1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2019 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static spinlock_t reg_indoor_lock; 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 138 { 139 return rcu_dereference_rtnl(cfg80211_regdomain); 140 } 141 142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 143 { 144 return rcu_dereference_rtnl(wiphy->regd); 145 } 146 147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 148 { 149 switch (dfs_region) { 150 case NL80211_DFS_UNSET: 151 return "unset"; 152 case NL80211_DFS_FCC: 153 return "FCC"; 154 case NL80211_DFS_ETSI: 155 return "ETSI"; 156 case NL80211_DFS_JP: 157 return "JP"; 158 } 159 return "Unknown"; 160 } 161 162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 163 { 164 const struct ieee80211_regdomain *regd = NULL; 165 const struct ieee80211_regdomain *wiphy_regd = NULL; 166 167 regd = get_cfg80211_regdom(); 168 if (!wiphy) 169 goto out; 170 171 wiphy_regd = get_wiphy_regdom(wiphy); 172 if (!wiphy_regd) 173 goto out; 174 175 if (wiphy_regd->dfs_region == regd->dfs_region) 176 goto out; 177 178 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 179 dev_name(&wiphy->dev), 180 reg_dfs_region_str(wiphy_regd->dfs_region), 181 reg_dfs_region_str(regd->dfs_region)); 182 183 out: 184 return regd->dfs_region; 185 } 186 187 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 188 { 189 if (!r) 190 return; 191 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 192 } 193 194 static struct regulatory_request *get_last_request(void) 195 { 196 return rcu_dereference_rtnl(last_request); 197 } 198 199 /* Used to queue up regulatory hints */ 200 static LIST_HEAD(reg_requests_list); 201 static spinlock_t reg_requests_lock; 202 203 /* Used to queue up beacon hints for review */ 204 static LIST_HEAD(reg_pending_beacons); 205 static spinlock_t reg_pending_beacons_lock; 206 207 /* Used to keep track of processed beacon hints */ 208 static LIST_HEAD(reg_beacon_list); 209 210 struct reg_beacon { 211 struct list_head list; 212 struct ieee80211_channel chan; 213 }; 214 215 static void reg_check_chans_work(struct work_struct *work); 216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 217 218 static void reg_todo(struct work_struct *work); 219 static DECLARE_WORK(reg_work, reg_todo); 220 221 /* We keep a static world regulatory domain in case of the absence of CRDA */ 222 static const struct ieee80211_regdomain world_regdom = { 223 .n_reg_rules = 8, 224 .alpha2 = "00", 225 .reg_rules = { 226 /* IEEE 802.11b/g, channels 1..11 */ 227 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 228 /* IEEE 802.11b/g, channels 12..13. */ 229 REG_RULE(2467-10, 2472+10, 20, 6, 20, 230 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 231 /* IEEE 802.11 channel 14 - Only JP enables 232 * this and for 802.11b only */ 233 REG_RULE(2484-10, 2484+10, 20, 6, 20, 234 NL80211_RRF_NO_IR | 235 NL80211_RRF_NO_OFDM), 236 /* IEEE 802.11a, channel 36..48 */ 237 REG_RULE(5180-10, 5240+10, 80, 6, 20, 238 NL80211_RRF_NO_IR | 239 NL80211_RRF_AUTO_BW), 240 241 /* IEEE 802.11a, channel 52..64 - DFS required */ 242 REG_RULE(5260-10, 5320+10, 80, 6, 20, 243 NL80211_RRF_NO_IR | 244 NL80211_RRF_AUTO_BW | 245 NL80211_RRF_DFS), 246 247 /* IEEE 802.11a, channel 100..144 - DFS required */ 248 REG_RULE(5500-10, 5720+10, 160, 6, 20, 249 NL80211_RRF_NO_IR | 250 NL80211_RRF_DFS), 251 252 /* IEEE 802.11a, channel 149..165 */ 253 REG_RULE(5745-10, 5825+10, 80, 6, 20, 254 NL80211_RRF_NO_IR), 255 256 /* IEEE 802.11ad (60GHz), channels 1..3 */ 257 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 258 } 259 }; 260 261 /* protected by RTNL */ 262 static const struct ieee80211_regdomain *cfg80211_world_regdom = 263 &world_regdom; 264 265 static char *ieee80211_regdom = "00"; 266 static char user_alpha2[2]; 267 static const struct ieee80211_regdomain *cfg80211_user_regdom; 268 269 module_param(ieee80211_regdom, charp, 0444); 270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 271 272 static void reg_free_request(struct regulatory_request *request) 273 { 274 if (request == &core_request_world) 275 return; 276 277 if (request != get_last_request()) 278 kfree(request); 279 } 280 281 static void reg_free_last_request(void) 282 { 283 struct regulatory_request *lr = get_last_request(); 284 285 if (lr != &core_request_world && lr) 286 kfree_rcu(lr, rcu_head); 287 } 288 289 static void reg_update_last_request(struct regulatory_request *request) 290 { 291 struct regulatory_request *lr; 292 293 lr = get_last_request(); 294 if (lr == request) 295 return; 296 297 reg_free_last_request(); 298 rcu_assign_pointer(last_request, request); 299 } 300 301 static void reset_regdomains(bool full_reset, 302 const struct ieee80211_regdomain *new_regdom) 303 { 304 const struct ieee80211_regdomain *r; 305 306 ASSERT_RTNL(); 307 308 r = get_cfg80211_regdom(); 309 310 /* avoid freeing static information or freeing something twice */ 311 if (r == cfg80211_world_regdom) 312 r = NULL; 313 if (cfg80211_world_regdom == &world_regdom) 314 cfg80211_world_regdom = NULL; 315 if (r == &world_regdom) 316 r = NULL; 317 318 rcu_free_regdom(r); 319 rcu_free_regdom(cfg80211_world_regdom); 320 321 cfg80211_world_regdom = &world_regdom; 322 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 323 324 if (!full_reset) 325 return; 326 327 reg_update_last_request(&core_request_world); 328 } 329 330 /* 331 * Dynamic world regulatory domain requested by the wireless 332 * core upon initialization 333 */ 334 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 335 { 336 struct regulatory_request *lr; 337 338 lr = get_last_request(); 339 340 WARN_ON(!lr); 341 342 reset_regdomains(false, rd); 343 344 cfg80211_world_regdom = rd; 345 } 346 347 bool is_world_regdom(const char *alpha2) 348 { 349 if (!alpha2) 350 return false; 351 return alpha2[0] == '0' && alpha2[1] == '0'; 352 } 353 354 static bool is_alpha2_set(const char *alpha2) 355 { 356 if (!alpha2) 357 return false; 358 return alpha2[0] && alpha2[1]; 359 } 360 361 static bool is_unknown_alpha2(const char *alpha2) 362 { 363 if (!alpha2) 364 return false; 365 /* 366 * Special case where regulatory domain was built by driver 367 * but a specific alpha2 cannot be determined 368 */ 369 return alpha2[0] == '9' && alpha2[1] == '9'; 370 } 371 372 static bool is_intersected_alpha2(const char *alpha2) 373 { 374 if (!alpha2) 375 return false; 376 /* 377 * Special case where regulatory domain is the 378 * result of an intersection between two regulatory domain 379 * structures 380 */ 381 return alpha2[0] == '9' && alpha2[1] == '8'; 382 } 383 384 static bool is_an_alpha2(const char *alpha2) 385 { 386 if (!alpha2) 387 return false; 388 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 389 } 390 391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 392 { 393 if (!alpha2_x || !alpha2_y) 394 return false; 395 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 396 } 397 398 static bool regdom_changes(const char *alpha2) 399 { 400 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 401 402 if (!r) 403 return true; 404 return !alpha2_equal(r->alpha2, alpha2); 405 } 406 407 /* 408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 410 * has ever been issued. 411 */ 412 static bool is_user_regdom_saved(void) 413 { 414 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 415 return false; 416 417 /* This would indicate a mistake on the design */ 418 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 419 "Unexpected user alpha2: %c%c\n", 420 user_alpha2[0], user_alpha2[1])) 421 return false; 422 423 return true; 424 } 425 426 static const struct ieee80211_regdomain * 427 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 428 { 429 struct ieee80211_regdomain *regd; 430 int size_of_regd; 431 unsigned int i; 432 433 size_of_regd = 434 sizeof(struct ieee80211_regdomain) + 435 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 436 437 regd = kzalloc(size_of_regd, GFP_KERNEL); 438 if (!regd) 439 return ERR_PTR(-ENOMEM); 440 441 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 442 443 for (i = 0; i < src_regd->n_reg_rules; i++) 444 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 445 sizeof(struct ieee80211_reg_rule)); 446 447 return regd; 448 } 449 450 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 451 { 452 ASSERT_RTNL(); 453 454 if (!IS_ERR(cfg80211_user_regdom)) 455 kfree(cfg80211_user_regdom); 456 cfg80211_user_regdom = reg_copy_regd(rd); 457 } 458 459 struct reg_regdb_apply_request { 460 struct list_head list; 461 const struct ieee80211_regdomain *regdom; 462 }; 463 464 static LIST_HEAD(reg_regdb_apply_list); 465 static DEFINE_MUTEX(reg_regdb_apply_mutex); 466 467 static void reg_regdb_apply(struct work_struct *work) 468 { 469 struct reg_regdb_apply_request *request; 470 471 rtnl_lock(); 472 473 mutex_lock(®_regdb_apply_mutex); 474 while (!list_empty(®_regdb_apply_list)) { 475 request = list_first_entry(®_regdb_apply_list, 476 struct reg_regdb_apply_request, 477 list); 478 list_del(&request->list); 479 480 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 481 kfree(request); 482 } 483 mutex_unlock(®_regdb_apply_mutex); 484 485 rtnl_unlock(); 486 } 487 488 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 489 490 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 491 { 492 struct reg_regdb_apply_request *request; 493 494 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 495 if (!request) { 496 kfree(regdom); 497 return -ENOMEM; 498 } 499 500 request->regdom = regdom; 501 502 mutex_lock(®_regdb_apply_mutex); 503 list_add_tail(&request->list, ®_regdb_apply_list); 504 mutex_unlock(®_regdb_apply_mutex); 505 506 schedule_work(®_regdb_work); 507 return 0; 508 } 509 510 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 511 /* Max number of consecutive attempts to communicate with CRDA */ 512 #define REG_MAX_CRDA_TIMEOUTS 10 513 514 static u32 reg_crda_timeouts; 515 516 static void crda_timeout_work(struct work_struct *work); 517 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 518 519 static void crda_timeout_work(struct work_struct *work) 520 { 521 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 522 rtnl_lock(); 523 reg_crda_timeouts++; 524 restore_regulatory_settings(true, false); 525 rtnl_unlock(); 526 } 527 528 static void cancel_crda_timeout(void) 529 { 530 cancel_delayed_work(&crda_timeout); 531 } 532 533 static void cancel_crda_timeout_sync(void) 534 { 535 cancel_delayed_work_sync(&crda_timeout); 536 } 537 538 static void reset_crda_timeouts(void) 539 { 540 reg_crda_timeouts = 0; 541 } 542 543 /* 544 * This lets us keep regulatory code which is updated on a regulatory 545 * basis in userspace. 546 */ 547 static int call_crda(const char *alpha2) 548 { 549 char country[12]; 550 char *env[] = { country, NULL }; 551 int ret; 552 553 snprintf(country, sizeof(country), "COUNTRY=%c%c", 554 alpha2[0], alpha2[1]); 555 556 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 557 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 558 return -EINVAL; 559 } 560 561 if (!is_world_regdom((char *) alpha2)) 562 pr_debug("Calling CRDA for country: %c%c\n", 563 alpha2[0], alpha2[1]); 564 else 565 pr_debug("Calling CRDA to update world regulatory domain\n"); 566 567 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 568 if (ret) 569 return ret; 570 571 queue_delayed_work(system_power_efficient_wq, 572 &crda_timeout, msecs_to_jiffies(3142)); 573 return 0; 574 } 575 #else 576 static inline void cancel_crda_timeout(void) {} 577 static inline void cancel_crda_timeout_sync(void) {} 578 static inline void reset_crda_timeouts(void) {} 579 static inline int call_crda(const char *alpha2) 580 { 581 return -ENODATA; 582 } 583 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 584 585 /* code to directly load a firmware database through request_firmware */ 586 static const struct fwdb_header *regdb; 587 588 struct fwdb_country { 589 u8 alpha2[2]; 590 __be16 coll_ptr; 591 /* this struct cannot be extended */ 592 } __packed __aligned(4); 593 594 struct fwdb_collection { 595 u8 len; 596 u8 n_rules; 597 u8 dfs_region; 598 /* no optional data yet */ 599 /* aligned to 2, then followed by __be16 array of rule pointers */ 600 } __packed __aligned(4); 601 602 enum fwdb_flags { 603 FWDB_FLAG_NO_OFDM = BIT(0), 604 FWDB_FLAG_NO_OUTDOOR = BIT(1), 605 FWDB_FLAG_DFS = BIT(2), 606 FWDB_FLAG_NO_IR = BIT(3), 607 FWDB_FLAG_AUTO_BW = BIT(4), 608 }; 609 610 struct fwdb_wmm_ac { 611 u8 ecw; 612 u8 aifsn; 613 __be16 cot; 614 } __packed; 615 616 struct fwdb_wmm_rule { 617 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 618 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 619 } __packed; 620 621 struct fwdb_rule { 622 u8 len; 623 u8 flags; 624 __be16 max_eirp; 625 __be32 start, end, max_bw; 626 /* start of optional data */ 627 __be16 cac_timeout; 628 __be16 wmm_ptr; 629 } __packed __aligned(4); 630 631 #define FWDB_MAGIC 0x52474442 632 #define FWDB_VERSION 20 633 634 struct fwdb_header { 635 __be32 magic; 636 __be32 version; 637 struct fwdb_country country[]; 638 } __packed __aligned(4); 639 640 static int ecw2cw(int ecw) 641 { 642 return (1 << ecw) - 1; 643 } 644 645 static bool valid_wmm(struct fwdb_wmm_rule *rule) 646 { 647 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 648 int i; 649 650 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 651 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 652 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 653 u8 aifsn = ac[i].aifsn; 654 655 if (cw_min >= cw_max) 656 return false; 657 658 if (aifsn < 1) 659 return false; 660 } 661 662 return true; 663 } 664 665 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 666 { 667 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 668 669 if ((u8 *)rule + sizeof(rule->len) > data + size) 670 return false; 671 672 /* mandatory fields */ 673 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 674 return false; 675 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 676 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 677 struct fwdb_wmm_rule *wmm; 678 679 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 680 return false; 681 682 wmm = (void *)(data + wmm_ptr); 683 684 if (!valid_wmm(wmm)) 685 return false; 686 } 687 return true; 688 } 689 690 static bool valid_country(const u8 *data, unsigned int size, 691 const struct fwdb_country *country) 692 { 693 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 694 struct fwdb_collection *coll = (void *)(data + ptr); 695 __be16 *rules_ptr; 696 unsigned int i; 697 698 /* make sure we can read len/n_rules */ 699 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 700 return false; 701 702 /* make sure base struct and all rules fit */ 703 if ((u8 *)coll + ALIGN(coll->len, 2) + 704 (coll->n_rules * 2) > data + size) 705 return false; 706 707 /* mandatory fields must exist */ 708 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 709 return false; 710 711 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 712 713 for (i = 0; i < coll->n_rules; i++) { 714 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 715 716 if (!valid_rule(data, size, rule_ptr)) 717 return false; 718 } 719 720 return true; 721 } 722 723 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 724 static struct key *builtin_regdb_keys; 725 726 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 727 { 728 const u8 *end = p + buflen; 729 size_t plen; 730 key_ref_t key; 731 732 while (p < end) { 733 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 734 * than 256 bytes in size. 735 */ 736 if (end - p < 4) 737 goto dodgy_cert; 738 if (p[0] != 0x30 && 739 p[1] != 0x82) 740 goto dodgy_cert; 741 plen = (p[2] << 8) | p[3]; 742 plen += 4; 743 if (plen > end - p) 744 goto dodgy_cert; 745 746 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 747 "asymmetric", NULL, p, plen, 748 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 749 KEY_USR_VIEW | KEY_USR_READ), 750 KEY_ALLOC_NOT_IN_QUOTA | 751 KEY_ALLOC_BUILT_IN | 752 KEY_ALLOC_BYPASS_RESTRICTION); 753 if (IS_ERR(key)) { 754 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 755 PTR_ERR(key)); 756 } else { 757 pr_notice("Loaded X.509 cert '%s'\n", 758 key_ref_to_ptr(key)->description); 759 key_ref_put(key); 760 } 761 p += plen; 762 } 763 764 return; 765 766 dodgy_cert: 767 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 768 } 769 770 static int __init load_builtin_regdb_keys(void) 771 { 772 builtin_regdb_keys = 773 keyring_alloc(".builtin_regdb_keys", 774 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 775 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 776 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 777 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 778 if (IS_ERR(builtin_regdb_keys)) 779 return PTR_ERR(builtin_regdb_keys); 780 781 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 782 783 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 784 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 785 #endif 786 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 787 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 788 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 789 #endif 790 791 return 0; 792 } 793 794 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 795 { 796 const struct firmware *sig; 797 bool result; 798 799 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 800 return false; 801 802 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 803 builtin_regdb_keys, 804 VERIFYING_UNSPECIFIED_SIGNATURE, 805 NULL, NULL) == 0; 806 807 release_firmware(sig); 808 809 return result; 810 } 811 812 static void free_regdb_keyring(void) 813 { 814 key_put(builtin_regdb_keys); 815 } 816 #else 817 static int load_builtin_regdb_keys(void) 818 { 819 return 0; 820 } 821 822 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 823 { 824 return true; 825 } 826 827 static void free_regdb_keyring(void) 828 { 829 } 830 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 831 832 static bool valid_regdb(const u8 *data, unsigned int size) 833 { 834 const struct fwdb_header *hdr = (void *)data; 835 const struct fwdb_country *country; 836 837 if (size < sizeof(*hdr)) 838 return false; 839 840 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 841 return false; 842 843 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 844 return false; 845 846 if (!regdb_has_valid_signature(data, size)) 847 return false; 848 849 country = &hdr->country[0]; 850 while ((u8 *)(country + 1) <= data + size) { 851 if (!country->coll_ptr) 852 break; 853 if (!valid_country(data, size, country)) 854 return false; 855 country++; 856 } 857 858 return true; 859 } 860 861 static void set_wmm_rule(const struct fwdb_header *db, 862 const struct fwdb_country *country, 863 const struct fwdb_rule *rule, 864 struct ieee80211_reg_rule *rrule) 865 { 866 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 867 struct fwdb_wmm_rule *wmm; 868 unsigned int i, wmm_ptr; 869 870 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 871 wmm = (void *)((u8 *)db + wmm_ptr); 872 873 if (!valid_wmm(wmm)) { 874 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 875 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 876 country->alpha2[0], country->alpha2[1]); 877 return; 878 } 879 880 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 881 wmm_rule->client[i].cw_min = 882 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 883 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 884 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 885 wmm_rule->client[i].cot = 886 1000 * be16_to_cpu(wmm->client[i].cot); 887 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 888 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 889 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 890 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 891 } 892 893 rrule->has_wmm = true; 894 } 895 896 static int __regdb_query_wmm(const struct fwdb_header *db, 897 const struct fwdb_country *country, int freq, 898 struct ieee80211_reg_rule *rrule) 899 { 900 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 901 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 902 int i; 903 904 for (i = 0; i < coll->n_rules; i++) { 905 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 906 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 907 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 908 909 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 910 continue; 911 912 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 913 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 914 set_wmm_rule(db, country, rule, rrule); 915 return 0; 916 } 917 } 918 919 return -ENODATA; 920 } 921 922 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 923 { 924 const struct fwdb_header *hdr = regdb; 925 const struct fwdb_country *country; 926 927 if (!regdb) 928 return -ENODATA; 929 930 if (IS_ERR(regdb)) 931 return PTR_ERR(regdb); 932 933 country = &hdr->country[0]; 934 while (country->coll_ptr) { 935 if (alpha2_equal(alpha2, country->alpha2)) 936 return __regdb_query_wmm(regdb, country, freq, rule); 937 938 country++; 939 } 940 941 return -ENODATA; 942 } 943 EXPORT_SYMBOL(reg_query_regdb_wmm); 944 945 static int regdb_query_country(const struct fwdb_header *db, 946 const struct fwdb_country *country) 947 { 948 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 949 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 950 struct ieee80211_regdomain *regdom; 951 unsigned int size_of_regd, i; 952 953 size_of_regd = sizeof(struct ieee80211_regdomain) + 954 coll->n_rules * sizeof(struct ieee80211_reg_rule); 955 956 regdom = kzalloc(size_of_regd, GFP_KERNEL); 957 if (!regdom) 958 return -ENOMEM; 959 960 regdom->n_reg_rules = coll->n_rules; 961 regdom->alpha2[0] = country->alpha2[0]; 962 regdom->alpha2[1] = country->alpha2[1]; 963 regdom->dfs_region = coll->dfs_region; 964 965 for (i = 0; i < regdom->n_reg_rules; i++) { 966 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 967 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 968 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 969 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 970 971 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 972 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 973 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 974 975 rrule->power_rule.max_antenna_gain = 0; 976 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 977 978 rrule->flags = 0; 979 if (rule->flags & FWDB_FLAG_NO_OFDM) 980 rrule->flags |= NL80211_RRF_NO_OFDM; 981 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 982 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 983 if (rule->flags & FWDB_FLAG_DFS) 984 rrule->flags |= NL80211_RRF_DFS; 985 if (rule->flags & FWDB_FLAG_NO_IR) 986 rrule->flags |= NL80211_RRF_NO_IR; 987 if (rule->flags & FWDB_FLAG_AUTO_BW) 988 rrule->flags |= NL80211_RRF_AUTO_BW; 989 990 rrule->dfs_cac_ms = 0; 991 992 /* handle optional data */ 993 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 994 rrule->dfs_cac_ms = 995 1000 * be16_to_cpu(rule->cac_timeout); 996 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 997 set_wmm_rule(db, country, rule, rrule); 998 } 999 1000 return reg_schedule_apply(regdom); 1001 } 1002 1003 static int query_regdb(const char *alpha2) 1004 { 1005 const struct fwdb_header *hdr = regdb; 1006 const struct fwdb_country *country; 1007 1008 ASSERT_RTNL(); 1009 1010 if (IS_ERR(regdb)) 1011 return PTR_ERR(regdb); 1012 1013 country = &hdr->country[0]; 1014 while (country->coll_ptr) { 1015 if (alpha2_equal(alpha2, country->alpha2)) 1016 return regdb_query_country(regdb, country); 1017 country++; 1018 } 1019 1020 return -ENODATA; 1021 } 1022 1023 static void regdb_fw_cb(const struct firmware *fw, void *context) 1024 { 1025 int set_error = 0; 1026 bool restore = true; 1027 void *db; 1028 1029 if (!fw) { 1030 pr_info("failed to load regulatory.db\n"); 1031 set_error = -ENODATA; 1032 } else if (!valid_regdb(fw->data, fw->size)) { 1033 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1034 set_error = -EINVAL; 1035 } 1036 1037 rtnl_lock(); 1038 if (regdb && !IS_ERR(regdb)) { 1039 /* negative case - a bug 1040 * positive case - can happen due to race in case of multiple cb's in 1041 * queue, due to usage of asynchronous callback 1042 * 1043 * Either case, just restore and free new db. 1044 */ 1045 } else if (set_error) { 1046 regdb = ERR_PTR(set_error); 1047 } else if (fw) { 1048 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1049 if (db) { 1050 regdb = db; 1051 restore = context && query_regdb(context); 1052 } else { 1053 restore = true; 1054 } 1055 } 1056 1057 if (restore) 1058 restore_regulatory_settings(true, false); 1059 1060 rtnl_unlock(); 1061 1062 kfree(context); 1063 1064 release_firmware(fw); 1065 } 1066 1067 static int query_regdb_file(const char *alpha2) 1068 { 1069 ASSERT_RTNL(); 1070 1071 if (regdb) 1072 return query_regdb(alpha2); 1073 1074 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1075 if (!alpha2) 1076 return -ENOMEM; 1077 1078 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1079 ®_pdev->dev, GFP_KERNEL, 1080 (void *)alpha2, regdb_fw_cb); 1081 } 1082 1083 int reg_reload_regdb(void) 1084 { 1085 const struct firmware *fw; 1086 void *db; 1087 int err; 1088 1089 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1090 if (err) 1091 return err; 1092 1093 if (!valid_regdb(fw->data, fw->size)) { 1094 err = -ENODATA; 1095 goto out; 1096 } 1097 1098 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1099 if (!db) { 1100 err = -ENOMEM; 1101 goto out; 1102 } 1103 1104 rtnl_lock(); 1105 if (!IS_ERR_OR_NULL(regdb)) 1106 kfree(regdb); 1107 regdb = db; 1108 rtnl_unlock(); 1109 1110 out: 1111 release_firmware(fw); 1112 return err; 1113 } 1114 1115 static bool reg_query_database(struct regulatory_request *request) 1116 { 1117 if (query_regdb_file(request->alpha2) == 0) 1118 return true; 1119 1120 if (call_crda(request->alpha2) == 0) 1121 return true; 1122 1123 return false; 1124 } 1125 1126 bool reg_is_valid_request(const char *alpha2) 1127 { 1128 struct regulatory_request *lr = get_last_request(); 1129 1130 if (!lr || lr->processed) 1131 return false; 1132 1133 return alpha2_equal(lr->alpha2, alpha2); 1134 } 1135 1136 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1137 { 1138 struct regulatory_request *lr = get_last_request(); 1139 1140 /* 1141 * Follow the driver's regulatory domain, if present, unless a country 1142 * IE has been processed or a user wants to help complaince further 1143 */ 1144 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1145 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1146 wiphy->regd) 1147 return get_wiphy_regdom(wiphy); 1148 1149 return get_cfg80211_regdom(); 1150 } 1151 1152 static unsigned int 1153 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1154 const struct ieee80211_reg_rule *rule) 1155 { 1156 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1157 const struct ieee80211_freq_range *freq_range_tmp; 1158 const struct ieee80211_reg_rule *tmp; 1159 u32 start_freq, end_freq, idx, no; 1160 1161 for (idx = 0; idx < rd->n_reg_rules; idx++) 1162 if (rule == &rd->reg_rules[idx]) 1163 break; 1164 1165 if (idx == rd->n_reg_rules) 1166 return 0; 1167 1168 /* get start_freq */ 1169 no = idx; 1170 1171 while (no) { 1172 tmp = &rd->reg_rules[--no]; 1173 freq_range_tmp = &tmp->freq_range; 1174 1175 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1176 break; 1177 1178 freq_range = freq_range_tmp; 1179 } 1180 1181 start_freq = freq_range->start_freq_khz; 1182 1183 /* get end_freq */ 1184 freq_range = &rule->freq_range; 1185 no = idx; 1186 1187 while (no < rd->n_reg_rules - 1) { 1188 tmp = &rd->reg_rules[++no]; 1189 freq_range_tmp = &tmp->freq_range; 1190 1191 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1192 break; 1193 1194 freq_range = freq_range_tmp; 1195 } 1196 1197 end_freq = freq_range->end_freq_khz; 1198 1199 return end_freq - start_freq; 1200 } 1201 1202 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1203 const struct ieee80211_reg_rule *rule) 1204 { 1205 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1206 1207 if (rule->flags & NL80211_RRF_NO_160MHZ) 1208 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1209 if (rule->flags & NL80211_RRF_NO_80MHZ) 1210 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1211 1212 /* 1213 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1214 * are not allowed. 