1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 /** 13 * DOC: Wireless regulatory infrastructure 14 * 15 * The usual implementation is for a driver to read a device EEPROM to 16 * determine which regulatory domain it should be operating under, then 17 * looking up the allowable channels in a driver-local table and finally 18 * registering those channels in the wiphy structure. 19 * 20 * Another set of compliance enforcement is for drivers to use their 21 * own compliance limits which can be stored on the EEPROM. The host 22 * driver or firmware may ensure these are used. 23 * 24 * In addition to all this we provide an extra layer of regulatory 25 * conformance. For drivers which do not have any regulatory 26 * information CRDA provides the complete regulatory solution. 27 * For others it provides a community effort on further restrictions 28 * to enhance compliance. 29 * 30 * Note: When number of rules --> infinity we will not be able to 31 * index on alpha2 any more, instead we'll probably have to 32 * rely on some SHA1 checksum of the regdomain for example. 33 * 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/kernel.h> 39 #include <linux/export.h> 40 #include <linux/slab.h> 41 #include <linux/list.h> 42 #include <linux/random.h> 43 #include <linux/ctype.h> 44 #include <linux/nl80211.h> 45 #include <linux/platform_device.h> 46 #include <linux/moduleparam.h> 47 #include <net/cfg80211.h> 48 #include "core.h" 49 #include "reg.h" 50 #include "regdb.h" 51 #include "nl80211.h" 52 53 #ifdef CONFIG_CFG80211_REG_DEBUG 54 #define REG_DBG_PRINT(format, args...) \ 55 printk(KERN_DEBUG pr_fmt(format), ##args) 56 #else 57 #define REG_DBG_PRINT(args...) 58 #endif 59 60 /* Receipt of information from last regulatory request */ 61 static struct regulatory_request *last_request; 62 63 /* To trigger userspace events */ 64 static struct platform_device *reg_pdev; 65 66 static struct device_type reg_device_type = { 67 .uevent = reg_device_uevent, 68 }; 69 70 /* 71 * Central wireless core regulatory domains, we only need two, 72 * the current one and a world regulatory domain in case we have no 73 * information to give us an alpha2 74 */ 75 const struct ieee80211_regdomain *cfg80211_regdomain; 76 77 /* 78 * Protects static reg.c components: 79 * - cfg80211_world_regdom 80 * - cfg80211_regdom 81 * - last_request 82 */ 83 static DEFINE_MUTEX(reg_mutex); 84 85 static inline void assert_reg_lock(void) 86 { 87 lockdep_assert_held(®_mutex); 88 } 89 90 /* Used to queue up regulatory hints */ 91 static LIST_HEAD(reg_requests_list); 92 static spinlock_t reg_requests_lock; 93 94 /* Used to queue up beacon hints for review */ 95 static LIST_HEAD(reg_pending_beacons); 96 static spinlock_t reg_pending_beacons_lock; 97 98 /* Used to keep track of processed beacon hints */ 99 static LIST_HEAD(reg_beacon_list); 100 101 struct reg_beacon { 102 struct list_head list; 103 struct ieee80211_channel chan; 104 }; 105 106 static void reg_todo(struct work_struct *work); 107 static DECLARE_WORK(reg_work, reg_todo); 108 109 static void reg_timeout_work(struct work_struct *work); 110 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); 111 112 /* We keep a static world regulatory domain in case of the absence of CRDA */ 113 static const struct ieee80211_regdomain world_regdom = { 114 .n_reg_rules = 5, 115 .alpha2 = "00", 116 .reg_rules = { 117 /* IEEE 802.11b/g, channels 1..11 */ 118 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 119 /* IEEE 802.11b/g, channels 12..13. No HT40 120 * channel fits here. */ 121 REG_RULE(2467-10, 2472+10, 20, 6, 20, 122 NL80211_RRF_PASSIVE_SCAN | 123 NL80211_RRF_NO_IBSS), 124 /* IEEE 802.11 channel 14 - Only JP enables 125 * this and for 802.11b only */ 126 REG_RULE(2484-10, 2484+10, 20, 6, 20, 127 NL80211_RRF_PASSIVE_SCAN | 128 NL80211_RRF_NO_IBSS | 129 NL80211_RRF_NO_OFDM), 130 /* IEEE 802.11a, channel 36..48 */ 131 REG_RULE(5180-10, 5240+10, 40, 6, 20, 132 NL80211_RRF_PASSIVE_SCAN | 133 NL80211_RRF_NO_IBSS), 134 135 /* NB: 5260 MHz - 5700 MHz requies DFS */ 136 137 /* IEEE 802.11a, channel 149..165 */ 138 REG_RULE(5745-10, 5825+10, 40, 6, 20, 139 NL80211_RRF_PASSIVE_SCAN | 140 NL80211_RRF_NO_IBSS), 141 } 142 }; 143 144 static const struct ieee80211_regdomain *cfg80211_world_regdom = 145 &world_regdom; 146 147 static char *ieee80211_regdom = "00"; 148 static char user_alpha2[2]; 149 150 module_param(ieee80211_regdom, charp, 0444); 151 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 152 153 static void reset_regdomains(void) 154 { 155 /* avoid freeing static information or freeing something twice */ 156 if (cfg80211_regdomain == cfg80211_world_regdom) 157 cfg80211_regdomain = NULL; 158 if (cfg80211_world_regdom == &world_regdom) 159 cfg80211_world_regdom = NULL; 160 if (cfg80211_regdomain == &world_regdom) 161 cfg80211_regdomain = NULL; 162 163 kfree(cfg80211_regdomain); 164 kfree(cfg80211_world_regdom); 165 166 cfg80211_world_regdom = &world_regdom; 167 cfg80211_regdomain = NULL; 168 } 169 170 /* 171 * Dynamic world regulatory domain requested by the wireless 172 * core upon initialization 173 */ 174 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 175 { 176 BUG_ON(!last_request); 177 178 reset_regdomains(); 179 180 cfg80211_world_regdom = rd; 181 cfg80211_regdomain = rd; 182 } 183 184 bool is_world_regdom(const char *alpha2) 185 { 186 if (!alpha2) 187 return false; 188 if (alpha2[0] == '0' && alpha2[1] == '0') 189 return true; 190 return false; 191 } 192 193 static bool is_alpha2_set(const char *alpha2) 194 { 195 if (!alpha2) 196 return false; 197 if (alpha2[0] != 0 && alpha2[1] != 0) 198 return true; 199 return false; 200 } 201 202 static bool is_unknown_alpha2(const char *alpha2) 203 { 204 if (!alpha2) 205 return false; 206 /* 207 * Special case where regulatory domain was built by driver 208 * but a specific alpha2 cannot be determined 209 */ 210 if (alpha2[0] == '9' && alpha2[1] == '9') 211 return true; 212 return false; 213 } 214 215 static bool is_intersected_alpha2(const char *alpha2) 216 { 217 if (!alpha2) 218 return false; 219 /* 220 * Special case where regulatory domain is the 221 * result of an intersection between two regulatory domain 222 * structures 223 */ 224 if (alpha2[0] == '9' && alpha2[1] == '8') 225 return true; 226 return false; 227 } 228 229 static bool is_an_alpha2(const char *alpha2) 230 { 231 if (!alpha2) 232 return false; 233 if (isalpha(alpha2[0]) && isalpha(alpha2[1])) 234 return true; 235 return false; 236 } 237 238 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 239 { 240 if (!alpha2_x || !alpha2_y) 241 return false; 242 if (alpha2_x[0] == alpha2_y[0] && 243 alpha2_x[1] == alpha2_y[1]) 244 return true; 245 return false; 246 } 247 248 static bool regdom_changes(const char *alpha2) 249 { 250 assert_cfg80211_lock(); 251 252 if (!cfg80211_regdomain) 253 return true; 254 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2)) 255 return false; 256 return true; 257 } 258 259 /* 260 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 261 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 262 * has ever been issued. 