xref: /linux/net/wireless/reg.c (revision 424f0750edd5af866f80f5e65998e0610503cb5c)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 
38 #include <linux/kernel.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/list.h>
42 #include <linux/random.h>
43 #include <linux/ctype.h>
44 #include <linux/nl80211.h>
45 #include <linux/platform_device.h>
46 #include <linux/moduleparam.h>
47 #include <net/cfg80211.h>
48 #include "core.h"
49 #include "reg.h"
50 #include "regdb.h"
51 #include "nl80211.h"
52 
53 #ifdef CONFIG_CFG80211_REG_DEBUG
54 #define REG_DBG_PRINT(format, args...)			\
55 	printk(KERN_DEBUG pr_fmt(format), ##args)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
59 
60 /* Receipt of information from last regulatory request */
61 static struct regulatory_request *last_request;
62 
63 /* To trigger userspace events */
64 static struct platform_device *reg_pdev;
65 
66 static struct device_type reg_device_type = {
67 	.uevent = reg_device_uevent,
68 };
69 
70 /*
71  * Central wireless core regulatory domains, we only need two,
72  * the current one and a world regulatory domain in case we have no
73  * information to give us an alpha2
74  */
75 const struct ieee80211_regdomain *cfg80211_regdomain;
76 
77 /*
78  * Protects static reg.c components:
79  *     - cfg80211_world_regdom
80  *     - cfg80211_regdom
81  *     - last_request
82  */
83 static DEFINE_MUTEX(reg_mutex);
84 
85 static inline void assert_reg_lock(void)
86 {
87 	lockdep_assert_held(&reg_mutex);
88 }
89 
90 /* Used to queue up regulatory hints */
91 static LIST_HEAD(reg_requests_list);
92 static spinlock_t reg_requests_lock;
93 
94 /* Used to queue up beacon hints for review */
95 static LIST_HEAD(reg_pending_beacons);
96 static spinlock_t reg_pending_beacons_lock;
97 
98 /* Used to keep track of processed beacon hints */
99 static LIST_HEAD(reg_beacon_list);
100 
101 struct reg_beacon {
102 	struct list_head list;
103 	struct ieee80211_channel chan;
104 };
105 
106 static void reg_todo(struct work_struct *work);
107 static DECLARE_WORK(reg_work, reg_todo);
108 
109 static void reg_timeout_work(struct work_struct *work);
110 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
111 
112 /* We keep a static world regulatory domain in case of the absence of CRDA */
113 static const struct ieee80211_regdomain world_regdom = {
114 	.n_reg_rules = 5,
115 	.alpha2 =  "00",
116 	.reg_rules = {
117 		/* IEEE 802.11b/g, channels 1..11 */
118 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
119 		/* IEEE 802.11b/g, channels 12..13. No HT40
120 		 * channel fits here. */
121 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
122 			NL80211_RRF_PASSIVE_SCAN |
123 			NL80211_RRF_NO_IBSS),
124 		/* IEEE 802.11 channel 14 - Only JP enables
125 		 * this and for 802.11b only */
126 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
127 			NL80211_RRF_PASSIVE_SCAN |
128 			NL80211_RRF_NO_IBSS |
129 			NL80211_RRF_NO_OFDM),
130 		/* IEEE 802.11a, channel 36..48 */
131 		REG_RULE(5180-10, 5240+10, 40, 6, 20,
132                         NL80211_RRF_PASSIVE_SCAN |
133                         NL80211_RRF_NO_IBSS),
134 
135 		/* NB: 5260 MHz - 5700 MHz requies DFS */
136 
137 		/* IEEE 802.11a, channel 149..165 */
138 		REG_RULE(5745-10, 5825+10, 40, 6, 20,
139 			NL80211_RRF_PASSIVE_SCAN |
140 			NL80211_RRF_NO_IBSS),
141 	}
142 };
143 
144 static const struct ieee80211_regdomain *cfg80211_world_regdom =
145 	&world_regdom;
146 
147 static char *ieee80211_regdom = "00";
148 static char user_alpha2[2];
149 
150 module_param(ieee80211_regdom, charp, 0444);
151 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
152 
153 static void reset_regdomains(void)
154 {
155 	/* avoid freeing static information or freeing something twice */
156 	if (cfg80211_regdomain == cfg80211_world_regdom)
157 		cfg80211_regdomain = NULL;
158 	if (cfg80211_world_regdom == &world_regdom)
159 		cfg80211_world_regdom = NULL;
160 	if (cfg80211_regdomain == &world_regdom)
161 		cfg80211_regdomain = NULL;
162 
163 	kfree(cfg80211_regdomain);
164 	kfree(cfg80211_world_regdom);
165 
166 	cfg80211_world_regdom = &world_regdom;
167 	cfg80211_regdomain = NULL;
168 }
169 
170 /*
171  * Dynamic world regulatory domain requested by the wireless
172  * core upon initialization
173  */
174 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
175 {
176 	BUG_ON(!last_request);
177 
178 	reset_regdomains();
179 
180 	cfg80211_world_regdom = rd;
181 	cfg80211_regdomain = rd;
182 }
183 
184 bool is_world_regdom(const char *alpha2)
185 {
186 	if (!alpha2)
187 		return false;
188 	if (alpha2[0] == '0' && alpha2[1] == '0')
189 		return true;
190 	return false;
191 }
192 
193 static bool is_alpha2_set(const char *alpha2)
194 {
195 	if (!alpha2)
196 		return false;
197 	if (alpha2[0] != 0 && alpha2[1] != 0)
198 		return true;
199 	return false;
200 }
201 
202 static bool is_unknown_alpha2(const char *alpha2)
203 {
204 	if (!alpha2)
205 		return false;
206 	/*
207 	 * Special case where regulatory domain was built by driver
208 	 * but a specific alpha2 cannot be determined
209 	 */
210 	if (alpha2[0] == '9' && alpha2[1] == '9')
211 		return true;
212 	return false;
213 }
214 
215 static bool is_intersected_alpha2(const char *alpha2)
216 {
217 	if (!alpha2)
218 		return false;
219 	/*
220 	 * Special case where regulatory domain is the
221 	 * result of an intersection between two regulatory domain
222 	 * structures
223 	 */
224 	if (alpha2[0] == '9' && alpha2[1] == '8')
225 		return true;
226 	return false;
227 }
228 
229 static bool is_an_alpha2(const char *alpha2)
230 {
231 	if (!alpha2)
232 		return false;
233 	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
234 		return true;
235 	return false;
236 }
237 
238 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
239 {
240 	if (!alpha2_x || !alpha2_y)
241 		return false;
242 	if (alpha2_x[0] == alpha2_y[0] &&
243 		alpha2_x[1] == alpha2_y[1])
244 		return true;
245 	return false;
246 }
247 
248 static bool regdom_changes(const char *alpha2)
249 {
250 	assert_cfg80211_lock();
251 
252 	if (!cfg80211_regdomain)
253 		return true;
254 	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
255 		return false;
256 	return true;
257 }
258 
259 /*
260  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
261  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
262  * has ever been issued.
