |= NL80211_RRF_DFS; 979 if (rule->flags & FWDB_FLAG_NO_IR) 980 rrule->flags |= NL80211_RRF_NO_IR; 981 if (rule->flags & FWDB_FLAG_AUTO_BW) 982 rrule->flags |= NL80211_RRF_AUTO_BW; 983 984 rrule->dfs_cac_ms = 0; 985 986 /* handle optional data */ 987 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 988 rrule->dfs_cac_ms = 989 1000 * be16_to_cpu(rule->cac_timeout); 990 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 991 set_wmm_rule(db, country, rule, rrule); 992 } 993 994 return reg_schedule_apply(regdom); 995 } 996 997 static int query_regdb(const char *alpha2) 998 { 999 const struct fwdb_header *hdr = regdb; 1000 const struct fwdb_country *country; 1001 1002 ASSERT_RTNL(); 1003 1004 if (IS_ERR(regdb)) 1005 return PTR_ERR(regdb); 1006 1007 country = &hdr->country[0]; 1008 while (country->coll_ptr) { 1009 if (alpha2_equal(alpha2, country->alpha2)) 1010 return regdb_query_country(regdb, country); 1011 country++; 1012 } 1013 1014 return -ENODATA; 1015 } 1016 1017 static void regdb_fw_cb(const struct firmware *fw, void *context) 1018 { 1019 int set_error = 0; 1020 bool restore = true; 1021 void *db; 1022 1023 if (!fw) { 1024 pr_info("failed to load regulatory.db\n"); 1025 set_error = -ENODATA; 1026 } else if (!valid_regdb(fw->data, fw->size)) { 1027 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1028 set_error = -EINVAL; 1029 } 1030 1031 rtnl_lock(); 1032 if (regdb && !IS_ERR(regdb)) { 1033 /* negative case - a bug 1034 * positive case - can happen due to race in case of multiple cb's in 1035 * queue, due to usage of asynchronous callback 1036 * 1037 * Either case, just restore and free new db. 1038 */ 1039 } else if (set_error) { 1040 regdb = ERR_PTR(set_error); 1041 } else if (fw) { 1042 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1043 if (db) { 1044 regdb = db; 1045 restore = context && query_regdb(context); 1046 } else { 1047 restore = true; 1048 } 1049 } 1050 1051 if (restore) 1052 restore_regulatory_settings(true, false); 1053 1054 rtnl_unlock(); 1055 1056 kfree(context); 1057 1058 release_firmware(fw); 1059 } 1060 1061 static int query_regdb_file(const char *alpha2) 1062 { 1063 ASSERT_RTNL(); 1064 1065 if (regdb) 1066 return query_regdb(alpha2); 1067 1068 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1069 if (!alpha2) 1070 return -ENOMEM; 1071 1072 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1073 ®_pdev->dev, GFP_KERNEL, 1074 (void *)alpha2, regdb_fw_cb); 1075 } 1076 1077 int reg_reload_regdb(void) 1078 { 1079 const struct firmware *fw; 1080 void *db; 1081 int err; 1082 1083 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1084 if (err) 1085 return err; 1086 1087 if (!valid_regdb(fw->data, fw->size)) { 1088 err = -ENODATA; 1089 goto out; 1090 } 1091 1092 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1093 if (!db) { 1094 err = -ENOMEM; 1095 goto out; 1096 } 1097 1098 rtnl_lock(); 1099 if (!IS_ERR_OR_NULL(regdb)) 1100 kfree(regdb); 1101 regdb = db; 1102 rtnl_unlock(); 1103 1104 out: 1105 release_firmware(fw); 1106 return err; 1107 } 1108 1109 static bool reg_query_database(struct regulatory_request *request) 1110 { 1111 if (query_regdb_file(request->alpha2) == 0) 1112 return true; 1113 1114 if (call_crda(request->alpha2) == 0) 1115 return true; 1116 1117 return false; 1118 } 1119 1120 bool reg_is_valid_request(const char *alpha2) 1121 { 1122 struct regulatory_request *lr = get_last_request(); 1123 1124 if (!lr || lr->processed) 1125 return false; 1126 1127 return alpha2_equal(lr->alpha2, alpha2); 1128 } 1129 1130 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1131 { 1132 struct regulatory_request *lr = get_last_request(); 1133 1134 /* 1135 * Follow the driver's regulatory domain, if present, unless a country 1136 * IE has been processed or a user wants to help complaince further 1137 */ 1138 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1139 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1140 wiphy->regd) 1141 return get_wiphy_regdom(wiphy); 1142 1143 return get_cfg80211_regdom(); 1144 } 1145 1146 static unsigned int 1147 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1148 const struct ieee80211_reg_rule *rule) 1149 { 1150 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1151 const struct ieee80211_freq_range *freq_range_tmp; 1152 const struct ieee80211_reg_rule *tmp; 1153 u32 start_freq, end_freq, idx, no; 1154 1155 for (idx = 0; idx < rd->n_reg_rules; idx++) 1156 if (rule == &rd->reg_rules[idx]) 1157 break; 1158 1159 if (idx == rd->n_reg_rules) 1160 return 0; 1161 1162 /* get start_freq */ 1163 no = idx; 1164 1165 while (no) { 1166 tmp = &rd->reg_rules[--no]; 1167 freq_range_tmp = &tmp->freq_range; 1168 1169 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1170 break; 1171 1172 freq_range = freq_range_tmp; 1173 } 1174 1175 start_freq = freq_range->start_freq_khz; 1176 1177 /* get end_freq */ 1178 freq_range = &rule->freq_range; 1179 no = idx; 1180 1181 while (no < rd->n_reg_rules - 1) { 1182 tmp = &rd->reg_rules[++no]; 1183 freq_range_tmp = &tmp->freq_range; 1184 1185 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1186 break; 1187 1188 freq_range = freq_range_tmp; 1189 } 1190 1191 end_freq = freq_range->end_freq_khz; 1192 1193 return end_freq - start_freq; 1194 } 1195 1196 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1197 const struct ieee80211_reg_rule *rule) 1198 { 1199 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1200 1201 if (rule->flags & NL80211_RRF_NO_160MHZ) 1202 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1203 if (rule->flags & NL80211_RRF_NO_80MHZ) 1204 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1205 1206 /* 1207 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1208 * are not allowed. 1209 */ 1210 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1211 rule->flags & NL80211_RRF_NO_HT40PLUS) 1212 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1213 1214 return bw; 1215 } 1216 1217 /* Sanity check on a regulatory rule */ 1218 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1219 { 1220 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1221 u32 freq_diff; 1222 1223 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1224 return false; 1225 1226 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1227 return false; 1228 1229 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1230 1231 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1232 freq_range->max_bandwidth_khz > freq_diff) 1233 return false; 1234 1235 return true; 1236 } 1237 1238 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1239 { 1240 const struct ieee80211_reg_rule *reg_rule = NULL; 1241 unsigned int i; 1242 1243 if (!rd->n_reg_rules) 1244 return false; 1245 1246 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1247 return false; 1248 1249 for (i = 0; i < rd->n_reg_rules; i++) { 1250 reg_rule = &rd->reg_rules[i]; 1251 if (!is_valid_reg_rule(reg_rule)) 1252 return false; 1253 } 1254 1255 return true; 1256 } 1257 1258 /** 1259 * freq_in_rule_band - tells us if a frequency is in a frequency band 1260 * @freq_range: frequency rule we want to query 1261 * @freq_khz: frequency we are inquiring about 1262 * 1263 * This lets us know if a specific frequency rule is or is not relevant to 1264 * a specific frequency's band. Bands are device specific and artificial 1265 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1266 * however it is safe for now to assume that a frequency rule should not be 1267 * part of a frequency's band if the start freq or end freq are off by more 1268 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1269 * 60 GHz band. 1270 * This resolution can be lowered and should be considered as we add 1271 * regulatory rule support for other "bands". 1272 **/ 1273 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1274 u32 freq_khz) 1275 { 1276 #define ONE_GHZ_IN_KHZ 1000000 1277 /* 1278 * From 802.11ad: directional multi-gigabit (DMG): 1279 * Pertaining to operation in a frequency band containing a channel 1280 * with the Channel starting frequency above 45 GHz. 1281 */ 1282 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1283 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1284 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1285 return true; 1286 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1287 return true; 1288 return false; 1289 #undef ONE_GHZ_IN_KHZ 1290 } 1291 1292 /* 1293 * Later on we can perhaps use the more restrictive DFS 1294 * region but we don't have information for that yet so 1295 * for now simply disallow conflicts. 1296 */ 1297 static enum nl80211_dfs_regions 1298 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1299 const enum nl80211_dfs_regions dfs_region2) 1300 { 1301 if (dfs_region1 != dfs_region2) 1302 return NL80211_DFS_UNSET; 1303 return dfs_region1; 1304 } 1305 1306 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1307 const struct ieee80211_wmm_ac *wmm_ac2, 1308 struct ieee80211_wmm_ac *intersect) 1309 { 1310 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1311 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1312 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1313 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1314 } 1315 1316 /* 1317 * Helper for regdom_intersect(), this does the real 1318 * mathematical intersection fun 1319 */ 1320 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1321 const struct ieee80211_regdomain *rd2, 1322 const struct ieee80211_reg_rule *rule1, 1323 const struct ieee80211_reg_rule *rule2, 1324 struct ieee80211_reg_rule *intersected_rule) 1325 { 1326 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1327 struct ieee80211_freq_range *freq_range; 1328 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1329 struct ieee80211_power_rule *power_rule; 1330 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1331 struct ieee80211_wmm_rule *wmm_rule; 1332 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1333 1334 freq_range1 = &rule1->freq_range; 1335 freq_range2 = &rule2->freq_range; 1336 freq_range = &intersected_rule->freq_range; 1337 1338 power_rule1 = &rule1->power_rule; 1339 power_rule2 = &rule2->power_rule; 1340 power_rule = &intersected_rule->power_rule; 1341 1342 wmm_rule1 = &rule1->wmm_rule; 1343 wmm_rule2 = &rule2->wmm_rule; 1344 wmm_rule = &intersected_rule->wmm_rule; 1345 1346 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1347 freq_range2->start_freq_khz); 1348 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1349 freq_range2->end_freq_khz); 1350 1351 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1352 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1353 1354 if (rule1->flags & NL80211_RRF_AUTO_BW) 1355 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1356 if (rule2->flags & NL80211_RRF_AUTO_BW) 1357 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1358 1359 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1360 1361 intersected_rule->flags = rule1->flags | rule2->flags; 1362 1363 /* 1364 * In case NL80211_RRF_AUTO_BW requested for both rules 1365 * set AUTO_BW in intersected rule also. Next we will 1366 * calculate BW correctly in handle_channel function. 1367 * In other case remove AUTO_BW flag while we calculate 1368 * maximum bandwidth correctly and auto calculation is 1369 * not required. 