1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2021 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static DEFINE_SPINLOCK(reg_indoor_lock); 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 static void reg_process_hint(struct regulatory_request *reg_request); 137 138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 139 { 140 return rcu_dereference_rtnl(cfg80211_regdomain); 141 } 142 143 /* 144 * Returns the regulatory domain associated with the wiphy. 145 * 146 * Requires any of RTNL, wiphy mutex or RCU protection. 147 */ 148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 149 { 150 return rcu_dereference_check(wiphy->regd, 151 lockdep_is_held(&wiphy->mtx) || 152 lockdep_rtnl_is_held()); 153 } 154 EXPORT_SYMBOL(get_wiphy_regdom); 155 156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 157 { 158 switch (dfs_region) { 159 case NL80211_DFS_UNSET: 160 return "unset"; 161 case NL80211_DFS_FCC: 162 return "FCC"; 163 case NL80211_DFS_ETSI: 164 return "ETSI"; 165 case NL80211_DFS_JP: 166 return "JP"; 167 } 168 return "Unknown"; 169 } 170 171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 172 { 173 const struct ieee80211_regdomain *regd = NULL; 174 const struct ieee80211_regdomain *wiphy_regd = NULL; 175 enum nl80211_dfs_regions dfs_region; 176 177 rcu_read_lock(); 178 regd = get_cfg80211_regdom(); 179 dfs_region = regd->dfs_region; 180 181 if (!wiphy) 182 goto out; 183 184 wiphy_regd = get_wiphy_regdom(wiphy); 185 if (!wiphy_regd) 186 goto out; 187 188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 189 dfs_region = wiphy_regd->dfs_region; 190 goto out; 191 } 192 193 if (wiphy_regd->dfs_region == regd->dfs_region) 194 goto out; 195 196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 197 dev_name(&wiphy->dev), 198 reg_dfs_region_str(wiphy_regd->dfs_region), 199 reg_dfs_region_str(regd->dfs_region)); 200 201 out: 202 rcu_read_unlock(); 203 204 return dfs_region; 205 } 206 207 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 208 { 209 if (!r) 210 return; 211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 212 } 213 214 static struct regulatory_request *get_last_request(void) 215 { 216 return rcu_dereference_rtnl(last_request); 217 } 218 219 /* Used to queue up regulatory hints */ 220 static LIST_HEAD(reg_requests_list); 221 static DEFINE_SPINLOCK(reg_requests_lock); 222 223 /* Used to queue up beacon hints for review */ 224 static LIST_HEAD(reg_pending_beacons); 225 static DEFINE_SPINLOCK(reg_pending_beacons_lock); 226 227 /* Used to keep track of processed beacon hints */ 228 static LIST_HEAD(reg_beacon_list); 229 230 struct reg_beacon { 231 struct list_head list; 232 struct ieee80211_channel chan; 233 }; 234 235 static void reg_check_chans_work(struct work_struct *work); 236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 237 238 static void reg_todo(struct work_struct *work); 239 static DECLARE_WORK(reg_work, reg_todo); 240 241 /* We keep a static world regulatory domain in case of the absence of CRDA */ 242 static const struct ieee80211_regdomain world_regdom = { 243 .n_reg_rules = 8, 244 .alpha2 = "00", 245 .reg_rules = { 246 /* IEEE 802.11b/g, channels 1..11 */ 247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 248 /* IEEE 802.11b/g, channels 12..13. */ 249 REG_RULE(2467-10, 2472+10, 20, 6, 20, 250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 251 /* IEEE 802.11 channel 14 - Only JP enables 252 * this and for 802.11b only */ 253 REG_RULE(2484-10, 2484+10, 20, 6, 20, 254 NL80211_RRF_NO_IR | 255 NL80211_RRF_NO_OFDM), 256 /* IEEE 802.11a, channel 36..48 */ 257 REG_RULE(5180-10, 5240+10, 80, 6, 20, 258 NL80211_RRF_NO_IR | 259 NL80211_RRF_AUTO_BW), 260 261 /* IEEE 802.11a, channel 52..64 - DFS required */ 262 REG_RULE(5260-10, 5320+10, 80, 6, 20, 263 NL80211_RRF_NO_IR | 264 NL80211_RRF_AUTO_BW | 265 NL80211_RRF_DFS), 266 267 /* IEEE 802.11a, channel 100..144 - DFS required */ 268 REG_RULE(5500-10, 5720+10, 160, 6, 20, 269 NL80211_RRF_NO_IR | 270 NL80211_RRF_DFS), 271 272 /* IEEE 802.11a, channel 149..165 */ 273 REG_RULE(5745-10, 5825+10, 80, 6, 20, 274 NL80211_RRF_NO_IR), 275 276 /* IEEE 802.11ad (60GHz), channels 1..3 */ 277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 278 } 279 }; 280 281 /* protected by RTNL */ 282 static const struct ieee80211_regdomain *cfg80211_world_regdom = 283 &world_regdom; 284 285 static char *ieee80211_regdom = "00"; 286 static char user_alpha2[2]; 287 static const struct ieee80211_regdomain *cfg80211_user_regdom; 288 289 module_param(ieee80211_regdom, charp, 0444); 290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 291 292 static void reg_free_request(struct regulatory_request *request) 293 { 294 if (request == &core_request_world) 295 return; 296 297 if (request != get_last_request()) 298 kfree(request); 299 } 300 301 static void reg_free_last_request(void) 302 { 303 struct regulatory_request *lr = get_last_request(); 304 305 if (lr != &core_request_world && lr) 306 kfree_rcu(lr, rcu_head); 307 } 308 309 static void reg_update_last_request(struct regulatory_request *request) 310 { 311 struct regulatory_request *lr; 312 313 lr = get_last_request(); 314 if (lr == request) 315 return; 316 317 reg_free_last_request(); 318 rcu_assign_pointer(last_request, request); 319 } 320 321 static void reset_regdomains(bool full_reset, 322 const struct ieee80211_regdomain *new_regdom) 323 { 324 const struct ieee80211_regdomain *r; 325 326 ASSERT_RTNL(); 327 328 r = get_cfg80211_regdom(); 329 330 /* avoid freeing static information or freeing something twice */ 331 if (r == cfg80211_world_regdom) 332 r = NULL; 333 if (cfg80211_world_regdom == &world_regdom) 334 cfg80211_world_regdom = NULL; 335 if (r == &world_regdom) 336 r = NULL; 337 338 rcu_free_regdom(r); 339 rcu_free_regdom(cfg80211_world_regdom); 340 341 cfg80211_world_regdom = &world_regdom; 342 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 343 344 if (!full_reset) 345 return; 346 347 reg_update_last_request(&core_request_world); 348 } 349 350 /* 351 * Dynamic world regulatory domain requested by the wireless 352 * core upon initialization 353 */ 354 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 355 { 356 struct regulatory_request *lr; 357 358 lr = get_last_request(); 359 360 WARN_ON(!lr); 361 362 reset_regdomains(false, rd); 363 364 cfg80211_world_regdom = rd; 365 } 366 367 bool is_world_regdom(const char *alpha2) 368 { 369 if (!alpha2) 370 return false; 371 return alpha2[0] == '0' && alpha2[1] == '0'; 372 } 373 374 static bool is_alpha2_set(const char *alpha2) 375 { 376 if (!alpha2) 377 return false; 378 return alpha2[0] && alpha2[1]; 379 } 380 381 static bool is_unknown_alpha2(const char *alpha2) 382 { 383 if (!alpha2) 384 return false; 385 /* 386 * Special case where regulatory domain was built by driver 387 * but a specific alpha2 cannot be determined 388 */ 389 return alpha2[0] == '9' && alpha2[1] == '9'; 390 } 391 392 static bool is_intersected_alpha2(const char *alpha2) 393 { 394 if (!alpha2) 395 return false; 396 /* 397 * Special case where regulatory domain is the 398 * result of an intersection between two regulatory domain 399 * structures 400 */ 401 return alpha2[0] == '9' && alpha2[1] == '8'; 402 } 403 404 static bool is_an_alpha2(const char *alpha2) 405 { 406 if (!alpha2) 407 return false; 408 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 409 } 410 411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 412 { 413 if (!alpha2_x || !alpha2_y) 414 return false; 415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 416 } 417 418 static bool regdom_changes(const char *alpha2) 419 { 420 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 421 422 if (!r) 423 return true; 424 return !alpha2_equal(r->alpha2, alpha2); 425 } 426 427 /* 428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 430 * has ever been issued. 