1215 */ 1216 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1217 rule->flags & NL80211_RRF_NO_HT40PLUS) 1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1219 1220 return bw; 1221 } 1222 1223 /* Sanity check on a regulatory rule */ 1224 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1225 { 1226 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1227 u32 freq_diff; 1228 1229 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1230 return false; 1231 1232 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1233 return false; 1234 1235 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1236 1237 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1238 freq_range->max_bandwidth_khz > freq_diff) 1239 return false; 1240 1241 return true; 1242 } 1243 1244 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1245 { 1246 const struct ieee80211_reg_rule *reg_rule = NULL; 1247 unsigned int i; 1248 1249 if (!rd->n_reg_rules) 1250 return false; 1251 1252 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1253 return false; 1254 1255 for (i = 0; i < rd->n_reg_rules; i++) { 1256 reg_rule = &rd->reg_rules[i]; 1257 if (!is_valid_reg_rule(reg_rule)) 1258 return false; 1259 } 1260 1261 return true; 1262 } 1263 1264 /** 1265 * freq_in_rule_band - tells us if a frequency is in a frequency band 1266 * @freq_range: frequency rule we want to query 1267 * @freq_khz: frequency we are inquiring about 1268 * 1269 * This lets us know if a specific frequency rule is or is not relevant to 1270 * a specific frequency's band. Bands are device specific and artificial 1271 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1272 * however it is safe for now to assume that a frequency rule should not be 1273 * part of a frequency's band if the start freq or end freq are off by more 1274 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1275 * 60 GHz band. 1276 * This resolution can be lowered and should be considered as we add 1277 * regulatory rule support for other "bands". 1278 **/ 1279 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1280 u32 freq_khz) 1281 { 1282 #define ONE_GHZ_IN_KHZ 1000000 1283 /* 1284 * From 802.11ad: directional multi-gigabit (DMG): 1285 * Pertaining to operation in a frequency band containing a channel 1286 * with the Channel starting frequency above 45 GHz. 1287 */ 1288 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1289 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1290 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1291 return true; 1292 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1293 return true; 1294 return false; 1295 #undef ONE_GHZ_IN_KHZ 1296 } 1297 1298 /* 1299 * Later on we can perhaps use the more restrictive DFS 1300 * region but we don't have information for that yet so 1301 * for now simply disallow conflicts. 1302 */ 1303 static enum nl80211_dfs_regions 1304 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1305 const enum nl80211_dfs_regions dfs_region2) 1306 { 1307 if (dfs_region1 != dfs_region2) 1308 return NL80211_DFS_UNSET; 1309 return dfs_region1; 1310 } 1311 1312 /* 1313 * Helper for regdom_intersect(), this does the real 1314 * mathematical intersection fun 1315 */ 1316 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1317 const struct ieee80211_regdomain *rd2, 1318 const struct ieee80211_reg_rule *rule1, 1319 const struct ieee80211_reg_rule *rule2, 1320 struct ieee80211_reg_rule *intersected_rule) 1321 { 1322 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1323 struct ieee80211_freq_range *freq_range; 1324 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1325 struct ieee80211_power_rule *power_rule; 1326 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1327 1328 freq_range1 = &rule1->freq_range; 1329 freq_range2 = &rule2->freq_range; 1330 freq_range = &intersected_rule->freq_range; 1331 1332 power_rule1 = &rule1->power_rule; 1333 power_rule2 = &rule2->power_rule; 1334 power_rule = &intersected_rule->power_rule; 1335 1336 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1337 freq_range2->start_freq_khz); 1338 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1339 freq_range2->end_freq_khz); 1340 1341 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1342 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1343 1344 if (rule1->flags & NL80211_RRF_AUTO_BW) 1345 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1346 if (rule2->flags & NL80211_RRF_AUTO_BW) 1347 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1348 1349 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1350 1351 intersected_rule->flags = rule1->flags | rule2->flags; 1352 1353 /* 1354 * In case NL80211_RRF_AUTO_BW requested for both rules 1355 * set AUTO_BW in intersected rule also. Next we will 1356 * calculate BW correctly in handle_channel function. 1357 * In other case remove AUTO_BW flag while we calculate 1358 * maximum bandwidth correctly and auto calculation is 1359 * not required. 1360 */ 1361 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1362 (rule2->flags & NL80211_RRF_AUTO_BW)) 1363 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1364 else 1365 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1366 1367 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1368 if (freq_range->max_bandwidth_khz > freq_diff) 1369 freq_range->max_bandwidth_khz = freq_diff; 1370 1371 power_rule->max_eirp = min(power_rule1->max_eirp, 1372 power_rule2->max_eirp); 1373 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1374 power_rule2->max_antenna_gain); 1375 1376 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1377 rule2->dfs_cac_ms); 1378 1379 if (!is_valid_reg_rule(intersected_rule)) 1380 return -EINVAL; 1381 1382 return 0; 1383 } 1384 1385 /* check whether old rule contains new rule */ 1386 static bool rule_contains(struct ieee80211_reg_rule *r1, 1387 struct ieee80211_reg_rule *r2) 1388 { 1389 /* for simplicity, currently consider only same flags */ 1390 if (r1->flags != r2->flags) 1391 return false; 1392 1393 /* verify r1 is more restrictive */ 1394 if ((r1->power_rule.max_antenna_gain > 1395 r2->power_rule.max_antenna_gain) || 1396 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1397 return false; 1398 1399 /* make sure r2's range is contained within r1 */ 1400 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1401 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1402 return false; 1403 1404 /* and finally verify that r1.max_bw >= r2.max_bw */ 1405 if (r1->freq_range.max_bandwidth_khz < 1406 r2->freq_range.max_bandwidth_khz) 1407 return false; 1408 1409 return true; 1410 } 1411 1412 /* add or extend current rules. do nothing if rule is already contained */ 1413 static void add_rule(struct ieee80211_reg_rule *rule, 1414 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1415 { 1416 struct ieee80211_reg_rule *tmp_rule; 1417 int i; 1418 1419 for (i = 0; i < *n_rules; i++) { 1420 tmp_rule = ®_rules[i]; 1421 /* rule is already contained - do nothing */ 1422 if (rule_contains(tmp_rule, rule)) 1423 return; 1424 1425 /* extend rule if possible */ 1426 if (rule_contains(rule, tmp_rule)) { 1427 memcpy(tmp_rule, rule, sizeof(*rule)); 1428 return; 1429 } 1430 } 1431 1432 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1433 (*n_rules)++; 1434 } 1435 1436 /** 1437 * regdom_intersect - do the intersection between two regulatory domains 1438 * @rd1: first regulatory domain 1439 * @rd2: second regulatory domain 1440 * 1441 * Use this function to get the intersection between two regulatory domains. 1442 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1443 * as no one single alpha2 can represent this regulatory domain. 1444 * 1445 * Returns a pointer to the regulatory domain structure which will hold the 1446 * resulting intersection of rules between rd1 and rd2. We will 1447 * kzalloc() this structure for you. 1448 */ 1449 static struct ieee80211_regdomain * 1450 regdom_intersect(const struct ieee80211_regdomain *rd1, 1451 const struct ieee80211_regdomain *rd2) 1452 { 1453 int r, size_of_regd; 1454 unsigned int x, y; 1455 unsigned int num_rules = 0; 1456 const struct ieee80211_reg_rule *rule1, *rule2; 1457 struct ieee80211_reg_rule intersected_rule; 1458 struct ieee80211_regdomain *rd; 1459 1460 if (!rd1 || !rd2) 1461 return NULL; 1462 1463 /* 1464 * First we get a count of the rules we'll need, then we actually 1465 * build them. This is to so we can malloc() and free() a 1466 * regdomain once. The reason we use reg_rules_intersect() here 1467 * is it will return -EINVAL if the rule computed makes no sense. 1468 * All rules that do check out OK are valid. 1469 */ 1470 1471 for (x = 0; x < rd1->n_reg_rules; x++) { 1472 rule1 = &rd1->reg_rules[x]; 1473 for (y = 0; y < rd2->n_reg_rules; y++) { 1474 rule2 = &rd2->reg_rules[y]; 1475 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1476 &intersected_rule)) 1477 num_rules++; 1478 } 1479 } 1480 1481 if (!num_rules) 1482 return NULL; 1483 1484 size_of_regd = sizeof(struct ieee80211_regdomain) + 1485 num_rules * sizeof(struct ieee80211_reg_rule); 1486 1487 rd = kzalloc(size_of_regd, GFP_KERNEL); 1488 if (!rd) 1489 return NULL; 1490 1491 for (x = 0; x < rd1->n_reg_rules; x++) { 1492 rule1 = &rd1->reg_rules[x]; 1493 for (y = 0; y < rd2->n_reg_rules; y++) { 1494 rule2 = &rd2->reg_rules[y]; 1495 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1496 &intersected_rule); 1497 /* 1498 * No need to memset here the intersected rule here as 1499 * we're not using the stack anymore 1500 */ 1501 if (r) 1502 continue; 1503 1504 add_rule(&intersected_rule, rd->reg_rules, 1505 &rd->n_reg_rules); 1506 } 1507 } 1508 1509 rd->alpha2[0] = '9'; 1510 rd->alpha2[1] = '8'; 1511 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1512 rd2->dfs_region); 1513 1514 return rd; 1515 } 1516 1517 /* 1518 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1519 * want to just have the channel structure use these 1520 */ 1521 static u32 map_regdom_flags(u32 rd_flags) 1522 { 1523 u32 channel_flags = 0; 1524 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1525 channel_flags |= IEEE80211_CHAN_NO_IR; 1526 if (rd_flags & NL80211_RRF_DFS) 1527 channel_flags |= IEEE80211_CHAN_RADAR; 1528 if (rd_flags & NL80211_RRF_NO_OFDM) 1529 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1530 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1531 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1532 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1533 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1534 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1535 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1536 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1537 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1538 if (rd_flags & NL80211_RRF_NO_80MHZ) 1539 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1540 if (rd_flags & NL80211_RRF_NO_160MHZ) 1541 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1542 return channel_flags; 1543 } 1544 1545 static const struct ieee80211_reg_rule * 1546 freq_reg_info_regd(u32 center_freq, 1547 const struct ieee80211_regdomain *regd, u32 bw) 1548 { 1549 int i; 1550 bool band_rule_found = false; 1551 bool bw_fits = false; 1552 1553 if (!regd) 1554 return ERR_PTR(-EINVAL); 1555 1556 for (i = 0; i < regd->n_reg_rules; i++) { 1557 const struct ieee80211_reg_rule *rr; 1558 const struct ieee80211_freq_range *fr = NULL; 1559 1560 rr = ®d->reg_rules[i]; 1561 fr = &rr->freq_range; 1562 1563 /* 1564 * We only need to know if one frequency rule was 1565 * was in center_freq's band, that's enough, so lets 1566 * not overwrite it once found 1567 */ 1568 if (!band_rule_found) 1569 band_rule_found = freq_in_rule_band(fr, center_freq); 1570 1571 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1572 1573 if (band_rule_found && bw_fits) 1574 return rr; 1575 } 1576 1577 if (!band_rule_found) 1578 return ERR_PTR(-ERANGE); 1579 1580 return ERR_PTR(-EINVAL); 1581 } 1582 1583 static const struct ieee80211_reg_rule * 1584 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1585 { 1586 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1587 const struct ieee80211_reg_rule *reg_rule = NULL; 1588 u32 bw; 1589 1590 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 1591 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1592 if (!IS_ERR(reg_rule)) 1593 return reg_rule; 1594 } 1595 1596 return reg_rule; 1597 } 1598 1599 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1600 u32 center_freq) 1601 { 1602 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); 1603 } 1604 EXPORT_SYMBOL(freq_reg_info); 1605 1606 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1607 { 1608 switch (initiator) { 1609 case NL80211_REGDOM_SET_BY_CORE: 1610 return "core"; 1611 case NL80211_REGDOM_SET_BY_USER: 1612 return "user"; 1613 case NL80211_REGDOM_SET_BY_DRIVER: 1614 return "driver"; 1615 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1616 return "country element"; 1617 default: 1618 WARN_ON(1); 1619 return "bug"; 1620 } 1621 } 1622 EXPORT_SYMBOL(reg_initiator_name); 1623 1624 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1625 const struct ieee80211_reg_rule *reg_rule, 1626 const struct ieee80211_channel *chan) 1627 { 1628 const struct ieee80211_freq_range *freq_range = NULL; 1629 u32 max_bandwidth_khz, bw_flags = 0; 1630 1631 freq_range = ®_rule->freq_range; 1632 1633 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1634 /* Check if auto calculation requested */ 1635 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1636 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1637 1638 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1639 if (!cfg80211_does_bw_fit_range(freq_range, 1640 MHZ_TO_KHZ(chan->center_freq), 1641 MHZ_TO_KHZ(10))) 1642 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1643 if (!cfg80211_does_bw_fit_range(freq_range, 1644 MHZ_TO_KHZ(chan->center_freq), 1645 MHZ_TO_KHZ(20))) 1646 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1647 1648 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1649 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1650 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1651 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1652 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1653 bw_flags |= IEEE80211_CHAN_NO_HT40; 1654 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1655 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1656 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1657 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1658 return bw_flags; 1659 } 1660 1661 /* 1662 * Note that right now we assume the desired channel bandwidth 1663 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1664 * per channel, the primary and the extension channel). 