1370 */ 1371 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1372 (rule2->flags & NL80211_RRF_AUTO_BW)) 1373 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1374 else 1375 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1376 1377 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1378 if (freq_range->max_bandwidth_khz > freq_diff) 1379 freq_range->max_bandwidth_khz = freq_diff; 1380 1381 power_rule->max_eirp = min(power_rule1->max_eirp, 1382 power_rule2->max_eirp); 1383 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1384 power_rule2->max_antenna_gain); 1385 1386 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1387 rule2->dfs_cac_ms); 1388 1389 if (rule1->has_wmm && rule2->has_wmm) { 1390 u8 ac; 1391 1392 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1393 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1394 &wmm_rule2->client[ac], 1395 &wmm_rule->client[ac]); 1396 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1397 &wmm_rule2->ap[ac], 1398 &wmm_rule->ap[ac]); 1399 } 1400 1401 intersected_rule->has_wmm = true; 1402 } else if (rule1->has_wmm) { 1403 *wmm_rule = *wmm_rule1; 1404 intersected_rule->has_wmm = true; 1405 } else if (rule2->has_wmm) { 1406 *wmm_rule = *wmm_rule2; 1407 intersected_rule->has_wmm = true; 1408 } else { 1409 intersected_rule->has_wmm = false; 1410 } 1411 1412 if (!is_valid_reg_rule(intersected_rule)) 1413 return -EINVAL; 1414 1415 return 0; 1416 } 1417 1418 /* check whether old rule contains new rule */ 1419 static bool rule_contains(struct ieee80211_reg_rule *r1, 1420 struct ieee80211_reg_rule *r2) 1421 { 1422 /* for simplicity, currently consider only same flags */ 1423 if (r1->flags != r2->flags) 1424 return false; 1425 1426 /* verify r1 is more restrictive */ 1427 if ((r1->power_rule.max_antenna_gain > 1428 r2->power_rule.max_antenna_gain) || 1429 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1430 return false; 1431 1432 /* make sure r2's range is contained within r1 */ 1433 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1434 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1435 return false; 1436 1437 /* and finally verify that r1.max_bw >= r2.max_bw */ 1438 if (r1->freq_range.max_bandwidth_khz < 1439 r2->freq_range.max_bandwidth_khz) 1440 return false; 1441 1442 return true; 1443 } 1444 1445 /* add or extend current rules. do nothing if rule is already contained */ 1446 static void add_rule(struct ieee80211_reg_rule *rule, 1447 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1448 { 1449 struct ieee80211_reg_rule *tmp_rule; 1450 int i; 1451 1452 for (i = 0; i < *n_rules; i++) { 1453 tmp_rule = ®_rules[i]; 1454 /* rule is already contained - do nothing */ 1455 if (rule_contains(tmp_rule, rule)) 1456 return; 1457 1458 /* extend rule if possible */ 1459 if (rule_contains(rule, tmp_rule)) { 1460 memcpy(tmp_rule, rule, sizeof(*rule)); 1461 return; 1462 } 1463 } 1464 1465 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1466 (*n_rules)++; 1467 } 1468 1469 /** 1470 * regdom_intersect - do the intersection between two regulatory domains 1471 * @rd1: first regulatory domain 1472 * @rd2: second regulatory domain 1473 * 1474 * Use this function to get the intersection between two regulatory domains. 1475 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1476 * as no one single alpha2 can represent this regulatory domain. 1477 * 1478 * Returns a pointer to the regulatory domain structure which will hold the 1479 * resulting intersection of rules between rd1 and rd2. We will 1480 * kzalloc() this structure for you. 1481 */ 1482 static struct ieee80211_regdomain * 1483 regdom_intersect(const struct ieee80211_regdomain *rd1, 1484 const struct ieee80211_regdomain *rd2) 1485 { 1486 int r; 1487 unsigned int x, y; 1488 unsigned int num_rules = 0; 1489 const struct ieee80211_reg_rule *rule1, *rule2; 1490 struct ieee80211_reg_rule intersected_rule; 1491 struct ieee80211_regdomain *rd; 1492 1493 if (!rd1 || !rd2) 1494 return NULL; 1495 1496 /* 1497 * First we get a count of the rules we'll need, then we actually 1498 * build them. This is to so we can malloc() and free() a 1499 * regdomain once. The reason we use reg_rules_intersect() here 1500 * is it will return -EINVAL if the rule computed makes no sense. 1501 * All rules that do check out OK are valid. 1502 */ 1503 1504 for (x = 0; x < rd1->n_reg_rules; x++) { 1505 rule1 = &rd1->reg_rules[x]; 1506 for (y = 0; y < rd2->n_reg_rules; y++) { 1507 rule2 = &rd2->reg_rules[y]; 1508 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1509 &intersected_rule)) 1510 num_rules++; 1511 } 1512 } 1513 1514 if (!num_rules) 1515 return NULL; 1516 1517 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1518 if (!rd) 1519 return NULL; 1520 1521 for (x = 0; x < rd1->n_reg_rules; x++) { 1522 rule1 = &rd1->reg_rules[x]; 1523 for (y = 0; y < rd2->n_reg_rules; y++) { 1524 rule2 = &rd2->reg_rules[y]; 1525 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1526 &intersected_rule); 1527 /* 1528 * No need to memset here the intersected rule here as 1529 * we're not using the stack anymore 1530 */ 1531 if (r) 1532 continue; 1533 1534 add_rule(&intersected_rule, rd->reg_rules, 1535 &rd->n_reg_rules); 1536 } 1537 } 1538 1539 rd->alpha2[0] = '9'; 1540 rd->alpha2[1] = '8'; 1541 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1542 rd2->dfs_region); 1543 1544 return rd; 1545 } 1546 1547 /* 1548 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1549 * want to just have the channel structure use these 1550 */ 1551 static u32 map_regdom_flags(u32 rd_flags) 1552 { 1553 u32 channel_flags = 0; 1554 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1555 channel_flags |= IEEE80211_CHAN_NO_IR; 1556 if (rd_flags & NL80211_RRF_DFS) 1557 channel_flags |= IEEE80211_CHAN_RADAR; 1558 if (rd_flags & NL80211_RRF_NO_OFDM) 1559 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1560 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1561 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1562 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1563 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1564 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1565 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1566 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1567 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1568 if (rd_flags & NL80211_RRF_NO_80MHZ) 1569 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1570 if (rd_flags & NL80211_RRF_NO_160MHZ) 1571 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1572 if (rd_flags & NL80211_RRF_NO_HE) 1573 channel_flags |= IEEE80211_CHAN_NO_HE; 1574 return channel_flags; 1575 } 1576 1577 static const struct ieee80211_reg_rule * 1578 freq_reg_info_regd(u32 center_freq, 1579 const struct ieee80211_regdomain *regd, u32 bw) 1580 { 1581 int i; 1582 bool band_rule_found = false; 1583 bool bw_fits = false; 1584 1585 if (!regd) 1586 return ERR_PTR(-EINVAL); 1587 1588 for (i = 0; i < regd->n_reg_rules; i++) { 1589 const struct ieee80211_reg_rule *rr; 1590 const struct ieee80211_freq_range *fr = NULL; 1591 1592 rr = ®d->reg_rules[i]; 1593 fr = &rr->freq_range; 1594 1595 /* 1596 * We only need to know if one frequency rule was 1597 * was in center_freq's band, that's enough, so lets 1598 * not overwrite it once found 1599 */ 1600 if (!band_rule_found) 1601 band_rule_found = freq_in_rule_band(fr, center_freq); 1602 1603 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1604 1605 if (band_rule_found && bw_fits) 1606 return rr; 1607 } 1608 1609 if (!band_rule_found) 1610 return ERR_PTR(-ERANGE); 1611 1612 return ERR_PTR(-EINVAL); 1613 } 1614 1615 static const struct ieee80211_reg_rule * 1616 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1617 { 1618 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1619 const struct ieee80211_reg_rule *reg_rule = NULL; 1620 u32 bw; 1621 1622 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 1623 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1624 if (!IS_ERR(reg_rule)) 1625 return reg_rule; 1626 } 1627 1628 return reg_rule; 1629 } 1630 1631 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1632 u32 center_freq) 1633 { 1634 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); 1635 } 1636 EXPORT_SYMBOL(freq_reg_info); 1637 1638 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1639 { 1640 switch (initiator) { 1641 case NL80211_REGDOM_SET_BY_CORE: 1642 return "core"; 1643 case NL80211_REGDOM_SET_BY_USER: 1644 return "user"; 1645 case NL80211_REGDOM_SET_BY_DRIVER: 1646 return "driver"; 1647 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1648 return "country element"; 1649 default: 1650 WARN_ON(1); 1651 return "bug"; 1652 } 1653 } 1654 EXPORT_SYMBOL(reg_initiator_name); 1655 1656 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1657 const struct ieee80211_reg_rule *reg_rule, 1658 const struct ieee80211_channel *chan) 1659 { 1660 const struct ieee80211_freq_range *freq_range = NULL; 1661 u32 max_bandwidth_khz, bw_flags = 0; 1662 1663 freq_range = ®_rule->freq_range; 1664 1665 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1666 /* Check if auto calculation requested */ 1667 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1668 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1669 1670 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1671 if (!cfg80211_does_bw_fit_range(freq_range, 1672 MHZ_TO_KHZ(chan->center_freq), 1673 MHZ_TO_KHZ(10))) 1674 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1675 if (!cfg80211_does_bw_fit_range(freq_range, 1676 MHZ_TO_KHZ(chan->center_freq), 1677 MHZ_TO_KHZ(20))) 1678 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1679 1680 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1681 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1682 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1683 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1684 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1685 bw_flags |= IEEE80211_CHAN_NO_HT40; 1686 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1687 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1688 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1689 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1690 return bw_flags; 1691 } 1692 1693 /* 1694 * Note that right now we assume the desired channel bandwidth 1695 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1696 * per channel, the primary and the extension channel). 1697 */ 1698 static void handle_channel(struct wiphy *wiphy, 1699 enum nl80211_reg_initiator initiator, 1700 struct ieee80211_channel *chan) 1701 { 1702 u32 flags, bw_flags = 0; 1703 const struct ieee80211_reg_rule *reg_rule = NULL; 1704 const struct ieee80211_power_rule *power_rule = NULL; 1705 struct wiphy *request_wiphy = NULL; 1706 struct regulatory_request *lr = get_last_request(); 1707 const struct ieee80211_regdomain *regd; 1708 1709 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1710 1711 flags = chan->orig_flags; 1712 1713 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1714 if (IS_ERR(reg_rule)) { 1715 /* 1716 * We will disable all channels that do not match our 1717 * received regulatory rule unless the hint is coming 1718 * from a Country IE and the Country IE had no information 1719 * about a band. The IEEE 802.11 spec allows for an AP 1720 * to send only a subset of the regulatory rules allowed, 1721 * so an AP in the US that only supports 2.4 GHz may only send 1722 * a country IE with information for the 2.4 GHz band 1723 * while 5 GHz is still supported. 