xref: /linux/net/wireless/reg.c (revision 4877fc92142f635be418d8c915eb48ef87681108)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2023 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137 
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140 	return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142 
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 	return rcu_dereference_check(wiphy->regd,
151 				     lockdep_is_held(&wiphy->mtx) ||
152 				     lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155 
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158 	switch (dfs_region) {
159 	case NL80211_DFS_UNSET:
160 		return "unset";
161 	case NL80211_DFS_FCC:
162 		return "FCC";
163 	case NL80211_DFS_ETSI:
164 		return "ETSI";
165 	case NL80211_DFS_JP:
166 		return "JP";
167 	}
168 	return "Unknown";
169 }
170 
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173 	const struct ieee80211_regdomain *regd = NULL;
174 	const struct ieee80211_regdomain *wiphy_regd = NULL;
175 	enum nl80211_dfs_regions dfs_region;
176 
177 	rcu_read_lock();
178 	regd = get_cfg80211_regdom();
179 	dfs_region = regd->dfs_region;
180 
181 	if (!wiphy)
182 		goto out;
183 
184 	wiphy_regd = get_wiphy_regdom(wiphy);
185 	if (!wiphy_regd)
186 		goto out;
187 
188 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 		dfs_region = wiphy_regd->dfs_region;
190 		goto out;
191 	}
192 
193 	if (wiphy_regd->dfs_region == regd->dfs_region)
194 		goto out;
195 
196 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 		 dev_name(&wiphy->dev),
198 		 reg_dfs_region_str(wiphy_regd->dfs_region),
199 		 reg_dfs_region_str(regd->dfs_region));
200 
201 out:
202 	rcu_read_unlock();
203 
204 	return dfs_region;
205 }
206 
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209 	if (!r)
210 		return;
211 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213 
214 static struct regulatory_request *get_last_request(void)
215 {
216 	return rcu_dereference_rtnl(last_request);
217 }
218 
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222 
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226 
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229 
230 struct reg_beacon {
231 	struct list_head list;
232 	struct ieee80211_channel chan;
233 };
234 
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237 
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240 
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243 	.n_reg_rules = 8,
244 	.alpha2 =  "00",
245 	.reg_rules = {
246 		/* IEEE 802.11b/g, channels 1..11 */
247 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 		/* IEEE 802.11b/g, channels 12..13. */
249 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 		/* IEEE 802.11 channel 14 - Only JP enables
252 		 * this and for 802.11b only */
253 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 			NL80211_RRF_NO_IR |
255 			NL80211_RRF_NO_OFDM),
256 		/* IEEE 802.11a, channel 36..48 */
257 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260 
261 		/* IEEE 802.11a, channel 52..64 - DFS required */
262 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 			NL80211_RRF_NO_IR |
264 			NL80211_RRF_AUTO_BW |
265 			NL80211_RRF_DFS),
266 
267 		/* IEEE 802.11a, channel 100..144 - DFS required */
268 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 			NL80211_RRF_NO_IR |
270 			NL80211_RRF_DFS),
271 
272 		/* IEEE 802.11a, channel 149..165 */
273 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 			NL80211_RRF_NO_IR),
275 
276 		/* IEEE 802.11ad (60GHz), channels 1..3 */
277 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 	}
279 };
280 
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 	&world_regdom;
284 
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288 
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291 
292 static void reg_free_request(struct regulatory_request *request)
293 {
294 	if (request == &core_request_world)
295 		return;
296 
297 	if (request != get_last_request())
298 		kfree(request);
299 }
300 
301 static void reg_free_last_request(void)
302 {
303 	struct regulatory_request *lr = get_last_request();
304 
305 	if (lr != &core_request_world && lr)
306 		kfree_rcu(lr, rcu_head);
307 }
308 
309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311 	struct regulatory_request *lr;
312 
313 	lr = get_last_request();
314 	if (lr == request)
315 		return;
316 
317 	reg_free_last_request();
318 	rcu_assign_pointer(last_request, request);
319 }
320 
321 static void reset_regdomains(bool full_reset,
322 			     const struct ieee80211_regdomain *new_regdom)
323 {
324 	const struct ieee80211_regdomain *r;
325 
326 	ASSERT_RTNL();
327 
328 	r = get_cfg80211_regdom();
329 
330 	/* avoid freeing static information or freeing something twice */
331 	if (r == cfg80211_world_regdom)
332 		r = NULL;
333 	if (cfg80211_world_regdom == &world_regdom)
334 		cfg80211_world_regdom = NULL;
335 	if (r == &world_regdom)
336 		r = NULL;
337 
338 	rcu_free_regdom(r);
339 	rcu_free_regdom(cfg80211_world_regdom);
340 
341 	cfg80211_world_regdom = &world_regdom;
342 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343 
344 	if (!full_reset)
345 		return;
346 
347 	reg_update_last_request(&core_request_world);
348 }
349 
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356 	struct regulatory_request *lr;
357 
358 	lr = get_last_request();
359 
360 	WARN_ON(!lr);
361 
362 	reset_regdomains(false, rd);
363 
364 	cfg80211_world_regdom = rd;
365 }
366 
367 bool is_world_regdom(const char *alpha2)
368 {
369 	if (!alpha2)
370 		return false;
371 	return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373 
374 static bool is_alpha2_set(const char *alpha2)
375 {
376 	if (!alpha2)
377 		return false;
378 	return alpha2[0] && alpha2[1];
379 }
380 
381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383 	if (!alpha2)
384 		return false;
385 	/*
386 	 * Special case where regulatory domain was built by driver
387 	 * but a specific alpha2 cannot be determined
388 	 */
389 	return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391 
392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394 	if (!alpha2)
395 		return false;
396 	/*
397 	 * Special case where regulatory domain is the
398 	 * result of an intersection between two regulatory domain
399 	 * structures
400 	 */
401 	return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403 
404 static bool is_an_alpha2(const char *alpha2)
405 {
406 	if (!alpha2)
407 		return false;
408 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410 
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413 	if (!alpha2_x || !alpha2_y)
414 		return false;
415 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417 
418 static bool regdom_changes(const char *alpha2)
419 {
420 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421 
422 	if (!r)
423 		return true;
424 	return !alpha2_equal(r->alpha2, alpha2);
425 }
426 
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
432 static bool is_user_regdom_saved(void)
433 {
434 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 		return false;
436 
437 	/* This would indicate a mistake on the design */
438 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 		 "Unexpected user alpha2: %c%c\n",
440 		 user_alpha2[0], user_alpha2[1]))
441 		return false;
442 
443 	return true;
444 }
445 
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449 	struct ieee80211_regdomain *regd;
450 	unsigned int i;
451 
452 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 		       GFP_KERNEL);
454 	if (!regd)
455 		return ERR_PTR(-ENOMEM);
456 
457 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458 
459 	for (i = 0; i < src_regd->n_reg_rules; i++)
460 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461 		       sizeof(struct ieee80211_reg_rule));
462 
463 	return regd;
464 }
465 
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468 	ASSERT_RTNL();
469 
470 	if (!IS_ERR(cfg80211_user_regdom))
471 		kfree(cfg80211_user_regdom);
472 	cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474 
475 struct reg_regdb_apply_request {
476 	struct list_head list;
477 	const struct ieee80211_regdomain *regdom;
478 };
479 
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482 
483 static void reg_regdb_apply(struct work_struct *work)
484 {
485 	struct reg_regdb_apply_request *request;
486 
487 	rtnl_lock();
488 
489 	mutex_lock(&reg_regdb_apply_mutex);
490 	while (!list_empty(&reg_regdb_apply_list)) {
491 		request = list_first_entry(&reg_regdb_apply_list,
492 					   struct reg_regdb_apply_request,
493 					   list);
494 		list_del(&request->list);
495 
496 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 		kfree(request);
498 	}
499 	mutex_unlock(&reg_regdb_apply_mutex);
500 
501 	rtnl_unlock();
502 }
503 
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505 
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508 	struct reg_regdb_apply_request *request;
509 
510 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 	if (!request) {
512 		kfree(regdom);
513 		return -ENOMEM;
514 	}
515 
516 	request->regdom = regdom;
517 
518 	mutex_lock(&reg_regdb_apply_mutex);
519 	list_add_tail(&request->list, &reg_regdb_apply_list);
520 	mutex_unlock(&reg_regdb_apply_mutex);
521 
522 	schedule_work(&reg_regdb_work);
523 	return 0;
524 }
525 
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529 
530 static u32 reg_crda_timeouts;
531 
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534 
535 static void crda_timeout_work(struct work_struct *work)
536 {
537 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 	rtnl_lock();
539 	reg_crda_timeouts++;
540 	restore_regulatory_settings(true, false);
541 	rtnl_unlock();
542 }
543 
544 static void cancel_crda_timeout(void)
545 {
546 	cancel_delayed_work(&crda_timeout);
547 }
548 
549 static void cancel_crda_timeout_sync(void)
550 {
551 	cancel_delayed_work_sync(&crda_timeout);
552 }
553 
554 static void reset_crda_timeouts(void)
555 {
556 	reg_crda_timeouts = 0;
557 }
558 
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565 	char country[12];
566 	char *env[] = { country, NULL };
567 	int ret;
568 
569 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 		 alpha2[0], alpha2[1]);
571 
572 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 		return -EINVAL;
575 	}
576 
577 	if (!is_world_regdom((char *) alpha2))
578 		pr_debug("Calling CRDA for country: %c%c\n",
579 			 alpha2[0], alpha2[1]);
580 	else
581 		pr_debug("Calling CRDA to update world regulatory domain\n");
582 
583 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584 	if (ret)
585 		return ret;
586 
587 	queue_delayed_work(system_power_efficient_wq,
588 			   &crda_timeout, msecs_to_jiffies(3142));
589 	return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597 	return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600 
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603 
604 struct fwdb_country {
605 	u8 alpha2[2];
606 	__be16 coll_ptr;
607 	/* this struct cannot be extended */
608 } __packed __aligned(4);
609 
610 struct fwdb_collection {
611 	u8 len;
612 	u8 n_rules;
613 	u8 dfs_region;
614 	/* no optional data yet */
615 	/* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617 
618 enum fwdb_flags {
619 	FWDB_FLAG_NO_OFDM	= BIT(0),
620 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
621 	FWDB_FLAG_DFS		= BIT(2),
622 	FWDB_FLAG_NO_IR		= BIT(3),
623 	FWDB_FLAG_AUTO_BW	= BIT(4),
624 };
625 
626 struct fwdb_wmm_ac {
627 	u8 ecw;
628 	u8 aifsn;
629 	__be16 cot;
630 } __packed;
631 
632 struct fwdb_wmm_rule {
633 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636 
637 struct fwdb_rule {
638 	u8 len;
639 	u8 flags;
640 	__be16 max_eirp;
641 	__be32 start, end, max_bw;
642 	/* start of optional data */
643 	__be16 cac_timeout;
644 	__be16 wmm_ptr;
645 } __packed __aligned(4);
646 
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649 
650 struct fwdb_header {
651 	__be32 magic;
652 	__be32 version;
653 	struct fwdb_country country[];
654 } __packed __aligned(4);
655 
656 static int ecw2cw(int ecw)
657 {
658 	return (1 << ecw) - 1;
659 }
660 
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 	int i;
665 
666 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 		u8 aifsn = ac[i].aifsn;
670 
671 		if (cw_min >= cw_max)
672 			return false;
673 
674 		if (aifsn < 1)
675 			return false;
676 	}
677 
678 	return true;
679 }
680 
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684 
685 	if ((u8 *)rule + sizeof(rule->len) > data + size)
686 		return false;
687 
688 	/* mandatory fields */
689 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 		return false;
691 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 		struct fwdb_wmm_rule *wmm;
694 
695 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 			return false;
697 
698 		wmm = (void *)(data + wmm_ptr);
699 
700 		if (!valid_wmm(wmm))
701 			return false;
702 	}
703 	return true;
704 }
705 
706 static bool valid_country(const u8 *data, unsigned int size,
707 			  const struct fwdb_country *country)
708 {
709 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 	struct fwdb_collection *coll = (void *)(data + ptr);
711 	__be16 *rules_ptr;
712 	unsigned int i;
713 
714 	/* make sure we can read len/n_rules */
715 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 		return false;
717 
718 	/* make sure base struct and all rules fit */
719 	if ((u8 *)coll + ALIGN(coll->len, 2) +
720 	    (coll->n_rules * 2) > data + size)
721 		return false;
722 
723 	/* mandatory fields must exist */
724 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 		return false;
726 
727 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728 
729 	for (i = 0; i < coll->n_rules; i++) {
730 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731 
732 		if (!valid_rule(data, size, rule_ptr))
733 			return false;
734 	}
735 
736 	return true;
737 }
738 
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 #include <keys/asymmetric-type.h>
741 
742 static struct key *builtin_regdb_keys;
743 
744 static int __init load_builtin_regdb_keys(void)
745 {
746 	builtin_regdb_keys =
747 		keyring_alloc(".builtin_regdb_keys",
748 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
749 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
750 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
751 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
752 	if (IS_ERR(builtin_regdb_keys))
753 		return PTR_ERR(builtin_regdb_keys);
754 
755 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
756 
757 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
758 	x509_load_certificate_list(shipped_regdb_certs,
759 				   shipped_regdb_certs_len,
760 				   builtin_regdb_keys);
761 #endif
762 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
763 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
764 		x509_load_certificate_list(extra_regdb_certs,
765 					   extra_regdb_certs_len,
766 					   builtin_regdb_keys);
767 #endif
768 
769 	return 0;
770 }
771 
772 MODULE_FIRMWARE("regulatory.db.p7s");
773 
774 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
775 {
776 	const struct firmware *sig;
777 	bool result;
778 
779 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
780 		return false;
781 
782 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
783 					builtin_regdb_keys,
784 					VERIFYING_UNSPECIFIED_SIGNATURE,
785 					NULL, NULL) == 0;
786 
787 	release_firmware(sig);
788 
789 	return result;
790 }
791 
792 static void free_regdb_keyring(void)
793 {
794 	key_put(builtin_regdb_keys);
795 }
796 #else
797 static int load_builtin_regdb_keys(void)
798 {
799 	return 0;
800 }
801 
802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803 {
804 	return true;
805 }
806 
807 static void free_regdb_keyring(void)
808 {
809 }
810 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
811 
812 static bool valid_regdb(const u8 *data, unsigned int size)
813 {
814 	const struct fwdb_header *hdr = (void *)data;
815 	const struct fwdb_country *country;
816 
817 	if (size < sizeof(*hdr))
818 		return false;
819 
820 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
821 		return false;
822 
823 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
824 		return false;
825 
826 	if (!regdb_has_valid_signature(data, size))
827 		return false;
828 
829 	country = &hdr->country[0];
830 	while ((u8 *)(country + 1) <= data + size) {
831 		if (!country->coll_ptr)
832 			break;
833 		if (!valid_country(data, size, country))
834 			return false;
835 		country++;
836 	}
837 
838 	return true;
839 }
840 
841 static void set_wmm_rule(const struct fwdb_header *db,
842 			 const struct fwdb_country *country,
843 			 const struct fwdb_rule *rule,
844 			 struct ieee80211_reg_rule *rrule)
845 {
846 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
847 	struct fwdb_wmm_rule *wmm;
848 	unsigned int i, wmm_ptr;
849 
850 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
851 	wmm = (void *)((u8 *)db + wmm_ptr);
852 
853 	if (!valid_wmm(wmm)) {
854 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
855 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
856 		       country->alpha2[0], country->alpha2[1]);
857 		return;
858 	}
859 
860 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
861 		wmm_rule->client[i].cw_min =
862 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
863 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
864 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
865 		wmm_rule->client[i].cot =
866 			1000 * be16_to_cpu(wmm->client[i].cot);
867 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
868 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
869 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
870 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
871 	}
872 
873 	rrule->has_wmm = true;
874 }
875 
876 static int __regdb_query_wmm(const struct fwdb_header *db,
877 			     const struct fwdb_country *country, int freq,
878 			     struct ieee80211_reg_rule *rrule)
879 {
880 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
881 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
882 	int i;
883 
884 	for (i = 0; i < coll->n_rules; i++) {
885 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
886 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
887 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
888 
889 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
890 			continue;
891 
892 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
893 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
894 			set_wmm_rule(db, country, rule, rrule);
895 			return 0;
896 		}
897 	}
898 
899 	return -ENODATA;
900 }
901 
902 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
903 {
904 	const struct fwdb_header *hdr = regdb;
905 	const struct fwdb_country *country;
906 
907 	if (!regdb)
908 		return -ENODATA;
909 
910 	if (IS_ERR(regdb))
911 		return PTR_ERR(regdb);
912 
913 	country = &hdr->country[0];
914 	while (country->coll_ptr) {
915 		if (alpha2_equal(alpha2, country->alpha2))
916 			return __regdb_query_wmm(regdb, country, freq, rule);
917 
918 		country++;
919 	}
920 
921 	return -ENODATA;
922 }
923 EXPORT_SYMBOL(reg_query_regdb_wmm);
924 
925 static int regdb_query_country(const struct fwdb_header *db,
926 			       const struct fwdb_country *country)
927 {
928 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
929 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
930 	struct ieee80211_regdomain *regdom;
931 	unsigned int i;
932 
933 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
934 			 GFP_KERNEL);
935 	if (!regdom)
936 		return -ENOMEM;
937 
938 	regdom->n_reg_rules = coll->n_rules;
939 	regdom->alpha2[0] = country->alpha2[0];
940 	regdom->alpha2[1] = country->alpha2[1];
941 	regdom->dfs_region = coll->dfs_region;
942 
943 	for (i = 0; i < regdom->n_reg_rules; i++) {
944 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
945 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
946 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
947 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
948 
949 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
950 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
951 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
952 
953 		rrule->power_rule.max_antenna_gain = 0;
954 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
955 
956 		rrule->flags = 0;
957 		if (rule->flags & FWDB_FLAG_NO_OFDM)
958 			rrule->flags |= NL80211_RRF_NO_OFDM;
959 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
960 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
961 		if (rule->flags & FWDB_FLAG_DFS)
962 			rrule->flags |= NL80211_RRF_DFS;
963 		if (rule->flags & FWDB_FLAG_NO_IR)
964 			rrule->flags |= NL80211_RRF_NO_IR;
965 		if (rule->flags & FWDB_FLAG_AUTO_BW)
966 			rrule->flags |= NL80211_RRF_AUTO_BW;
967 
968 		rrule->dfs_cac_ms = 0;
969 
970 		/* handle optional data */
971 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
972 			rrule->dfs_cac_ms =
973 				1000 * be16_to_cpu(rule->cac_timeout);
974 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
975 			set_wmm_rule(db, country, rule, rrule);
976 	}
977 
978 	return reg_schedule_apply(regdom);
979 }
980 
981 static int query_regdb(const char *alpha2)
982 {
983 	const struct fwdb_header *hdr = regdb;
984 	const struct fwdb_country *country;
985 
986 	ASSERT_RTNL();
987 
988 	if (IS_ERR(regdb))
989 		return PTR_ERR(regdb);
990 
991 	country = &hdr->country[0];
992 	while (country->coll_ptr) {
993 		if (alpha2_equal(alpha2, country->alpha2))
994 			return regdb_query_country(regdb, country);
995 		country++;
996 	}
997 
998 	return -ENODATA;
999 }
1000 
1001 static void regdb_fw_cb(const struct firmware *fw, void *context)
1002 {
1003 	int set_error = 0;
1004 	bool restore = true;
1005 	void *db;
1006 
1007 	if (!fw) {
1008 		pr_info("failed to load regulatory.db\n");
1009 		set_error = -ENODATA;
1010 	} else if (!valid_regdb(fw->data, fw->size)) {
1011 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012 		set_error = -EINVAL;
1013 	}
1014 
1015 	rtnl_lock();
1016 	if (regdb && !IS_ERR(regdb)) {
1017 		/* negative case - a bug
1018 		 * positive case - can happen due to race in case of multiple cb's in
1019 		 * queue, due to usage of asynchronous callback
1020 		 *
1021 		 * Either case, just restore and free new db.