263  */
264 static bool is_user_regdom_saved(void)
265 {
266 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
267 		return false;
268 
269 	/* This would indicate a mistake on the design */
270 	if (WARN((!is_world_regdom(user_alpha2) &&
271 		  !is_an_alpha2(user_alpha2)),
272 		 "Unexpected user alpha2: %c%c\n",
273 		 user_alpha2[0],
274 	         user_alpha2[1]))
275 		return false;
276 
277 	return true;
278 }
279 
280 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
281 			 const struct ieee80211_regdomain *src_regd)
282 {
283 	struct ieee80211_regdomain *regd;
284 	int size_of_regd = 0;
285 	unsigned int i;
286 
287 	size_of_regd = sizeof(struct ieee80211_regdomain) +
288 	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
289 
290 	regd = kzalloc(size_of_regd, GFP_KERNEL);
291 	if (!regd)
292 		return -ENOMEM;
293 
294 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
295 
296 	for (i = 0; i < src_regd->n_reg_rules; i++)
297 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
298 			sizeof(struct ieee80211_reg_rule));
299 
300 	*dst_regd = regd;
301 	return 0;
302 }
303 
304 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
305 struct reg_regdb_search_request {
306 	char alpha2[2];
307 	struct list_head list;
308 };
309 
310 static LIST_HEAD(reg_regdb_search_list);
311 static DEFINE_MUTEX(reg_regdb_search_mutex);
312 
313 static void reg_regdb_search(struct work_struct *work)
314 {
315 	struct reg_regdb_search_request *request;
316 	const struct ieee80211_regdomain *curdom, *regdom;
317 	int i, r;
318 
319 	mutex_lock(&reg_regdb_search_mutex);
320 	while (!list_empty(&reg_regdb_search_list)) {
321 		request = list_first_entry(&reg_regdb_search_list,
322 					   struct reg_regdb_search_request,
323 					   list);
324 		list_del(&request->list);
325 
326 		for (i=0; i<reg_regdb_size; i++) {
327 			curdom = reg_regdb[i];
328 
329 			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
330 				r = reg_copy_regd(&regdom, curdom);
331 				if (r)
332 					break;
333 				mutex_lock(&cfg80211_mutex);
334 				set_regdom(regdom);
335 				mutex_unlock(&cfg80211_mutex);
336 				break;
337 			}
338 		}
339 
340 		kfree(request);
341 	}
342 	mutex_unlock(&reg_regdb_search_mutex);
343 }
344 
345 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
346 
347 static void reg_regdb_query(const char *alpha2)
348 {
349 	struct reg_regdb_search_request *request;
350 
351 	if (!alpha2)
352 		return;
353 
354 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
355 	if (!request)
356 		return;
357 
358 	memcpy(request->alpha2, alpha2, 2);
359 
360 	mutex_lock(&reg_regdb_search_mutex);
361 	list_add_tail(&request->list, &reg_regdb_search_list);
362 	mutex_unlock(&reg_regdb_search_mutex);
363 
364 	schedule_work(&reg_regdb_work);
365 }
366 #else
367 static inline void reg_regdb_query(const char *alpha2) {}
368 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
369 
370 /*
371  * This lets us keep regulatory code which is updated on a regulatory
372  * basis in userspace. Country information is filled in by
373  * reg_device_uevent
374  */
375 static int call_crda(const char *alpha2)
376 {
377 	if (!is_world_regdom((char *) alpha2))
378 		pr_info("Calling CRDA for country: %c%c\n",
379 			alpha2[0], alpha2[1]);
380 	else
381 		pr_info("Calling CRDA to update world regulatory domain\n");
382 
383 	/* query internal regulatory database (if it exists) */
384 	reg_regdb_query(alpha2);
385 
386 	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
387 }
388 
389 /* Used by nl80211 before kmalloc'ing our regulatory domain */
390 bool reg_is_valid_request(const char *alpha2)
391 {
392 	assert_cfg80211_lock();
393 
394 	if (!last_request)
395 		return false;
396 
397 	return alpha2_equal(last_request->alpha2, alpha2);
398 }
399 
400 /* Sanity check on a regulatory rule */
401 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
402 {
403 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
404 	u32 freq_diff;
405 
406 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
407 		return false;
408 
409 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
410 		return false;
411 
412 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
413 
414 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
415 			freq_range->max_bandwidth_khz > freq_diff)
416 		return false;
417 
418 	return true;
419 }
420 
421 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
422 {
423 	const struct ieee80211_reg_rule *reg_rule = NULL;
424 	unsigned int i;
425 
426 	if (!rd->n_reg_rules)
427 		return false;
428 
429 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
430 		return false;
431 
432 	for (i = 0; i < rd->n_reg_rules; i++) {
433 		reg_rule = &rd->reg_rules[i];
434 		if (!is_valid_reg_rule(reg_rule))
435 			return false;
436 	}
437 
438 	return true;
439 }
440 
441 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
442 			    u32 center_freq_khz,
443 			    u32 bw_khz)
444 {
445 	u32 start_freq_khz, end_freq_khz;
446 
447 	start_freq_khz = center_freq_khz - (bw_khz/2);
448 	end_freq_khz = center_freq_khz + (bw_khz/2);
449 
450 	if (start_freq_khz >= freq_range->start_freq_khz &&
451 	    end_freq_khz <= freq_range->end_freq_khz)
452 		return true;
453 
454 	return false;
455 }
456 
457 /**
458  * freq_in_rule_band - tells us if a frequency is in a frequency band
459  * @freq_range: frequency rule we want to query
460  * @freq_khz: frequency we are inquiring about
461  *
462  * This lets us know if a specific frequency rule is or is not relevant to
463  * a specific frequency's band. Bands are device specific and artificial
464  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
465  * safe for now to assume that a frequency rule should not be part of a
466  * frequency's band if the start freq or end freq are off by more than 2 GHz.
467  * This resolution can be lowered and should be considered as we add
468  * regulatory rule support for other "bands".
469  **/
470 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
471 	u32 freq_khz)
472 {
473 #define ONE_GHZ_IN_KHZ	1000000
474 	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
475 		return true;
476 	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
477 		return true;
478 	return false;
479 #undef ONE_GHZ_IN_KHZ
480 }
481 
482 /*
483  * Helper for regdom_intersect(), this does the real
484  * mathematical intersection fun
485  */
486 static int reg_rules_intersect(
487 	const struct ieee80211_reg_rule *rule1,
488 	const struct ieee80211_reg_rule *rule2,
489 	struct ieee80211_reg_rule *intersected_rule)
490 {
491 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
492 	struct ieee80211_freq_range *freq_range;
493 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
494 	struct ieee80211_power_rule *power_rule;
495 	u32 freq_diff;
496 
497 	freq_range1 = &rule1->freq_range;
498 	freq_range2 = &rule2->freq_range;
499 	freq_range = &intersected_rule->freq_range;
500 
501 	power_rule1 = &rule1->power_rule;
502 	power_rule2 = &rule2->power_rule;
503 	power_rule = &intersected_rule->power_rule;
504 
505 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
506 		freq_range2->start_freq_khz);
507 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
508 		freq_range2->end_freq_khz);
509 	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
510 		freq_range2->max_bandwidth_khz);
511 
512 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
513 	if (freq_range->max_bandwidth_khz > freq_diff)
514 		freq_range->max_bandwidth_khz = freq_diff;
515 
516 	power_rule->max_eirp = min(power_rule1->max_eirp,
517 		power_rule2->max_eirp);
518 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
519 		power_rule2->max_antenna_gain);
520 
521 	intersected_rule->flags = (rule1->flags | rule2->flags);
522 
523 	if (!is_valid_reg_rule(intersected_rule))
524 		return -EINVAL;
525 
526 	return 0;
527 }
528 
529 /**
530  * regdom_intersect - do the intersection between two regulatory domains
531  * @rd1: first regulatory domain
532  * @rd2: second regulatory domain
533  *
534  * Use this function to get the intersection between two regulatory domains.
535  * Once completed we will mark the alpha2 for the rd as intersected, "98",
536  * as no one single alpha2 can represent this regulatory domain.
537  *
538  * Returns a pointer to the regulatory domain structure which will hold the
539  * resulting intersection of rules between rd1 and rd2. We will
540  * kzalloc() this structure for you.
541  */
542 static struct ieee80211_regdomain *regdom_intersect(
543 	const struct ieee80211_regdomain *rd1,
544 	const struct ieee80211_regdomain *rd2)
545 {
546 	int r, size_of_regd;
547 	unsigned int x, y;
548 	unsigned int num_rules = 0, rule_idx = 0;
549 	const struct ieee80211_reg_rule *rule1, *rule2;
550 	struct ieee80211_reg_rule *intersected_rule;
551 	struct ieee80211_regdomain *rd;
552 	/* This is just a dummy holder to help us count */
553 	struct ieee80211_reg_rule irule;
554 
555 	/* Uses the stack temporarily for counter arithmetic */
556 	intersected_rule = &irule;
557 
558 	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
559 
560 	if (!rd1 || !rd2)
561 		return NULL;
562 
563 	/*
564 	 * First we get a count of the rules we'll need, then we actually
565 	 * build them. This is to so we can malloc() and free() a
566 	 * regdomain once. The reason we use reg_rules_intersect() here
567 	 * is it will return -EINVAL if the rule computed makes no sense.
568 	 * All rules that do check out OK are valid.