1724 */ 1725 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1726 PTR_ERR(reg_rule) == -ERANGE) 1727 return; 1728 1729 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1730 request_wiphy && request_wiphy == wiphy && 1731 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1732 pr_debug("Disabling freq %d MHz for good\n", 1733 chan->center_freq); 1734 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1735 chan->flags = chan->orig_flags; 1736 } else { 1737 pr_debug("Disabling freq %d MHz\n", 1738 chan->center_freq); 1739 chan->flags |= IEEE80211_CHAN_DISABLED; 1740 } 1741 return; 1742 } 1743 1744 regd = reg_get_regdomain(wiphy); 1745 1746 power_rule = ®_rule->power_rule; 1747 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1748 1749 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1750 request_wiphy && request_wiphy == wiphy && 1751 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1752 /* 1753 * This guarantees the driver's requested regulatory domain 1754 * will always be used as a base for further regulatory 1755 * settings 1756 */ 1757 chan->flags = chan->orig_flags = 1758 map_regdom_flags(reg_rule->flags) | bw_flags; 1759 chan->max_antenna_gain = chan->orig_mag = 1760 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1761 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1762 (int) MBM_TO_DBM(power_rule->max_eirp); 1763 1764 if (chan->flags & IEEE80211_CHAN_RADAR) { 1765 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1766 if (reg_rule->dfs_cac_ms) 1767 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1768 } 1769 1770 return; 1771 } 1772 1773 chan->dfs_state = NL80211_DFS_USABLE; 1774 chan->dfs_state_entered = jiffies; 1775 1776 chan->beacon_found = false; 1777 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1778 chan->max_antenna_gain = 1779 min_t(int, chan->orig_mag, 1780 MBI_TO_DBI(power_rule->max_antenna_gain)); 1781 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1782 1783 if (chan->flags & IEEE80211_CHAN_RADAR) { 1784 if (reg_rule->dfs_cac_ms) 1785 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1786 else 1787 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1788 } 1789 1790 if (chan->orig_mpwr) { 1791 /* 1792 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1793 * will always follow the passed country IE power settings. 1794 */ 1795 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1796 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1797 chan->max_power = chan->max_reg_power; 1798 else 1799 chan->max_power = min(chan->orig_mpwr, 1800 chan->max_reg_power); 1801 } else 1802 chan->max_power = chan->max_reg_power; 1803 } 1804 1805 static void handle_band(struct wiphy *wiphy, 1806 enum nl80211_reg_initiator initiator, 1807 struct ieee80211_supported_band *sband) 1808 { 1809 unsigned int i; 1810 1811 if (!sband) 1812 return; 1813 1814 for (i = 0; i < sband->n_channels; i++) 1815 handle_channel(wiphy, initiator, &sband->channels[i]); 1816 } 1817 1818 static bool reg_request_cell_base(struct regulatory_request *request) 1819 { 1820 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1821 return false; 1822 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1823 } 1824 1825 bool reg_last_request_cell_base(void) 1826 { 1827 return reg_request_cell_base(get_last_request()); 1828 } 1829 1830 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1831 /* Core specific check */ 1832 static enum reg_request_treatment 1833 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1834 { 1835 struct regulatory_request *lr = get_last_request(); 1836 1837 if (!reg_num_devs_support_basehint) 1838 return REG_REQ_IGNORE; 1839 1840 if (reg_request_cell_base(lr) && 1841 !regdom_changes(pending_request->alpha2)) 1842 return REG_REQ_ALREADY_SET; 1843 1844 return REG_REQ_OK; 1845 } 1846 1847 /* Device specific check */ 1848 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1849 { 1850 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1851 } 1852 #else 1853 static enum reg_request_treatment 1854 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1855 { 1856 return REG_REQ_IGNORE; 1857 } 1858 1859 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1860 { 1861 return true; 1862 } 1863 #endif 1864 1865 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1866 { 1867 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1868 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1869 return true; 1870 return false; 1871 } 1872 1873 static bool ignore_reg_update(struct wiphy *wiphy, 1874 enum nl80211_reg_initiator initiator) 1875 { 1876 struct regulatory_request *lr = get_last_request(); 1877 1878 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1879 return true; 1880 1881 if (!lr) { 1882 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 1883 reg_initiator_name(initiator)); 1884 return true; 1885 } 1886 1887 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1888 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1889 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 1890 reg_initiator_name(initiator)); 1891 return true; 1892 } 1893 1894 /* 1895 * wiphy->regd will be set once the device has its own 1896 * desired regulatory domain set 1897 */ 1898 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1899 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1900 !is_world_regdom(lr->alpha2)) { 1901 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 1902 reg_initiator_name(initiator)); 1903 return true; 1904 } 1905 1906 if (reg_request_cell_base(lr)) 1907 return reg_dev_ignore_cell_hint(wiphy); 1908 1909 return false; 1910 } 1911 1912 static bool reg_is_world_roaming(struct wiphy *wiphy) 1913 { 1914 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1915 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1916 struct regulatory_request *lr = get_last_request(); 1917 1918 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1919 return true; 1920 1921 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1922 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1923 return true; 1924 1925 return false; 1926 } 1927 1928 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1929 struct reg_beacon *reg_beacon) 1930 { 1931 struct ieee80211_supported_band *sband; 1932 struct ieee80211_channel *chan; 1933 bool channel_changed = false; 1934 struct ieee80211_channel chan_before; 1935 1936 sband = wiphy->bands[reg_beacon->chan.band]; 1937 chan = &sband->channels[chan_idx]; 1938 1939 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1940 return; 1941 1942 if (chan->beacon_found) 1943 return; 1944 1945 chan->beacon_found = true; 1946 1947 if (!reg_is_world_roaming(wiphy)) 1948 return; 1949 1950 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1951 return; 1952 1953 chan_before = *chan; 1954 1955 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1956 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1957 channel_changed = true; 1958 } 1959 1960 if (channel_changed) 1961 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1962 } 1963 1964 /* 1965 * Called when a scan on a wiphy finds a beacon on 1966 * new channel 1967 */ 1968 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1969 struct reg_beacon *reg_beacon) 1970 { 1971 unsigned int i; 1972 struct ieee80211_supported_band *sband; 1973 1974 if (!wiphy->bands[reg_beacon->chan.band]) 1975 return; 1976 1977 sband = wiphy->bands[reg_beacon->chan.band]; 1978 1979 for (i = 0; i < sband->n_channels; i++) 1980 handle_reg_beacon(wiphy, i, reg_beacon); 1981 } 1982 1983 /* 1984 * Called upon reg changes or a new wiphy is added 1985 */ 1986 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1987 { 1988 unsigned int i; 1989 struct ieee80211_supported_band *sband; 1990 struct reg_beacon *reg_beacon; 1991 1992 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1993 if (!wiphy->bands[reg_beacon->chan.band]) 1994 continue; 1995 sband = wiphy->bands[reg_beacon->chan.band]; 1996 for (i = 0; i < sband->n_channels; i++) 1997 handle_reg_beacon(wiphy, i, reg_beacon); 1998 } 1999 } 2000 2001 /* Reap the advantages of previously found beacons */ 2002 static void reg_process_beacons(struct wiphy *wiphy) 2003 { 2004 /* 2005 * Means we are just firing up cfg80211, so no beacons would 2006 * have been processed yet. 2007 */ 2008 if (!last_request) 2009 return; 2010 wiphy_update_beacon_reg(wiphy); 2011 } 2012 2013 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2014 { 2015 if (!chan) 2016 return false; 2017 if (chan->flags & IEEE80211_CHAN_DISABLED) 2018 return false; 2019 /* This would happen when regulatory rules disallow HT40 completely */ 2020 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2021 return false; 2022 return true; 2023 } 2024 2025 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2026 struct ieee80211_channel *channel) 2027 { 2028 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2029 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2030 const struct ieee80211_regdomain *regd; 2031 unsigned int i; 2032 u32 flags; 2033 2034 if (!is_ht40_allowed(channel)) { 2035 channel->flags |= IEEE80211_CHAN_NO_HT40; 2036 return; 2037 } 2038 2039 /* 2040 * We need to ensure the extension channels exist to 2041 * be able to use HT40- or HT40+, this finds them (or not) 2042 */ 2043 for (i = 0; i < sband->n_channels; i++) { 2044 struct ieee80211_channel *c = &sband->channels[i]; 2045 2046 if (c->center_freq == (channel->center_freq - 20)) 2047 channel_before = c; 2048 if (c->center_freq == (channel->center_freq + 20)) 2049 channel_after = c; 2050 } 2051 2052 flags = 0; 2053 regd = get_wiphy_regdom(wiphy); 2054 if (regd) { 2055 const struct ieee80211_reg_rule *reg_rule = 2056 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2057 regd, MHZ_TO_KHZ(20)); 2058 2059 if (!IS_ERR(reg_rule)) 2060 flags = reg_rule->flags; 2061 } 2062 2063 /* 2064 * Please note that this assumes target bandwidth is 20 MHz, 2065 * if that ever changes we also need to change the below logic 2066 * to include that as well. 2067 */ 2068 if (!is_ht40_allowed(channel_before) || 2069 flags & NL80211_RRF_NO_HT40MINUS) 2070 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2071 else 2072 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2073 2074 if (!is_ht40_allowed(channel_after) || 2075 flags & NL80211_RRF_NO_HT40PLUS) 2076 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2077 else 2078 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2079 } 2080 2081 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2082 struct ieee80211_supported_band *sband) 2083 { 2084 unsigned int i; 2085 2086 if (!sband) 2087 return; 2088 2089 for (i = 0; i < sband->n_channels; i++) 2090 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2091 } 2092 2093 static void reg_process_ht_flags(struct wiphy *wiphy) 2094 { 2095 enum nl80211_band band; 2096 2097 if (!wiphy) 2098 return; 2099 2100 for (band = 0; band < NUM_NL80211_BANDS; band++) 