1665 */ 1666 static void handle_channel(struct wiphy *wiphy, 1667 enum nl80211_reg_initiator initiator, 1668 struct ieee80211_channel *chan) 1669 { 1670 u32 flags, bw_flags = 0; 1671 const struct ieee80211_reg_rule *reg_rule = NULL; 1672 const struct ieee80211_power_rule *power_rule = NULL; 1673 struct wiphy *request_wiphy = NULL; 1674 struct regulatory_request *lr = get_last_request(); 1675 const struct ieee80211_regdomain *regd; 1676 1677 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1678 1679 flags = chan->orig_flags; 1680 1681 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1682 if (IS_ERR(reg_rule)) { 1683 /* 1684 * We will disable all channels that do not match our 1685 * received regulatory rule unless the hint is coming 1686 * from a Country IE and the Country IE had no information 1687 * about a band. The IEEE 802.11 spec allows for an AP 1688 * to send only a subset of the regulatory rules allowed, 1689 * so an AP in the US that only supports 2.4 GHz may only send 1690 * a country IE with information for the 2.4 GHz band 1691 * while 5 GHz is still supported. 1692 */ 1693 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1694 PTR_ERR(reg_rule) == -ERANGE) 1695 return; 1696 1697 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1698 request_wiphy && request_wiphy == wiphy && 1699 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1700 pr_debug("Disabling freq %d MHz for good\n", 1701 chan->center_freq); 1702 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1703 chan->flags = chan->orig_flags; 1704 } else { 1705 pr_debug("Disabling freq %d MHz\n", 1706 chan->center_freq); 1707 chan->flags |= IEEE80211_CHAN_DISABLED; 1708 } 1709 return; 1710 } 1711 1712 regd = reg_get_regdomain(wiphy); 1713 1714 power_rule = ®_rule->power_rule; 1715 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1716 1717 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1718 request_wiphy && request_wiphy == wiphy && 1719 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1720 /* 1721 * This guarantees the driver's requested regulatory domain 1722 * will always be used as a base for further regulatory 1723 * settings 1724 */ 1725 chan->flags = chan->orig_flags = 1726 map_regdom_flags(reg_rule->flags) | bw_flags; 1727 chan->max_antenna_gain = chan->orig_mag = 1728 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1729 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1730 (int) MBM_TO_DBM(power_rule->max_eirp); 1731 1732 if (chan->flags & IEEE80211_CHAN_RADAR) { 1733 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1734 if (reg_rule->dfs_cac_ms) 1735 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1736 } 1737 1738 return; 1739 } 1740 1741 chan->dfs_state = NL80211_DFS_USABLE; 1742 chan->dfs_state_entered = jiffies; 1743 1744 chan->beacon_found = false; 1745 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1746 chan->max_antenna_gain = 1747 min_t(int, chan->orig_mag, 1748 MBI_TO_DBI(power_rule->max_antenna_gain)); 1749 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1750 1751 if (chan->flags & IEEE80211_CHAN_RADAR) { 1752 if (reg_rule->dfs_cac_ms) 1753 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1754 else 1755 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1756 } 1757 1758 if (chan->orig_mpwr) { 1759 /* 1760 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1761 * will always follow the passed country IE power settings. 1762 */ 1763 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1764 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1765 chan->max_power = chan->max_reg_power; 1766 else 1767 chan->max_power = min(chan->orig_mpwr, 1768 chan->max_reg_power); 1769 } else 1770 chan->max_power = chan->max_reg_power; 1771 } 1772 1773 static void handle_band(struct wiphy *wiphy, 1774 enum nl80211_reg_initiator initiator, 1775 struct ieee80211_supported_band *sband) 1776 { 1777 unsigned int i; 1778 1779 if (!sband) 1780 return; 1781 1782 for (i = 0; i < sband->n_channels; i++) 1783 handle_channel(wiphy, initiator, &sband->channels[i]); 1784 } 1785 1786 static bool reg_request_cell_base(struct regulatory_request *request) 1787 { 1788 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1789 return false; 1790 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1791 } 1792 1793 bool reg_last_request_cell_base(void) 1794 { 1795 return reg_request_cell_base(get_last_request()); 1796 } 1797 1798 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1799 /* Core specific check */ 1800 static enum reg_request_treatment 1801 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1802 { 1803 struct regulatory_request *lr = get_last_request(); 1804 1805 if (!reg_num_devs_support_basehint) 1806 return REG_REQ_IGNORE; 1807 1808 if (reg_request_cell_base(lr) && 1809 !regdom_changes(pending_request->alpha2)) 1810 return REG_REQ_ALREADY_SET; 1811 1812 return REG_REQ_OK; 1813 } 1814 1815 /* Device specific check */ 1816 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1817 { 1818 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1819 } 1820 #else 1821 static enum reg_request_treatment 1822 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1823 { 1824 return REG_REQ_IGNORE; 1825 } 1826 1827 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1828 { 1829 return true; 1830 } 1831 #endif 1832 1833 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1834 { 1835 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1836 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1837 return true; 1838 return false; 1839 } 1840 1841 static bool ignore_reg_update(struct wiphy *wiphy, 1842 enum nl80211_reg_initiator initiator) 1843 { 1844 struct regulatory_request *lr = get_last_request(); 1845 1846 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1847 return true; 1848 1849 if (!lr) { 1850 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 1851 reg_initiator_name(initiator)); 1852 return true; 1853 } 1854 1855 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1856 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1857 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 1858 reg_initiator_name(initiator)); 1859 return true; 1860 } 1861 1862 /* 1863 * wiphy->regd will be set once the device has its own 1864 * desired regulatory domain set 1865 */ 1866 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1867 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1868 !is_world_regdom(lr->alpha2)) { 1869 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 1870 reg_initiator_name(initiator)); 1871 return true; 1872 } 1873 1874 if (reg_request_cell_base(lr)) 1875 return reg_dev_ignore_cell_hint(wiphy); 1876 1877 return false; 1878 } 1879 1880 static bool reg_is_world_roaming(struct wiphy *wiphy) 1881 { 1882 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1883 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1884 struct regulatory_request *lr = get_last_request(); 1885 1886 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1887 return true; 1888 1889 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1890 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1891 return true; 1892 1893 return false; 1894 } 1895 1896 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1897 struct reg_beacon *reg_beacon) 1898 { 1899 struct ieee80211_supported_band *sband; 1900 struct ieee80211_channel *chan; 1901 bool channel_changed = false; 1902 struct ieee80211_channel chan_before; 1903 1904 sband = wiphy->bands[reg_beacon->chan.band]; 1905 chan = &sband->channels[chan_idx]; 1906 1907 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1908 return; 1909 1910 if (chan->beacon_found) 1911 return; 1912 1913 chan->beacon_found = true; 1914 1915 if (!reg_is_world_roaming(wiphy)) 1916 return; 1917 1918 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1919 return; 1920 1921 chan_before = *chan; 1922 1923 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1924 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1925 channel_changed = true; 1926 } 1927 1928 if (channel_changed) 1929 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1930 } 1931 1932 /* 1933 * Called when a scan on a wiphy finds a beacon on 1934 * new channel 1935 */ 1936 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1937 struct reg_beacon *reg_beacon) 1938 { 1939 unsigned int i; 1940 struct ieee80211_supported_band *sband; 1941 1942 if (!wiphy->bands[reg_beacon->chan.band]) 1943 return; 1944 1945 sband = wiphy->bands[reg_beacon->chan.band]; 1946 1947 for (i = 0; i < sband->n_channels; i++) 1948 handle_reg_beacon(wiphy, i, reg_beacon); 1949 } 1950 1951 /* 1952 * Called upon reg changes or a new wiphy is added 1953 */ 1954 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1955 { 1956 unsigned int i; 1957 struct ieee80211_supported_band *sband; 1958 struct reg_beacon *reg_beacon; 1959 1960 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1961 if (!wiphy->bands[reg_beacon->chan.band]) 1962 continue; 1963 sband = wiphy->bands[reg_beacon->chan.band]; 1964 for (i = 0; i < sband->n_channels; i++) 1965 handle_reg_beacon(wiphy, i, reg_beacon); 1966 } 1967 } 1968 1969 /* Reap the advantages of previously found beacons */ 1970 static void reg_process_beacons(struct wiphy *wiphy) 1971 { 1972 /* 1973 * Means we are just firing up cfg80211, so no beacons would 1974 * have been processed yet. 1975 */ 1976 if (!last_request) 1977 return; 1978 wiphy_update_beacon_reg(wiphy); 1979 } 1980 1981 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1982 { 1983 if (!chan) 1984 return false; 1985 if (chan->flags & IEEE80211_CHAN_DISABLED) 1986 return false; 1987 /* This would happen when regulatory rules disallow HT40 completely */ 1988 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1989 return false; 1990 return true; 1991 } 1992 1993 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1994 struct ieee80211_channel *channel) 1995 { 1996 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1997 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1998 const struct ieee80211_regdomain *regd; 1999 unsigned int i; 2000 u32 flags; 2001 2002 if (!is_ht40_allowed(channel)) { 2003 channel->flags |= IEEE80211_CHAN_NO_HT40; 2004 return; 2005 } 2006 2007 /* 2008 * We need to ensure the extension channels exist to 2009 * be able to use HT40- or HT40+, this finds them (or not) 2010 */ 2011 for (i = 0; i < sband->n_channels; i++) { 2012 struct ieee80211_channel *c = &sband->channels[i]; 2013 2014 if (c->center_freq == (channel->center_freq - 20)) 2015 channel_before = c; 2016 if (c->center_freq == (channel->center_freq + 20)) 2017 channel_after = c; 2018 } 2019 2020 flags = 0; 2021 regd = get_wiphy_regdom(wiphy); 2022 if (regd) { 2023 const struct ieee80211_reg_rule *reg_rule = 2024 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2025 regd, MHZ_TO_KHZ(20)); 2026 2027 if (!IS_ERR(reg_rule)) 2028 flags = reg_rule->flags; 2029 } 2030 2031 /* 2032 * Please note that this assumes target bandwidth is 20 MHz, 2033 * if that ever changes we also need to change the below logic 2034 * to include that as well. 2035 */ 2036 if (!is_ht40_allowed(channel_before) || 2037 flags & NL80211_RRF_NO_HT40MINUS) 2038 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2039 else 2040 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2041 2042 if (!is_ht40_allowed(channel_after) || 2043 flags & NL80211_RRF_NO_HT40PLUS) 2044 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2045 else 2046 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2047 } 2048 2049 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2050 struct ieee80211_supported_band *sband) 2051 { 2052 unsigned int i; 2053 2054 if (!sband) 2055 return; 2056 2057 for (i = 0; i < sband->n_channels; i++) 2058 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2059 } 2060 2061 static void reg_process_ht_flags(struct wiphy *wiphy) 2062 { 2063 enum nl80211_band band; 2064 2065 if (!wiphy) 2066 return; 2067 2068 for (band = 0; band < NUM_NL80211_BANDS; band++) 2069 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2070 } 2071 2072 static void reg_call_notifier(struct wiphy *wiphy, 2073 struct regulatory_request *request) 2074 { 2075 if (wiphy->reg_notifier) 2076 wiphy->reg_notifier(wiphy, request); 2077 } 2078 2079 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2080 { 2081 struct cfg80211_chan_def chandef; 2082 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2083 enum nl80211_iftype iftype; 2084 2085 wdev_lock(wdev); 2086 iftype = wdev->iftype; 2087 2088 /* make sure the interface is active */ 2089 if (!wdev->netdev || !netif_running(wdev->netdev)) 2090 goto wdev_inactive_unlock; 2091 2092 switch (iftype) { 2093 case NL80211_IFTYPE_AP: 2094 case NL80211_IFTYPE_P2P_GO: 2095 if (!wdev->beacon_interval) 2096 goto wdev_inactive_unlock; 2097 chandef = wdev->chandef; 2098 break; 2099 case NL80211_IFTYPE_ADHOC: 2100 if (!wdev->ssid_len) 2101 goto wdev_inactive_unlock; 2102 chandef = wdev->chandef; 2103 break; 2104 case NL80211_IFTYPE_STATION: 2105 case NL80211_IFTYPE_P2P_CLIENT: 2106 if (!wdev->current_bss || 2107 !wdev->current_bss->pub.channel) 2108 goto wdev_inactive_unlock; 2109 2110 if (!rdev->ops->get_channel || 2111 rdev_get_channel(rdev, wdev, &chandef)) 2112 cfg80211_chandef_create(&chandef, 2113 wdev->current_bss->pub.channel, 2114 NL80211_CHAN_NO_HT); 2115 break; 2116 case NL80211_IFTYPE_MONITOR: 2117 case NL80211_IFTYPE_AP_VLAN: 2118 case NL80211_IFTYPE_P2P_DEVICE: 2119 /* no enforcement required */ 2120 break; 2121 default: 2122 /* others not implemented for now */ 2123 WARN_ON(1); 2124 break; 2125 } 2126 2127 wdev_unlock(wdev); 2128 2129 switch (iftype) { 2130 case NL80211_IFTYPE_AP: 2131 case NL80211_IFTYPE_P2P_GO: 2132 case NL80211_IFTYPE_ADHOC: 2133 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 2134 case NL80211_IFTYPE_STATION: 2135 case NL80211_IFTYPE_P2P_CLIENT: 2136 return cfg80211_chandef_usable(wiphy, &chandef, 2137 IEEE80211_CHAN_DISABLED); 2138 default: 2139 break; 2140 } 2141 2142 return true; 2143 2144 wdev_inactive_unlock: 2145 wdev_unlock(wdev); 2146 return true; 2147 } 2148 2149 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2150 { 2151 struct wireless_dev *wdev; 2152 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2153 2154 ASSERT_RTNL(); 2155 2156 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2157 if (!reg_wdev_chan_valid(wiphy, wdev)) 2158 cfg80211_leave(rdev, wdev); 2159 } 2160 2161 static void reg_check_chans_work(struct work_struct *work) 2162 { 2163 struct cfg80211_registered_device *rdev; 2164 2165 pr_debug("Verifying active interfaces after reg change\n"); 2166 rtnl_lock(); 2167 2168 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2169 if (!(rdev->wiphy.regulatory_flags & 2170 REGULATORY_IGNORE_STALE_KICKOFF)) 2171 reg_leave_invalid_chans(&rdev->wiphy); 2172 2173 rtnl_unlock(); 2174 } 2175 2176 static void reg_check_channels(void) 2177 { 2178 /* 2179 * Give usermode a chance to do something nicer (move to another 2180 * channel, orderly disconnection), before forcing a disconnection. 2181 */ 2182 mod_delayed_work(system_power_efficient_wq, 2183 ®_check_chans, 2184 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2185 } 2186 2187 static void wiphy_update_regulatory(struct wiphy *wiphy, 2188 enum nl80211_reg_initiator initiator) 2189 { 2190 enum nl80211_band band; 2191 struct regulatory_request *lr = get_last_request(); 2192 2193 if (ignore_reg_update(wiphy, initiator)) { 2194 /* 2195 * Regulatory updates set by CORE are ignored for custom 2196 * regulatory cards. Let us notify the changes to the driver, 2197 * as some drivers used this to restore its orig_* reg domain. 2198 */ 2199 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2200 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2201 !(wiphy->regulatory_flags & 2202 REGULATORY_WIPHY_SELF_MANAGED)) 2203 reg_call_notifier(wiphy, lr); 2204 return; 2205 } 2206 2207 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2208 2209 for (band = 0; band < NUM_NL80211_BANDS; band++) 2210 handle_band(wiphy, initiator, wiphy->bands[band]); 2211 2212 reg_process_beacons(wiphy); 2213 reg_process_ht_flags(wiphy); 2214 reg_call_notifier(wiphy, lr); 2215 } 2216 2217 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2218 { 2219 struct cfg80211_registered_device *rdev; 2220 struct wiphy *wiphy; 2221 2222 ASSERT_RTNL(); 2223 2224 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2225 wiphy = &rdev->wiphy; 2226 wiphy_update_regulatory(wiphy, initiator); 2227 } 2228 2229 reg_check_channels(); 2230 } 2231 2232 static void handle_channel_custom(struct wiphy *wiphy, 2233 struct ieee80211_channel *chan, 2234 const struct ieee80211_regdomain *regd) 2235 { 2236 u32 bw_flags = 0; 2237 const struct ieee80211_reg_rule *reg_rule = NULL; 2238 const struct ieee80211_power_rule *power_rule = NULL; 2239 u32 bw; 2240 2241 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) { 2242 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq), 2243 regd, bw); 2244 if (!IS_ERR(reg_rule)) 2245 break; 2246 } 2247 2248 if (IS_ERR(reg_rule)) { 2249 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n", 2250 chan->center_freq); 2251 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2252 chan->flags |= IEEE80211_CHAN_DISABLED; 2253 } else { 2254 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2255 chan->flags = chan->orig_flags; 2256 } 2257 return; 2258 } 2259 2260 power_rule = ®_rule->power_rule; 2261 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2262 2263 chan->dfs_state_entered = jiffies; 2264 chan->dfs_state = NL80211_DFS_USABLE; 2265 2266 chan->beacon_found = false; 2267 2268 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2269 chan->flags = chan->orig_flags | bw_flags | 2270 map_regdom_flags(reg_rule->flags); 2271 else 2272 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2273 2274 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2275 chan->max_reg_power = chan->max_power = 2276 (int) MBM_TO_DBM(power_rule->max_eirp); 2277 2278 if (chan->flags & IEEE80211_CHAN_RADAR) { 2279 if (reg_rule->dfs_cac_ms) 2280 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2281 else 2282 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2283 } 2284 2285 chan->max_power = chan->max_reg_power; 2286 } 2287 2288 static void handle_band_custom(struct wiphy *wiphy, 2289 struct ieee80211_supported_band *sband, 2290 const struct ieee80211_regdomain *regd) 2291 { 2292 unsigned int i; 2293 2294 if (!sband) 2295 return; 2296 2297 for (i = 0; i < sband->n_channels; i++) 2298 handle_channel_custom(wiphy, &sband->channels[i], regd); 2299 } 2300 2301 /* Used by drivers prior to wiphy registration */ 2302 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2303 const struct ieee80211_regdomain *regd) 2304 { 2305 enum nl80211_band band; 2306 unsigned int bands_set = 0; 2307 2308 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2309 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2310 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2311 2312 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2313 if (!wiphy->bands[band]) 2314 continue; 2315 handle_band_custom(wiphy, wiphy->bands[band], regd); 2316 bands_set++; 2317 } 2318 2319 /* 2320 * no point in calling this if it won't have any effect 2321 * on your device's supported bands. 2322 */ 2323 WARN_ON(!bands_set); 2324 } 2325 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2326 2327 static void reg_set_request_processed(void) 2328 { 2329 bool need_more_processing = false; 2330 struct regulatory_request *lr = get_last_request(); 2331 2332 lr->processed = true; 2333 2334 spin_lock(®_requests_lock); 2335 if (!list_empty(®_requests_list)) 2336 need_more_processing = true; 2337 spin_unlock(®_requests_lock); 2338 2339 cancel_crda_timeout(); 2340 2341 if (need_more_processing) 2342 schedule_work(®_work); 2343 } 2344 2345 /** 2346 * reg_process_hint_core - process core regulatory requests 2347 * @pending_request: a pending core regulatory request 2348 * 2349 * The wireless subsystem can use this function to process 2350 * a regulatory request issued by the regulatory core. 2351 */ 2352 static enum reg_request_treatment 2353 reg_process_hint_core(struct regulatory_request *core_request) 2354 { 2355 if (reg_query_database(core_request)) { 2356 core_request->intersect = false; 2357 core_request->processed = false; 2358 reg_update_last_request(core_request); 2359 return REG_REQ_OK; 2360 } 2361 2362 return REG_REQ_IGNORE; 2363 } 2364 2365 static enum reg_request_treatment 2366 __reg_process_hint_user(struct regulatory_request *user_request) 2367 { 2368 struct regulatory_request *lr = get_last_request(); 2369 2370 if (reg_request_cell_base(user_request)) 2371 return reg_ignore_cell_hint(user_request); 2372 2373 if (reg_request_cell_base(lr)) 2374 return REG_REQ_IGNORE; 2375 2376 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2377 return REG_REQ_INTERSECT; 2378 /* 2379 * If the user knows better the user should set the regdom 2380 * to their country before the IE is picked up 2381 */ 2382 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2383 lr->intersect) 2384 return REG_REQ_IGNORE; 2385 /* 2386 * Process user requests only after previous user/driver/core 2387 * requests have been processed 2388 */ 2389 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2390 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2391 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2392 regdom_changes(lr->alpha2)) 2393 return REG_REQ_IGNORE; 2394 2395 if (!regdom_changes(user_request->alpha2)) 2396 return REG_REQ_ALREADY_SET; 2397 2398 return REG_REQ_OK; 2399 } 2400 2401 /** 2402 * reg_process_hint_user - process user regulatory requests 2403 * @user_request: a pending user regulatory request 2404 * 2405 * The wireless subsystem can use this function to process 2406 * a regulatory request initiated by userspace. 2407 */ 2408 static enum reg_request_treatment 2409 reg_process_hint_user(struct regulatory_request *user_request) 2410 { 2411 enum reg_request_treatment treatment; 2412 2413 treatment = __reg_process_hint_user(user_request); 2414 if (treatment == REG_REQ_IGNORE || 2415 treatment == REG_REQ_ALREADY_SET) 2416 return REG_REQ_IGNORE; 2417 2418 user_request->intersect = treatment == REG_REQ_INTERSECT; 2419 user_request->processed = false; 2420 2421 if (reg_query_database(user_request)) { 2422 reg_update_last_request(user_request); 2423 user_alpha2[0] = user_request->alpha2[0]; 2424 user_alpha2[1] = user_request->alpha2[1]; 2425 return REG_REQ_OK; 2426 } 2427 2428 return REG_REQ_IGNORE; 2429 } 2430 2431 static enum reg_request_treatment 2432 __reg_process_hint_driver(struct regulatory_request *driver_request) 2433 { 2434 struct regulatory_request *lr = get_last_request(); 2435 2436 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2437 if (regdom_changes(driver_request->alpha2)) 2438 return REG_REQ_OK; 2439 return REG_REQ_ALREADY_SET; 2440 } 2441 2442 /* 2443 * This would happen if you unplug and plug your card 2444 * back in or if you add a new device for which the previously 2445 * loaded card also agrees on the regulatory domain. 2446 */ 2447 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2448 !regdom_changes(driver_request->alpha2)) 2449 return REG_REQ_ALREADY_SET; 2450 2451 return REG_REQ_INTERSECT; 2452 } 2453 2454 /** 2455 * reg_process_hint_driver - process driver regulatory requests 2456 * @driver_request: a pending driver regulatory request 2457 * 2458 * The wireless subsystem can use this function to process 2459 * a regulatory request issued by an 802.11 driver. 2460 * 2461 * Returns one of the different reg request treatment values. 2462 */ 2463 static enum reg_request_treatment 2464 reg_process_hint_driver(struct wiphy *wiphy, 2465 struct regulatory_request *driver_request) 2466 { 2467 const struct ieee80211_regdomain *regd, *tmp; 2468 enum reg_request_treatment treatment; 2469 2470 treatment = __reg_process_hint_driver(driver_request); 2471 2472 switch (treatment) { 2473 case REG_REQ_OK: 2474 break; 2475 case REG_REQ_IGNORE: 2476 return REG_REQ_IGNORE; 2477 case REG_REQ_INTERSECT: 2478 case REG_REQ_ALREADY_SET: 2479 regd = reg_copy_regd(get_cfg80211_regdom()); 2480 if (IS_ERR(regd)) 2481 return REG_REQ_IGNORE; 2482 2483 tmp = get_wiphy_regdom(wiphy); 2484 rcu_assign_pointer(wiphy->regd, regd); 2485 rcu_free_regdom(tmp); 2486 } 2487 2488 2489 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2490 driver_request->processed = false; 2491 2492 /* 2493 * Since CRDA will not be called in this case as we already 2494 * have applied the requested regulatory domain before we just 2495 * inform userspace we have processed the request 2496 */ 2497 if (treatment == REG_REQ_ALREADY_SET) { 2498 nl80211_send_reg_change_event(driver_request); 2499 reg_update_last_request(driver_request); 2500 reg_set_request_processed(); 2501 return REG_REQ_ALREADY_SET; 2502 } 2503 2504 if (reg_query_database(driver_request)) { 2505 reg_update_last_request(driver_request); 2506 return REG_REQ_OK; 2507 } 2508 2509 return REG_REQ_IGNORE; 2510 } 2511 2512 static enum reg_request_treatment 2513 __reg_process_hint_country_ie(struct wiphy *wiphy, 2514 struct regulatory_request *country_ie_request) 2515 { 2516 struct wiphy *last_wiphy = NULL; 2517 struct regulatory_request *lr = get_last_request(); 2518 2519 if (reg_request_cell_base(lr)) { 2520 /* Trust a Cell base station over the AP's country IE */ 2521 if (regdom_changes(country_ie_request->alpha2)) 2522 return REG_REQ_IGNORE; 2523 return REG_REQ_ALREADY_SET; 2524 } else { 2525 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2526 return REG_REQ_IGNORE; 2527 } 2528 2529 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2530 return -EINVAL; 2531 2532 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2533 return REG_REQ_OK; 2534 2535 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2536 2537 if (last_wiphy != wiphy) { 2538 /* 2539 * Two cards with two APs claiming different 2540 * Country IE alpha2s. We could 2541 * intersect them, but that seems unlikely 2542 * to be correct. Reject second one for now. 2543 */ 2544 if (regdom_changes(country_ie_request->alpha2)) 2545 return REG_REQ_IGNORE; 2546 return REG_REQ_ALREADY_SET; 2547 } 2548 2549 if (regdom_changes(country_ie_request->alpha2)) 2550 return REG_REQ_OK; 2551 return REG_REQ_ALREADY_SET; 2552 } 2553 2554 /** 2555 * reg_process_hint_country_ie - process regulatory requests from country IEs 2556 * @country_ie_request: a regulatory request from a country IE 2557 * 2558 * The wireless subsystem can use this function to process 2559 * a regulatory request issued by a country Information Element. 