569 	 */
570 
571 	for (x = 0; x < rd1->n_reg_rules; x++) {
572 		rule1 = &rd1->reg_rules[x];
573 		for (y = 0; y < rd2->n_reg_rules; y++) {
574 			rule2 = &rd2->reg_rules[y];
575 			if (!reg_rules_intersect(rule1, rule2,
576 					intersected_rule))
577 				num_rules++;
578 			memset(intersected_rule, 0,
579 					sizeof(struct ieee80211_reg_rule));
580 		}
581 	}
582 
583 	if (!num_rules)
584 		return NULL;
585 
586 	size_of_regd = sizeof(struct ieee80211_regdomain) +
587 		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
588 
589 	rd = kzalloc(size_of_regd, GFP_KERNEL);
590 	if (!rd)
591 		return NULL;
592 
593 	for (x = 0; x < rd1->n_reg_rules; x++) {
594 		rule1 = &rd1->reg_rules[x];
595 		for (y = 0; y < rd2->n_reg_rules; y++) {
596 			rule2 = &rd2->reg_rules[y];
597 			/*
598 			 * This time around instead of using the stack lets
599 			 * write to the target rule directly saving ourselves
600 			 * a memcpy()
601 			 */
602 			intersected_rule = &rd->reg_rules[rule_idx];
603 			r = reg_rules_intersect(rule1, rule2,
604 				intersected_rule);
605 			/*
606 			 * No need to memset here the intersected rule here as
607 			 * we're not using the stack anymore
608 			 */
609 			if (r)
610 				continue;
611 			rule_idx++;
612 		}
613 	}
614 
615 	if (rule_idx != num_rules) {
616 		kfree(rd);
617 		return NULL;
618 	}
619 
620 	rd->n_reg_rules = num_rules;
621 	rd->alpha2[0] = '9';
622 	rd->alpha2[1] = '8';
623 
624 	return rd;
625 }
626 
627 /*
628  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
629  * want to just have the channel structure use these
630  */
631 static u32 map_regdom_flags(u32 rd_flags)
632 {
633 	u32 channel_flags = 0;
634 	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
635 		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
636 	if (rd_flags & NL80211_RRF_NO_IBSS)
637 		channel_flags |= IEEE80211_CHAN_NO_IBSS;
638 	if (rd_flags & NL80211_RRF_DFS)
639 		channel_flags |= IEEE80211_CHAN_RADAR;
640 	return channel_flags;
641 }
642 
643 static int freq_reg_info_regd(struct wiphy *wiphy,
644 			      u32 center_freq,
645 			      u32 desired_bw_khz,
646 			      const struct ieee80211_reg_rule **reg_rule,
647 			      const struct ieee80211_regdomain *custom_regd)
648 {
649 	int i;
650 	bool band_rule_found = false;
651 	const struct ieee80211_regdomain *regd;
652 	bool bw_fits = false;
653 
654 	if (!desired_bw_khz)
655 		desired_bw_khz = MHZ_TO_KHZ(20);
656 
657 	regd = custom_regd ? custom_regd : cfg80211_regdomain;
658 
659 	/*
660 	 * Follow the driver's regulatory domain, if present, unless a country
661 	 * IE has been processed or a user wants to help complaince further
662 	 */
663 	if (!custom_regd &&
664 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
665 	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
666 	    wiphy->regd)
667 		regd = wiphy->regd;
668 
669 	if (!regd)
670 		return -EINVAL;
671 
672 	for (i = 0; i < regd->n_reg_rules; i++) {
673 		const struct ieee80211_reg_rule *rr;
674 		const struct ieee80211_freq_range *fr = NULL;
675 
676 		rr = &regd->reg_rules[i];
677 		fr = &rr->freq_range;
678 
679 		/*
680 		 * We only need to know if one frequency rule was
681 		 * was in center_freq's band, that's enough, so lets
682 		 * not overwrite it once found
683 		 */
684 		if (!band_rule_found)
685 			band_rule_found = freq_in_rule_band(fr, center_freq);
686 
687 		bw_fits = reg_does_bw_fit(fr,
688 					  center_freq,
689 					  desired_bw_khz);
690 
691 		if (band_rule_found && bw_fits) {
692 			*reg_rule = rr;
693 			return 0;
694 		}
695 	}
696 
697 	if (!band_rule_found)
698 		return -ERANGE;
699 
700 	return -EINVAL;
701 }
702 
703 int freq_reg_info(struct wiphy *wiphy,
704 		  u32 center_freq,
705 		  u32 desired_bw_khz,
706 		  const struct ieee80211_reg_rule **reg_rule)
707 {
708 	assert_cfg80211_lock();
709 	return freq_reg_info_regd(wiphy,
710 				  center_freq,
711 				  desired_bw_khz,
712 				  reg_rule,
713 				  NULL);
714 }
715 EXPORT_SYMBOL(freq_reg_info);
716 
717 #ifdef CONFIG_CFG80211_REG_DEBUG
718 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
719 {
720 	switch (initiator) {
721 	case NL80211_REGDOM_SET_BY_CORE:
722 		return "Set by core";
723 	case NL80211_REGDOM_SET_BY_USER:
724 		return "Set by user";
725 	case NL80211_REGDOM_SET_BY_DRIVER:
726 		return "Set by driver";
727 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
728 		return "Set by country IE";
729 	default:
730 		WARN_ON(1);
731 		return "Set by bug";
732 	}
733 }
734 
735 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
736 				    u32 desired_bw_khz,
737 				    const struct ieee80211_reg_rule *reg_rule)
738 {
739 	const struct ieee80211_power_rule *power_rule;
740 	const struct ieee80211_freq_range *freq_range;
741 	char max_antenna_gain[32];
742 
743 	power_rule = &reg_rule->power_rule;
744 	freq_range = &reg_rule->freq_range;
745 
746 	if (!power_rule->max_antenna_gain)
747 		snprintf(max_antenna_gain, 32, "N/A");
748 	else
749 		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
750 
751 	REG_DBG_PRINT("Updating information on frequency %d MHz "
752 		      "for a %d MHz width channel with regulatory rule:\n",
753 		      chan->center_freq,
754 		      KHZ_TO_MHZ(desired_bw_khz));
755 
756 	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
757 		      freq_range->start_freq_khz,
758 		      freq_range->end_freq_khz,
759 		      freq_range->max_bandwidth_khz,
760 		      max_antenna_gain,
761 		      power_rule->max_eirp);
762 }
763 #else
764 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
765 				    u32 desired_bw_khz,
766 				    const struct ieee80211_reg_rule *reg_rule)
767 {
768 	return;
769 }
770 #endif
771 
772 /*
773  * Note that right now we assume the desired channel bandwidth
774  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
775  * per channel, the primary and the extension channel). To support
776  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
777  * new ieee80211_channel.target_bw and re run the regulatory check
778  * on the wiphy with the target_bw specified. Then we can simply use
779  * that below for the desired_bw_khz below.
780  */
781 static void handle_channel(struct wiphy *wiphy,
782 			   enum nl80211_reg_initiator initiator,
783 			   enum ieee80211_band band,
784 			   unsigned int chan_idx)
785 {
786 	int r;
787 	u32 flags, bw_flags = 0;
788 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
789 	const struct ieee80211_reg_rule *reg_rule = NULL;
790 	const struct ieee80211_power_rule *power_rule = NULL;
791 	const struct ieee80211_freq_range *freq_range = NULL;
792 	struct ieee80211_supported_band *sband;
793 	struct ieee80211_channel *chan;
794 	struct wiphy *request_wiphy = NULL;
795 
796 	assert_cfg80211_lock();
797 
798 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
799 
800 	sband = wiphy->bands[band];
801 	BUG_ON(chan_idx >= sband->n_channels);
802 	chan = &sband->channels[chan_idx];
803 
804 	flags = chan->orig_flags;
805 
806 	r = freq_reg_info(wiphy,
807 			  MHZ_TO_KHZ(chan->center_freq),
808 			  desired_bw_khz,
809 			  &reg_rule);
810 
811 	if (r) {
812 		/*
813 		 * We will disable all channels that do not match our
814 		 * received regulatory rule unless the hint is coming
815 		 * from a Country IE and the Country IE had no information
816 		 * about a band. The IEEE 802.11 spec allows for an AP
817 		 * to send only a subset of the regulatory rules allowed,
818 		 * so an AP in the US that only supports 2.4 GHz may only send
819 		 * a country IE with information for the 2.4 GHz band
820 		 * while 5 GHz is still supported.