431 */ 432 static bool is_user_regdom_saved(void) 433 { 434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 435 return false; 436 437 /* This would indicate a mistake on the design */ 438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 439 "Unexpected user alpha2: %c%c\n", 440 user_alpha2[0], user_alpha2[1])) 441 return false; 442 443 return true; 444 } 445 446 static const struct ieee80211_regdomain * 447 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 448 { 449 struct ieee80211_regdomain *regd; 450 unsigned int i; 451 452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 453 GFP_KERNEL); 454 if (!regd) 455 return ERR_PTR(-ENOMEM); 456 457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 458 459 for (i = 0; i < src_regd->n_reg_rules; i++) 460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 461 sizeof(struct ieee80211_reg_rule)); 462 463 return regd; 464 } 465 466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 467 { 468 ASSERT_RTNL(); 469 470 if (!IS_ERR(cfg80211_user_regdom)) 471 kfree(cfg80211_user_regdom); 472 cfg80211_user_regdom = reg_copy_regd(rd); 473 } 474 475 struct reg_regdb_apply_request { 476 struct list_head list; 477 const struct ieee80211_regdomain *regdom; 478 }; 479 480 static LIST_HEAD(reg_regdb_apply_list); 481 static DEFINE_MUTEX(reg_regdb_apply_mutex); 482 483 static void reg_regdb_apply(struct work_struct *work) 484 { 485 struct reg_regdb_apply_request *request; 486 487 rtnl_lock(); 488 489 mutex_lock(®_regdb_apply_mutex); 490 while (!list_empty(®_regdb_apply_list)) { 491 request = list_first_entry(®_regdb_apply_list, 492 struct reg_regdb_apply_request, 493 list); 494 list_del(&request->list); 495 496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 497 kfree(request); 498 } 499 mutex_unlock(®_regdb_apply_mutex); 500 501 rtnl_unlock(); 502 } 503 504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 505 506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 507 { 508 struct reg_regdb_apply_request *request; 509 510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 511 if (!request) { 512 kfree(regdom); 513 return -ENOMEM; 514 } 515 516 request->regdom = regdom; 517 518 mutex_lock(®_regdb_apply_mutex); 519 list_add_tail(&request->list, ®_regdb_apply_list); 520 mutex_unlock(®_regdb_apply_mutex); 521 522 schedule_work(®_regdb_work); 523 return 0; 524 } 525 526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 527 /* Max number of consecutive attempts to communicate with CRDA */ 528 #define REG_MAX_CRDA_TIMEOUTS 10 529 530 static u32 reg_crda_timeouts; 531 532 static void crda_timeout_work(struct work_struct *work); 533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 534 535 static void crda_timeout_work(struct work_struct *work) 536 { 537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 538 rtnl_lock(); 539 reg_crda_timeouts++; 540 restore_regulatory_settings(true, false); 541 rtnl_unlock(); 542 } 543 544 static void cancel_crda_timeout(void) 545 { 546 cancel_delayed_work(&crda_timeout); 547 } 548 549 static void cancel_crda_timeout_sync(void) 550 { 551 cancel_delayed_work_sync(&crda_timeout); 552 } 553 554 static void reset_crda_timeouts(void) 555 { 556 reg_crda_timeouts = 0; 557 } 558 559 /* 560 * This lets us keep regulatory code which is updated on a regulatory 561 * basis in userspace. 562 */ 563 static int call_crda(const char *alpha2) 564 { 565 char country[12]; 566 char *env[] = { country, NULL }; 567 int ret; 568 569 snprintf(country, sizeof(country), "COUNTRY=%c%c", 570 alpha2[0], alpha2[1]); 571 572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 574 return -EINVAL; 575 } 576 577 if (!is_world_regdom((char *) alpha2)) 578 pr_debug("Calling CRDA for country: %c%c\n", 579 alpha2[0], alpha2[1]); 580 else 581 pr_debug("Calling CRDA to update world regulatory domain\n"); 582 583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 584 if (ret) 585 return ret; 586 587 queue_delayed_work(system_power_efficient_wq, 588 &crda_timeout, msecs_to_jiffies(3142)); 589 return 0; 590 } 591 #else 592 static inline void cancel_crda_timeout(void) {} 593 static inline void cancel_crda_timeout_sync(void) {} 594 static inline void reset_crda_timeouts(void) {} 595 static inline int call_crda(const char *alpha2) 596 { 597 return -ENODATA; 598 } 599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 600 601 /* code to directly load a firmware database through request_firmware */ 602 static const struct fwdb_header *regdb; 603 604 struct fwdb_country { 605 u8 alpha2[2]; 606 __be16 coll_ptr; 607 /* this struct cannot be extended */ 608 } __packed __aligned(4); 609 610 struct fwdb_collection { 611 u8 len; 612 u8 n_rules; 613 u8 dfs_region; 614 /* no optional data yet */ 615 /* aligned to 2, then followed by __be16 array of rule pointers */ 616 } __packed __aligned(4); 617 618 enum fwdb_flags { 619 FWDB_FLAG_NO_OFDM = BIT(0), 620 FWDB_FLAG_NO_OUTDOOR = BIT(1), 621 FWDB_FLAG_DFS = BIT(2), 622 FWDB_FLAG_NO_IR = BIT(3), 623 FWDB_FLAG_AUTO_BW = BIT(4), 624 }; 625 626 struct fwdb_wmm_ac { 627 u8 ecw; 628 u8 aifsn; 629 __be16 cot; 630 } __packed; 631 632 struct fwdb_wmm_rule { 633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 635 } __packed; 636 637 struct fwdb_rule { 638 u8 len; 639 u8 flags; 640 __be16 max_eirp; 641 __be32 start, end, max_bw; 642 /* start of optional data */ 643 __be16 cac_timeout; 644 __be16 wmm_ptr; 645 } __packed __aligned(4); 646 647 #define FWDB_MAGIC 0x52474442 648 #define FWDB_VERSION 20 649 650 struct fwdb_header { 651 __be32 magic; 652 __be32 version; 653 struct fwdb_country country[]; 654 } __packed __aligned(4); 655 656 static int ecw2cw(int ecw) 657 { 658 return (1 << ecw) - 1; 659 } 660 661 static bool valid_wmm(struct fwdb_wmm_rule *rule) 662 { 663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 664 int i; 665 666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 669 u8 aifsn = ac[i].aifsn; 670 671 if (cw_min >= cw_max) 672 return false; 673 674 if (aifsn < 1) 675 return false; 676 } 677 678 return true; 679 } 680 681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 682 { 683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 684 685 if ((u8 *)rule + sizeof(rule->len) > data + size) 686 return false; 687 688 /* mandatory fields */ 689 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 690 return false; 691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 693 struct fwdb_wmm_rule *wmm; 694 695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 696 return false; 697 698 wmm = (void *)(data + wmm_ptr); 699 700 if (!valid_wmm(wmm)) 701 return false; 702 } 703 return true; 704 } 705 706 static bool valid_country(const u8 *data, unsigned int size, 707 const struct fwdb_country *country) 708 { 709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 710 struct fwdb_collection *coll = (void *)(data + ptr); 711 __be16 *rules_ptr; 712 unsigned int i; 713 714 /* make sure we can read len/n_rules */ 715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 716 return false; 717 718 /* make sure base struct and all rules fit */ 719 if ((u8 *)coll + ALIGN(coll->len, 2) + 720 (coll->n_rules * 2) > data + size) 721 return false; 722 723 /* mandatory fields must exist */ 724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 725 return false; 726 727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 728 729 for (i = 0; i < coll->n_rules; i++) { 730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 731 732 if (!valid_rule(data, size, rule_ptr)) 733 return false; 734 } 735 736 return true; 737 } 738 739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 740 static struct key *builtin_regdb_keys; 741 742 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 743 { 744 const u8 *end = p + buflen; 745 size_t plen; 746 key_ref_t key; 747 748 while (p < end) { 749 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 750 * than 256 bytes in size. 751 */ 752 if (end - p < 4) 753 goto dodgy_cert; 754 if (p[0] != 0x30 && 755 p[1] != 0x82) 756 goto dodgy_cert; 757 plen = (p[2] << 8) | p[3]; 758 plen += 4; 759 if (plen > end - p) 760 goto dodgy_cert; 761 762 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 763 "asymmetric", NULL, p, plen, 764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 765 KEY_USR_VIEW | KEY_USR_READ), 766 KEY_ALLOC_NOT_IN_QUOTA | 767 KEY_ALLOC_BUILT_IN | 768 KEY_ALLOC_BYPASS_RESTRICTION); 769 if (IS_ERR(key)) { 770 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 771 PTR_ERR(key)); 772 } else { 773 pr_notice("Loaded X.509 cert '%s'\n", 774 key_ref_to_ptr(key)->description); 775 key_ref_put(key); 776 } 777 p += plen; 778 } 779 780 return; 781 782 dodgy_cert: 783 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 784 } 785 786 static int __init load_builtin_regdb_keys(void) 787 { 788 builtin_regdb_keys = 789 keyring_alloc(".builtin_regdb_keys", 790 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 791 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 792 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 793 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 794 if (IS_ERR(builtin_regdb_keys)) 795 return PTR_ERR(builtin_regdb_keys); 796 797 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 798 799 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 800 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 801 #endif 802 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 803 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 804 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 805 #endif 806 807 return 0; 808 } 809 810 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 811 { 812 const struct firmware *sig; 813 bool result; 814 815 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 816 return false; 817 818 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 