xref: /linux/net/wireless/reg.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61 
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...)			\
64 	printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68 
69 static struct regulatory_request core_request_world = {
70 	.initiator = NL80211_REGDOM_SET_BY_CORE,
71 	.alpha2[0] = '0',
72 	.alpha2[1] = '0',
73 	.intersect = false,
74 	.processed = true,
75 	.country_ie_env = ENVIRON_ANY,
76 };
77 
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80 
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83 
84 static struct device_type reg_device_type = {
85 	.uevent = reg_device_uevent,
86 };
87 
88 /*
89  * Central wireless core regulatory domains, we only need two,
90  * the current one and a world regulatory domain in case we have no
91  * information to give us an alpha2
92  */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94 
95 /*
96  * Protects static reg.c components:
97  *     - cfg80211_world_regdom
98  *     - cfg80211_regdom
99  *     - last_request
100  *     - reg_num_devs_support_basehint
101  */
102 static DEFINE_MUTEX(reg_mutex);
103 
104 /*
105  * Number of devices that registered to the core
106  * that support cellular base station regulatory hints
107  */
108 static int reg_num_devs_support_basehint;
109 
110 static inline void assert_reg_lock(void)
111 {
112 	lockdep_assert_held(&reg_mutex);
113 }
114 
115 /* Used to queue up regulatory hints */
116 static LIST_HEAD(reg_requests_list);
117 static spinlock_t reg_requests_lock;
118 
119 /* Used to queue up beacon hints for review */
120 static LIST_HEAD(reg_pending_beacons);
121 static spinlock_t reg_pending_beacons_lock;
122 
123 /* Used to keep track of processed beacon hints */
124 static LIST_HEAD(reg_beacon_list);
125 
126 struct reg_beacon {
127 	struct list_head list;
128 	struct ieee80211_channel chan;
129 };
130 
131 static void reg_todo(struct work_struct *work);
132 static DECLARE_WORK(reg_work, reg_todo);
133 
134 static void reg_timeout_work(struct work_struct *work);
135 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
136 
137 /* We keep a static world regulatory domain in case of the absence of CRDA */
138 static const struct ieee80211_regdomain world_regdom = {
139 	.n_reg_rules = 6,
140 	.alpha2 =  "00",
141 	.reg_rules = {
142 		/* IEEE 802.11b/g, channels 1..11 */
143 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
144 		/* IEEE 802.11b/g, channels 12..13. No HT40
145 		 * channel fits here. */
146 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
147 			NL80211_RRF_PASSIVE_SCAN |
148 			NL80211_RRF_NO_IBSS),
149 		/* IEEE 802.11 channel 14 - Only JP enables
150 		 * this and for 802.11b only */
151 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
152 			NL80211_RRF_PASSIVE_SCAN |
153 			NL80211_RRF_NO_IBSS |
154 			NL80211_RRF_NO_OFDM),
155 		/* IEEE 802.11a, channel 36..48 */
156 		REG_RULE(5180-10, 5240+10, 40, 6, 20,
157                         NL80211_RRF_PASSIVE_SCAN |
158                         NL80211_RRF_NO_IBSS),
159 
160 		/* NB: 5260 MHz - 5700 MHz requies DFS */
161 
162 		/* IEEE 802.11a, channel 149..165 */
163 		REG_RULE(5745-10, 5825+10, 40, 6, 20,
164 			NL80211_RRF_PASSIVE_SCAN |
165 			NL80211_RRF_NO_IBSS),
166 
167 		/* IEEE 802.11ad (60gHz), channels 1..3 */
168 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
169 	}
170 };
171 
172 static const struct ieee80211_regdomain *cfg80211_world_regdom =
173 	&world_regdom;
174 
175 static char *ieee80211_regdom = "00";
176 static char user_alpha2[2];
177 
178 module_param(ieee80211_regdom, charp, 0444);
179 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
180 
181 static void reset_regdomains(bool full_reset)
182 {
183 	/* avoid freeing static information or freeing something twice */
184 	if (cfg80211_regdomain == cfg80211_world_regdom)
185 		cfg80211_regdomain = NULL;
186 	if (cfg80211_world_regdom == &world_regdom)
187 		cfg80211_world_regdom = NULL;
188 	if (cfg80211_regdomain == &world_regdom)
189 		cfg80211_regdomain = NULL;
190 
191 	kfree(cfg80211_regdomain);
192 	kfree(cfg80211_world_regdom);
193 
194 	cfg80211_world_regdom = &world_regdom;
195 	cfg80211_regdomain = NULL;
196 
197 	if (!full_reset)
198 		return;
199 
200 	if (last_request != &core_request_world)
201 		kfree(last_request);
202 	last_request = &core_request_world;
203 }
204 
205 /*
206  * Dynamic world regulatory domain requested by the wireless
207  * core upon initialization
208  */
209 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
210 {
211 	BUG_ON(!last_request);
212 
213 	reset_regdomains(false);
214 
215 	cfg80211_world_regdom = rd;
216 	cfg80211_regdomain = rd;
217 }
218 
219 bool is_world_regdom(const char *alpha2)
220 {
221 	if (!alpha2)
222 		return false;
223 	if (alpha2[0] == '0' && alpha2[1] == '0')
224 		return true;
225 	return false;
226 }
227 
228 static bool is_alpha2_set(const char *alpha2)
229 {
230 	if (!alpha2)
231 		return false;
232 	if (alpha2[0] != 0 && alpha2[1] != 0)
233 		return true;
234 	return false;
235 }
236 
237 static bool is_unknown_alpha2(const char *alpha2)
238 {
239 	if (!alpha2)
240 		return false;
241 	/*
242 	 * Special case where regulatory domain was built by driver
243 	 * but a specific alpha2 cannot be determined
244 	 */
245 	if (alpha2[0] == '9' && alpha2[1] == '9')
246 		return true;
247 	return false;
248 }
249 
250 static bool is_intersected_alpha2(const char *alpha2)
251 {
252 	if (!alpha2)
253 		return false;
254 	/*
255 	 * Special case where regulatory domain is the
256 	 * result of an intersection between two regulatory domain
257 	 * structures
258 	 */
259 	if (alpha2[0] == '9' && alpha2[1] == '8')
260 		return true;
261 	return false;
262 }
263 
264 static bool is_an_alpha2(const char *alpha2)
265 {
266 	if (!alpha2)
267 		return false;
268 	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
269 		return true;
270 	return false;
271 }
272 
273 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
274 {
275 	if (!alpha2_x || !alpha2_y)
276 		return false;
277 	if (alpha2_x[0] == alpha2_y[0] &&
278 		alpha2_x[1] == alpha2_y[1])
279 		return true;
280 	return false;
281 }
282 
283 static bool regdom_changes(const char *alpha2)
284 {
285 	assert_cfg80211_lock();
286 
287 	if (!cfg80211_regdomain)
288 		return true;
289 	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
290 		return false;
291 	return true;
292 }
293 
294 /*
295  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
296  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
297  * has ever been issued.