2101 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2102 } 2103 2104 static void reg_call_notifier(struct wiphy *wiphy, 2105 struct regulatory_request *request) 2106 { 2107 if (wiphy->reg_notifier) 2108 wiphy->reg_notifier(wiphy, request); 2109 } 2110 2111 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2112 { 2113 struct cfg80211_chan_def chandef = {}; 2114 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2115 enum nl80211_iftype iftype; 2116 2117 wdev_lock(wdev); 2118 iftype = wdev->iftype; 2119 2120 /* make sure the interface is active */ 2121 if (!wdev->netdev || !netif_running(wdev->netdev)) 2122 goto wdev_inactive_unlock; 2123 2124 switch (iftype) { 2125 case NL80211_IFTYPE_AP: 2126 case NL80211_IFTYPE_P2P_GO: 2127 if (!wdev->beacon_interval) 2128 goto wdev_inactive_unlock; 2129 chandef = wdev->chandef; 2130 break; 2131 case NL80211_IFTYPE_ADHOC: 2132 if (!wdev->ssid_len) 2133 goto wdev_inactive_unlock; 2134 chandef = wdev->chandef; 2135 break; 2136 case NL80211_IFTYPE_STATION: 2137 case NL80211_IFTYPE_P2P_CLIENT: 2138 if (!wdev->current_bss || 2139 !wdev->current_bss->pub.channel) 2140 goto wdev_inactive_unlock; 2141 2142 if (!rdev->ops->get_channel || 2143 rdev_get_channel(rdev, wdev, &chandef)) 2144 cfg80211_chandef_create(&chandef, 2145 wdev->current_bss->pub.channel, 2146 NL80211_CHAN_NO_HT); 2147 break; 2148 case NL80211_IFTYPE_MONITOR: 2149 case NL80211_IFTYPE_AP_VLAN: 2150 case NL80211_IFTYPE_P2P_DEVICE: 2151 /* no enforcement required */ 2152 break; 2153 default: 2154 /* others not implemented for now */ 2155 WARN_ON(1); 2156 break; 2157 } 2158 2159 wdev_unlock(wdev); 2160 2161 switch (iftype) { 2162 case NL80211_IFTYPE_AP: 2163 case NL80211_IFTYPE_P2P_GO: 2164 case NL80211_IFTYPE_ADHOC: 2165 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 2166 case NL80211_IFTYPE_STATION: 2167 case NL80211_IFTYPE_P2P_CLIENT: 2168 return cfg80211_chandef_usable(wiphy, &chandef, 2169 IEEE80211_CHAN_DISABLED); 2170 default: 2171 break; 2172 } 2173 2174 return true; 2175 2176 wdev_inactive_unlock: 2177 wdev_unlock(wdev); 2178 return true; 2179 } 2180 2181 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2182 { 2183 struct wireless_dev *wdev; 2184 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2185 2186 ASSERT_RTNL(); 2187 2188 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2189 if (!reg_wdev_chan_valid(wiphy, wdev)) 2190 cfg80211_leave(rdev, wdev); 2191 } 2192 2193 static void reg_check_chans_work(struct work_struct *work) 2194 { 2195 struct cfg80211_registered_device *rdev; 2196 2197 pr_debug("Verifying active interfaces after reg change\n"); 2198 rtnl_lock(); 2199 2200 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2201 if (!(rdev->wiphy.regulatory_flags & 2202 REGULATORY_IGNORE_STALE_KICKOFF)) 2203 reg_leave_invalid_chans(&rdev->wiphy); 2204 2205 rtnl_unlock(); 2206 } 2207 2208 static void reg_check_channels(void) 2209 { 2210 /* 2211 * Give usermode a chance to do something nicer (move to another 2212 * channel, orderly disconnection), before forcing a disconnection. 2213 */ 2214 mod_delayed_work(system_power_efficient_wq, 2215 ®_check_chans, 2216 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2217 } 2218 2219 static void wiphy_update_regulatory(struct wiphy *wiphy, 2220 enum nl80211_reg_initiator initiator) 2221 { 2222 enum nl80211_band band; 2223 struct regulatory_request *lr = get_last_request(); 2224 2225 if (ignore_reg_update(wiphy, initiator)) { 2226 /* 2227 * Regulatory updates set by CORE are ignored for custom 2228 * regulatory cards. Let us notify the changes to the driver, 2229 * as some drivers used this to restore its orig_* reg domain. 2230 */ 2231 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2232 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2233 !(wiphy->regulatory_flags & 2234 REGULATORY_WIPHY_SELF_MANAGED)) 2235 reg_call_notifier(wiphy, lr); 2236 return; 2237 } 2238 2239 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2240 2241 for (band = 0; band < NUM_NL80211_BANDS; band++) 2242 handle_band(wiphy, initiator, wiphy->bands[band]); 2243 2244 reg_process_beacons(wiphy); 2245 reg_process_ht_flags(wiphy); 2246 reg_call_notifier(wiphy, lr); 2247 } 2248 2249 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2250 { 2251 struct cfg80211_registered_device *rdev; 2252 struct wiphy *wiphy; 2253 2254 ASSERT_RTNL(); 2255 2256 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2257 wiphy = &rdev->wiphy; 2258 wiphy_update_regulatory(wiphy, initiator); 2259 } 2260 2261 reg_check_channels(); 2262 } 2263 2264 static void handle_channel_custom(struct wiphy *wiphy, 2265 struct ieee80211_channel *chan, 2266 const struct ieee80211_regdomain *regd, 2267 u32 min_bw) 2268 { 2269 u32 bw_flags = 0; 2270 const struct ieee80211_reg_rule *reg_rule = NULL; 2271 const struct ieee80211_power_rule *power_rule = NULL; 2272 u32 bw; 2273 2274 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2275 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq), 2276 regd, bw); 2277 if (!IS_ERR(reg_rule)) 2278 break; 2279 } 2280 2281 if (IS_ERR_OR_NULL(reg_rule)) { 2282 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n", 2283 chan->center_freq); 2284 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2285 chan->flags |= IEEE80211_CHAN_DISABLED; 2286 } else { 2287 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2288 chan->flags = chan->orig_flags; 2289 } 2290 return; 2291 } 2292 2293 power_rule = ®_rule->power_rule; 2294 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2295 2296 chan->dfs_state_entered = jiffies; 2297 chan->dfs_state = NL80211_DFS_USABLE; 2298 2299 chan->beacon_found = false; 2300 2301 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2302 chan->flags = chan->orig_flags | bw_flags | 2303 map_regdom_flags(reg_rule->flags); 2304 else 2305 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2306 2307 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2308 chan->max_reg_power = chan->max_power = 2309 (int) MBM_TO_DBM(power_rule->max_eirp); 2310 2311 if (chan->flags & IEEE80211_CHAN_RADAR) { 2312 if (reg_rule->dfs_cac_ms) 2313 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2314 else 2315 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2316 } 2317 2318 chan->max_power = chan->max_reg_power; 2319 } 2320 2321 static void handle_band_custom(struct wiphy *wiphy, 2322 struct ieee80211_supported_band *sband, 2323 const struct ieee80211_regdomain *regd) 2324 { 2325 unsigned int i; 2326 2327 if (!sband) 2328 return; 2329 2330 /* 2331 * We currently assume that you always want at least 20 MHz, 2332 * otherwise channel 12 might get enabled if this rule is 2333 * compatible to US, which permits 2402 - 2472 MHz. 2334 */ 2335 for (i = 0; i < sband->n_channels; i++) 2336 handle_channel_custom(wiphy, &sband->channels[i], regd, 2337 MHZ_TO_KHZ(20)); 2338 } 2339 2340 /* Used by drivers prior to wiphy registration */ 2341 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2342 const struct ieee80211_regdomain *regd) 2343 { 2344 enum nl80211_band band; 2345 unsigned int bands_set = 0; 2346 2347 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2348 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2349 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2350 2351 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2352 if (!wiphy->bands[band]) 2353 continue; 2354 handle_band_custom(wiphy, wiphy->bands[band], regd); 2355 bands_set++; 2356 } 2357 2358 /* 2359 * no point in calling this if it won't have any effect 2360 * on your device's supported bands. 2361 */ 2362 WARN_ON(!bands_set); 2363 } 2364 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2365 2366 static void reg_set_request_processed(void) 2367 { 2368 bool need_more_processing = false; 2369 struct regulatory_request *lr = get_last_request(); 2370 2371 lr->processed = true; 2372 2373 spin_lock(®_requests_lock); 2374 if (!list_empty(®_requests_list)) 2375 need_more_processing = true; 2376 spin_unlock(®_requests_lock); 2377 2378 cancel_crda_timeout(); 2379 2380 if (need_more_processing) 2381 schedule_work(®_work); 2382 } 2383 2384 /** 2385 * reg_process_hint_core - process core regulatory requests 2386 * @pending_request: a pending core regulatory request 2387 * 2388 * The wireless subsystem can use this function to process 2389 * a regulatory request issued by the regulatory core. 2390 */ 2391 static enum reg_request_treatment 2392 reg_process_hint_core(struct regulatory_request *core_request) 2393 { 2394 if (reg_query_database(core_request)) { 2395 core_request->intersect = false; 2396 core_request->processed = false; 2397 reg_update_last_request(core_request); 2398 return REG_REQ_OK; 2399 } 2400 2401 return REG_REQ_IGNORE; 2402 } 2403 2404 static enum reg_request_treatment 2405 __reg_process_hint_user(struct regulatory_request *user_request) 2406 { 2407 struct regulatory_request *lr = get_last_request(); 2408 2409 if (reg_request_cell_base(user_request)) 2410 return reg_ignore_cell_hint(user_request); 2411 2412 if (reg_request_cell_base(lr)) 2413 return REG_REQ_IGNORE; 2414 2415 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2416 return REG_REQ_INTERSECT; 2417 /* 2418 * If the user knows better the user should set the regdom 2419 * to their country before the IE is picked up 2420 */ 2421 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2422 lr->intersect) 2423 return REG_REQ_IGNORE; 2424 /* 2425 * Process user requests only after previous user/driver/core 2426 * requests have been processed 2427 */ 2428 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2429 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2430 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2431 regdom_changes(lr->alpha2)) 2432 return REG_REQ_IGNORE; 2433 2434 if (!regdom_changes(user_request->alpha2)) 2435 return REG_REQ_ALREADY_SET; 2436 2437 return REG_REQ_OK; 2438 } 2439 2440 /** 2441 * reg_process_hint_user - process user regulatory requests 2442 * @user_request: a pending user regulatory request 2443 * 2444 * The wireless subsystem can use this function to process 2445 * a regulatory request initiated by userspace. 2446 */ 2447 static enum reg_request_treatment 2448 reg_process_hint_user(struct regulatory_request *user_request) 2449 { 2450 enum reg_request_treatment treatment; 2451 2452 treatment = __reg_process_hint_user(user_request); 2453 if (treatment == REG_REQ_IGNORE || 2454 treatment == REG_REQ_ALREADY_SET) 2455 return REG_REQ_IGNORE; 2456 2457 user_request->intersect = treatment == REG_REQ_INTERSECT; 2458 user_request->processed = false; 2459 2460 if (reg_query_database(user_request)) { 2461 reg_update_last_request(user_request); 2462 user_alpha2[0] = user_request->alpha2[0]; 2463 user_alpha2[1] = user_request->alpha2[1]; 2464 return REG_REQ_OK; 2465 } 2466 2467 return REG_REQ_IGNORE; 2468 } 2469 2470 static enum reg_request_treatment 2471 __reg_process_hint_driver(struct regulatory_request *driver_request) 2472 { 2473 struct regulatory_request *lr = get_last_request(); 2474 2475 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2476 if (regdom_changes(driver_request->alpha2)) 2477 return REG_REQ_OK; 2478 return REG_REQ_ALREADY_SET; 2479 } 2480 2481 /* 2482 * This would happen if you unplug and plug your card 2483 * back in or if you add a new device for which the previously 2484 * loaded card also agrees on the regulatory domain. 