1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 21 /** 22 * DOC: Wireless regulatory infrastructure 23 * 24 * The usual implementation is for a driver to read a device EEPROM to 25 * determine which regulatory domain it should be operating under, then 26 * looking up the allowable channels in a driver-local table and finally 27 * registering those channels in the wiphy structure. 28 * 29 * Another set of compliance enforcement is for drivers to use their 30 * own compliance limits which can be stored on the EEPROM. The host 31 * driver or firmware may ensure these are used. 32 * 33 * In addition to all this we provide an extra layer of regulatory 34 * conformance. For drivers which do not have any regulatory 35 * information CRDA provides the complete regulatory solution. 36 * For others it provides a community effort on further restrictions 37 * to enhance compliance. 38 * 39 * Note: When number of rules --> infinity we will not be able to 40 * index on alpha2 any more, instead we'll probably have to 41 * rely on some SHA1 checksum of the regdomain for example. 42 * 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/kernel.h> 48 #include <linux/export.h> 49 #include <linux/slab.h> 50 #include <linux/list.h> 51 #include <linux/random.h> 52 #include <linux/ctype.h> 53 #include <linux/nl80211.h> 54 #include <linux/platform_device.h> 55 #include <linux/moduleparam.h> 56 #include <net/cfg80211.h> 57 #include "core.h" 58 #include "reg.h" 59 #include "regdb.h" 60 #include "nl80211.h" 61 62 #ifdef CONFIG_CFG80211_REG_DEBUG 63 #define REG_DBG_PRINT(format, args...) \ 64 printk(KERN_DEBUG pr_fmt(format), ##args) 65 #else 66 #define REG_DBG_PRINT(args...) 67 #endif 68 69 static struct regulatory_request core_request_world = { 70 .initiator = NL80211_REGDOM_SET_BY_CORE, 71 .alpha2[0] = '0', 72 .alpha2[1] = '0', 73 .intersect = false, 74 .processed = true, 75 .country_ie_env = ENVIRON_ANY, 76 }; 77 78 /* Receipt of information from last regulatory request */ 79 static struct regulatory_request *last_request = &core_request_world; 80 81 /* To trigger userspace events */ 82 static struct platform_device *reg_pdev; 83 84 static struct device_type reg_device_type = { 85 .uevent = reg_device_uevent, 86 }; 87 88 /* 89 * Central wireless core regulatory domains, we only need two, 90 * the current one and a world regulatory domain in case we have no 91 * information to give us an alpha2 92 */ 93 const struct ieee80211_regdomain *cfg80211_regdomain; 94 95 /* 96 * Protects static reg.c components: 97 * - cfg80211_world_regdom 98 * - cfg80211_regdom 99 * - last_request 100 * - reg_num_devs_support_basehint 101 */ 102 static DEFINE_MUTEX(reg_mutex); 103 104 /* 105 * Number of devices that registered to the core 106 * that support cellular base station regulatory hints 107 */ 108 static int reg_num_devs_support_basehint; 109 110 static inline void assert_reg_lock(void) 111 { 112 lockdep_assert_held(®_mutex); 113 } 114 115 /* Used to queue up regulatory hints */ 116 static LIST_HEAD(reg_requests_list); 117 static spinlock_t reg_requests_lock; 118 119 /* Used to queue up beacon hints for review */ 120 static LIST_HEAD(reg_pending_beacons); 121 static spinlock_t reg_pending_beacons_lock; 122 123 /* Used to keep track of processed beacon hints */ 124 static LIST_HEAD(reg_beacon_list); 125 126 struct reg_beacon { 127 struct list_head list; 128 struct ieee80211_channel chan; 129 }; 130 131 static void reg_todo(struct work_struct *work); 132 static DECLARE_WORK(reg_work, reg_todo); 133 134 static void reg_timeout_work(struct work_struct *work); 135 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); 136 137 /* We keep a static world regulatory domain in case of the absence of CRDA */ 138 static const struct ieee80211_regdomain world_regdom = { 139 .n_reg_rules = 6, 140 .alpha2 = "00", 141 .reg_rules = { 142 /* IEEE 802.11b/g, channels 1..11 */ 143 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 144 /* IEEE 802.11b/g, channels 12..13. No HT40 145 * channel fits here. */ 146 REG_RULE(2467-10, 2472+10, 20, 6, 20, 147 NL80211_RRF_PASSIVE_SCAN | 148 NL80211_RRF_NO_IBSS), 149 /* IEEE 802.11 channel 14 - Only JP enables 150 * this and for 802.11b only */ 151 REG_RULE(2484-10, 2484+10, 20, 6, 20, 152 NL80211_RRF_PASSIVE_SCAN | 153 NL80211_RRF_NO_IBSS | 154 NL80211_RRF_NO_OFDM), 155 /* IEEE 802.11a, channel 36..48 */ 156 REG_RULE(5180-10, 5240+10, 40, 6, 20, 157 NL80211_RRF_PASSIVE_SCAN | 158 NL80211_RRF_NO_IBSS), 159 160 /* NB: 5260 MHz - 5700 MHz requies DFS */ 161 162 /* IEEE 802.11a, channel 149..165 */ 163 REG_RULE(5745-10, 5825+10, 40, 6, 20, 164 NL80211_RRF_PASSIVE_SCAN | 165 NL80211_RRF_NO_IBSS), 166 167 /* IEEE 802.11ad (60gHz), channels 1..3 */ 168 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 169 } 170 }; 171 172 static const struct ieee80211_regdomain *cfg80211_world_regdom = 173 &world_regdom; 174 175 static char *ieee80211_regdom = "00"; 176 static char user_alpha2[2]; 177 178 module_param(ieee80211_regdom, charp, 0444); 179 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 180 181 static void reset_regdomains(bool full_reset) 182 { 183 /* avoid freeing static information or freeing something twice */ 184 if (cfg80211_regdomain == cfg80211_world_regdom) 185 cfg80211_regdomain = NULL; 186 if (cfg80211_world_regdom == &world_regdom) 187 cfg80211_world_regdom = NULL; 188 if (cfg80211_regdomain == &world_regdom) 189 cfg80211_regdomain = NULL; 190 191 kfree(cfg80211_regdomain); 192 kfree(cfg80211_world_regdom); 193 194 cfg80211_world_regdom = &world_regdom; 195 cfg80211_regdomain = NULL; 196 197 if (!full_reset) 198 return; 199 200 if (last_request != &core_request_world) 201 kfree(last_request); 202 last_request = &core_request_world; 203 } 204 205 /* 206 * Dynamic world regulatory domain requested by the wireless 207 * core upon initialization 208 */ 209 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 210 { 211 BUG_ON(!last_request); 212 213 reset_regdomains(false); 214 215 cfg80211_world_regdom = rd; 216 cfg80211_regdomain = rd; 217 } 218 219 bool is_world_regdom(const char *alpha2) 220 { 221 if (!alpha2) 222 return false; 223 if (alpha2[0] == '0' && alpha2[1] == '0') 224 return true; 225 return false; 226 } 227 228 static bool is_alpha2_set(const char *alpha2) 229 { 230 if (!alpha2) 231 return false; 232 if (alpha2[0] != 0 && alpha2[1] != 0) 233 return true; 234 return false; 235 } 236 237 static bool is_unknown_alpha2(const char *alpha2) 238 { 239 if (!alpha2) 240 return false; 241 /* 242 * Special case where regulatory domain was built by driver 243 * but a specific alpha2 cannot be determined 244 */ 245 if (alpha2[0] == '9' && alpha2[1] == '9') 246 return true; 247 return false; 248 } 249 250 static bool is_intersected_alpha2(const char *alpha2) 251 { 252 if (!alpha2) 253 return false; 254 /* 255 * Special case where regulatory domain is the 256 * result of an intersection between two regulatory domain 257 * structures 258 */ 259 if (alpha2[0] == '9' && alpha2[1] == '8') 260 return true; 261 return false; 262 } 263 264 static bool is_an_alpha2(const char *alpha2) 265 { 266 if (!alpha2) 267 return false; 268 if (isalpha(alpha2[0]) && isalpha(alpha2[1])) 269 return true; 270 return false; 271 } 272 273 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 274 { 275 if (!alpha2_x || !alpha2_y) 276 return false; 277 if (alpha2_x[0] == alpha2_y[0] && 278 alpha2_x[1] == alpha2_y[1]) 279 return true; 280 return false; 281 } 282 283 static bool regdom_changes(const char *alpha2) 284 { 285 assert_cfg80211_lock(); 286 287 if (!cfg80211_regdomain) 288 return true; 289 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2)) 290 return false; 291 return true; 292 } 293 294 /* 295 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 296 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 297 * has ever been issued. 