2560 * 2561 * Returns one of the different reg request treatment values. 2562 */ 2563 static enum reg_request_treatment 2564 reg_process_hint_country_ie(struct wiphy *wiphy, 2565 struct regulatory_request *country_ie_request) 2566 { 2567 enum reg_request_treatment treatment; 2568 2569 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2570 2571 switch (treatment) { 2572 case REG_REQ_OK: 2573 break; 2574 case REG_REQ_IGNORE: 2575 return REG_REQ_IGNORE; 2576 case REG_REQ_ALREADY_SET: 2577 reg_free_request(country_ie_request); 2578 return REG_REQ_ALREADY_SET; 2579 case REG_REQ_INTERSECT: 2580 /* 2581 * This doesn't happen yet, not sure we 2582 * ever want to support it for this case. 2583 */ 2584 WARN_ONCE(1, "Unexpected intersection for country elements"); 2585 return REG_REQ_IGNORE; 2586 } 2587 2588 country_ie_request->intersect = false; 2589 country_ie_request->processed = false; 2590 2591 if (reg_query_database(country_ie_request)) { 2592 reg_update_last_request(country_ie_request); 2593 return REG_REQ_OK; 2594 } 2595 2596 return REG_REQ_IGNORE; 2597 } 2598 2599 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2600 { 2601 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2602 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2603 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2604 bool dfs_domain_same; 2605 2606 rcu_read_lock(); 2607 2608 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2609 wiphy1_regd = rcu_dereference(wiphy1->regd); 2610 if (!wiphy1_regd) 2611 wiphy1_regd = cfg80211_regd; 2612 2613 wiphy2_regd = rcu_dereference(wiphy2->regd); 2614 if (!wiphy2_regd) 2615 wiphy2_regd = cfg80211_regd; 2616 2617 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2618 2619 rcu_read_unlock(); 2620 2621 return dfs_domain_same; 2622 } 2623 2624 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2625 struct ieee80211_channel *src_chan) 2626 { 2627 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2628 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2629 return; 2630 2631 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2632 src_chan->flags & IEEE80211_CHAN_DISABLED) 2633 return; 2634 2635 if (src_chan->center_freq == dst_chan->center_freq && 2636 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2637 dst_chan->dfs_state = src_chan->dfs_state; 2638 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2639 } 2640 } 2641 2642 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2643 struct wiphy *src_wiphy) 2644 { 2645 struct ieee80211_supported_band *src_sband, *dst_sband; 2646 struct ieee80211_channel *src_chan, *dst_chan; 2647 int i, j, band; 2648 2649 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2650 return; 2651 2652 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2653 dst_sband = dst_wiphy->bands[band]; 2654 src_sband = src_wiphy->bands[band]; 2655 if (!dst_sband || !src_sband) 2656 continue; 2657 2658 for (i = 0; i < dst_sband->n_channels; i++) { 2659 dst_chan = &dst_sband->channels[i]; 2660 for (j = 0; j < src_sband->n_channels; j++) { 2661 src_chan = &src_sband->channels[j]; 2662 reg_copy_dfs_chan_state(dst_chan, src_chan); 2663 } 2664 } 2665 } 2666 } 2667 2668 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2669 { 2670 struct cfg80211_registered_device *rdev; 2671 2672 ASSERT_RTNL(); 2673 2674 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2675 if (wiphy == &rdev->wiphy) 2676 continue; 2677 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2678 } 2679 } 2680 2681 /* This processes *all* regulatory hints */ 2682 static void reg_process_hint(struct regulatory_request *reg_request) 2683 { 2684 struct wiphy *wiphy = NULL; 2685 enum reg_request_treatment treatment; 2686 enum nl80211_reg_initiator initiator = reg_request->initiator; 2687 2688 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2689 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2690 2691 switch (initiator) { 2692 case NL80211_REGDOM_SET_BY_CORE: 2693 treatment = reg_process_hint_core(reg_request); 2694 break; 2695 case NL80211_REGDOM_SET_BY_USER: 2696 treatment = reg_process_hint_user(reg_request); 2697 break; 2698 case NL80211_REGDOM_SET_BY_DRIVER: 2699 if (!wiphy) 2700 goto out_free; 2701 treatment = reg_process_hint_driver(wiphy, reg_request); 2702 break; 2703 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2704 if (!wiphy) 2705 goto out_free; 2706 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2707 break; 2708 default: 2709 WARN(1, "invalid initiator %d\n", initiator); 2710 goto out_free; 2711 } 2712 2713 if (treatment == REG_REQ_IGNORE) 2714 goto out_free; 2715 2716 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2717 "unexpected treatment value %d\n", treatment); 2718 2719 /* This is required so that the orig_* parameters are saved. 2720 * NOTE: treatment must be set for any case that reaches here! 2721 */ 2722 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2723 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2724 wiphy_update_regulatory(wiphy, initiator); 2725 wiphy_all_share_dfs_chan_state(wiphy); 2726 reg_check_channels(); 2727 } 2728 2729 return; 2730 2731 out_free: 2732 reg_free_request(reg_request); 2733 } 2734 2735 static void notify_self_managed_wiphys(struct regulatory_request *request) 2736 { 2737 struct cfg80211_registered_device *rdev; 2738 struct wiphy *wiphy; 2739 2740 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2741 wiphy = &rdev->wiphy; 2742 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 2743 request->initiator == NL80211_REGDOM_SET_BY_USER) 2744 reg_call_notifier(wiphy, request); 2745 } 2746 } 2747 2748 /* 2749 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2750 * Regulatory hints come on a first come first serve basis and we 2751 * must process each one atomically. 2752 */ 2753 static void reg_process_pending_hints(void) 2754 { 2755 struct regulatory_request *reg_request, *lr; 2756 2757 lr = get_last_request(); 2758 2759 /* When last_request->processed becomes true this will be rescheduled */ 2760 if (lr && !lr->processed) { 2761 reg_process_hint(lr); 2762 return; 2763 } 2764 2765 spin_lock(®_requests_lock); 2766 2767 if (list_empty(®_requests_list)) { 2768 spin_unlock(®_requests_lock); 2769 return; 2770 } 2771 2772 reg_request = list_first_entry(®_requests_list, 2773 struct regulatory_request, 2774 list); 2775 list_del_init(®_request->list); 2776 2777 spin_unlock(®_requests_lock); 2778 2779 notify_self_managed_wiphys(reg_request); 2780 2781 reg_process_hint(reg_request); 2782 2783 lr = get_last_request(); 2784 2785 spin_lock(®_requests_lock); 2786 if (!list_empty(®_requests_list) && lr && lr->processed) 2787 schedule_work(®_work); 2788 spin_unlock(®_requests_lock); 2789 } 2790 2791 /* Processes beacon hints -- this has nothing to do with country IEs */ 2792 static void reg_process_pending_beacon_hints(void) 2793 { 2794 struct cfg80211_registered_device *rdev; 2795 struct reg_beacon *pending_beacon, *tmp; 2796 2797 /* This goes through the _pending_ beacon list */ 2798 spin_lock_bh(®_pending_beacons_lock); 2799 2800 list_for_each_entry_safe(pending_beacon, tmp, 2801 ®_pending_beacons, list) { 2802 list_del_init(&pending_beacon->list); 2803 2804 /* Applies the beacon hint to current wiphys */ 2805 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2806 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 2807 2808 /* Remembers the beacon hint for new wiphys or reg changes */ 2809 list_add_tail(&pending_beacon->list, ®_beacon_list); 2810 } 2811 2812 spin_unlock_bh(®_pending_beacons_lock); 2813 } 2814 2815 static void reg_process_self_managed_hints(void) 2816 { 2817 struct cfg80211_registered_device *rdev; 2818 struct wiphy *wiphy; 2819 const struct ieee80211_regdomain *tmp; 2820 const struct ieee80211_regdomain *regd; 2821 enum nl80211_band band; 2822 struct regulatory_request request = {}; 2823 2824 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2825 wiphy = &rdev->wiphy; 2826 2827 spin_lock(®_requests_lock); 2828 regd = rdev->requested_regd; 2829 rdev->requested_regd = NULL; 2830 spin_unlock(®_requests_lock); 2831 2832 if (regd == NULL) 2833 continue; 2834 2835 tmp = get_wiphy_regdom(wiphy); 2836 rcu_assign_pointer(wiphy->regd, regd); 2837 rcu_free_regdom(tmp); 2838 2839 for (band = 0; band < NUM_NL80211_BANDS; band++) 2840 handle_band_custom(wiphy, wiphy->bands[band], regd); 2841 2842 reg_process_ht_flags(wiphy); 2843 2844 request.wiphy_idx = get_wiphy_idx(wiphy); 2845 request.alpha2[0] = regd->alpha2[0]; 2846 request.alpha2[1] = regd->alpha2[1]; 2847 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 2848 2849 nl80211_send_wiphy_reg_change_event(&request); 2850 } 2851 2852 reg_check_channels(); 2853 } 2854 2855 static void reg_todo(struct work_struct *work) 2856 { 2857 rtnl_lock(); 2858 reg_process_pending_hints(); 2859 reg_process_pending_beacon_hints(); 2860 reg_process_self_managed_hints(); 2861 rtnl_unlock(); 2862 } 2863 2864 static void queue_regulatory_request(struct regulatory_request *request) 2865 { 2866 request->alpha2[0] = toupper(request->alpha2[0]); 2867 request->alpha2[1] = toupper(request->alpha2[1]); 2868 2869 spin_lock(®_requests_lock); 2870 list_add_tail(&request->list, ®_requests_list); 2871 spin_unlock(®_requests_lock); 2872 2873 schedule_work(®_work); 2874 } 2875 2876 /* 2877 * Core regulatory hint -- happens during cfg80211_init() 2878 * and when we restore regulatory settings. 2879 */ 2880 static int regulatory_hint_core(const char *alpha2) 2881 { 2882 struct regulatory_request *request; 2883 2884 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2885 if (!request) 2886 return -ENOMEM; 2887 2888 request->alpha2[0] = alpha2[0]; 2889 request->alpha2[1] = alpha2[1]; 2890 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2891 request->wiphy_idx = WIPHY_IDX_INVALID; 2892 2893 queue_regulatory_request(request); 2894 2895 return 0; 2896 } 2897 2898 /* User hints */ 2899 int regulatory_hint_user(const char *alpha2, 2900 enum nl80211_user_reg_hint_type user_reg_hint_type) 2901 { 2902 struct regulatory_request *request; 2903 2904 if (WARN_ON(!alpha2)) 2905 return -EINVAL; 2906 2907 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2908 if (!request) 2909 return -ENOMEM; 2910 2911 request->wiphy_idx = WIPHY_IDX_INVALID; 2912 request->alpha2[0] = alpha2[0]; 2913 request->alpha2[1] = alpha2[1]; 2914 request->initiator = NL80211_REGDOM_SET_BY_USER; 2915 request->user_reg_hint_type = user_reg_hint_type; 2916 2917 /* Allow calling CRDA again */ 2918 reset_crda_timeouts(); 2919 2920 queue_regulatory_request(request); 2921 2922 return 0; 2923 } 2924 2925 int regulatory_hint_indoor(bool is_indoor, u32 portid) 2926 { 2927 spin_lock(®_indoor_lock); 2928 2929 /* It is possible that more than one user space process is trying to 2930 * configure the indoor setting. To handle such cases, clear the indoor 2931 * setting in case that some process does not think that the device 2932 * is operating in an indoor environment. In addition, if a user space 2933 * process indicates that it is controlling the indoor setting, save its 2934 * portid, i.e., make it the owner. 2935 */ 2936 reg_is_indoor = is_indoor; 2937 if (reg_is_indoor) { 2938 if (!reg_is_indoor_portid) 2939 reg_is_indoor_portid = portid; 2940 } else { 2941 reg_is_indoor_portid = 0; 2942 } 2943 2944 spin_unlock(®_indoor_lock); 2945 2946 if (!is_indoor) 2947 reg_check_channels(); 2948 2949 return 0; 2950 } 2951 2952 void regulatory_netlink_notify(u32 portid) 2953 { 2954 spin_lock(®_indoor_lock); 2955 2956 if (reg_is_indoor_portid != portid) { 2957 spin_unlock(®_indoor_lock); 2958 return; 2959 } 2960 2961 reg_is_indoor = false; 2962 reg_is_indoor_portid = 0; 2963 2964 spin_unlock(®_indoor_lock); 2965 2966 reg_check_channels(); 2967 } 2968 2969 /* Driver hints */ 2970 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 2971 { 2972 struct regulatory_request *request; 2973 2974 if (WARN_ON(!alpha2 || !wiphy)) 2975 return -EINVAL; 2976 2977 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 2978 2979 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2980 if (!request) 2981 return -ENOMEM; 2982 2983 request->wiphy_idx = get_wiphy_idx(wiphy); 2984 2985 request->alpha2[0] = alpha2[0]; 2986 request->alpha2[1] = alpha2[1]; 2987 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 2988 2989 /* Allow calling CRDA again */ 2990 reset_crda_timeouts(); 2991 2992 queue_regulatory_request(request); 2993 2994 return 0; 2995 } 2996 EXPORT_SYMBOL(regulatory_hint); 2997 2998 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 2999 const u8 *country_ie, u8 country_ie_len) 3000 { 3001 char alpha2[2]; 3002 enum environment_cap env = ENVIRON_ANY; 3003 struct regulatory_request *request = NULL, *lr; 3004 3005 /* IE len must be evenly divisible by 2 */ 3006 if (country_ie_len & 0x01) 3007 return; 3008 3009 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3010 return; 3011 3012 request = kzalloc(sizeof(*request), GFP_KERNEL); 3013 if (!request) 3014 return; 3015 3016 alpha2[0] = country_ie[0]; 3017 alpha2[1] = country_ie[1]; 3018 3019 if (country_ie[2] == 'I') 3020 env = ENVIRON_INDOOR; 3021 else if (country_ie[2] == 'O') 3022 env = ENVIRON_OUTDOOR; 3023 3024 rcu_read_lock(); 3025 lr = get_last_request(); 3026 3027 if (unlikely(!lr)) 3028 goto out; 3029 3030 /* 3031 * We will run this only upon a successful connection on cfg80211. 