1022 		 */
1023 	} else if (set_error) {
1024 		regdb = ERR_PTR(set_error);
1025 	} else if (fw) {
1026 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027 		if (db) {
1028 			regdb = db;
1029 			restore = context && query_regdb(context);
1030 		} else {
1031 			restore = true;
1032 		}
1033 	}
1034 
1035 	if (restore)
1036 		restore_regulatory_settings(true, false);
1037 
1038 	rtnl_unlock();
1039 
1040 	kfree(context);
1041 
1042 	release_firmware(fw);
1043 }
1044 
1045 MODULE_FIRMWARE("regulatory.db");
1046 
1047 static int query_regdb_file(const char *alpha2)
1048 {
1049 	int err;
1050 
1051 	ASSERT_RTNL();
1052 
1053 	if (regdb)
1054 		return query_regdb(alpha2);
1055 
1056 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057 	if (!alpha2)
1058 		return -ENOMEM;
1059 
1060 	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061 				      &reg_pdev->dev, GFP_KERNEL,
1062 				      (void *)alpha2, regdb_fw_cb);
1063 	if (err)
1064 		kfree(alpha2);
1065 
1066 	return err;
1067 }
1068 
1069 int reg_reload_regdb(void)
1070 {
1071 	const struct firmware *fw;
1072 	void *db;
1073 	int err;
1074 	const struct ieee80211_regdomain *current_regdomain;
1075 	struct regulatory_request *request;
1076 
1077 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1078 	if (err)
1079 		return err;
1080 
1081 	if (!valid_regdb(fw->data, fw->size)) {
1082 		err = -ENODATA;
1083 		goto out;
1084 	}
1085 
1086 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087 	if (!db) {
1088 		err = -ENOMEM;
1089 		goto out;
1090 	}
1091 
1092 	rtnl_lock();
1093 	if (!IS_ERR_OR_NULL(regdb))
1094 		kfree(regdb);
1095 	regdb = db;
1096 
1097 	/* reset regulatory domain */
1098 	current_regdomain = get_cfg80211_regdom();
1099 
1100 	request = kzalloc(sizeof(*request), GFP_KERNEL);
1101 	if (!request) {
1102 		err = -ENOMEM;
1103 		goto out_unlock;
1104 	}
1105 
1106 	request->wiphy_idx = WIPHY_IDX_INVALID;
1107 	request->alpha2[0] = current_regdomain->alpha2[0];
1108 	request->alpha2[1] = current_regdomain->alpha2[1];
1109 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110 	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111 
1112 	reg_process_hint(request);
1113 
1114 out_unlock:
1115 	rtnl_unlock();
1116  out:
1117 	release_firmware(fw);
1118 	return err;
1119 }
1120 
1121 static bool reg_query_database(struct regulatory_request *request)
1122 {
1123 	if (query_regdb_file(request->alpha2) == 0)
1124 		return true;
1125 
1126 	if (call_crda(request->alpha2) == 0)
1127 		return true;
1128 
1129 	return false;
1130 }
1131 
1132 bool reg_is_valid_request(const char *alpha2)
1133 {
1134 	struct regulatory_request *lr = get_last_request();
1135 
1136 	if (!lr || lr->processed)
1137 		return false;
1138 
1139 	return alpha2_equal(lr->alpha2, alpha2);
1140 }
1141 
1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143 {
1144 	struct regulatory_request *lr = get_last_request();
1145 
1146 	/*
1147 	 * Follow the driver's regulatory domain, if present, unless a country
1148 	 * IE has been processed or a user wants to help complaince further
1149 	 */
1150 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152 	    wiphy->regd)
1153 		return get_wiphy_regdom(wiphy);
1154 
1155 	return get_cfg80211_regdom();
1156 }
1157 
1158 static unsigned int
1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160 				 const struct ieee80211_reg_rule *rule)
1161 {
1162 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163 	const struct ieee80211_freq_range *freq_range_tmp;
1164 	const struct ieee80211_reg_rule *tmp;
1165 	u32 start_freq, end_freq, idx, no;
1166 
1167 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1168 		if (rule == &rd->reg_rules[idx])
1169 			break;
1170 
1171 	if (idx == rd->n_reg_rules)
1172 		return 0;
1173 
1174 	/* get start_freq */
1175 	no = idx;
1176 
1177 	while (no) {
1178 		tmp = &rd->reg_rules[--no];
1179 		freq_range_tmp = &tmp->freq_range;
1180 
1181 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182 			break;
1183 
1184 		freq_range = freq_range_tmp;
1185 	}
1186 
1187 	start_freq = freq_range->start_freq_khz;
1188 
1189 	/* get end_freq */
1190 	freq_range = &rule->freq_range;
1191 	no = idx;
1192 
1193 	while (no < rd->n_reg_rules - 1) {
1194 		tmp = &rd->reg_rules[++no];
1195 		freq_range_tmp = &tmp->freq_range;
1196 
1197 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198 			break;
1199 
1200 		freq_range = freq_range_tmp;
1201 	}
1202 
1203 	end_freq = freq_range->end_freq_khz;
1204 
1205 	return end_freq - start_freq;
1206 }
1207 
1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209 				   const struct ieee80211_reg_rule *rule)
1210 {
1211 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212 
1213 	if (rule->flags & NL80211_RRF_NO_320MHZ)
1214 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1216 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1218 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219 
1220 	/*
1221 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222 	 * are not allowed.
1223 	 */
1224 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1226 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227 
1228 	return bw;
1229 }
1230 
1231 /* Sanity check on a regulatory rule */
1232 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233 {
1234 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235 	u32 freq_diff;
1236 
1237 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238 		return false;
1239 
1240 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241 		return false;
1242 
1243 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244 
1245 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246 	    freq_range->max_bandwidth_khz > freq_diff)
1247 		return false;
1248 
1249 	return true;
1250 }
1251 
1252 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253 {
1254 	const struct ieee80211_reg_rule *reg_rule = NULL;
1255 	unsigned int i;
1256 
1257 	if (!rd->n_reg_rules)
1258 		return false;
1259 
1260 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261 		return false;
1262 
1263 	for (i = 0; i < rd->n_reg_rules; i++) {
1264 		reg_rule = &rd->reg_rules[i];
1265 		if (!is_valid_reg_rule(reg_rule))
1266 			return false;
1267 	}
1268 
1269 	return true;
1270 }
1271 
1272 /**
1273  * freq_in_rule_band - tells us if a frequency is in a frequency band
1274  * @freq_range: frequency rule we want to query
1275  * @freq_khz: frequency we are inquiring about
1276  *
1277  * This lets us know if a specific frequency rule is or is not relevant to
1278  * a specific frequency's band. Bands are device specific and artificial
1279  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280  * however it is safe for now to assume that a frequency rule should not be
1281  * part of a frequency's band if the start freq or end freq are off by more
1282  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283  * 60 GHz band.
1284  * This resolution can be lowered and should be considered as we add
1285  * regulatory rule support for other "bands".
1286  *
1287  * Returns: whether or not the frequency is in the range
1288  */
1289 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1290 			      u32 freq_khz)
1291 {
1292 #define ONE_GHZ_IN_KHZ	1000000
1293 	/*
1294 	 * From 802.11ad: directional multi-gigabit (DMG):
1295 	 * Pertaining to operation in a frequency band containing a channel
1296 	 * with the Channel starting frequency above 45 GHz.
1297 	 */
1298 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1299 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1300 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1301 		return true;
1302 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303 		return true;
1304 	return false;
1305 #undef ONE_GHZ_IN_KHZ
1306 }
1307 
1308 /*
1309  * Later on we can perhaps use the more restrictive DFS
1310  * region but we don't have information for that yet so
1311  * for now simply disallow conflicts.
1312  */
1313 static enum nl80211_dfs_regions
1314 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1315 			 const enum nl80211_dfs_regions dfs_region2)
1316 {
1317 	if (dfs_region1 != dfs_region2)
1318 		return NL80211_DFS_UNSET;
1319 	return dfs_region1;
1320 }
1321 
1322 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1323 				    const struct ieee80211_wmm_ac *wmm_ac2,
1324 				    struct ieee80211_wmm_ac *intersect)
1325 {
1326 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1327 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1328 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1329 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1330 }
1331 
1332 /*
1333  * Helper for regdom_intersect(), this does the real
1334  * mathematical intersection fun
1335  */
1336 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1337 			       const struct ieee80211_regdomain *rd2,
1338 			       const struct ieee80211_reg_rule *rule1,
1339 			       const struct ieee80211_reg_rule *rule2,
1340 			       struct ieee80211_reg_rule *intersected_rule)
1341 {
1342 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1343 	struct ieee80211_freq_range *freq_range;
1344 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1345 	struct ieee80211_power_rule *power_rule;
1346 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1347 	struct ieee80211_wmm_rule *wmm_rule;
1348 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1349 
1350 	freq_range1 = &rule1->freq_range;
1351 	freq_range2 = &rule2->freq_range;
1352 	freq_range = &intersected_rule->freq_range;
1353 
1354 	power_rule1 = &rule1->power_rule;
1355 	power_rule2 = &rule2->power_rule;
1356 	power_rule = &intersected_rule->power_rule;
1357 
1358 	wmm_rule1 = &rule1->wmm_rule;
1359 	wmm_rule2 = &rule2->wmm_rule;
1360 	wmm_rule = &intersected_rule->wmm_rule;
1361 
1362 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1363 					 freq_range2->start_freq_khz);
1364 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1365 				       freq_range2->end_freq_khz);
1366 
1367 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1368 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1369 
1370 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1371 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1372 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1373 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1374 
1375 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1376 
1377 	intersected_rule->flags = rule1->flags | rule2->flags;
1378 
1379 	/*
1380 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1381 	 * set AUTO_BW in intersected rule also. Next we will
1382 	 * calculate BW correctly in handle_channel function.
1383 	 * In other case remove AUTO_BW flag while we calculate
1384 	 * maximum bandwidth correctly and auto calculation is
1385 	 * not required.