263 */ 264 static bool is_user_regdom_saved(void) 265 { 266 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 267 return false; 268 269 /* This would indicate a mistake on the design */ 270 if (WARN((!is_world_regdom(user_alpha2) && 271 !is_an_alpha2(user_alpha2)), 272 "Unexpected user alpha2: %c%c\n", 273 user_alpha2[0], 274 user_alpha2[1])) 275 return false; 276 277 return true; 278 } 279 280 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd, 281 const struct ieee80211_regdomain *src_regd) 282 { 283 struct ieee80211_regdomain *regd; 284 int size_of_regd = 0; 285 unsigned int i; 286 287 size_of_regd = sizeof(struct ieee80211_regdomain) + 288 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule)); 289 290 regd = kzalloc(size_of_regd, GFP_KERNEL); 291 if (!regd) 292 return -ENOMEM; 293 294 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 295 296 for (i = 0; i < src_regd->n_reg_rules; i++) 297 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 298 sizeof(struct ieee80211_reg_rule)); 299 300 *dst_regd = regd; 301 return 0; 302 } 303 304 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 305 struct reg_regdb_search_request { 306 char alpha2[2]; 307 struct list_head list; 308 }; 309 310 static LIST_HEAD(reg_regdb_search_list); 311 static DEFINE_MUTEX(reg_regdb_search_mutex); 312 313 static void reg_regdb_search(struct work_struct *work) 314 { 315 struct reg_regdb_search_request *request; 316 const struct ieee80211_regdomain *curdom, *regdom; 317 int i, r; 318 319 mutex_lock(®_regdb_search_mutex); 320 while (!list_empty(®_regdb_search_list)) { 321 request = list_first_entry(®_regdb_search_list, 322 struct reg_regdb_search_request, 323 list); 324 list_del(&request->list); 325 326 for (i=0; i<reg_regdb_size; i++) { 327 curdom = reg_regdb[i]; 328 329 if (!memcmp(request->alpha2, curdom->alpha2, 2)) { 330 r = reg_copy_regd(®dom, curdom); 331 if (r) 332 break; 333 mutex_lock(&cfg80211_mutex); 334 set_regdom(regdom); 335 mutex_unlock(&cfg80211_mutex); 336 break; 337 } 338 } 339 340 kfree(request); 341 } 342 mutex_unlock(®_regdb_search_mutex); 343 } 344 345 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 346 347 static void reg_regdb_query(const char *alpha2) 348 { 349 struct reg_regdb_search_request *request; 350 351 if (!alpha2) 352 return; 353 354 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 355 if (!request) 356 return; 357 358 memcpy(request->alpha2, alpha2, 2); 359 360 mutex_lock(®_regdb_search_mutex); 361 list_add_tail(&request->list, ®_regdb_search_list); 362 mutex_unlock(®_regdb_search_mutex); 363 364 schedule_work(®_regdb_work); 365 } 366 #else 367 static inline void reg_regdb_query(const char *alpha2) {} 368 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 369 370 /* 371 * This lets us keep regulatory code which is updated on a regulatory 372 * basis in userspace. Country information is filled in by 373 * reg_device_uevent 374 */ 375 static int call_crda(const char *alpha2) 376 { 377 if (!is_world_regdom((char *) alpha2)) 378 pr_info("Calling CRDA for country: %c%c\n", 379 alpha2[0], alpha2[1]); 380 else 381 pr_info("Calling CRDA to update world regulatory domain\n"); 382 383 /* query internal regulatory database (if it exists) */ 384 reg_regdb_query(alpha2); 385 386 return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE); 387 } 388 389 /* Used by nl80211 before kmalloc'ing our regulatory domain */ 390 bool reg_is_valid_request(const char *alpha2) 391 { 392 assert_cfg80211_lock(); 393 394 if (!last_request) 395 return false; 396 397 return alpha2_equal(last_request->alpha2, alpha2); 398 } 399 400 /* Sanity check on a regulatory rule */ 401 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 402 { 403 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 404 u32 freq_diff; 405 406 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 407 return false; 408 409 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 410 return false; 411 412 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 413 414 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 415 freq_range->max_bandwidth_khz > freq_diff) 416 return false; 417 418 return true; 419 } 420 421 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 422 { 423 const struct ieee80211_reg_rule *reg_rule = NULL; 424 unsigned int i; 425 426 if (!rd->n_reg_rules) 427 return false; 428 429 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 430 return false; 431 432 for (i = 0; i < rd->n_reg_rules; i++) { 433 reg_rule = &rd->reg_rules[i]; 434 if (!is_valid_reg_rule(reg_rule)) 435 return false; 436 } 437 438 return true; 439 } 440 441 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 442 u32 center_freq_khz, 443 u32 bw_khz) 444 { 445 u32 start_freq_khz, end_freq_khz; 446 447 start_freq_khz = center_freq_khz - (bw_khz/2); 448 end_freq_khz = center_freq_khz + (bw_khz/2); 449 450 if (start_freq_khz >= freq_range->start_freq_khz && 451 end_freq_khz <= freq_range->end_freq_khz) 452 return true; 453 454 return false; 455 } 456 457 /** 458 * freq_in_rule_band - tells us if a frequency is in a frequency band 459 * @freq_range: frequency rule we want to query 460 * @freq_khz: frequency we are inquiring about 461 * 462 * This lets us know if a specific frequency rule is or is not relevant to 463 * a specific frequency's band. Bands are device specific and artificial 464 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is 465 * safe for now to assume that a frequency rule should not be part of a 466 * frequency's band if the start freq or end freq are off by more than 2 GHz. 467 * This resolution can be lowered and should be considered as we add 468 * regulatory rule support for other "bands". 469 **/ 470 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 471 u32 freq_khz) 472 { 473 #define ONE_GHZ_IN_KHZ 1000000 474 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 475 return true; 476 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 477 return true; 478 return false; 479 #undef ONE_GHZ_IN_KHZ 480 } 481 482 /* 483 * Helper for regdom_intersect(), this does the real 484 * mathematical intersection fun 485 */ 486 static int reg_rules_intersect( 487 const struct ieee80211_reg_rule *rule1, 488 const struct ieee80211_reg_rule *rule2, 489 struct ieee80211_reg_rule *intersected_rule) 490 { 491 const struct ieee80211_freq_range *freq_range1, *freq_range2; 492 struct ieee80211_freq_range *freq_range; 493 const struct ieee80211_power_rule *power_rule1, *power_rule2; 494 struct ieee80211_power_rule *power_rule; 495 u32 freq_diff; 496 497 freq_range1 = &rule1->freq_range; 498 freq_range2 = &rule2->freq_range; 499 freq_range = &intersected_rule->freq_range; 500 501 power_rule1 = &rule1->power_rule; 502 power_rule2 = &rule2->power_rule; 503 power_rule = &intersected_rule->power_rule; 504 505 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 506 freq_range2->start_freq_khz); 507 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 508 freq_range2->end_freq_khz); 509 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, 510 freq_range2->max_bandwidth_khz); 511 512 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 513 if (freq_range->max_bandwidth_khz > freq_diff) 514 freq_range->max_bandwidth_khz = freq_diff; 515 516 power_rule->max_eirp = min(power_rule1->max_eirp, 517 power_rule2->max_eirp); 518 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 519 power_rule2->max_antenna_gain); 520 521 intersected_rule->flags = (rule1->flags | rule2->flags); 522 523 if (!is_valid_reg_rule(intersected_rule)) 524 return -EINVAL; 525 526 return 0; 527 } 528 529 /** 530 * regdom_intersect - do the intersection between two regulatory domains 531 * @rd1: first regulatory domain 532 * @rd2: second regulatory domain 533 * 534 * Use this function to get the intersection between two regulatory domains. 535 * Once completed we will mark the alpha2 for the rd as intersected, "98", 536 * as no one single alpha2 can represent this regulatory domain. 537 * 538 * Returns a pointer to the regulatory domain structure which will hold the 539 * resulting intersection of rules between rd1 and rd2. We will 540 * kzalloc() this structure for you. 541 */ 542 static struct ieee80211_regdomain *regdom_intersect( 543 const struct ieee80211_regdomain *rd1, 544 const struct ieee80211_regdomain *rd2) 545 { 546 int r, size_of_regd; 547 unsigned int x, y; 548 unsigned int num_rules = 0, rule_idx = 0; 549 const struct ieee80211_reg_rule *rule1, *rule2; 550 struct ieee80211_reg_rule *intersected_rule; 551 struct ieee80211_regdomain *rd; 552 /* This is just a dummy holder to help us count */ 553 struct ieee80211_reg_rule irule; 554 555 /* Uses the stack temporarily for counter arithmetic */ 556 intersected_rule = &irule; 557 558 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule)); 559 560 if (!rd1 || !rd2) 561 return NULL; 562 563 /* 564 * First we get a count of the rules we'll need, then we actually 565 * build them. This is to so we can malloc() and free() a 566 * regdomain once. The reason we use reg_rules_intersect() here 567 * is it will return -EINVAL if the rule computed makes no sense. 568 * All rules that do check out OK are valid. 