298 */ 299 static bool is_user_regdom_saved(void) 300 { 301 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 302 return false; 303 304 /* This would indicate a mistake on the design */ 305 if (WARN((!is_world_regdom(user_alpha2) && 306 !is_an_alpha2(user_alpha2)), 307 "Unexpected user alpha2: %c%c\n", 308 user_alpha2[0], 309 user_alpha2[1])) 310 return false; 311 312 return true; 313 } 314 315 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd, 316 const struct ieee80211_regdomain *src_regd) 317 { 318 struct ieee80211_regdomain *regd; 319 int size_of_regd = 0; 320 unsigned int i; 321 322 size_of_regd = sizeof(struct ieee80211_regdomain) + 323 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule)); 324 325 regd = kzalloc(size_of_regd, GFP_KERNEL); 326 if (!regd) 327 return -ENOMEM; 328 329 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 330 331 for (i = 0; i < src_regd->n_reg_rules; i++) 332 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 333 sizeof(struct ieee80211_reg_rule)); 334 335 *dst_regd = regd; 336 return 0; 337 } 338 339 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 340 struct reg_regdb_search_request { 341 char alpha2[2]; 342 struct list_head list; 343 }; 344 345 static LIST_HEAD(reg_regdb_search_list); 346 static DEFINE_MUTEX(reg_regdb_search_mutex); 347 348 static void reg_regdb_search(struct work_struct *work) 349 { 350 struct reg_regdb_search_request *request; 351 const struct ieee80211_regdomain *curdom, *regdom; 352 int i, r; 353 bool set_reg = false; 354 355 mutex_lock(&cfg80211_mutex); 356 357 mutex_lock(®_regdb_search_mutex); 358 while (!list_empty(®_regdb_search_list)) { 359 request = list_first_entry(®_regdb_search_list, 360 struct reg_regdb_search_request, 361 list); 362 list_del(&request->list); 363 364 for (i=0; i<reg_regdb_size; i++) { 365 curdom = reg_regdb[i]; 366 367 if (!memcmp(request->alpha2, curdom->alpha2, 2)) { 368 r = reg_copy_regd(®dom, curdom); 369 if (r) 370 break; 371 set_reg = true; 372 break; 373 } 374 } 375 376 kfree(request); 377 } 378 mutex_unlock(®_regdb_search_mutex); 379 380 if (set_reg) 381 set_regdom(regdom); 382 383 mutex_unlock(&cfg80211_mutex); 384 } 385 386 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 387 388 static void reg_regdb_query(const char *alpha2) 389 { 390 struct reg_regdb_search_request *request; 391 392 if (!alpha2) 393 return; 394 395 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 396 if (!request) 397 return; 398 399 memcpy(request->alpha2, alpha2, 2); 400 401 mutex_lock(®_regdb_search_mutex); 402 list_add_tail(&request->list, ®_regdb_search_list); 403 mutex_unlock(®_regdb_search_mutex); 404 405 schedule_work(®_regdb_work); 406 } 407 408 /* Feel free to add any other sanity checks here */ 409 static void reg_regdb_size_check(void) 410 { 411 /* We should ideally BUILD_BUG_ON() but then random builds would fail */ 412 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); 413 } 414 #else 415 static inline void reg_regdb_size_check(void) {} 416 static inline void reg_regdb_query(const char *alpha2) {} 417 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 418 419 /* 420 * This lets us keep regulatory code which is updated on a regulatory 421 * basis in userspace. Country information is filled in by 422 * reg_device_uevent 423 */ 424 static int call_crda(const char *alpha2) 425 { 426 if (!is_world_regdom((char *) alpha2)) 427 pr_info("Calling CRDA for country: %c%c\n", 428 alpha2[0], alpha2[1]); 429 else 430 pr_info("Calling CRDA to update world regulatory domain\n"); 431 432 /* query internal regulatory database (if it exists) */ 433 reg_regdb_query(alpha2); 434 435 return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE); 436 } 437 438 /* Used by nl80211 before kmalloc'ing our regulatory domain */ 439 bool reg_is_valid_request(const char *alpha2) 440 { 441 assert_cfg80211_lock(); 442 443 if (!last_request) 444 return false; 445 446 return alpha2_equal(last_request->alpha2, alpha2); 447 } 448 449 /* Sanity check on a regulatory rule */ 450 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 451 { 452 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 453 u32 freq_diff; 454 455 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 456 return false; 457 458 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 459 return false; 460 461 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 462 463 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 464 freq_range->max_bandwidth_khz > freq_diff) 465 return false; 466 467 return true; 468 } 469 470 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 471 { 472 const struct ieee80211_reg_rule *reg_rule = NULL; 473 unsigned int i; 474 475 if (!rd->n_reg_rules) 476 return false; 477 478 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 479 return false; 480 481 for (i = 0; i < rd->n_reg_rules; i++) { 482 reg_rule = &rd->reg_rules[i]; 483 if (!is_valid_reg_rule(reg_rule)) 484 return false; 485 } 486 487 return true; 488 } 489 490 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 491 u32 center_freq_khz, 492 u32 bw_khz) 493 { 494 u32 start_freq_khz, end_freq_khz; 495 496 start_freq_khz = center_freq_khz - (bw_khz/2); 497 end_freq_khz = center_freq_khz + (bw_khz/2); 498 499 if (start_freq_khz >= freq_range->start_freq_khz && 500 end_freq_khz <= freq_range->end_freq_khz) 501 return true; 502 503 return false; 504 } 505 506 /** 507 * freq_in_rule_band - tells us if a frequency is in a frequency band 508 * @freq_range: frequency rule we want to query 509 * @freq_khz: frequency we are inquiring about 510 * 511 * This lets us know if a specific frequency rule is or is not relevant to 512 * a specific frequency's band. Bands are device specific and artificial 513 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is 514 * safe for now to assume that a frequency rule should not be part of a 515 * frequency's band if the start freq or end freq are off by more than 2 GHz. 516 * This resolution can be lowered and should be considered as we add 517 * regulatory rule support for other "bands". 518 **/ 519 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 520 u32 freq_khz) 521 { 522 #define ONE_GHZ_IN_KHZ 1000000 523 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 524 return true; 525 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 526 return true; 527 return false; 528 #undef ONE_GHZ_IN_KHZ 529 } 530 531 /* 532 * Helper for regdom_intersect(), this does the real 533 * mathematical intersection fun 534 */ 535 static int reg_rules_intersect( 536 const struct ieee80211_reg_rule *rule1, 537 const struct ieee80211_reg_rule *rule2, 538 struct ieee80211_reg_rule *intersected_rule) 539 { 540 const struct ieee80211_freq_range *freq_range1, *freq_range2; 541 struct ieee80211_freq_range *freq_range; 542 const struct ieee80211_power_rule *power_rule1, *power_rule2; 543 struct ieee80211_power_rule *power_rule; 544 u32 freq_diff; 545 546 freq_range1 = &rule1->freq_range; 547 freq_range2 = &rule2->freq_range; 548 freq_range = &intersected_rule->freq_range; 549 550 power_rule1 = &rule1->power_rule; 551 power_rule2 = &rule2->power_rule; 552 power_rule = &intersected_rule->power_rule; 553 554 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 555 freq_range2->start_freq_khz); 556 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 557 freq_range2->end_freq_khz); 558 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, 559 freq_range2->max_bandwidth_khz); 560 561 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 562 if (freq_range->max_bandwidth_khz > freq_diff) 563 freq_range->max_bandwidth_khz = freq_diff; 564 565 power_rule->max_eirp = min(power_rule1->max_eirp, 566 power_rule2->max_eirp); 567 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 568 power_rule2->max_antenna_gain); 569 570 intersected_rule->flags = (rule1->flags | rule2->flags); 571 572 if (!is_valid_reg_rule(intersected_rule)) 573 return -EINVAL; 574 575 return 0; 576 } 577 578 /** 579 * regdom_intersect - do the intersection between two regulatory domains 580 * @rd1: first regulatory domain 581 * @rd2: second regulatory domain 582 * 583 * Use this function to get the intersection between two regulatory domains. 584 * Once completed we will mark the alpha2 for the rd as intersected, "98", 585 * as no one single alpha2 can represent this regulatory domain. 586 * 587 * Returns a pointer to the regulatory domain structure which will hold the 588 * resulting intersection of rules between rd1 and rd2. We will 589 * kzalloc() this structure for you. 590 */ 591 static struct ieee80211_regdomain *regdom_intersect( 592 const struct ieee80211_regdomain *rd1, 593 const struct ieee80211_regdomain *rd2) 594 { 595 int r, size_of_regd; 596 unsigned int x, y; 597 unsigned int num_rules = 0, rule_idx = 0; 598 const struct ieee80211_reg_rule *rule1, *rule2; 599 struct ieee80211_reg_rule *intersected_rule; 600 struct ieee80211_regdomain *rd; 601 /* This is just a dummy holder to help us count */ 602 struct ieee80211_reg_rule irule; 603 604 /* Uses the stack temporarily for counter arithmetic */ 605 intersected_rule = &irule; 606 607 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule)); 608 609 if (!rd1 || !rd2) 610 return NULL; 611 612 /* 613 * First we get a count of the rules we'll need, then we actually 614 * build them. This is to so we can malloc() and free() a 615 * regdomain once. The reason we use reg_rules_intersect() here 616 * is it will return -EINVAL if the rule computed makes no sense. 617 * All rules that do check out OK are valid. 