819 builtin_regdb_keys, 820 VERIFYING_UNSPECIFIED_SIGNATURE, 821 NULL, NULL) == 0; 822 823 release_firmware(sig); 824 825 return result; 826 } 827 828 static void free_regdb_keyring(void) 829 { 830 key_put(builtin_regdb_keys); 831 } 832 #else 833 static int load_builtin_regdb_keys(void) 834 { 835 return 0; 836 } 837 838 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 839 { 840 return true; 841 } 842 843 static void free_regdb_keyring(void) 844 { 845 } 846 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 847 848 static bool valid_regdb(const u8 *data, unsigned int size) 849 { 850 const struct fwdb_header *hdr = (void *)data; 851 const struct fwdb_country *country; 852 853 if (size < sizeof(*hdr)) 854 return false; 855 856 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 857 return false; 858 859 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 860 return false; 861 862 if (!regdb_has_valid_signature(data, size)) 863 return false; 864 865 country = &hdr->country[0]; 866 while ((u8 *)(country + 1) <= data + size) { 867 if (!country->coll_ptr) 868 break; 869 if (!valid_country(data, size, country)) 870 return false; 871 country++; 872 } 873 874 return true; 875 } 876 877 static void set_wmm_rule(const struct fwdb_header *db, 878 const struct fwdb_country *country, 879 const struct fwdb_rule *rule, 880 struct ieee80211_reg_rule *rrule) 881 { 882 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 883 struct fwdb_wmm_rule *wmm; 884 unsigned int i, wmm_ptr; 885 886 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 887 wmm = (void *)((u8 *)db + wmm_ptr); 888 889 if (!valid_wmm(wmm)) { 890 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 891 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 892 country->alpha2[0], country->alpha2[1]); 893 return; 894 } 895 896 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 897 wmm_rule->client[i].cw_min = 898 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 899 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 900 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 901 wmm_rule->client[i].cot = 902 1000 * be16_to_cpu(wmm->client[i].cot); 903 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 904 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 905 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 906 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 907 } 908 909 rrule->has_wmm = true; 910 } 911 912 static int __regdb_query_wmm(const struct fwdb_header *db, 913 const struct fwdb_country *country, int freq, 914 struct ieee80211_reg_rule *rrule) 915 { 916 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 917 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 918 int i; 919 920 for (i = 0; i < coll->n_rules; i++) { 921 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 922 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 923 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 924 925 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 926 continue; 927 928 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 929 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 930 set_wmm_rule(db, country, rule, rrule); 931 return 0; 932 } 933 } 934 935 return -ENODATA; 936 } 937 938 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 939 { 940 const struct fwdb_header *hdr = regdb; 941 const struct fwdb_country *country; 942 943 if (!regdb) 944 return -ENODATA; 945 946 if (IS_ERR(regdb)) 947 return PTR_ERR(regdb); 948 949 country = &hdr->country[0]; 950 while (country->coll_ptr) { 951 if (alpha2_equal(alpha2, country->alpha2)) 952 return __regdb_query_wmm(regdb, country, freq, rule); 953 954 country++; 955 } 956 957 return -ENODATA; 958 } 959 EXPORT_SYMBOL(reg_query_regdb_wmm); 960 961 static int regdb_query_country(const struct fwdb_header *db, 962 const struct fwdb_country *country) 963 { 964 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 965 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 966 struct ieee80211_regdomain *regdom; 967 unsigned int i; 968 969 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 970 GFP_KERNEL); 971 if (!regdom) 972 return -ENOMEM; 973 974 regdom->n_reg_rules = coll->n_rules; 975 regdom->alpha2[0] = country->alpha2[0]; 976 regdom->alpha2[1] = country->alpha2[1]; 977 regdom->dfs_region = coll->dfs_region; 978 979 for (i = 0; i < regdom->n_reg_rules; i++) { 980 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 981 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 982 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 983 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 984 985 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 986 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 987 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 988 989 rrule->power_rule.max_antenna_gain = 0; 990 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 991 992 rrule->flags = 0; 993 if (rule->flags & FWDB_FLAG_NO_OFDM) 994 rrule->flags |= NL80211_RRF_NO_OFDM; 995 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 996 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 997 if (rule->flags & FWDB_FLAG_DFS) 998 rrule->flags |= NL80211_RRF_DFS; 999 if (rule->flags & FWDB_FLAG_NO_IR) 1000 rrule->flags |= NL80211_RRF_NO_IR; 1001 if (rule->flags & FWDB_FLAG_AUTO_BW) 1002 rrule->flags |= NL80211_RRF_AUTO_BW; 1003 1004 rrule->dfs_cac_ms = 0; 1005 1006 /* handle optional data */ 1007 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 1008 rrule->dfs_cac_ms = 1009 1000 * be16_to_cpu(rule->cac_timeout); 1010 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 1011 set_wmm_rule(db, country, rule, rrule); 1012 } 1013 1014 return reg_schedule_apply(regdom); 1015 } 1016 1017 static int query_regdb(const char *alpha2) 1018 { 1019 const struct fwdb_header *hdr = regdb; 1020 const struct fwdb_country *country; 1021 1022 ASSERT_RTNL(); 1023 1024 if (IS_ERR(regdb)) 1025 return PTR_ERR(regdb); 1026 1027 country = &hdr->country[0]; 1028 while (country->coll_ptr) { 1029 if (alpha2_equal(alpha2, country->alpha2)) 1030 return regdb_query_country(regdb, country); 1031 country++; 1032 } 1033 1034 return -ENODATA; 1035 } 1036 1037 static void regdb_fw_cb(const struct firmware *fw, void *context) 1038 { 1039 int set_error = 0; 1040 bool restore = true; 1041 void *db; 1042 1043 if (!fw) { 1044 pr_info("failed to load regulatory.db\n"); 1045 set_error = -ENODATA; 1046 } else if (!valid_regdb(fw->data, fw->size)) { 1047 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1048 set_error = -EINVAL; 1049 } 1050 1051 rtnl_lock(); 1052 if (regdb && !IS_ERR(regdb)) { 1053 /* negative case - a bug 1054 * positive case - can happen due to race in case of multiple cb's in 1055 * queue, due to usage of asynchronous callback 1056 * 1057 * Either case, just restore and free new db. 1058 */ 1059 } else if (set_error) { 1060 regdb = ERR_PTR(set_error); 1061 } else if (fw) { 1062 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1063 if (db) { 1064 regdb = db; 1065 restore = context && query_regdb(context); 1066 } else { 1067 restore = true; 1068 } 1069 } 1070 1071 if (restore) 1072 restore_regulatory_settings(true, false); 1073 1074 rtnl_unlock(); 1075 1076 kfree(context); 1077 1078 release_firmware(fw); 1079 } 1080 1081 static int query_regdb_file(const char *alpha2) 1082 { 1083 ASSERT_RTNL(); 1084 1085 if (regdb) 1086 return query_regdb(alpha2); 1087 1088 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1089 if (!alpha2) 1090 return -ENOMEM; 1091 1092 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1093 ®_pdev->dev, GFP_KERNEL, 1094 (void *)alpha2, regdb_fw_cb); 1095 } 1096 1097 int reg_reload_regdb(void) 1098 { 1099 const struct firmware *fw; 1100 void *db; 1101 int err; 1102 const struct ieee80211_regdomain *current_regdomain; 1103 struct regulatory_request *request; 1104 1105 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1106 if (err) 1107 return err; 1108 1109 if (!valid_regdb(fw->data, fw->size)) { 1110 err = -ENODATA; 1111 goto out; 1112 } 1113 1114 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1115 if (!db) { 1116 err = -ENOMEM; 1117 goto out; 1118 } 1119 1120 rtnl_lock(); 1121 if (!IS_ERR_OR_NULL(regdb)) 1122 kfree(regdb); 1123 regdb = db; 1124 1125 /* reset regulatory domain */ 1126 current_regdomain = get_cfg80211_regdom(); 1127 1128 request = kzalloc(sizeof(*request), GFP_KERNEL); 1129 if (!request) { 1130 err = -ENOMEM; 1131 goto out_unlock; 1132 } 1133 1134 request->wiphy_idx = WIPHY_IDX_INVALID; 1135 request->alpha2[0] = current_regdomain->alpha2[0]; 1136 request->alpha2[1] = current_regdomain->alpha2[1]; 1137 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1138 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER; 1139 1140 reg_process_hint(request); 1141 1142 