569 */ 570 571 for (x = 0; x < rd1->n_reg_rules; x++) { 572 rule1 = &rd1->reg_rules[x]; 573 for (y = 0; y < rd2->n_reg_rules; y++) { 574 rule2 = &rd2->reg_rules[y]; 575 if (!reg_rules_intersect(rule1, rule2, 576 intersected_rule)) 577 num_rules++; 578 memset(intersected_rule, 0, 579 sizeof(struct ieee80211_reg_rule)); 580 } 581 } 582 583 if (!num_rules) 584 return NULL; 585 586 size_of_regd = sizeof(struct ieee80211_regdomain) + 587 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule)); 588 589 rd = kzalloc(size_of_regd, GFP_KERNEL); 590 if (!rd) 591 return NULL; 592 593 for (x = 0; x < rd1->n_reg_rules; x++) { 594 rule1 = &rd1->reg_rules[x]; 595 for (y = 0; y < rd2->n_reg_rules; y++) { 596 rule2 = &rd2->reg_rules[y]; 597 /* 598 * This time around instead of using the stack lets 599 * write to the target rule directly saving ourselves 600 * a memcpy() 601 */ 602 intersected_rule = &rd->reg_rules[rule_idx]; 603 r = reg_rules_intersect(rule1, rule2, 604 intersected_rule); 605 /* 606 * No need to memset here the intersected rule here as 607 * we're not using the stack anymore 608 */ 609 if (r) 610 continue; 611 rule_idx++; 612 } 613 } 614 615 if (rule_idx != num_rules) { 616 kfree(rd); 617 return NULL; 618 } 619 620 rd->n_reg_rules = num_rules; 621 rd->alpha2[0] = '9'; 622 rd->alpha2[1] = '8'; 623 624 return rd; 625 } 626 627 /* 628 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 629 * want to just have the channel structure use these 630 */ 631 static u32 map_regdom_flags(u32 rd_flags) 632 { 633 u32 channel_flags = 0; 634 if (rd_flags & NL80211_RRF_PASSIVE_SCAN) 635 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; 636 if (rd_flags & NL80211_RRF_NO_IBSS) 637 channel_flags |= IEEE80211_CHAN_NO_IBSS; 638 if (rd_flags & NL80211_RRF_DFS) 639 channel_flags |= IEEE80211_CHAN_RADAR; 640 return channel_flags; 641 } 642 643 static int freq_reg_info_regd(struct wiphy *wiphy, 644 u32 center_freq, 645 u32 desired_bw_khz, 646 const struct ieee80211_reg_rule **reg_rule, 647 const struct ieee80211_regdomain *custom_regd) 648 { 649 int i; 650 bool band_rule_found = false; 651 const struct ieee80211_regdomain *regd; 652 bool bw_fits = false; 653 654 if (!desired_bw_khz) 655 desired_bw_khz = MHZ_TO_KHZ(20); 656 657 regd = custom_regd ? custom_regd : cfg80211_regdomain; 658 659 /* 660 * Follow the driver's regulatory domain, if present, unless a country 661 * IE has been processed or a user wants to help complaince further 662 */ 663 if (!custom_regd && 664 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 665 last_request->initiator != NL80211_REGDOM_SET_BY_USER && 666 wiphy->regd) 667 regd = wiphy->regd; 668 669 if (!regd) 670 return -EINVAL; 671 672 for (i = 0; i < regd->n_reg_rules; i++) { 673 const struct ieee80211_reg_rule *rr; 674 const struct ieee80211_freq_range *fr = NULL; 675 676 rr = ®d->reg_rules[i]; 677 fr = &rr->freq_range; 678 679 /* 680 * We only need to know if one frequency rule was 681 * was in center_freq's band, that's enough, so lets 682 * not overwrite it once found 683 */ 684 if (!band_rule_found) 685 band_rule_found = freq_in_rule_band(fr, center_freq); 686 687 bw_fits = reg_does_bw_fit(fr, 688 center_freq, 689 desired_bw_khz); 690 691 if (band_rule_found && bw_fits) { 692 *reg_rule = rr; 693 return 0; 694 } 695 } 696 697 if (!band_rule_found) 698 return -ERANGE; 699 700 return -EINVAL; 701 } 702 703 int freq_reg_info(struct wiphy *wiphy, 704 u32 center_freq, 705 u32 desired_bw_khz, 706 const struct ieee80211_reg_rule **reg_rule) 707 { 708 assert_cfg80211_lock(); 709 return freq_reg_info_regd(wiphy, 710 center_freq, 711 desired_bw_khz, 712 reg_rule, 713 NULL); 714 } 715 EXPORT_SYMBOL(freq_reg_info); 716 717 #ifdef CONFIG_CFG80211_REG_DEBUG 718 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 719 { 720 switch (initiator) { 721 case NL80211_REGDOM_SET_BY_CORE: 722 return "Set by core"; 723 case NL80211_REGDOM_SET_BY_USER: 724 return "Set by user"; 725 case NL80211_REGDOM_SET_BY_DRIVER: 726 return "Set by driver"; 727 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 728 return "Set by country IE"; 729 default: 730 WARN_ON(1); 731 return "Set by bug"; 732 } 733 } 734 735 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 736 u32 desired_bw_khz, 737 const struct ieee80211_reg_rule *reg_rule) 738 { 739 const struct ieee80211_power_rule *power_rule; 740 const struct ieee80211_freq_range *freq_range; 741 char max_antenna_gain[32]; 742 743 power_rule = ®_rule->power_rule; 744 freq_range = ®_rule->freq_range; 745 746 if (!power_rule->max_antenna_gain) 747 snprintf(max_antenna_gain, 32, "N/A"); 748 else 749 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain); 750 751 REG_DBG_PRINT("Updating information on frequency %d MHz " 752 "for a %d MHz width channel with regulatory rule:\n", 753 chan->center_freq, 754 KHZ_TO_MHZ(desired_bw_khz)); 755 756 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n", 757 freq_range->start_freq_khz, 758 freq_range->end_freq_khz, 759 freq_range->max_bandwidth_khz, 760 max_antenna_gain, 761 power_rule->max_eirp); 762 } 763 #else 764 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 765 u32 desired_bw_khz, 766 const struct ieee80211_reg_rule *reg_rule) 767 { 768 return; 769 } 770 #endif 771 772 /* 773 * Note that right now we assume the desired channel bandwidth 774 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 775 * per channel, the primary and the extension channel). To support 776 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a 777 * new ieee80211_channel.target_bw and re run the regulatory check 778 * on the wiphy with the target_bw specified. Then we can simply use 779 * that below for the desired_bw_khz below. 780 */ 781 static void handle_channel(struct wiphy *wiphy, 782 enum nl80211_reg_initiator initiator, 783 enum ieee80211_band band, 784 unsigned int chan_idx) 785 { 786 int r; 787 u32 flags, bw_flags = 0; 788 u32 desired_bw_khz = MHZ_TO_KHZ(20); 789 const struct ieee80211_reg_rule *reg_rule = NULL; 790 const struct ieee80211_power_rule *power_rule = NULL; 791 const struct ieee80211_freq_range *freq_range = NULL; 792 struct ieee80211_supported_band *sband; 793 struct ieee80211_channel *chan; 794 struct wiphy *request_wiphy = NULL; 795 796 assert_cfg80211_lock(); 797 798 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 799 800 sband = wiphy->bands[band]; 801 BUG_ON(chan_idx >= sband->n_channels); 802 chan = &sband->channels[chan_idx]; 803 804 flags = chan->orig_flags; 805 806 r = freq_reg_info(wiphy, 807 MHZ_TO_KHZ(chan->center_freq), 808 desired_bw_khz, 809 ®_rule); 810 811 if (r) { 812 /* 813 * We will disable all channels that do not match our 814 * received regulatory rule unless the hint is coming 815 * from a Country IE and the Country IE had no information 816 * about a band. The IEEE 802.11 spec allows for an AP 817 * to send only a subset of the regulatory rules allowed, 818 * so an AP in the US that only supports 2.4 GHz may only send 819 * a country IE with information for the 2.4 GHz band 820 * while 5 GHz is still supported. 