618 */ 619 620 for (x = 0; x < rd1->n_reg_rules; x++) { 621 rule1 = &rd1->reg_rules[x]; 622 for (y = 0; y < rd2->n_reg_rules; y++) { 623 rule2 = &rd2->reg_rules[y]; 624 if (!reg_rules_intersect(rule1, rule2, 625 intersected_rule)) 626 num_rules++; 627 memset(intersected_rule, 0, 628 sizeof(struct ieee80211_reg_rule)); 629 } 630 } 631 632 if (!num_rules) 633 return NULL; 634 635 size_of_regd = sizeof(struct ieee80211_regdomain) + 636 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule)); 637 638 rd = kzalloc(size_of_regd, GFP_KERNEL); 639 if (!rd) 640 return NULL; 641 642 for (x = 0; x < rd1->n_reg_rules; x++) { 643 rule1 = &rd1->reg_rules[x]; 644 for (y = 0; y < rd2->n_reg_rules; y++) { 645 rule2 = &rd2->reg_rules[y]; 646 /* 647 * This time around instead of using the stack lets 648 * write to the target rule directly saving ourselves 649 * a memcpy() 650 */ 651 intersected_rule = &rd->reg_rules[rule_idx]; 652 r = reg_rules_intersect(rule1, rule2, 653 intersected_rule); 654 /* 655 * No need to memset here the intersected rule here as 656 * we're not using the stack anymore 657 */ 658 if (r) 659 continue; 660 rule_idx++; 661 } 662 } 663 664 if (rule_idx != num_rules) { 665 kfree(rd); 666 return NULL; 667 } 668 669 rd->n_reg_rules = num_rules; 670 rd->alpha2[0] = '9'; 671 rd->alpha2[1] = '8'; 672 673 return rd; 674 } 675 676 /* 677 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 678 * want to just have the channel structure use these 679 */ 680 static u32 map_regdom_flags(u32 rd_flags) 681 { 682 u32 channel_flags = 0; 683 if (rd_flags & NL80211_RRF_PASSIVE_SCAN) 684 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; 685 if (rd_flags & NL80211_RRF_NO_IBSS) 686 channel_flags |= IEEE80211_CHAN_NO_IBSS; 687 if (rd_flags & NL80211_RRF_DFS) 688 channel_flags |= IEEE80211_CHAN_RADAR; 689 if (rd_flags & NL80211_RRF_NO_OFDM) 690 channel_flags |= IEEE80211_CHAN_NO_OFDM; 691 return channel_flags; 692 } 693 694 static int freq_reg_info_regd(struct wiphy *wiphy, 695 u32 center_freq, 696 u32 desired_bw_khz, 697 const struct ieee80211_reg_rule **reg_rule, 698 const struct ieee80211_regdomain *custom_regd) 699 { 700 int i; 701 bool band_rule_found = false; 702 const struct ieee80211_regdomain *regd; 703 bool bw_fits = false; 704 705 if (!desired_bw_khz) 706 desired_bw_khz = MHZ_TO_KHZ(20); 707 708 regd = custom_regd ? custom_regd : cfg80211_regdomain; 709 710 /* 711 * Follow the driver's regulatory domain, if present, unless a country 712 * IE has been processed or a user wants to help complaince further 713 */ 714 if (!custom_regd && 715 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 716 last_request->initiator != NL80211_REGDOM_SET_BY_USER && 717 wiphy->regd) 718 regd = wiphy->regd; 719 720 if (!regd) 721 return -EINVAL; 722 723 for (i = 0; i < regd->n_reg_rules; i++) { 724 const struct ieee80211_reg_rule *rr; 725 const struct ieee80211_freq_range *fr = NULL; 726 727 rr = ®d->reg_rules[i]; 728 fr = &rr->freq_range; 729 730 /* 731 * We only need to know if one frequency rule was 732 * was in center_freq's band, that's enough, so lets 733 * not overwrite it once found 734 */ 735 if (!band_rule_found) 736 band_rule_found = freq_in_rule_band(fr, center_freq); 737 738 bw_fits = reg_does_bw_fit(fr, 739 center_freq, 740 desired_bw_khz); 741 742 if (band_rule_found && bw_fits) { 743 *reg_rule = rr; 744 return 0; 745 } 746 } 747 748 if (!band_rule_found) 749 return -ERANGE; 750 751 return -EINVAL; 752 } 753 754 int freq_reg_info(struct wiphy *wiphy, 755 u32 center_freq, 756 u32 desired_bw_khz, 757 const struct ieee80211_reg_rule **reg_rule) 758 { 759 assert_cfg80211_lock(); 760 return freq_reg_info_regd(wiphy, 761 center_freq, 762 desired_bw_khz, 763 reg_rule, 764 NULL); 765 } 766 EXPORT_SYMBOL(freq_reg_info); 767 768 #ifdef CONFIG_CFG80211_REG_DEBUG 769 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 770 { 771 switch (initiator) { 772 case NL80211_REGDOM_SET_BY_CORE: 773 return "Set by core"; 774 case NL80211_REGDOM_SET_BY_USER: 775 return "Set by user"; 776 case NL80211_REGDOM_SET_BY_DRIVER: 777 return "Set by driver"; 778 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 779 return "Set by country IE"; 780 default: 781 WARN_ON(1); 782 return "Set by bug"; 783 } 784 } 785 786 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 787 u32 desired_bw_khz, 788 const struct ieee80211_reg_rule *reg_rule) 789 { 790 const struct ieee80211_power_rule *power_rule; 791 const struct ieee80211_freq_range *freq_range; 792 char max_antenna_gain[32]; 793 794 power_rule = ®_rule->power_rule; 795 freq_range = ®_rule->freq_range; 796 797 if (!power_rule->max_antenna_gain) 798 snprintf(max_antenna_gain, 32, "N/A"); 799 else 800 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain); 801 802 REG_DBG_PRINT("Updating information on frequency %d MHz " 803 "for a %d MHz width channel with regulatory rule:\n", 804 chan->center_freq, 805 KHZ_TO_MHZ(desired_bw_khz)); 806 807 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n", 808 freq_range->start_freq_khz, 809 freq_range->end_freq_khz, 810 freq_range->max_bandwidth_khz, 811 max_antenna_gain, 812 power_rule->max_eirp); 813 } 814 #else 815 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 816 u32 desired_bw_khz, 817 const struct ieee80211_reg_rule *reg_rule) 818 { 819 return; 820 } 821 #endif 822 823 /* 824 * Note that right now we assume the desired channel bandwidth 825 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 826 * per channel, the primary and the extension channel). To support 827 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a 828 * new ieee80211_channel.target_bw and re run the regulatory check 829 * on the wiphy with the target_bw specified. Then we can simply use 830 * that below for the desired_bw_khz below. 831 */ 832 static void handle_channel(struct wiphy *wiphy, 833 enum nl80211_reg_initiator initiator, 834 enum ieee80211_band band, 835 unsigned int chan_idx) 836 { 837 int r; 838 u32 flags, bw_flags = 0; 839 u32 desired_bw_khz = MHZ_TO_KHZ(20); 840 const struct ieee80211_reg_rule *reg_rule = NULL; 841 const struct ieee80211_power_rule *power_rule = NULL; 842 const struct ieee80211_freq_range *freq_range = NULL; 843 struct ieee80211_supported_band *sband; 844 struct ieee80211_channel *chan; 845 struct wiphy *request_wiphy = NULL; 846 847 assert_cfg80211_lock(); 848 849 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 850 851 sband = wiphy->bands[band]; 852 BUG_ON(chan_idx >= sband->n_channels); 853 chan = &sband->channels[chan_idx]; 854 855 flags = chan->orig_flags; 856 857 r = freq_reg_info(wiphy, 858 MHZ_TO_KHZ(chan->center_freq), 859 desired_bw_khz, 860 ®_rule); 861 862 if (r) { 863 /* 864 * We will disable all channels that do not match our 865 * received regulatory rule unless the hint is coming 866 * from a Country IE and the Country IE had no information 867 * about a band. The IEEE 802.11 spec allows for an AP 868 * to send only a subset of the regulatory rules allowed, 869 * so an AP in the US that only supports 2.4 GHz may only send 870 * a country IE with information for the 2.4 GHz band 871 * while 5 GHz is still supported. 872 */ 873 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 874 r == -ERANGE) 875 return; 876 877 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq); 878 chan->flags = IEEE80211_CHAN_DISABLED; 879 return; 880 } 881 882 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 883 884 power_rule = ®_rule->power_rule; 885 freq_range = ®_rule->freq_range; 886 887 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 888 bw_flags = IEEE80211_CHAN_NO_HT40; 889 890 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 891 request_wiphy && request_wiphy == wiphy && 892 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 893 /* 894 * This guarantees the driver's requested regulatory domain 895 * will always be used as a base for further regulatory 896 * settings 897 */ 898 chan->flags = chan->orig_flags = 899 map_regdom_flags(reg_rule->flags) | bw_flags; 900 chan->max_antenna_gain = chan->orig_mag = 901 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 902 chan->max_power = chan->orig_mpwr = 903 (int) MBM_TO_DBM(power_rule->max_eirp); 904 return; 905 } 906 907 chan->beacon_found = false; 908 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 909 chan->max_antenna_gain = min(chan->orig_mag, 910 (int) MBI_TO_DBI(power_rule->max_antenna_gain)); 911 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 912 if (chan->orig_mpwr) { 913 /* 914 * Devices that have their own custom regulatory domain 915 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the 916 * passed country IE power settings. 917 */ 918 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 919 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY && 920 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) 921 chan->max_power = chan->max_reg_power; 922 else 923 chan->max_power = min(chan->orig_mpwr, 924 chan->max_reg_power); 925 } else 926 chan->max_power = chan->max_reg_power; 927 } 928 929 static void handle_band(struct wiphy *wiphy, 930 enum ieee80211_band band, 931 enum nl80211_reg_initiator initiator) 932 { 933 unsigned int i; 934 struct ieee80211_supported_band *sband; 935 936 BUG_ON(!wiphy->bands[band]); 937 sband = wiphy->bands[band]; 938 939 for (i = 0; i < sband->n_channels; i++) 940 handle_channel(wiphy, initiator, band, i); 941 } 942 943 static bool reg_request_cell_base(struct regulatory_request *request) 944 { 945 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 946 return false; 947 if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE) 948 return false; 949 return true; 950 } 951 952 bool reg_last_request_cell_base(void) 953 { 954 bool val; 955 assert_cfg80211_lock(); 956 957 mutex_lock(®_mutex); 958 val = reg_request_cell_base(last_request); 959 mutex_unlock(®_mutex); 960 return val; 961 } 962 963 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS 964 965 /* Core specific check */ 966 static int reg_ignore_cell_hint(struct regulatory_request *pending_request) 967 { 968 if (!reg_num_devs_support_basehint) 969 return -EOPNOTSUPP; 970 971 if (reg_request_cell_base(last_request)) { 972 if (!regdom_changes(pending_request->alpha2)) 973 return -EALREADY; 974 return 0; 975 } 976 return 0; 977 } 978 979 /* Device specific check */ 980 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 981 { 982 if (!