3032 * We leave conflict resolution to the workqueue, where can hold 3033 * the RTNL. 3034 */ 3035 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3036 lr->wiphy_idx != WIPHY_IDX_INVALID) 3037 goto out; 3038 3039 request->wiphy_idx = get_wiphy_idx(wiphy); 3040 request->alpha2[0] = alpha2[0]; 3041 request->alpha2[1] = alpha2[1]; 3042 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3043 request->country_ie_env = env; 3044 3045 /* Allow calling CRDA again */ 3046 reset_crda_timeouts(); 3047 3048 queue_regulatory_request(request); 3049 request = NULL; 3050 out: 3051 kfree(request); 3052 rcu_read_unlock(); 3053 } 3054 3055 static void restore_alpha2(char *alpha2, bool reset_user) 3056 { 3057 /* indicates there is no alpha2 to consider for restoration */ 3058 alpha2[0] = '9'; 3059 alpha2[1] = '7'; 3060 3061 /* The user setting has precedence over the module parameter */ 3062 if (is_user_regdom_saved()) { 3063 /* Unless we're asked to ignore it and reset it */ 3064 if (reset_user) { 3065 pr_debug("Restoring regulatory settings including user preference\n"); 3066 user_alpha2[0] = '9'; 3067 user_alpha2[1] = '7'; 3068 3069 /* 3070 * If we're ignoring user settings, we still need to 3071 * check the module parameter to ensure we put things 3072 * back as they were for a full restore. 3073 */ 3074 if (!is_world_regdom(ieee80211_regdom)) { 3075 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3076 ieee80211_regdom[0], ieee80211_regdom[1]); 3077 alpha2[0] = ieee80211_regdom[0]; 3078 alpha2[1] = ieee80211_regdom[1]; 3079 } 3080 } else { 3081 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3082 user_alpha2[0], user_alpha2[1]); 3083 alpha2[0] = user_alpha2[0]; 3084 alpha2[1] = user_alpha2[1]; 3085 } 3086 } else if (!is_world_regdom(ieee80211_regdom)) { 3087 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3088 ieee80211_regdom[0], ieee80211_regdom[1]); 3089 alpha2[0] = ieee80211_regdom[0]; 3090 alpha2[1] = ieee80211_regdom[1]; 3091 } else 3092 pr_debug("Restoring regulatory settings\n"); 3093 } 3094 3095 static void restore_custom_reg_settings(struct wiphy *wiphy) 3096 { 3097 struct ieee80211_supported_band *sband; 3098 enum nl80211_band band; 3099 struct ieee80211_channel *chan; 3100 int i; 3101 3102 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3103 sband = wiphy->bands[band]; 3104 if (!sband) 3105 continue; 3106 for (i = 0; i < sband->n_channels; i++) { 3107 chan = &sband->channels[i]; 3108 chan->flags = chan->orig_flags; 3109 chan->max_antenna_gain = chan->orig_mag; 3110 chan->max_power = chan->orig_mpwr; 3111 chan->beacon_found = false; 3112 } 3113 } 3114 } 3115 3116 /* 3117 * Restoring regulatory settings involves ingoring any 3118 * possibly stale country IE information and user regulatory 3119 * settings if so desired, this includes any beacon hints 3120 * learned as we could have traveled outside to another country 3121 * after disconnection. To restore regulatory settings we do 3122 * exactly what we did at bootup: 3123 * 3124 * - send a core regulatory hint 3125 * - send a user regulatory hint if applicable 3126 * 3127 * Device drivers that send a regulatory hint for a specific country 3128 * keep their own regulatory domain on wiphy->regd so that does does 3129 * not need to be remembered. 3130 */ 3131 static void restore_regulatory_settings(bool reset_user, bool cached) 3132 { 3133 char alpha2[2]; 3134 char world_alpha2[2]; 3135 struct reg_beacon *reg_beacon, *btmp; 3136 LIST_HEAD(tmp_reg_req_list); 3137 struct cfg80211_registered_device *rdev; 3138 3139 ASSERT_RTNL(); 3140 3141 /* 3142 * Clear the indoor setting in case that it is not controlled by user 3143 * space, as otherwise there is no guarantee that the device is still 3144 * operating in an indoor environment. 3145 */ 3146 spin_lock(®_indoor_lock); 3147 if (reg_is_indoor && !reg_is_indoor_portid) { 3148 reg_is_indoor = false; 3149 reg_check_channels(); 3150 } 3151 spin_unlock(®_indoor_lock); 3152 3153 reset_regdomains(true, &world_regdom); 3154 restore_alpha2(alpha2, reset_user); 3155 3156 /* 3157 * If there's any pending requests we simply 3158 * stash them to a temporary pending queue and 3159 * add then after we've restored regulatory 3160 * settings. 3161 */ 3162 spin_lock(®_requests_lock); 3163 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3164 spin_unlock(®_requests_lock); 3165 3166 /* Clear beacon hints */ 3167 spin_lock_bh(®_pending_beacons_lock); 3168 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3169 list_del(®_beacon->list); 3170 kfree(reg_beacon); 3171 } 3172 spin_unlock_bh(®_pending_beacons_lock); 3173 3174 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3175 list_del(®_beacon->list); 3176 kfree(reg_beacon); 3177 } 3178 3179 /* First restore to the basic regulatory settings */ 3180 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3181 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3182 3183 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3184 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3185 continue; 3186 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3187 restore_custom_reg_settings(&rdev->wiphy); 3188 } 3189 3190 if (cached && (!is_an_alpha2(alpha2) || 3191 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3192 reset_regdomains(false, cfg80211_world_regdom); 3193 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3194 print_regdomain(get_cfg80211_regdom()); 3195 nl80211_send_reg_change_event(&core_request_world); 3196 reg_set_request_processed(); 3197 3198 if (is_an_alpha2(alpha2) && 3199 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3200 struct regulatory_request *ureq; 3201 3202 spin_lock(®_requests_lock); 3203 ureq = list_last_entry(®_requests_list, 3204 struct regulatory_request, 3205 list); 3206 list_del(&ureq->list); 3207 spin_unlock(®_requests_lock); 3208 3209 notify_self_managed_wiphys(ureq); 3210 reg_update_last_request(ureq); 3211 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3212 REGD_SOURCE_CACHED); 3213 } 3214 } else { 3215 regulatory_hint_core(world_alpha2); 3216 3217 /* 3218 * This restores the ieee80211_regdom module parameter 3219 * preference or the last user requested regulatory 3220 * settings, user regulatory settings takes precedence. 3221 */ 3222 if (is_an_alpha2(alpha2)) 3223 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3224 } 3225 3226 spin_lock(®_requests_lock); 3227 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3228 spin_unlock(®_requests_lock); 3229 3230 pr_debug("Kicking the queue\n"); 3231 3232 schedule_work(®_work); 3233 } 3234 3235 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3236 { 3237 struct cfg80211_registered_device *rdev; 3238 struct wireless_dev *wdev; 3239 3240 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3241 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3242 wdev_lock(wdev); 3243 if (!(wdev->wiphy->regulatory_flags & flag)) { 3244 wdev_unlock(wdev); 3245 return false; 3246 } 3247 wdev_unlock(wdev); 3248 } 3249 } 3250 3251 return true; 3252 } 3253 3254 void regulatory_hint_disconnect(void) 3255 { 3256 /* Restore of regulatory settings is not required when wiphy(s) 3257 * ignore IE from connected access point but clearance of beacon hints 3258 * is required when wiphy(s) supports beacon hints. 3259 */ 3260 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3261 struct reg_beacon *reg_beacon, *btmp; 3262 3263 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3264 return; 3265 3266 spin_lock_bh(®_pending_beacons_lock); 3267 list_for_each_entry_safe(reg_beacon, btmp, 3268 ®_pending_beacons, list) { 3269 list_del(®_beacon->list); 3270 kfree(reg_beacon); 3271 } 3272 spin_unlock_bh(®_pending_beacons_lock); 3273 3274 list_for_each_entry_safe(reg_beacon, btmp, 3275 ®_beacon_list, list) { 3276 list_del(®_beacon->list); 3277 kfree(reg_beacon); 3278 } 3279 3280 return; 3281 } 3282 3283 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3284 restore_regulatory_settings(false, true); 3285 } 3286 3287 static bool freq_is_chan_12_13_14(u32 freq) 3288 { 3289 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3290 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3291 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3292 return true; 3293 return false; 3294 } 3295 3296 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3297 { 3298 struct reg_beacon *pending_beacon; 3299 3300 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3301 if (beacon_chan->center_freq == 3302 pending_beacon->chan.center_freq) 3303 return true; 3304 return false; 3305 } 3306 3307 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3308 struct ieee80211_channel *beacon_chan, 3309 gfp_t gfp) 3310 { 3311 struct reg_beacon *reg_beacon; 3312 bool processing; 3313 3314 if (beacon_chan->beacon_found || 3315 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3316 (beacon_chan->band == NL80211_BAND_2GHZ && 3317 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3318 return 0; 3319 3320 spin_lock_bh(®_pending_beacons_lock); 3321 processing = pending_reg_beacon(beacon_chan); 3322 spin_unlock_bh(®_pending_beacons_lock); 3323 3324 if (processing) 3325 return 0; 3326 3327 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3328 if (!reg_beacon) 3329 return -ENOMEM; 3330 3331 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 3332 beacon_chan->center_freq, 3333 ieee80211_frequency_to_channel(beacon_chan->center_freq), 3334 wiphy_name(wiphy)); 3335 3336 memcpy(®_beacon->chan, beacon_chan, 3337 sizeof(struct ieee80211_channel)); 3338 3339 /* 3340 * Since we can be called from BH or and non-BH context 3341 * we must use spin_lock_bh() 3342 */ 3343 spin_lock_bh(®_pending_beacons_lock); 3344 list_add_tail(®_beacon->list, ®_pending_beacons); 3345 spin_unlock_bh(®_pending_beacons_lock); 3346 3347 schedule_work(®_work); 3348 3349 return 0; 3350 } 3351 3352 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3353 { 3354 unsigned int i; 3355 const struct ieee80211_reg_rule *reg_rule = NULL; 3356 const struct ieee80211_freq_range *freq_range = NULL; 3357 const struct ieee80211_power_rule *power_rule = NULL; 3358 char bw[32], cac_time[32]; 3359 3360 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3361 3362 for (i = 0; i < rd->n_reg_rules; i++) { 3363 reg_rule = &rd->reg_rules[i]; 3364 freq_range = ®_rule->freq_range; 3365 power_rule = ®_rule->power_rule; 3366 3367 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3368 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 3369 freq_range->max_bandwidth_khz, 3370 reg_get_max_bandwidth(rd, reg_rule)); 3371 else 3372 snprintf(bw, sizeof(bw), "%d KHz", 3373 freq_range->max_bandwidth_khz); 3374 3375 if (reg_rule->flags & NL80211_RRF_DFS) 3376 scnprintf(cac_time, sizeof(cac_time), "%u s", 3377 reg_rule->dfs_cac_ms/1000); 3378 else 3379 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3380 3381 3382 /* 3383 * There may not be documentation for max antenna gain 3384 * in certain regions 3385 */ 3386 if (power_rule->max_antenna_gain) 3387 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3388 freq_range->start_freq_khz, 3389 freq_range->end_freq_khz, 3390 bw, 3391 power_rule->max_antenna_gain, 3392 power_rule->max_eirp, 3393 cac_time); 3394 else 3395 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3396 freq_range->start_freq_khz, 3397 freq_range->end_freq_khz, 3398 bw, 3399 power_rule->max_eirp, 3400 cac_time); 3401 } 3402 } 3403 3404 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3405 { 3406 switch (dfs_region) { 3407 case NL80211_DFS_UNSET: 3408 case NL80211_DFS_FCC: 3409 case NL80211_DFS_ETSI: 3410 case NL80211_DFS_JP: 3411 return true; 3412 default: 3413 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3414 return false; 3415 } 3416 } 3417 3418 static void print_regdomain(const struct ieee80211_regdomain *rd) 3419 { 3420 struct regulatory_request *lr = get_last_request(); 3421 3422 if (is_intersected_alpha2(rd->alpha2)) { 3423 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3424 struct cfg80211_registered_device *rdev; 3425 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3426 if (rdev) { 3427 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3428 rdev->country_ie_alpha2[0], 3429 rdev->country_ie_alpha2[1]); 3430 } else 3431 pr_debug("Current regulatory domain intersected:\n"); 3432 } else 3433 pr_debug("Current regulatory domain intersected:\n"); 3434 } else if (is_world_regdom(rd->alpha2)) { 3435 pr_debug("World regulatory domain updated:\n"); 3436 } else { 3437 if (is_unknown_alpha2(rd->alpha2)) 3438 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3439 else { 3440 if (reg_request_cell_base(lr)) 3441 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3442 rd->alpha2[0], rd->alpha2[1]); 3443 else 3444 pr_debug("Regulatory domain changed to country: %c%c\n", 3445 rd->alpha2[0], rd->alpha2[1]); 3446 } 3447 } 3448 3449 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3450 print_rd_rules(rd); 3451 } 3452 3453 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3454 { 3455 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3456 