1386 	 */
1387 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1388 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1389 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1390 	else
1391 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1392 
1393 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1394 	if (freq_range->max_bandwidth_khz > freq_diff)
1395 		freq_range->max_bandwidth_khz = freq_diff;
1396 
1397 	power_rule->max_eirp = min(power_rule1->max_eirp,
1398 		power_rule2->max_eirp);
1399 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1400 		power_rule2->max_antenna_gain);
1401 
1402 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1403 					   rule2->dfs_cac_ms);
1404 
1405 	if (rule1->has_wmm && rule2->has_wmm) {
1406 		u8 ac;
1407 
1408 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1409 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1410 						&wmm_rule2->client[ac],
1411 						&wmm_rule->client[ac]);
1412 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1413 						&wmm_rule2->ap[ac],
1414 						&wmm_rule->ap[ac]);
1415 		}
1416 
1417 		intersected_rule->has_wmm = true;
1418 	} else if (rule1->has_wmm) {
1419 		*wmm_rule = *wmm_rule1;
1420 		intersected_rule->has_wmm = true;
1421 	} else if (rule2->has_wmm) {
1422 		*wmm_rule = *wmm_rule2;
1423 		intersected_rule->has_wmm = true;
1424 	} else {
1425 		intersected_rule->has_wmm = false;
1426 	}
1427 
1428 	if (!is_valid_reg_rule(intersected_rule))
1429 		return -EINVAL;
1430 
1431 	return 0;
1432 }
1433 
1434 /* check whether old rule contains new rule */
1435 static bool rule_contains(struct ieee80211_reg_rule *r1,
1436 			  struct ieee80211_reg_rule *r2)
1437 {
1438 	/* for simplicity, currently consider only same flags */
1439 	if (r1->flags != r2->flags)
1440 		return false;
1441 
1442 	/* verify r1 is more restrictive */
1443 	if ((r1->power_rule.max_antenna_gain >
1444 	     r2->power_rule.max_antenna_gain) ||
1445 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1446 		return false;
1447 
1448 	/* make sure r2's range is contained within r1 */
1449 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1450 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1451 		return false;
1452 
1453 	/* and finally verify that r1.max_bw >= r2.max_bw */
1454 	if (r1->freq_range.max_bandwidth_khz <
1455 	    r2->freq_range.max_bandwidth_khz)
1456 		return false;
1457 
1458 	return true;
1459 }
1460 
1461 /* add or extend current rules. do nothing if rule is already contained */
1462 static void add_rule(struct ieee80211_reg_rule *rule,
1463 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1464 {
1465 	struct ieee80211_reg_rule *tmp_rule;
1466 	int i;
1467 
1468 	for (i = 0; i < *n_rules; i++) {
1469 		tmp_rule = &reg_rules[i];
1470 		/* rule is already contained - do nothing */
1471 		if (rule_contains(tmp_rule, rule))
1472 			return;
1473 
1474 		/* extend rule if possible */
1475 		if (rule_contains(rule, tmp_rule)) {
1476 			memcpy(tmp_rule, rule, sizeof(*rule));
1477 			return;
1478 		}
1479 	}
1480 
1481 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1482 	(*n_rules)++;
1483 }
1484 
1485 /**
1486  * regdom_intersect - do the intersection between two regulatory domains
1487  * @rd1: first regulatory domain
1488  * @rd2: second regulatory domain
1489  *
1490  * Use this function to get the intersection between two regulatory domains.
1491  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1492  * as no one single alpha2 can represent this regulatory domain.
1493  *
1494  * Returns a pointer to the regulatory domain structure which will hold the
1495  * resulting intersection of rules between rd1 and rd2. We will
1496  * kzalloc() this structure for you.
1497  *
1498  * Returns: the intersected regdomain
1499  */
1500 static struct ieee80211_regdomain *
1501 regdom_intersect(const struct ieee80211_regdomain *rd1,
1502 		 const struct ieee80211_regdomain *rd2)
1503 {
1504 	int r;
1505 	unsigned int x, y;
1506 	unsigned int num_rules = 0;
1507 	const struct ieee80211_reg_rule *rule1, *rule2;
1508 	struct ieee80211_reg_rule intersected_rule;
1509 	struct ieee80211_regdomain *rd;
1510 
1511 	if (!rd1 || !rd2)
1512 		return NULL;
1513 
1514 	/*
1515 	 * First we get a count of the rules we'll need, then we actually
1516 	 * build them. This is to so we can malloc() and free() a
1517 	 * regdomain once. The reason we use reg_rules_intersect() here
1518 	 * is it will return -EINVAL if the rule computed makes no sense.
1519 	 * All rules that do check out OK are valid.
1520 	 */
1521 
1522 	for (x = 0; x < rd1->n_reg_rules; x++) {
1523 		rule1 = &rd1->reg_rules[x];
1524 		for (y = 0; y < rd2->n_reg_rules; y++) {
1525 			rule2 = &rd2->reg_rules[y];
1526 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1527 						 &intersected_rule))
1528 				num_rules++;
1529 		}
1530 	}
1531 
1532 	if (!num_rules)
1533 		return NULL;
1534 
1535 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1536 	if (!rd)
1537 		return NULL;
1538 
1539 	for (x = 0; x < rd1->n_reg_rules; x++) {
1540 		rule1 = &rd1->reg_rules[x];
1541 		for (y = 0; y < rd2->n_reg_rules; y++) {
1542 			rule2 = &rd2->reg_rules[y];
1543 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1544 						&intersected_rule);
1545 			/*
1546 			 * No need to memset here the intersected rule here as
1547 			 * we're not using the stack anymore
1548 			 */
1549 			if (r)
1550 				continue;
1551 
1552 			add_rule(&intersected_rule, rd->reg_rules,
1553 				 &rd->n_reg_rules);
1554 		}
1555 	}
1556 
1557 	rd->alpha2[0] = '9';
1558 	rd->alpha2[1] = '8';
1559 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1560 						  rd2->dfs_region);
1561 
1562 	return rd;
1563 }
1564 
1565 /*
1566  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1567  * want to just have the channel structure use these
1568  */
1569 static u32 map_regdom_flags(u32 rd_flags)
1570 {
1571 	u32 channel_flags = 0;
1572 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1573 		channel_flags |= IEEE80211_CHAN_NO_IR;
1574 	if (rd_flags & NL80211_RRF_DFS)
1575 		channel_flags |= IEEE80211_CHAN_RADAR;
1576 	if (rd_flags & NL80211_RRF_NO_OFDM)
1577 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1578 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1579 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1580 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1581 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1582 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1583 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1584 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1585 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1586 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1587 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1588 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1589 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1590 	if (rd_flags & NL80211_RRF_NO_HE)
1591 		channel_flags |= IEEE80211_CHAN_NO_HE;
1592 	if (rd_flags & NL80211_RRF_NO_320MHZ)
1593 		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1594 	if (rd_flags & NL80211_RRF_NO_EHT)
1595 		channel_flags |= IEEE80211_CHAN_NO_EHT;
1596 	if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1597 		channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1598 	if (rd_flags & NL80211_RRF_NO_UHB_VLP_CLIENT)
1599 		channel_flags |= IEEE80211_CHAN_NO_UHB_VLP_CLIENT;
1600 	if (rd_flags & NL80211_RRF_NO_UHB_AFC_CLIENT)
1601 		channel_flags |= IEEE80211_CHAN_NO_UHB_AFC_CLIENT;
1602 	if (rd_flags & NL80211_RRF_PSD)
1603 		channel_flags |= IEEE80211_CHAN_PSD;
1604 	return channel_flags;
1605 }
1606 
1607 static const struct ieee80211_reg_rule *
1608 freq_reg_info_regd(u32 center_freq,
1609 		   const struct ieee80211_regdomain *regd, u32 bw)
1610 {
1611 	int i;
1612 	bool band_rule_found = false;
1613 	bool bw_fits = false;
1614 
1615 	if (!regd)
1616 		return ERR_PTR(-EINVAL);
1617 
1618 	for (i = 0; i < regd->n_reg_rules; i++) {
1619 		const struct ieee80211_reg_rule *rr;
1620 		const struct ieee80211_freq_range *fr = NULL;
1621 
1622 		rr = &regd->reg_rules[i];
1623 		fr = &rr->freq_range;
1624 
1625 		/*
1626 		 * We only need to know if one frequency rule was
1627 		 * in center_freq's band, that's enough, so let's
1628 		 * not overwrite it once found
1629 		 */
1630 		if (!band_rule_found)
1631 			band_rule_found = freq_in_rule_band(fr, center_freq);
1632 
1633 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1634 
1635 		if (band_rule_found && bw_fits)
1636 			return rr;
1637 	}
1638 
1639 	if (!band_rule_found)
1640 		return ERR_PTR(-ERANGE);
1641 
1642 	return ERR_PTR(-EINVAL);
1643 }
1644 
1645 static const struct ieee80211_reg_rule *
1646 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1647 {
1648 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1649 	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1650 	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1651 	int i = ARRAY_SIZE(bws) - 1;
1652 	u32 bw;
1653 
1654 	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1655 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1656 		if (!IS_ERR(reg_rule))
1657 			return reg_rule;
1658 	}
1659 
1660 	return reg_rule;
1661 }
1662 
1663 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1664 					       u32 center_freq)
1665 {
1666 	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1667 
1668 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1669 }
1670 EXPORT_SYMBOL(freq_reg_info);
1671 
1672 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1673 {
1674 	switch (initiator) {
1675 	case NL80211_REGDOM_SET_BY_CORE:
1676 		return "core";
1677 	case NL80211_REGDOM_SET_BY_USER:
1678 		return "user";
1679 	case NL80211_REGDOM_SET_BY_DRIVER:
1680 		return "driver";
1681 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1682 		return "country element";
1683 	default:
1684 		WARN_ON(1);
1685 		return "bug";
1686 	}
1687 }
1688 EXPORT_SYMBOL(reg_initiator_name);
1689 
1690 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1691 					  const struct ieee80211_reg_rule *reg_rule,
1692 					  const struct ieee80211_channel *chan)
1693 {
1694 	const struct ieee80211_freq_range *freq_range = NULL;
1695 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1696 	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1697 
1698 	freq_range = &reg_rule->freq_range;
1699 
1700 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1701 	center_freq_khz = ieee80211_channel_to_khz(chan);
1702 	/* Check if auto calculation requested */
1703 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1704 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1705 
1706 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1707 	if (!cfg80211_does_bw_fit_range(freq_range,
1708 					center_freq_khz,
1709 					MHZ_TO_KHZ(10)))
1710 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1711 	if (!cfg80211_does_bw_fit_range(freq_range,
1712 					center_freq_khz,
1713 					MHZ_TO_KHZ(20)))
1714 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1715 
1716 	if (is_s1g) {
1717 		/* S1G is strict about non overlapping channels. We can
1718 		 * calculate which bandwidth is allowed per channel by finding
1719 		 * the largest bandwidth which cleanly divides the freq_range.
1720 		 */
1721 		int edge_offset;
1722 		int ch_bw = max_bandwidth_khz;
1723 
1724 		while (ch_bw) {
1725 			edge_offset = (center_freq_khz - ch_bw / 2) -
1726 				      freq_range->start_freq_khz;
1727 			if (edge_offset % ch_bw == 0) {
1728 				switch (KHZ_TO_MHZ(ch_bw)) {
1729 				case 1:
1730 					bw_flags |= IEEE80211_CHAN_1MHZ;
1731 					break;
1732 				case 2:
1733 					bw_flags |= IEEE80211_CHAN_2MHZ;
1734 					break;
1735 				case 4:
1736 					bw_flags |= IEEE80211_CHAN_4MHZ;
1737 					break;
1738 				case 8:
1739 					bw_flags |= IEEE80211_CHAN_8MHZ;
1740 					break;
1741 				case 16:
1742 					bw_flags |= IEEE80211_CHAN_16MHZ;
1743 					break;
1744 				default:
1745 					/* If we got here, no bandwidths fit on
1746 					 * this frequency, ie. band edge.
1747 					 */
1748 					bw_flags |= IEEE80211_CHAN_DISABLED;
1749 					break;
1750 				}
1751 				break;
1752 			}
1753 			ch_bw /= 2;
1754 		}
1755 	} else {
1756 		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1757 			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1758 		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1759 			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1760 		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1761 			bw_flags |= IEEE80211_CHAN_NO_HT40;
1762 		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1763 			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1764 		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1765 			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1766 		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1767 			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1768 	}
1769 	return bw_flags;
1770 }
1771 
1772 static void handle_channel_single_rule(struct wiphy *wiphy,
1773 				       enum nl80211_reg_initiator initiator,
1774 				       struct ieee80211_channel *chan,
1775 				       u32 flags,
1776 				       struct regulatory_request *lr,
1777 				       struct wiphy *request_wiphy,
1778 				       const struct ieee80211_reg_rule *reg_rule)
1779 {
1780 	u32 bw_flags = 0;
1781 	const struct ieee80211_power_rule *power_rule = NULL;
1782 	const struct ieee80211_regdomain *regd;
1783 
1784 	regd = reg_get_regdomain(wiphy);
1785 
1786 	power_rule = &reg_rule->power_rule;
1787 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1788 
1789 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1790 	    request_wiphy && request_wiphy == wiphy &&
1791 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1792 		/*
1793 		 * This guarantees the driver's requested regulatory domain
1794 		 * will always be used as a base for further regulatory
1795 		 * settings
1796 		 */
1797 		chan->flags = chan->orig_flags =
1798 			map_regdom_flags(reg_rule->flags) | bw_flags;
1799 		chan->max_antenna_gain = chan->orig_mag =
1800 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1801 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1802 			(int) MBM_TO_DBM(power_rule->max_eirp);
1803 
1804 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1805 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1806 			if (reg_rule->dfs_cac_ms)
1807 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1808 		}
1809 
1810 		if (chan->flags & IEEE80211_CHAN_PSD)
1811 			chan->psd = reg_rule->psd;
1812 
1813 		return;
1814 	}
1815 
1816 	chan->dfs_state = NL80211_DFS_USABLE;
1817 	chan->dfs_state_entered = jiffies;
1818 
1819 	chan->beacon_found = false;
1820 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1821 	chan->max_antenna_gain =
1822 		min_t(int, chan->orig_mag,
1823 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1824 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1825 
1826 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1827 		if (reg_rule->dfs_cac_ms)
1828 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1829 		else
1830 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1831 	}
1832 
1833 	if (chan->flags & IEEE80211_CHAN_PSD)
1834 		chan->psd = reg_rule->psd;
1835 
1836 	if (chan->orig_mpwr) {
1837 		/*
1838 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1839 		 * will always follow the passed country IE power settings.
1840 		 */
1841 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1842 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1843 			chan->max_power = chan->max_reg_power;
1844 		else
1845 			chan->max_power = min(chan->orig_mpwr,
1846 					      chan->max_reg_power);
1847 	} else
1848 		chan->max_power = chan->max_reg_power;
1849 }
1850 
1851 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1852 					  enum nl80211_reg_initiator initiator,
1853 					  struct ieee80211_channel *chan,
1854 					  u32 flags,
1855 					  struct regulatory_request *lr,
1856 					  struct wiphy *request_wiphy,
1857 					  const struct ieee80211_reg_rule *rrule1,
1858 					  const struct ieee80211_reg_rule *rrule2,
1859 					  struct ieee80211_freq_range *comb_range)
1860 {
1861 	u32 bw_flags1 = 0;
1862 	u32 bw_flags2 = 0;
1863 	const struct ieee80211_power_rule *power_rule1 = NULL;
1864 	const struct ieee80211_power_rule *power_rule2 = NULL;
1865 	const struct ieee80211_regdomain *regd;
1866 
1867 	regd = reg_get_regdomain(wiphy);
1868 
1869 	power_rule1 = &rrule1->power_rule;
1870 	power_rule2 = &rrule2->power_rule;
1871 	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1872 	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1873 
1874 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1875 	    request_wiphy && request_wiphy == wiphy &&
1876 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1877 		/* This guarantees the driver's requested regulatory domain
1878 		 * will always be used as a base for further regulatory
1879 		 * settings
1880 		 */
1881 		chan->flags =
1882 			map_regdom_flags(rrule1->flags) |
1883 			map_regdom_flags(rrule2->flags) |
1884 			bw_flags1 |
1885 			bw_flags2;
1886 		chan->orig_flags = chan->flags;
1887 		chan->max_antenna_gain =
1888 			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1889 			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1890 		chan->orig_mag = chan->max_antenna_gain;
1891 		chan->max_reg_power =
1892 			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1893 			      MBM_TO_DBM(power_rule2->max_eirp));
1894 		chan->max_power = chan->max_reg_power;
1895 		chan->orig_mpwr = chan->max_reg_power;
1896 
1897 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1898 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1899 			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1900 				chan->dfs_cac_ms = max_t(unsigned int,
1901 							 rrule1->dfs_cac_ms,
1902 							 rrule2->dfs_cac_ms);
1903 		}
1904 
1905 		if ((rrule1->flags & NL80211_RRF_PSD) &&
1906 		    (rrule2->flags & NL80211_RRF_PSD))
1907 			chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1908 		else
1909 			chan->flags &= ~NL80211_RRF_PSD;
1910 
1911 		return;
1912 	}
1913 
1914 	chan->dfs_state = NL80211_DFS_USABLE;
1915 	chan->dfs_state_entered = jiffies;
1916 
1917 	chan->beacon_found = false;
1918 	chan->flags = flags | bw_flags1 | bw_flags2 |
1919 		      map_regdom_flags(rrule1->flags) |
1920 		      map_regdom_flags(rrule2->flags);
1921 
1922 	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1923 	 * (otherwise no adj. rule case), recheck therefore
1924 	 */
1925 	if (cfg80211_does_bw_fit_range(comb_range,
1926 				       ieee80211_channel_to_khz(chan),
1927 				       MHZ_TO_KHZ(10)))
1928 		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1929 	if (cfg80211_does_bw_fit_range(comb_range,
1930 				       ieee80211_channel_to_khz(chan),
1931 				       MHZ_TO_KHZ(20)))
1932 		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1933 
1934 	chan->max_antenna_gain =
1935 		min_t(int, chan->orig_mag,
1936 		      min_t(int,
1937 			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1938 			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1939 	chan->max_reg_power = min_t(int,
1940 				    MBM_TO_DBM(power_rule1->max_eirp),
1941 				    MBM_TO_DBM(power_rule2->max_eirp));
1942 
1943 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1944 		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1945 			chan->dfs_cac_ms = max_t(unsigned int,
1946 						 rrule1->dfs_cac_ms,
1947 						 rrule2->dfs_cac_ms);
1948 		else
1949 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1950 	}
1951 
1952 	if (chan->orig_mpwr) {
1953 		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1954 		 * will always follow the passed country IE power settings.