821 		 */
822 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
823 		    r == -ERANGE)
824 			return;
825 
826 		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
827 		chan->flags = IEEE80211_CHAN_DISABLED;
828 		return;
829 	}
830 
831 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
832 
833 	power_rule = &reg_rule->power_rule;
834 	freq_range = &reg_rule->freq_range;
835 
836 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
837 		bw_flags = IEEE80211_CHAN_NO_HT40;
838 
839 	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
840 	    request_wiphy && request_wiphy == wiphy &&
841 	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
842 		/*
843 		 * This guarantees the driver's requested regulatory domain
844 		 * will always be used as a base for further regulatory
845 		 * settings
846 		 */
847 		chan->flags = chan->orig_flags =
848 			map_regdom_flags(reg_rule->flags) | bw_flags;
849 		chan->max_antenna_gain = chan->orig_mag =
850 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
851 		chan->max_power = chan->orig_mpwr =
852 			(int) MBM_TO_DBM(power_rule->max_eirp);
853 		return;
854 	}
855 
856 	chan->beacon_found = false;
857 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
858 	chan->max_antenna_gain = min(chan->orig_mag,
859 		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
860 	if (chan->orig_mpwr)
861 		chan->max_power = min(chan->orig_mpwr,
862 			(int) MBM_TO_DBM(power_rule->max_eirp));
863 	else
864 		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
865 }
866 
867 static void handle_band(struct wiphy *wiphy,
868 			enum ieee80211_band band,
869 			enum nl80211_reg_initiator initiator)
870 {
871 	unsigned int i;
872 	struct ieee80211_supported_band *sband;
873 
874 	BUG_ON(!wiphy->bands[band]);
875 	sband = wiphy->bands[band];
876 
877 	for (i = 0; i < sband->n_channels; i++)
878 		handle_channel(wiphy, initiator, band, i);
879 }
880 
881 static bool ignore_reg_update(struct wiphy *wiphy,
882 			      enum nl80211_reg_initiator initiator)
883 {
884 	if (!last_request) {
885 		REG_DBG_PRINT("Ignoring regulatory request %s since "
886 			      "last_request is not set\n",
887 			      reg_initiator_name(initiator));
888 		return true;
889 	}
890 
891 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
892 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
893 		REG_DBG_PRINT("Ignoring regulatory request %s "
894 			      "since the driver uses its own custom "
895 			      "regulatory domain\n",
896 			      reg_initiator_name(initiator));
897 		return true;
898 	}
899 
900 	/*
901 	 * wiphy->regd will be set once the device has its own
902 	 * desired regulatory domain set
903 	 */
904 	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
905 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
906 	    !is_world_regdom(last_request->alpha2)) {
907 		REG_DBG_PRINT("Ignoring regulatory request %s "
908 			      "since the driver requires its own regulatory "
909 			      "domain to be set first\n",
910 			      reg_initiator_name(initiator));
911 		return true;
912 	}
913 
914 	return false;
915 }
916 
917 static void handle_reg_beacon(struct wiphy *wiphy,
918 			      unsigned int chan_idx,
919 			      struct reg_beacon *reg_beacon)
920 {
921 	struct ieee80211_supported_band *sband;
922 	struct ieee80211_channel *chan;
923 	bool channel_changed = false;
924 	struct ieee80211_channel chan_before;
925 
926 	assert_cfg80211_lock();
927 
928 	sband = wiphy->bands[reg_beacon->chan.band];
929 	chan = &sband->channels[chan_idx];
930 
931 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
932 		return;
933 
934 	if (chan->beacon_found)
935 		return;
936 
937 	chan->beacon_found = true;
938 
939 	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
940 		return;
941 
942 	chan_before.center_freq = chan->center_freq;
943 	chan_before.flags = chan->flags;
944 
945 	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
946 		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
947 		channel_changed = true;
948 	}
949 
950 	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
951 		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
952 		channel_changed = true;
953 	}
954 
955 	if (channel_changed)
956 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
957 }
958 
959 /*
960  * Called when a scan on a wiphy finds a beacon on
961  * new channel
962  */
963 static void wiphy_update_new_beacon(struct wiphy *wiphy,
964 				    struct reg_beacon *reg_beacon)
965 {
966 	unsigned int i;
967 	struct ieee80211_supported_band *sband;
968 
969 	assert_cfg80211_lock();
970 
971 	if (!wiphy->bands[reg_beacon->chan.band])
972 		return;
973 
974 	sband = wiphy->bands[reg_beacon->chan.band];
975 
976 	for (i = 0; i < sband->n_channels; i++)
977 		handle_reg_beacon(wiphy, i, reg_beacon);
978 }
979 
980 /*
981  * Called upon reg changes or a new wiphy is added
982  */
983 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
984 {
985 	unsigned int i;
986 	struct ieee80211_supported_band *sband;
987 	struct reg_beacon *reg_beacon;
988 
989 	assert_cfg80211_lock();
990 
991 	if (list_empty(&reg_beacon_list))
992 		return;
993 
994 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
995 		if (!wiphy->bands[reg_beacon->chan.band])
996 			continue;
997 		sband = wiphy->bands[reg_beacon->chan.band];
998 		for (i = 0; i < sband->n_channels; i++)
999 			handle_reg_beacon(wiphy, i, reg_beacon);
1000 	}
1001 }
1002 
1003 static bool reg_is_world_roaming(struct wiphy *wiphy)
1004 {
1005 	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1006 	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1007 		return true;
1008 	if (last_request &&
1009 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1010 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1011 		return true;
1012 	return false;
1013 }
1014 
1015 /* Reap the advantages of previously found beacons */
1016 static void reg_process_beacons(struct wiphy *wiphy)
1017 {
1018 	/*
1019 	 * Means we are just firing up cfg80211, so no beacons would
1020 	 * have been processed yet.
1021 	 */
1022 	if (!last_request)
1023 		return;
1024 	if (!reg_is_world_roaming(wiphy))
1025 		return;
1026 	wiphy_update_beacon_reg(wiphy);
1027 }
1028 
1029 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1030 {
1031 	if (!chan)
1032 		return true;
1033 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1034 		return true;
1035 	/* This would happen when regulatory rules disallow HT40 completely */
1036 	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1037 		return true;
1038 	return false;
1039 }
1040 
1041 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1042 					 enum ieee80211_band band,
1043 					 unsigned int chan_idx)
1044 {
1045 	struct ieee80211_supported_band *sband;
1046 	struct ieee80211_channel *channel;
1047 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1048 	unsigned int i;
1049 
1050 	assert_cfg80211_lock();
1051 
1052 	sband = wiphy->bands[band];
1053 	BUG_ON(chan_idx >= sband->n_channels);
1054 	channel = &sband->channels[chan_idx];
1055 
1056 	if (is_ht40_not_allowed(channel)) {
1057 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1058 		return;
1059 	}
1060 
1061 	/*
1062 	 * We need to ensure the extension channels exist to
1063 	 * be able to use HT40- or HT40+, this finds them (or not)
1064 	 */
1065 	for (i = 0; i < sband->n_channels; i++) {
1066 		struct ieee80211_channel *c = &sband->channels[i];
1067 		if (c->center_freq == (channel->center_freq - 20))
1068 			channel_before = c;
1069 		if (c->center_freq == (channel->center_freq + 20))
1070 			channel_after = c;
1071 	}
1072 
1073 	/*
1074 	 * Please note that this assumes target bandwidth is 20 MHz,
1075 	 * if that ever changes we also need to change the below logic
1076 	 * to include that as well.
1077 	 */
1078 	if (is_ht40_not_allowed(channel_before))
1079 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1080 	else
1081 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1082 
1083 	if (is_ht40_not_allowed(channel_after))
1084 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1085 	else
1086 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1087 }
1088 
1089 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1090 				      enum ieee80211_band band)
1091 {
1092 	unsigned int i;
1093 	struct ieee80211_supported_band *sband;
1094 
1095 	BUG_ON(!wiphy->bands[band]);
1096 	sband = wiphy->bands[band];
1097 
1098 	for (i = 0; i < sband->n_channels; i++)
1099 		reg_process_ht_flags_channel(wiphy, band, i);
1100 }
1101 
1102 static void reg_process_ht_flags(struct wiphy *wiphy)
1103 {
1104 	enum ieee80211_band band;
1105 
1106 	if (!wiphy)
1107 		return;
1108 
1109 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1110 		if (wiphy->bands[band])
1111 			reg_process_ht_flags_band(wiphy, band);
1112 	}
1113 
1114 }
1115 
1116 static void wiphy_update_regulatory(struct wiphy *wiphy,
1117 				    enum nl80211_reg_initiator initiator)
1118 {
1119 	enum ieee80211_band band;
1120 
1121 	assert_reg_lock();
1122 
1123 	if (ignore_reg_update(wiphy, initiator))
1124 		return;
1125 
1126 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1127 		if (wiphy->bands[band])
1128 			handle_band(wiphy, band, initiator);
1129 	}
1130 
1131 	reg_process_beacons(wiphy);
1132 	reg_process_ht_flags(wiphy);
1133 	if (wiphy->reg_notifier)
1134 		wiphy->reg_notifier(wiphy, last_request);
1135 }
1136 
1137 void regulatory_update(struct wiphy *wiphy,
1138 		       enum nl80211_reg_initiator setby)
1139 {
1140 	mutex_lock(&reg_mutex);
1141 	wiphy_update_regulatory(wiphy, setby);
1142 	mutex_unlock(&reg_mutex);
1143 }
1144 
1145 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1146 {
1147 	struct cfg80211_registered_device *rdev;
1148 
1149 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1150 		wiphy_update_regulatory(&rdev->wiphy, initiator);
1151 }
1152 
1153 static void handle_channel_custom(struct wiphy *wiphy,
1154 				  enum ieee80211_band band,
1155 				  unsigned int chan_idx,
1156 				  const struct ieee80211_regdomain *regd)
1157 {
1158 	int r;
1159 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1160 	u32 bw_flags = 0;
1161 	const struct ieee80211_reg_rule *reg_rule = NULL;
1162 	const struct ieee80211_power_rule *power_rule = NULL;
1163 	const struct ieee80211_freq_range *freq_range = NULL;
1164 	struct ieee80211_supported_band *sband;
1165 	struct ieee80211_channel *chan;
1166 
1167 	assert_reg_lock();
1168 
1169 	sband = wiphy->bands[band];
1170 	BUG_ON(chan_idx >= sband->n_channels);
1171 	chan = &sband->channels[chan_idx];
1172 
1173 	r = freq_reg_info_regd(wiphy,
1174 			       MHZ_TO_KHZ(chan->center_freq),
1175 			       desired_bw_khz,
1176 			       &reg_rule,
1177 			       regd);
1178 
1179 	if (r) {
1180 		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1181 			      "regd has no rule that fits a %d MHz "
1182 			      "wide channel\n",
1183 			      chan->center_freq,
1184 			      KHZ_TO_MHZ(desired_bw_khz));
1185 		chan->flags = IEEE80211_CHAN_DISABLED;
1186 		return;
1187 	}
1188 
1189 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1190 
1191 	power_rule = &reg_rule->power_rule;
1192 	freq_range = &reg_rule->freq_range;
1193 
1194 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1195 		bw_flags = IEEE80211_CHAN_NO_HT40;
1196 
1197 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1198 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1199 	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1200 }
1201 
1202 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1203 			       const struct ieee80211_regdomain *regd)
1204 {
1205 	unsigned int i;
1206 	struct ieee80211_supported_band *sband;
1207 
1208 	BUG_ON(!wiphy->bands[band]);
1209 	sband = wiphy->bands[band];
1210 
1211 	for (i = 0; i < sband->n_channels; i++)
1212 		handle_channel_custom(wiphy, band, i, regd);
1213 }
1214 
1215 /* Used by drivers prior to wiphy registration */
1216 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1217 				   const struct ieee80211_regdomain *regd)
1218 {
1219 	enum ieee80211_band band;
1220 	unsigned int bands_set = 0;
1221 
1222 	mutex_lock(&reg_mutex);
1223 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1224 		if (!wiphy->bands[band])
1225 			continue;
1226 		handle_band_custom(wiphy, band, regd);
1227 		bands_set++;
1228 	}
1229 	mutex_unlock(&reg_mutex);
1230 
1231 	/*
1232 	 * no point in calling this if it won't have any effect
1233 	 * on your device's supportd bands.