298  */
299 static bool is_user_regdom_saved(void)
300 {
301 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
302 		return false;
303 
304 	/* This would indicate a mistake on the design */
305 	if (WARN((!is_world_regdom(user_alpha2) &&
306 		  !is_an_alpha2(user_alpha2)),
307 		 "Unexpected user alpha2: %c%c\n",
308 		 user_alpha2[0],
309 	         user_alpha2[1]))
310 		return false;
311 
312 	return true;
313 }
314 
315 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
316 			 const struct ieee80211_regdomain *src_regd)
317 {
318 	struct ieee80211_regdomain *regd;
319 	int size_of_regd = 0;
320 	unsigned int i;
321 
322 	size_of_regd = sizeof(struct ieee80211_regdomain) +
323 	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
324 
325 	regd = kzalloc(size_of_regd, GFP_KERNEL);
326 	if (!regd)
327 		return -ENOMEM;
328 
329 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
330 
331 	for (i = 0; i < src_regd->n_reg_rules; i++)
332 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
333 			sizeof(struct ieee80211_reg_rule));
334 
335 	*dst_regd = regd;
336 	return 0;
337 }
338 
339 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
340 struct reg_regdb_search_request {
341 	char alpha2[2];
342 	struct list_head list;
343 };
344 
345 static LIST_HEAD(reg_regdb_search_list);
346 static DEFINE_MUTEX(reg_regdb_search_mutex);
347 
348 static void reg_regdb_search(struct work_struct *work)
349 {
350 	struct reg_regdb_search_request *request;
351 	const struct ieee80211_regdomain *curdom, *regdom;
352 	int i, r;
353 	bool set_reg = false;
354 
355 	mutex_lock(&cfg80211_mutex);
356 
357 	mutex_lock(&reg_regdb_search_mutex);
358 	while (!list_empty(&reg_regdb_search_list)) {
359 		request = list_first_entry(&reg_regdb_search_list,
360 					   struct reg_regdb_search_request,
361 					   list);
362 		list_del(&request->list);
363 
364 		for (i=0; i<reg_regdb_size; i++) {
365 			curdom = reg_regdb[i];
366 
367 			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
368 				r = reg_copy_regd(&regdom, curdom);
369 				if (r)
370 					break;
371 				set_reg = true;
372 				break;
373 			}
374 		}
375 
376 		kfree(request);
377 	}
378 	mutex_unlock(&reg_regdb_search_mutex);
379 
380 	if (set_reg)
381 		set_regdom(regdom);
382 
383 	mutex_unlock(&cfg80211_mutex);
384 }
385 
386 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
387 
388 static void reg_regdb_query(const char *alpha2)
389 {
390 	struct reg_regdb_search_request *request;
391 
392 	if (!alpha2)
393 		return;
394 
395 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
396 	if (!request)
397 		return;
398 
399 	memcpy(request->alpha2, alpha2, 2);
400 
401 	mutex_lock(&reg_regdb_search_mutex);
402 	list_add_tail(&request->list, &reg_regdb_search_list);
403 	mutex_unlock(&reg_regdb_search_mutex);
404 
405 	schedule_work(&reg_regdb_work);
406 }
407 
408 /* Feel free to add any other sanity checks here */
409 static void reg_regdb_size_check(void)
410 {
411 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
412 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
413 }
414 #else
415 static inline void reg_regdb_size_check(void) {}
416 static inline void reg_regdb_query(const char *alpha2) {}
417 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
418 
419 /*
420  * This lets us keep regulatory code which is updated on a regulatory
421  * basis in userspace. Country information is filled in by
422  * reg_device_uevent
423  */
424 static int call_crda(const char *alpha2)
425 {
426 	if (!is_world_regdom((char *) alpha2))
427 		pr_info("Calling CRDA for country: %c%c\n",
428 			alpha2[0], alpha2[1]);
429 	else
430 		pr_info("Calling CRDA to update world regulatory domain\n");
431 
432 	/* query internal regulatory database (if it exists) */
433 	reg_regdb_query(alpha2);
434 
435 	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
436 }
437 
438 /* Used by nl80211 before kmalloc'ing our regulatory domain */
439 bool reg_is_valid_request(const char *alpha2)
440 {
441 	assert_cfg80211_lock();
442 
443 	if (!last_request)
444 		return false;
445 
446 	return alpha2_equal(last_request->alpha2, alpha2);
447 }
448 
449 /* Sanity check on a regulatory rule */
450 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
451 {
452 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
453 	u32 freq_diff;
454 
455 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
456 		return false;
457 
458 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
459 		return false;
460 
461 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
462 
463 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
464 			freq_range->max_bandwidth_khz > freq_diff)
465 		return false;
466 
467 	return true;
468 }
469 
470 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
471 {
472 	const struct ieee80211_reg_rule *reg_rule = NULL;
473 	unsigned int i;
474 
475 	if (!rd->n_reg_rules)
476 		return false;
477 
478 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
479 		return false;
480 
481 	for (i = 0; i < rd->n_reg_rules; i++) {
482 		reg_rule = &rd->reg_rules[i];
483 		if (!is_valid_reg_rule(reg_rule))
484 			return false;
485 	}
486 
487 	return true;
488 }
489 
490 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
491 			    u32 center_freq_khz,
492 			    u32 bw_khz)
493 {
494 	u32 start_freq_khz, end_freq_khz;
495 
496 	start_freq_khz = center_freq_khz - (bw_khz/2);
497 	end_freq_khz = center_freq_khz + (bw_khz/2);
498 
499 	if (start_freq_khz >= freq_range->start_freq_khz &&
500 	    end_freq_khz <= freq_range->end_freq_khz)
501 		return true;
502 
503 	return false;
504 }
505 
506 /**
507  * freq_in_rule_band - tells us if a frequency is in a frequency band
508  * @freq_range: frequency rule we want to query
509  * @freq_khz: frequency we are inquiring about
510  *
511  * This lets us know if a specific frequency rule is or is not relevant to
512  * a specific frequency's band. Bands are device specific and artificial
513  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
514  * safe for now to assume that a frequency rule should not be part of a
515  * frequency's band if the start freq or end freq are off by more than 2 GHz.
516  * This resolution can be lowered and should be considered as we add
517  * regulatory rule support for other "bands".
518  **/
519 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
520 	u32 freq_khz)
521 {
522 #define ONE_GHZ_IN_KHZ	1000000
523 	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
524 		return true;
525 	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
526 		return true;
527 	return false;
528 #undef ONE_GHZ_IN_KHZ
529 }
530 
531 /*
532  * Helper for regdom_intersect(), this does the real
533  * mathematical intersection fun
534  */
535 static int reg_rules_intersect(
536 	const struct ieee80211_reg_rule *rule1,
537 	const struct ieee80211_reg_rule *rule2,
538 	struct ieee80211_reg_rule *intersected_rule)
539 {
540 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
541 	struct ieee80211_freq_range *freq_range;
542 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
543 	struct ieee80211_power_rule *power_rule;
544 	u32 freq_diff;
545 
546 	freq_range1 = &rule1->freq_range;
547 	freq_range2 = &rule2->freq_range;
548 	freq_range = &intersected_rule->freq_range;
549 
550 	power_rule1 = &rule1->power_rule;
551 	power_rule2 = &rule2->power_rule;
552 	power_rule = &intersected_rule->power_rule;
553 
554 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
555 		freq_range2->start_freq_khz);
556 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
557 		freq_range2->end_freq_khz);
558 	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
559 		freq_range2->max_bandwidth_khz);
560 
561 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
562 	if (freq_range->max_bandwidth_khz > freq_diff)
563 		freq_range->max_bandwidth_khz = freq_diff;
564 
565 	power_rule->max_eirp = min(power_rule1->max_eirp,
566 		power_rule2->max_eirp);
567 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
568 		power_rule2->max_antenna_gain);
569 
570 	intersected_rule->flags = (rule1->flags | rule2->flags);
571 
572 	if (!is_valid_reg_rule(intersected_rule))
573 		return -EINVAL;
574 
575 	return 0;
576 }
577 
578 /**
579  * regdom_intersect - do the intersection between two regulatory domains
580  * @rd1: first regulatory domain
581  * @rd2: second regulatory domain
582  *
583  * Use this function to get the intersection between two regulatory domains.
584  * Once completed we will mark the alpha2 for the rd as intersected, "98",
585  * as no one single alpha2 can represent this regulatory domain.
586  *
587  * Returns a pointer to the regulatory domain structure which will hold the
588  * resulting intersection of rules between rd1 and rd2. We will
589  * kzalloc() this structure for you.
590  */
591 static struct ieee80211_regdomain *regdom_intersect(
592 	const struct ieee80211_regdomain *rd1,
593 	const struct ieee80211_regdomain *rd2)
594 {
595 	int r, size_of_regd;
596 	unsigned int x, y;
597 	unsigned int num_rules = 0, rule_idx = 0;
598 	const struct ieee80211_reg_rule *rule1, *rule2;
599 	struct ieee80211_reg_rule *intersected_rule;
600 	struct ieee80211_regdomain *rd;
601 	/* This is just a dummy holder to help us count */
602 	struct ieee80211_reg_rule irule;
603 
604 	/* Uses the stack temporarily for counter arithmetic */
605 	intersected_rule = &irule;
606 
607 	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
608 
609 	if (!rd1 || !rd2)
610 		return NULL;
611 
612 	/*
613 	 * First we get a count of the rules we'll need, then we actually
614 	 * build them. This is to so we can malloc() and free() a
615 	 * regdomain once. The reason we use reg_rules_intersect() here
616 	 * is it will return -EINVAL if the rule computed makes no sense.
617 	 * All rules that do check out OK are valid.
618 	 */
619 
620 	for (x = 0; x < rd1->n_reg_rules; x++) {
621 		rule1 = &rd1->reg_rules[x];
622 		for (y = 0; y < rd2->n_reg_rules; y++) {
623 			rule2 = &rd2->reg_rules[y];
624 			if (!reg_rules_intersect(rule1, rule2,
625 					intersected_rule))
626 				num_rules++;
627 			memset(intersected_rule, 0,
628 					sizeof(struct ieee80211_reg_rule));
629 		}
630 	}
631 
632 	if (!num_rules)
633 		return NULL;
634 
635 	size_of_regd = sizeof(struct ieee80211_regdomain) +
636 		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
637 
638 	rd = kzalloc(size_of_regd, GFP_KERNEL);
639 	if (!rd)
640 		return NULL;
641 
642 	for (x = 0; x < rd1->n_reg_rules; x++) {
643 		rule1 = &rd1->reg_rules[x];
644 		for (y = 0; y < rd2->n_reg_rules; y++) {
645 			rule2 = &rd2->reg_rules[y];
646 			/*
647 			 * This time around instead of using the stack lets
648 			 * write to the target rule directly saving ourselves
649 			 * a memcpy()