821 */ 822 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 823 r == -ERANGE) 824 return; 825 826 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq); 827 chan->flags = IEEE80211_CHAN_DISABLED; 828 return; 829 } 830 831 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 832 833 power_rule = ®_rule->power_rule; 834 freq_range = ®_rule->freq_range; 835 836 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 837 bw_flags = IEEE80211_CHAN_NO_HT40; 838 839 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 840 request_wiphy && request_wiphy == wiphy && 841 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 842 /* 843 * This guarantees the driver's requested regulatory domain 844 * will always be used as a base for further regulatory 845 * settings 846 */ 847 chan->flags = chan->orig_flags = 848 map_regdom_flags(reg_rule->flags) | bw_flags; 849 chan->max_antenna_gain = chan->orig_mag = 850 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 851 chan->max_power = chan->orig_mpwr = 852 (int) MBM_TO_DBM(power_rule->max_eirp); 853 return; 854 } 855 856 chan->beacon_found = false; 857 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 858 chan->max_antenna_gain = min(chan->orig_mag, 859 (int) MBI_TO_DBI(power_rule->max_antenna_gain)); 860 if (chan->orig_mpwr) 861 chan->max_power = min(chan->orig_mpwr, 862 (int) MBM_TO_DBM(power_rule->max_eirp)); 863 else 864 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 865 } 866 867 static void handle_band(struct wiphy *wiphy, 868 enum ieee80211_band band, 869 enum nl80211_reg_initiator initiator) 870 { 871 unsigned int i; 872 struct ieee80211_supported_band *sband; 873 874 BUG_ON(!wiphy->bands[band]); 875 sband = wiphy->bands[band]; 876 877 for (i = 0; i < sband->n_channels; i++) 878 handle_channel(wiphy, initiator, band, i); 879 } 880 881 static bool ignore_reg_update(struct wiphy *wiphy, 882 enum nl80211_reg_initiator initiator) 883 { 884 if (!last_request) { 885 REG_DBG_PRINT("Ignoring regulatory request %s since " 886 "last_request is not set\n", 887 reg_initiator_name(initiator)); 888 return true; 889 } 890 891 if (initiator == NL80211_REGDOM_SET_BY_CORE && 892 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) { 893 REG_DBG_PRINT("Ignoring regulatory request %s " 894 "since the driver uses its own custom " 895 "regulatory domain\n", 896 reg_initiator_name(initiator)); 897 return true; 898 } 899 900 /* 901 * wiphy->regd will be set once the device has its own 902 * desired regulatory domain set 903 */ 904 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd && 905 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 906 !is_world_regdom(last_request->alpha2)) { 907 REG_DBG_PRINT("Ignoring regulatory request %s " 908 "since the driver requires its own regulatory " 909 "domain to be set first\n", 910 reg_initiator_name(initiator)); 911 return true; 912 } 913 914 return false; 915 } 916 917 static void handle_reg_beacon(struct wiphy *wiphy, 918 unsigned int chan_idx, 919 struct reg_beacon *reg_beacon) 920 { 921 struct ieee80211_supported_band *sband; 922 struct ieee80211_channel *chan; 923 bool channel_changed = false; 924 struct ieee80211_channel chan_before; 925 926 assert_cfg80211_lock(); 927 928 sband = wiphy->bands[reg_beacon->chan.band]; 929 chan = &sband->channels[chan_idx]; 930 931 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 932 return; 933 934 if (chan->beacon_found) 935 return; 936 937 chan->beacon_found = true; 938 939 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS) 940 return; 941 942 chan_before.center_freq = chan->center_freq; 943 chan_before.flags = chan->flags; 944 945 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) { 946 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN; 947 channel_changed = true; 948 } 949 950 if (chan->flags & IEEE80211_CHAN_NO_IBSS) { 951 chan->flags &= ~IEEE80211_CHAN_NO_IBSS; 952 channel_changed = true; 953 } 954 955 if (channel_changed) 956 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 957 } 958 959 /* 960 * Called when a scan on a wiphy finds a beacon on 961 * new channel 962 */ 963 static void wiphy_update_new_beacon(struct wiphy *wiphy, 964 struct reg_beacon *reg_beacon) 965 { 966 unsigned int i; 967 struct ieee80211_supported_band *sband; 968 969 assert_cfg80211_lock(); 970 971 if (!wiphy->bands[reg_beacon->chan.band]) 972 return; 973 974 sband = wiphy->bands[reg_beacon->chan.band]; 975 976 for (i = 0; i < sband->n_channels; i++) 977 handle_reg_beacon(wiphy, i, reg_beacon); 978 } 979 980 /* 981 * Called upon reg changes or a new wiphy is added 982 */ 983 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 984 { 985 unsigned int i; 986 struct ieee80211_supported_band *sband; 987 struct reg_beacon *reg_beacon; 988 989 assert_cfg80211_lock(); 990 991 if (list_empty(®_beacon_list)) 992 return; 993 994 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 995 if (!wiphy->bands[reg_beacon->chan.band]) 996 continue; 997 sband = wiphy->bands[reg_beacon->chan.band]; 998 for (i = 0; i < sband->n_channels; i++) 999 handle_reg_beacon(wiphy, i, reg_beacon); 1000 } 1001 } 1002 1003 static bool reg_is_world_roaming(struct wiphy *wiphy) 1004 { 1005 if (is_world_regdom(cfg80211_regdomain->alpha2) || 1006 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2))) 1007 return true; 1008 if (last_request && 1009 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1010 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1011 return true; 1012 return false; 1013 } 1014 1015 /* Reap the advantages of previously found beacons */ 1016 static void reg_process_beacons(struct wiphy *wiphy) 1017 { 1018 /* 1019 * Means we are just firing up cfg80211, so no beacons would 1020 * have been processed yet. 1021 */ 1022 if (!last_request) 1023 return; 1024 if (!reg_is_world_roaming(wiphy)) 1025 return; 1026 wiphy_update_beacon_reg(wiphy); 1027 } 1028 1029 static bool is_ht40_not_allowed(struct ieee80211_channel *chan) 1030 { 1031 if (!chan) 1032 return true; 1033 if (chan->flags & IEEE80211_CHAN_DISABLED) 1034 return true; 1035 /* This would happen when regulatory rules disallow HT40 completely */ 1036 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40))) 1037 return true; 1038 return false; 1039 } 1040 1041 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1042 enum ieee80211_band band, 1043 unsigned int chan_idx) 1044 { 1045 struct ieee80211_supported_band *sband; 1046 struct ieee80211_channel *channel; 1047 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1048 unsigned int i; 1049 1050 assert_cfg80211_lock(); 1051 1052 sband = wiphy->bands[band]; 1053 BUG_ON(chan_idx >= sband->n_channels); 1054 channel = &sband->channels[chan_idx]; 1055 1056 if (is_ht40_not_allowed(channel)) { 1057 channel->flags |= IEEE80211_CHAN_NO_HT40; 1058 return; 1059 } 1060 1061 /* 1062 * We need to ensure the extension channels exist to 1063 * be able to use HT40- or HT40+, this finds them (or not) 1064 */ 1065 for (i = 0; i < sband->n_channels; i++) { 1066 struct ieee80211_channel *c = &sband->channels[i]; 1067 if (c->center_freq == (channel->center_freq - 20)) 1068 channel_before = c; 1069 if (c->center_freq == (channel->center_freq + 20)) 1070 channel_after = c; 1071 } 1072 1073 /* 1074 * Please note that this assumes target bandwidth is 20 MHz, 1075 * if that ever changes we also need to change the below logic 1076 * to include that as well. 1077 */ 1078 if (is_ht40_not_allowed(channel_before)) 1079 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1080 else 1081 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1082 1083 if (is_ht40_not_allowed(channel_after)) 1084 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1085 else 1086 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1087 } 1088 1089 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1090 enum ieee80211_band band) 1091 { 1092 unsigned int i; 1093 struct ieee80211_supported_band *sband; 1094 1095 BUG_ON(!wiphy->bands[band]); 1096 sband = wiphy->bands[band]; 1097 1098 for (i = 0; i < sband->n_channels; i++) 1099 reg_process_ht_flags_channel(wiphy, band, i); 1100 } 1101 1102 static void reg_process_ht_flags(struct wiphy *wiphy) 1103 { 1104 enum ieee80211_band band; 1105 1106 if (!wiphy) 1107 return; 1108 1109 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1110 if (wiphy->bands[band]) 1111 reg_process_ht_flags_band(wiphy, band); 1112 } 1113 1114 } 1115 1116 static void wiphy_update_regulatory(struct wiphy *wiphy, 1117 enum nl80211_reg_initiator initiator) 1118 { 1119 enum ieee80211_band band; 1120 1121 assert_reg_lock(); 1122 1123 if (ignore_reg_update(wiphy, initiator)) 1124 return; 1125 1126 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1127 if (wiphy->bands[band]) 1128 handle_band(wiphy, band, initiator); 1129 } 1130 1131 reg_process_beacons(wiphy); 1132 reg_process_ht_flags(wiphy); 1133 if (wiphy->reg_notifier) 1134 wiphy->reg_notifier(wiphy, last_request); 1135 } 1136 1137 void regulatory_update(struct wiphy *wiphy, 1138 enum nl80211_reg_initiator setby) 1139 { 1140 mutex_lock(®_mutex); 1141 wiphy_update_regulatory(wiphy, setby); 1142 mutex_unlock(®_mutex); 1143 } 1144 1145 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1146 { 1147 struct cfg80211_registered_device *rdev; 1148 1149 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1150 wiphy_update_regulatory(&rdev->wiphy, initiator); 1151 } 1152 