1234 	 */
1235 	WARN_ON(!bands_set);
1236 }
1237 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1238 
1239 /*
1240  * Return value which can be used by ignore_request() to indicate
1241  * it has been determined we should intersect two regulatory domains
1242  */
1243 #define REG_INTERSECT	1
1244 
1245 /* This has the logic which determines when a new request
1246  * should be ignored. */
1247 static int ignore_request(struct wiphy *wiphy,
1248 			  struct regulatory_request *pending_request)
1249 {
1250 	struct wiphy *last_wiphy = NULL;
1251 
1252 	assert_cfg80211_lock();
1253 
1254 	/* All initial requests are respected */
1255 	if (!last_request)
1256 		return 0;
1257 
1258 	switch (pending_request->initiator) {
1259 	case NL80211_REGDOM_SET_BY_CORE:
1260 		return 0;
1261 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1262 
1263 		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1264 
1265 		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1266 			return -EINVAL;
1267 		if (last_request->initiator ==
1268 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1269 			if (last_wiphy != wiphy) {
1270 				/*
1271 				 * Two cards with two APs claiming different
1272 				 * Country IE alpha2s. We could
1273 				 * intersect them, but that seems unlikely
1274 				 * to be correct. Reject second one for now.
1275 				 */
1276 				if (regdom_changes(pending_request->alpha2))
1277 					return -EOPNOTSUPP;
1278 				return -EALREADY;
1279 			}
1280 			/*
1281 			 * Two consecutive Country IE hints on the same wiphy.
1282 			 * This should be picked up early by the driver/stack
1283 			 */
1284 			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1285 				return 0;
1286 			return -EALREADY;
1287 		}
1288 		return 0;
1289 	case NL80211_REGDOM_SET_BY_DRIVER:
1290 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1291 			if (regdom_changes(pending_request->alpha2))
1292 				return 0;
1293 			return -EALREADY;
1294 		}
1295 
1296 		/*
1297 		 * This would happen if you unplug and plug your card
1298 		 * back in or if you add a new device for which the previously
1299 		 * loaded card also agrees on the regulatory domain.
1300 		 */
1301 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1302 		    !regdom_changes(pending_request->alpha2))
1303 			return -EALREADY;
1304 
1305 		return REG_INTERSECT;
1306 	case NL80211_REGDOM_SET_BY_USER:
1307 		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1308 			return REG_INTERSECT;
1309 		/*
1310 		 * If the user knows better the user should set the regdom
1311 		 * to their country before the IE is picked up
1312 		 */
1313 		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1314 			  last_request->intersect)
1315 			return -EOPNOTSUPP;
1316 		/*
1317 		 * Process user requests only after previous user/driver/core
1318 		 * requests have been processed
1319 		 */
1320 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1321 		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1322 		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1323 			if (regdom_changes(last_request->alpha2))
1324 				return -EAGAIN;
1325 		}
1326 
1327 		if (!regdom_changes(pending_request->alpha2))
1328 			return -EALREADY;
1329 
1330 		return 0;
1331 	}
1332 
1333 	return -EINVAL;
1334 }
1335 
1336 static void reg_set_request_processed(void)
1337 {
1338 	bool need_more_processing = false;
1339 
1340 	last_request->processed = true;
1341 
1342 	spin_lock(&reg_requests_lock);
1343 	if (!list_empty(&reg_requests_list))
1344 		need_more_processing = true;
1345 	spin_unlock(&reg_requests_lock);
1346 
1347 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1348 		cancel_delayed_work_sync(&reg_timeout);
1349 
1350 	if (need_more_processing)
1351 		schedule_work(&reg_work);
1352 }
1353 
1354 /**
1355  * __regulatory_hint - hint to the wireless core a regulatory domain
1356  * @wiphy: if the hint comes from country information from an AP, this
1357  *	is required to be set to the wiphy that received the information
1358  * @pending_request: the regulatory request currently being processed
1359  *
1360  * The Wireless subsystem can use this function to hint to the wireless core
1361  * what it believes should be the current regulatory domain.
1362  *
1363  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1364  * already been set or other standard error codes.
1365  *
1366  * Caller must hold &cfg80211_mutex and &reg_mutex
1367  */
1368 static int __regulatory_hint(struct wiphy *wiphy,
1369 			     struct regulatory_request *pending_request)
1370 {
1371 	bool intersect = false;
1372 	int r = 0;
1373 
1374 	assert_cfg80211_lock();
1375 
1376 	r = ignore_request(wiphy, pending_request);
1377 
1378 	if (r == REG_INTERSECT) {
1379 		if (pending_request->initiator ==
1380 		    NL80211_REGDOM_SET_BY_DRIVER) {
1381 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1382 			if (r) {
1383 				kfree(pending_request);
1384 				return r;
1385 			}
1386 		}
1387 		intersect = true;
1388 	} else if (r) {
1389 		/*
1390 		 * If the regulatory domain being requested by the
1391 		 * driver has already been set just copy it to the
1392 		 * wiphy
1393 		 */
1394 		if (r == -EALREADY &&
1395 		    pending_request->initiator ==
1396 		    NL80211_REGDOM_SET_BY_DRIVER) {
1397 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1398 			if (r) {
1399 				kfree(pending_request);
1400 				return r;
1401 			}
1402 			r = -EALREADY;
1403 			goto new_request;
1404 		}
1405 		kfree(pending_request);
1406 		return r;
1407 	}
1408 
1409 new_request:
1410 	kfree(last_request);
1411 
1412 	last_request = pending_request;
1413 	last_request->intersect = intersect;
1414 
1415 	pending_request = NULL;
1416 
1417 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1418 		user_alpha2[0] = last_request->alpha2[0];
1419 		user_alpha2[1] = last_request->alpha2[1];
1420 	}
1421 
1422 	/* When r == REG_INTERSECT we do need to call CRDA */
1423 	if (r < 0) {
1424 		/*
1425 		 * Since CRDA will not be called in this case as we already
1426 		 * have applied the requested regulatory domain before we just
1427 		 * inform userspace we have processed the request
1428 		 */
1429 		if (r == -EALREADY) {
1430 			nl80211_send_reg_change_event(last_request);
1431 			reg_set_request_processed();
1432 		}
1433 		return r;
1434 	}
1435 
1436 	return call_crda(last_request->alpha2);
1437 }
1438 
1439 /* This processes *all* regulatory hints */
1440 static void reg_process_hint(struct regulatory_request *reg_request)
1441 {
1442 	int r = 0;
1443 	struct wiphy *wiphy = NULL;
1444 	enum nl80211_reg_initiator initiator = reg_request->initiator;
1445 
1446 	BUG_ON(!reg_request->alpha2);
1447 
1448 	if (wiphy_idx_valid(reg_request->wiphy_idx))
1449 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1450 
1451 	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1452 	    !wiphy) {
1453 		kfree(reg_request);
1454 		return;
1455 	}
1456 
1457 	r = __regulatory_hint(wiphy, reg_request);
1458 	/* This is required so that the orig_* parameters are saved */
1459 	if (r == -EALREADY && wiphy &&
1460 	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1461 		wiphy_update_regulatory(wiphy, initiator);
1462 		return;
1463 	}
1464 
1465 	/*
1466 	 * We only time out user hints, given that they should be the only
1467 	 * source of bogus requests.
1468 	 */
1469 	if (r != -EALREADY &&
1470 	    reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1471 		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1472 }
1473 
1474 /*
1475  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1476  * Regulatory hints come on a first come first serve basis and we
1477  * must process each one atomically.