1955 		 */
1956 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1957 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1958 			chan->max_power = chan->max_reg_power;
1959 		else
1960 			chan->max_power = min(chan->orig_mpwr,
1961 					      chan->max_reg_power);
1962 	} else {
1963 		chan->max_power = chan->max_reg_power;
1964 	}
1965 }
1966 
1967 /* Note that right now we assume the desired channel bandwidth
1968  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1969  * per channel, the primary and the extension channel).
1970  */
1971 static void handle_channel(struct wiphy *wiphy,
1972 			   enum nl80211_reg_initiator initiator,
1973 			   struct ieee80211_channel *chan)
1974 {
1975 	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1976 	struct regulatory_request *lr = get_last_request();
1977 	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1978 	const struct ieee80211_reg_rule *rrule = NULL;
1979 	const struct ieee80211_reg_rule *rrule1 = NULL;
1980 	const struct ieee80211_reg_rule *rrule2 = NULL;
1981 
1982 	u32 flags = chan->orig_flags;
1983 
1984 	rrule = freq_reg_info(wiphy, orig_chan_freq);
1985 	if (IS_ERR(rrule)) {
1986 		/* check for adjacent match, therefore get rules for
1987 		 * chan - 20 MHz and chan + 20 MHz and test
1988 		 * if reg rules are adjacent
1989 		 */
1990 		rrule1 = freq_reg_info(wiphy,
1991 				       orig_chan_freq - MHZ_TO_KHZ(20));
1992 		rrule2 = freq_reg_info(wiphy,
1993 				       orig_chan_freq + MHZ_TO_KHZ(20));
1994 		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1995 			struct ieee80211_freq_range comb_range;
1996 
1997 			if (rrule1->freq_range.end_freq_khz !=
1998 			    rrule2->freq_range.start_freq_khz)
1999 				goto disable_chan;
2000 
2001 			comb_range.start_freq_khz =
2002 				rrule1->freq_range.start_freq_khz;
2003 			comb_range.end_freq_khz =
2004 				rrule2->freq_range.end_freq_khz;
2005 			comb_range.max_bandwidth_khz =
2006 				min_t(u32,
2007 				      rrule1->freq_range.max_bandwidth_khz,
2008 				      rrule2->freq_range.max_bandwidth_khz);
2009 
2010 			if (!cfg80211_does_bw_fit_range(&comb_range,
2011 							orig_chan_freq,
2012 							MHZ_TO_KHZ(20)))
2013 				goto disable_chan;
2014 
2015 			handle_channel_adjacent_rules(wiphy, initiator, chan,
2016 						      flags, lr, request_wiphy,
2017 						      rrule1, rrule2,
2018 						      &comb_range);
2019 			return;
2020 		}
2021 
2022 disable_chan:
2023 		/* We will disable all channels that do not match our
2024 		 * received regulatory rule unless the hint is coming
2025 		 * from a Country IE and the Country IE had no information
2026 		 * about a band. The IEEE 802.11 spec allows for an AP
2027 		 * to send only a subset of the regulatory rules allowed,
2028 		 * so an AP in the US that only supports 2.4 GHz may only send
2029 		 * a country IE with information for the 2.4 GHz band
2030 		 * while 5 GHz is still supported.
2031 		 */
2032 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2033 		    PTR_ERR(rrule) == -ERANGE)
2034 			return;
2035 
2036 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2037 		    request_wiphy && request_wiphy == wiphy &&
2038 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2039 			pr_debug("Disabling freq %d.%03d MHz for good\n",
2040 				 chan->center_freq, chan->freq_offset);
2041 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2042 			chan->flags = chan->orig_flags;
2043 		} else {
2044 			pr_debug("Disabling freq %d.%03d MHz\n",
2045 				 chan->center_freq, chan->freq_offset);
2046 			chan->flags |= IEEE80211_CHAN_DISABLED;
2047 		}
2048 		return;
2049 	}
2050 
2051 	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2052 				   request_wiphy, rrule);
2053 }
2054 
2055 static void handle_band(struct wiphy *wiphy,
2056 			enum nl80211_reg_initiator initiator,
2057 			struct ieee80211_supported_band *sband)
2058 {
2059 	unsigned int i;
2060 
2061 	if (!sband)
2062 		return;
2063 
2064 	for (i = 0; i < sband->n_channels; i++)
2065 		handle_channel(wiphy, initiator, &sband->channels[i]);
2066 }
2067 
2068 static bool reg_request_cell_base(struct regulatory_request *request)
2069 {
2070 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2071 		return false;
2072 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2073 }
2074 
2075 bool reg_last_request_cell_base(void)
2076 {
2077 	return reg_request_cell_base(get_last_request());
2078 }
2079 
2080 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2081 /* Core specific check */
2082 static enum reg_request_treatment
2083 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2084 {
2085 	struct regulatory_request *lr = get_last_request();
2086 
2087 	if (!reg_num_devs_support_basehint)
2088 		return REG_REQ_IGNORE;
2089 
2090 	if (reg_request_cell_base(lr) &&
2091 	    !regdom_changes(pending_request->alpha2))
2092 		return REG_REQ_ALREADY_SET;
2093 
2094 	return REG_REQ_OK;
2095 }
2096 
2097 /* Device specific check */
2098 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2099 {
2100 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2101 }
2102 #else
2103 static enum reg_request_treatment
2104 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2105 {
2106 	return REG_REQ_IGNORE;
2107 }
2108 
2109 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2110 {
2111 	return true;
2112 }
2113 #endif
2114 
2115 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2116 {
2117 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2118 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2119 		return true;
2120 	return false;
2121 }
2122 
2123 static bool ignore_reg_update(struct wiphy *wiphy,
2124 			      enum nl80211_reg_initiator initiator)
2125 {
2126 	struct regulatory_request *lr = get_last_request();
2127 
2128 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2129 		return true;
2130 
2131 	if (!lr) {
2132 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2133 			 reg_initiator_name(initiator));
2134 		return true;
2135 	}
2136 
2137 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2138 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2139 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2140 			 reg_initiator_name(initiator));
2141 		return true;
2142 	}
2143 
2144 	/*
2145 	 * wiphy->regd will be set once the device has its own
2146 	 * desired regulatory domain set
2147 	 */
2148 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2149 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2150 	    !is_world_regdom(lr->alpha2)) {
2151 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2152 			 reg_initiator_name(initiator));
2153 		return true;
2154 	}
2155 
2156 	if (reg_request_cell_base(lr))
2157 		return reg_dev_ignore_cell_hint(wiphy);
2158 
2159 	return false;
2160 }
2161 
2162 static bool reg_is_world_roaming(struct wiphy *wiphy)
2163 {
2164 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2165 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2166 	struct regulatory_request *lr = get_last_request();
2167 
2168 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2169 		return true;
2170 
2171 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2172 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2173 		return true;
2174 
2175 	return false;
2176 }
2177 
2178 static void reg_call_notifier(struct wiphy *wiphy,
2179 			      struct regulatory_request *request)
2180 {
2181 	if (wiphy->reg_notifier)
2182 		wiphy->reg_notifier(wiphy, request);
2183 }
2184 
2185 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2186 			      struct reg_beacon *reg_beacon)
2187 {
2188 	struct ieee80211_supported_band *sband;
2189 	struct ieee80211_channel *chan;
2190 	bool channel_changed = false;
2191 	struct ieee80211_channel chan_before;
2192 	struct regulatory_request *lr = get_last_request();
2193 
2194 	sband = wiphy->bands[reg_beacon->chan.band];
2195 	chan = &sband->channels[chan_idx];
2196 
2197 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2198 		return;
2199 
2200 	if (chan->beacon_found)
2201 		return;
2202 
2203 	chan->beacon_found = true;
2204 
2205 	if (!reg_is_world_roaming(wiphy))
2206 		return;
2207 
2208 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2209 		return;
2210 
2211 	chan_before = *chan;
2212 
2213 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2214 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2215 		channel_changed = true;
2216 	}
2217 
2218 	if (channel_changed) {
2219 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2220 		if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2221 			reg_call_notifier(wiphy, lr);
2222 	}
2223 }
2224 
2225 /*
2226  * Called when a scan on a wiphy finds a beacon on
2227  * new channel
2228  */
2229 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2230 				    struct reg_beacon *reg_beacon)
2231 {
2232 	unsigned int i;
2233 	struct ieee80211_supported_band *sband;
2234 
2235 	if (!wiphy->bands[reg_beacon->chan.band])
2236 		return;
2237 
2238 	sband = wiphy->bands[reg_beacon->chan.band];
2239 
2240 	for (i = 0; i < sband->n_channels; i++)
2241 		handle_reg_beacon(wiphy, i, reg_beacon);
2242 }
2243 
2244 /*
2245  * Called upon reg changes or a new wiphy is added
2246  */
2247 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2248 {
2249 	unsigned int i;
2250 	struct ieee80211_supported_band *sband;
2251 	struct reg_beacon *reg_beacon;
2252 
2253 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2254 		if (!wiphy->bands[reg_beacon->chan.band])
2255 			continue;
2256 		sband = wiphy->bands[reg_beacon->chan.band];
2257 		for (i = 0; i < sband->n_channels; i++)
2258 			handle_reg_beacon(wiphy, i, reg_beacon);
2259 	}
2260 }
2261 
2262 /* Reap the advantages of previously found beacons */
2263 static void reg_process_beacons(struct wiphy *wiphy)
2264 {
2265 	/*
2266 	 * Means we are just firing up cfg80211, so no beacons would
2267 	 * have been processed yet.
2268 	 */
2269 	if (!last_request)
2270 		return;
2271 	wiphy_update_beacon_reg(wiphy);
2272 }
2273 
2274 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2275 {
2276 	if (!chan)
2277 		return false;
2278 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2279 		return false;
2280 	/* This would happen when regulatory rules disallow HT40 completely */
2281 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2282 		return false;
2283 	return true;
2284 }
2285 
2286 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2287 					 struct ieee80211_channel *channel)
2288 {
2289 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2290 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2291 	const struct ieee80211_regdomain *regd;
2292 	unsigned int i;
2293 	u32 flags;
2294 
2295 	if (!is_ht40_allowed(channel)) {
2296 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2297 		return;
2298 	}
2299 
2300 	/*
2301 	 * We need to ensure the extension channels exist to
2302 	 * be able to use HT40- or HT40+, this finds them (or not)
2303 	 */
2304 	for (i = 0; i < sband->n_channels; i++) {
2305 		struct ieee80211_channel *c = &sband->channels[i];
2306 
2307 		if (c->center_freq == (channel->center_freq - 20))
2308 			channel_before = c;
2309 		if (c->center_freq == (channel->center_freq + 20))
2310 			channel_after = c;
2311 	}
2312 
2313 	flags = 0;
2314 	regd = get_wiphy_regdom(wiphy);
2315 	if (regd) {
2316 		const struct ieee80211_reg_rule *reg_rule =
2317 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2318 					   regd, MHZ_TO_KHZ(20));
2319 
2320 		if (!IS_ERR(reg_rule))
2321 			flags = reg_rule->flags;
2322 	}
2323 
2324 	/*
2325 	 * Please note that this assumes target bandwidth is 20 MHz,
2326 	 * if that ever changes we also need to change the below logic
2327 	 * to include that as well.
2328 	 */
2329 	if (!is_ht40_allowed(channel_before) ||
2330 	    flags & NL80211_RRF_NO_HT40MINUS)
2331 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2332 	else
2333 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2334 
2335 	if (!is_ht40_allowed(channel_after) ||
2336 	    flags & NL80211_RRF_NO_HT40PLUS)
2337 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2338 	else
2339 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2340 }
2341 
2342 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2343 				      struct ieee80211_supported_band *sband)
2344 {
2345 	unsigned int i;
2346 
2347 	if (!sband)
2348 		return;
2349 
2350 	for (i = 0; i < sband->n_channels; i++)
2351 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2352 }
2353 
2354 static void reg_process_ht_flags(struct wiphy *wiphy)
2355 {
2356 	enum nl80211_band band;
2357 
2358 	if (!wiphy)
2359 		return;
2360 
2361 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2362 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2363 }
2364 
2365 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2366 {
2367 	struct cfg80211_chan_def chandef = {};
2368 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2369 	enum nl80211_iftype iftype;
2370 	bool ret;
2371 	int link;
2372 
2373 	iftype = wdev->iftype;
2374 
2375 	/* make sure the interface is active */
2376 	if (!wdev->netdev || !netif_running(wdev->netdev))
2377 		return true;
2378 
2379 	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2380 		struct ieee80211_channel *chan;
2381 
2382 		if (!wdev->valid_links && link > 0)
2383 			break;
2384 		if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2385 			continue;
2386 		switch (iftype) {
2387 		case NL80211_IFTYPE_AP:
2388 		case NL80211_IFTYPE_P2P_GO:
2389 			if (!wdev->links[link].ap.beacon_interval)
2390 				continue;
2391 			chandef = wdev->links[link].ap.chandef;
2392 			break;
2393 		case NL80211_IFTYPE_MESH_POINT:
2394 			if (!wdev->u.mesh.beacon_interval)
2395 				continue;
2396 			chandef = wdev->u.mesh.chandef;
2397 			break;
2398 		case NL80211_IFTYPE_ADHOC:
2399 			if (!wdev->u.ibss.ssid_len)
2400 				continue;
2401 			chandef = wdev->u.ibss.chandef;
2402 			break;
2403 		case NL80211_IFTYPE_STATION:
2404 		case NL80211_IFTYPE_P2P_CLIENT:
2405 			/* Maybe we could consider disabling that link only? */
2406 			if (!wdev->links[link].client.current_bss)
2407 				continue;
2408 
2409 			chan = wdev->links[link].client.current_bss->pub.channel;
2410 			if (!chan)
2411 				continue;
2412 
2413 			if (!rdev->ops->get_channel ||
2414 			    rdev_get_channel(rdev, wdev, link, &chandef))
2415 				cfg80211_chandef_create(&chandef, chan,
2416 							NL80211_CHAN_NO_HT);
2417 			break;
2418 		case NL80211_IFTYPE_MONITOR:
2419 		case NL80211_IFTYPE_AP_VLAN:
2420 		case NL80211_IFTYPE_P2P_DEVICE:
2421 			/* no enforcement required */
2422 			break;
2423 		case NL80211_IFTYPE_OCB:
2424 			if (!wdev->u.ocb.chandef.chan)
2425 				continue;
2426 			chandef = wdev->u.ocb.chandef;
2427 			break;
2428 		case NL80211_IFTYPE_NAN:
2429 			/* we have no info, but NAN is also pretty universal */
2430 			continue;
2431 		default:
2432 			/* others not implemented for now */
2433 			WARN_ON_ONCE(1);
2434 			break;
2435 		}
2436 
2437 		switch (iftype) {
2438 		case NL80211_IFTYPE_AP:
2439 		case NL80211_IFTYPE_P2P_GO:
2440 		case NL80211_IFTYPE_ADHOC:
2441 		case NL80211_IFTYPE_MESH_POINT:
2442 			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2443 							    iftype);
2444 			if (!ret)
2445 				return ret;
2446 			break;
2447 		case NL80211_IFTYPE_STATION:
2448 		case NL80211_IFTYPE_P2P_CLIENT:
2449 			ret = cfg80211_chandef_usable(wiphy, &chandef,
2450 						      IEEE80211_CHAN_DISABLED);
2451 			if (!ret)
2452 				return ret;
2453 			break;
2454 		default:
2455 			break;
2456 		}
2457 	}
2458 
2459 	return true;
2460 }
2461 
2462 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2463 {
2464 	struct wireless_dev *wdev;
2465 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2466 
2467 	wiphy_lock(wiphy);
2468 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2469 		if (!reg_wdev_chan_valid(wiphy, wdev))
2470 			cfg80211_leave(rdev, wdev);
2471 	wiphy_unlock(wiphy);
2472 }
2473 
2474 static void reg_check_chans_work(struct work_struct *work)
2475 {
2476 	struct cfg80211_registered_device *rdev;
2477 
2478 	pr_debug("Verifying active interfaces after reg change\n");
2479 	rtnl_lock();
2480 
2481 	for_each_rdev(rdev)
2482 		reg_leave_invalid_chans(&rdev->wiphy);
2483 
2484 	rtnl_unlock();
2485 }
2486 
2487 void reg_check_channels(void)
2488 {
2489 	/*
2490 	 * Give usermode a chance to do something nicer (move to another
2491 	 * channel, orderly disconnection), before forcing a disconnection.