650 			 */
651 			intersected_rule = &rd->reg_rules[rule_idx];
652 			r = reg_rules_intersect(rule1, rule2,
653 				intersected_rule);
654 			/*
655 			 * No need to memset here the intersected rule here as
656 			 * we're not using the stack anymore
657 			 */
658 			if (r)
659 				continue;
660 			rule_idx++;
661 		}
662 	}
663 
664 	if (rule_idx != num_rules) {
665 		kfree(rd);
666 		return NULL;
667 	}
668 
669 	rd->n_reg_rules = num_rules;
670 	rd->alpha2[0] = '9';
671 	rd->alpha2[1] = '8';
672 
673 	return rd;
674 }
675 
676 /*
677  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
678  * want to just have the channel structure use these
679  */
680 static u32 map_regdom_flags(u32 rd_flags)
681 {
682 	u32 channel_flags = 0;
683 	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
684 		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
685 	if (rd_flags & NL80211_RRF_NO_IBSS)
686 		channel_flags |= IEEE80211_CHAN_NO_IBSS;
687 	if (rd_flags & NL80211_RRF_DFS)
688 		channel_flags |= IEEE80211_CHAN_RADAR;
689 	if (rd_flags & NL80211_RRF_NO_OFDM)
690 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
691 	return channel_flags;
692 }
693 
694 static int freq_reg_info_regd(struct wiphy *wiphy,
695 			      u32 center_freq,
696 			      u32 desired_bw_khz,
697 			      const struct ieee80211_reg_rule **reg_rule,
698 			      const struct ieee80211_regdomain *custom_regd)
699 {
700 	int i;
701 	bool band_rule_found = false;
702 	const struct ieee80211_regdomain *regd;
703 	bool bw_fits = false;
704 
705 	if (!desired_bw_khz)
706 		desired_bw_khz = MHZ_TO_KHZ(20);
707 
708 	regd = custom_regd ? custom_regd : cfg80211_regdomain;
709 
710 	/*
711 	 * Follow the driver's regulatory domain, if present, unless a country
712 	 * IE has been processed or a user wants to help complaince further
713 	 */
714 	if (!custom_regd &&
715 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
716 	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
717 	    wiphy->regd)
718 		regd = wiphy->regd;
719 
720 	if (!regd)
721 		return -EINVAL;
722 
723 	for (i = 0; i < regd->n_reg_rules; i++) {
724 		const struct ieee80211_reg_rule *rr;
725 		const struct ieee80211_freq_range *fr = NULL;
726 
727 		rr = &regd->reg_rules[i];
728 		fr = &rr->freq_range;
729 
730 		/*
731 		 * We only need to know if one frequency rule was
732 		 * was in center_freq's band, that's enough, so lets
733 		 * not overwrite it once found
734 		 */
735 		if (!band_rule_found)
736 			band_rule_found = freq_in_rule_band(fr, center_freq);
737 
738 		bw_fits = reg_does_bw_fit(fr,
739 					  center_freq,
740 					  desired_bw_khz);
741 
742 		if (band_rule_found && bw_fits) {
743 			*reg_rule = rr;
744 			return 0;
745 		}
746 	}
747 
748 	if (!band_rule_found)
749 		return -ERANGE;
750 
751 	return -EINVAL;
752 }
753 
754 int freq_reg_info(struct wiphy *wiphy,
755 		  u32 center_freq,
756 		  u32 desired_bw_khz,
757 		  const struct ieee80211_reg_rule **reg_rule)
758 {
759 	assert_cfg80211_lock();
760 	return freq_reg_info_regd(wiphy,
761 				  center_freq,
762 				  desired_bw_khz,
763 				  reg_rule,
764 				  NULL);
765 }
766 EXPORT_SYMBOL(freq_reg_info);
767 
768 #ifdef CONFIG_CFG80211_REG_DEBUG
769 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
770 {
771 	switch (initiator) {
772 	case NL80211_REGDOM_SET_BY_CORE:
773 		return "Set by core";
774 	case NL80211_REGDOM_SET_BY_USER:
775 		return "Set by user";
776 	case NL80211_REGDOM_SET_BY_DRIVER:
777 		return "Set by driver";
778 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
779 		return "Set by country IE";
780 	default:
781 		WARN_ON(1);
782 		return "Set by bug";
783 	}
784 }
785 
786 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
787 				    u32 desired_bw_khz,
788 				    const struct ieee80211_reg_rule *reg_rule)
789 {
790 	const struct ieee80211_power_rule *power_rule;
791 	const struct ieee80211_freq_range *freq_range;
792 	char max_antenna_gain[32];
793 
794 	power_rule = &reg_rule->power_rule;
795 	freq_range = &reg_rule->freq_range;
796 
797 	if (!power_rule->max_antenna_gain)
798 		snprintf(max_antenna_gain, 32, "N/A");
799 	else
800 		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
801 
802 	REG_DBG_PRINT("Updating information on frequency %d MHz "
803 		      "for a %d MHz width channel with regulatory rule:\n",
804 		      chan->center_freq,
805 		      KHZ_TO_MHZ(desired_bw_khz));
806 
807 	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
808 		      freq_range->start_freq_khz,
809 		      freq_range->end_freq_khz,
810 		      freq_range->max_bandwidth_khz,
811 		      max_antenna_gain,
812 		      power_rule->max_eirp);
813 }
814 #else
815 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
816 				    u32 desired_bw_khz,
817 				    const struct ieee80211_reg_rule *reg_rule)
818 {
819 	return;
820 }
821 #endif
822 
823 /*
824  * Note that right now we assume the desired channel bandwidth
825  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
826  * per channel, the primary and the extension channel). To support
827  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
828  * new ieee80211_channel.target_bw and re run the regulatory check
829  * on the wiphy with the target_bw specified. Then we can simply use
830  * that below for the desired_bw_khz below.
831  */
832 static void handle_channel(struct wiphy *wiphy,
833 			   enum nl80211_reg_initiator initiator,
834 			   enum ieee80211_band band,
835 			   unsigned int chan_idx)
836 {
837 	int r;
838 	u32 flags, bw_flags = 0;
839 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
840 	const struct ieee80211_reg_rule *reg_rule = NULL;
841 	const struct ieee80211_power_rule *power_rule = NULL;
842 	const struct ieee80211_freq_range *freq_range = NULL;
843 	struct ieee80211_supported_band *sband;
844 	struct ieee80211_channel *chan;
845 	struct wiphy *request_wiphy = NULL;
846 
847 	assert_cfg80211_lock();
848 
849 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
850 
851 	sband = wiphy->bands[band];
852 	BUG_ON(chan_idx >= sband->n_channels);
853 	chan = &sband->channels[chan_idx];
854 
855 	flags = chan->orig_flags;
856 
857 	r = freq_reg_info(wiphy,
858 			  MHZ_TO_KHZ(chan->center_freq),
859 			  desired_bw_khz,
860 			  &reg_rule);
861 
862 	if (r) {
863 		/*
864 		 * We will disable all channels that do not match our
865 		 * received regulatory rule unless the hint is coming
866 		 * from a Country IE and the Country IE had no information
867 		 * about a band. The IEEE 802.11 spec allows for an AP
868 		 * to send only a subset of the regulatory rules allowed,
869 		 * so an AP in the US that only supports 2.4 GHz may only send
870 		 * a country IE with information for the 2.4 GHz band
871 		 * while 5 GHz is still supported.
872 		 */
873 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
874 		    r == -ERANGE)
875 			return;
876 
877 		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
878 		chan->flags = IEEE80211_CHAN_DISABLED;
879 		return;
880 	}
881 
882 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
883 
884 	power_rule = &reg_rule->power_rule;
885 	freq_range = &reg_rule->freq_range;
886 
887 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
888 		bw_flags = IEEE80211_CHAN_NO_HT40;
889 
890 	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
891 	    request_wiphy && request_wiphy == wiphy &&
892 	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
893 		/*
894 		 * This guarantees the driver's requested regulatory domain
895 		 * will always be used as a base for further regulatory
896 		 * settings
897 		 */
898 		chan->flags = chan->orig_flags =
899 			map_regdom_flags(reg_rule->flags) | bw_flags;
900 		chan->max_antenna_gain = chan->orig_mag =
901 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
902 		chan->max_power = chan->orig_mpwr =
903 			(int) MBM_TO_DBM(power_rule->max_eirp);
904 		return;
905 	}
906 
907 	chan->beacon_found = false;
908 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
909 	chan->max_antenna_gain = min(chan->orig_mag,
910 		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
911 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
912 	if (chan->orig_mpwr) {
913 		/*
914 		 * Devices that have their own custom regulatory domain
915 		 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
916 		 * passed country IE power settings.
917 		 */
918 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
919 		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
920 		    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
921 			chan->max_power = chan->max_reg_power;
922 		else
923 			chan->max_power = min(chan->orig_mpwr,
924 					      chan->max_reg_power);
925 	} else
926 		chan->max_power = chan->max_reg_power;
927 }
928 
929 static void handle_band(struct wiphy *wiphy,
930 			enum ieee80211_band band,
931 			enum nl80211_reg_initiator initiator)
932 {
933 	unsigned int i;
934 	struct ieee80211_supported_band *sband;
935 
936 	BUG_ON(!wiphy->bands[band]);
937 	sband = wiphy->bands[band];
938 
939 	for (i = 0; i < sband->n_channels; i++)
940 		handle_channel(wiphy, initiator, band, i);
941 }
942 
943 static bool reg_request_cell_base(struct regulatory_request *request)
944 {
945 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
946 		return false;
947 	if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE)
948 		return false;
949 	return true;
950 }
951 
952 bool reg_last_request_cell_base(void)
953 {
954 	bool val;
955 	assert_cfg80211_lock();
956 
957 	mutex_lock(&reg_mutex);
958 	val = reg_request_cell_base(last_request);
959 	mutex_unlock(&reg_mutex);
960 	return val;
961 }
962 
963 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
964 
965 /* Core specific check */
966 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
967 {
968 	if (!reg_num_devs_support_basehint)
969 		return -EOPNOTSUPP;
970 
971 	if (reg_request_cell_base(last_request)) {
972 		if (!regdom_changes(pending_request->alpha2))
973 			return -EALREADY;
974 		return 0;
975 	}
976 	return 0;
977 }
978 
979 /* Device specific check */
980 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
981 {
982 	if (!(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS))
983 		return true;
984 	return false;
985 }
986 #else
987 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
988 {
989 	return -EOPNOTSUPP;
990 }
991 static int reg_dev_ignore_cell_hint(struct wiphy *wiphy)
992 {
993 	return true;
994 }
995 #endif
996 
997 
998 static bool ignore_reg_update(struct wiphy *wiphy,
999 			      enum nl80211_reg_initiator initiator)
1000 {
1001 	if (!last_request) {
1002 		REG_DBG_PRINT("Ignoring regulatory request %s since "
1003 			      "last_request is not set\n",
1004 			      reg_initiator_name(initiator));
1005 		return true;
1006 	}