1478  */
1479 static void reg_process_pending_hints(void)
1480 {
1481 	struct regulatory_request *reg_request;
1482 
1483 	mutex_lock(&cfg80211_mutex);
1484 	mutex_lock(&reg_mutex);
1485 
1486 	/* When last_request->processed becomes true this will be rescheduled */
1487 	if (last_request && !last_request->processed) {
1488 		REG_DBG_PRINT("Pending regulatory request, waiting "
1489 			      "for it to be processed...\n");
1490 		goto out;
1491 	}
1492 
1493 	spin_lock(&reg_requests_lock);
1494 
1495 	if (list_empty(&reg_requests_list)) {
1496 		spin_unlock(&reg_requests_lock);
1497 		goto out;
1498 	}
1499 
1500 	reg_request = list_first_entry(&reg_requests_list,
1501 				       struct regulatory_request,
1502 				       list);
1503 	list_del_init(&reg_request->list);
1504 
1505 	spin_unlock(&reg_requests_lock);
1506 
1507 	reg_process_hint(reg_request);
1508 
1509 out:
1510 	mutex_unlock(&reg_mutex);
1511 	mutex_unlock(&cfg80211_mutex);
1512 }
1513 
1514 /* Processes beacon hints -- this has nothing to do with country IEs */
1515 static void reg_process_pending_beacon_hints(void)
1516 {
1517 	struct cfg80211_registered_device *rdev;
1518 	struct reg_beacon *pending_beacon, *tmp;
1519 
1520 	/*
1521 	 * No need to hold the reg_mutex here as we just touch wiphys
1522 	 * and do not read or access regulatory variables.
1523 	 */
1524 	mutex_lock(&cfg80211_mutex);
1525 
1526 	/* This goes through the _pending_ beacon list */
1527 	spin_lock_bh(&reg_pending_beacons_lock);
1528 
1529 	if (list_empty(&reg_pending_beacons)) {
1530 		spin_unlock_bh(&reg_pending_beacons_lock);
1531 		goto out;
1532 	}
1533 
1534 	list_for_each_entry_safe(pending_beacon, tmp,
1535 				 &reg_pending_beacons, list) {
1536 
1537 		list_del_init(&pending_beacon->list);
1538 
1539 		/* Applies the beacon hint to current wiphys */
1540 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1541 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1542 
1543 		/* Remembers the beacon hint for new wiphys or reg changes */
1544 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1545 	}
1546 
1547 	spin_unlock_bh(&reg_pending_beacons_lock);
1548 out:
1549 	mutex_unlock(&cfg80211_mutex);
1550 }
1551 
1552 static void reg_todo(struct work_struct *work)
1553 {
1554 	reg_process_pending_hints();
1555 	reg_process_pending_beacon_hints();
1556 }
1557 
1558 static void queue_regulatory_request(struct regulatory_request *request)
1559 {
1560 	if (isalpha(request->alpha2[0]))
1561 		request->alpha2[0] = toupper(request->alpha2[0]);
1562 	if (isalpha(request->alpha2[1]))
1563 		request->alpha2[1] = toupper(request->alpha2[1]);
1564 
1565 	spin_lock(&reg_requests_lock);
1566 	list_add_tail(&request->list, &reg_requests_list);
1567 	spin_unlock(&reg_requests_lock);
1568 
1569 	schedule_work(&reg_work);
1570 }
1571 
1572 /*
1573  * Core regulatory hint -- happens during cfg80211_init()
1574  * and when we restore regulatory settings.
1575  */
1576 static int regulatory_hint_core(const char *alpha2)
1577 {
1578 	struct regulatory_request *request;
1579 
1580 	kfree(last_request);
1581 	last_request = NULL;
1582 
1583 	request = kzalloc(sizeof(struct regulatory_request),
1584 			  GFP_KERNEL);
1585 	if (!request)
1586 		return -ENOMEM;
1587 
1588 	request->alpha2[0] = alpha2[0];
1589 	request->alpha2[1] = alpha2[1];
1590 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1591 
1592 	queue_regulatory_request(request);
1593 
1594 	return 0;
1595 }
1596 
1597 /* User hints */
1598 int regulatory_hint_user(const char *alpha2)
1599 {
1600 	struct regulatory_request *request;
1601 
1602 	BUG_ON(!alpha2);
1603 
1604 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1605 	if (!request)
1606 		return -ENOMEM;
1607 
1608 	request->wiphy_idx = WIPHY_IDX_STALE;
1609 	request->alpha2[0] = alpha2[0];
1610 	request->alpha2[1] = alpha2[1];
1611 	request->initiator = NL80211_REGDOM_SET_BY_USER;
1612 
1613 	queue_regulatory_request(request);
1614 
1615 	return 0;
1616 }
1617 
1618 /* Driver hints */
1619 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1620 {
1621 	struct regulatory_request *request;
1622 
1623 	BUG_ON(!alpha2);
1624 	BUG_ON(!wiphy);
1625 
1626 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1627 	if (!request)
1628 		return -ENOMEM;
1629 
1630 	request->wiphy_idx = get_wiphy_idx(wiphy);
1631 
1632 	/* Must have registered wiphy first */
1633 	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1634 
1635 	request->alpha2[0] = alpha2[0];
1636 	request->alpha2[1] = alpha2[1];
1637 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1638 
1639 	queue_regulatory_request(request);
1640 
1641 	return 0;
1642 }
1643 EXPORT_SYMBOL(regulatory_hint);
1644 
1645 /*
1646  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1647  * therefore cannot iterate over the rdev list here.
1648  */
1649 void regulatory_hint_11d(struct wiphy *wiphy,
1650 			 enum ieee80211_band band,
1651 			 u8 *country_ie,
1652 			 u8 country_ie_len)
1653 {
1654 	char alpha2[2];
1655 	enum environment_cap env = ENVIRON_ANY;
1656 	struct regulatory_request *request;
1657 
1658 	mutex_lock(&reg_mutex);
1659 
1660 	if (unlikely(!last_request))
1661 		goto out;
1662 
1663 	/* IE len must be evenly divisible by 2 */
1664 	if (country_ie_len & 0x01)
1665 		goto out;
1666 
1667 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1668 		goto out;
1669 
1670 	alpha2[0] = country_ie[0];
1671 	alpha2[1] = country_ie[1];
1672 
1673 	if (country_ie[2] == 'I')
1674 		env = ENVIRON_INDOOR;
1675 	else if (country_ie[2] == 'O')
1676 		env = ENVIRON_OUTDOOR;
1677 
1678 	/*
1679 	 * We will run this only upon a successful connection on cfg80211.
1680 	 * We leave conflict resolution to the workqueue, where can hold
1681 	 * cfg80211_mutex.
1682 	 */
1683 	if (likely(last_request->initiator ==
1684 	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1685 	    wiphy_idx_valid(last_request->wiphy_idx)))
1686 		goto out;
1687 
1688 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1689 	if (!request)
1690 		goto out;
1691 
1692 	request->wiphy_idx = get_wiphy_idx(wiphy);
1693 	request->alpha2[0] = alpha2[0];
1694 	request->alpha2[1] = alpha2[1];
1695 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1696 	request->country_ie_env = env;
1697 
1698 	mutex_unlock(&reg_mutex);
1699 
1700 	queue_regulatory_request(request);
1701 
1702 	return;
1703 
1704 out:
1705 	mutex_unlock(&reg_mutex);
1706 }
1707 
1708 static void restore_alpha2(char *alpha2, bool reset_user)
1709 {
1710 	/* indicates there is no alpha2 to consider for restoration */
1711 	alpha2[0] = '9';
1712 	alpha2[1] = '7';
1713 
1714 	/* The user setting has precedence over the module parameter */
1715 	if (is_user_regdom_saved()) {
1716 		/* Unless we're asked to ignore it and reset it */
1717 		if (reset_user) {
1718 			REG_DBG_PRINT("Restoring regulatory settings "
1719 			       "including user preference\n");
1720 			user_alpha2[0] = '9';
1721 			user_alpha2[1] = '7';
1722 
1723 			/*
1724 			 * If we're ignoring user settings, we still need to
1725 			 * check the module parameter to ensure we put things
1726 			 * back as they were for a full restore.
1727 			 */
1728 			if (!is_world_regdom(ieee80211_regdom)) {
1729 				REG_DBG_PRINT("Keeping preference on "
1730 				       "module parameter ieee80211_regdom: %c%c\n",
1731 				       ieee80211_regdom[0],
1732 				       ieee80211_regdom[1]);
1733 				alpha2[0] = ieee80211_regdom[0];
1734 				alpha2[1] = ieee80211_regdom[1];
1735 			}
1736 		} else {
1737 			REG_DBG_PRINT("Restoring regulatory settings "
1738 			       "while preserving user preference for: %c%c\n",
1739 			       user_alpha2[0],
1740 			       user_alpha2[1]);
1741 			alpha2[0] = user_alpha2[0];
1742 			alpha2[1] = user_alpha2[1];
1743 		}
1744 	} else if (!is_world_regdom(ieee80211_regdom)) {
1745 		REG_DBG_PRINT("Keeping preference on "
1746 		       "module parameter ieee80211_regdom: %c%c\n",
1747 		       ieee80211_regdom[0],
1748 		       ieee80211_regdom[1]);
1749 		alpha2[0] = ieee80211_regdom[0];
1750 		alpha2[1] = ieee80211_regdom[1];
1751 	} else
1752 		REG_DBG_PRINT("Restoring regulatory settings\n");
1753 }
1754 
1755 /*
1756  * Restoring regulatory settings involves ingoring any
1757  * possibly stale country IE information and user regulatory
1758  * settings if so desired, this includes any beacon hints
1759  * learned as we could have traveled outside to another country
1760  * after disconnection. To restore regulatory settings we do
1761  * exactly what we did at bootup:
1762  *
1763  *   - send a core regulatory hint
1764  *   - send a user regulatory hint if applicable
1765  *
1766  * Device drivers that send a regulatory hint for a specific country
1767  * keep their own regulatory domain on wiphy->regd so that does does
1768  * not need to be remembered.