out_unlock: 1143 rtnl_unlock(); 1144 out: 1145 release_firmware(fw); 1146 return err; 1147 } 1148 1149 static bool reg_query_database(struct regulatory_request *request) 1150 { 1151 if (query_regdb_file(request->alpha2) == 0) 1152 return true; 1153 1154 if (call_crda(request->alpha2) == 0) 1155 return true; 1156 1157 return false; 1158 } 1159 1160 bool reg_is_valid_request(const char *alpha2) 1161 { 1162 struct regulatory_request *lr = get_last_request(); 1163 1164 if (!lr || lr->processed) 1165 return false; 1166 1167 return alpha2_equal(lr->alpha2, alpha2); 1168 } 1169 1170 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1171 { 1172 struct regulatory_request *lr = get_last_request(); 1173 1174 /* 1175 * Follow the driver's regulatory domain, if present, unless a country 1176 * IE has been processed or a user wants to help complaince further 1177 */ 1178 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1179 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1180 wiphy->regd) 1181 return get_wiphy_regdom(wiphy); 1182 1183 return get_cfg80211_regdom(); 1184 } 1185 1186 static unsigned int 1187 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1188 const struct ieee80211_reg_rule *rule) 1189 { 1190 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1191 const struct ieee80211_freq_range *freq_range_tmp; 1192 const struct ieee80211_reg_rule *tmp; 1193 u32 start_freq, end_freq, idx, no; 1194 1195 for (idx = 0; idx < rd->n_reg_rules; idx++) 1196 if (rule == &rd->reg_rules[idx]) 1197 break; 1198 1199 if (idx == rd->n_reg_rules) 1200 return 0; 1201 1202 /* get start_freq */ 1203 no = idx; 1204 1205 while (no) { 1206 tmp = &rd->reg_rules[--no]; 1207 freq_range_tmp = &tmp->freq_range; 1208 1209 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1210 break; 1211 1212 freq_range = freq_range_tmp; 1213 } 1214 1215 start_freq = freq_range->start_freq_khz; 1216 1217 /* get end_freq */ 1218 freq_range = &rule->freq_range; 1219 no = idx; 1220 1221 while (no < rd->n_reg_rules - 1) { 1222 tmp = &rd->reg_rules[++no]; 1223 freq_range_tmp = &tmp->freq_range; 1224 1225 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1226 break; 1227 1228 freq_range = freq_range_tmp; 1229 } 1230 1231 end_freq = freq_range->end_freq_khz; 1232 1233 return end_freq - start_freq; 1234 } 1235 1236 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1237 const struct ieee80211_reg_rule *rule) 1238 { 1239 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1240 1241 if (rule->flags & NL80211_RRF_NO_320MHZ) 1242 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160)); 1243 if (rule->flags & NL80211_RRF_NO_160MHZ) 1244 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1245 if (rule->flags & NL80211_RRF_NO_80MHZ) 1246 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1247 1248 /* 1249 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1250 * are not allowed. 1251 */ 1252 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1253 rule->flags & NL80211_RRF_NO_HT40PLUS) 1254 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1255 1256 return bw; 1257 } 1258 1259 /* Sanity check on a regulatory rule */ 1260 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1261 { 1262 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1263 u32 freq_diff; 1264 1265 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1266 return false; 1267 1268 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1269 return false; 1270 1271 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1272 1273 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1274 freq_range->max_bandwidth_khz > freq_diff) 1275 return false; 1276 1277 return true; 1278 } 1279 1280 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1281 { 1282 const struct ieee80211_reg_rule *reg_rule = NULL; 1283 unsigned int i; 1284 1285 if (!rd->n_reg_rules) 1286 return false; 1287 1288 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1289 return false; 1290 1291 for (i = 0; i < rd->n_reg_rules; i++) { 1292 reg_rule = &rd->reg_rules[i]; 1293 if (!is_valid_reg_rule(reg_rule)) 1294 return false; 1295 } 1296 1297 return true; 1298 } 1299 1300 /** 1301 * freq_in_rule_band - tells us if a frequency is in a frequency band 1302 * @freq_range: frequency rule we want to query 1303 * @freq_khz: frequency we are inquiring about 1304 * 1305 * This lets us know if a specific frequency rule is or is not relevant to 1306 * a specific frequency's band. Bands are device specific and artificial 1307 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1308 * however it is safe for now to assume that a frequency rule should not be 1309 * part of a frequency's band if the start freq or end freq are off by more 1310 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1311 * 60 GHz band. 1312 * This resolution can be lowered and should be considered as we add 1313 * regulatory rule support for other "bands". 1314 **/ 1315 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1316 u32 freq_khz) 1317 { 1318 #define ONE_GHZ_IN_KHZ 1000000 1319 /* 1320 * From 802.11ad: directional multi-gigabit (DMG): 1321 * Pertaining to operation in a frequency band containing a channel 1322 * with the Channel starting frequency above 45 GHz. 1323 */ 1324 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1325 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1326 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1327 return true; 1328 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1329 return true; 1330 return false; 1331 #undef ONE_GHZ_IN_KHZ 1332 } 1333 1334 /* 1335 * Later on we can perhaps use the more restrictive DFS 1336 * region but we don't have information for that yet so 1337 * for now simply disallow conflicts. 1338 */ 1339 static enum nl80211_dfs_regions 1340 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1341 const enum nl80211_dfs_regions dfs_region2) 1342 { 1343 if (dfs_region1 != dfs_region2) 1344 return NL80211_DFS_UNSET; 1345 return dfs_region1; 1346 } 1347 1348 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1349 const struct ieee80211_wmm_ac *wmm_ac2, 1350 struct ieee80211_wmm_ac *intersect) 1351 { 1352 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1353 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1354 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1355 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1356 } 1357 1358 /* 1359 * Helper for regdom_intersect(), this does the real 1360 * mathematical intersection fun 1361 */ 1362 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1363 const struct ieee80211_regdomain *rd2, 1364 const struct ieee80211_reg_rule *rule1, 1365 const struct ieee80211_reg_rule *rule2, 1366 struct ieee80211_reg_rule *intersected_rule) 1367 { 1368 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1369 struct ieee80211_freq_range *freq_range; 1370 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1371 struct ieee80211_power_rule *power_rule; 1372 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1373 struct ieee80211_wmm_rule *wmm_rule; 1374 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1375 1376 freq_range1 = &rule1->freq_range; 1377 freq_range2 = &rule2->freq_range; 1378 freq_range = &intersected_rule->freq_range; 1379 1380 power_rule1 = &rule1->power_rule; 1381 power_rule2 = &rule2->power_rule; 1382 power_rule = &intersected_rule->power_rule; 1383 1384 wmm_rule1 = &rule1->wmm_rule; 1385 wmm_rule2 = &rule2->wmm_rule; 1386 wmm_rule = &intersected_rule->wmm_rule; 1387 1388 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1389 freq_range2->start_freq_khz); 1390 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1391 freq_range2->end_freq_khz); 1392 1393 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1394 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1395 1396 if (rule1->flags & NL80211_RRF_AUTO_BW) 1397 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1398 if (rule2->flags & NL80211_RRF_AUTO_BW) 1399 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1400 1401 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1402 1403 intersected_rule->flags = rule1->flags | rule2->flags; 1404 1405 /* 1406 * In case NL80211_RRF_AUTO_BW requested for both rules 1407 * set AUTO_BW in intersected rule also. Next we will 1408 * calculate BW correctly in handle_channel function. 1409 * In other case remove AUTO_BW flag while we calculate 1410 * maximum bandwidth correctly and auto calculation is 1411 * not required. 