1007 
1008 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1009 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
1010 		REG_DBG_PRINT("Ignoring regulatory request %s "
1011 			      "since the driver uses its own custom "
1012 			      "regulatory domain\n",
1013 			      reg_initiator_name(initiator));
1014 		return true;
1015 	}
1016 
1017 	/*
1018 	 * wiphy->regd will be set once the device has its own
1019 	 * desired regulatory domain set
1020 	 */
1021 	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1022 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1023 	    !is_world_regdom(last_request->alpha2)) {
1024 		REG_DBG_PRINT("Ignoring regulatory request %s "
1025 			      "since the driver requires its own regulatory "
1026 			      "domain to be set first\n",
1027 			      reg_initiator_name(initiator));
1028 		return true;
1029 	}
1030 
1031 	if (reg_request_cell_base(last_request))
1032 		return reg_dev_ignore_cell_hint(wiphy);
1033 
1034 	return false;
1035 }
1036 
1037 static void handle_reg_beacon(struct wiphy *wiphy,
1038 			      unsigned int chan_idx,
1039 			      struct reg_beacon *reg_beacon)
1040 {
1041 	struct ieee80211_supported_band *sband;
1042 	struct ieee80211_channel *chan;
1043 	bool channel_changed = false;
1044 	struct ieee80211_channel chan_before;
1045 
1046 	assert_cfg80211_lock();
1047 
1048 	sband = wiphy->bands[reg_beacon->chan.band];
1049 	chan = &sband->channels[chan_idx];
1050 
1051 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1052 		return;
1053 
1054 	if (chan->beacon_found)
1055 		return;
1056 
1057 	chan->beacon_found = true;
1058 
1059 	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1060 		return;
1061 
1062 	chan_before.center_freq = chan->center_freq;
1063 	chan_before.flags = chan->flags;
1064 
1065 	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1066 		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1067 		channel_changed = true;
1068 	}
1069 
1070 	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1071 		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1072 		channel_changed = true;
1073 	}
1074 
1075 	if (channel_changed)
1076 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1077 }
1078 
1079 /*
1080  * Called when a scan on a wiphy finds a beacon on
1081  * new channel
1082  */
1083 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1084 				    struct reg_beacon *reg_beacon)
1085 {
1086 	unsigned int i;
1087 	struct ieee80211_supported_band *sband;
1088 
1089 	assert_cfg80211_lock();
1090 
1091 	if (!wiphy->bands[reg_beacon->chan.band])
1092 		return;
1093 
1094 	sband = wiphy->bands[reg_beacon->chan.band];
1095 
1096 	for (i = 0; i < sband->n_channels; i++)
1097 		handle_reg_beacon(wiphy, i, reg_beacon);
1098 }
1099 
1100 /*
1101  * Called upon reg changes or a new wiphy is added
1102  */
1103 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1104 {
1105 	unsigned int i;
1106 	struct ieee80211_supported_band *sband;
1107 	struct reg_beacon *reg_beacon;
1108 
1109 	assert_cfg80211_lock();
1110 
1111 	if (list_empty(&reg_beacon_list))
1112 		return;
1113 
1114 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1115 		if (!wiphy->bands[reg_beacon->chan.band])
1116 			continue;
1117 		sband = wiphy->bands[reg_beacon->chan.band];
1118 		for (i = 0; i < sband->n_channels; i++)
1119 			handle_reg_beacon(wiphy, i, reg_beacon);
1120 	}
1121 }
1122 
1123 static bool reg_is_world_roaming(struct wiphy *wiphy)
1124 {
1125 	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1126 	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1127 		return true;
1128 	if (last_request &&
1129 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1130 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1131 		return true;
1132 	return false;
1133 }
1134 
1135 /* Reap the advantages of previously found beacons */
1136 static void reg_process_beacons(struct wiphy *wiphy)
1137 {
1138 	/*
1139 	 * Means we are just firing up cfg80211, so no beacons would
1140 	 * have been processed yet.
1141 	 */
1142 	if (!last_request)
1143 		return;
1144 	if (!reg_is_world_roaming(wiphy))
1145 		return;
1146 	wiphy_update_beacon_reg(wiphy);
1147 }
1148 
1149 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1150 {
1151 	if (!chan)
1152 		return true;
1153 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1154 		return true;
1155 	/* This would happen when regulatory rules disallow HT40 completely */
1156 	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1157 		return true;
1158 	return false;
1159 }
1160 
1161 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1162 					 enum ieee80211_band band,
1163 					 unsigned int chan_idx)
1164 {
1165 	struct ieee80211_supported_band *sband;
1166 	struct ieee80211_channel *channel;
1167 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1168 	unsigned int i;
1169 
1170 	assert_cfg80211_lock();
1171 
1172 	sband = wiphy->bands[band];
1173 	BUG_ON(chan_idx >= sband->n_channels);
1174 	channel = &sband->channels[chan_idx];
1175 
1176 	if (is_ht40_not_allowed(channel)) {
1177 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1178 		return;
1179 	}
1180 
1181 	/*
1182 	 * We need to ensure the extension channels exist to
1183 	 * be able to use HT40- or HT40+, this finds them (or not)
1184 	 */
1185 	for (i = 0; i < sband->n_channels; i++) {
1186 		struct ieee80211_channel *c = &sband->channels[i];
1187 		if (c->center_freq == (channel->center_freq - 20))
1188 			channel_before = c;
1189 		if (c->center_freq == (channel->center_freq + 20))
1190 			channel_after = c;
1191 	}
1192 
1193 	/*
1194 	 * Please note that this assumes target bandwidth is 20 MHz,
1195 	 * if that ever changes we also need to change the below logic
1196 	 * to include that as well.
1197 	 */
1198 	if (is_ht40_not_allowed(channel_before))
1199 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1200 	else
1201 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1202 
1203 	if (is_ht40_not_allowed(channel_after))
1204 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1205 	else
1206 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1207 }
1208 
1209 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1210 				      enum ieee80211_band band)
1211 {
1212 	unsigned int i;
1213 	struct ieee80211_supported_band *sband;
1214 
1215 	BUG_ON(!wiphy->bands[band]);
1216 	sband = wiphy->bands[band];
1217 
1218 	for (i = 0; i < sband->n_channels; i++)
1219 		reg_process_ht_flags_channel(wiphy, band, i);
1220 }
1221 
1222 static void reg_process_ht_flags(struct wiphy *wiphy)
1223 {
1224 	enum ieee80211_band band;
1225 
1226 	if (!wiphy)
1227 		return;
1228 
1229 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1230 		if (wiphy->bands[band])
1231 			reg_process_ht_flags_band(wiphy, band);
1232 	}
1233 
1234 }
1235 
1236 static void wiphy_update_regulatory(struct wiphy *wiphy,
1237 				    enum nl80211_reg_initiator initiator)
1238 {
1239 	enum ieee80211_band band;
1240 
1241 	assert_reg_lock();
1242 
1243 	if (ignore_reg_update(wiphy, initiator))
1244 		return;
1245 
1246 	last_request->dfs_region = cfg80211_regdomain->dfs_region;
1247 
1248 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1249 		if (wiphy->bands[band])
1250 			handle_band(wiphy, band, initiator);
1251 	}
1252 
1253 	reg_process_beacons(wiphy);
1254 	reg_process_ht_flags(wiphy);
1255 	if (wiphy->reg_notifier)
1256 		wiphy->reg_notifier(wiphy, last_request);
1257 }
1258 
1259 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1260 {
1261 	struct cfg80211_registered_device *rdev;
1262 	struct wiphy *wiphy;
1263 
1264 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1265 		wiphy = &rdev->wiphy;
1266 		wiphy_update_regulatory(wiphy, initiator);
1267 		/*
1268 		 * Regulatory updates set by CORE are ignored for custom
1269 		 * regulatory cards. Let us notify the changes to the driver,
1270 		 * as some drivers used this to restore its orig_* reg domain.
1271 		 */
1272 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1273 		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1274 		    wiphy->reg_notifier)
1275 			wiphy->reg_notifier(wiphy, last_request);
1276 	}
1277 }
1278 
1279 static void handle_channel_custom(struct wiphy *wiphy,
1280 				  enum ieee80211_band band,
1281 				  unsigned int chan_idx,
1282 				  const struct ieee80211_regdomain *regd)
1283 {
1284 	int r;
1285 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1286 	u32 bw_flags = 0;
1287 	const struct ieee80211_reg_rule *reg_rule = NULL;
1288 	const struct ieee80211_power_rule *power_rule = NULL;
1289 	const struct ieee80211_freq_range *freq_range = NULL;
1290 	struct ieee80211_supported_band *sband;
1291 	struct ieee80211_channel *chan;
1292 
1293 	assert_reg_lock();
1294 
1295 	sband = wiphy->bands[band];
1296 	BUG_ON(chan_idx >= sband->n_channels);
1297 	chan = &sband->channels[chan_idx];
1298 
1299 	r = freq_reg_info_regd(wiphy,
1300 			       MHZ_TO_KHZ(chan->center_freq),
1301 			       desired_bw_khz,
1302 			       &reg_rule,
1303 			       regd);
1304 
1305 	if (r) {
1306 		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1307 			      "regd has no rule that fits a %d MHz "
1308 			      "wide channel\n",
1309 			      chan->center_freq,
1310 			      KHZ_TO_MHZ(desired_bw_khz));
1311 		chan->flags = IEEE80211_CHAN_DISABLED;
1312 		return;
1313 	}
1314 
1315 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1316 
1317 	power_rule = &reg_rule->power_rule;
1318 	freq_range = &reg_rule->freq_range;
1319 
1320 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1321 		bw_flags = IEEE80211_CHAN_NO_HT40;
1322 
1323 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1324 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1325 	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1326 }
1327 
1328 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1329 			       const struct ieee80211_regdomain *regd)
1330 {
1331 	unsigned int i;
1332 	struct ieee80211_supported_band *sband;
1333 
1334 	BUG_ON(!wiphy->bands[band]);
1335 	sband = wiphy->bands[band];
1336 
1337 	for (i = 0; i < sband->n_channels; i++)
1338 		handle_channel_custom(wiphy, band, i, regd);
1339 }
1340 
1341 /* Used by drivers prior to wiphy registration */
1342 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1343 				   const struct ieee80211_regdomain *regd)
1344 {
1345 	enum ieee80211_band band;
1346 	unsigned int bands_set = 0;
1347 
1348 	mutex_lock(&reg_mutex);
1349 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1350 		if (!wiphy->bands[band])
1351 			continue;
1352 		handle_band_custom(wiphy, band, regd);
1353 		bands_set++;
1354 	}
1355 	mutex_unlock(&reg_mutex);
1356 
1357 	/*
1358 	 * no point in calling this if it won't have any effect
1359 	 * on your device's supportd bands.