2485 */ 2486 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2487 !regdom_changes(driver_request->alpha2)) 2488 return REG_REQ_ALREADY_SET; 2489 2490 return REG_REQ_INTERSECT; 2491 } 2492 2493 /** 2494 * reg_process_hint_driver - process driver regulatory requests 2495 * @driver_request: a pending driver regulatory request 2496 * 2497 * The wireless subsystem can use this function to process 2498 * a regulatory request issued by an 802.11 driver. 2499 * 2500 * Returns one of the different reg request treatment values. 2501 */ 2502 static enum reg_request_treatment 2503 reg_process_hint_driver(struct wiphy *wiphy, 2504 struct regulatory_request *driver_request) 2505 { 2506 const struct ieee80211_regdomain *regd, *tmp; 2507 enum reg_request_treatment treatment; 2508 2509 treatment = __reg_process_hint_driver(driver_request); 2510 2511 switch (treatment) { 2512 case REG_REQ_OK: 2513 break; 2514 case REG_REQ_IGNORE: 2515 return REG_REQ_IGNORE; 2516 case REG_REQ_INTERSECT: 2517 case REG_REQ_ALREADY_SET: 2518 regd = reg_copy_regd(get_cfg80211_regdom()); 2519 if (IS_ERR(regd)) 2520 return REG_REQ_IGNORE; 2521 2522 tmp = get_wiphy_regdom(wiphy); 2523 rcu_assign_pointer(wiphy->regd, regd); 2524 rcu_free_regdom(tmp); 2525 } 2526 2527 2528 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2529 driver_request->processed = false; 2530 2531 /* 2532 * Since CRDA will not be called in this case as we already 2533 * have applied the requested regulatory domain before we just 2534 * inform userspace we have processed the request 2535 */ 2536 if (treatment == REG_REQ_ALREADY_SET) { 2537 nl80211_send_reg_change_event(driver_request); 2538 reg_update_last_request(driver_request); 2539 reg_set_request_processed(); 2540 return REG_REQ_ALREADY_SET; 2541 } 2542 2543 if (reg_query_database(driver_request)) { 2544 reg_update_last_request(driver_request); 2545 return REG_REQ_OK; 2546 } 2547 2548 return REG_REQ_IGNORE; 2549 } 2550 2551 static enum reg_request_treatment 2552 __reg_process_hint_country_ie(struct wiphy *wiphy, 2553 struct regulatory_request *country_ie_request) 2554 { 2555 struct wiphy *last_wiphy = NULL; 2556 struct regulatory_request *lr = get_last_request(); 2557 2558 if (reg_request_cell_base(lr)) { 2559 /* Trust a Cell base station over the AP's country IE */ 2560 if (regdom_changes(country_ie_request->alpha2)) 2561 return REG_REQ_IGNORE; 2562 return REG_REQ_ALREADY_SET; 2563 } else { 2564 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2565 return REG_REQ_IGNORE; 2566 } 2567 2568 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2569 return -EINVAL; 2570 2571 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2572 return REG_REQ_OK; 2573 2574 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2575 2576 if (last_wiphy != wiphy) { 2577 /* 2578 * Two cards with two APs claiming different 2579 * Country IE alpha2s. We could 2580 * intersect them, but that seems unlikely 2581 * to be correct. Reject second one for now. 2582 */ 2583 if (regdom_changes(country_ie_request->alpha2)) 2584 return REG_REQ_IGNORE; 2585 return REG_REQ_ALREADY_SET; 2586 } 2587 2588 if (regdom_changes(country_ie_request->alpha2)) 2589 return REG_REQ_OK; 2590 return REG_REQ_ALREADY_SET; 2591 } 2592 2593 /** 2594 * reg_process_hint_country_ie - process regulatory requests from country IEs 2595 * @country_ie_request: a regulatory request from a country IE 2596 * 2597 * The wireless subsystem can use this function to process 2598 * a regulatory request issued by a country Information Element. 2599 * 2600 * Returns one of the different reg request treatment values. 2601 */ 2602 static enum reg_request_treatment 2603 reg_process_hint_country_ie(struct wiphy *wiphy, 2604 struct regulatory_request *country_ie_request) 2605 { 2606 enum reg_request_treatment treatment; 2607 2608 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2609 2610 switch (treatment) { 2611 case REG_REQ_OK: 2612 break; 2613 case REG_REQ_IGNORE: 2614 return REG_REQ_IGNORE; 2615 case REG_REQ_ALREADY_SET: 2616 reg_free_request(country_ie_request); 2617 return REG_REQ_ALREADY_SET; 2618 case REG_REQ_INTERSECT: 2619 /* 2620 * This doesn't happen yet, not sure we 2621 * ever want to support it for this case. 2622 */ 2623 WARN_ONCE(1, "Unexpected intersection for country elements"); 2624 return REG_REQ_IGNORE; 2625 } 2626 2627 country_ie_request->intersect = false; 2628 country_ie_request->processed = false; 2629 2630 if (reg_query_database(country_ie_request)) { 2631 reg_update_last_request(country_ie_request); 2632 return REG_REQ_OK; 2633 } 2634 2635 return REG_REQ_IGNORE; 2636 } 2637 2638 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2639 { 2640 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2641 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2642 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2643 bool dfs_domain_same; 2644 2645 rcu_read_lock(); 2646 2647 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2648 wiphy1_regd = rcu_dereference(wiphy1->regd); 2649 if (!wiphy1_regd) 2650 wiphy1_regd = cfg80211_regd; 2651 2652 wiphy2_regd = rcu_dereference(wiphy2->regd); 2653 if (!wiphy2_regd) 2654 wiphy2_regd = cfg80211_regd; 2655 2656 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2657 2658 rcu_read_unlock(); 2659 2660 return dfs_domain_same; 2661 } 2662 2663 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2664 struct ieee80211_channel *src_chan) 2665 { 2666 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2667 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2668 return; 2669 2670 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2671 src_chan->flags & IEEE80211_CHAN_DISABLED) 2672 return; 2673 2674 if (src_chan->center_freq == dst_chan->center_freq && 2675 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2676 dst_chan->dfs_state = src_chan->dfs_state; 2677 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2678 } 2679 } 2680 2681 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2682 struct wiphy *src_wiphy) 2683 { 2684 struct ieee80211_supported_band *src_sband, *dst_sband; 2685 struct ieee80211_channel *src_chan, *dst_chan; 2686 int i, j, band; 2687 2688 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2689 return; 2690 2691 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2692 dst_sband = dst_wiphy->bands[band]; 2693 src_sband = src_wiphy->bands[band]; 2694 if (!dst_sband || !src_sband) 2695 continue; 2696 2697 for (i = 0; i < dst_sband->n_channels; i++) { 2698 dst_chan = &dst_sband->channels[i]; 2699 for (j = 0; j < src_sband->n_channels; j++) { 2700 src_chan = &src_sband->channels[j]; 2701 reg_copy_dfs_chan_state(dst_chan, src_chan); 2702 } 2703 } 2704 } 2705 } 2706 2707 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2708 { 2709 struct cfg80211_registered_device *rdev; 2710 2711 ASSERT_RTNL(); 2712 2713 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2714 if (wiphy == &rdev->wiphy) 2715 continue; 2716 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2717 } 2718 } 2719 2720 /* This processes *all* regulatory hints */ 2721 static void reg_process_hint(struct regulatory_request *reg_request) 2722 { 2723 struct wiphy *wiphy = NULL; 2724 enum reg_request_treatment treatment; 2725 enum nl80211_reg_initiator initiator = reg_request->initiator; 2726 2727 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2728 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2729 2730 switch (initiator) { 2731 case NL80211_REGDOM_SET_BY_CORE: 2732 treatment = reg_process_hint_core(reg_request); 2733 break; 2734 case NL80211_REGDOM_SET_BY_USER: 2735 treatment = reg_process_hint_user(reg_request); 2736 break; 2737 case NL80211_REGDOM_SET_BY_DRIVER: 2738 if (!wiphy) 2739 goto out_free; 2740 treatment = reg_process_hint_driver(wiphy, reg_request); 2741 break; 2742 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2743 if (!wiphy) 2744 goto out_free; 2745 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2746 break; 2747 default: 2748 WARN(1, "invalid initiator %d\n", initiator); 2749 goto out_free; 2750 } 2751 2752 if (treatment == REG_REQ_IGNORE) 2753 goto out_free; 2754 2755 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2756 "unexpected treatment value %d\n", treatment); 2757 2758 /* This is required so that the orig_* parameters are saved. 2759 * NOTE: treatment must be set for any case that reaches here! 2760 */ 2761 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2762 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2763 wiphy_update_regulatory(wiphy, initiator); 2764 wiphy_all_share_dfs_chan_state(wiphy); 2765 reg_check_channels(); 2766 } 2767 2768 return; 2769 2770 out_free: 2771 reg_free_request(reg_request); 2772 } 2773 2774 static void notify_self_managed_wiphys(struct regulatory_request *request) 2775 { 2776 struct cfg80211_registered_device *rdev; 2777 struct wiphy *wiphy; 2778 2779 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2780 wiphy = &rdev->wiphy; 2781 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 2782 request->initiator == NL80211_REGDOM_SET_BY_USER) 2783 reg_call_notifier(wiphy, request); 2784 } 2785 } 2786 2787 /* 2788 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2789 * Regulatory hints come on a first come first serve basis and we 2790 * must process each one atomically. 2791 */ 2792 static void reg_process_pending_hints(void) 2793 { 2794 struct regulatory_request *reg_request, *lr; 2795 2796 lr = get_last_request(); 2797 2798 /* When last_request->processed becomes true this will be rescheduled */ 2799 if (lr && !lr->processed) { 2800 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 2801 return; 2802 } 2803 2804 spin_lock(®_requests_lock); 2805 2806 if (list_empty(®_requests_list)) { 2807 spin_unlock(®_requests_lock); 2808 return; 2809 } 2810 2811 reg_request = list_first_entry(®_requests_list, 2812 struct regulatory_request, 2813 list); 2814 list_del_init(®_request->list); 2815 2816 spin_unlock(®_requests_lock); 2817 2818 notify_self_managed_wiphys(reg_request); 2819 2820 reg_process_hint(reg_request); 2821 2822 lr = get_last_request(); 2823 2824 spin_lock(®_requests_lock); 2825 if (!list_empty(®_requests_list) && lr && lr->processed) 2826 schedule_work(®_work); 2827 spin_unlock(®_requests_lock); 2828 } 2829 2830 /* Processes beacon hints -- this has nothing to do with country IEs */ 2831 static void reg_process_pending_beacon_hints(void) 2832 { 2833 struct cfg80211_registered_device *rdev; 2834 struct reg_beacon *pending_beacon, *tmp; 2835 2836 /* This goes through the _pending_ beacon list */ 2837 spin_lock_bh(®_pending_beacons_lock); 2838 2839 list_for_each_entry_safe(pending_beacon, tmp, 2840 ®_pending_beacons, list) { 2841 list_del_init(&pending_beacon->list); 2842 2843 /* Applies the beacon hint to current wiphys */ 2844 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2845 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 2846 2847 /* Remembers the beacon hint for new wiphys or reg changes */ 2848 list_add_tail(&pending_beacon->list, ®_beacon_list); 2849 } 2850 2851 spin_unlock_bh(®_pending_beacons_lock); 2852 } 2853 2854 static void