(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS)) 983 return true; 984 return false; 985 } 986 #else 987 static int reg_ignore_cell_hint(struct regulatory_request *pending_request) 988 { 989 return -EOPNOTSUPP; 990 } 991 static int reg_dev_ignore_cell_hint(struct wiphy *wiphy) 992 { 993 return true; 994 } 995 #endif 996 997 998 static bool ignore_reg_update(struct wiphy *wiphy, 999 enum nl80211_reg_initiator initiator) 1000 { 1001 if (!last_request) { 1002 REG_DBG_PRINT("Ignoring regulatory request %s since " 1003 "last_request is not set\n", 1004 reg_initiator_name(initiator)); 1005 return true; 1006 } 1007 1008 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1009 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) { 1010 REG_DBG_PRINT("Ignoring regulatory request %s " 1011 "since the driver uses its own custom " 1012 "regulatory domain\n", 1013 reg_initiator_name(initiator)); 1014 return true; 1015 } 1016 1017 /* 1018 * wiphy->regd will be set once the device has its own 1019 * desired regulatory domain set 1020 */ 1021 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd && 1022 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1023 !is_world_regdom(last_request->alpha2)) { 1024 REG_DBG_PRINT("Ignoring regulatory request %s " 1025 "since the driver requires its own regulatory " 1026 "domain to be set first\n", 1027 reg_initiator_name(initiator)); 1028 return true; 1029 } 1030 1031 if (reg_request_cell_base(last_request)) 1032 return reg_dev_ignore_cell_hint(wiphy); 1033 1034 return false; 1035 } 1036 1037 static void handle_reg_beacon(struct wiphy *wiphy, 1038 unsigned int chan_idx, 1039 struct reg_beacon *reg_beacon) 1040 { 1041 struct ieee80211_supported_band *sband; 1042 struct ieee80211_channel *chan; 1043 bool channel_changed = false; 1044 struct ieee80211_channel chan_before; 1045 1046 assert_cfg80211_lock(); 1047 1048 sband = wiphy->bands[reg_beacon->chan.band]; 1049 chan = &sband->channels[chan_idx]; 1050 1051 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1052 return; 1053 1054 if (chan->beacon_found) 1055 return; 1056 1057 chan->beacon_found = true; 1058 1059 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS) 1060 return; 1061 1062 chan_before.center_freq = chan->center_freq; 1063 chan_before.flags = chan->flags; 1064 1065 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) { 1066 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN; 1067 channel_changed = true; 1068 } 1069 1070 if (chan->flags & IEEE80211_CHAN_NO_IBSS) { 1071 chan->flags &= ~IEEE80211_CHAN_NO_IBSS; 1072 channel_changed = true; 1073 } 1074 1075 if (channel_changed) 1076 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1077 } 1078 1079 /* 1080 * Called when a scan on a wiphy finds a beacon on 1081 * new channel 1082 */ 1083 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1084 struct reg_beacon *reg_beacon) 1085 { 1086 unsigned int i; 1087 struct ieee80211_supported_band *sband; 1088 1089 assert_cfg80211_lock(); 1090 1091 if (!wiphy->bands[reg_beacon->chan.band]) 1092 return; 1093 1094 sband = wiphy->bands[reg_beacon->chan.band]; 1095 1096 for (i = 0; i < sband->n_channels; i++) 1097 handle_reg_beacon(wiphy, i, reg_beacon); 1098 } 1099 1100 /* 1101 * Called upon reg changes or a new wiphy is added 1102 */ 1103 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1104 { 1105 unsigned int i; 1106 struct ieee80211_supported_band *sband; 1107 struct reg_beacon *reg_beacon; 1108 1109 assert_cfg80211_lock(); 1110 1111 if (list_empty(®_beacon_list)) 1112 return; 1113 1114 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1115 if (!wiphy->bands[reg_beacon->chan.band]) 1116 continue; 1117 sband = wiphy->bands[reg_beacon->chan.band]; 1118 for (i = 0; i < sband->n_channels; i++) 1119 handle_reg_beacon(wiphy, i, reg_beacon); 1120 } 1121 } 1122 1123 static bool reg_is_world_roaming(struct wiphy *wiphy) 1124 { 1125 if (is_world_regdom(cfg80211_regdomain->alpha2) || 1126 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2))) 1127 return true; 1128 if (last_request && 1129 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1130 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1131 return true; 1132 return false; 1133 } 1134 1135 /* Reap the advantages of previously found beacons */ 1136 static void reg_process_beacons(struct wiphy *wiphy) 1137 { 1138 /* 1139 * Means we are just firing up cfg80211, so no beacons would 1140 * have been processed yet. 1141 */ 1142 if (!last_request) 1143 return; 1144 if (!reg_is_world_roaming(wiphy)) 1145 return; 1146 wiphy_update_beacon_reg(wiphy); 1147 } 1148 1149 static bool is_ht40_not_allowed(struct ieee80211_channel *chan) 1150 { 1151 if (!chan) 1152 return true; 1153 if (chan->flags & IEEE80211_CHAN_DISABLED) 1154 return true; 1155 /* This would happen when regulatory rules disallow HT40 completely */ 1156 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40))) 1157 return true; 1158 return false; 1159 } 1160 1161 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1162 enum ieee80211_band band, 1163 unsigned int chan_idx) 1164 { 1165 struct ieee80211_supported_band *sband; 1166 struct ieee80211_channel *channel; 1167 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1168 unsigned int i; 1169 1170 assert_cfg80211_lock(); 1171 1172 sband = wiphy->bands[band]; 1173 BUG_ON(chan_idx >= sband->n_channels); 1174 channel = &sband->channels[chan_idx]; 1175 1176 if (is_ht40_not_allowed(channel)) { 1177 channel->flags |= IEEE80211_CHAN_NO_HT40; 1178 return; 1179 } 1180 1181 /* 1182 * We need to ensure the extension channels exist to 1183 * be able to use HT40- or HT40+, this finds them (or not) 1184 */ 1185 for (i = 0; i < sband->n_channels; i++) { 1186 struct ieee80211_channel *c = &sband->channels[i]; 1187 if (c->center_freq == (channel->center_freq - 20)) 1188 channel_before = c; 1189 if (c->center_freq == (channel->center_freq + 20)) 1190 channel_after = c; 1191 } 1192 1193 /* 1194 * Please note that this assumes target bandwidth is 20 MHz, 1195 * if that ever changes we also need to change the below logic 1196 * to include that as well. 1197 */ 1198 if (is_ht40_not_allowed(channel_before)) 1199 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1200 else 1201 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1202 1203 if (is_ht40_not_allowed(channel_after)) 1204 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1205 else 1206 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1207 } 1208 1209 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1210 enum ieee80211_band band) 1211 { 1212 unsigned int i; 1213 struct ieee80211_supported_band *sband; 1214 1215 BUG_ON(!wiphy->bands[band]); 1216 sband = wiphy->bands[band]; 1217 1218 for (i = 0; i < sband->n_channels; i++) 1219 reg_process_ht_flags_channel(wiphy, band, i); 1220 } 1221 1222 static void reg_process_ht_flags(struct wiphy *wiphy) 1223 { 1224 enum ieee80211_band band; 1225 1226 if (!wiphy) 1227 return; 1228 1229 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1230 if (wiphy->bands[band]) 1231 reg_process_ht_flags_band(wiphy, band); 1232 } 1233 1234 } 1235 1236 static void wiphy_update_regulatory(struct wiphy *wiphy, 1237 enum nl80211_reg_initiator initiator) 1238 { 1239 enum ieee80211_band band; 1240 1241 assert_reg_lock(); 1242 1243 if (ignore_reg_update(wiphy, initiator)) 1244 return; 1245 1246 last_request->dfs_region = cfg80211_regdomain->dfs_region; 1247 1248 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1249 if (wiphy->bands[band]) 1250 handle_band(wiphy, band, initiator); 1251 } 1252 1253 reg_process_beacons(wiphy); 1254 reg_process_ht_flags(wiphy); 1255 if (wiphy->reg_notifier) 1256 wiphy->reg_notifier(wiphy, last_request); 1257 } 1258 1259 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1260 { 1261 struct cfg80211_registered_device *rdev; 1262 struct wiphy *wiphy; 1263 1264 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1265 wiphy = &rdev->wiphy; 1266 wiphy_update_regulatory(wiphy, initiator); 1267 /* 1268 * Regulatory updates set by CORE are ignored for custom 1269 * regulatory cards. Let us notify the changes to the driver, 1270 * as some drivers used this to restore its orig_* reg domain. 