1360 	 */
1361 	WARN_ON(!bands_set);
1362 }
1363 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1364 
1365 /*
1366  * Return value which can be used by ignore_request() to indicate
1367  * it has been determined we should intersect two regulatory domains
1368  */
1369 #define REG_INTERSECT	1
1370 
1371 /* This has the logic which determines when a new request
1372  * should be ignored. */
1373 static int ignore_request(struct wiphy *wiphy,
1374 			  struct regulatory_request *pending_request)
1375 {
1376 	struct wiphy *last_wiphy = NULL;
1377 
1378 	assert_cfg80211_lock();
1379 
1380 	/* All initial requests are respected */
1381 	if (!last_request)
1382 		return 0;
1383 
1384 	switch (pending_request->initiator) {
1385 	case NL80211_REGDOM_SET_BY_CORE:
1386 		return 0;
1387 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1388 
1389 		if (reg_request_cell_base(last_request)) {
1390 			/* Trust a Cell base station over the AP's country IE */
1391 			if (regdom_changes(pending_request->alpha2))
1392 				return -EOPNOTSUPP;
1393 			return -EALREADY;
1394 		}
1395 
1396 		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1397 
1398 		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1399 			return -EINVAL;
1400 		if (last_request->initiator ==
1401 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1402 			if (last_wiphy != wiphy) {
1403 				/*
1404 				 * Two cards with two APs claiming different
1405 				 * Country IE alpha2s. We could
1406 				 * intersect them, but that seems unlikely
1407 				 * to be correct. Reject second one for now.
1408 				 */
1409 				if (regdom_changes(pending_request->alpha2))
1410 					return -EOPNOTSUPP;
1411 				return -EALREADY;
1412 			}
1413 			/*
1414 			 * Two consecutive Country IE hints on the same wiphy.
1415 			 * This should be picked up early by the driver/stack
1416 			 */
1417 			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1418 				return 0;
1419 			return -EALREADY;
1420 		}
1421 		return 0;
1422 	case NL80211_REGDOM_SET_BY_DRIVER:
1423 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1424 			if (regdom_changes(pending_request->alpha2))
1425 				return 0;
1426 			return -EALREADY;
1427 		}
1428 
1429 		/*
1430 		 * This would happen if you unplug and plug your card
1431 		 * back in or if you add a new device for which the previously
1432 		 * loaded card also agrees on the regulatory domain.
1433 		 */
1434 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1435 		    !regdom_changes(pending_request->alpha2))
1436 			return -EALREADY;
1437 
1438 		return REG_INTERSECT;
1439 	case NL80211_REGDOM_SET_BY_USER:
1440 		if (reg_request_cell_base(pending_request))
1441 			return reg_ignore_cell_hint(pending_request);
1442 
1443 		if (reg_request_cell_base(last_request))
1444 			return -EOPNOTSUPP;
1445 
1446 		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1447 			return REG_INTERSECT;
1448 		/*
1449 		 * If the user knows better the user should set the regdom
1450 		 * to their country before the IE is picked up
1451 		 */
1452 		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1453 			  last_request->intersect)
1454 			return -EOPNOTSUPP;
1455 		/*
1456 		 * Process user requests only after previous user/driver/core
1457 		 * requests have been processed
1458 		 */
1459 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1460 		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1461 		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1462 			if (regdom_changes(last_request->alpha2))
1463 				return -EAGAIN;
1464 		}
1465 
1466 		if (!regdom_changes(pending_request->alpha2))
1467 			return -EALREADY;
1468 
1469 		return 0;
1470 	}
1471 
1472 	return -EINVAL;
1473 }
1474 
1475 static void reg_set_request_processed(void)
1476 {
1477 	bool need_more_processing = false;
1478 
1479 	last_request->processed = true;
1480 
1481 	spin_lock(&reg_requests_lock);
1482 	if (!list_empty(&reg_requests_list))
1483 		need_more_processing = true;
1484 	spin_unlock(&reg_requests_lock);
1485 
1486 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1487 		cancel_delayed_work(&reg_timeout);
1488 
1489 	if (need_more_processing)
1490 		schedule_work(&reg_work);
1491 }
1492 
1493 /**
1494  * __regulatory_hint - hint to the wireless core a regulatory domain
1495  * @wiphy: if the hint comes from country information from an AP, this
1496  *	is required to be set to the wiphy that received the information
1497  * @pending_request: the regulatory request currently being processed
1498  *
1499  * The Wireless subsystem can use this function to hint to the wireless core
1500  * what it believes should be the current regulatory domain.
1501  *
1502  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1503  * already been set or other standard error codes.
1504  *
1505  * Caller must hold &cfg80211_mutex and &reg_mutex
1506  */
1507 static int __regulatory_hint(struct wiphy *wiphy,
1508 			     struct regulatory_request *pending_request)
1509 {
1510 	bool intersect = false;
1511 	int r = 0;
1512 
1513 	assert_cfg80211_lock();
1514 
1515 	r = ignore_request(wiphy, pending_request);
1516 
1517 	if (r == REG_INTERSECT) {
1518 		if (pending_request->initiator ==
1519 		    NL80211_REGDOM_SET_BY_DRIVER) {
1520 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1521 			if (r) {
1522 				kfree(pending_request);
1523 				return r;
1524 			}
1525 		}
1526 		intersect = true;
1527 	} else if (r) {
1528 		/*
1529 		 * If the regulatory domain being requested by the
1530 		 * driver has already been set just copy it to the
1531 		 * wiphy
1532 		 */
1533 		if (r == -EALREADY &&
1534 		    pending_request->initiator ==
1535 		    NL80211_REGDOM_SET_BY_DRIVER) {
1536 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1537 			if (r) {
1538 				kfree(pending_request);
1539 				return r;
1540 			}
1541 			r = -EALREADY;
1542 			goto new_request;
1543 		}
1544 		kfree(pending_request);
1545 		return r;
1546 	}
1547 
1548 new_request:
1549 	if (last_request != &core_request_world)
1550 		kfree(last_request);
1551 
1552 	last_request = pending_request;
1553 	last_request->intersect = intersect;
1554 
1555 	pending_request = NULL;
1556 
1557 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1558 		user_alpha2[0] = last_request->alpha2[0];
1559 		user_alpha2[1] = last_request->alpha2[1];
1560 	}
1561 
1562 	/* When r == REG_INTERSECT we do need to call CRDA */
1563 	if (r < 0) {
1564 		/*
1565 		 * Since CRDA will not be called in this case as we already
1566 		 * have applied the requested regulatory domain before we just
1567 		 * inform userspace we have processed the request
1568 		 */
1569 		if (r == -EALREADY) {
1570 			nl80211_send_reg_change_event(last_request);
1571 			reg_set_request_processed();
1572 		}
1573 		return r;
1574 	}
1575 
1576 	return call_crda(last_request->alpha2);
1577 }
1578 
1579 /* This processes *all* regulatory hints */
1580 static void reg_process_hint(struct regulatory_request *reg_request,
1581 			     enum nl80211_reg_initiator reg_initiator)
1582 {
1583 	int r = 0;
1584 	struct wiphy *wiphy = NULL;
1585 
1586 	BUG_ON(!reg_request->alpha2);
1587 
1588 	if (wiphy_idx_valid(reg_request->wiphy_idx))
1589 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1590 
1591 	if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1592 	    !wiphy) {
1593 		kfree(reg_request);
1594 		return;
1595 	}
1596 
1597 	r = __regulatory_hint(wiphy, reg_request);
1598 	/* This is required so that the orig_* parameters are saved */
1599 	if (r == -EALREADY && wiphy &&
1600 	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1601 		wiphy_update_regulatory(wiphy, reg_initiator);
1602 		return;
1603 	}
1604 
1605 	/*
1606 	 * We only time out user hints, given that they should be the only
1607 	 * source of bogus requests.
1608 	 */
1609 	if (r != -EALREADY &&
1610 	    reg_initiator == NL80211_REGDOM_SET_BY_USER)
1611 		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1612 }
1613 
1614 /*
1615  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1616  * Regulatory hints come on a first come first serve basis and we
1617  * must process each one atomically.
1618  */
1619 static void reg_process_pending_hints(void)
1620 {
1621 	struct regulatory_request *reg_request;
1622 
1623 	mutex_lock(&cfg80211_mutex);
1624 	mutex_lock(&reg_mutex);
1625 
1626 	/* When last_request->processed becomes true this will be rescheduled */
1627 	if (last_request && !last_request->processed) {
1628 		REG_DBG_PRINT("Pending regulatory request, waiting "
1629 			      "for it to be processed...\n");
1630 		goto out;
1631 	}
1632 
1633 	spin_lock(&reg_requests_lock);
1634 
1635 	if (list_empty(&reg_requests_list)) {
1636 		spin_unlock(&reg_requests_lock);
1637 		goto out;
1638 	}
1639 
1640 	reg_request = list_first_entry(&reg_requests_list,
1641 				       struct regulatory_request,
1642 				       list);
1643 	list_del_init(&reg_request->list);
1644 
1645 	spin_unlock(&reg_requests_lock);
1646 
1647 	reg_process_hint(reg_request, reg_request->initiator);
1648 
1649 out:
1650 	mutex_unlock(&reg_mutex);
1651 	mutex_unlock(&cfg80211_mutex);
1652 }
1653 
1654 /* Processes beacon hints -- this has nothing to do with country IEs */
1655 static void reg_process_pending_beacon_hints(void)
1656 {
1657 	struct cfg80211_registered_device *rdev;
1658 	struct reg_beacon *pending_beacon, *tmp;
1659 
1660 	/*
1661 	 * No need to hold the reg_mutex here as we just touch wiphys
1662 	 * and do not read or access regulatory variables.