print_rd_rules(rd); 3457 } 3458 3459 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3460 { 3461 if (!is_world_regdom(rd->alpha2)) 3462 return -EINVAL; 3463 update_world_regdomain(rd); 3464 return 0; 3465 } 3466 3467 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3468 struct regulatory_request *user_request) 3469 { 3470 const struct ieee80211_regdomain *intersected_rd = NULL; 3471 3472 if (!regdom_changes(rd->alpha2)) 3473 return -EALREADY; 3474 3475 if (!is_valid_rd(rd)) { 3476 pr_err("Invalid regulatory domain detected: %c%c\n", 3477 rd->alpha2[0], rd->alpha2[1]); 3478 print_regdomain_info(rd); 3479 return -EINVAL; 3480 } 3481 3482 if (!user_request->intersect) { 3483 reset_regdomains(false, rd); 3484 return 0; 3485 } 3486 3487 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3488 if (!intersected_rd) 3489 return -EINVAL; 3490 3491 kfree(rd); 3492 rd = NULL; 3493 reset_regdomains(false, intersected_rd); 3494 3495 return 0; 3496 } 3497 3498 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3499 struct regulatory_request *driver_request) 3500 { 3501 const struct ieee80211_regdomain *regd; 3502 const struct ieee80211_regdomain *intersected_rd = NULL; 3503 const struct ieee80211_regdomain *tmp; 3504 struct wiphy *request_wiphy; 3505 3506 if (is_world_regdom(rd->alpha2)) 3507 return -EINVAL; 3508 3509 if (!regdom_changes(rd->alpha2)) 3510 return -EALREADY; 3511 3512 if (!is_valid_rd(rd)) { 3513 pr_err("Invalid regulatory domain detected: %c%c\n", 3514 rd->alpha2[0], rd->alpha2[1]); 3515 print_regdomain_info(rd); 3516 return -EINVAL; 3517 } 3518 3519 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3520 if (!request_wiphy) 3521 return -ENODEV; 3522 3523 if (!driver_request->intersect) { 3524 if (request_wiphy->regd) 3525 return -EALREADY; 3526 3527 regd = reg_copy_regd(rd); 3528 if (IS_ERR(regd)) 3529 return PTR_ERR(regd); 3530 3531 rcu_assign_pointer(request_wiphy->regd, regd); 3532 reset_regdomains(false, rd); 3533 return 0; 3534 } 3535 3536 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3537 if (!intersected_rd) 3538 return -EINVAL; 3539 3540 /* 3541 * We can trash what CRDA provided now. 3542 * However if a driver requested this specific regulatory 3543 * domain we keep it for its private use 3544 */ 3545 tmp = get_wiphy_regdom(request_wiphy); 3546 rcu_assign_pointer(request_wiphy->regd, rd); 3547 rcu_free_regdom(tmp); 3548 3549 rd = NULL; 3550 3551 reset_regdomains(false, intersected_rd); 3552 3553 return 0; 3554 } 3555 3556 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3557 struct regulatory_request *country_ie_request) 3558 { 3559 struct wiphy *request_wiphy; 3560 3561 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3562 !is_unknown_alpha2(rd->alpha2)) 3563 return -EINVAL; 3564 3565 /* 3566 * Lets only bother proceeding on the same alpha2 if the current 3567 * rd is non static (it means CRDA was present and was used last) 3568 * and the pending request came in from a country IE 3569 */ 3570 3571 if (!is_valid_rd(rd)) { 3572 pr_err("Invalid regulatory domain detected: %c%c\n", 3573 rd->alpha2[0], rd->alpha2[1]); 3574 print_regdomain_info(rd); 3575 return -EINVAL; 3576 } 3577 3578 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3579 if (!request_wiphy) 3580 return -ENODEV; 3581 3582 if (country_ie_request->intersect) 3583 return -EINVAL; 3584 3585 reset_regdomains(false, rd); 3586 return 0; 3587 } 3588 3589 /* 3590 * Use this call to set the current regulatory domain. Conflicts with 3591 * multiple drivers can be ironed out later. Caller must've already 3592 * kmalloc'd the rd structure. 3593 */ 3594 int set_regdom(const struct ieee80211_regdomain *rd, 3595 enum ieee80211_regd_source regd_src) 3596 { 3597 struct regulatory_request *lr; 3598 bool user_reset = false; 3599 int r; 3600 3601 if (IS_ERR_OR_NULL(rd)) 3602 return -ENODATA; 3603 3604 if (!reg_is_valid_request(rd->alpha2)) { 3605 kfree(rd); 3606 return -EINVAL; 3607 } 3608 3609 if (regd_src == REGD_SOURCE_CRDA) 3610 reset_crda_timeouts(); 3611 3612 lr = get_last_request(); 3613 3614 /* Note that this doesn't update the wiphys, this is done below */ 3615 switch (lr->initiator) { 3616 case NL80211_REGDOM_SET_BY_CORE: 3617 r = reg_set_rd_core(rd); 3618 break; 3619 case NL80211_REGDOM_SET_BY_USER: 3620 cfg80211_save_user_regdom(rd); 3621 r = reg_set_rd_user(rd, lr); 3622 user_reset = true; 3623 break; 3624 case NL80211_REGDOM_SET_BY_DRIVER: 3625 r = reg_set_rd_driver(rd, lr); 3626 break; 3627 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3628 r = reg_set_rd_country_ie(rd, lr); 3629 break; 3630 default: 3631 WARN(1, "invalid initiator %d\n", lr->initiator); 3632 kfree(rd); 3633 return -EINVAL; 3634 } 3635 3636 if (r) { 3637 switch (r) { 3638 case -EALREADY: 3639 reg_set_request_processed(); 3640 break; 3641 default: 3642 /* Back to world regulatory in case of errors */ 3643 restore_regulatory_settings(user_reset, false); 3644 } 3645 3646 kfree(rd); 3647 return r; 3648 } 3649 3650 /* This would make this whole thing pointless */ 3651 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3652 return -EINVAL; 3653 3654 /* update all wiphys now with the new established regulatory domain */ 3655 update_all_wiphy_regulatory(lr->initiator); 3656 3657 print_regdomain(get_cfg80211_regdom()); 3658 3659 nl80211_send_reg_change_event(lr); 3660 3661 reg_set_request_processed(); 3662 3663 return 0; 3664 } 3665 3666 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3667 struct ieee80211_regdomain *rd) 3668 { 3669 const struct ieee80211_regdomain *regd; 3670 const struct ieee80211_regdomain *prev_regd; 3671 struct cfg80211_registered_device *rdev; 3672 3673 if (WARN_ON(!wiphy || !rd)) 3674 return -EINVAL; 3675 3676 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3677 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3678 return -EPERM; 3679 3680 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3681 print_regdomain_info(rd); 3682 return -EINVAL; 3683 } 3684 3685 regd = reg_copy_regd(rd); 3686 if (IS_ERR(regd)) 3687 return PTR_ERR(regd); 3688 3689 rdev = wiphy_to_rdev(wiphy); 3690 3691 spin_lock(®_requests_lock); 3692 prev_regd = rdev->requested_regd; 3693 rdev->requested_regd = regd; 3694 spin_unlock(®_requests_lock); 3695 3696 kfree(prev_regd); 3697 return 0; 3698 } 3699 3700 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3701 struct ieee80211_regdomain *rd) 3702 { 3703 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3704 3705 if (ret) 3706 return ret; 3707 3708 schedule_work(®_work); 3709 return 0; 3710 } 3711 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3712 3713 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3714 struct ieee80211_regdomain *rd) 3715 { 3716 int ret; 3717 3718 ASSERT_RTNL(); 3719 3720 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3721 if (ret) 3722 return ret; 3723 3724 /* process the request immediately */ 3725 reg_process_self_managed_hints(); 3726 return 0; 3727 } 3728 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3729 3730 void wiphy_regulatory_register(struct wiphy *wiphy) 3731 { 3732 struct regulatory_request *lr = get_last_request(); 3733 3734 /* self-managed devices ignore beacon hints and country IE */ 3735 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 3736 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3737 REGULATORY_COUNTRY_IE_IGNORE; 3738 3739 /* 3740 * The last request may have been received before this 3741 * registration call. Call the driver notifier if 3742 * initiator is USER and user type is CELL_BASE. 3743 */ 3744 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 3745 lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE) 3746 reg_call_notifier(wiphy, lr); 3747 } 3748 3749 if (!reg_dev_ignore_cell_hint(wiphy)) 3750 reg_num_devs_support_basehint++; 3751 3752 wiphy_update_regulatory(wiphy, lr->initiator); 3753 wiphy_all_share_dfs_chan_state(wiphy); 3754 } 3755 3756 void wiphy_regulatory_deregister(struct wiphy *wiphy) 3757 { 3758 struct wiphy *request_wiphy = NULL; 3759 struct regulatory_request *lr; 3760 3761 lr = get_last_request(); 3762 3763 if (!reg_dev_ignore_cell_hint(wiphy)) 3764 reg_num_devs_support_basehint--; 3765 3766 rcu_free_regdom(get_wiphy_regdom(wiphy)); 3767 RCU_INIT_POINTER(wiphy->regd, NULL); 3768 3769 if (lr) 3770 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 3771 3772 if (!request_wiphy || request_wiphy != wiphy) 3773 return; 3774 3775 lr->wiphy_idx = WIPHY_IDX_INVALID; 3776 lr->country_ie_env = ENVIRON_ANY; 3777 } 3778 3779 /* 3780 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for 3781 * UNII band definitions 3782 */ 3783 int cfg80211_get_unii(int freq) 3784 { 3785 /* UNII-1 */ 3786 if (freq >= 5150 && freq <= 5250) 3787 return 0; 3788 3789 /* UNII-2A */ 3790 if (freq > 5250 && freq <= 5350) 3791 return 1; 3792 3793 /* UNII-2B */ 3794 if (freq > 5350 && freq <= 5470) 3795 return 2; 3796 3797 /* UNII-2C */ 3798 if (freq > 5470 && freq <= 5725) 3799 return 3; 3800 3801 /* UNII-3 */ 3802 if (freq > 5725 && freq <= 5825) 3803 return 4; 3804 3805 return -EINVAL; 3806 } 3807 3808 bool regulatory_indoor_allowed(void) 3809 { 3810 return reg_is_indoor; 3811 } 3812 3813 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 3814 { 3815 const struct ieee80211_regdomain *regd = NULL; 3816 const struct ieee80211_regdomain *wiphy_regd = NULL; 3817 bool pre_cac_allowed = false; 3818 3819 rcu_read_lock(); 3820 3821 regd = rcu_dereference(cfg80211_regdomain); 3822 wiphy_regd = rcu_dereference(wiphy->regd); 3823 if (!wiphy_regd) { 3824 if (regd->dfs_region == NL80211_DFS_ETSI) 3825 pre_cac_allowed = true; 3826 3827 rcu_read_unlock(); 3828 3829 return pre_cac_allowed; 3830 } 3831 3832 if (regd->dfs_region == wiphy_regd->dfs_region && 3833 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 3834 pre_cac_allowed = true; 3835 3836 rcu_read_unlock(); 3837 3838 return pre_cac_allowed; 3839 } 3840 3841 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 3842 struct cfg80211_chan_def *chandef, 3843 enum nl80211_dfs_state dfs_state, 3844 enum nl80211_radar_event event) 3845 { 3846 struct cfg80211_registered_device *rdev; 3847 3848 ASSERT_RTNL(); 3849 3850 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 3851 return; 3852 3853 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3854 if (wiphy == &rdev->wiphy) 3855 continue; 3856 3857 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 3858 continue; 3859 3860 if (!ieee80211_get_channel(&rdev->wiphy, 3861 chandef->chan->center_freq)) 3862 continue; 3863 3864 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 3865 3866 if (event == NL80211_RADAR_DETECTED || 3867 event == NL80211_RADAR_CAC_FINISHED) 3868 cfg80211_sched_dfs_chan_update(rdev); 3869 3870 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 3871 } 3872 } 3873 3874 static int __init regulatory_init_db(void) 3875 { 3876 int err; 3877 3878 /* 3879 * It's possible that - due to other bugs/issues - cfg80211 3880 * never called regulatory_init() below, or that it failed; 3881 * in that case, don't try to do any further work here as 3882 * it's doomed to lead to crashes. 3883 */ 3884 if (IS_ERR_OR_NULL(reg_pdev)) 3885 return -EINVAL; 3886 3887 err = load_builtin_regdb_keys(); 3888 if (err) 3889 return err; 3890 3891 /* We always try to get an update for the static regdomain */ 3892 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 3893 if (err) { 3894 if (err == -ENOMEM) { 3895 platform_device_unregister(reg_pdev); 3896 return err; 3897 } 3898 /* 3899 * N.B. kobject_uevent_env() can fail mainly for when we're out 3900 * memory which is handled and propagated appropriately above 3901 * but it can also fail during a netlink_broadcast() or during 3902 * early boot for call_usermodehelper(). For now treat these 3903 * errors as non-fatal. 3904 */ 3905 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 3906 } 3907 3908 /* 3909 * Finally, if the user set the module parameter treat it 3910 * as a user hint. 3911 */ 3912 if (!is_world_regdom(ieee80211_regdom)) 3913 regulatory_hint_user(ieee80211_regdom, 3914 NL80211_USER_REG_HINT_USER); 3915 3916 return 0; 3917 } 3918 #ifndef MODULE 3919 late_initcall(regulatory_init_db); 3920 #endif 3921 3922 int __init regulatory_init(void) 3923 { 3924 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 3925 if (IS_ERR(reg_pdev)) 3926 return PTR_ERR(reg_pdev); 3927 3928 spin_lock_init(®_requests_lock); 3929 spin_lock_init(®_pending_beacons_lock); 3930 spin_lock_init(®_indoor_lock); 3931 3932 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 3933 3934 user_alpha2[0] = '9'; 3935 user_alpha2[1] = '7'; 3936 3937 #ifdef MODULE 3938 return regulatory_init_db(); 3939 #else 3940 return 0; 3941 #endif 3942 } 3943 3944 void regulatory_exit(void) 3945 { 3946 struct regulatory_request *reg_request, *tmp; 3947 struct reg_beacon *reg_beacon, *btmp; 3948 3949 cancel_work_sync(®_work); 3950 cancel_crda_timeout_sync(); 3951 cancel_delayed_work_sync(®_check_chans); 3952 3953 /* Lock to suppress warnings */ 3954 rtnl_lock(); 3955 reset_regdomains(true, NULL); 3956 rtnl_unlock(); 3957 3958 dev_set_uevent_suppress(®_pdev->dev, true); 3959 3960 platform_device_unregister(reg_pdev); 3961 3962 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3963 list_del(®_beacon->list); 3964 kfree(reg_beacon); 3965 } 3966 3967 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3968 list_del(®_beacon->list); 3969 kfree(reg_beacon); 3970 } 3971 3972 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 3973 list_del(®_request->list); 3974 kfree(reg_request); 3975 } 3976 3977 if (!IS_ERR_OR_NULL(regdb)) 3978 kfree(regdb); 3979 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 3980 kfree(cfg80211_user_regdom); 3981 3982 free_regdb_keyring(); 3983 } 3984