1153 static void handle_channel_custom(struct wiphy *wiphy, 1154 enum ieee80211_band band, 1155 unsigned int chan_idx, 1156 const struct ieee80211_regdomain *regd) 1157 { 1158 int r; 1159 u32 desired_bw_khz = MHZ_TO_KHZ(20); 1160 u32 bw_flags = 0; 1161 const struct ieee80211_reg_rule *reg_rule = NULL; 1162 const struct ieee80211_power_rule *power_rule = NULL; 1163 const struct ieee80211_freq_range *freq_range = NULL; 1164 struct ieee80211_supported_band *sband; 1165 struct ieee80211_channel *chan; 1166 1167 assert_reg_lock(); 1168 1169 sband = wiphy->bands[band]; 1170 BUG_ON(chan_idx >= sband->n_channels); 1171 chan = &sband->channels[chan_idx]; 1172 1173 r = freq_reg_info_regd(wiphy, 1174 MHZ_TO_KHZ(chan->center_freq), 1175 desired_bw_khz, 1176 ®_rule, 1177 regd); 1178 1179 if (r) { 1180 REG_DBG_PRINT("Disabling freq %d MHz as custom " 1181 "regd has no rule that fits a %d MHz " 1182 "wide channel\n", 1183 chan->center_freq, 1184 KHZ_TO_MHZ(desired_bw_khz)); 1185 chan->flags = IEEE80211_CHAN_DISABLED; 1186 return; 1187 } 1188 1189 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 1190 1191 power_rule = ®_rule->power_rule; 1192 freq_range = ®_rule->freq_range; 1193 1194 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 1195 bw_flags = IEEE80211_CHAN_NO_HT40; 1196 1197 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1198 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1199 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1200 } 1201 1202 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band, 1203 const struct ieee80211_regdomain *regd) 1204 { 1205 unsigned int i; 1206 struct ieee80211_supported_band *sband; 1207 1208 BUG_ON(!wiphy->bands[band]); 1209 sband = wiphy->bands[band]; 1210 1211 for (i = 0; i < sband->n_channels; i++) 1212 handle_channel_custom(wiphy, band, i, regd); 1213 } 1214 1215 /* Used by drivers prior to wiphy registration */ 1216 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1217 const struct ieee80211_regdomain *regd) 1218 { 1219 enum ieee80211_band band; 1220 unsigned int bands_set = 0; 1221 1222 mutex_lock(®_mutex); 1223 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1224 if (!wiphy->bands[band]) 1225 continue; 1226 handle_band_custom(wiphy, band, regd); 1227 bands_set++; 1228 } 1229 mutex_unlock(®_mutex); 1230 1231 /* 1232 * no point in calling this if it won't have any effect 1233 * on your device's supportd bands. 1234 */ 1235 WARN_ON(!bands_set); 1236 } 1237 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1238 1239 /* 1240 * Return value which can be used by ignore_request() to indicate 1241 * it has been determined we should intersect two regulatory domains 1242 */ 1243 #define REG_INTERSECT 1 1244 1245 /* This has the logic which determines when a new request 1246 * should be ignored. */ 1247 static int ignore_request(struct wiphy *wiphy, 1248 struct regulatory_request *pending_request) 1249 { 1250 struct wiphy *last_wiphy = NULL; 1251 1252 assert_cfg80211_lock(); 1253 1254 /* All initial requests are respected */ 1255 if (!last_request) 1256 return 0; 1257 1258 switch (pending_request->initiator) { 1259 case NL80211_REGDOM_SET_BY_CORE: 1260 return 0; 1261 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1262 1263 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 1264 1265 if (unlikely(!is_an_alpha2(pending_request->alpha2))) 1266 return -EINVAL; 1267 if (last_request->initiator == 1268 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1269 if (last_wiphy != wiphy) { 1270 /* 1271 * Two cards with two APs claiming different 1272 * Country IE alpha2s. We could 1273 * intersect them, but that seems unlikely 1274 * to be correct. Reject second one for now. 1275 */ 1276 if (regdom_changes(pending_request->alpha2)) 1277 return -EOPNOTSUPP; 1278 return -EALREADY; 1279 } 1280 /* 1281 * Two consecutive Country IE hints on the same wiphy. 1282 * This should be picked up early by the driver/stack 1283 */ 1284 if (WARN_ON(regdom_changes(pending_request->alpha2))) 1285 return 0; 1286 return -EALREADY; 1287 } 1288 return 0; 1289 case NL80211_REGDOM_SET_BY_DRIVER: 1290 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) { 1291 if (regdom_changes(pending_request->alpha2)) 1292 return 0; 1293 return -EALREADY; 1294 } 1295 1296 /* 1297 * This would happen if you unplug and plug your card 1298 * back in or if you add a new device for which the previously 1299 * loaded card also agrees on the regulatory domain. 1300 */ 1301 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1302 !regdom_changes(pending_request->alpha2)) 1303 return -EALREADY; 1304 1305 return REG_INTERSECT; 1306 case NL80211_REGDOM_SET_BY_USER: 1307 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1308 return REG_INTERSECT; 1309 /* 1310 * If the user knows better the user should set the regdom 1311 * to their country before the IE is picked up 1312 */ 1313 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER && 1314 last_request->intersect) 1315 return -EOPNOTSUPP; 1316 /* 1317 * Process user requests only after previous user/driver/core 1318 * requests have been processed 1319 */ 1320 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE || 1321 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1322 last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1323 if (regdom_changes(last_request->alpha2)) 1324 return -EAGAIN; 1325 } 1326 1327 if (!regdom_changes(pending_request->alpha2)) 1328 return -EALREADY; 1329 1330 return 0; 1331 } 1332 1333 return -EINVAL; 1334 } 1335 1336 static void reg_set_request_processed(void) 1337 { 1338 bool need_more_processing = false; 1339 1340 last_request->processed = true; 1341 1342 spin_lock(®_requests_lock); 1343 if (!list_empty(®_requests_list)) 1344 need_more_processing = true; 1345 spin_unlock(®_requests_lock); 1346 1347 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) 1348 cancel_delayed_work_sync(®_timeout); 1349 1350 if (need_more_processing) 1351 schedule_work(®_work); 1352 } 1353 1354 /** 1355 * __regulatory_hint - hint to the wireless core a regulatory domain 1356 * @wiphy: if the hint comes from country information from an AP, this 1357 * is required to be set to the wiphy that received the information 1358 * @pending_request: the regulatory request currently being processed 1359 * 1360 * The Wireless subsystem can use this function to hint to the wireless core 1361 * what it believes should be the current regulatory domain. 1362 * 1363 * Returns zero if all went fine, %-EALREADY if a regulatory domain had 1364 * already been set or other standard error codes. 1365 * 1366 * Caller must hold &cfg80211_mutex and ®_mutex 1367 */ 1368 static int __regulatory_hint(struct wiphy *wiphy, 1369 struct regulatory_request *pending_request) 1370 { 1371 bool intersect = false; 1372 int r = 0; 1373 1374 assert_cfg80211_lock(); 1375 1376 r = ignore_request(wiphy, pending_request); 1377 1378 if (r == REG_INTERSECT) { 1379 if (pending_request->initiator == 1380 NL80211_REGDOM_SET_BY_DRIVER) { 1381 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1382 if (r) { 1383 kfree(pending_request); 1384 return r; 1385 } 1386 } 1387 intersect = true; 1388 } else if (r) { 1389 /* 1390 * If the regulatory domain being requested by the 1391 * driver has already been set just copy it to the 1392 * wiphy 1393 */ 1394 if (r == -EALREADY && 1395 pending_request->initiator == 1396 NL80211_REGDOM_SET_BY_DRIVER) { 1397 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1398 if (r) { 1399 kfree(pending_request); 1400 return r; 1401 } 1402 r = -EALREADY; 1403 goto new_request; 1404 } 1405 kfree(pending_request); 1406 return r; 1407 } 1408 1409 new_request: 1410 kfree(last_request); 1411 1412 last_request = pending_request; 1413 last_request->intersect = intersect; 1414 1415 pending_request = NULL; 1416 1417 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1418 user_alpha2[0] = last_request->alpha2[0]; 1419 user_alpha2[1] = last_request->alpha2[1]; 1420 } 1421 1422 /* When r == REG_INTERSECT we do need to call CRDA */ 1423 if (r < 0) { 1424 /* 1425 * Since CRDA will not be called in this case as we already 1426 * have applied the requested regulatory domain before we just 1427 * inform userspace we have processed the request 1428 */ 1429 if (r == -EALREADY) { 1430 nl80211_send_reg_change_event(last_request); 1431 reg_set_request_processed(); 1432 } 1433 return r; 1434 } 1435 1436 return call_crda(last_request->alpha2); 1437 } 1438 1439 /* This processes *all* regulatory hints */ 1440 static void reg_process_hint(struct regulatory_request *reg_request) 1441 { 1442 int r = 0; 1443 struct wiphy *wiphy = NULL; 1444 enum nl80211_reg_initiator initiator = reg_request->initiator; 1445 1446 BUG_ON(!reg_request->alpha2); 1447 1448 if (wiphy_idx_valid(reg_request->wiphy_idx)) 1449 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1450 1451 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1452 !wiphy) { 1453 kfree(reg_request); 1454 return; 1455 } 1456 1457 r = __regulatory_hint(wiphy, reg_request); 1458 /* This is required so that the orig_* parameters are saved */ 1459 if (r == -EALREADY && wiphy && 1460 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 1461 wiphy_update_regulatory(wiphy, initiator); 1462 return; 1463 } 1464 1465 /* 1466 * We only time out user hints, given that they should be the only 1467 * source of bogus requests. 