1663 	 */
1664 	mutex_lock(&cfg80211_mutex);
1665 
1666 	/* This goes through the _pending_ beacon list */
1667 	spin_lock_bh(&reg_pending_beacons_lock);
1668 
1669 	if (list_empty(&reg_pending_beacons)) {
1670 		spin_unlock_bh(&reg_pending_beacons_lock);
1671 		goto out;
1672 	}
1673 
1674 	list_for_each_entry_safe(pending_beacon, tmp,
1675 				 &reg_pending_beacons, list) {
1676 
1677 		list_del_init(&pending_beacon->list);
1678 
1679 		/* Applies the beacon hint to current wiphys */
1680 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1681 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1682 
1683 		/* Remembers the beacon hint for new wiphys or reg changes */
1684 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1685 	}
1686 
1687 	spin_unlock_bh(&reg_pending_beacons_lock);
1688 out:
1689 	mutex_unlock(&cfg80211_mutex);
1690 }
1691 
1692 static void reg_todo(struct work_struct *work)
1693 {
1694 	reg_process_pending_hints();
1695 	reg_process_pending_beacon_hints();
1696 }
1697 
1698 static void queue_regulatory_request(struct regulatory_request *request)
1699 {
1700 	if (isalpha(request->alpha2[0]))
1701 		request->alpha2[0] = toupper(request->alpha2[0]);
1702 	if (isalpha(request->alpha2[1]))
1703 		request->alpha2[1] = toupper(request->alpha2[1]);
1704 
1705 	spin_lock(&reg_requests_lock);
1706 	list_add_tail(&request->list, &reg_requests_list);
1707 	spin_unlock(&reg_requests_lock);
1708 
1709 	schedule_work(&reg_work);
1710 }
1711 
1712 /*
1713  * Core regulatory hint -- happens during cfg80211_init()
1714  * and when we restore regulatory settings.
1715  */
1716 static int regulatory_hint_core(const char *alpha2)
1717 {
1718 	struct regulatory_request *request;
1719 
1720 	request = kzalloc(sizeof(struct regulatory_request),
1721 			  GFP_KERNEL);
1722 	if (!request)
1723 		return -ENOMEM;
1724 
1725 	request->alpha2[0] = alpha2[0];
1726 	request->alpha2[1] = alpha2[1];
1727 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1728 
1729 	queue_regulatory_request(request);
1730 
1731 	return 0;
1732 }
1733 
1734 /* User hints */
1735 int regulatory_hint_user(const char *alpha2,
1736 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
1737 {
1738 	struct regulatory_request *request;
1739 
1740 	BUG_ON(!alpha2);
1741 
1742 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1743 	if (!request)
1744 		return -ENOMEM;
1745 
1746 	request->wiphy_idx = WIPHY_IDX_STALE;
1747 	request->alpha2[0] = alpha2[0];
1748 	request->alpha2[1] = alpha2[1];
1749 	request->initiator = NL80211_REGDOM_SET_BY_USER;
1750 	request->user_reg_hint_type = user_reg_hint_type;
1751 
1752 	queue_regulatory_request(request);
1753 
1754 	return 0;
1755 }
1756 
1757 /* Driver hints */
1758 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1759 {
1760 	struct regulatory_request *request;
1761 
1762 	BUG_ON(!alpha2);
1763 	BUG_ON(!wiphy);
1764 
1765 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1766 	if (!request)
1767 		return -ENOMEM;
1768 
1769 	request->wiphy_idx = get_wiphy_idx(wiphy);
1770 
1771 	/* Must have registered wiphy first */
1772 	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1773 
1774 	request->alpha2[0] = alpha2[0];
1775 	request->alpha2[1] = alpha2[1];
1776 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1777 
1778 	queue_regulatory_request(request);
1779 
1780 	return 0;
1781 }
1782 EXPORT_SYMBOL(regulatory_hint);
1783 
1784 /*
1785  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1786  * therefore cannot iterate over the rdev list here.
1787  */
1788 void regulatory_hint_11d(struct wiphy *wiphy,
1789 			 enum ieee80211_band band,
1790 			 u8 *country_ie,
1791 			 u8 country_ie_len)
1792 {
1793 	char alpha2[2];
1794 	enum environment_cap env = ENVIRON_ANY;
1795 	struct regulatory_request *request;
1796 
1797 	mutex_lock(&reg_mutex);
1798 
1799 	if (unlikely(!last_request))
1800 		goto out;
1801 
1802 	/* IE len must be evenly divisible by 2 */
1803 	if (country_ie_len & 0x01)
1804 		goto out;
1805 
1806 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1807 		goto out;
1808 
1809 	alpha2[0] = country_ie[0];
1810 	alpha2[1] = country_ie[1];
1811 
1812 	if (country_ie[2] == 'I')
1813 		env = ENVIRON_INDOOR;
1814 	else if (country_ie[2] == 'O')
1815 		env = ENVIRON_OUTDOOR;
1816 
1817 	/*
1818 	 * We will run this only upon a successful connection on cfg80211.
1819 	 * We leave conflict resolution to the workqueue, where can hold
1820 	 * cfg80211_mutex.
1821 	 */
1822 	if (likely(last_request->initiator ==
1823 	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1824 	    wiphy_idx_valid(last_request->wiphy_idx)))
1825 		goto out;
1826 
1827 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1828 	if (!request)
1829 		goto out;
1830 
1831 	request->wiphy_idx = get_wiphy_idx(wiphy);
1832 	request->alpha2[0] = alpha2[0];
1833 	request->alpha2[1] = alpha2[1];
1834 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1835 	request->country_ie_env = env;
1836 
1837 	mutex_unlock(&reg_mutex);
1838 
1839 	queue_regulatory_request(request);
1840 
1841 	return;
1842 
1843 out:
1844 	mutex_unlock(&reg_mutex);
1845 }
1846 
1847 static void restore_alpha2(char *alpha2, bool reset_user)
1848 {
1849 	/* indicates there is no alpha2 to consider for restoration */
1850 	alpha2[0] = '9';
1851 	alpha2[1] = '7';
1852 
1853 	/* The user setting has precedence over the module parameter */
1854 	if (is_user_regdom_saved()) {
1855 		/* Unless we're asked to ignore it and reset it */
1856 		if (reset_user) {
1857 			REG_DBG_PRINT("Restoring regulatory settings "
1858 			       "including user preference\n");
1859 			user_alpha2[0] = '9';
1860 			user_alpha2[1] = '7';
1861 
1862 			/*
1863 			 * If we're ignoring user settings, we still need to
1864 			 * check the module parameter to ensure we put things
1865 			 * back as they were for a full restore.
1866 			 */
1867 			if (!is_world_regdom(ieee80211_regdom)) {
1868 				REG_DBG_PRINT("Keeping preference on "
1869 				       "module parameter ieee80211_regdom: %c%c\n",
1870 				       ieee80211_regdom[0],
1871 				       ieee80211_regdom[1]);
1872 				alpha2[0] = ieee80211_regdom[0];
1873 				alpha2[1] = ieee80211_regdom[1];
1874 			}
1875 		} else {
1876 			REG_DBG_PRINT("Restoring regulatory settings "
1877 			       "while preserving user preference for: %c%c\n",
1878 			       user_alpha2[0],
1879 			       user_alpha2[1]);
1880 			alpha2[0] = user_alpha2[0];
1881 			alpha2[1] = user_alpha2[1];
1882 		}
1883 	} else if (!is_world_regdom(ieee80211_regdom)) {
1884 		REG_DBG_PRINT("Keeping preference on "
1885 		       "module parameter ieee80211_regdom: %c%c\n",
1886 		       ieee80211_regdom[0],
1887 		       ieee80211_regdom[1]);
1888 		alpha2[0] = ieee80211_regdom[0];
1889 		alpha2[1] = ieee80211_regdom[1];
1890 	} else
1891 		REG_DBG_PRINT("Restoring regulatory settings\n");
1892 }
1893 
1894 static void restore_custom_reg_settings(struct wiphy *wiphy)
1895 {
1896 	struct ieee80211_supported_band *sband;
1897 	enum ieee80211_band band;
1898 	struct ieee80211_channel *chan;
1899 	int i;
1900 
1901 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1902 		sband = wiphy->bands[band];
1903 		if (!sband)
1904 			continue;
1905 		for (i = 0; i < sband->n_channels; i++) {
1906 			chan = &sband->channels[i];
1907 			chan->flags = chan->orig_flags;
1908 			chan->max_antenna_gain = chan->orig_mag;
1909 			chan->max_power = chan->orig_mpwr;
1910 			chan->beacon_found = false;
1911 		}
1912 	}
1913 }
1914 
1915 /*
1916  * Restoring regulatory settings involves ingoring any
1917  * possibly stale country IE information and user regulatory
1918  * settings if so desired, this includes any beacon hints
1919  * learned as we could have traveled outside to another country
1920  * after disconnection. To restore regulatory settings we do
1921  * exactly what we did at bootup:
1922  *
1923  *   - send a core regulatory hint
1924  *   - send a user regulatory hint if applicable
1925  *
1926  * Device drivers that send a regulatory hint for a specific country
1927  * keep their own regulatory domain on wiphy->regd so that does does
1928  * not need to be remembered.
1929  */
1930 static void restore_regulatory_settings(bool reset_user)
1931 {
1932 	char alpha2[2];
1933 	char world_alpha2[2];
1934 	struct reg_beacon *reg_beacon, *btmp;
1935 	struct regulatory_request *reg_request, *tmp;
1936 	LIST_HEAD(tmp_reg_req_list);
1937 	struct cfg80211_registered_device *rdev;
1938 
1939 	mutex_lock(&cfg80211_mutex);
1940 	mutex_lock(&reg_mutex);
1941 
1942 	reset_regdomains(true);
1943 	restore_alpha2(alpha2, reset_user);
1944 
1945 	/*
1946 	 * If there's any pending requests we simply
1947 	 * stash them to a temporary pending queue and
1948 	 * add then after we've restored regulatory
1949 	 * settings.