1769  */
1770 static void restore_regulatory_settings(bool reset_user)
1771 {
1772 	char alpha2[2];
1773 	struct reg_beacon *reg_beacon, *btmp;
1774 	struct regulatory_request *reg_request, *tmp;
1775 	LIST_HEAD(tmp_reg_req_list);
1776 
1777 	mutex_lock(&cfg80211_mutex);
1778 	mutex_lock(&reg_mutex);
1779 
1780 	reset_regdomains();
1781 	restore_alpha2(alpha2, reset_user);
1782 
1783 	/*
1784 	 * If there's any pending requests we simply
1785 	 * stash them to a temporary pending queue and
1786 	 * add then after we've restored regulatory
1787 	 * settings.
1788 	 */
1789 	spin_lock(&reg_requests_lock);
1790 	if (!list_empty(&reg_requests_list)) {
1791 		list_for_each_entry_safe(reg_request, tmp,
1792 					 &reg_requests_list, list) {
1793 			if (reg_request->initiator !=
1794 			    NL80211_REGDOM_SET_BY_USER)
1795 				continue;
1796 			list_del(&reg_request->list);
1797 			list_add_tail(&reg_request->list, &tmp_reg_req_list);
1798 		}
1799 	}
1800 	spin_unlock(&reg_requests_lock);
1801 
1802 	/* Clear beacon hints */
1803 	spin_lock_bh(&reg_pending_beacons_lock);
1804 	if (!list_empty(&reg_pending_beacons)) {
1805 		list_for_each_entry_safe(reg_beacon, btmp,
1806 					 &reg_pending_beacons, list) {
1807 			list_del(&reg_beacon->list);
1808 			kfree(reg_beacon);
1809 		}
1810 	}
1811 	spin_unlock_bh(&reg_pending_beacons_lock);
1812 
1813 	if (!list_empty(&reg_beacon_list)) {
1814 		list_for_each_entry_safe(reg_beacon, btmp,
1815 					 &reg_beacon_list, list) {
1816 			list_del(&reg_beacon->list);
1817 			kfree(reg_beacon);
1818 		}
1819 	}
1820 
1821 	/* First restore to the basic regulatory settings */
1822 	cfg80211_regdomain = cfg80211_world_regdom;
1823 
1824 	mutex_unlock(&reg_mutex);
1825 	mutex_unlock(&cfg80211_mutex);
1826 
1827 	regulatory_hint_core(cfg80211_regdomain->alpha2);
1828 
1829 	/*
1830 	 * This restores the ieee80211_regdom module parameter
1831 	 * preference or the last user requested regulatory
1832 	 * settings, user regulatory settings takes precedence.
1833 	 */
1834 	if (is_an_alpha2(alpha2))
1835 		regulatory_hint_user(user_alpha2);
1836 
1837 	if (list_empty(&tmp_reg_req_list))
1838 		return;
1839 
1840 	mutex_lock(&cfg80211_mutex);
1841 	mutex_lock(&reg_mutex);
1842 
1843 	spin_lock(&reg_requests_lock);
1844 	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1845 		REG_DBG_PRINT("Adding request for country %c%c back "
1846 			      "into the queue\n",
1847 			      reg_request->alpha2[0],
1848 			      reg_request->alpha2[1]);
1849 		list_del(&reg_request->list);
1850 		list_add_tail(&reg_request->list, &reg_requests_list);
1851 	}
1852 	spin_unlock(&reg_requests_lock);
1853 
1854 	mutex_unlock(&reg_mutex);
1855 	mutex_unlock(&cfg80211_mutex);
1856 
1857 	REG_DBG_PRINT("Kicking the queue\n");
1858 
1859 	schedule_work(&reg_work);
1860 }
1861 
1862 void regulatory_hint_disconnect(void)
1863 {
1864 	REG_DBG_PRINT("All devices are disconnected, going to "
1865 		      "restore regulatory settings\n");
1866 	restore_regulatory_settings(false);
1867 }
1868 
1869 static bool freq_is_chan_12_13_14(u16 freq)
1870 {
1871 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1872 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1873 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1874 		return true;
1875 	return false;
1876 }
1877 
1878 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1879 				 struct ieee80211_channel *beacon_chan,
1880 				 gfp_t gfp)
1881 {
1882 	struct reg_beacon *reg_beacon;
1883 
1884 	if (likely((beacon_chan->beacon_found ||
1885 	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1886 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1887 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1888 		return 0;
1889 
1890 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1891 	if (!reg_beacon)
1892 		return -ENOMEM;
1893 
1894 	REG_DBG_PRINT("Found new beacon on "
1895 		      "frequency: %d MHz (Ch %d) on %s\n",
1896 		      beacon_chan->center_freq,
1897 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
1898 		      wiphy_name(wiphy));
1899 
1900 	memcpy(&reg_beacon->chan, beacon_chan,
1901 		sizeof(struct ieee80211_channel));
1902 
1903 
1904 	/*
1905 	 * Since we can be called from BH or and non-BH context
1906 	 * we must use spin_lock_bh()
1907 	 */
1908 	spin_lock_bh(&reg_pending_beacons_lock);
1909 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1910 	spin_unlock_bh(&reg_pending_beacons_lock);
1911 
1912 	schedule_work(&reg_work);
1913 
1914 	return 0;
1915 }
1916 
1917 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1918 {
1919 	unsigned int i;
1920 	const struct ieee80211_reg_rule *reg_rule = NULL;
1921 	const struct ieee80211_freq_range *freq_range = NULL;
1922 	const struct ieee80211_power_rule *power_rule = NULL;
1923 
1924 	pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1925 
1926 	for (i = 0; i < rd->n_reg_rules; i++) {
1927 		reg_rule = &rd->reg_rules[i];
1928 		freq_range = &reg_rule->freq_range;
1929 		power_rule = &reg_rule->power_rule;
1930 
1931 		/*
1932 		 * There may not be documentation for max antenna gain
1933 		 * in certain regions
1934 		 */
1935 		if (power_rule->max_antenna_gain)
1936 			pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1937 				freq_range->start_freq_khz,
1938 				freq_range->end_freq_khz,
1939 				freq_range->max_bandwidth_khz,
1940 				power_rule->max_antenna_gain,
1941 				power_rule->max_eirp);
1942 		else
1943 			pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1944 				freq_range->start_freq_khz,
1945 				freq_range->end_freq_khz,
1946 				freq_range->max_bandwidth_khz,
1947 				power_rule->max_eirp);
1948 	}
1949 }
1950 
1951 static void print_regdomain(const struct ieee80211_regdomain *rd)
1952 {
1953 
1954 	if (is_intersected_alpha2(rd->alpha2)) {
1955 
1956 		if (last_request->initiator ==
1957 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1958 			struct cfg80211_registered_device *rdev;
1959 			rdev = cfg80211_rdev_by_wiphy_idx(
1960 				last_request->wiphy_idx);
1961 			if (rdev) {
1962 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
1963 					rdev->country_ie_alpha2[0],
1964 					rdev->country_ie_alpha2[1]);
1965 			} else
1966 				pr_info("Current regulatory domain intersected:\n");
1967 		} else
1968 			pr_info("Current regulatory domain intersected:\n");
1969 	} else if (is_world_regdom(rd->alpha2))
1970 		pr_info("World regulatory domain updated:\n");
1971 	else {
1972 		if (is_unknown_alpha2(rd->alpha2))
1973 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1974 		else
1975 			pr_info("Regulatory domain changed to country: %c%c\n",
1976 				rd->alpha2[0], rd->alpha2[1]);
1977 	}
1978 	print_rd_rules(rd);
1979 }
1980 
1981 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1982 {
1983 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1984 	print_rd_rules(rd);
1985 }
1986 
1987 /* Takes ownership of rd only if it doesn't fail */
1988 static int __set_regdom(const struct ieee80211_regdomain *rd)
1989 {
1990 	const struct ieee80211_regdomain *intersected_rd = NULL;
1991 	struct cfg80211_registered_device *rdev = NULL;
1992 	struct wiphy *request_wiphy;
1993 	/* Some basic sanity checks first */
1994 
1995 	if (is_world_regdom(rd->alpha2)) {
1996 		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1997 			return -EINVAL;
1998 		update_world_regdomain(rd);
1999 		return 0;
2000 	}
2001 
2002 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2003 			!is_unknown_alpha2(rd->alpha2))
2004 		return -EINVAL;
2005 
2006 	if (!last_request)
2007 		return -EINVAL;
2008 
2009 	/*
2010 	 * Lets only bother proceeding on the same alpha2 if the current
2011 	 * rd is non static (it means CRDA was present and was used last)
2012 	 * and the pending request came in from a country IE
2013 	 */
2014 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2015 		/*
2016 		 * If someone else asked us to change the rd lets only bother
2017 		 * checking if the alpha2 changes if CRDA was already called
2018 		 */
2019 		if (!regdom_changes(rd->alpha2))
2020 			return -EINVAL;
2021 	}
2022 
2023 	/*
2024 	 * Now lets set the regulatory domain, update all driver channels
2025 	 * and finally inform them of what we have done, in case they want
2026 	 * to review or adjust their own settings based on their own
2027 	 * internal EEPROM data
2028 	 */
2029 
2030 	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2031 		return -EINVAL;
2032 
2033 	if (!is_valid_rd(rd)) {
2034 		pr_err("Invalid regulatory domain detected:\n");
2035 		print_regdomain_info(rd);
2036 		return -EINVAL;
2037 	}
2038 
2039 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2040 
2041 	if (!last_request->intersect) {
2042 		int r;
2043 
2044 		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2045 			reset_regdomains();
2046 			cfg80211_regdomain = rd;
2047 			return 0;
2048 		}
2049 
2050 		/*
2051 		 * For a driver hint, lets copy the regulatory domain the
2052 		 * driver wanted to the wiphy to deal with conflicts
2053 		 */
2054 
2055 		/*
2056 		 * Userspace could have sent two replies with only
2057 		 * one kernel request.