2492 	 */
2493 	mod_delayed_work(system_power_efficient_wq,
2494 			 &reg_check_chans,
2495 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2496 }
2497 
2498 static void wiphy_update_regulatory(struct wiphy *wiphy,
2499 				    enum nl80211_reg_initiator initiator)
2500 {
2501 	enum nl80211_band band;
2502 	struct regulatory_request *lr = get_last_request();
2503 
2504 	if (ignore_reg_update(wiphy, initiator)) {
2505 		/*
2506 		 * Regulatory updates set by CORE are ignored for custom
2507 		 * regulatory cards. Let us notify the changes to the driver,
2508 		 * as some drivers used this to restore its orig_* reg domain.
2509 		 */
2510 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2511 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2512 		    !(wiphy->regulatory_flags &
2513 		      REGULATORY_WIPHY_SELF_MANAGED))
2514 			reg_call_notifier(wiphy, lr);
2515 		return;
2516 	}
2517 
2518 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2519 
2520 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2521 		handle_band(wiphy, initiator, wiphy->bands[band]);
2522 
2523 	reg_process_beacons(wiphy);
2524 	reg_process_ht_flags(wiphy);
2525 	reg_call_notifier(wiphy, lr);
2526 }
2527 
2528 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2529 {
2530 	struct cfg80211_registered_device *rdev;
2531 	struct wiphy *wiphy;
2532 
2533 	ASSERT_RTNL();
2534 
2535 	for_each_rdev(rdev) {
2536 		wiphy = &rdev->wiphy;
2537 		wiphy_update_regulatory(wiphy, initiator);
2538 	}
2539 
2540 	reg_check_channels();
2541 }
2542 
2543 static void handle_channel_custom(struct wiphy *wiphy,
2544 				  struct ieee80211_channel *chan,
2545 				  const struct ieee80211_regdomain *regd,
2546 				  u32 min_bw)
2547 {
2548 	u32 bw_flags = 0;
2549 	const struct ieee80211_reg_rule *reg_rule = NULL;
2550 	const struct ieee80211_power_rule *power_rule = NULL;
2551 	u32 bw, center_freq_khz;
2552 
2553 	center_freq_khz = ieee80211_channel_to_khz(chan);
2554 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2555 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2556 		if (!IS_ERR(reg_rule))
2557 			break;
2558 	}
2559 
2560 	if (IS_ERR_OR_NULL(reg_rule)) {
2561 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2562 			 chan->center_freq, chan->freq_offset);
2563 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2564 			chan->flags |= IEEE80211_CHAN_DISABLED;
2565 		} else {
2566 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2567 			chan->flags = chan->orig_flags;
2568 		}
2569 		return;
2570 	}
2571 
2572 	power_rule = &reg_rule->power_rule;
2573 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2574 
2575 	chan->dfs_state_entered = jiffies;
2576 	chan->dfs_state = NL80211_DFS_USABLE;
2577 
2578 	chan->beacon_found = false;
2579 
2580 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2581 		chan->flags = chan->orig_flags | bw_flags |
2582 			      map_regdom_flags(reg_rule->flags);
2583 	else
2584 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2585 
2586 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2587 	chan->max_reg_power = chan->max_power =
2588 		(int) MBM_TO_DBM(power_rule->max_eirp);
2589 
2590 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2591 		if (reg_rule->dfs_cac_ms)
2592 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2593 		else
2594 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2595 	}
2596 
2597 	if (chan->flags & IEEE80211_CHAN_PSD)
2598 		chan->psd = reg_rule->psd;
2599 
2600 	chan->max_power = chan->max_reg_power;
2601 }
2602 
2603 static void handle_band_custom(struct wiphy *wiphy,
2604 			       struct ieee80211_supported_band *sband,
2605 			       const struct ieee80211_regdomain *regd)
2606 {
2607 	unsigned int i;
2608 
2609 	if (!sband)
2610 		return;
2611 
2612 	/*
2613 	 * We currently assume that you always want at least 20 MHz,
2614 	 * otherwise channel 12 might get enabled if this rule is
2615 	 * compatible to US, which permits 2402 - 2472 MHz.
2616 	 */
2617 	for (i = 0; i < sband->n_channels; i++)
2618 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2619 				      MHZ_TO_KHZ(20));
2620 }
2621 
2622 /* Used by drivers prior to wiphy registration */
2623 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2624 				   const struct ieee80211_regdomain *regd)
2625 {
2626 	const struct ieee80211_regdomain *new_regd, *tmp;
2627 	enum nl80211_band band;
2628 	unsigned int bands_set = 0;
2629 
2630 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2631 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2632 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2633 
2634 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2635 		if (!wiphy->bands[band])
2636 			continue;
2637 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2638 		bands_set++;
2639 	}
2640 
2641 	/*
2642 	 * no point in calling this if it won't have any effect
2643 	 * on your device's supported bands.
2644 	 */
2645 	WARN_ON(!bands_set);
2646 	new_regd = reg_copy_regd(regd);
2647 	if (IS_ERR(new_regd))
2648 		return;
2649 
2650 	rtnl_lock();
2651 	wiphy_lock(wiphy);
2652 
2653 	tmp = get_wiphy_regdom(wiphy);
2654 	rcu_assign_pointer(wiphy->regd, new_regd);
2655 	rcu_free_regdom(tmp);
2656 
2657 	wiphy_unlock(wiphy);
2658 	rtnl_unlock();
2659 }
2660 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2661 
2662 static void reg_set_request_processed(void)
2663 {
2664 	bool need_more_processing = false;
2665 	struct regulatory_request *lr = get_last_request();
2666 
2667 	lr->processed = true;
2668 
2669 	spin_lock(&reg_requests_lock);
2670 	if (!list_empty(&reg_requests_list))
2671 		need_more_processing = true;
2672 	spin_unlock(&reg_requests_lock);
2673 
2674 	cancel_crda_timeout();
2675 
2676 	if (need_more_processing)
2677 		schedule_work(&reg_work);
2678 }
2679 
2680 /**
2681  * reg_process_hint_core - process core regulatory requests
2682  * @core_request: a pending core regulatory request
2683  *
2684  * The wireless subsystem can use this function to process
2685  * a regulatory request issued by the regulatory core.
2686  *
2687  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2688  *	hint was processed or ignored
2689  */
2690 static enum reg_request_treatment
2691 reg_process_hint_core(struct regulatory_request *core_request)
2692 {
2693 	if (reg_query_database(core_request)) {
2694 		core_request->intersect = false;
2695 		core_request->processed = false;
2696 		reg_update_last_request(core_request);
2697 		return REG_REQ_OK;
2698 	}
2699 
2700 	return REG_REQ_IGNORE;
2701 }
2702 
2703 static enum reg_request_treatment
2704 __reg_process_hint_user(struct regulatory_request *user_request)
2705 {
2706 	struct regulatory_request *lr = get_last_request();
2707 
2708 	if (reg_request_cell_base(user_request))
2709 		return reg_ignore_cell_hint(user_request);
2710 
2711 	if (reg_request_cell_base(lr))
2712 		return REG_REQ_IGNORE;
2713 
2714 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2715 		return REG_REQ_INTERSECT;
2716 	/*
2717 	 * If the user knows better the user should set the regdom
2718 	 * to their country before the IE is picked up
2719 	 */
2720 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2721 	    lr->intersect)
2722 		return REG_REQ_IGNORE;
2723 	/*
2724 	 * Process user requests only after previous user/driver/core
2725 	 * requests have been processed
2726 	 */
2727 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2728 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2729 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2730 	    regdom_changes(lr->alpha2))
2731 		return REG_REQ_IGNORE;
2732 
2733 	if (!regdom_changes(user_request->alpha2))
2734 		return REG_REQ_ALREADY_SET;
2735 
2736 	return REG_REQ_OK;
2737 }
2738 
2739 /**
2740  * reg_process_hint_user - process user regulatory requests
2741  * @user_request: a pending user regulatory request
2742  *
2743  * The wireless subsystem can use this function to process
2744  * a regulatory request initiated by userspace.
2745  *
2746  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2747  *	hint was processed or ignored
2748  */
2749 static enum reg_request_treatment
2750 reg_process_hint_user(struct regulatory_request *user_request)
2751 {
2752 	enum reg_request_treatment treatment;
2753 
2754 	treatment = __reg_process_hint_user(user_request);
2755 	if (treatment == REG_REQ_IGNORE ||
2756 	    treatment == REG_REQ_ALREADY_SET)
2757 		return REG_REQ_IGNORE;
2758 
2759 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2760 	user_request->processed = false;
2761 
2762 	if (reg_query_database(user_request)) {
2763 		reg_update_last_request(user_request);
2764 		user_alpha2[0] = user_request->alpha2[0];
2765 		user_alpha2[1] = user_request->alpha2[1];
2766 		return REG_REQ_OK;
2767 	}
2768 
2769 	return REG_REQ_IGNORE;
2770 }
2771 
2772 static enum reg_request_treatment
2773 __reg_process_hint_driver(struct regulatory_request *driver_request)
2774 {
2775 	struct regulatory_request *lr = get_last_request();
2776 
2777 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2778 		if (regdom_changes(driver_request->alpha2))
2779 			return REG_REQ_OK;
2780 		return REG_REQ_ALREADY_SET;
2781 	}
2782 
2783 	/*
2784 	 * This would happen if you unplug and plug your card
2785 	 * back in or if you add a new device for which the previously
2786 	 * loaded card also agrees on the regulatory domain.
2787 	 */
2788 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2789 	    !regdom_changes(driver_request->alpha2))
2790 		return REG_REQ_ALREADY_SET;
2791 
2792 	return REG_REQ_INTERSECT;
2793 }
2794 
2795 /**
2796  * reg_process_hint_driver - process driver regulatory requests
2797  * @wiphy: the wireless device for the regulatory request
2798  * @driver_request: a pending driver regulatory request
2799  *
2800  * The wireless subsystem can use this function to process
2801  * a regulatory request issued by an 802.11 driver.
2802  *
2803  * Returns: one of the different reg request treatment values.
2804  */
2805 static enum reg_request_treatment
2806 reg_process_hint_driver(struct wiphy *wiphy,
2807 			struct regulatory_request *driver_request)
2808 {
2809 	const struct ieee80211_regdomain *regd, *tmp;
2810 	enum reg_request_treatment treatment;
2811 
2812 	treatment = __reg_process_hint_driver(driver_request);
2813 
2814 	switch (treatment) {
2815 	case REG_REQ_OK:
2816 		break;
2817 	case REG_REQ_IGNORE:
2818 		return REG_REQ_IGNORE;
2819 	case REG_REQ_INTERSECT:
2820 	case REG_REQ_ALREADY_SET:
2821 		regd = reg_copy_regd(get_cfg80211_regdom());
2822 		if (IS_ERR(regd))
2823 			return REG_REQ_IGNORE;
2824 
2825 		tmp = get_wiphy_regdom(wiphy);
2826 		ASSERT_RTNL();
2827 		wiphy_lock(wiphy);
2828 		rcu_assign_pointer(wiphy->regd, regd);
2829 		wiphy_unlock(wiphy);
2830 		rcu_free_regdom(tmp);
2831 	}
2832 
2833 
2834 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2835 	driver_request->processed = false;
2836 
2837 	/*
2838 	 * Since CRDA will not be called in this case as we already
2839 	 * have applied the requested regulatory domain before we just
2840 	 * inform userspace we have processed the request
2841 	 */
2842 	if (treatment == REG_REQ_ALREADY_SET) {
2843 		nl80211_send_reg_change_event(driver_request);
2844 		reg_update_last_request(driver_request);
2845 		reg_set_request_processed();
2846 		return REG_REQ_ALREADY_SET;
2847 	}
2848 
2849 	if (reg_query_database(driver_request)) {
2850 		reg_update_last_request(driver_request);
2851 		return REG_REQ_OK;
2852 	}
2853 
2854 	return REG_REQ_IGNORE;
2855 }
2856 
2857 static enum reg_request_treatment
2858 __reg_process_hint_country_ie(struct wiphy *wiphy,
2859 			      struct regulatory_request *country_ie_request)
2860 {
2861 	struct wiphy *last_wiphy = NULL;
2862 	struct regulatory_request *lr = get_last_request();
2863 
2864 	if (reg_request_cell_base(lr)) {
2865 		/* Trust a Cell base station over the AP's country IE */
2866 		if (regdom_changes(country_ie_request->alpha2))
2867 			return REG_REQ_IGNORE;
2868 		return REG_REQ_ALREADY_SET;
2869 	} else {
2870 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2871 			return REG_REQ_IGNORE;
2872 	}
2873 
2874 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2875 		return -EINVAL;
2876 
2877 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2878 		return REG_REQ_OK;
2879 
2880 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2881 
2882 	if (last_wiphy != wiphy) {
2883 		/*
2884 		 * Two cards with two APs claiming different
2885 		 * Country IE alpha2s. We could
2886 		 * intersect them, but that seems unlikely
2887 		 * to be correct. Reject second one for now.