1950 	 */
1951 	spin_lock(&reg_requests_lock);
1952 	if (!list_empty(&reg_requests_list)) {
1953 		list_for_each_entry_safe(reg_request, tmp,
1954 					 &reg_requests_list, list) {
1955 			if (reg_request->initiator !=
1956 			    NL80211_REGDOM_SET_BY_USER)
1957 				continue;
1958 			list_del(&reg_request->list);
1959 			list_add_tail(&reg_request->list, &tmp_reg_req_list);
1960 		}
1961 	}
1962 	spin_unlock(&reg_requests_lock);
1963 
1964 	/* Clear beacon hints */
1965 	spin_lock_bh(&reg_pending_beacons_lock);
1966 	if (!list_empty(&reg_pending_beacons)) {
1967 		list_for_each_entry_safe(reg_beacon, btmp,
1968 					 &reg_pending_beacons, list) {
1969 			list_del(&reg_beacon->list);
1970 			kfree(reg_beacon);
1971 		}
1972 	}
1973 	spin_unlock_bh(&reg_pending_beacons_lock);
1974 
1975 	if (!list_empty(&reg_beacon_list)) {
1976 		list_for_each_entry_safe(reg_beacon, btmp,
1977 					 &reg_beacon_list, list) {
1978 			list_del(&reg_beacon->list);
1979 			kfree(reg_beacon);
1980 		}
1981 	}
1982 
1983 	/* First restore to the basic regulatory settings */
1984 	cfg80211_regdomain = cfg80211_world_regdom;
1985 	world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1986 	world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1987 
1988 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1989 		if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1990 			restore_custom_reg_settings(&rdev->wiphy);
1991 	}
1992 
1993 	mutex_unlock(&reg_mutex);
1994 	mutex_unlock(&cfg80211_mutex);
1995 
1996 	regulatory_hint_core(world_alpha2);
1997 
1998 	/*
1999 	 * This restores the ieee80211_regdom module parameter
2000 	 * preference or the last user requested regulatory
2001 	 * settings, user regulatory settings takes precedence.
2002 	 */
2003 	if (is_an_alpha2(alpha2))
2004 		regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2005 
2006 	if (list_empty(&tmp_reg_req_list))
2007 		return;
2008 
2009 	mutex_lock(&cfg80211_mutex);
2010 	mutex_lock(&reg_mutex);
2011 
2012 	spin_lock(&reg_requests_lock);
2013 	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
2014 		REG_DBG_PRINT("Adding request for country %c%c back "
2015 			      "into the queue\n",
2016 			      reg_request->alpha2[0],
2017 			      reg_request->alpha2[1]);
2018 		list_del(&reg_request->list);
2019 		list_add_tail(&reg_request->list, &reg_requests_list);
2020 	}
2021 	spin_unlock(&reg_requests_lock);
2022 
2023 	mutex_unlock(&reg_mutex);
2024 	mutex_unlock(&cfg80211_mutex);
2025 
2026 	REG_DBG_PRINT("Kicking the queue\n");
2027 
2028 	schedule_work(&reg_work);
2029 }
2030 
2031 void regulatory_hint_disconnect(void)
2032 {
2033 	REG_DBG_PRINT("All devices are disconnected, going to "
2034 		      "restore regulatory settings\n");
2035 	restore_regulatory_settings(false);
2036 }
2037 
2038 static bool freq_is_chan_12_13_14(u16 freq)
2039 {
2040 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2041 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2042 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2043 		return true;
2044 	return false;
2045 }
2046 
2047 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2048 				 struct ieee80211_channel *beacon_chan,
2049 				 gfp_t gfp)
2050 {
2051 	struct reg_beacon *reg_beacon;
2052 
2053 	if (likely((beacon_chan->beacon_found ||
2054 	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
2055 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2056 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
2057 		return 0;
2058 
2059 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2060 	if (!reg_beacon)
2061 		return -ENOMEM;
2062 
2063 	REG_DBG_PRINT("Found new beacon on "
2064 		      "frequency: %d MHz (Ch %d) on %s\n",
2065 		      beacon_chan->center_freq,
2066 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
2067 		      wiphy_name(wiphy));
2068 
2069 	memcpy(&reg_beacon->chan, beacon_chan,
2070 		sizeof(struct ieee80211_channel));
2071 
2072 
2073 	/*
2074 	 * Since we can be called from BH or and non-BH context
2075 	 * we must use spin_lock_bh()
2076 	 */
2077 	spin_lock_bh(&reg_pending_beacons_lock);
2078 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2079 	spin_unlock_bh(&reg_pending_beacons_lock);
2080 
2081 	schedule_work(&reg_work);
2082 
2083 	return 0;
2084 }
2085 
2086 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2087 {
2088 	unsigned int i;
2089 	const struct ieee80211_reg_rule *reg_rule = NULL;
2090 	const struct ieee80211_freq_range *freq_range = NULL;
2091 	const struct ieee80211_power_rule *power_rule = NULL;
2092 
2093 	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2094 
2095 	for (i = 0; i < rd->n_reg_rules; i++) {
2096 		reg_rule = &rd->reg_rules[i];
2097 		freq_range = &reg_rule->freq_range;
2098 		power_rule = &reg_rule->power_rule;
2099 
2100 		/*
2101 		 * There may not be documentation for max antenna gain
2102 		 * in certain regions
2103 		 */
2104 		if (power_rule->max_antenna_gain)
2105 			pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2106 				freq_range->start_freq_khz,
2107 				freq_range->end_freq_khz,
2108 				freq_range->max_bandwidth_khz,
2109 				power_rule->max_antenna_gain,
2110 				power_rule->max_eirp);
2111 		else
2112 			pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2113 				freq_range->start_freq_khz,
2114 				freq_range->end_freq_khz,
2115 				freq_range->max_bandwidth_khz,
2116 				power_rule->max_eirp);
2117 	}
2118 }
2119 
2120 bool reg_supported_dfs_region(u8 dfs_region)
2121 {
2122 	switch (dfs_region) {
2123 	case NL80211_DFS_UNSET:
2124 	case NL80211_DFS_FCC:
2125 	case NL80211_DFS_ETSI:
2126 	case NL80211_DFS_JP:
2127 		return true;
2128 	default:
2129 		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2130 			      dfs_region);
2131 		return false;
2132 	}
2133 }
2134 
2135 static void print_dfs_region(u8 dfs_region)
2136 {
2137 	if (!dfs_region)
2138 		return;
2139 
2140 	switch (dfs_region) {
2141 	case NL80211_DFS_FCC:
2142 		pr_info(" DFS Master region FCC");
2143 		break;
2144 	case NL80211_DFS_ETSI:
2145 		pr_info(" DFS Master region ETSI");
2146 		break;
2147 	case NL80211_DFS_JP:
2148 		pr_info(" DFS Master region JP");
2149 		break;
2150 	default:
2151 		pr_info(" DFS Master region Uknown");
2152 		break;
2153 	}
2154 }
2155 
2156 static void print_regdomain(const struct ieee80211_regdomain *rd)
2157 {
2158 
2159 	if (is_intersected_alpha2(rd->alpha2)) {
2160 
2161 		if (last_request->initiator ==
2162 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2163 			struct cfg80211_registered_device *rdev;
2164 			rdev = cfg80211_rdev_by_wiphy_idx(
2165 				last_request->wiphy_idx);
2166 			if (rdev) {
2167 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2168 					rdev->country_ie_alpha2[0],
2169 					rdev->country_ie_alpha2[1]);
2170 			} else
2171 				pr_info("Current regulatory domain intersected:\n");
2172 		} else
2173 			pr_info("Current regulatory domain intersected:\n");
2174 	} else if (is_world_regdom(rd->alpha2))
2175 		pr_info("World regulatory domain updated:\n");
2176 	else {
2177 		if (is_unknown_alpha2(rd->alpha2))
2178 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2179 		else {
2180 			if (reg_request_cell_base(last_request))
2181 				pr_info("Regulatory domain changed "
2182 					"to country: %c%c by Cell Station\n",
2183 					rd->alpha2[0], rd->alpha2[1]);
2184 			else
2185 				pr_info("Regulatory domain changed "
2186 					"to country: %c%c\n",
2187 					rd->alpha2[0], rd->alpha2[1]);
2188 		}
2189 	}
2190 	print_dfs_region(rd->dfs_region);
2191 	print_rd_rules(rd);
2192 }
2193 
2194 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2195 {
2196 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2197 	print_rd_rules(rd);
2198 }
2199 
2200 /* Takes ownership of rd only if it doesn't fail */
2201 static int __set_regdom(const struct ieee80211_regdomain *rd)
2202 {
2203 	const struct ieee80211_regdomain *intersected_rd = NULL;
2204 	struct cfg80211_registered_device *rdev = NULL;
2205 	struct wiphy *request_wiphy;
2206 	/* Some basic sanity checks first */
2207 
2208 	if (is_world_regdom(rd->alpha2)) {
2209 		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2210 			return -EINVAL;
2211 		update_world_regdomain(rd);
2212 		return 0;
2213 	}
2214 
2215 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2216 			!is_unknown_alpha2(rd->alpha2))
2217 		return -EINVAL;
2218 
2219 	if (!last_request)
2220 		return -EINVAL;
2221 
2222 	/*
2223 	 * Lets only bother proceeding on the same alpha2 if the current
2224 	 * rd is non static (it means CRDA was present and was used last)
2225 	 * and the pending request came in from a country IE
2226 	 */
2227 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2228 		/*
2229 		 * If someone else asked us to change the rd lets only bother
2230 		 * checking if the alpha2 changes if CRDA was already called
2231 		 */
2232 		if (!regdom_changes(rd->alpha2))
2233 			return -EALREADY;
2234 	}
2235 
2236 	/*
2237 	 * Now lets set the regulatory domain, update all driver channels
2238 	 * and finally inform them of what we have done, in case they want
2239 	 * to review or adjust their own settings based on their own
2240 	 * internal EEPROM data
2241 	 */
2242 
2243 	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2244 		return -EINVAL;
2245 
2246 	if (!is_valid_rd(rd)) {
2247 		pr_err("Invalid regulatory domain detected:\n");
2248 		print_regdomain_info(rd);
2249 		return -EINVAL;
2250 	}
2251 
2252 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2253 	if (!request_wiphy &&
2254 	    (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2255 	     last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2256 		schedule_delayed_work(&reg_timeout, 0);
2257 		return -ENODEV;
2258 	}
2259 
2260 	if (!last_request->intersect) {
2261 		int r;
2262 
2263 		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2264 			reset_regdomains(false);
2265 			cfg80211_regdomain = rd;
2266 			return 0;
2267 		}
2268 
2269 		/*
2270 		 * For a driver hint, lets copy the regulatory domain the
2271 		 * driver wanted to the wiphy to deal with conflicts
2272 		 */
2273 
2274 		/*
2275 		 * Userspace could have sent two replies with only
2276 		 * one kernel request.