reg_process_self_managed_hints(void) 2855 { 2856 struct cfg80211_registered_device *rdev; 2857 struct wiphy *wiphy; 2858 const struct ieee80211_regdomain *tmp; 2859 const struct ieee80211_regdomain *regd; 2860 enum nl80211_band band; 2861 struct regulatory_request request = {}; 2862 2863 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2864 wiphy = &rdev->wiphy; 2865 2866 spin_lock(®_requests_lock); 2867 regd = rdev->requested_regd; 2868 rdev->requested_regd = NULL; 2869 spin_unlock(®_requests_lock); 2870 2871 if (regd == NULL) 2872 continue; 2873 2874 tmp = get_wiphy_regdom(wiphy); 2875 rcu_assign_pointer(wiphy->regd, regd); 2876 rcu_free_regdom(tmp); 2877 2878 for (band = 0; band < NUM_NL80211_BANDS; band++) 2879 handle_band_custom(wiphy, wiphy->bands[band], regd); 2880 2881 reg_process_ht_flags(wiphy); 2882 2883 request.wiphy_idx = get_wiphy_idx(wiphy); 2884 request.alpha2[0] = regd->alpha2[0]; 2885 request.alpha2[1] = regd->alpha2[1]; 2886 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 2887 2888 nl80211_send_wiphy_reg_change_event(&request); 2889 } 2890 2891 reg_check_channels(); 2892 } 2893 2894 static void reg_todo(struct work_struct *work) 2895 { 2896 rtnl_lock(); 2897 reg_process_pending_hints(); 2898 reg_process_pending_beacon_hints(); 2899 reg_process_self_managed_hints(); 2900 rtnl_unlock(); 2901 } 2902 2903 static void queue_regulatory_request(struct regulatory_request *request) 2904 { 2905 request->alpha2[0] = toupper(request->alpha2[0]); 2906 request->alpha2[1] = toupper(request->alpha2[1]); 2907 2908 spin_lock(®_requests_lock); 2909 list_add_tail(&request->list, ®_requests_list); 2910 spin_unlock(®_requests_lock); 2911 2912 schedule_work(®_work); 2913 } 2914 2915 /* 2916 * Core regulatory hint -- happens during cfg80211_init() 2917 * and when we restore regulatory settings. 2918 */ 2919 static int regulatory_hint_core(const char *alpha2) 2920 { 2921 struct regulatory_request *request; 2922 2923 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2924 if (!request) 2925 return -ENOMEM; 2926 2927 request->alpha2[0] = alpha2[0]; 2928 request->alpha2[1] = alpha2[1]; 2929 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2930 request->wiphy_idx = WIPHY_IDX_INVALID; 2931 2932 queue_regulatory_request(request); 2933 2934 return 0; 2935 } 2936 2937 /* User hints */ 2938 int regulatory_hint_user(const char *alpha2, 2939 enum nl80211_user_reg_hint_type user_reg_hint_type) 2940 { 2941 struct regulatory_request *request; 2942 2943 if (WARN_ON(!alpha2)) 2944 return -EINVAL; 2945 2946 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2947 if (!request) 2948 return -ENOMEM; 2949 2950 request->wiphy_idx = WIPHY_IDX_INVALID; 2951 request->alpha2[0] = alpha2[0]; 2952 request->alpha2[1] = alpha2[1]; 2953 request->initiator = NL80211_REGDOM_SET_BY_USER; 2954 request->user_reg_hint_type = user_reg_hint_type; 2955 2956 /* Allow calling CRDA again */ 2957 reset_crda_timeouts(); 2958 2959 queue_regulatory_request(request); 2960 2961 return 0; 2962 } 2963 2964 int regulatory_hint_indoor(bool is_indoor, u32 portid) 2965 { 2966 spin_lock(®_indoor_lock); 2967 2968 /* It is possible that more than one user space process is trying to 2969 * configure the indoor setting. To handle such cases, clear the indoor 2970 * setting in case that some process does not think that the device 2971 * is operating in an indoor environment. In addition, if a user space 2972 * process indicates that it is controlling the indoor setting, save its 2973 * portid, i.e., make it the owner. 2974 */ 2975 reg_is_indoor = is_indoor; 2976 if (reg_is_indoor) { 2977 if (!reg_is_indoor_portid) 2978 reg_is_indoor_portid = portid; 2979 } else { 2980 reg_is_indoor_portid = 0; 2981 } 2982 2983 spin_unlock(®_indoor_lock); 2984 2985 if (!is_indoor) 2986 reg_check_channels(); 2987 2988 return 0; 2989 } 2990 2991 void regulatory_netlink_notify(u32 portid) 2992 { 2993 spin_lock(®_indoor_lock); 2994 2995 if (reg_is_indoor_portid != portid) { 2996 spin_unlock(®_indoor_lock); 2997 return; 2998 } 2999 3000 reg_is_indoor = false; 3001 reg_is_indoor_portid = 0; 3002 3003 spin_unlock(®_indoor_lock); 3004 3005 reg_check_channels(); 3006 } 3007 3008 /* Driver hints */ 3009 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3010 { 3011 struct regulatory_request *request; 3012 3013 if (WARN_ON(!alpha2 || !wiphy)) 3014 return -EINVAL; 3015 3016 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3017 3018 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3019 if (!request) 3020 return -ENOMEM; 3021 3022 request->wiphy_idx = get_wiphy_idx(wiphy); 3023 3024 request->alpha2[0] = alpha2[0]; 3025 request->alpha2[1] = alpha2[1]; 3026 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3027 3028 /* Allow calling CRDA again */ 3029 reset_crda_timeouts(); 3030 3031 queue_regulatory_request(request); 3032 3033 return 0; 3034 } 3035 EXPORT_SYMBOL(regulatory_hint); 3036 3037 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3038 const u8 *country_ie, u8 country_ie_len) 3039 { 3040 char alpha2[2]; 3041 enum environment_cap env = ENVIRON_ANY; 3042 struct regulatory_request *request = NULL, *lr; 3043 3044 /* IE len must be evenly divisible by 2 */ 3045 if (country_ie_len & 0x01) 3046 return; 3047 3048 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3049 return; 3050 3051 request = kzalloc(sizeof(*request), GFP_KERNEL); 3052 if (!request) 3053 return; 3054 3055 alpha2[0] = country_ie[0]; 3056 alpha2[1] = country_ie[1]; 3057 3058 if (country_ie[2] == 'I') 3059 env = ENVIRON_INDOOR; 3060 else if (country_ie[2] == 'O') 3061 env = ENVIRON_OUTDOOR; 3062 3063 rcu_read_lock(); 3064 lr = get_last_request(); 3065 3066 if (unlikely(!lr)) 3067 goto out; 3068 3069 /* 3070 * We will run this only upon a successful connection on cfg80211. 3071 * We leave conflict resolution to the workqueue, where can hold 3072 * the RTNL. 3073 */ 3074 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3075 lr->wiphy_idx != WIPHY_IDX_INVALID) 3076 goto out; 3077 3078 request->wiphy_idx = get_wiphy_idx(wiphy); 3079 request->alpha2[0] = alpha2[0]; 3080 request->alpha2[1] = alpha2[1]; 3081 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3082 request->country_ie_env = env; 3083 3084 /* Allow calling CRDA again */ 3085 reset_crda_timeouts(); 3086 3087 queue_regulatory_request(request); 3088 request = NULL; 3089 out: 3090 kfree(request); 3091 rcu_read_unlock(); 3092 } 3093 3094 static void restore_alpha2(char *alpha2, bool reset_user) 3095 { 3096 /* indicates there is no alpha2 to consider for restoration */ 3097 alpha2[0] = '9'; 3098 alpha2[1] = '7'; 3099 3100 /* The user setting has precedence over the module parameter */ 3101 if (is_user_regdom_saved()) { 3102 /* Unless we're asked to ignore it and reset it */ 3103 if (reset_user) { 3104 pr_debug("Restoring regulatory settings including user preference\n"); 3105 user_alpha2[0] = '9'; 3106 user_alpha2[1] = '7'; 3107 3108 /* 3109 * If we're ignoring user settings, we still need to 3110 * check the module parameter to ensure we put things 3111 * back as they were for a full restore. 3112 */ 3113 if (!is_world_regdom(ieee80211_regdom)) { 3114 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3115 ieee80211_regdom[0], ieee80211_regdom[1]); 3116 alpha2[0] = ieee80211_regdom[0]; 3117 alpha2[1] = ieee80211_regdom[1]; 3118 } 3119 } else { 3120 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3121 user_alpha2[0], user_alpha2[1]); 3122 alpha2[0] = user_alpha2[0]; 3123 alpha2[1] = user_alpha2[1]; 3124 } 3125 } else if (!is_world_regdom(ieee80211_regdom)) { 3126 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3127 ieee80211_regdom[0], ieee80211_regdom[1]); 3128 alpha2[0] = ieee80211_regdom[0]; 3129 alpha2[1] = ieee80211_regdom[1]; 3130 } else 3131 pr_debug("Restoring regulatory settings\n"); 3132 } 3133 3134 static void restore_custom_reg_settings(struct wiphy *wiphy) 3135 { 3136 struct ieee80211_supported_band *sband; 3137 enum nl80211_band band; 3138 struct ieee80211_channel *chan; 3139 int i; 3140 3141 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3142 sband = wiphy->bands[band]; 3143 if (!sband) 3144 continue; 3145 for (i = 0; i < sband->n_channels; i++) { 3146 chan = &sband->channels[i]; 3147 chan->flags = chan->orig_flags; 3148 chan->max_antenna_gain = chan->orig_mag; 3149 chan->max_power = chan->orig_mpwr; 3150 chan->beacon_found = false; 3151 } 3152 } 3153 } 3154 3155 /* 3156 * Restoring regulatory settings involves ingoring any 3157 * possibly stale country IE information and user regulatory 3158 * settings if so desired, this includes any beacon hints 3159 * learned as we could have traveled outside to another country 3160 * after disconnection. To restore regulatory settings we do 3161 * exactly what we did at bootup: 3162 * 3163 * - send a core regulatory hint 3164 * - send a user regulatory hint if applicable 3165 * 3166 * Device drivers that send a regulatory hint for a specific country 3167 * keep their own regulatory domain on wiphy->regd so that does does 3168 * not need to be remembered. 3169 */ 3170 static void restore_regulatory_settings(bool reset_user, bool cached) 3171 { 3172 char alpha2[2]; 3173 char world_alpha2[2]; 3174 struct reg_beacon *reg_beacon, *btmp; 3175 LIST_HEAD(tmp_reg_req_list); 3176 struct cfg80211_registered_device *rdev; 3177 3178 ASSERT_RTNL(); 3179 3180 /* 3181 * Clear the indoor setting in case that it is not controlled by user 3182 * space, as otherwise there is no guarantee that the device is still 3183 * operating in an indoor environment. 3184 */ 3185 spin_lock(®_indoor_lock); 3186 if (reg_is_indoor && !reg_is_indoor_portid) { 3187 reg_is_indoor = false; 3188 reg_check_channels(); 3189 } 3190 spin_unlock(®_indoor_lock); 3191 3192 reset_regdomains(true, &world_regdom); 3193 restore_alpha2(alpha2, reset_user); 3194 3195 /* 3196 * If there's any pending requests we simply 3197 * stash them to a temporary pending queue and 3198 * add then after we've restored regulatory 3199 * settings. 3200 */ 3201 spin_lock(®_requests_lock); 3202 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3203 spin_unlock(®_requests_lock); 3204 3205 /* Clear beacon hints */ 3206 spin_lock_bh(®_pending_beacons_lock); 3207 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3208 list_del(®_beacon->list); 3209 kfree(reg_beacon); 3210 } 3211 spin_unlock_bh(®_pending_beacons_lock); 3212 3213 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3214 list_del(®_beacon->list); 3215 kfree(reg_beacon); 3216 } 3217 3218 /* First restore to the basic regulatory settings */ 3219 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3220 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3221 3222 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3223 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3224 continue; 3225 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3226 restore_custom_reg_settings(&rdev->wiphy); 3227 } 3228 3229 if (cached && (!is_an_alpha2(alpha2) || 3230 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3231 reset_regdomains(false, cfg80211_world_regdom); 3232 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3233 print_regdomain(get_cfg80211_regdom()); 3234 nl80211_send_reg_change_event(&core_request_world); 3235 reg_set_request_processed(); 3236 3237 if (is_an_alpha2(alpha2) && 3238 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3239 struct regulatory_request *ureq; 3240 3241 spin_lock(®_requests_lock); 3242 ureq = list_last_entry(®_requests_list, 3243 struct regulatory_request, 3244 list); 3245 list_del(&ureq->list); 3246 spin_unlock(®_requests_lock); 3247 3248 notify_self_managed_wiphys(ureq); 3249 reg_update_last_request(ureq); 3250 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3251 REGD_SOURCE_CACHED); 3252 } 3253 } else { 3254 regulatory_hint_core(world_alpha2); 3255 3256 /* 3257 * This restores the ieee80211_regdom module parameter 3258 * preference or the last user requested regulatory 3259 * settings, user regulatory settings takes precedence. 