2888 		 */
2889 		if (regdom_changes(country_ie_request->alpha2))
2890 			return REG_REQ_IGNORE;
2891 		return REG_REQ_ALREADY_SET;
2892 	}
2893 
2894 	if (regdom_changes(country_ie_request->alpha2))
2895 		return REG_REQ_OK;
2896 	return REG_REQ_ALREADY_SET;
2897 }
2898 
2899 /**
2900  * reg_process_hint_country_ie - process regulatory requests from country IEs
2901  * @wiphy: the wireless device for the regulatory request
2902  * @country_ie_request: a regulatory request from a country IE
2903  *
2904  * The wireless subsystem can use this function to process
2905  * a regulatory request issued by a country Information Element.
2906  *
2907  * Returns: one of the different reg request treatment values.
2908  */
2909 static enum reg_request_treatment
2910 reg_process_hint_country_ie(struct wiphy *wiphy,
2911 			    struct regulatory_request *country_ie_request)
2912 {
2913 	enum reg_request_treatment treatment;
2914 
2915 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2916 
2917 	switch (treatment) {
2918 	case REG_REQ_OK:
2919 		break;
2920 	case REG_REQ_IGNORE:
2921 		return REG_REQ_IGNORE;
2922 	case REG_REQ_ALREADY_SET:
2923 		reg_free_request(country_ie_request);
2924 		return REG_REQ_ALREADY_SET;
2925 	case REG_REQ_INTERSECT:
2926 		/*
2927 		 * This doesn't happen yet, not sure we
2928 		 * ever want to support it for this case.
2929 		 */
2930 		WARN_ONCE(1, "Unexpected intersection for country elements");
2931 		return REG_REQ_IGNORE;
2932 	}
2933 
2934 	country_ie_request->intersect = false;
2935 	country_ie_request->processed = false;
2936 
2937 	if (reg_query_database(country_ie_request)) {
2938 		reg_update_last_request(country_ie_request);
2939 		return REG_REQ_OK;
2940 	}
2941 
2942 	return REG_REQ_IGNORE;
2943 }
2944 
2945 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2946 {
2947 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2948 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2949 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2950 	bool dfs_domain_same;
2951 
2952 	rcu_read_lock();
2953 
2954 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2955 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2956 	if (!wiphy1_regd)
2957 		wiphy1_regd = cfg80211_regd;
2958 
2959 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2960 	if (!wiphy2_regd)
2961 		wiphy2_regd = cfg80211_regd;
2962 
2963 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2964 
2965 	rcu_read_unlock();
2966 
2967 	return dfs_domain_same;
2968 }
2969 
2970 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2971 				    struct ieee80211_channel *src_chan)
2972 {
2973 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2974 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2975 		return;
2976 
2977 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2978 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2979 		return;
2980 
2981 	if (src_chan->center_freq == dst_chan->center_freq &&
2982 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2983 		dst_chan->dfs_state = src_chan->dfs_state;
2984 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2985 	}
2986 }
2987 
2988 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2989 				       struct wiphy *src_wiphy)
2990 {
2991 	struct ieee80211_supported_band *src_sband, *dst_sband;
2992 	struct ieee80211_channel *src_chan, *dst_chan;
2993 	int i, j, band;
2994 
2995 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2996 		return;
2997 
2998 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2999 		dst_sband = dst_wiphy->bands[band];
3000 		src_sband = src_wiphy->bands[band];
3001 		if (!dst_sband || !src_sband)
3002 			continue;
3003 
3004 		for (i = 0; i < dst_sband->n_channels; i++) {
3005 			dst_chan = &dst_sband->channels[i];
3006 			for (j = 0; j < src_sband->n_channels; j++) {
3007 				src_chan = &src_sband->channels[j];
3008 				reg_copy_dfs_chan_state(dst_chan, src_chan);
3009 			}
3010 		}
3011 	}
3012 }
3013 
3014 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3015 {
3016 	struct cfg80211_registered_device *rdev;
3017 
3018 	ASSERT_RTNL();
3019 
3020 	for_each_rdev(rdev) {
3021 		if (wiphy == &rdev->wiphy)
3022 			continue;
3023 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3024 	}
3025 }
3026 
3027 /* This processes *all* regulatory hints */
3028 static void reg_process_hint(struct regulatory_request *reg_request)
3029 {
3030 	struct wiphy *wiphy = NULL;
3031 	enum reg_request_treatment treatment;
3032 	enum nl80211_reg_initiator initiator = reg_request->initiator;
3033 
3034 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3035 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3036 
3037 	switch (initiator) {
3038 	case NL80211_REGDOM_SET_BY_CORE:
3039 		treatment = reg_process_hint_core(reg_request);
3040 		break;
3041 	case NL80211_REGDOM_SET_BY_USER:
3042 		treatment = reg_process_hint_user(reg_request);
3043 		break;
3044 	case NL80211_REGDOM_SET_BY_DRIVER:
3045 		if (!wiphy)
3046 			goto out_free;
3047 		treatment = reg_process_hint_driver(wiphy, reg_request);
3048 		break;
3049 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3050 		if (!wiphy)
3051 			goto out_free;
3052 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3053 		break;
3054 	default:
3055 		WARN(1, "invalid initiator %d\n", initiator);
3056 		goto out_free;
3057 	}
3058 
3059 	if (treatment == REG_REQ_IGNORE)
3060 		goto out_free;
3061 
3062 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3063 	     "unexpected treatment value %d\n", treatment);
3064 
3065 	/* This is required so that the orig_* parameters are saved.
3066 	 * NOTE: treatment must be set for any case that reaches here!
3067 	 */
3068 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3069 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3070 		wiphy_update_regulatory(wiphy, initiator);
3071 		wiphy_all_share_dfs_chan_state(wiphy);
3072 		reg_check_channels();
3073 	}
3074 
3075 	return;
3076 
3077 out_free:
3078 	reg_free_request(reg_request);
3079 }
3080 
3081 static void notify_self_managed_wiphys(struct regulatory_request *request)
3082 {
3083 	struct cfg80211_registered_device *rdev;
3084 	struct wiphy *wiphy;
3085 
3086 	for_each_rdev(rdev) {
3087 		wiphy = &rdev->wiphy;
3088 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3089 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3090 			reg_call_notifier(wiphy, request);
3091 	}
3092 }
3093 
3094 /*
3095  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3096  * Regulatory hints come on a first come first serve basis and we
3097  * must process each one atomically.
3098  */
3099 static void reg_process_pending_hints(void)
3100 {
3101 	struct regulatory_request *reg_request, *lr;
3102 
3103 	lr = get_last_request();
3104 
3105 	/* When last_request->processed becomes true this will be rescheduled */
3106 	if (lr && !lr->processed) {
3107 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3108 		return;
3109 	}
3110 
3111 	spin_lock(&reg_requests_lock);
3112 
3113 	if (list_empty(&reg_requests_list)) {
3114 		spin_unlock(&reg_requests_lock);
3115 		return;
3116 	}
3117 
3118 	reg_request = list_first_entry(&reg_requests_list,
3119 				       struct regulatory_request,
3120 				       list);
3121 	list_del_init(&reg_request->list);
3122 
3123 	spin_unlock(&reg_requests_lock);
3124 
3125 	notify_self_managed_wiphys(reg_request);
3126 
3127 	reg_process_hint(reg_request);
3128 
3129 	lr = get_last_request();
3130 
3131 	spin_lock(&reg_requests_lock);
3132 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3133 		schedule_work(&reg_work);
3134 	spin_unlock(&reg_requests_lock);
3135 }
3136 
3137 /* Processes beacon hints -- this has nothing to do with country IEs */
3138 static void reg_process_pending_beacon_hints(void)
3139 {
3140 	struct cfg80211_registered_device *rdev;
3141 	struct reg_beacon *pending_beacon, *tmp;
3142 
3143 	/* This goes through the _pending_ beacon list */
3144 	spin_lock_bh(&reg_pending_beacons_lock);
3145 
3146 	list_for_each_entry_safe(pending_beacon, tmp,
3147 				 &reg_pending_beacons, list) {
3148 		list_del_init(&pending_beacon->list);
3149 
3150 		/* Applies the beacon hint to current wiphys */
3151 		for_each_rdev(rdev)
3152 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3153 
3154 		/* Remembers the beacon hint for new wiphys or reg changes */
3155 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3156 	}
3157 
3158 	spin_unlock_bh(&reg_pending_beacons_lock);
3159 }
3160 
3161 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3162 {
3163 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3164 	const struct ieee80211_regdomain *tmp;
3165 	const struct ieee80211_regdomain *regd;
3166 	enum nl80211_band band;
3167 	struct regulatory_request request = {};
3168 
3169 	ASSERT_RTNL();
3170 	lockdep_assert_wiphy(wiphy);
3171 
3172 	spin_lock(&reg_requests_lock);
3173 	regd = rdev->requested_regd;
3174 	rdev->requested_regd = NULL;
3175 	spin_unlock(&reg_requests_lock);
3176 
3177 	if (!regd)
3178 		return;
3179 
3180 	tmp = get_wiphy_regdom(wiphy);
3181 	rcu_assign_pointer(wiphy->regd, regd);
3182 	rcu_free_regdom(tmp);
3183 
3184 	for (band = 0; band < NUM_NL80211_BANDS; band++)
3185 		handle_band_custom(wiphy, wiphy->bands[band], regd);
3186 
3187 	reg_process_ht_flags(wiphy);
3188 
3189 	request.wiphy_idx = get_wiphy_idx(wiphy);
3190 	request.alpha2[0] = regd->alpha2[0];
3191 	request.alpha2[1] = regd->alpha2[1];
3192 	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3193 
3194 	if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3195 		reg_call_notifier(wiphy, &request);
3196 
3197 	nl80211_send_wiphy_reg_change_event(&request);
3198 }
3199 
3200 static void reg_process_self_managed_hints(void)
3201 {
3202 	struct cfg80211_registered_device *rdev;
3203 
3204 	ASSERT_RTNL();
3205 
3206 	for_each_rdev(rdev) {
3207 		wiphy_lock(&rdev->wiphy);
3208 		reg_process_self_managed_hint(&rdev->wiphy);
3209 		wiphy_unlock(&rdev->wiphy);
3210 	}
3211 
3212 	reg_check_channels();
3213 }
3214 
3215 static void reg_todo(struct work_struct *work)
3216 {
3217 	rtnl_lock();
3218 	reg_process_pending_hints();
3219 	reg_process_pending_beacon_hints();
3220 	reg_process_self_managed_hints();
3221 	rtnl_unlock();
3222 }
3223 
3224 static void queue_regulatory_request(struct regulatory_request *request)
3225 {
3226 	request->alpha2[0] = toupper(request->alpha2[0]);
3227 	request->alpha2[1] = toupper(request->alpha2[1]);
3228 
3229 	spin_lock(&reg_requests_lock);
3230 	list_add_tail(&request->list, &reg_requests_list);
3231 	spin_unlock(&reg_requests_lock);
3232 
3233 	schedule_work(&reg_work);
3234 }
3235 
3236 /*
3237  * Core regulatory hint -- happens during cfg80211_init()
3238  * and when we restore regulatory settings.
3239  */
3240 static int regulatory_hint_core(const char *alpha2)
3241 {
3242 	struct regulatory_request *request;
3243 
3244 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3245 	if (!request)
3246 		return -ENOMEM;
3247 
3248 	request->alpha2[0] = alpha2[0];
3249 	request->alpha2[1] = alpha2[1];
3250 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3251 	request->wiphy_idx = WIPHY_IDX_INVALID;
3252 
3253 	queue_regulatory_request(request);
3254 
3255 	return 0;
3256 }
3257 
3258 /* User hints */
3259 int regulatory_hint_user(const char *alpha2,
3260 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3261 {
3262 	struct regulatory_request *request;
3263 
3264 	if (WARN_ON(!alpha2))
3265 		return -EINVAL;
3266 
3267 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3268 		return -EINVAL;
3269 
3270 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3271 	if (!request)
3272 		return -ENOMEM;
3273 
3274 	request->wiphy_idx = WIPHY_IDX_INVALID;
3275 	request->alpha2[0] = alpha2[0];
3276 	request->alpha2[1] = alpha2[1];
3277 	request->initiator = NL80211_REGDOM_SET_BY_USER;
3278 	request->user_reg_hint_type = user_reg_hint_type;
3279 
3280 	/* Allow calling CRDA again */
3281 	reset_crda_timeouts();
3282 
3283 	queue_regulatory_request(request);
3284 
3285 	return 0;
3286 }
3287 
3288 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3289 {
3290 	spin_lock(&reg_indoor_lock);
3291 
3292 	/* It is possible that more than one user space process is trying to
3293 	 * configure the indoor setting. To handle such cases, clear the indoor
3294 	 * setting in case that some process does not think that the device
3295 	 * is operating in an indoor environment. In addition, if a user space
3296 	 * process indicates that it is controlling the indoor setting, save its
3297 	 * portid, i.e., make it the owner.
3298 	 */
3299 	reg_is_indoor = is_indoor;
3300 	if (reg_is_indoor) {
3301 		if (!reg_is_indoor_portid)
3302 			reg_is_indoor_portid = portid;
3303 	} else {
3304 		reg_is_indoor_portid = 0;
3305 	}
3306 
3307 	spin_unlock(&reg_indoor_lock);
3308 
3309 	if (!is_indoor)
3310 		reg_check_channels();
3311 
3312 	return 0;
3313 }
3314 
3315 void regulatory_netlink_notify(u32 portid)
3316 {
3317 	spin_lock(&reg_indoor_lock);
3318 
3319 	if (reg_is_indoor_portid != portid) {
3320 		spin_unlock(&reg_indoor_lock);
3321 		return;
3322 	}
3323 
3324 	reg_is_indoor = false;
3325 	reg_is_indoor_portid = 0;
3326 
3327 	spin_unlock(&reg_indoor_lock);
3328 
3329 	reg_check_channels();
3330 }
3331 
3332 /* Driver hints */
3333 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3334 {
3335 	struct regulatory_request *request;
3336 
3337 	if (WARN_ON(!alpha2 || !wiphy))
3338 		return -EINVAL;
3339 
3340 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3341 
3342 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3343 	if (!request)
3344 		return -ENOMEM;
3345 
3346 	request->wiphy_idx = get_wiphy_idx(wiphy);
3347 
3348 	request->alpha2[0] = alpha2[0];
3349 	request->alpha2[1] = alpha2[1];
3350 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3351 
3352 	/* Allow calling CRDA again */
3353 	reset_crda_timeouts();
3354 
3355 	queue_regulatory_request(request);
3356 
3357 	return 0;
3358 }
3359 EXPORT_SYMBOL(regulatory_hint);
3360 
3361 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3362 				const u8 *country_ie, u8 country_ie_len)
3363 {
3364 	char alpha2[2];
3365 	enum environment_cap env = ENVIRON_ANY;
3366 	struct regulatory_request *request = NULL, *lr;
3367 
3368 	/* IE len must be evenly divisible by 2 */
3369 	if (country_ie_len & 0x01)
3370 		return;
3371 
3372 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3373 		return;
3374 
3375 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3376 	if (!request)
3377 		return;
3378 
3379 	alpha2[0] = country_ie[0];
3380 	alpha2[1] = country_ie[1];
3381 
3382 	if (country_ie[2] == 'I')
3383 		env = ENVIRON_INDOOR;
3384 	else if (country_ie[2] == 'O')
3385 		env = ENVIRON_OUTDOOR;
3386 
3387 	rcu_read_lock();
3388 	lr = get_last_request();
3389 
3390 	if (unlikely(!lr))
3391 		goto out;
3392 
3393 	/*
3394 	 * We will run this only upon a successful connection on cfg80211.
3395 	 * We leave conflict resolution to the workqueue, where can hold
3396 	 * the RTNL.