1271 */ 1272 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1273 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY && 1274 wiphy->reg_notifier) 1275 wiphy->reg_notifier(wiphy, last_request); 1276 } 1277 } 1278 1279 static void handle_channel_custom(struct wiphy *wiphy, 1280 enum ieee80211_band band, 1281 unsigned int chan_idx, 1282 const struct ieee80211_regdomain *regd) 1283 { 1284 int r; 1285 u32 desired_bw_khz = MHZ_TO_KHZ(20); 1286 u32 bw_flags = 0; 1287 const struct ieee80211_reg_rule *reg_rule = NULL; 1288 const struct ieee80211_power_rule *power_rule = NULL; 1289 const struct ieee80211_freq_range *freq_range = NULL; 1290 struct ieee80211_supported_band *sband; 1291 struct ieee80211_channel *chan; 1292 1293 assert_reg_lock(); 1294 1295 sband = wiphy->bands[band]; 1296 BUG_ON(chan_idx >= sband->n_channels); 1297 chan = &sband->channels[chan_idx]; 1298 1299 r = freq_reg_info_regd(wiphy, 1300 MHZ_TO_KHZ(chan->center_freq), 1301 desired_bw_khz, 1302 ®_rule, 1303 regd); 1304 1305 if (r) { 1306 REG_DBG_PRINT("Disabling freq %d MHz as custom " 1307 "regd has no rule that fits a %d MHz " 1308 "wide channel\n", 1309 chan->center_freq, 1310 KHZ_TO_MHZ(desired_bw_khz)); 1311 chan->flags = IEEE80211_CHAN_DISABLED; 1312 return; 1313 } 1314 1315 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 1316 1317 power_rule = ®_rule->power_rule; 1318 freq_range = ®_rule->freq_range; 1319 1320 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 1321 bw_flags = IEEE80211_CHAN_NO_HT40; 1322 1323 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1324 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1325 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1326 } 1327 1328 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band, 1329 const struct ieee80211_regdomain *regd) 1330 { 1331 unsigned int i; 1332 struct ieee80211_supported_band *sband; 1333 1334 BUG_ON(!wiphy->bands[band]); 1335 sband = wiphy->bands[band]; 1336 1337 for (i = 0; i < sband->n_channels; i++) 1338 handle_channel_custom(wiphy, band, i, regd); 1339 } 1340 1341 /* Used by drivers prior to wiphy registration */ 1342 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1343 const struct ieee80211_regdomain *regd) 1344 { 1345 enum ieee80211_band band; 1346 unsigned int bands_set = 0; 1347 1348 mutex_lock(®_mutex); 1349 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1350 if (!wiphy->bands[band]) 1351 continue; 1352 handle_band_custom(wiphy, band, regd); 1353 bands_set++; 1354 } 1355 mutex_unlock(®_mutex); 1356 1357 /* 1358 * no point in calling this if it won't have any effect 1359 * on your device's supportd bands. 1360 */ 1361 WARN_ON(!bands_set); 1362 } 1363 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1364 1365 /* 1366 * Return value which can be used by ignore_request() to indicate 1367 * it has been determined we should intersect two regulatory domains 1368 */ 1369 #define REG_INTERSECT 1 1370 1371 /* This has the logic which determines when a new request 1372 * should be ignored. */ 1373 static int ignore_request(struct wiphy *wiphy, 1374 struct regulatory_request *pending_request) 1375 { 1376 struct wiphy *last_wiphy = NULL; 1377 1378 assert_cfg80211_lock(); 1379 1380 /* All initial requests are respected */ 1381 if (!last_request) 1382 return 0; 1383 1384 switch (pending_request->initiator) { 1385 case NL80211_REGDOM_SET_BY_CORE: 1386 return 0; 1387 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1388 1389 if (reg_request_cell_base(last_request)) { 1390 /* Trust a Cell base station over the AP's country IE */ 1391 if (regdom_changes(pending_request->alpha2)) 1392 return -EOPNOTSUPP; 1393 return -EALREADY; 1394 } 1395 1396 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 1397 1398 if (unlikely(!is_an_alpha2(pending_request->alpha2))) 1399 return -EINVAL; 1400 if (last_request->initiator == 1401 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1402 if (last_wiphy != wiphy) { 1403 /* 1404 * Two cards with two APs claiming different 1405 * Country IE alpha2s. We could 1406 * intersect them, but that seems unlikely 1407 * to be correct. Reject second one for now. 1408 */ 1409 if (regdom_changes(pending_request->alpha2)) 1410 return -EOPNOTSUPP; 1411 return -EALREADY; 1412 } 1413 /* 1414 * Two consecutive Country IE hints on the same wiphy. 1415 * This should be picked up early by the driver/stack 1416 */ 1417 if (WARN_ON(regdom_changes(pending_request->alpha2))) 1418 return 0; 1419 return -EALREADY; 1420 } 1421 return 0; 1422 case NL80211_REGDOM_SET_BY_DRIVER: 1423 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) { 1424 if (regdom_changes(pending_request->alpha2)) 1425 return 0; 1426 return -EALREADY; 1427 } 1428 1429 /* 1430 * This would happen if you unplug and plug your card 1431 * back in or if you add a new device for which the previously 1432 * loaded card also agrees on the regulatory domain. 1433 */ 1434 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1435 !regdom_changes(pending_request->alpha2)) 1436 return -EALREADY; 1437 1438 return REG_INTERSECT; 1439 case NL80211_REGDOM_SET_BY_USER: 1440 if (reg_request_cell_base(pending_request)) 1441 return reg_ignore_cell_hint(pending_request); 1442 1443 if (reg_request_cell_base(last_request)) 1444 return -EOPNOTSUPP; 1445 1446 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1447 return REG_INTERSECT; 1448 /* 1449 * If the user knows better the user should set the regdom 1450 * to their country before the IE is picked up 1451 */ 1452 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER && 1453 last_request->intersect) 1454 return -EOPNOTSUPP; 1455 /* 1456 * Process user requests only after previous user/driver/core 1457 * requests have been processed 1458 */ 1459 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE || 1460 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1461 last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1462 if (regdom_changes(last_request->alpha2)) 1463 return -EAGAIN; 1464 } 1465 1466 if (!regdom_changes(pending_request->alpha2)) 1467 return -EALREADY; 1468 1469 return 0; 1470 } 1471 1472 return -EINVAL; 1473 } 1474 1475 static void reg_set_request_processed(void) 1476 { 1477 bool need_more_processing = false; 1478 1479 last_request->processed = true; 1480 1481 spin_lock(®_requests_lock); 1482 if (!list_empty(®_requests_list)) 1483 need_more_processing = true; 1484 spin_unlock(®_requests_lock); 1485 1486 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) 1487 cancel_delayed_work(®_timeout); 1488 1489 if (need_more_processing) 1490 schedule_work(®_work); 1491 } 1492 1493 /** 1494 * __regulatory_hint - hint to the wireless core a regulatory domain 1495 * @wiphy: if the hint comes from country information from an AP, this 1496 * is required to be set to the wiphy that received the information 1497 * @pending_request: the regulatory request currently being processed 1498 * 1499 * The Wireless subsystem can use this function to hint to the wireless core 1500 * what it believes should be the current regulatory domain. 1501 * 1502 * Returns zero if all went fine, %-EALREADY if a regulatory domain had 1503 * already been set or other standard error codes. 1504 * 1505 * Caller must hold &cfg80211_mutex and ®_mutex 1506 */ 1507 static int __regulatory_hint(struct wiphy *wiphy, 1508 struct regulatory_request *pending_request) 1509 { 1510 bool intersect = false; 1511 int r = 0; 1512 1513 assert_cfg80211_lock(); 1514 1515 r = ignore_request(wiphy, pending_request); 1516 1517 if (r == REG_INTERSECT) { 1518 if (pending_request->initiator == 1519 NL80211_REGDOM_SET_BY_DRIVER) { 1520 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1521 if (r) { 1522 kfree(pending_request); 1523 return r; 1524 } 1525 } 1526 intersect = true; 1527 } else if (r) { 1528 /* 1529 * If the regulatory domain being requested by the 1530 * driver has already been set just copy it to the 1531 * wiphy 1532 */ 1533 if (r == -EALREADY && 1534 pending_request->initiator == 1535 NL80211_REGDOM_SET_BY_DRIVER) { 1536 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1537 if (r) { 1538 kfree(pending_request); 1539 return r; 1540 } 1541 r = -EALREADY; 1542 goto new_request; 1543 } 1544 kfree(pending_request); 1545 return r; 1546 } 1547 1548 new_request: 1549 if (last_request != &core_request_world) 1550 kfree(last_request); 1551 1552 last_request = pending_request; 1553 last_request->intersect = intersect; 1554 1555 pending_request = NULL; 1556 1557 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1558 user_alpha2[0] = last_request->alpha2[0]; 1559 user_alpha2[1] = last_request->alpha2[1]; 1560 } 1561 1562 /* When r == REG_INTERSECT we do need to call CRDA */ 1563 if (r < 0) { 1564 /* 1565 * Since CRDA will not be called in this case as we already 1566 * have applied the requested regulatory domain before we just 1567 * inform userspace we have processed the request 1568 */ 1569 if (r == -EALREADY) { 1570 nl80211_send_reg_change_event(last_request); 1571 reg_set_request_processed(); 1572 } 1573 return r; 1574 } 1575 1576 return call_crda(last_request->alpha2); 1577 } 1578 1579 /* This processes *all* regulatory hints */ 1580 static void reg_process_hint(struct regulatory_request *reg_request, 1581 enum nl80211_reg_initiator reg_initiator) 1582 { 1583 int r = 0; 1584 struct wiphy *wiphy = NULL; 1585 1586 BUG_ON(!reg_request->alpha2); 1587 1588 if (wiphy_idx_valid(reg_request->wiphy_idx)) 1589 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1590 1591 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && 1592 !wiphy) { 1593 kfree(reg_request); 1594 return; 1595 } 1596 1597 r = __regulatory_hint(wiphy, reg_request); 1598 /* This is required so that the orig_* parameters are saved */ 1599 if (r == -EALREADY && wiphy && 1600 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 1601 wiphy_update_regulatory(wiphy, reg_initiator); 1602 return; 1603 } 1604 1605 /* 1606 * We only time out user hints, given that they should be the only 1607 * source of bogus requests. 