1412 */ 1413 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1414 (rule2->flags & NL80211_RRF_AUTO_BW)) 1415 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1416 else 1417 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1418 1419 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1420 if (freq_range->max_bandwidth_khz > freq_diff) 1421 freq_range->max_bandwidth_khz = freq_diff; 1422 1423 power_rule->max_eirp = min(power_rule1->max_eirp, 1424 power_rule2->max_eirp); 1425 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1426 power_rule2->max_antenna_gain); 1427 1428 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1429 rule2->dfs_cac_ms); 1430 1431 if (rule1->has_wmm && rule2->has_wmm) { 1432 u8 ac; 1433 1434 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1435 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1436 &wmm_rule2->client[ac], 1437 &wmm_rule->client[ac]); 1438 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1439 &wmm_rule2->ap[ac], 1440 &wmm_rule->ap[ac]); 1441 } 1442 1443 intersected_rule->has_wmm = true; 1444 } else if (rule1->has_wmm) { 1445 *wmm_rule = *wmm_rule1; 1446 intersected_rule->has_wmm = true; 1447 } else if (rule2->has_wmm) { 1448 *wmm_rule = *wmm_rule2; 1449 intersected_rule->has_wmm = true; 1450 } else { 1451 intersected_rule->has_wmm = false; 1452 } 1453 1454 if (!is_valid_reg_rule(intersected_rule)) 1455 return -EINVAL; 1456 1457 return 0; 1458 } 1459 1460 /* check whether old rule contains new rule */ 1461 static bool rule_contains(struct ieee80211_reg_rule *r1, 1462 struct ieee80211_reg_rule *r2) 1463 { 1464 /* for simplicity, currently consider only same flags */ 1465 if (r1->flags != r2->flags) 1466 return false; 1467 1468 /* verify r1 is more restrictive */ 1469 if ((r1->power_rule.max_antenna_gain > 1470 r2->power_rule.max_antenna_gain) || 1471 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1472 return false; 1473 1474 /* make sure r2's range is contained within r1 */ 1475 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1476 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1477 return false; 1478 1479 /* and finally verify that r1.max_bw >= r2.max_bw */ 1480 if (r1->freq_range.max_bandwidth_khz < 1481 r2->freq_range.max_bandwidth_khz) 1482 return false; 1483 1484 return true; 1485 } 1486 1487 /* add or extend current rules. do nothing if rule is already contained */ 1488 static void add_rule(struct ieee80211_reg_rule *rule, 1489 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1490 { 1491 struct ieee80211_reg_rule *tmp_rule; 1492 int i; 1493 1494 for (i = 0; i < *n_rules; i++) { 1495 tmp_rule = ®_rules[i]; 1496 /* rule is already contained - do nothing */ 1497 if (rule_contains(tmp_rule, rule)) 1498 return; 1499 1500 /* extend rule if possible */ 1501 if (rule_contains(rule, tmp_rule)) { 1502 memcpy(tmp_rule, rule, sizeof(*rule)); 1503 return; 1504 } 1505 } 1506 1507 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1508 (*n_rules)++; 1509 } 1510 1511 /** 1512 * regdom_intersect - do the intersection between two regulatory domains 1513 * @rd1: first regulatory domain 1514 * @rd2: second regulatory domain 1515 * 1516 * Use this function to get the intersection between two regulatory domains. 1517 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1518 * as no one single alpha2 can represent this regulatory domain. 1519 * 1520 * Returns a pointer to the regulatory domain structure which will hold the 1521 * resulting intersection of rules between rd1 and rd2. We will 1522 * kzalloc() this structure for you. 1523 */ 1524 static struct ieee80211_regdomain * 1525 regdom_intersect(const struct ieee80211_regdomain *rd1, 1526 const struct ieee80211_regdomain *rd2) 1527 { 1528 int r; 1529 unsigned int x, y; 1530 unsigned int num_rules = 0; 1531 const struct ieee80211_reg_rule *rule1, *rule2; 1532 struct ieee80211_reg_rule intersected_rule; 1533 struct ieee80211_regdomain *rd; 1534 1535 if (!rd1 || !rd2) 1536 return NULL; 1537 1538 /* 1539 * First we get a count of the rules we'll need, then we actually 1540 * build them. This is to so we can malloc() and free() a 1541 * regdomain once. The reason we use reg_rules_intersect() here 1542 * is it will return -EINVAL if the rule computed makes no sense. 1543 * All rules that do check out OK are valid. 1544 */ 1545 1546 for (x = 0; x < rd1->n_reg_rules; x++) { 1547 rule1 = &rd1->reg_rules[x]; 1548 for (y = 0; y < rd2->n_reg_rules; y++) { 1549 rule2 = &rd2->reg_rules[y]; 1550 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1551 &intersected_rule)) 1552 num_rules++; 1553 } 1554 } 1555 1556 if (!num_rules) 1557 return NULL; 1558 1559 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1560 if (!rd) 1561 return NULL; 1562 1563 for (x = 0; x < rd1->n_reg_rules; x++) { 1564 rule1 = &rd1->reg_rules[x]; 1565 for (y = 0; y < rd2->n_reg_rules; y++) { 1566 rule2 = &rd2->reg_rules[y]; 1567 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1568 &intersected_rule); 1569 /* 1570 * No need to memset here the intersected rule here as 1571 * we're not using the stack anymore 1572 */ 1573 if (r) 1574 continue; 1575 1576 add_rule(&intersected_rule, rd->reg_rules, 1577 &rd->n_reg_rules); 1578 } 1579 } 1580 1581 rd->alpha2[0] = '9'; 1582 rd->alpha2[1] = '8'; 1583 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1584 rd2->dfs_region); 1585 1586 return rd; 1587 } 1588 1589 /* 1590 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1591 * want to just have the channel structure use these 1592 */ 1593 static u32 map_regdom_flags(u32 rd_flags) 1594 { 1595 u32 channel_flags = 0; 1596 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1597 channel_flags |= IEEE80211_CHAN_NO_IR; 1598 if (rd_flags & NL80211_RRF_DFS) 1599 channel_flags |= IEEE80211_CHAN_RADAR; 1600 if (rd_flags & NL80211_RRF_NO_OFDM) 1601 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1602 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1603 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1604 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1605 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1606 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1607 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1608 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1609 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1610 if (rd_flags & NL80211_RRF_NO_80MHZ) 1611 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1612 if (rd_flags & NL80211_RRF_NO_160MHZ) 1613 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1614 if (rd_flags & NL80211_RRF_NO_HE) 1615 channel_flags |= IEEE80211_CHAN_NO_HE; 1616 if (rd_flags & NL80211_RRF_NO_320MHZ) 1617 channel_flags |= IEEE80211_CHAN_NO_320MHZ; 1618 return channel_flags; 1619 } 1620 1621 static const struct ieee80211_reg_rule * 1622 freq_reg_info_regd(u32 center_freq, 1623 const struct ieee80211_regdomain *regd, u32 bw) 1624 { 1625 int i; 1626 bool band_rule_found = false; 1627 bool bw_fits = false; 1628 1629 if (!regd) 1630 return ERR_PTR(-EINVAL); 1631 1632 for (i = 0; i < regd->n_reg_rules; i++) { 1633 const struct ieee80211_reg_rule *rr; 1634 const struct ieee80211_freq_range *fr = NULL; 1635 1636 rr = ®d->reg_rules[i]; 1637 fr = &rr->freq_range; 1638 1639 /* 1640 * We only need to know if one frequency rule was 1641 * in center_freq's band, that's enough, so let's 1642 * not overwrite it once found 1643 */ 1644 if (!band_rule_found) 1645 band_rule_found = freq_in_rule_band(fr, center_freq); 1646 1647 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1648 1649 if (band_rule_found && bw_fits) 1650 return rr; 1651 } 1652 1653 if (!band_rule_found) 1654 return ERR_PTR(-ERANGE); 1655 1656 return ERR_PTR(-EINVAL); 1657 } 1658 1659 static const struct ieee80211_reg_rule * 1660 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1661 { 1662 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1663 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1664 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE); 1665 int i = ARRAY_SIZE(bws) - 1; 1666 u32 bw; 1667 1668 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1669 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1670 if (!IS_ERR(reg_rule)) 1671 return reg_rule; 1672 } 1673 1674 return reg_rule; 1675 } 1676 1677 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1678 u32 center_freq) 1679 { 1680 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1681 1682 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1683 } 1684 EXPORT_SYMBOL(freq_reg_info); 1685 1686 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1687 { 1688 switch (initiator) { 1689 case NL80211_REGDOM_SET_BY_CORE: 1690 return "core"; 1691 case NL80211_REGDOM_SET_BY_USER: 1692 return "user"; 1693 case NL80211_REGDOM_SET_BY_DRIVER: 1694 return "driver"; 1695 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1696 return "country element"; 1697 default: 1698 WARN_ON(1); 1699 return "bug"; 1700 } 1701 } 1702 EXPORT_SYMBOL(reg_initiator_name); 1703 1704 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1705 const struct ieee80211_reg_rule *reg_rule, 1706 const struct ieee80211_channel *chan) 1707 { 1708 const struct ieee80211_freq_range *freq_range = NULL; 1709 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1710 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1711 1712 freq_range = ®_rule->freq_range; 1713 1714 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1715 center_freq_khz = ieee80211_channel_to_khz(chan); 1716 /* Check if auto calculation requested */ 1717 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1718 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1719 1720 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1721 if (!cfg80211_does_bw_fit_range(freq_range, 1722 center_freq_khz, 1723 MHZ_TO_KHZ(10))) 1724 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1725 if (!cfg80211_does_bw_fit_range(freq_range, 1726 center_freq_khz, 1727 MHZ_TO_KHZ(20))) 1728 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1729 1730 if (is_s1g) { 1731 /* S1G is strict about non overlapping channels. We can 1732 * calculate which bandwidth is allowed per channel by finding 1733 * the largest bandwidth which cleanly divides the freq_range. 