3397 	 */
3398 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3399 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3400 		goto out;
3401 
3402 	request->wiphy_idx = get_wiphy_idx(wiphy);
3403 	request->alpha2[0] = alpha2[0];
3404 	request->alpha2[1] = alpha2[1];
3405 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3406 	request->country_ie_env = env;
3407 
3408 	/* Allow calling CRDA again */
3409 	reset_crda_timeouts();
3410 
3411 	queue_regulatory_request(request);
3412 	request = NULL;
3413 out:
3414 	kfree(request);
3415 	rcu_read_unlock();
3416 }
3417 
3418 static void restore_alpha2(char *alpha2, bool reset_user)
3419 {
3420 	/* indicates there is no alpha2 to consider for restoration */
3421 	alpha2[0] = '9';
3422 	alpha2[1] = '7';
3423 
3424 	/* The user setting has precedence over the module parameter */
3425 	if (is_user_regdom_saved()) {
3426 		/* Unless we're asked to ignore it and reset it */
3427 		if (reset_user) {
3428 			pr_debug("Restoring regulatory settings including user preference\n");
3429 			user_alpha2[0] = '9';
3430 			user_alpha2[1] = '7';
3431 
3432 			/*
3433 			 * If we're ignoring user settings, we still need to
3434 			 * check the module parameter to ensure we put things
3435 			 * back as they were for a full restore.
3436 			 */
3437 			if (!is_world_regdom(ieee80211_regdom)) {
3438 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3439 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3440 				alpha2[0] = ieee80211_regdom[0];
3441 				alpha2[1] = ieee80211_regdom[1];
3442 			}
3443 		} else {
3444 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3445 				 user_alpha2[0], user_alpha2[1]);
3446 			alpha2[0] = user_alpha2[0];
3447 			alpha2[1] = user_alpha2[1];
3448 		}
3449 	} else if (!is_world_regdom(ieee80211_regdom)) {
3450 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3451 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3452 		alpha2[0] = ieee80211_regdom[0];
3453 		alpha2[1] = ieee80211_regdom[1];
3454 	} else
3455 		pr_debug("Restoring regulatory settings\n");
3456 }
3457 
3458 static void restore_custom_reg_settings(struct wiphy *wiphy)
3459 {
3460 	struct ieee80211_supported_band *sband;
3461 	enum nl80211_band band;
3462 	struct ieee80211_channel *chan;
3463 	int i;
3464 
3465 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3466 		sband = wiphy->bands[band];
3467 		if (!sband)
3468 			continue;
3469 		for (i = 0; i < sband->n_channels; i++) {
3470 			chan = &sband->channels[i];
3471 			chan->flags = chan->orig_flags;
3472 			chan->max_antenna_gain = chan->orig_mag;
3473 			chan->max_power = chan->orig_mpwr;
3474 			chan->beacon_found = false;
3475 		}
3476 	}
3477 }
3478 
3479 /*
3480  * Restoring regulatory settings involves ignoring any
3481  * possibly stale country IE information and user regulatory
3482  * settings if so desired, this includes any beacon hints
3483  * learned as we could have traveled outside to another country
3484  * after disconnection. To restore regulatory settings we do
3485  * exactly what we did at bootup:
3486  *
3487  *   - send a core regulatory hint
3488  *   - send a user regulatory hint if applicable
3489  *
3490  * Device drivers that send a regulatory hint for a specific country
3491  * keep their own regulatory domain on wiphy->regd so that does
3492  * not need to be remembered.
3493  */
3494 static void restore_regulatory_settings(bool reset_user, bool cached)
3495 {
3496 	char alpha2[2];
3497 	char world_alpha2[2];
3498 	struct reg_beacon *reg_beacon, *btmp;
3499 	LIST_HEAD(tmp_reg_req_list);
3500 	struct cfg80211_registered_device *rdev;
3501 
3502 	ASSERT_RTNL();
3503 
3504 	/*
3505 	 * Clear the indoor setting in case that it is not controlled by user
3506 	 * space, as otherwise there is no guarantee that the device is still
3507 	 * operating in an indoor environment.
3508 	 */
3509 	spin_lock(&reg_indoor_lock);
3510 	if (reg_is_indoor && !reg_is_indoor_portid) {
3511 		reg_is_indoor = false;
3512 		reg_check_channels();
3513 	}
3514 	spin_unlock(&reg_indoor_lock);
3515 
3516 	reset_regdomains(true, &world_regdom);
3517 	restore_alpha2(alpha2, reset_user);
3518 
3519 	/*
3520 	 * If there's any pending requests we simply
3521 	 * stash them to a temporary pending queue and
3522 	 * add then after we've restored regulatory
3523 	 * settings.
3524 	 */
3525 	spin_lock(&reg_requests_lock);
3526 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3527 	spin_unlock(&reg_requests_lock);
3528 
3529 	/* Clear beacon hints */
3530 	spin_lock_bh(&reg_pending_beacons_lock);
3531 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3532 		list_del(&reg_beacon->list);
3533 		kfree(reg_beacon);
3534 	}
3535 	spin_unlock_bh(&reg_pending_beacons_lock);
3536 
3537 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3538 		list_del(&reg_beacon->list);
3539 		kfree(reg_beacon);
3540 	}
3541 
3542 	/* First restore to the basic regulatory settings */
3543 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3544 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3545 
3546 	for_each_rdev(rdev) {
3547 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3548 			continue;
3549 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3550 			restore_custom_reg_settings(&rdev->wiphy);
3551 	}
3552 
3553 	if (cached && (!is_an_alpha2(alpha2) ||
3554 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3555 		reset_regdomains(false, cfg80211_world_regdom);
3556 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3557 		print_regdomain(get_cfg80211_regdom());
3558 		nl80211_send_reg_change_event(&core_request_world);
3559 		reg_set_request_processed();
3560 
3561 		if (is_an_alpha2(alpha2) &&
3562 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3563 			struct regulatory_request *ureq;
3564 
3565 			spin_lock(&reg_requests_lock);
3566 			ureq = list_last_entry(&reg_requests_list,
3567 					       struct regulatory_request,
3568 					       list);
3569 			list_del(&ureq->list);
3570 			spin_unlock(&reg_requests_lock);
3571 
3572 			notify_self_managed_wiphys(ureq);
3573 			reg_update_last_request(ureq);
3574 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3575 				   REGD_SOURCE_CACHED);
3576 		}
3577 	} else {
3578 		regulatory_hint_core(world_alpha2);
3579 
3580 		/*
3581 		 * This restores the ieee80211_regdom module parameter
3582 		 * preference or the last user requested regulatory
3583 		 * settings, user regulatory settings takes precedence.
3584 		 */
3585 		if (is_an_alpha2(alpha2))
3586 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3587 	}
3588 
3589 	spin_lock(&reg_requests_lock);
3590 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3591 	spin_unlock(&reg_requests_lock);
3592 
3593 	pr_debug("Kicking the queue\n");
3594 
3595 	schedule_work(&reg_work);
3596 }
3597 
3598 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3599 {
3600 	struct cfg80211_registered_device *rdev;
3601 	struct wireless_dev *wdev;
3602 
3603 	for_each_rdev(rdev) {
3604 		wiphy_lock(&rdev->wiphy);
3605 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3606 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3607 				wiphy_unlock(&rdev->wiphy);
3608 				return false;
3609 			}
3610 		}
3611 		wiphy_unlock(&rdev->wiphy);
3612 	}
3613 
3614 	return true;
3615 }
3616 
3617 void regulatory_hint_disconnect(void)
3618 {
3619 	/* Restore of regulatory settings is not required when wiphy(s)
3620 	 * ignore IE from connected access point but clearance of beacon hints
3621 	 * is required when wiphy(s) supports beacon hints.
3622 	 */
3623 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3624 		struct reg_beacon *reg_beacon, *btmp;
3625 
3626 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3627 			return;
3628 
3629 		spin_lock_bh(&reg_pending_beacons_lock);
3630 		list_for_each_entry_safe(reg_beacon, btmp,
3631 					 &reg_pending_beacons, list) {
3632 			list_del(&reg_beacon->list);
3633 			kfree(reg_beacon);
3634 		}
3635 		spin_unlock_bh(&reg_pending_beacons_lock);
3636 
3637 		list_for_each_entry_safe(reg_beacon, btmp,
3638 					 &reg_beacon_list, list) {
3639 			list_del(&reg_beacon->list);
3640 			kfree(reg_beacon);
3641 		}
3642 
3643 		return;
3644 	}
3645 
3646 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3647 	restore_regulatory_settings(false, true);
3648 }
3649 
3650 static bool freq_is_chan_12_13_14(u32 freq)
3651 {
3652 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3653 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3654 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3655 		return true;
3656 	return false;
3657 }
3658 
3659 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3660 {
3661 	struct reg_beacon *pending_beacon;
3662 
3663 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3664 		if (ieee80211_channel_equal(beacon_chan,
3665 					    &pending_beacon->chan))
3666 			return true;
3667 	return false;
3668 }
3669 
3670 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3671 				 struct ieee80211_channel *beacon_chan,
3672 				 gfp_t gfp)
3673 {
3674 	struct reg_beacon *reg_beacon;
3675 	bool processing;
3676 
3677 	if (beacon_chan->beacon_found ||
3678 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3679 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3680 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3681 		return 0;
3682 
3683 	spin_lock_bh(&reg_pending_beacons_lock);
3684 	processing = pending_reg_beacon(beacon_chan);
3685 	spin_unlock_bh(&reg_pending_beacons_lock);
3686 
3687 	if (processing)
3688 		return 0;
3689 
3690 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3691 	if (!reg_beacon)
3692 		return -ENOMEM;
3693 
3694 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3695 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3696 		 ieee80211_freq_khz_to_channel(
3697 			 ieee80211_channel_to_khz(beacon_chan)),
3698 		 wiphy_name(wiphy));
3699 
3700 	memcpy(&reg_beacon->chan, beacon_chan,
3701 	       sizeof(struct ieee80211_channel));
3702 
3703 	/*
3704 	 * Since we can be called from BH or and non-BH context
3705 	 * we must use spin_lock_bh()
3706 	 */
3707 	spin_lock_bh(&reg_pending_beacons_lock);
3708 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3709 	spin_unlock_bh(&reg_pending_beacons_lock);
3710 
3711 	schedule_work(&reg_work);
3712 
3713 	return 0;
3714 }
3715 
3716 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3717 {
3718 	unsigned int i;
3719 	const struct ieee80211_reg_rule *reg_rule = NULL;
3720 	const struct ieee80211_freq_range *freq_range = NULL;
3721 	const struct ieee80211_power_rule *power_rule = NULL;
3722 	char bw[32], cac_time[32];
3723 
3724 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3725 
3726 	for (i = 0; i < rd->n_reg_rules; i++) {
3727 		reg_rule = &rd->reg_rules[i];
3728 		freq_range = &reg_rule->freq_range;
3729 		power_rule = &reg_rule->power_rule;
3730 
3731 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3732 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3733 				 freq_range->max_bandwidth_khz,
3734 				 reg_get_max_bandwidth(rd, reg_rule));
3735 		else
3736 			snprintf(bw, sizeof(bw), "%d KHz",
3737 				 freq_range->max_bandwidth_khz);
3738 
3739 		if (reg_rule->flags & NL80211_RRF_DFS)
3740 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3741 				  reg_rule->dfs_cac_ms/1000);
3742 		else
3743 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3744 
3745 
3746 		/*
3747 		 * There may not be documentation for max antenna gain
3748 		 * in certain regions
3749 		 */
3750 		if (power_rule->max_antenna_gain)
3751 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3752 				freq_range->start_freq_khz,
3753 				freq_range->end_freq_khz,
3754 				bw,
3755 				power_rule->max_antenna_gain,
3756 				power_rule->max_eirp,
3757 				cac_time);
3758 		else
3759 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3760 				freq_range->start_freq_khz,
3761 				freq_range->end_freq_khz,
3762 				bw,
3763 				power_rule->max_eirp,
3764 				cac_time);
3765 	}
3766 }
3767 
3768 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3769 {
3770 	switch (dfs_region) {
3771 	case NL80211_DFS_UNSET:
3772 	case NL80211_DFS_FCC:
3773 	case NL80211_DFS_ETSI:
3774 	case NL80211_DFS_JP:
3775 		return true;
3776 	default:
3777 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3778 		return false;
3779 	}
3780 }
3781 
3782 static void print_regdomain(const struct ieee80211_regdomain *rd)
3783 {
3784 	struct regulatory_request *lr = get_last_request();
3785 
3786 	if (is_intersected_alpha2(rd->alpha2)) {
3787 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3788 			struct cfg80211_registered_device *rdev;
3789 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3790 			if (rdev) {
3791 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3792 					rdev->country_ie_alpha2[0],
3793 					rdev->country_ie_alpha2[1]);
3794 			} else
3795 				pr_debug("Current regulatory domain intersected:\n");
3796 		} else
3797 			pr_debug("Current regulatory domain intersected:\n");
3798 	} else if (is_world_regdom(rd->alpha2)) {
3799 		pr_debug("World regulatory domain updated:\n");
3800 	} else {
3801 		if (is_unknown_alpha2(rd->alpha2))
3802 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3803 		else {
3804 			if (reg_request_cell_base(lr))
3805 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3806 					rd->alpha2[0], rd->alpha2[1]);
3807 			else
3808 				pr_debug("Regulatory domain changed to country: %c%c\n",
3809 					rd->alpha2[0], rd->alpha2[1]);
3810 		}
3811 	}
3812 
3813 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3814 	print_rd_rules(rd);
3815 }
3816 
3817 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3818 {
3819 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3820 	print_rd_rules(rd);
3821 }
3822 
3823 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3824 {
3825 	if (!is_world_regdom(rd->alpha2))
3826 		return -EINVAL;
3827 	update_world_regdomain(rd);
3828 	return 0;
3829 }
3830 
3831 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3832 			   struct regulatory_request *user_request)
3833 {
3834 	const struct ieee80211_regdomain *intersected_rd = NULL;
3835 
3836 	if (!regdom_changes(rd->alpha2))
3837 		return -EALREADY;
3838 
3839 	if (!is_valid_rd(rd)) {
3840 		pr_err("Invalid regulatory domain detected: %c%c\n",
3841 		       rd->alpha2[0], rd->alpha2[1]);
3842 		print_regdomain_info(rd);
3843 		return -EINVAL;
3844 	}
3845 
3846 	if (!user_request->intersect) {
3847 		reset_regdomains(false, rd);
3848 		return 0;
3849 	}
3850 
3851 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3852 	if (!intersected_rd)
3853 		return -EINVAL;
3854 
3855 	kfree(rd);
3856 	rd = NULL;
3857 	reset_regdomains(false, intersected_rd);
3858 
3859 	return 0;
3860 }
3861 
3862 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3863 			     struct regulatory_request *driver_request)
3864 {
3865 	const struct ieee80211_regdomain *regd;
3866 	const struct ieee80211_regdomain *intersected_rd = NULL;
3867 	const struct ieee80211_regdomain *tmp = NULL;
3868 	struct wiphy *request_wiphy;
3869 
3870 	if (is_world_regdom(rd->alpha2))
3871 		return -EINVAL;
3872 
3873 	if (!regdom_changes(rd->alpha2))
3874 		return -EALREADY;
3875 
3876 	if (!is_valid_rd(rd)) {
3877 		pr_err("Invalid regulatory domain detected: %c%c\n",
3878 		       rd->alpha2[0], rd->alpha2[1]);
3879 		print_regdomain_info(rd);
3880 		return -EINVAL;
3881 	}
3882 
3883 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3884 	if (!request_wiphy)
3885 		return -ENODEV;
3886 
3887 	if (!driver_request->intersect) {
3888 		ASSERT_RTNL();
3889 		wiphy_lock(request_wiphy);
3890 		if (request_wiphy->regd)
3891 			tmp = get_wiphy_regdom(request_wiphy);
3892 
3893 		regd = reg_copy_regd(rd);
3894 		if (IS_ERR(regd)) {
3895 			wiphy_unlock(request_wiphy);
3896 			return PTR_ERR(regd);
3897 		}
3898 
3899 		rcu_assign_pointer(request_wiphy->regd, regd);
3900 		rcu_free_regdom(tmp);
3901 		wiphy_unlock(request_wiphy);
3902 		reset_regdomains(false, rd);
3903 		return 0;
3904 	}
3905 
3906 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3907 	if (!intersected_rd)
3908 		return -EINVAL;
3909 
3910 	/*
3911 	 * We can trash what CRDA provided now.