1608 */ 1609 if (r != -EALREADY && 1610 reg_initiator == NL80211_REGDOM_SET_BY_USER) 1611 schedule_delayed_work(®_timeout, msecs_to_jiffies(3142)); 1612 } 1613 1614 /* 1615 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 1616 * Regulatory hints come on a first come first serve basis and we 1617 * must process each one atomically. 1618 */ 1619 static void reg_process_pending_hints(void) 1620 { 1621 struct regulatory_request *reg_request; 1622 1623 mutex_lock(&cfg80211_mutex); 1624 mutex_lock(®_mutex); 1625 1626 /* When last_request->processed becomes true this will be rescheduled */ 1627 if (last_request && !last_request->processed) { 1628 REG_DBG_PRINT("Pending regulatory request, waiting " 1629 "for it to be processed...\n"); 1630 goto out; 1631 } 1632 1633 spin_lock(®_requests_lock); 1634 1635 if (list_empty(®_requests_list)) { 1636 spin_unlock(®_requests_lock); 1637 goto out; 1638 } 1639 1640 reg_request = list_first_entry(®_requests_list, 1641 struct regulatory_request, 1642 list); 1643 list_del_init(®_request->list); 1644 1645 spin_unlock(®_requests_lock); 1646 1647 reg_process_hint(reg_request, reg_request->initiator); 1648 1649 out: 1650 mutex_unlock(®_mutex); 1651 mutex_unlock(&cfg80211_mutex); 1652 } 1653 1654 /* Processes beacon hints -- this has nothing to do with country IEs */ 1655 static void reg_process_pending_beacon_hints(void) 1656 { 1657 struct cfg80211_registered_device *rdev; 1658 struct reg_beacon *pending_beacon, *tmp; 1659 1660 /* 1661 * No need to hold the reg_mutex here as we just touch wiphys 1662 * and do not read or access regulatory variables. 1663 */ 1664 mutex_lock(&cfg80211_mutex); 1665 1666 /* This goes through the _pending_ beacon list */ 1667 spin_lock_bh(®_pending_beacons_lock); 1668 1669 if (list_empty(®_pending_beacons)) { 1670 spin_unlock_bh(®_pending_beacons_lock); 1671 goto out; 1672 } 1673 1674 list_for_each_entry_safe(pending_beacon, tmp, 1675 ®_pending_beacons, list) { 1676 1677 list_del_init(&pending_beacon->list); 1678 1679 /* Applies the beacon hint to current wiphys */ 1680 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1681 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 1682 1683 /* Remembers the beacon hint for new wiphys or reg changes */ 1684 list_add_tail(&pending_beacon->list, ®_beacon_list); 1685 } 1686 1687 spin_unlock_bh(®_pending_beacons_lock); 1688 out: 1689 mutex_unlock(&cfg80211_mutex); 1690 } 1691 1692 static void reg_todo(struct work_struct *work) 1693 { 1694 reg_process_pending_hints(); 1695 reg_process_pending_beacon_hints(); 1696 } 1697 1698 static void queue_regulatory_request(struct regulatory_request *request) 1699 { 1700 if (isalpha(request->alpha2[0])) 1701 request->alpha2[0] = toupper(request->alpha2[0]); 1702 if (isalpha(request->alpha2[1])) 1703 request->alpha2[1] = toupper(request->alpha2[1]); 1704 1705 spin_lock(®_requests_lock); 1706 list_add_tail(&request->list, ®_requests_list); 1707 spin_unlock(®_requests_lock); 1708 1709 schedule_work(®_work); 1710 } 1711 1712 /* 1713 * Core regulatory hint -- happens during cfg80211_init() 1714 * and when we restore regulatory settings. 1715 */ 1716 static int regulatory_hint_core(const char *alpha2) 1717 { 1718 struct regulatory_request *request; 1719 1720 request = kzalloc(sizeof(struct regulatory_request), 1721 GFP_KERNEL); 1722 if (!request) 1723 return -ENOMEM; 1724 1725 request->alpha2[0] = alpha2[0]; 1726 request->alpha2[1] = alpha2[1]; 1727 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1728 1729 queue_regulatory_request(request); 1730 1731 return 0; 1732 } 1733 1734 /* User hints */ 1735 int regulatory_hint_user(const char *alpha2, 1736 enum nl80211_user_reg_hint_type user_reg_hint_type) 1737 { 1738 struct regulatory_request *request; 1739 1740 BUG_ON(!alpha2); 1741 1742 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1743 if (!request) 1744 return -ENOMEM; 1745 1746 request->wiphy_idx = WIPHY_IDX_STALE; 1747 request->alpha2[0] = alpha2[0]; 1748 request->alpha2[1] = alpha2[1]; 1749 request->initiator = NL80211_REGDOM_SET_BY_USER; 1750 request->user_reg_hint_type = user_reg_hint_type; 1751 1752 queue_regulatory_request(request); 1753 1754 return 0; 1755 } 1756 1757 /* Driver hints */ 1758 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 1759 { 1760 struct regulatory_request *request; 1761 1762 BUG_ON(!alpha2); 1763 BUG_ON(!wiphy); 1764 1765 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1766 if (!request) 1767 return -ENOMEM; 1768 1769 request->wiphy_idx = get_wiphy_idx(wiphy); 1770 1771 /* Must have registered wiphy first */ 1772 BUG_ON(!wiphy_idx_valid(request->wiphy_idx)); 1773 1774 request->alpha2[0] = alpha2[0]; 1775 request->alpha2[1] = alpha2[1]; 1776 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 1777 1778 queue_regulatory_request(request); 1779 1780 return 0; 1781 } 1782 EXPORT_SYMBOL(regulatory_hint); 1783 1784 /* 1785 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and 1786 * therefore cannot iterate over the rdev list here. 1787 */ 1788 void regulatory_hint_11d(struct wiphy *wiphy, 1789 enum ieee80211_band band, 1790 u8 *country_ie, 1791 u8 country_ie_len) 1792 { 1793 char alpha2[2]; 1794 enum environment_cap env = ENVIRON_ANY; 1795 struct regulatory_request *request; 1796 1797 mutex_lock(®_mutex); 1798 1799 if (unlikely(!last_request)) 1800 goto out; 1801 1802 /* IE len must be evenly divisible by 2 */ 1803 if (country_ie_len & 0x01) 1804 goto out; 1805 1806 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 1807 goto out; 1808 1809 alpha2[0] = country_ie[0]; 1810 alpha2[1] = country_ie[1]; 1811 1812 if (country_ie[2] == 'I') 1813 env = ENVIRON_INDOOR; 1814 else if (country_ie[2] == 'O') 1815 env = ENVIRON_OUTDOOR; 1816 1817 /* 1818 * We will run this only upon a successful connection on cfg80211. 1819 * We leave conflict resolution to the workqueue, where can hold 1820 * cfg80211_mutex. 1821 */ 1822 if (likely(last_request->initiator == 1823 NL80211_REGDOM_SET_BY_COUNTRY_IE && 1824 wiphy_idx_valid(last_request->wiphy_idx))) 1825 goto out; 1826 1827 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1828 if (!request) 1829 goto out; 1830 1831 request->wiphy_idx = get_wiphy_idx(wiphy); 1832 request->alpha2[0] = alpha2[0]; 1833 request->alpha2[1] = alpha2[1]; 1834 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 1835 request->country_ie_env = env; 1836 1837 mutex_unlock(®_mutex); 1838 1839 queue_regulatory_request(request); 1840 1841 return; 1842 1843 out: 1844 mutex_unlock(®_mutex); 1845 } 1846 1847 static void restore_alpha2(char *alpha2, bool reset_user) 1848 { 1849 /* indicates there is no alpha2 to consider for restoration */ 1850 alpha2[0] = '9'; 1851 alpha2[1] = '7'; 1852 1853 /* The user setting has precedence over the module parameter */ 1854 if (is_user_regdom_saved()) { 1855 /* Unless we're asked to ignore it and reset it */ 1856 if (reset_user) { 1857 REG_DBG_PRINT("Restoring regulatory settings " 1858 "including user preference\n"); 1859 user_alpha2[0] = '9'; 1860 user_alpha2[1] = '7'; 1861 1862 /* 1863 * If we're ignoring user settings, we still need to 1864 * check the module parameter to ensure we put things 1865 * back as they were for a full restore. 