2277 		 */
2278 		if (request_wiphy->regd)
2279 			return -EALREADY;
2280 
2281 		r = reg_copy_regd(&request_wiphy->regd, rd);
2282 		if (r)
2283 			return r;
2284 
2285 		reset_regdomains(false);
2286 		cfg80211_regdomain = rd;
2287 		return 0;
2288 	}
2289 
2290 	/* Intersection requires a bit more work */
2291 
2292 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2293 
2294 		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2295 		if (!intersected_rd)
2296 			return -EINVAL;
2297 
2298 		/*
2299 		 * We can trash what CRDA provided now.
2300 		 * However if a driver requested this specific regulatory
2301 		 * domain we keep it for its private use
2302 		 */
2303 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2304 			request_wiphy->regd = rd;
2305 		else
2306 			kfree(rd);
2307 
2308 		rd = NULL;
2309 
2310 		reset_regdomains(false);
2311 		cfg80211_regdomain = intersected_rd;
2312 
2313 		return 0;
2314 	}
2315 
2316 	if (!intersected_rd)
2317 		return -EINVAL;
2318 
2319 	rdev = wiphy_to_dev(request_wiphy);
2320 
2321 	rdev->country_ie_alpha2[0] = rd->alpha2[0];
2322 	rdev->country_ie_alpha2[1] = rd->alpha2[1];
2323 	rdev->env = last_request->country_ie_env;
2324 
2325 	BUG_ON(intersected_rd == rd);
2326 
2327 	kfree(rd);
2328 	rd = NULL;
2329 
2330 	reset_regdomains(false);
2331 	cfg80211_regdomain = intersected_rd;
2332 
2333 	return 0;
2334 }
2335 
2336 
2337 /*
2338  * Use this call to set the current regulatory domain. Conflicts with
2339  * multiple drivers can be ironed out later. Caller must've already
2340  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2341  */
2342 int set_regdom(const struct ieee80211_regdomain *rd)
2343 {
2344 	int r;
2345 
2346 	assert_cfg80211_lock();
2347 
2348 	mutex_lock(&reg_mutex);
2349 
2350 	/* Note that this doesn't update the wiphys, this is done below */
2351 	r = __set_regdom(rd);
2352 	if (r) {
2353 		if (r == -EALREADY)
2354 			reg_set_request_processed();
2355 
2356 		kfree(rd);
2357 		mutex_unlock(&reg_mutex);
2358 		return r;
2359 	}
2360 
2361 	/* This would make this whole thing pointless */
2362 	if (!last_request->intersect)
2363 		BUG_ON(rd != cfg80211_regdomain);
2364 
2365 	/* update all wiphys now with the new established regulatory domain */
2366 	update_all_wiphy_regulatory(last_request->initiator);
2367 
2368 	print_regdomain(cfg80211_regdomain);
2369 
2370 	nl80211_send_reg_change_event(last_request);
2371 
2372 	reg_set_request_processed();
2373 
2374 	mutex_unlock(&reg_mutex);
2375 
2376 	return r;
2377 }
2378 
2379 #ifdef CONFIG_HOTPLUG
2380 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2381 {
2382 	if (last_request && !last_request->processed) {
2383 		if (add_uevent_var(env, "COUNTRY=%c%c",
2384 				   last_request->alpha2[0],
2385 				   last_request->alpha2[1]))
2386 			return -ENOMEM;
2387 	}
2388 
2389 	return 0;
2390 }
2391 #else
2392 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2393 {
2394 	return -ENODEV;
2395 }
2396 #endif /* CONFIG_HOTPLUG */
2397 
2398 void wiphy_regulatory_register(struct wiphy *wiphy)
2399 {
2400 	assert_cfg80211_lock();
2401 
2402 	mutex_lock(&reg_mutex);
2403 
2404 	if (!reg_dev_ignore_cell_hint(wiphy))
2405 		reg_num_devs_support_basehint++;
2406 
2407 	wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2408 
2409 	mutex_unlock(&reg_mutex);
2410 }
2411 
2412 /* Caller must hold cfg80211_mutex */
2413 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2414 {
2415 	struct wiphy *request_wiphy = NULL;
2416 
2417 	assert_cfg80211_lock();
2418 
2419 	mutex_lock(&reg_mutex);
2420 
2421 	if (!reg_dev_ignore_cell_hint(wiphy))
2422 		reg_num_devs_support_basehint--;
2423 
2424 	kfree(wiphy->regd);
2425 
2426 	if (last_request)
2427 		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2428 
2429 	if (!request_wiphy || request_wiphy != wiphy)
2430 		goto out;
2431 
2432 	last_request->wiphy_idx = WIPHY_IDX_STALE;
2433 	last_request->country_ie_env = ENVIRON_ANY;
2434 out:
2435 	mutex_unlock(&reg_mutex);
2436 }
2437 
2438 static void reg_timeout_work(struct work_struct *work)
2439 {
2440 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2441 		      "restoring regulatory settings\n");
2442 	restore_regulatory_settings(true);
2443 }
2444 
2445 int __init regulatory_init(void)
2446 {
2447 	int err = 0;
2448 
2449 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2450 	if (IS_ERR(reg_pdev))
2451 		return PTR_ERR(reg_pdev);
2452 
2453 	reg_pdev->dev.type = &reg_device_type;
2454 
2455 	spin_lock_init(&reg_requests_lock);
2456 	spin_lock_init(&reg_pending_beacons_lock);
2457 
2458 	reg_regdb_size_check();
2459 
2460 	cfg80211_regdomain = cfg80211_world_regdom;
2461 
2462 	user_alpha2[0] = '9';
2463 	user_alpha2[1] = '7';
2464 
2465 	/* We always try to get an update for the static regdomain */
2466 	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2467 	if (err) {
2468 		if (err == -ENOMEM)
2469 			return err;
2470 		/*
2471 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2472 		 * memory which is handled and propagated appropriately above
2473 		 * but it can also fail during a netlink_broadcast() or during
2474 		 * early boot for call_usermodehelper(). For now treat these
2475 		 * errors as non-fatal.
2476 		 */
2477 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2478 #ifdef CONFIG_CFG80211_REG_DEBUG
2479 		/* We want to find out exactly why when debugging */
2480 		WARN_ON(err);
2481 #endif
2482 	}
2483 
2484 	/*
2485 	 * Finally, if the user set the module parameter treat it
2486 	 * as a user hint.
2487 	 */
2488 	if (!is_world_regdom(ieee80211_regdom))
2489 		regulatory_hint_user(ieee80211_regdom,
2490 				     NL80211_USER_REG_HINT_USER);
2491 
2492 	return 0;
2493 }
2494 
2495 void /* __init_or_exit */ regulatory_exit(void)
2496 {
2497 	struct regulatory_request *reg_request, *tmp;
2498 	struct reg_beacon *reg_beacon, *btmp;
2499 
2500 	cancel_work_sync(&reg_work);
2501 	cancel_delayed_work_sync(&reg_timeout);
2502 
2503 	mutex_lock(&cfg80211_mutex);
2504 	mutex_lock(&reg_mutex);
2505 
2506 	reset_regdomains(true);
2507 
2508 	dev_set_uevent_suppress(&reg_pdev->dev, true);
2509 
2510 	platform_device_unregister(reg_pdev);
2511 
2512 	spin_lock_bh(&reg_pending_beacons_lock);
2513 	if (!list_empty(&reg_pending_beacons)) {
2514 		list_for_each_entry_safe(reg_beacon, btmp,
2515 					 &reg_pending_beacons, list) {
2516 			list_del(&reg_beacon->list);
2517 			kfree(reg_beacon);
2518 		}
2519 	}
2520 	spin_unlock_bh(&reg_pending_beacons_lock);
2521 
2522 	if (!list_empty(&reg_beacon_list)) {
2523 		list_for_each_entry_safe(reg_beacon, btmp,
2524 					 &reg_beacon_list, list) {
2525 			list_del(&reg_beacon->list);
2526 			kfree(reg_beacon);
2527 		}
2528 	}
2529 
2530 	spin_lock(&reg_requests_lock);
2531 	if (!list_empty(&reg_requests_list)) {
2532 		list_for_each_entry_safe(reg_request, tmp,
2533 					 &reg_requests_list, list) {
2534 			list_del(&reg_request->list);
2535 			kfree(reg_request);
2536 		}
2537 	}
2538 	spin_unlock(&reg_requests_lock);
2539 
2540 	mutex_unlock(&reg_mutex);
2541 	mutex_unlock(&cfg80211_mutex);
2542 }
2543