3912 	 * However if a driver requested this specific regulatory
3913 	 * domain we keep it for its private use
3914 	 */
3915 	tmp = get_wiphy_regdom(request_wiphy);
3916 	rcu_assign_pointer(request_wiphy->regd, rd);
3917 	rcu_free_regdom(tmp);
3918 
3919 	rd = NULL;
3920 
3921 	reset_regdomains(false, intersected_rd);
3922 
3923 	return 0;
3924 }
3925 
3926 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3927 				 struct regulatory_request *country_ie_request)
3928 {
3929 	struct wiphy *request_wiphy;
3930 
3931 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3932 	    !is_unknown_alpha2(rd->alpha2))
3933 		return -EINVAL;
3934 
3935 	/*
3936 	 * Lets only bother proceeding on the same alpha2 if the current
3937 	 * rd is non static (it means CRDA was present and was used last)
3938 	 * and the pending request came in from a country IE
3939 	 */
3940 
3941 	if (!is_valid_rd(rd)) {
3942 		pr_err("Invalid regulatory domain detected: %c%c\n",
3943 		       rd->alpha2[0], rd->alpha2[1]);
3944 		print_regdomain_info(rd);
3945 		return -EINVAL;
3946 	}
3947 
3948 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3949 	if (!request_wiphy)
3950 		return -ENODEV;
3951 
3952 	if (country_ie_request->intersect)
3953 		return -EINVAL;
3954 
3955 	reset_regdomains(false, rd);
3956 	return 0;
3957 }
3958 
3959 /*
3960  * Use this call to set the current regulatory domain. Conflicts with
3961  * multiple drivers can be ironed out later. Caller must've already
3962  * kmalloc'd the rd structure.
3963  */
3964 int set_regdom(const struct ieee80211_regdomain *rd,
3965 	       enum ieee80211_regd_source regd_src)
3966 {
3967 	struct regulatory_request *lr;
3968 	bool user_reset = false;
3969 	int r;
3970 
3971 	if (IS_ERR_OR_NULL(rd))
3972 		return -ENODATA;
3973 
3974 	if (!reg_is_valid_request(rd->alpha2)) {
3975 		kfree(rd);
3976 		return -EINVAL;
3977 	}
3978 
3979 	if (regd_src == REGD_SOURCE_CRDA)
3980 		reset_crda_timeouts();
3981 
3982 	lr = get_last_request();
3983 
3984 	/* Note that this doesn't update the wiphys, this is done below */
3985 	switch (lr->initiator) {
3986 	case NL80211_REGDOM_SET_BY_CORE:
3987 		r = reg_set_rd_core(rd);
3988 		break;
3989 	case NL80211_REGDOM_SET_BY_USER:
3990 		cfg80211_save_user_regdom(rd);
3991 		r = reg_set_rd_user(rd, lr);
3992 		user_reset = true;
3993 		break;
3994 	case NL80211_REGDOM_SET_BY_DRIVER:
3995 		r = reg_set_rd_driver(rd, lr);
3996 		break;
3997 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3998 		r = reg_set_rd_country_ie(rd, lr);
3999 		break;
4000 	default:
4001 		WARN(1, "invalid initiator %d\n", lr->initiator);
4002 		kfree(rd);
4003 		return -EINVAL;
4004 	}
4005 
4006 	if (r) {
4007 		switch (r) {
4008 		case -EALREADY:
4009 			reg_set_request_processed();
4010 			break;
4011 		default:
4012 			/* Back to world regulatory in case of errors */
4013 			restore_regulatory_settings(user_reset, false);
4014 		}
4015 
4016 		kfree(rd);
4017 		return r;
4018 	}
4019 
4020 	/* This would make this whole thing pointless */
4021 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4022 		return -EINVAL;
4023 
4024 	/* update all wiphys now with the new established regulatory domain */
4025 	update_all_wiphy_regulatory(lr->initiator);
4026 
4027 	print_regdomain(get_cfg80211_regdom());
4028 
4029 	nl80211_send_reg_change_event(lr);
4030 
4031 	reg_set_request_processed();
4032 
4033 	return 0;
4034 }
4035 
4036 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4037 				       struct ieee80211_regdomain *rd)
4038 {
4039 	const struct ieee80211_regdomain *regd;
4040 	const struct ieee80211_regdomain *prev_regd;
4041 	struct cfg80211_registered_device *rdev;
4042 
4043 	if (WARN_ON(!wiphy || !rd))
4044 		return -EINVAL;
4045 
4046 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4047 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4048 		return -EPERM;
4049 
4050 	if (WARN(!is_valid_rd(rd),
4051 		 "Invalid regulatory domain detected: %c%c\n",
4052 		 rd->alpha2[0], rd->alpha2[1])) {
4053 		print_regdomain_info(rd);
4054 		return -EINVAL;
4055 	}
4056 
4057 	regd = reg_copy_regd(rd);
4058 	if (IS_ERR(regd))
4059 		return PTR_ERR(regd);
4060 
4061 	rdev = wiphy_to_rdev(wiphy);
4062 
4063 	spin_lock(&reg_requests_lock);
4064 	prev_regd = rdev->requested_regd;
4065 	rdev->requested_regd = regd;
4066 	spin_unlock(&reg_requests_lock);
4067 
4068 	kfree(prev_regd);
4069 	return 0;
4070 }
4071 
4072 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4073 			      struct ieee80211_regdomain *rd)
4074 {
4075 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4076 
4077 	if (ret)
4078 		return ret;
4079 
4080 	schedule_work(&reg_work);
4081 	return 0;
4082 }
4083 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4084 
4085 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4086 				   struct ieee80211_regdomain *rd)
4087 {
4088 	int ret;
4089 
4090 	ASSERT_RTNL();
4091 
4092 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4093 	if (ret)
4094 		return ret;
4095 
4096 	/* process the request immediately */
4097 	reg_process_self_managed_hint(wiphy);
4098 	reg_check_channels();
4099 	return 0;
4100 }
4101 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4102 
4103 void wiphy_regulatory_register(struct wiphy *wiphy)
4104 {
4105 	struct regulatory_request *lr = get_last_request();
4106 
4107 	/* self-managed devices ignore beacon hints and country IE */
4108 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4109 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4110 					   REGULATORY_COUNTRY_IE_IGNORE;
4111 
4112 		/*
4113 		 * The last request may have been received before this
4114 		 * registration call. Call the driver notifier if
4115 		 * initiator is USER.
4116 		 */
4117 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4118 			reg_call_notifier(wiphy, lr);
4119 	}
4120 
4121 	if (!reg_dev_ignore_cell_hint(wiphy))
4122 		reg_num_devs_support_basehint++;
4123 
4124 	wiphy_update_regulatory(wiphy, lr->initiator);
4125 	wiphy_all_share_dfs_chan_state(wiphy);
4126 	reg_process_self_managed_hints();
4127 }
4128 
4129 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4130 {
4131 	struct wiphy *request_wiphy = NULL;
4132 	struct regulatory_request *lr;
4133 
4134 	lr = get_last_request();
4135 
4136 	if (!reg_dev_ignore_cell_hint(wiphy))
4137 		reg_num_devs_support_basehint--;
4138 
4139 	rcu_free_regdom(get_wiphy_regdom(wiphy));
4140 	RCU_INIT_POINTER(wiphy->regd, NULL);
4141 
4142 	if (lr)
4143 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4144 
4145 	if (!request_wiphy || request_wiphy != wiphy)
4146 		return;
4147 
4148 	lr->wiphy_idx = WIPHY_IDX_INVALID;
4149 	lr->country_ie_env = ENVIRON_ANY;
4150 }
4151 
4152 /*
4153  * See FCC notices for UNII band definitions
4154  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4155  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4156  */
4157 int cfg80211_get_unii(int freq)
4158 {
4159 	/* UNII-1 */
4160 	if (freq >= 5150 && freq <= 5250)
4161 		return 0;
4162 
4163 	/* UNII-2A */
4164 	if (freq > 5250 && freq <= 5350)
4165 		return 1;
4166 
4167 	/* UNII-2B */
4168 	if (freq > 5350 && freq <= 5470)
4169 		return 2;
4170 
4171 	/* UNII-2C */
4172 	if (freq > 5470 && freq <= 5725)
4173 		return 3;
4174 
4175 	/* UNII-3 */
4176 	if (freq > 5725 && freq <= 5825)
4177 		return 4;
4178 
4179 	/* UNII-5 */
4180 	if (freq > 5925 && freq <= 6425)
4181 		return 5;
4182 
4183 	/* UNII-6 */
4184 	if (freq > 6425 && freq <= 6525)
4185 		return 6;
4186 
4187 	/* UNII-7 */
4188 	if (freq > 6525 && freq <= 6875)
4189 		return 7;
4190 
4191 	/* UNII-8 */
4192 	if (freq > 6875 && freq <= 7125)
4193 		return 8;
4194 
4195 	return -EINVAL;
4196 }
4197 
4198 bool regulatory_indoor_allowed(void)
4199 {
4200 	return reg_is_indoor;
4201 }
4202 
4203 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4204 {
4205 	const struct ieee80211_regdomain *regd = NULL;
4206 	const struct ieee80211_regdomain *wiphy_regd = NULL;
4207 	bool pre_cac_allowed = false;
4208 
4209 	rcu_read_lock();
4210 
4211 	regd = rcu_dereference(cfg80211_regdomain);
4212 	wiphy_regd = rcu_dereference(wiphy->regd);
4213 	if (!wiphy_regd) {
4214 		if (regd->dfs_region == NL80211_DFS_ETSI)
4215 			pre_cac_allowed = true;
4216 
4217 		rcu_read_unlock();
4218 
4219 		return pre_cac_allowed;
4220 	}
4221 
4222 	if (regd->dfs_region == wiphy_regd->dfs_region &&
4223 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4224 		pre_cac_allowed = true;
4225 
4226 	rcu_read_unlock();
4227 
4228 	return pre_cac_allowed;
4229 }
4230 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4231 
4232 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4233 {
4234 	struct wireless_dev *wdev;
4235 	/* If we finished CAC or received radar, we should end any
4236 	 * CAC running on the same channels.
4237 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4238 	 * either all channels are available - those the CAC_FINISHED
4239 	 * event has effected another wdev state, or there is a channel
4240 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4241 	 * event has effected another wdev state.
4242 	 * In both cases we should end the CAC on the wdev.
4243 	 */
4244 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4245 		struct cfg80211_chan_def *chandef;
4246 
4247 		if (!wdev->cac_started)
4248 			continue;
4249 
4250 		/* FIXME: radar detection is tied to link 0 for now */
4251 		chandef = wdev_chandef(wdev, 0);
4252 		if (!chandef)
4253 			continue;
4254 
4255 		if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4256 			rdev_end_cac(rdev, wdev->netdev);
4257 	}
4258 }
4259 
4260 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4261 				    struct cfg80211_chan_def *chandef,
4262 				    enum nl80211_dfs_state dfs_state,
4263 				    enum nl80211_radar_event event)
4264 {
4265 	struct cfg80211_registered_device *rdev;
4266 
4267 	ASSERT_RTNL();
4268 
4269 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4270 		return;
4271 
4272 	for_each_rdev(rdev) {
4273 		if (wiphy == &rdev->wiphy)
4274 			continue;
4275 
4276 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4277 			continue;
4278 
4279 		if (!ieee80211_get_channel(&rdev->wiphy,
4280 					   chandef->chan->center_freq))
4281 			continue;
4282 
4283 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4284 
4285 		if (event == NL80211_RADAR_DETECTED ||
4286 		    event == NL80211_RADAR_CAC_FINISHED) {
4287 			cfg80211_sched_dfs_chan_update(rdev);
4288 			cfg80211_check_and_end_cac(rdev);
4289 		}
4290 
4291 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4292 	}
4293 }
4294 
4295 static int __init regulatory_init_db(void)
4296 {
4297 	int err;
4298 
4299 	/*
4300 	 * It's possible that - due to other bugs/issues - cfg80211
4301 	 * never called regulatory_init() below, or that it failed;
4302 	 * in that case, don't try to do any further work here as
4303 	 * it's doomed to lead to crashes.
4304 	 */
4305 	if (IS_ERR_OR_NULL(reg_pdev))
4306 		return -EINVAL;
4307 
4308 	err = load_builtin_regdb_keys();
4309 	if (err) {
4310 		platform_device_unregister(reg_pdev);
4311 		return err;
4312 	}
4313 
4314 	/* We always try to get an update for the static regdomain */
4315 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4316 	if (err) {
4317 		if (err == -ENOMEM) {
4318 			platform_device_unregister(reg_pdev);
4319 			return err;
4320 		}
4321 		/*
4322 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4323 		 * memory which is handled and propagated appropriately above
4324 		 * but it can also fail during a netlink_broadcast() or during
4325 		 * early boot for call_usermodehelper(). For now treat these
4326 		 * errors as non-fatal.
4327 		 */
4328 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4329 	}
4330 
4331 	/*
4332 	 * Finally, if the user set the module parameter treat it
4333 	 * as a user hint.
4334 	 */
4335 	if (!is_world_regdom(ieee80211_regdom))
4336 		regulatory_hint_user(ieee80211_regdom,
4337 				     NL80211_USER_REG_HINT_USER);
4338 
4339 	return 0;
4340 }
4341 #ifndef MODULE
4342 late_initcall(regulatory_init_db);
4343 #endif
4344 
4345 int __init regulatory_init(void)
4346 {
4347 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4348 	if (IS_ERR(reg_pdev))
4349 		return PTR_ERR(reg_pdev);
4350 
4351 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4352 
4353 	user_alpha2[0] = '9';
4354 	user_alpha2[1] = '7';
4355 
4356 #ifdef MODULE
4357 	return regulatory_init_db();
4358 #else
4359 	return 0;
4360 #endif
4361 }
4362 
4363 void regulatory_exit(void)
4364 {
4365 	struct regulatory_request *reg_request, *tmp;
4366 	struct reg_beacon *reg_beacon, *btmp;
4367 
4368 	cancel_work_sync(&reg_work);
4369 	cancel_crda_timeout_sync();
4370 	cancel_delayed_work_sync(&reg_check_chans);
4371 
4372 	/* Lock to suppress warnings */
4373 	rtnl_lock();
4374 	reset_regdomains(true, NULL);
4375 	rtnl_unlock();
4376 
4377 	dev_set_uevent_suppress(&reg_pdev->dev, true);
4378 
4379 	platform_device_unregister(reg_pdev);
4380 
4381 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4382 		list_del(&reg_beacon->list);
4383 		kfree(reg_beacon);
4384 	}
4385 
4386 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4387 		list_del(&reg_beacon->list);
4388 		kfree(reg_beacon);
4389 	}
4390 
4391 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4392 		list_del(&reg_request->list);
4393 		kfree(reg_request);
4394 	}
4395 
4396 	if (!IS_ERR_OR_NULL(regdb))
4397 		kfree(regdb);
4398 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4399 		kfree(cfg80211_user_regdom);
4400 
4401 	free_regdb_keyring();
4402 }
4403