2058 		 */
2059 		if (request_wiphy->regd)
2060 			return -EALREADY;
2061 
2062 		r = reg_copy_regd(&request_wiphy->regd, rd);
2063 		if (r)
2064 			return r;
2065 
2066 		reset_regdomains();
2067 		cfg80211_regdomain = rd;
2068 		return 0;
2069 	}
2070 
2071 	/* Intersection requires a bit more work */
2072 
2073 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2074 
2075 		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2076 		if (!intersected_rd)
2077 			return -EINVAL;
2078 
2079 		/*
2080 		 * We can trash what CRDA provided now.
2081 		 * However if a driver requested this specific regulatory
2082 		 * domain we keep it for its private use
2083 		 */
2084 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2085 			request_wiphy->regd = rd;
2086 		else
2087 			kfree(rd);
2088 
2089 		rd = NULL;
2090 
2091 		reset_regdomains();
2092 		cfg80211_regdomain = intersected_rd;
2093 
2094 		return 0;
2095 	}
2096 
2097 	if (!intersected_rd)
2098 		return -EINVAL;
2099 
2100 	rdev = wiphy_to_dev(request_wiphy);
2101 
2102 	rdev->country_ie_alpha2[0] = rd->alpha2[0];
2103 	rdev->country_ie_alpha2[1] = rd->alpha2[1];
2104 	rdev->env = last_request->country_ie_env;
2105 
2106 	BUG_ON(intersected_rd == rd);
2107 
2108 	kfree(rd);
2109 	rd = NULL;
2110 
2111 	reset_regdomains();
2112 	cfg80211_regdomain = intersected_rd;
2113 
2114 	return 0;
2115 }
2116 
2117 
2118 /*
2119  * Use this call to set the current regulatory domain. Conflicts with
2120  * multiple drivers can be ironed out later. Caller must've already
2121  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2122  */
2123 int set_regdom(const struct ieee80211_regdomain *rd)
2124 {
2125 	int r;
2126 
2127 	assert_cfg80211_lock();
2128 
2129 	mutex_lock(&reg_mutex);
2130 
2131 	/* Note that this doesn't update the wiphys, this is done below */
2132 	r = __set_regdom(rd);
2133 	if (r) {
2134 		kfree(rd);
2135 		mutex_unlock(&reg_mutex);
2136 		return r;
2137 	}
2138 
2139 	/* This would make this whole thing pointless */
2140 	if (!last_request->intersect)
2141 		BUG_ON(rd != cfg80211_regdomain);
2142 
2143 	/* update all wiphys now with the new established regulatory domain */
2144 	update_all_wiphy_regulatory(last_request->initiator);
2145 
2146 	print_regdomain(cfg80211_regdomain);
2147 
2148 	nl80211_send_reg_change_event(last_request);
2149 
2150 	reg_set_request_processed();
2151 
2152 	mutex_unlock(&reg_mutex);
2153 
2154 	return r;
2155 }
2156 
2157 #ifdef CONFIG_HOTPLUG
2158 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2159 {
2160 	if (last_request && !last_request->processed) {
2161 		if (add_uevent_var(env, "COUNTRY=%c%c",
2162 				   last_request->alpha2[0],
2163 				   last_request->alpha2[1]))
2164 			return -ENOMEM;
2165 	}
2166 
2167 	return 0;
2168 }
2169 #else
2170 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2171 {
2172 	return -ENODEV;
2173 }
2174 #endif /* CONFIG_HOTPLUG */
2175 
2176 /* Caller must hold cfg80211_mutex */
2177 void reg_device_remove(struct wiphy *wiphy)
2178 {
2179 	struct wiphy *request_wiphy = NULL;
2180 
2181 	assert_cfg80211_lock();
2182 
2183 	mutex_lock(&reg_mutex);
2184 
2185 	kfree(wiphy->regd);
2186 
2187 	if (last_request)
2188 		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2189 
2190 	if (!request_wiphy || request_wiphy != wiphy)
2191 		goto out;
2192 
2193 	last_request->wiphy_idx = WIPHY_IDX_STALE;
2194 	last_request->country_ie_env = ENVIRON_ANY;
2195 out:
2196 	mutex_unlock(&reg_mutex);
2197 }
2198 
2199 static void reg_timeout_work(struct work_struct *work)
2200 {
2201 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2202 		      "restoring regulatory settings\n");
2203 	restore_regulatory_settings(true);
2204 }
2205 
2206 int __init regulatory_init(void)
2207 {
2208 	int err = 0;
2209 
2210 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2211 	if (IS_ERR(reg_pdev))
2212 		return PTR_ERR(reg_pdev);
2213 
2214 	reg_pdev->dev.type = &reg_device_type;
2215 
2216 	spin_lock_init(&reg_requests_lock);
2217 	spin_lock_init(&reg_pending_beacons_lock);
2218 
2219 	cfg80211_regdomain = cfg80211_world_regdom;
2220 
2221 	user_alpha2[0] = '9';
2222 	user_alpha2[1] = '7';
2223 
2224 	/* We always try to get an update for the static regdomain */
2225 	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2226 	if (err) {
2227 		if (err == -ENOMEM)
2228 			return err;
2229 		/*
2230 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2231 		 * memory which is handled and propagated appropriately above
2232 		 * but it can also fail during a netlink_broadcast() or during
2233 		 * early boot for call_usermodehelper(). For now treat these
2234 		 * errors as non-fatal.
2235 		 */
2236 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2237 #ifdef CONFIG_CFG80211_REG_DEBUG
2238 		/* We want to find out exactly why when debugging */
2239 		WARN_ON(err);
2240 #endif
2241 	}
2242 
2243 	/*
2244 	 * Finally, if the user set the module parameter treat it
2245 	 * as a user hint.
2246 	 */
2247 	if (!is_world_regdom(ieee80211_regdom))
2248 		regulatory_hint_user(ieee80211_regdom);
2249 
2250 	return 0;
2251 }
2252 
2253 void /* __init_or_exit */ regulatory_exit(void)
2254 {
2255 	struct regulatory_request *reg_request, *tmp;
2256 	struct reg_beacon *reg_beacon, *btmp;
2257 
2258 	cancel_work_sync(&reg_work);
2259 	cancel_delayed_work_sync(&reg_timeout);
2260 
2261 	mutex_lock(&cfg80211_mutex);
2262 	mutex_lock(&reg_mutex);
2263 
2264 	reset_regdomains();
2265 
2266 	kfree(last_request);
2267 
2268 	platform_device_unregister(reg_pdev);
2269 
2270 	spin_lock_bh(&reg_pending_beacons_lock);
2271 	if (!list_empty(&reg_pending_beacons)) {
2272 		list_for_each_entry_safe(reg_beacon, btmp,
2273 					 &reg_pending_beacons, list) {
2274 			list_del(&reg_beacon->list);
2275 			kfree(reg_beacon);
2276 		}
2277 	}
2278 	spin_unlock_bh(&reg_pending_beacons_lock);
2279 
2280 	if (!list_empty(&reg_beacon_list)) {
2281 		list_for_each_entry_safe(reg_beacon, btmp,
2282 					 &reg_beacon_list, list) {
2283 			list_del(&reg_beacon->list);
2284 			kfree(reg_beacon);
2285 		}
2286 	}
2287 
2288 	spin_lock(&reg_requests_lock);
2289 	if (!list_empty(&reg_requests_list)) {
2290 		list_for_each_entry_safe(reg_request, tmp,
2291 					 &reg_requests_list, list) {
2292 			list_del(&reg_request->list);
2293 			kfree(reg_request);
2294 		}
2295 	}
2296 	spin_unlock(&reg_requests_lock);
2297 
2298 	mutex_unlock(&reg_mutex);
2299 	mutex_unlock(&cfg80211_mutex);
2300 }
2301