1866 */ 1867 if (!is_world_regdom(ieee80211_regdom)) { 1868 REG_DBG_PRINT("Keeping preference on " 1869 "module parameter ieee80211_regdom: %c%c\n", 1870 ieee80211_regdom[0], 1871 ieee80211_regdom[1]); 1872 alpha2[0] = ieee80211_regdom[0]; 1873 alpha2[1] = ieee80211_regdom[1]; 1874 } 1875 } else { 1876 REG_DBG_PRINT("Restoring regulatory settings " 1877 "while preserving user preference for: %c%c\n", 1878 user_alpha2[0], 1879 user_alpha2[1]); 1880 alpha2[0] = user_alpha2[0]; 1881 alpha2[1] = user_alpha2[1]; 1882 } 1883 } else if (!is_world_regdom(ieee80211_regdom)) { 1884 REG_DBG_PRINT("Keeping preference on " 1885 "module parameter ieee80211_regdom: %c%c\n", 1886 ieee80211_regdom[0], 1887 ieee80211_regdom[1]); 1888 alpha2[0] = ieee80211_regdom[0]; 1889 alpha2[1] = ieee80211_regdom[1]; 1890 } else 1891 REG_DBG_PRINT("Restoring regulatory settings\n"); 1892 } 1893 1894 static void restore_custom_reg_settings(struct wiphy *wiphy) 1895 { 1896 struct ieee80211_supported_band *sband; 1897 enum ieee80211_band band; 1898 struct ieee80211_channel *chan; 1899 int i; 1900 1901 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1902 sband = wiphy->bands[band]; 1903 if (!sband) 1904 continue; 1905 for (i = 0; i < sband->n_channels; i++) { 1906 chan = &sband->channels[i]; 1907 chan->flags = chan->orig_flags; 1908 chan->max_antenna_gain = chan->orig_mag; 1909 chan->max_power = chan->orig_mpwr; 1910 chan->beacon_found = false; 1911 } 1912 } 1913 } 1914 1915 /* 1916 * Restoring regulatory settings involves ingoring any 1917 * possibly stale country IE information and user regulatory 1918 * settings if so desired, this includes any beacon hints 1919 * learned as we could have traveled outside to another country 1920 * after disconnection. To restore regulatory settings we do 1921 * exactly what we did at bootup: 1922 * 1923 * - send a core regulatory hint 1924 * - send a user regulatory hint if applicable 1925 * 1926 * Device drivers that send a regulatory hint for a specific country 1927 * keep their own regulatory domain on wiphy->regd so that does does 1928 * not need to be remembered. 1929 */ 1930 static void restore_regulatory_settings(bool reset_user) 1931 { 1932 char alpha2[2]; 1933 char world_alpha2[2]; 1934 struct reg_beacon *reg_beacon, *btmp; 1935 struct regulatory_request *reg_request, *tmp; 1936 LIST_HEAD(tmp_reg_req_list); 1937 struct cfg80211_registered_device *rdev; 1938 1939 mutex_lock(&cfg80211_mutex); 1940 mutex_lock(®_mutex); 1941 1942 reset_regdomains(true); 1943 restore_alpha2(alpha2, reset_user); 1944 1945 /* 1946 * If there's any pending requests we simply 1947 * stash them to a temporary pending queue and 1948 * add then after we've restored regulatory 1949 * settings. 1950 */ 1951 spin_lock(®_requests_lock); 1952 if (!list_empty(®_requests_list)) { 1953 list_for_each_entry_safe(reg_request, tmp, 1954 ®_requests_list, list) { 1955 if (reg_request->initiator != 1956 NL80211_REGDOM_SET_BY_USER) 1957 continue; 1958 list_del(®_request->list); 1959 list_add_tail(®_request->list, &tmp_reg_req_list); 1960 } 1961 } 1962 spin_unlock(®_requests_lock); 1963 1964 /* Clear beacon hints */ 1965 spin_lock_bh(®_pending_beacons_lock); 1966 if (!list_empty(®_pending_beacons)) { 1967 list_for_each_entry_safe(reg_beacon, btmp, 1968 ®_pending_beacons, list) { 1969 list_del(®_beacon->list); 1970 kfree(reg_beacon); 1971 } 1972 } 1973 spin_unlock_bh(®_pending_beacons_lock); 1974 1975 if (!list_empty(®_beacon_list)) { 1976 list_for_each_entry_safe(reg_beacon, btmp, 1977 ®_beacon_list, list) { 1978 list_del(®_beacon->list); 1979 kfree(reg_beacon); 1980 } 1981 } 1982 1983 /* First restore to the basic regulatory settings */ 1984 cfg80211_regdomain = cfg80211_world_regdom; 1985 world_alpha2[0] = cfg80211_regdomain->alpha2[0]; 1986 world_alpha2[1] = cfg80211_regdomain->alpha2[1]; 1987 1988 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1989 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1990 restore_custom_reg_settings(&rdev->wiphy); 1991 } 1992 1993 mutex_unlock(®_mutex); 1994 mutex_unlock(&cfg80211_mutex); 1995 1996 regulatory_hint_core(world_alpha2); 1997 1998 /* 1999 * This restores the ieee80211_regdom module parameter 2000 * preference or the last user requested regulatory 2001 * settings, user regulatory settings takes precedence. 2002 */ 2003 if (is_an_alpha2(alpha2)) 2004 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER); 2005 2006 if (list_empty(&tmp_reg_req_list)) 2007 return; 2008 2009 mutex_lock(&cfg80211_mutex); 2010 mutex_lock(®_mutex); 2011 2012 spin_lock(®_requests_lock); 2013 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) { 2014 REG_DBG_PRINT("Adding request for country %c%c back " 2015 "into the queue\n", 2016 reg_request->alpha2[0], 2017 reg_request->alpha2[1]); 2018 list_del(®_request->list); 2019 list_add_tail(®_request->list, ®_requests_list); 2020 } 2021 spin_unlock(®_requests_lock); 2022 2023 mutex_unlock(®_mutex); 2024 mutex_unlock(&cfg80211_mutex); 2025 2026 REG_DBG_PRINT("Kicking the queue\n"); 2027 2028 schedule_work(®_work); 2029 } 2030 2031 void regulatory_hint_disconnect(void) 2032 { 2033 REG_DBG_PRINT("All devices are disconnected, going to " 2034 "restore regulatory settings\n"); 2035 restore_regulatory_settings(false); 2036 } 2037 2038 static bool freq_is_chan_12_13_14(u16 freq) 2039 { 2040 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 2041 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 2042 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 2043 return true; 2044 return false; 2045 } 2046 2047 int regulatory_hint_found_beacon(struct wiphy *wiphy, 2048 struct ieee80211_channel *beacon_chan, 2049 gfp_t gfp) 2050 { 2051 struct reg_beacon *reg_beacon; 2052 2053 if (likely((beacon_chan->beacon_found || 2054 (beacon_chan->flags & IEEE80211_CHAN_RADAR) || 2055 (beacon_chan->band == IEEE80211_BAND_2GHZ && 2056 !freq_is_chan_12_13_14(beacon_chan->center_freq))))) 2057 return 0; 2058 2059 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 2060 if (!reg_beacon) 2061 return -ENOMEM; 2062 2063 REG_DBG_PRINT("Found new beacon on " 2064 "frequency: %d MHz (Ch %d) on %s\n", 2065 beacon_chan->center_freq, 2066 ieee80211_frequency_to_channel(beacon_chan->center_freq), 2067 wiphy_name(wiphy)); 2068 2069 memcpy(®_beacon->chan, beacon_chan, 2070 sizeof(struct ieee80211_channel)); 2071 2072 2073 /* 2074 * Since we can be called from BH or and non-BH context 2075 * we must use spin_lock_bh() 2076 */ 2077 spin_lock_bh(®_pending_beacons_lock); 2078 list_add_tail(®_beacon->list, ®_pending_beacons); 2079 spin_unlock_bh(®_pending_beacons_lock); 2080 2081 schedule_work(®_work); 2082 2083 return 0; 2084 } 2085 2086 static void print_rd_rules(const struct ieee80211_regdomain *rd) 2087 { 2088 unsigned int i; 2089 const struct ieee80211_reg_rule *reg_rule = NULL; 2090 const struct ieee80211_freq_range *freq_range = NULL; 2091 const struct ieee80211_power_rule *power_rule = NULL; 2092 2093 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n"); 2094 2095 for (i = 0; i < rd->n_reg_rules; i++) { 2096 reg_rule = &rd->reg_rules[i]; 2097 freq_range = ®_rule->freq_range; 2098 power_rule = ®_rule->power_rule; 2099 2100 /* 2101 * There may not be documentation for max antenna gain 2102 * in certain regions 2103 */ 2104 if (power_rule->max_antenna_gain) 2105 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n", 2106 freq_range->start_freq_khz, 2107 freq_range->end_freq_khz, 2108 freq_range->max_bandwidth_khz, 2109 power_rule->max_antenna_gain, 2110 power_rule->max_eirp); 2111 else 2112 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n", 2113 freq_range->start_freq_khz, 2114 freq_range->end_freq_khz, 2115 freq_range->max_bandwidth_khz, 2116 power_rule->max_eirp); 2117 } 2118 } 2119 2120 bool reg_supported_dfs_region(u8 dfs_region) 2121 { 2122 switch (dfs_region) { 2123 case NL80211_DFS_UNSET: 2124 case NL80211_DFS_FCC: 2125 case NL80211_DFS_ETSI: 2126 case NL80211_DFS_JP: 2127 return true; 2128 default: 2129 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", 2130 dfs_region); 2131 return false; 2132 } 2133 } 2134 2135 static void print_dfs_region(u8 dfs_region) 2136 { 2137 if (!dfs_region) 2138 return; 2139 2140 switch (dfs_region) { 2141 case NL80211_DFS_FCC: 2142 pr_info(" DFS Master region FCC"); 2143 break; 2144 case NL80211_DFS_ETSI: 2145 pr_info(" DFS Master region ETSI"); 2146 break; 2147 case NL80211_DFS_JP: 2148 pr_info(" DFS Master region JP"); 2149 break; 2150 default: 2151 pr_info(" DFS Master region Uknown"); 2152 break; 2153 } 2154 } 2155 2156 static void print_regdomain(const struct ieee80211_regdomain *rd) 2157 { 2158 2159 if (is_intersected_alpha2(rd->alpha2)) { 2160 2161 if (last_request->initiator == 2162 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2163 struct cfg80211_registered_device *rdev; 2164 rdev = cfg80211_rdev_by_wiphy_idx( 2165 last_request->wiphy_idx); 2166 if (rdev) { 2167 pr_info("Current regulatory domain updated by AP to: %c%c\n", 2168 rdev->country_ie_alpha2[0], 2169 rdev->country_ie_alpha2[1]); 2170 } else 2171 pr_info("Current regulatory domain intersected:\n"); 2172 } else 2173 pr_info("Current regulatory domain intersected:\n"); 2174 } else if (is_world_regdom(rd->alpha2)) 2175 pr_info("World regulatory domain updated:\n"); 2176 else { 2177 if (is_unknown_alpha2(rd->alpha2)) 2178 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2179 else { 2180 if (reg_request_cell_base(last_request)) 2181 pr_info("Regulatory domain changed " 2182 "to country: %c%c by Cell Station\n", 2183 rd->alpha2[0], rd->alpha2[1]); 2184 else 2185 pr_info("Regulatory domain changed " 2186 "to country: %c%c\n", 2187 rd->alpha2[0], rd->alpha2[1]); 2188 } 2189 } 2190 print_dfs_region(rd->dfs_region); 2191 print_rd_rules(rd); 2192 } 2193 2194 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2195 { 2196 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2197 print_rd_rules(rd); 2198 } 2199 2200 /* Takes ownership of rd only if it