1468 */ 1469 if (r != -EALREADY && 1470 reg_request->initiator == NL80211_REGDOM_SET_BY_USER) 1471 schedule_delayed_work(®_timeout, msecs_to_jiffies(3142)); 1472 } 1473 1474 /* 1475 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 1476 * Regulatory hints come on a first come first serve basis and we 1477 * must process each one atomically. 1478 */ 1479 static void reg_process_pending_hints(void) 1480 { 1481 struct regulatory_request *reg_request; 1482 1483 mutex_lock(&cfg80211_mutex); 1484 mutex_lock(®_mutex); 1485 1486 /* When last_request->processed becomes true this will be rescheduled */ 1487 if (last_request && !last_request->processed) { 1488 REG_DBG_PRINT("Pending regulatory request, waiting " 1489 "for it to be processed...\n"); 1490 goto out; 1491 } 1492 1493 spin_lock(®_requests_lock); 1494 1495 if (list_empty(®_requests_list)) { 1496 spin_unlock(®_requests_lock); 1497 goto out; 1498 } 1499 1500 reg_request = list_first_entry(®_requests_list, 1501 struct regulatory_request, 1502 list); 1503 list_del_init(®_request->list); 1504 1505 spin_unlock(®_requests_lock); 1506 1507 reg_process_hint(reg_request); 1508 1509 out: 1510 mutex_unlock(®_mutex); 1511 mutex_unlock(&cfg80211_mutex); 1512 } 1513 1514 /* Processes beacon hints -- this has nothing to do with country IEs */ 1515 static void reg_process_pending_beacon_hints(void) 1516 { 1517 struct cfg80211_registered_device *rdev; 1518 struct reg_beacon *pending_beacon, *tmp; 1519 1520 /* 1521 * No need to hold the reg_mutex here as we just touch wiphys 1522 * and do not read or access regulatory variables. 1523 */ 1524 mutex_lock(&cfg80211_mutex); 1525 1526 /* This goes through the _pending_ beacon list */ 1527 spin_lock_bh(®_pending_beacons_lock); 1528 1529 if (list_empty(®_pending_beacons)) { 1530 spin_unlock_bh(®_pending_beacons_lock); 1531 goto out; 1532 } 1533 1534 list_for_each_entry_safe(pending_beacon, tmp, 1535 ®_pending_beacons, list) { 1536 1537 list_del_init(&pending_beacon->list); 1538 1539 /* Applies the beacon hint to current wiphys */ 1540 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1541 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 1542 1543 /* Remembers the beacon hint for new wiphys or reg changes */ 1544 list_add_tail(&pending_beacon->list, ®_beacon_list); 1545 } 1546 1547 spin_unlock_bh(®_pending_beacons_lock); 1548 out: 1549 mutex_unlock(&cfg80211_mutex); 1550 } 1551 1552 static void reg_todo(struct work_struct *work) 1553 { 1554 reg_process_pending_hints(); 1555 reg_process_pending_beacon_hints(); 1556 } 1557 1558 static void queue_regulatory_request(struct regulatory_request *request) 1559 { 1560 if (isalpha(request->alpha2[0])) 1561 request->alpha2[0] = toupper(request->alpha2[0]); 1562 if (isalpha(request->alpha2[1])) 1563 request->alpha2[1] = toupper(request->alpha2[1]); 1564 1565 spin_lock(®_requests_lock); 1566 list_add_tail(&request->list, ®_requests_list); 1567 spin_unlock(®_requests_lock); 1568 1569 schedule_work(®_work); 1570 } 1571 1572 /* 1573 * Core regulatory hint -- happens during cfg80211_init() 1574 * and when we restore regulatory settings. 1575 */ 1576 static int regulatory_hint_core(const char *alpha2) 1577 { 1578 struct regulatory_request *request; 1579 1580 kfree(last_request); 1581 last_request = NULL; 1582 1583 request = kzalloc(sizeof(struct regulatory_request), 1584 GFP_KERNEL); 1585 if (!request) 1586 return -ENOMEM; 1587 1588 request->alpha2[0] = alpha2[0]; 1589 request->alpha2[1] = alpha2[1]; 1590 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1591 1592 queue_regulatory_request(request); 1593 1594 return 0; 1595 } 1596 1597 /* User hints */ 1598 int regulatory_hint_user(const char *alpha2) 1599 { 1600 struct regulatory_request *request; 1601 1602 BUG_ON(!alpha2); 1603 1604 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1605 if (!request) 1606 return -ENOMEM; 1607 1608 request->wiphy_idx = WIPHY_IDX_STALE; 1609 request->alpha2[0] = alpha2[0]; 1610 request->alpha2[1] = alpha2[1]; 1611 request->initiator = NL80211_REGDOM_SET_BY_USER; 1612 1613 queue_regulatory_request(request); 1614 1615 return 0; 1616 } 1617 1618 /* Driver hints */ 1619 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 1620 { 1621 struct regulatory_request *request; 1622 1623 BUG_ON(!alpha2); 1624 BUG_ON(!wiphy); 1625 1626 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1627 if (!request) 1628 return -ENOMEM; 1629 1630 request->wiphy_idx = get_wiphy_idx(wiphy); 1631 1632 /* Must have registered wiphy first */ 1633 BUG_ON(!wiphy_idx_valid(request->wiphy_idx)); 1634 1635 request->alpha2[0] = alpha2[0]; 1636 request->alpha2[1] = alpha2[1]; 1637 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 1638 1639 queue_regulatory_request(request); 1640 1641 return 0; 1642 } 1643 EXPORT_SYMBOL(regulatory_hint); 1644 1645 /* 1646 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and 1647 * therefore cannot iterate over the rdev list here. 1648 */ 1649 void regulatory_hint_11d(struct wiphy *wiphy, 1650 enum ieee80211_band band, 1651 u8 *country_ie, 1652 u8 country_ie_len) 1653 { 1654 char alpha2[2]; 1655 enum environment_cap env = ENVIRON_ANY; 1656 struct regulatory_request *request; 1657 1658 mutex_lock(®_mutex); 1659 1660 if (unlikely(!last_request)) 1661 goto out; 1662 1663 /* IE len must be evenly divisible by 2 */ 1664 if (country_ie_len & 0x01) 1665 goto out; 1666 1667 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 1668 goto out; 1669 1670 alpha2[0] = country_ie[0]; 1671 alpha2[1] = country_ie[1]; 1672 1673 if (country_ie[2] == 'I') 1674 env = ENVIRON_INDOOR; 1675 else if (country_ie[2] == 'O') 1676 env = ENVIRON_OUTDOOR; 1677 1678 /* 1679 * We will run this only upon a successful connection on cfg80211. 1680 * We leave conflict resolution to the workqueue, where can hold 1681 * cfg80211_mutex. 1682 */ 1683 if (likely(last_request->initiator == 1684 NL80211_REGDOM_SET_BY_COUNTRY_IE && 1685 wiphy_idx_valid(last_request->wiphy_idx))) 1686 goto out; 1687 1688 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1689 if (!request) 1690 goto out; 1691 1692 request->wiphy_idx = get_wiphy_idx(wiphy); 1693 request->alpha2[0] = alpha2[0]; 1694 request->alpha2[1] = alpha2[1]; 1695 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 1696 request->country_ie_env = env; 1697 1698 mutex_unlock(®_mutex); 1699 1700 queue_regulatory_request(request); 1701 1702 return; 1703 1704 out: 1705 mutex_unlock(®_mutex); 1706 } 1707 1708 static void restore_alpha2(char *alpha2, bool reset_user) 1709 { 1710 /* indicates there is no alpha2 to consider for restoration */ 1711 alpha2[0] = '9'; 1712 alpha2[1] = '7'; 1713 1714 /* The user setting has precedence over the module parameter */ 1715 if (is_user_regdom_saved()) { 1716 /* Unless we're asked to ignore it and reset it */ 1717 if (reset_user) { 1718 REG_DBG_PRINT("Restoring regulatory settings " 1719 "including user preference\n"); 1720 user_alpha2[0] = '9'; 1721 user_alpha2[1] = '7'; 1722 1723 /* 1724 * If we're ignoring user settings, we still need to 1725 * check the module parameter to ensure we put things 1726 * back as they were for a full restore. 