3260 */ 3261 if (is_an_alpha2(alpha2)) 3262 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3263 } 3264 3265 spin_lock(®_requests_lock); 3266 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3267 spin_unlock(®_requests_lock); 3268 3269 pr_debug("Kicking the queue\n"); 3270 3271 schedule_work(®_work); 3272 } 3273 3274 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3275 { 3276 struct cfg80211_registered_device *rdev; 3277 struct wireless_dev *wdev; 3278 3279 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3280 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3281 wdev_lock(wdev); 3282 if (!(wdev->wiphy->regulatory_flags & flag)) { 3283 wdev_unlock(wdev); 3284 return false; 3285 } 3286 wdev_unlock(wdev); 3287 } 3288 } 3289 3290 return true; 3291 } 3292 3293 void regulatory_hint_disconnect(void) 3294 { 3295 /* Restore of regulatory settings is not required when wiphy(s) 3296 * ignore IE from connected access point but clearance of beacon hints 3297 * is required when wiphy(s) supports beacon hints. 3298 */ 3299 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3300 struct reg_beacon *reg_beacon, *btmp; 3301 3302 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3303 return; 3304 3305 spin_lock_bh(®_pending_beacons_lock); 3306 list_for_each_entry_safe(reg_beacon, btmp, 3307 ®_pending_beacons, list) { 3308 list_del(®_beacon->list); 3309 kfree(reg_beacon); 3310 } 3311 spin_unlock_bh(®_pending_beacons_lock); 3312 3313 list_for_each_entry_safe(reg_beacon, btmp, 3314 ®_beacon_list, list) { 3315 list_del(®_beacon->list); 3316 kfree(reg_beacon); 3317 } 3318 3319 return; 3320 } 3321 3322 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3323 restore_regulatory_settings(false, true); 3324 } 3325 3326 static bool freq_is_chan_12_13_14(u32 freq) 3327 { 3328 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3329 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3330 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3331 return true; 3332 return false; 3333 } 3334 3335 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3336 { 3337 struct reg_beacon *pending_beacon; 3338 3339 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3340 if (beacon_chan->center_freq == 3341 pending_beacon->chan.center_freq) 3342 return true; 3343 return false; 3344 } 3345 3346 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3347 struct ieee80211_channel *beacon_chan, 3348 gfp_t gfp) 3349 { 3350 struct reg_beacon *reg_beacon; 3351 bool processing; 3352 3353 if (beacon_chan->beacon_found || 3354 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3355 (beacon_chan->band == NL80211_BAND_2GHZ && 3356 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3357 return 0; 3358 3359 spin_lock_bh(®_pending_beacons_lock); 3360 processing = pending_reg_beacon(beacon_chan); 3361 spin_unlock_bh(®_pending_beacons_lock); 3362 3363 if (processing) 3364 return 0; 3365 3366 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3367 if (!reg_beacon) 3368 return -ENOMEM; 3369 3370 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 3371 beacon_chan->center_freq, 3372 ieee80211_frequency_to_channel(beacon_chan->center_freq), 3373 wiphy_name(wiphy)); 3374 3375 memcpy(®_beacon->chan, beacon_chan, 3376 sizeof(struct ieee80211_channel)); 3377 3378 /* 3379 * Since we can be called from BH or and non-BH context 3380 * we must use spin_lock_bh() 3381 */ 3382 spin_lock_bh(®_pending_beacons_lock); 3383 list_add_tail(®_beacon->list, ®_pending_beacons); 3384 spin_unlock_bh(®_pending_beacons_lock); 3385 3386 schedule_work(®_work); 3387 3388 return 0; 3389 } 3390 3391 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3392 { 3393 unsigned int i; 3394 const struct ieee80211_reg_rule *reg_rule = NULL; 3395 const struct ieee80211_freq_range *freq_range = NULL; 3396 const struct ieee80211_power_rule *power_rule = NULL; 3397 char bw[32], cac_time[32]; 3398 3399 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3400 3401 for (i = 0; i < rd->n_reg_rules; i++) { 3402 reg_rule = &rd->reg_rules[i]; 3403 freq_range = ®_rule->freq_range; 3404 power_rule = ®_rule->power_rule; 3405 3406 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3407 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 3408 freq_range->max_bandwidth_khz, 3409 reg_get_max_bandwidth(rd, reg_rule)); 3410 else 3411 snprintf(bw, sizeof(bw), "%d KHz", 3412 freq_range->max_bandwidth_khz); 3413 3414 if (reg_rule->flags & NL80211_RRF_DFS) 3415 scnprintf(cac_time, sizeof(cac_time), "%u s", 3416 reg_rule->dfs_cac_ms/1000); 3417 else 3418 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3419 3420 3421 /* 3422 * There may not be documentation for max antenna gain 3423 * in certain regions 3424 */ 3425 if (power_rule->max_antenna_gain) 3426 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3427 freq_range->start_freq_khz, 3428 freq_range->end_freq_khz, 3429 bw, 3430 power_rule->max_antenna_gain, 3431 power_rule->max_eirp, 3432 cac_time); 3433 else 3434 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3435 freq_range->start_freq_khz, 3436 freq_range->end_freq_khz, 3437 bw, 3438 power_rule->max_eirp, 3439 cac_time); 3440 } 3441 } 3442 3443 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3444 { 3445 switch (dfs_region) { 3446 case NL80211_DFS_UNSET: 3447 case NL80211_DFS_FCC: 3448 case NL80211_DFS_ETSI: 3449 case NL80211_DFS_JP: 3450 return true; 3451 default: 3452 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3453 return false; 3454 } 3455 } 3456 3457 static void print_regdomain(const struct ieee80211_regdomain *rd) 3458 { 3459 struct regulatory_request *lr = get_last_request(); 3460 3461 if (is_intersected_alpha2(rd->alpha2)) { 3462 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3463 struct cfg80211_registered_device *rdev; 3464 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3465 if (rdev) { 3466 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3467 rdev->country_ie_alpha2[0], 3468 rdev->country_ie_alpha2[1]); 3469 } else 3470 pr_debug("Current regulatory domain intersected:\n"); 3471 } else 3472 pr_debug("Current regulatory domain intersected:\n"); 3473 } else if (is_world_regdom(rd->alpha2)) { 3474 pr_debug("World regulatory domain updated:\n"); 3475 } else { 3476 if (is_unknown_alpha2(rd->alpha2)) 3477 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3478 else { 3479 if (reg_request_cell_base(lr)) 3480 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3481 rd->alpha2[0], rd->alpha2[1]); 3482 else 3483 pr_debug("Regulatory domain changed to country: %c%c\n", 3484 rd->alpha2[0], rd->alpha2[1]); 3485 } 3486 } 3487 3488 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3489 print_rd_rules(rd); 3490 } 3491 3492 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3493 { 3494 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3495 print_rd_rules(rd); 3496 } 3497 3498 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3499 { 3500 if (!is_world_regdom(rd->alpha2)) 3501 return -EINVAL; 3502 update_world_regdomain(rd); 3503 return 0; 3504 } 3505 3506 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3507 struct regulatory_request *user_request) 3508 { 3509 const struct ieee80211_regdomain *intersected_rd = NULL; 3510 3511 if (!regdom_changes(rd->alpha2)) 3512 return -EALREADY; 3513 3514 if (!is_valid_rd(rd)) { 3515 pr_err("Invalid regulatory domain detected: %c%c\n", 3516 rd->alpha2[0], rd->alpha2[1]); 3517 print_regdomain_info(rd); 3518 return -EINVAL; 3519 } 3520 3521 if (!user_request->intersect) { 3522 reset_regdomains(false, rd); 3523 return 0; 3524 } 3525 3526 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3527 if (!intersected_rd) 3528 return -EINVAL; 3529 3530 kfree(rd); 3531 rd = NULL; 3532 reset_regdomains(false, intersected_rd); 3533 3534 return 0; 3535 } 3536 3537 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3538 struct regulatory_request *driver_request) 3539 { 3540 const struct ieee80211_regdomain *regd; 3541 const struct ieee80211_regdomain *intersected_rd = NULL; 3542 const struct ieee80211_regdomain *tmp; 3543 struct wiphy *request_wiphy; 3544 3545 if (is_world_regdom(rd->alpha2)) 3546 return -EINVAL; 3547 3548 if (!regdom_changes(rd->alpha2)) 3549 return -EALREADY; 3550 3551 if (!is_valid_rd(rd)) { 3552 pr_err("Invalid regulatory domain detected: %c%c\n", 3553 rd->alpha2[0], rd->alpha2[1]); 3554 print_regdomain_info(rd); 3555 return -EINVAL; 3556 } 3557 3558 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3559 if (!request_wiphy) 3560 return -ENODEV; 3561 3562 if (!driver_request->intersect) { 3563 if (request_wiphy->regd) 3564 return -EALREADY; 3565 3566 regd = reg_copy_regd(rd); 3567 if (IS_ERR(regd)) 3568 return PTR_ERR(regd); 3569 3570 rcu_assign_pointer(request_wiphy->regd, regd); 3571 reset_regdomains(false, rd); 3572 return 0; 3573 } 3574 3575 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3576 if (!intersected_rd) 3577 return -EINVAL; 3578 3579 /* 3580 * We can trash what CRDA provided now. 3581 * However if a driver requested this specific regulatory 3582 * domain we keep it for its private use 3583 */ 3584 tmp = get_wiphy_regdom(request_wiphy); 3585 rcu_assign_pointer(request_wiphy->regd, rd); 3586 rcu_free_regdom(tmp); 3587 3588 rd = NULL; 3589 3590 reset_regdomains(false, intersected_rd); 3591 3592 return 0; 3593 } 3594 3595 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3596 struct regulatory_request *country_ie_request) 3597 { 3598 struct wiphy *request_wiphy; 3599 3600 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3601 !is_unknown_alpha2(rd->alpha2)) 3602 return -EINVAL; 3603 3604 /* 3605 * Lets only bother proceeding on the same alpha2 if the current 3606 * rd is non static (it means CRDA was present and was used last) 3607 * and the pending request came in from a country IE 3608 */ 3609 3610 if (!is_valid_rd(rd)) { 3611 pr_err("Invalid regulatory domain detected: %c%c\n", 3612 rd->alpha2[0], rd->alpha2[1]); 3613 print_regdomain_info(rd); 3614 return -EINVAL; 3615 } 3616 3617 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3618 if (!request_wiphy) 3619 return -ENODEV; 3620 3621 if (country_ie_request->intersect) 3622 return -EINVAL; 3623 3624 reset_regdomains(false, rd); 3625 return 0; 3626 } 3627 3628 /* 3629 * Use this call to set the current regulatory domain. Conflicts with 3630 * multiple drivers can be ironed out later. Caller must've already 3631 * kmalloc'd the rd structure. 