1734 */ 1735 int edge_offset; 1736 int ch_bw = max_bandwidth_khz; 1737 1738 while (ch_bw) { 1739 edge_offset = (center_freq_khz - ch_bw / 2) - 1740 freq_range->start_freq_khz; 1741 if (edge_offset % ch_bw == 0) { 1742 switch (KHZ_TO_MHZ(ch_bw)) { 1743 case 1: 1744 bw_flags |= IEEE80211_CHAN_1MHZ; 1745 break; 1746 case 2: 1747 bw_flags |= IEEE80211_CHAN_2MHZ; 1748 break; 1749 case 4: 1750 bw_flags |= IEEE80211_CHAN_4MHZ; 1751 break; 1752 case 8: 1753 bw_flags |= IEEE80211_CHAN_8MHZ; 1754 break; 1755 case 16: 1756 bw_flags |= IEEE80211_CHAN_16MHZ; 1757 break; 1758 default: 1759 /* If we got here, no bandwidths fit on 1760 * this frequency, ie. band edge. 1761 */ 1762 bw_flags |= IEEE80211_CHAN_DISABLED; 1763 break; 1764 } 1765 break; 1766 } 1767 ch_bw /= 2; 1768 } 1769 } else { 1770 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1771 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1772 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1773 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1774 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1775 bw_flags |= IEEE80211_CHAN_NO_HT40; 1776 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1777 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1778 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1779 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1780 if (max_bandwidth_khz < MHZ_TO_KHZ(320)) 1781 bw_flags |= IEEE80211_CHAN_NO_320MHZ; 1782 } 1783 return bw_flags; 1784 } 1785 1786 static void handle_channel_single_rule(struct wiphy *wiphy, 1787 enum nl80211_reg_initiator initiator, 1788 struct ieee80211_channel *chan, 1789 u32 flags, 1790 struct regulatory_request *lr, 1791 struct wiphy *request_wiphy, 1792 const struct ieee80211_reg_rule *reg_rule) 1793 { 1794 u32 bw_flags = 0; 1795 const struct ieee80211_power_rule *power_rule = NULL; 1796 const struct ieee80211_regdomain *regd; 1797 1798 regd = reg_get_regdomain(wiphy); 1799 1800 power_rule = ®_rule->power_rule; 1801 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1802 1803 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1804 request_wiphy && request_wiphy == wiphy && 1805 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1806 /* 1807 * This guarantees the driver's requested regulatory domain 1808 * will always be used as a base for further regulatory 1809 * settings 1810 */ 1811 chan->flags = chan->orig_flags = 1812 map_regdom_flags(reg_rule->flags) | bw_flags; 1813 chan->max_antenna_gain = chan->orig_mag = 1814 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1815 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1816 (int) MBM_TO_DBM(power_rule->max_eirp); 1817 1818 if (chan->flags & IEEE80211_CHAN_RADAR) { 1819 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1820 if (reg_rule->dfs_cac_ms) 1821 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1822 } 1823 1824 return; 1825 } 1826 1827 chan->dfs_state = NL80211_DFS_USABLE; 1828 chan->dfs_state_entered = jiffies; 1829 1830 chan->beacon_found = false; 1831 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1832 chan->max_antenna_gain = 1833 min_t(int, chan->orig_mag, 1834 MBI_TO_DBI(power_rule->max_antenna_gain)); 1835 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1836 1837 if (chan->flags & IEEE80211_CHAN_RADAR) { 1838 if (reg_rule->dfs_cac_ms) 1839 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1840 else 1841 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1842 } 1843 1844 if (chan->orig_mpwr) { 1845 /* 1846 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1847 * will always follow the passed country IE power settings. 1848 */ 1849 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1850 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1851 chan->max_power = chan->max_reg_power; 1852 else 1853 chan->max_power = min(chan->orig_mpwr, 1854 chan->max_reg_power); 1855 } else 1856 chan->max_power = chan->max_reg_power; 1857 } 1858 1859 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1860 enum nl80211_reg_initiator initiator, 1861 struct ieee80211_channel *chan, 1862 u32 flags, 1863 struct regulatory_request *lr, 1864 struct wiphy *request_wiphy, 1865 const struct ieee80211_reg_rule *rrule1, 1866 const struct ieee80211_reg_rule *rrule2, 1867 struct ieee80211_freq_range *comb_range) 1868 { 1869 u32 bw_flags1 = 0; 1870 u32 bw_flags2 = 0; 1871 const struct ieee80211_power_rule *power_rule1 = NULL; 1872 const struct ieee80211_power_rule *power_rule2 = NULL; 1873 const struct ieee80211_regdomain *regd; 1874 1875 regd = reg_get_regdomain(wiphy); 1876 1877 power_rule1 = &rrule1->power_rule; 1878 power_rule2 = &rrule2->power_rule; 1879 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1880 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1881 1882 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1883 request_wiphy && request_wiphy == wiphy && 1884 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1885 /* This guarantees the driver's requested regulatory domain 1886 * will always be used as a base for further regulatory 1887 * settings 1888 */ 1889 chan->flags = 1890 map_regdom_flags(rrule1->flags) | 1891 map_regdom_flags(rrule2->flags) | 1892 bw_flags1 | 1893 bw_flags2; 1894 chan->orig_flags = chan->flags; 1895 chan->max_antenna_gain = 1896 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1897 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1898 chan->orig_mag = chan->max_antenna_gain; 1899 chan->max_reg_power = 1900 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1901 MBM_TO_DBM(power_rule2->max_eirp)); 1902 chan->max_power = chan->max_reg_power; 1903 chan->orig_mpwr = chan->max_reg_power; 1904 1905 if (chan->flags & IEEE80211_CHAN_RADAR) { 1906 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1907 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1908 chan->dfs_cac_ms = max_t(unsigned int, 1909 rrule1->dfs_cac_ms, 1910 rrule2->dfs_cac_ms); 1911 } 1912 1913 return; 1914 } 1915 1916 chan->dfs_state = NL80211_DFS_USABLE; 1917 chan->dfs_state_entered = jiffies; 1918 1919 chan->beacon_found = false; 1920 chan->flags = flags | bw_flags1 | bw_flags2 | 1921 map_regdom_flags(rrule1->flags) | 1922 map_regdom_flags(rrule2->flags); 1923 1924 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1925 * (otherwise no adj. rule case), recheck therefore 1926 */ 1927 if (cfg80211_does_bw_fit_range(comb_range, 1928 ieee80211_channel_to_khz(chan), 1929 MHZ_TO_KHZ(10))) 1930 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1931 if (cfg80211_does_bw_fit_range(comb_range, 1932 ieee80211_channel_to_khz(chan), 1933 MHZ_TO_KHZ(20))) 1934 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1935 1936 chan->max_antenna_gain = 1937 min_t(int, chan->orig_mag, 1938 min_t(int, 1939 MBI_TO_DBI(power_rule1->max_antenna_gain), 1940 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1941 chan->max_reg_power = min_t(int, 1942 MBM_TO_DBM(power_rule1->max_eirp), 1943 MBM_TO_DBM(power_rule2->max_eirp)); 1944 1945 if (chan->flags & IEEE80211_CHAN_RADAR) { 1946 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1947 chan->dfs_cac_ms = max_t(unsigned int, 1948 rrule1->dfs_cac_ms, 1949 rrule2->dfs_cac_ms); 1950 else 1951 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1952 } 1953 1954 if (chan->orig_mpwr) { 1955 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1956 * will always follow the passed country IE power settings. 1957 */ 1958 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1959 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1960 chan->max_power = chan->max_reg_power; 1961 else 1962 chan->max_power = min(chan->orig_mpwr, 1963 chan->max_reg_power); 1964 } else { 1965 chan->max_power = chan->max_reg_power; 1966 } 1967 } 1968 1969 /* Note that right now we assume the desired channel bandwidth 1970 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1971 * per channel, the primary and the extension channel). 