doesn't fail */ 2201 static int __set_regdom(const struct ieee80211_regdomain *rd) 2202 { 2203 const struct ieee80211_regdomain *intersected_rd = NULL; 2204 struct cfg80211_registered_device *rdev = NULL; 2205 struct wiphy *request_wiphy; 2206 /* Some basic sanity checks first */ 2207 2208 if (is_world_regdom(rd->alpha2)) { 2209 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 2210 return -EINVAL; 2211 update_world_regdomain(rd); 2212 return 0; 2213 } 2214 2215 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2216 !is_unknown_alpha2(rd->alpha2)) 2217 return -EINVAL; 2218 2219 if (!last_request) 2220 return -EINVAL; 2221 2222 /* 2223 * Lets only bother proceeding on the same alpha2 if the current 2224 * rd is non static (it means CRDA was present and was used last) 2225 * and the pending request came in from a country IE 2226 */ 2227 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2228 /* 2229 * If someone else asked us to change the rd lets only bother 2230 * checking if the alpha2 changes if CRDA was already called 2231 */ 2232 if (!regdom_changes(rd->alpha2)) 2233 return -EALREADY; 2234 } 2235 2236 /* 2237 * Now lets set the regulatory domain, update all driver channels 2238 * and finally inform them of what we have done, in case they want 2239 * to review or adjust their own settings based on their own 2240 * internal EEPROM data 2241 */ 2242 2243 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 2244 return -EINVAL; 2245 2246 if (!is_valid_rd(rd)) { 2247 pr_err("Invalid regulatory domain detected:\n"); 2248 print_regdomain_info(rd); 2249 return -EINVAL; 2250 } 2251 2252 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2253 if (!request_wiphy && 2254 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2255 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) { 2256 schedule_delayed_work(®_timeout, 0); 2257 return -ENODEV; 2258 } 2259 2260 if (!last_request->intersect) { 2261 int r; 2262 2263 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) { 2264 reset_regdomains(false); 2265 cfg80211_regdomain = rd; 2266 return 0; 2267 } 2268 2269 /* 2270 * For a driver hint, lets copy the regulatory domain the 2271 * driver wanted to the wiphy to deal with conflicts 2272 */ 2273 2274 /* 2275 * Userspace could have sent two replies with only 2276 * one kernel request. 2277 */ 2278 if (request_wiphy->regd) 2279 return -EALREADY; 2280 2281 r = reg_copy_regd(&request_wiphy->regd, rd); 2282 if (r) 2283 return r; 2284 2285 reset_regdomains(false); 2286 cfg80211_regdomain = rd; 2287 return 0; 2288 } 2289 2290 /* Intersection requires a bit more work */ 2291 2292 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2293 2294 intersected_rd = regdom_intersect(rd, cfg80211_regdomain); 2295 if (!intersected_rd) 2296 return -EINVAL; 2297 2298 /* 2299 * We can trash what CRDA provided now. 2300 * However if a driver requested this specific regulatory 2301 * domain we keep it for its private use 2302 */ 2303 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) 2304 request_wiphy->regd = rd; 2305 else 2306 kfree(rd); 2307 2308 rd = NULL; 2309 2310 reset_regdomains(false); 2311 cfg80211_regdomain = intersected_rd; 2312 2313 return 0; 2314 } 2315 2316 if (!intersected_rd) 2317 return -EINVAL; 2318 2319 rdev = wiphy_to_dev(request_wiphy); 2320 2321 rdev->country_ie_alpha2[0] = rd->alpha2[0]; 2322 rdev->country_ie_alpha2[1] = rd->alpha2[1]; 2323 rdev->env = last_request->country_ie_env; 2324 2325 BUG_ON(intersected_rd == rd); 2326 2327 kfree(rd); 2328 rd = NULL; 2329 2330 reset_regdomains(false); 2331 cfg80211_regdomain = intersected_rd; 2332 2333 return 0; 2334 } 2335 2336 2337 /* 2338 * Use this call to set the current regulatory domain. Conflicts with 2339 * multiple drivers can be ironed out later. Caller must've already 2340 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex 2341 */ 2342 int set_regdom(const struct ieee80211_regdomain *rd) 2343 { 2344 int r; 2345 2346 assert_cfg80211_lock(); 2347 2348 mutex_lock(®_mutex); 2349 2350 /* Note that this doesn't update the wiphys, this is done below */ 2351 r = __set_regdom(rd); 2352 if (r) { 2353 if (r == -EALREADY) 2354 reg_set_request_processed(); 2355 2356 kfree(rd); 2357 mutex_unlock(®_mutex); 2358 return r; 2359 } 2360 2361 /* This would make this whole thing pointless */ 2362 if (!last_request->intersect) 2363 BUG_ON(rd != cfg80211_regdomain); 2364 2365 /* update all wiphys now with the new established regulatory domain */ 2366 update_all_wiphy_regulatory(last_request->initiator); 2367 2368 print_regdomain(cfg80211_regdomain); 2369 2370 nl80211_send_reg_change_event(last_request); 2371 2372 reg_set_request_processed(); 2373 2374 mutex_unlock(®_mutex); 2375 2376 return r; 2377 } 2378 2379 #ifdef CONFIG_HOTPLUG 2380 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2381 { 2382 if (last_request && !last_request->processed) { 2383 if (add_uevent_var(env, "COUNTRY=%c%c", 2384 last_request->alpha2[0], 2385 last_request->alpha2[1])) 2386 return -ENOMEM; 2387 } 2388 2389 return 0; 2390 } 2391 #else 2392 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2393 { 2394 return -ENODEV; 2395 } 2396 #endif /* CONFIG_HOTPLUG */ 2397 2398 void wiphy_regulatory_register(struct wiphy *wiphy) 2399 { 2400 assert_cfg80211_lock(); 2401 2402 mutex_lock(®_mutex); 2403 2404 if (!reg_dev_ignore_cell_hint(wiphy)) 2405 reg_num_devs_support_basehint++; 2406 2407 wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE); 2408 2409 mutex_unlock(®_mutex); 2410 } 2411 2412 /* Caller must hold cfg80211_mutex */ 2413 void wiphy_regulatory_deregister(struct wiphy *wiphy) 2414 { 2415 struct wiphy *request_wiphy = NULL; 2416 2417 assert_cfg80211_lock(); 2418 2419 mutex_lock(®_mutex); 2420 2421 if (!reg_dev_ignore_cell_hint(wiphy)) 2422 reg_num_devs_support_basehint--; 2423 2424 kfree(wiphy->regd); 2425 2426 if (last_request) 2427 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2428 2429 if (!request_wiphy || request_wiphy != wiphy) 2430 goto out; 2431 2432 last_request->wiphy_idx = WIPHY_IDX_STALE; 2433 last_request->country_ie_env = ENVIRON_ANY; 2434 out: 2435 mutex_unlock(®_mutex); 2436 } 2437 2438 static void reg_timeout_work(struct work_struct *work) 2439 { 2440 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, " 2441 "restoring regulatory settings\n"); 2442 restore_regulatory_settings(true); 2443 } 2444 2445 int __init regulatory_init(void) 2446 { 2447 int err = 0; 2448 2449 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2450 if (IS_ERR(reg_pdev)) 2451 return PTR_ERR(reg_pdev); 2452 2453 reg_pdev->dev.type = ®_device_type; 2454 2455 spin_lock_init(®_requests_lock); 2456 spin_lock_init(®_pending_beacons_lock); 2457 2458 reg_regdb_size_check(); 2459 2460 cfg80211_regdomain = cfg80211_world_regdom; 2461 2462 user_alpha2[0] = '9'; 2463 user_alpha2[1] = '7'; 2464 2465 /* We always try to get an update for the static regdomain */ 2466 err = regulatory_hint_core(cfg80211_regdomain->alpha2); 2467 if (err) { 2468 if (err == -ENOMEM) 2469 return err; 2470 /* 2471 * N.B. kobject_uevent_env() can fail mainly for when we're out 2472 * memory which is handled and propagated appropriately above 2473 * but it can also fail during a netlink_broadcast() or during 2474 * early boot for call_usermodehelper(). For now treat these 2475 * errors as non-fatal. 2476 */ 2477 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 2478 #ifdef CONFIG_CFG80211_REG_DEBUG 2479 /* We want to find out exactly why when debugging */ 2480 WARN_ON(err); 2481 #endif 2482 } 2483 2484 /* 2485 * Finally, if the user set the module parameter treat it 2486 * as a user hint. 2487 */ 2488 if (!is_world_regdom(ieee80211_regdom)) 2489 regulatory_hint_user(ieee80211_regdom, 2490 NL80211_USER_REG_HINT_USER); 2491 2492 return 0; 2493 } 2494 2495 void /* __init_or_exit */ regulatory_exit(void) 2496 { 2497 struct regulatory_request *reg_request, *tmp; 2498 struct reg_beacon *reg_beacon, *btmp; 2499 2500 cancel_work_sync(®_work); 2501 cancel_delayed_work_sync(®_timeout); 2502 2503 mutex_lock(&cfg80211_mutex); 2504 mutex_lock(®_mutex); 2505 2506 reset_regdomains(true); 2507 2508 dev_set_uevent_suppress(®_pdev->dev, true); 2509 2510 platform_device_unregister(reg_pdev); 2511 2512 spin_lock_bh(®_pending_beacons_lock); 2513 if (!list_empty(®_pending_beacons)) { 2514 list_for_each_entry_safe(reg_beacon, btmp, 2515 ®_pending_beacons, list) { 2516 list_del(®_beacon->list); 2517 kfree(reg_beacon); 2518 } 2519 } 2520 spin_unlock_bh(®_pending_beacons_lock); 2521 2522 if (!list_empty(®_beacon_list)) { 2523 list_for_each_entry_safe(reg_beacon, btmp, 2524 ®_beacon_list, list) { 2525 list_del(®_beacon->list); 2526 kfree(reg_beacon); 2527 } 2528 } 2529 2530 spin_lock(®_requests_lock); 2531 if (!list_empty(®_requests_list)) { 2532 list_for_each_entry_safe(reg_request, tmp, 2533 ®_requests_list, list) { 2534 list_del(®_request->list); 2535 kfree(reg_request); 2536 } 2537 } 2538 spin_unlock(®_requests_lock); 2539 2540 mutex_unlock(®_mutex); 2541 mutex_unlock(&cfg80211_mutex); 2542 } 2543