1727 */ 1728 if (!is_world_regdom(ieee80211_regdom)) { 1729 REG_DBG_PRINT("Keeping preference on " 1730 "module parameter ieee80211_regdom: %c%c\n", 1731 ieee80211_regdom[0], 1732 ieee80211_regdom[1]); 1733 alpha2[0] = ieee80211_regdom[0]; 1734 alpha2[1] = ieee80211_regdom[1]; 1735 } 1736 } else { 1737 REG_DBG_PRINT("Restoring regulatory settings " 1738 "while preserving user preference for: %c%c\n", 1739 user_alpha2[0], 1740 user_alpha2[1]); 1741 alpha2[0] = user_alpha2[0]; 1742 alpha2[1] = user_alpha2[1]; 1743 } 1744 } else if (!is_world_regdom(ieee80211_regdom)) { 1745 REG_DBG_PRINT("Keeping preference on " 1746 "module parameter ieee80211_regdom: %c%c\n", 1747 ieee80211_regdom[0], 1748 ieee80211_regdom[1]); 1749 alpha2[0] = ieee80211_regdom[0]; 1750 alpha2[1] = ieee80211_regdom[1]; 1751 } else 1752 REG_DBG_PRINT("Restoring regulatory settings\n"); 1753 } 1754 1755 /* 1756 * Restoring regulatory settings involves ingoring any 1757 * possibly stale country IE information and user regulatory 1758 * settings if so desired, this includes any beacon hints 1759 * learned as we could have traveled outside to another country 1760 * after disconnection. To restore regulatory settings we do 1761 * exactly what we did at bootup: 1762 * 1763 * - send a core regulatory hint 1764 * - send a user regulatory hint if applicable 1765 * 1766 * Device drivers that send a regulatory hint for a specific country 1767 * keep their own regulatory domain on wiphy->regd so that does does 1768 * not need to be remembered. 1769 */ 1770 static void restore_regulatory_settings(bool reset_user) 1771 { 1772 char alpha2[2]; 1773 struct reg_beacon *reg_beacon, *btmp; 1774 struct regulatory_request *reg_request, *tmp; 1775 LIST_HEAD(tmp_reg_req_list); 1776 1777 mutex_lock(&cfg80211_mutex); 1778 mutex_lock(®_mutex); 1779 1780 reset_regdomains(); 1781 restore_alpha2(alpha2, reset_user); 1782 1783 /* 1784 * If there's any pending requests we simply 1785 * stash them to a temporary pending queue and 1786 * add then after we've restored regulatory 1787 * settings. 1788 */ 1789 spin_lock(®_requests_lock); 1790 if (!list_empty(®_requests_list)) { 1791 list_for_each_entry_safe(reg_request, tmp, 1792 ®_requests_list, list) { 1793 if (reg_request->initiator != 1794 NL80211_REGDOM_SET_BY_USER) 1795 continue; 1796 list_del(®_request->list); 1797 list_add_tail(®_request->list, &tmp_reg_req_list); 1798 } 1799 } 1800 spin_unlock(®_requests_lock); 1801 1802 /* Clear beacon hints */ 1803 spin_lock_bh(®_pending_beacons_lock); 1804 if (!list_empty(®_pending_beacons)) { 1805 list_for_each_entry_safe(reg_beacon, btmp, 1806 ®_pending_beacons, list) { 1807 list_del(®_beacon->list); 1808 kfree(reg_beacon); 1809 } 1810 } 1811 spin_unlock_bh(®_pending_beacons_lock); 1812 1813 if (!list_empty(®_beacon_list)) { 1814 list_for_each_entry_safe(reg_beacon, btmp, 1815 ®_beacon_list, list) { 1816 list_del(®_beacon->list); 1817 kfree(reg_beacon); 1818 } 1819 } 1820 1821 /* First restore to the basic regulatory settings */ 1822 cfg80211_regdomain = cfg80211_world_regdom; 1823 1824 mutex_unlock(®_mutex); 1825 mutex_unlock(&cfg80211_mutex); 1826 1827 regulatory_hint_core(cfg80211_regdomain->alpha2); 1828 1829 /* 1830 * This restores the ieee80211_regdom module parameter 1831 * preference or the last user requested regulatory 1832 * settings, user regulatory settings takes precedence. 1833 */ 1834 if (is_an_alpha2(alpha2)) 1835 regulatory_hint_user(user_alpha2); 1836 1837 if (list_empty(&tmp_reg_req_list)) 1838 return; 1839 1840 mutex_lock(&cfg80211_mutex); 1841 mutex_lock(®_mutex); 1842 1843 spin_lock(®_requests_lock); 1844 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) { 1845 REG_DBG_PRINT("Adding request for country %c%c back " 1846 "into the queue\n", 1847 reg_request->alpha2[0], 1848 reg_request->alpha2[1]); 1849 list_del(®_request->list); 1850 list_add_tail(®_request->list, ®_requests_list); 1851 } 1852 spin_unlock(®_requests_lock); 1853 1854 mutex_unlock(®_mutex); 1855 mutex_unlock(&cfg80211_mutex); 1856 1857 REG_DBG_PRINT("Kicking the queue\n"); 1858 1859 schedule_work(®_work); 1860 } 1861 1862 void regulatory_hint_disconnect(void) 1863 { 1864 REG_DBG_PRINT("All devices are disconnected, going to " 1865 "restore regulatory settings\n"); 1866 restore_regulatory_settings(false); 1867 } 1868 1869 static bool freq_is_chan_12_13_14(u16 freq) 1870 { 1871 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 1872 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 1873 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 1874 return true; 1875 return false; 1876 } 1877 1878 int regulatory_hint_found_beacon(struct wiphy *wiphy, 1879 struct ieee80211_channel *beacon_chan, 1880 gfp_t gfp) 1881 { 1882 struct reg_beacon *reg_beacon; 1883 1884 if (likely((beacon_chan->beacon_found || 1885 (beacon_chan->flags & IEEE80211_CHAN_RADAR) || 1886 (beacon_chan->band == IEEE80211_BAND_2GHZ && 1887 !freq_is_chan_12_13_14(beacon_chan->center_freq))))) 1888 return 0; 1889 1890 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 1891 if (!reg_beacon) 1892 return -ENOMEM; 1893 1894 REG_DBG_PRINT("Found new beacon on " 1895 "frequency: %d MHz (Ch %d) on %s\n", 1896 beacon_chan->center_freq, 1897 ieee80211_frequency_to_channel(beacon_chan->center_freq), 1898 wiphy_name(wiphy)); 1899 1900 memcpy(®_beacon->chan, beacon_chan, 1901 sizeof(struct ieee80211_channel)); 1902 1903 1904 /* 1905 * Since we can be called from BH or and non-BH context 1906 * we must use spin_lock_bh() 1907 */ 1908 spin_lock_bh(®_pending_beacons_lock); 1909 list_add_tail(®_beacon->list, ®_pending_beacons); 1910 spin_unlock_bh(®_pending_beacons_lock); 1911 1912 schedule_work(®_work); 1913 1914 return 0; 1915 } 1916 1917 static void print_rd_rules(const struct ieee80211_regdomain *rd) 1918 { 1919 unsigned int i; 1920 const struct ieee80211_reg_rule *reg_rule = NULL; 1921 const struct ieee80211_freq_range *freq_range = NULL; 1922 const struct ieee80211_power_rule *power_rule = NULL; 1923 1924 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n"); 1925 1926 for (i = 0; i < rd->n_reg_rules; i++) { 1927 reg_rule = &rd->reg_rules[i]; 1928 freq_range = ®_rule->freq_range; 1929 power_rule = ®_rule->power_rule; 1930 1931 /* 1932 * There may not be documentation for max antenna gain 1933 * in certain regions 1934 */ 1935 if (power_rule->max_antenna_gain) 1936 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n", 1937 freq_range->start_freq_khz, 1938 freq_range->end_freq_khz, 1939 freq_range->max_bandwidth_khz, 1940 power_rule->max_antenna_gain, 1941 power_rule->max_eirp); 1942 else 1943 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n", 1944 freq_range->start_freq_khz, 1945 freq_range->end_freq_khz, 1946 freq_range->max_bandwidth_khz, 1947 power_rule->max_eirp); 1948 } 1949 } 1950 1951 static void print_regdomain(const struct ieee80211_regdomain *rd) 1952 { 1953 1954 if (is_intersected_alpha2(rd->alpha2)) { 1955 1956 if (last_request->initiator == 1957 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1958 struct cfg80211_registered_device *rdev; 1959 rdev = cfg80211_rdev_by_wiphy_idx( 1960 last_request->wiphy_idx); 1961 if (rdev) { 1962 pr_info("Current regulatory domain updated by AP to: %c%c\n", 1963 rdev->country_ie_alpha2[0], 1964 rdev->country_ie_alpha2[1]); 1965 } else 1966 pr_info("Current regulatory domain intersected:\n"); 1967 } else 1968 pr_info("Current regulatory domain intersected:\n"); 1969 } else if (is_world_regdom(rd->alpha2)) 1970 pr_info("World regulatory domain updated:\n"); 1971 else { 1972 if (is_unknown_alpha2(rd->alpha2)) 1973 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 1974 else 1975 pr_info("Regulatory domain changed to country: %c%c\n", 1976 rd->alpha2[0], rd->alpha2[1]); 1977 } 1978 print_rd_rules(rd); 1979 } 1980 1981 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 1982 { 1983 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 1984 print_rd_rules(rd); 1985 } 1986 1987 /* Takes ownership of rd only if it doesn't fail */ 1988 static int __set_regdom(const struct ieee80211_regdomain *rd) 1989 { 1990 const struct ieee80211_regdomain *intersected_rd = NULL; 1991 struct cfg80211_registered_device *rdev = NULL; 1992 struct wiphy *request_wiphy; 1993 /* Some basic sanity checks first */ 1994 1995 if (is_world_regdom(rd->alpha2)) { 1996 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 1997 return -EINVAL; 1998 update_world_regdomain(rd); 1999 return 0; 2000 } 2001 2002 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2003 !is_unknown_alpha2(rd->alpha2)) 2004 return -EINVAL; 2005 2006 if (!last_request) 2007 return -EINVAL; 2008 2009 /* 2010 * Lets only bother proceeding on the same alpha2 if the current 2011 * rd is non static (it means CRDA was present and was used last) 2012 * and the pending request came in from a country IE 2013 */ 2014 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2015 /* 2016 * If someone else asked us to change the rd lets only bother 2017 * checking if the alpha2 changes if CRDA was already called 2018 */ 2019 if (!regdom_changes(rd->alpha2)) 2020 return -EINVAL; 2021 } 2022 2023 /* 2024 * Now lets set the regulatory domain, update all driver channels 2025 * and finally inform them of what we have done, in case they want 2026 * to review or adjust their own settings based on their own 2027 * internal EEPROM data 2028 */ 2029 2030 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 2031 return -EINVAL; 2032 2033 if (!is_valid_rd(rd)) { 2034 pr_err("Invalid regulatory domain detected:\n"); 2035 print_regdomain_info(rd); 2036 return -EINVAL; 2037 } 2038 2039 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2040 2041 if (!last_request->intersect) { 2042 int r; 2043 2044 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) { 2045 reset_regdomains(); 2046 cfg80211_regdomain = rd; 2047 return 0; 2048 } 2049 2050 /* 2051 * For a driver hint, lets copy the regulatory domain the 2052 * driver wanted to the wiphy to deal with conflicts 2053 */ 2054 2055 /* 2056 * Userspace could have sent two replies with only 2057 * one kernel request. 2058 */ 2059 if (request_wiphy->regd) 2060 return -EALREADY; 2061 2062 r = reg_copy_regd(&request_wiphy->regd, rd); 2063 if (r) 2064 return r; 2065 2066 reset_regdomains(); 2067 cfg80211_regdomain = rd; 2068 return 0; 2069 } 2070 2071 /* Intersection requires a bit more work */ 2072 2073 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2074 2075 intersected_rd = regdom_intersect(rd, cfg80211_regdomain); 2076 if (!intersected_rd) 2077 return -EINVAL; 2078 2079 /* 2080 * We can trash what CRDA provided now. 2081 * However if a driver requested this specific regulatory 2082 * domain we keep it for its private use 2083 */ 2084 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) 2085 request_wiphy->regd = rd; 2086 else 2087 kfree(rd); 2088 2089 rd = NULL; 2090 2091 reset_regdomains(); 2092 cfg80211_regdomain = intersected_rd; 2093 2094 return 0; 2095 } 2096 2097 if (!intersected_rd) 2098 return -EINVAL; 2099 2100 rdev = wiphy_to_dev(request_wiphy); 2101 2102 rdev->country_ie_alpha2[0] = rd->alpha2[0]; 2103 rdev->country_ie_alpha2[1] = rd->alpha2[1]; 2104 rdev->env = last_request->country_ie_env; 2105 2106 BUG_ON(intersected_rd == rd); 2107 2108 kfree(rd); 2109 rd = NULL; 2110 2111 reset_regdomains(); 2112 cfg80211_regdomain = intersected_rd; 2113 2114 return 0; 2115 } 2116 2117 2118 /* 2119 * Use this call to set the current regulatory domain. Conflicts with 2120 * multiple drivers can be ironed out later. Caller must've already 2121 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex 2122 */ 2123 int set_regdom(const struct ieee80211_regdomain *rd) 2124 { 2125 int r; 2126 2127 assert_cfg80211_lock(); 2128 2129 mutex_lock(®_mutex); 2130 2131 /* Note that this doesn't update the wiphys, this is done below */ 2132 r = __set_regdom(rd); 2133 if (r) { 2134 kfree(rd); 2135 mutex_unlock(®_mutex); 2136 return r; 2137 } 2138 2139 /* This would make this whole thing pointless */ 2140 if (!last_request->intersect) 2141 BUG_ON(rd != cfg80211_regdomain); 2142 2143 /* update all wiphys now with the new established regulatory domain */ 2144 update_all_wiphy_regulatory(last_request->initiator); 2145 2146 print_regdomain(cfg80211_regdomain); 2147 2148 nl80211_send_reg_change_event(last_request); 2149 2150 reg_set_request_processed(); 2151 2152 mutex_unlock(®_mutex); 2153 2154 return r; 2155 } 2156 2157 #ifdef CONFIG_HOTPLUG 2158 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2159 { 2160 if (last_request && !last_request->processed) { 2161 if (add_uevent_var(env, "COUNTRY=%c%c", 2162 last_request->alpha2[0], 2163 last_request->alpha2[1])) 2164 return -ENOMEM; 2165 } 2166 2167 return 0; 2168 } 2169 #else 2170 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2171 { 2172 return -ENODEV; 2173 } 2174 #endif /* CONFIG_HOTPLUG */ 2175 2176 /* Caller must hold cfg80211_mutex */ 2177 void reg_device_remove(struct wiphy *wiphy) 2178 { 2179 struct wiphy *request_wiphy = NULL; 2180 2181 assert_cfg80211_lock(); 2182 2183 mutex_lock(®_mutex); 2184 2185 kfree(wiphy->regd); 2186 2187 if (last_request) 2188 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2189 2190 if (!request_wiphy || request_wiphy != wiphy) 2191 goto out; 2192 2193 last_request->wiphy_idx = WIPHY_IDX_STALE; 2194 last_request->country_ie_env = ENVIRON_ANY; 2195 out: 2196 mutex_unlock(®_mutex); 2197 } 2198 2199 static void reg_timeout_work(struct work_struct *work) 2200 { 2201 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, " 2202 "restoring regulatory settings\n"); 2203 restore_regulatory_settings(true); 2204 } 2205 2206 int __init regulatory_init(void) 2207 { 2208 int err = 0; 2209 2210 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2211 if (IS_ERR(reg_pdev)) 2212 return PTR_ERR(reg_pdev); 2213 2214 reg_pdev->dev.type = ®_device_type; 2215 2216 spin_lock_init(®_requests_lock); 2217 spin_lock_init(®_pending_beacons_lock); 2218 2219 cfg80211_regdomain = cfg80211_world_regdom; 2220 2221 user_alpha2[0] = '9'; 2222 user_alpha2[1] = '7'; 2223 2224 /* We always try to get an update for the static regdomain */ 2225 err = regulatory_hint_core(cfg80211_regdomain->alpha2); 2226 if (err) { 2227 if (err == -ENOMEM) 2228 return err; 2229 /* 2230 * N.B. kobject_uevent_env() can fail mainly for when we're out 2231 * memory which is handled and propagated appropriately above 2232 * but it can also fail during a netlink_broadcast() or during 2233 * early boot for call_usermodehelper(). For now treat these 2234 * errors as non-fatal. 2235 */ 2236 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 2237 #ifdef CONFIG_CFG80211_REG_DEBUG 2238 /* We want to find out exactly why when debugging */ 2239 WARN_ON(err); 2240 #endif 2241 } 2242 2243 /* 2244 * Finally, if the user set the module parameter treat it 2245 * as a user hint. 2246 */ 2247 if (!is_world_regdom(ieee80211_regdom)) 2248 regulatory_hint_user(ieee80211_regdom); 2249 2250 return 0; 2251 } 2252 2253 void /* __init_or_exit */ regulatory_exit(void) 2254 { 2255 struct regulatory_request *reg_request, *tmp; 2256 struct reg_beacon *reg_beacon, *btmp; 2257 2258 cancel_work_sync(®_work); 2259 cancel_delayed_work_sync(®_timeout); 2260 2261 mutex_lock(&cfg80211_mutex); 2262 mutex_lock(®_mutex); 2263 2264 reset_regdomains(); 2265 2266 kfree(last_request); 2267 2268 platform_device_unregister(reg_pdev); 2269 2270 spin_lock_bh(®_pending_beacons_lock); 2271 if (!list_empty(®_pending_beacons)) { 2272 list_for_each_entry_safe(reg_beacon, btmp, 2273 ®_pending_beacons, list) { 2274 list_del(®_beacon->list); 2275 kfree(reg_beacon); 2276 } 2277 } 2278 spin_unlock_bh(®_pending_beacons_lock); 2279 2280 if (!list_empty(®_beacon_list)) { 2281 list_for_each_entry_safe(reg_beacon, btmp, 2282 ®_beacon_list, list) { 2283 list_del(®_beacon->list); 2284 kfree(reg_beacon); 2285 } 2286 } 2287 2288 spin_lock(®_requests_lock); 2289 if (!list_empty(®_requests_list)) { 2290 list_for_each_entry_safe(reg_request, tmp, 2291 ®_requests_list, list) { 2292 list_del(®_request->list); 2293 kfree(reg_request); 2294 } 2295 } 2296 spin_unlock(®_requests_lock); 2297 2298 mutex_unlock(®_mutex); 2299 mutex_unlock(&cfg80211_mutex); 2300 } 2301