3632 */ 3633 int set_regdom(const struct ieee80211_regdomain *rd, 3634 enum ieee80211_regd_source regd_src) 3635 { 3636 struct regulatory_request *lr; 3637 bool user_reset = false; 3638 int r; 3639 3640 if (IS_ERR_OR_NULL(rd)) 3641 return -ENODATA; 3642 3643 if (!reg_is_valid_request(rd->alpha2)) { 3644 kfree(rd); 3645 return -EINVAL; 3646 } 3647 3648 if (regd_src == REGD_SOURCE_CRDA) 3649 reset_crda_timeouts(); 3650 3651 lr = get_last_request(); 3652 3653 /* Note that this doesn't update the wiphys, this is done below */ 3654 switch (lr->initiator) { 3655 case NL80211_REGDOM_SET_BY_CORE: 3656 r = reg_set_rd_core(rd); 3657 break; 3658 case NL80211_REGDOM_SET_BY_USER: 3659 cfg80211_save_user_regdom(rd); 3660 r = reg_set_rd_user(rd, lr); 3661 user_reset = true; 3662 break; 3663 case NL80211_REGDOM_SET_BY_DRIVER: 3664 r = reg_set_rd_driver(rd, lr); 3665 break; 3666 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3667 r = reg_set_rd_country_ie(rd, lr); 3668 break; 3669 default: 3670 WARN(1, "invalid initiator %d\n", lr->initiator); 3671 kfree(rd); 3672 return -EINVAL; 3673 } 3674 3675 if (r) { 3676 switch (r) { 3677 case -EALREADY: 3678 reg_set_request_processed(); 3679 break; 3680 default: 3681 /* Back to world regulatory in case of errors */ 3682 restore_regulatory_settings(user_reset, false); 3683 } 3684 3685 kfree(rd); 3686 return r; 3687 } 3688 3689 /* This would make this whole thing pointless */ 3690 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3691 return -EINVAL; 3692 3693 /* update all wiphys now with the new established regulatory domain */ 3694 update_all_wiphy_regulatory(lr->initiator); 3695 3696 print_regdomain(get_cfg80211_regdom()); 3697 3698 nl80211_send_reg_change_event(lr); 3699 3700 reg_set_request_processed(); 3701 3702 return 0; 3703 } 3704 3705 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3706 struct ieee80211_regdomain *rd) 3707 { 3708 const struct ieee80211_regdomain *regd; 3709 const struct ieee80211_regdomain *prev_regd; 3710 struct cfg80211_registered_device *rdev; 3711 3712 if (WARN_ON(!wiphy || !rd)) 3713 return -EINVAL; 3714 3715 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3716 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3717 return -EPERM; 3718 3719 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3720 print_regdomain_info(rd); 3721 return -EINVAL; 3722 } 3723 3724 regd = reg_copy_regd(rd); 3725 if (IS_ERR(regd)) 3726 return PTR_ERR(regd); 3727 3728 rdev = wiphy_to_rdev(wiphy); 3729 3730 spin_lock(®_requests_lock); 3731 prev_regd = rdev->requested_regd; 3732 rdev->requested_regd = regd; 3733 spin_unlock(®_requests_lock); 3734 3735 kfree(prev_regd); 3736 return 0; 3737 } 3738 3739 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3740 struct ieee80211_regdomain *rd) 3741 { 3742 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3743 3744 if (ret) 3745 return ret; 3746 3747 schedule_work(®_work); 3748 return 0; 3749 } 3750 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3751 3752 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3753 struct ieee80211_regdomain *rd) 3754 { 3755 int ret; 3756 3757 ASSERT_RTNL(); 3758 3759 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3760 if (ret) 3761 return ret; 3762 3763 /* process the request immediately */ 3764 reg_process_self_managed_hints(); 3765 return 0; 3766 } 3767 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3768 3769 void wiphy_regulatory_register(struct wiphy *wiphy) 3770 { 3771 struct regulatory_request *lr = get_last_request(); 3772 3773 /* self-managed devices ignore beacon hints and country IE */ 3774 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 3775 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3776 REGULATORY_COUNTRY_IE_IGNORE; 3777 3778 /* 3779 * The last request may have been received before this 3780 * registration call. Call the driver notifier if 3781 * initiator is USER. 3782 */ 3783 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 3784 reg_call_notifier(wiphy, lr); 3785 } 3786 3787 if (!reg_dev_ignore_cell_hint(wiphy)) 3788 reg_num_devs_support_basehint++; 3789 3790 wiphy_update_regulatory(wiphy, lr->initiator); 3791 wiphy_all_share_dfs_chan_state(wiphy); 3792 } 3793 3794 void wiphy_regulatory_deregister(struct wiphy *wiphy) 3795 { 3796 struct wiphy *request_wiphy = NULL; 3797 struct regulatory_request *lr; 3798 3799 lr = get_last_request(); 3800 3801 if (!reg_dev_ignore_cell_hint(wiphy)) 3802 reg_num_devs_support_basehint--; 3803 3804 rcu_free_regdom(get_wiphy_regdom(wiphy)); 3805 RCU_INIT_POINTER(wiphy->regd, NULL); 3806 3807 if (lr) 3808 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 3809 3810 if (!request_wiphy || request_wiphy != wiphy) 3811 return; 3812 3813 lr->wiphy_idx = WIPHY_IDX_INVALID; 3814 lr->country_ie_env = ENVIRON_ANY; 3815 } 3816 3817 /* 3818 * See FCC notices for UNII band definitions 3819 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 3820 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 3821 */ 3822 int cfg80211_get_unii(int freq) 3823 { 3824 /* UNII-1 */ 3825 if (freq >= 5150 && freq <= 5250) 3826 return 0; 3827 3828 /* UNII-2A */ 3829 if (freq > 5250 && freq <= 5350) 3830 return 1; 3831 3832 /* UNII-2B */ 3833 if (freq > 5350 && freq <= 5470) 3834 return 2; 3835 3836 /* UNII-2C */ 3837 if (freq > 5470 && freq <= 5725) 3838 return 3; 3839 3840 /* UNII-3 */ 3841 if (freq > 5725 && freq <= 5825) 3842 return 4; 3843 3844 /* UNII-5 */ 3845 if (freq > 5925 && freq <= 6425) 3846 return 5; 3847 3848 /* UNII-6 */ 3849 if (freq > 6425 && freq <= 6525) 3850 return 6; 3851 3852 /* UNII-7 */ 3853 if (freq > 6525 && freq <= 6875) 3854 return 7; 3855 3856 /* UNII-8 */ 3857 if (freq > 6875 && freq <= 7125) 3858 return 8; 3859 3860 return -EINVAL; 3861 } 3862 3863 bool regulatory_indoor_allowed(void) 3864 { 3865 return reg_is_indoor; 3866 } 3867 3868 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 3869 { 3870 const struct ieee80211_regdomain *regd = NULL; 3871 const struct ieee80211_regdomain *wiphy_regd = NULL; 3872 bool pre_cac_allowed = false; 3873 3874 rcu_read_lock(); 3875 3876 regd = rcu_dereference(cfg80211_regdomain); 3877 wiphy_regd = rcu_dereference(wiphy->regd); 3878 if (!wiphy_regd) { 3879 if (regd->dfs_region == NL80211_DFS_ETSI) 3880 pre_cac_allowed = true; 3881 3882 rcu_read_unlock(); 3883 3884 return pre_cac_allowed; 3885 } 3886 3887 if (regd->dfs_region == wiphy_regd->dfs_region && 3888 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 3889 pre_cac_allowed = true; 3890 3891 rcu_read_unlock(); 3892 3893 return pre_cac_allowed; 3894 } 3895 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 3896 3897 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 3898 { 3899 struct wireless_dev *wdev; 3900 /* If we finished CAC or received radar, we should end any 3901 * CAC running on the same channels. 3902 * the check !cfg80211_chandef_dfs_usable contain 2 options: 3903 * either all channels are available - those the CAC_FINISHED 3904 * event has effected another wdev state, or there is a channel 3905 * in unavailable state in wdev chandef - those the RADAR_DETECTED 3906 * event has effected another wdev state. 3907 * In both cases we should end the CAC on the wdev. 3908 */ 3909 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3910 if (wdev->cac_started && 3911 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef)) 3912 rdev_end_cac(rdev, wdev->netdev); 3913 } 3914 } 3915 3916 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 3917 struct cfg80211_chan_def *chandef, 3918 enum nl80211_dfs_state dfs_state, 3919 enum nl80211_radar_event event) 3920 { 3921 struct cfg80211_registered_device *rdev; 3922 3923 ASSERT_RTNL(); 3924 3925 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 3926 return; 3927 3928 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3929 if (wiphy == &rdev->wiphy) 3930 continue; 3931 3932 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 3933 continue; 3934 3935 if (!ieee80211_get_channel(&rdev->wiphy, 3936 chandef->chan->center_freq)) 3937 continue; 3938 3939 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 3940 3941 if (event == NL80211_RADAR_DETECTED || 3942 event == NL80211_RADAR_CAC_FINISHED) { 3943 cfg80211_sched_dfs_chan_update(rdev); 3944 cfg80211_check_and_end_cac(rdev); 3945 } 3946 3947 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 3948 } 3949 } 3950 3951 static int __init regulatory_init_db(void) 3952 { 3953 int err; 3954 3955 /* 3956 * It's possible that - due to other bugs/issues - cfg80211 3957 * never called regulatory_init() below, or that it failed; 3958 * in that case, don't try to do any further work here as 3959 * it's doomed to lead to crashes. 3960 */ 3961 if (IS_ERR_OR_NULL(reg_pdev)) 3962 return -EINVAL; 3963 3964 err = load_builtin_regdb_keys(); 3965 if (err) 3966 return err; 3967 3968 /* We always try to get an update for the static regdomain */ 3969 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 3970 if (err) { 3971 if (err == -ENOMEM) { 3972 platform_device_unregister(reg_pdev); 3973 return err; 3974 } 3975 /* 3976 * N.B. kobject_uevent_env() can fail mainly for when we're out 3977 * memory which is handled and propagated appropriately above 3978 * but it can also fail during a netlink_broadcast() or during 3979 * early boot for call_usermodehelper(). For now treat these 3980 * errors as non-fatal. 3981 */ 3982 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 3983 } 3984 3985 /* 3986 * Finally, if the user set the module parameter treat it 3987 * as a user hint. 3988 */ 3989 if (!is_world_regdom(ieee80211_regdom)) 3990 regulatory_hint_user(ieee80211_regdom, 3991 NL80211_USER_REG_HINT_USER); 3992 3993 return 0; 3994 } 3995 #ifndef MODULE 3996 late_initcall(regulatory_init_db); 3997 #endif 3998 3999 int __init regulatory_init(void) 4000 { 4001 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4002 if (IS_ERR(reg_pdev)) 4003 return PTR_ERR(reg_pdev); 4004 4005 spin_lock_init(®_requests_lock); 4006 spin_lock_init(®_pending_beacons_lock); 4007 spin_lock_init(®_indoor_lock); 4008 4009 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4010 4011 user_alpha2[0] = '9'; 4012 user_alpha2[1] = '7'; 4013 4014 #ifdef MODULE 4015 return regulatory_init_db(); 4016 #else 4017 return 0; 4018 #endif 4019 } 4020 4021 void regulatory_exit(void) 4022 { 4023 struct regulatory_request *reg_request, *tmp; 4024 struct reg_beacon *reg_beacon, *btmp; 4025 4026 cancel_work_sync(®_work); 4027 cancel_crda_timeout_sync(); 4028 cancel_delayed_work_sync(®_check_chans); 4029 4030 /* Lock to suppress warnings */ 4031 rtnl_lock(); 4032 reset_regdomains(true, NULL); 4033 rtnl_unlock(); 4034 4035 dev_set_uevent_suppress(®_pdev->dev, true); 4036 4037 platform_device_unregister(reg_pdev); 4038 4039 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4040 list_del(®_beacon->list); 4041 kfree(reg_beacon); 4042 } 4043 4044 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4045 list_del(®_beacon->list); 4046 kfree(reg_beacon); 4047 } 4048 4049 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4050 list_del(®_request->list); 4051 kfree(reg_request); 4052 } 4053 4054 if (!IS_ERR_OR_NULL(regdb)) 4055 kfree(regdb); 4056 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4057 kfree(cfg80211_user_regdom); 4058 4059 free_regdb_keyring(); 4060 } 4061