1972 */ 1973 static void handle_channel(struct wiphy *wiphy, 1974 enum nl80211_reg_initiator initiator, 1975 struct ieee80211_channel *chan) 1976 { 1977 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1978 struct regulatory_request *lr = get_last_request(); 1979 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1980 const struct ieee80211_reg_rule *rrule = NULL; 1981 const struct ieee80211_reg_rule *rrule1 = NULL; 1982 const struct ieee80211_reg_rule *rrule2 = NULL; 1983 1984 u32 flags = chan->orig_flags; 1985 1986 rrule = freq_reg_info(wiphy, orig_chan_freq); 1987 if (IS_ERR(rrule)) { 1988 /* check for adjacent match, therefore get rules for 1989 * chan - 20 MHz and chan + 20 MHz and test 1990 * if reg rules are adjacent 1991 */ 1992 rrule1 = freq_reg_info(wiphy, 1993 orig_chan_freq - MHZ_TO_KHZ(20)); 1994 rrule2 = freq_reg_info(wiphy, 1995 orig_chan_freq + MHZ_TO_KHZ(20)); 1996 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 1997 struct ieee80211_freq_range comb_range; 1998 1999 if (rrule1->freq_range.end_freq_khz != 2000 rrule2->freq_range.start_freq_khz) 2001 goto disable_chan; 2002 2003 comb_range.start_freq_khz = 2004 rrule1->freq_range.start_freq_khz; 2005 comb_range.end_freq_khz = 2006 rrule2->freq_range.end_freq_khz; 2007 comb_range.max_bandwidth_khz = 2008 min_t(u32, 2009 rrule1->freq_range.max_bandwidth_khz, 2010 rrule2->freq_range.max_bandwidth_khz); 2011 2012 if (!cfg80211_does_bw_fit_range(&comb_range, 2013 orig_chan_freq, 2014 MHZ_TO_KHZ(20))) 2015 goto disable_chan; 2016 2017 handle_channel_adjacent_rules(wiphy, initiator, chan, 2018 flags, lr, request_wiphy, 2019 rrule1, rrule2, 2020 &comb_range); 2021 return; 2022 } 2023 2024 disable_chan: 2025 /* We will disable all channels that do not match our 2026 * received regulatory rule unless the hint is coming 2027 * from a Country IE and the Country IE had no information 2028 * about a band. The IEEE 802.11 spec allows for an AP 2029 * to send only a subset of the regulatory rules allowed, 2030 * so an AP in the US that only supports 2.4 GHz may only send 2031 * a country IE with information for the 2.4 GHz band 2032 * while 5 GHz is still supported. 2033 */ 2034 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2035 PTR_ERR(rrule) == -ERANGE) 2036 return; 2037 2038 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2039 request_wiphy && request_wiphy == wiphy && 2040 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2041 pr_debug("Disabling freq %d.%03d MHz for good\n", 2042 chan->center_freq, chan->freq_offset); 2043 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2044 chan->flags = chan->orig_flags; 2045 } else { 2046 pr_debug("Disabling freq %d.%03d MHz\n", 2047 chan->center_freq, chan->freq_offset); 2048 chan->flags |= IEEE80211_CHAN_DISABLED; 2049 } 2050 return; 2051 } 2052 2053 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2054 request_wiphy, rrule); 2055 } 2056 2057 static void handle_band(struct wiphy *wiphy, 2058 enum nl80211_reg_initiator initiator, 2059 struct ieee80211_supported_band *sband) 2060 { 2061 unsigned int i; 2062 2063 if (!sband) 2064 return; 2065 2066 for (i = 0; i < sband->n_channels; i++) 2067 handle_channel(wiphy, initiator, &sband->channels[i]); 2068 } 2069 2070 static bool reg_request_cell_base(struct regulatory_request *request) 2071 { 2072 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2073 return false; 2074 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2075 } 2076 2077 bool reg_last_request_cell_base(void) 2078 { 2079 return reg_request_cell_base(get_last_request()); 2080 } 2081 2082 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2083 /* Core specific check */ 2084 static enum reg_request_treatment 2085 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2086 { 2087 struct regulatory_request *lr = get_last_request(); 2088 2089 if (!reg_num_devs_support_basehint) 2090 return REG_REQ_IGNORE; 2091 2092 if (reg_request_cell_base(lr) && 2093 !regdom_changes(pending_request->alpha2)) 2094 return REG_REQ_ALREADY_SET; 2095 2096 return REG_REQ_OK; 2097 } 2098 2099 /* Device specific check */ 2100 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2101 { 2102 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2103 } 2104 #else 2105 static enum reg_request_treatment 2106 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2107 { 2108 return REG_REQ_IGNORE; 2109 } 2110 2111 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2112 { 2113 return true; 2114 } 2115 #endif 2116 2117 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2118 { 2119 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2120 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2121 return true; 2122 return false; 2123 } 2124 2125 static bool ignore_reg_update(struct wiphy *wiphy, 2126 enum nl80211_reg_initiator initiator) 2127 { 2128 struct regulatory_request *lr = get_last_request(); 2129 2130 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2131 return true; 2132 2133 if (!lr) { 2134 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2135 reg_initiator_name(initiator)); 2136 return true; 2137 } 2138 2139 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2140 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2141 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2142 reg_initiator_name(initiator)); 2143 return true; 2144 } 2145 2146 /* 2147 * wiphy->regd will be set once the device has its own 2148 * desired regulatory domain set 2149 */ 2150 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2151 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2152 !is_world_regdom(lr->alpha2)) { 2153 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2154 reg_initiator_name(initiator)); 2155 return true; 2156 } 2157 2158 if (reg_request_cell_base(lr)) 2159 return reg_dev_ignore_cell_hint(wiphy); 2160 2161 return false; 2162 } 2163 2164 static bool reg_is_world_roaming(struct wiphy *wiphy) 2165 { 2166 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2167 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2168 struct regulatory_request *lr = get_last_request(); 2169 2170 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2171 return true; 2172 2173 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2174 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2175 return true; 2176 2177 return false; 2178 } 2179 2180 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2181 struct reg_beacon *reg_beacon) 2182 { 2183 struct ieee80211_supported_band *sband; 2184 struct ieee80211_channel *chan; 2185 bool channel_changed = false; 2186 struct ieee80211_channel chan_before; 2187 2188 sband = wiphy->bands[reg_beacon->chan.band]; 2189 chan = &sband->channels[chan_idx]; 2190 2191 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2192 return; 2193 2194 if (chan->beacon_found) 2195 return; 2196 2197 chan->beacon_found = true; 2198 2199 if (!reg_is_world_roaming(wiphy)) 2200 return; 2201 2202 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2203 return; 2204 2205 chan_before = *chan; 2206 2207 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2208 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2209 channel_changed = true; 2210 } 2211 2212 if (channel_changed) 2213 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2214 } 2215 2216 /* 2217 * Called when a scan on a wiphy finds a beacon on 2218 * new channel 2219 */ 2220 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2221 struct reg_beacon *reg_beacon) 2222 { 2223 unsigned int i; 2224 struct ieee80211_supported_band *sband; 2225 2226 if (!wiphy->bands[reg_beacon->chan.band]) 2227 return; 2228 2229 sband = wiphy->bands[reg_beacon->chan.band]; 2230 2231 for (i = 0; i < sband->n_channels; i++) 2232 handle_reg_beacon(wiphy, i, reg_beacon); 2233 } 2234 2235 /* 2236 * Called upon reg changes or a new wiphy is added 2237 */ 2238 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2239 { 2240 unsigned int i; 2241 struct ieee80211_supported_band *sband; 2242 struct reg_beacon *reg_beacon; 2243 2244 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2245 if (!wiphy->bands[reg_beacon->chan.band]) 2246 continue; 2247 sband = wiphy->bands[reg_beacon->chan.band]; 2248 for (i = 0; i < sband->n_channels; i++) 2249 handle_reg_beacon(wiphy, i, reg_beacon); 2250 } 2251 } 2252 2253 /* Reap the advantages of previously found beacons */ 2254 static void reg_process_beacons(struct wiphy *wiphy) 2255 { 2256 /* 2257 * Means we are just firing up cfg80211, so no beacons would 2258 * have been processed yet. 2259 */ 2260 if (!last_request) 2261 return; 2262 wiphy_update_beacon_reg(wiphy); 2263 } 2264 2265 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2266 { 2267 if (!chan) 2268 return false; 2269 if (chan->flags & IEEE80211_CHAN_DISABLED) 2270 return false; 2271 /* This would happen when regulatory rules disallow HT40 completely */ 2272 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2273 return false; 2274 return true; 2275 } 2276 2277 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2278 struct ieee80211_channel *channel) 2279 { 2280 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2281 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2282 const struct ieee80211_regdomain *regd; 2283 unsigned int i; 2284 u32 flags; 2285 2286 if (!is_ht40_allowed(channel)) { 2287 channel->flags |= IEEE80211_CHAN_NO_HT40; 2288 return; 2289 } 2290 2291 /* 2292 * We need to ensure the extension channels exist to 2293 * be able to use HT40- or HT40+, this finds them (or not) 2294 */ 2295 for (i = 0; i < sband->n_channels; i++) { 2296 struct ieee80211_channel *c = &sband->channels[i]; 2297 2298 if (c->center_freq == (channel->center_freq - 20)) 2299 channel_before = c; 2300 if (c->center_freq == (channel->center_freq + 20)) 2301 channel_after = c; 2302 } 2303 2304 flags = 0; 2305 regd = get_wiphy_regdom(wiphy); 2306 if (regd) { 2307 const struct ieee80211_reg_rule *reg_rule = 2308 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2309 regd, MHZ_TO_KHZ(20)); 2310 2311 if (!IS_ERR(reg_rule)) 2312 flags = reg_rule->flags; 2313 } 2314 2315 /* 2316 * Please note that this assumes target bandwidth is 20 MHz, 2317 * if that ever changes we also need to change the below logic 2318 * to include that as well. 2319 */ 2320 if (!is_ht40_allowed(channel_before) || 2321 flags & NL80211_RRF_NO_HT40MINUS) 2322 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2323 else 2324 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2325 2326 if (!is_ht40_allowed(channel_after) || 2327 flags & NL80211_RRF_NO_HT40PLUS) 2328 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2329 else 2330 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2331 } 2332 2333 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2334 struct ieee80211_supported_band *sband) 2335 { 2336 unsigned int i; 2337 2338 if (!sband) 2339 return; 2340 2341 for (i = 0; i < sband->n_channels; i++) 2342 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2343 } 2344 2345 static void reg_process_ht_flags(struct wiphy *wiphy) 2346 { 2347 enum nl80211_band band; 2348 2349 if (!wiphy) 2350 return; 2351 2352 for (band = 0; band < NUM_NL80211_BANDS; band++) 2353 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2354 } 2355 2356 static void reg_call_notifier(struct wiphy *wiphy, 2357 struct regulatory_request *request) 2358 { 2359 if (wiphy->reg_notifier) 2360 wiphy->reg_notifier(wiphy, request); 2361 } 2362 2363 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2364 { 2365 struct cfg80211_chan_def chandef = {}; 2366 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2367 enum nl80211_iftype iftype; 2368 bool ret; 2369 2370 wdev_lock(wdev); 2371 iftype = wdev->iftype; 2372 2373 /* make sure the interface is active */ 2374 if (!wdev->netdev || !netif_running(wdev->netdev)) 2375 goto wdev_inactive_unlock; 2376 2377 switch (iftype) { 2378 case NL80211_IFTYPE_AP: 2379 case NL80211_IFTYPE_P2P_GO: 2380 case NL80211_IFTYPE_MESH_POINT: 2381 if (!wdev->beacon_interval) 2382 goto wdev_inactive_unlock; 2383 chandef = wdev->chandef; 2384 break; 2385 case NL80211_IFTYPE_ADHOC: 2386 if (!wdev->ssid_len) 2387 goto wdev_inactive_unlock; 2388 chandef = wdev->chandef; 2389 break; 2390 case NL80211_IFTYPE_STATION: 2391 case NL80211_IFTYPE_P2P_CLIENT: 2392 if (!wdev->current_bss || 2393 !wdev->current_bss->pub.channel) 2394 goto wdev_inactive_unlock; 2395 2396 if (!rdev->ops->get_channel || 2397 rdev_get_channel(rdev, wdev, &chandef)) 2398 cfg80211_chandef_create(&chandef, 2399 wdev->current_bss->pub.channel, 2400 NL80211_CHAN_NO_HT); 2401 break; 2402 case NL80211_IFTYPE_MONITOR: 2403 case NL80211_IFTYPE_AP_VLAN: 2404 case NL80211_IFTYPE_P2P_DEVICE: 2405 /* no enforcement required */ 2406 break; 2407 default: 2408 /* others not implemented for now */ 2409 WARN_ON(1); 2410 break; 2411 } 2412 2413 wdev_unlock(wdev); 2414 2415 switch (iftype) { 2416 case NL80211_IFTYPE_AP: 2417 case NL80211_IFTYPE_P2P_GO: 2418 case NL80211_IFTYPE_ADHOC: 2419 case NL80211_IFTYPE_MESH_POINT: 2420 wiphy_lock(wiphy); 2421 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 2422 wiphy_unlock(wiphy); 2423 2424 return ret; 2425 case NL80211_IFTYPE_STATION: 2426 case NL80211_IFTYPE_P2P_CLIENT: 2427 return cfg80211_chandef_usable(wiphy, &chandef, 2428 IEEE80211_CHAN_DISABLED); 2429 default: 2430 break; 2431 } 2432 2433 return true; 2434 2435 wdev_inactive_unlock: 2436 wdev_unlock(wdev); 2437 return true; 2438 } 2439 2440 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2441 { 2442 struct wireless_dev *wdev; 2443 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2444 2445 ASSERT_RTNL(); 2446 2447 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2448 if (!reg_wdev_chan_valid(wiphy, wdev)) 2449 cfg80211_leave(rdev, wdev); 2450 } 2451 2452 static void reg_check_chans_work(struct work_struct *work) 2453 { 2454 struct cfg80211_registered_device *rdev; 2455 2456 pr_debug("Verifying active interfaces after reg change\n"); 2457 rtnl_lock(); 2458 2459 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2460 if (!(rdev->wiphy.regulatory_flags & 2461 REGULATORY_IGNORE_STALE_KICKOFF)) 2462 reg_leave_invalid_chans(&rdev->wiphy); 2463 2464 rtnl_unlock(); 2465 } 2466 2467 static void reg_check_channels(void) 2468 { 2469 /* 2470 * Give usermode a chance to do something nicer (move to another 2471 * channel, orderly disconnection), before forcing a disconnection. 2472 */ 2473 mod_delayed_work(system_power_efficient_wq, 2474 ®_check_chans, 2475 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2476 } 2477 2478 static void wiphy_update_regulatory(struct wiphy *wiphy, 2479 enum nl80211_reg_initiator initiator) 2480 { 2481 enum nl80211_band band; 2482 struct regulatory_request *lr = get_last_request(); 2483 2484 if (ignore_reg_update(wiphy, initiator)) { 2485 /* 2486 * Regulatory updates set by CORE are ignored for custom 2487 * regulatory cards. Let us notify the changes to the driver, 2488 * as some drivers used this to restore its orig_* reg domain. 2489 */ 2490 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2491 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2492 !(wiphy->regulatory_flags & 2493 REGULATORY_WIPHY_SELF_MANAGED)) 2494 reg_call_notifier(wiphy, lr); 2495 return; 2496 } 2497 2498 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2499 2500 for (band = 0; band < NUM_NL80211_BANDS; band++) 2501 handle_band(wiphy, initiator, wiphy->bands[band]); 2502 2503 reg_process_beacons(wiphy); 2504 reg_process_ht_flags(wiphy); 2505 reg_call_notifier(wiphy, lr); 2506 } 2507 2508 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2509 { 2510 struct cfg80211_registered_device *rdev; 2511 struct wiphy *wiphy; 2512 2513 ASSERT_RTNL(); 2514 2515 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2516 wiphy = &rdev->wiphy; 2517 wiphy_update_regulatory(wiphy, initiator); 2518 } 2519 2520 reg_check_channels(); 2521 } 2522 2523 static void handle_channel_custom(struct wiphy *wiphy, 2524 struct ieee80211_channel *chan, 2525 const struct ieee80211_regdomain *regd, 2526 u32 min_bw) 2527 { 2528 u32 bw_flags = 0; 2529 const struct ieee80211_reg_rule *reg_rule = NULL; 2530 const struct ieee80211_power_rule *power_rule = NULL; 2531 u32 bw, center_freq_khz; 2532 2533 center_freq_khz = ieee80211_channel_to_khz(chan); 2534 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2535 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2536 if (!IS_ERR(reg_rule)) 2537 break; 2538 } 2539 2540 if (IS_ERR_OR_NULL(reg_rule)) { 2541 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2542 chan->center_freq, chan->freq_offset); 2543 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2544 chan->flags |= IEEE80211_CHAN_DISABLED; 2545 } else { 2546 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2547 chan->flags = chan->orig_flags; 2548 } 2549 return; 2550 } 2551 2552 power_rule = ®_rule->power_rule; 2553 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2554 2555 chan->dfs_state_entered = jiffies; 2556 chan->dfs_state = NL80211_DFS_USABLE; 2557 2558 chan->beacon_found = false; 2559 2560 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2561 chan->flags = chan->orig_flags | bw_flags | 2562 map_regdom_flags(reg_rule->flags); 2563 else 2564 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2565 2566 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2567 chan->max_reg_power = chan->max_power = 2568 (int) MBM_TO_DBM(power_rule->max_eirp); 2569 2570 if (chan->flags & IEEE80211_CHAN_RADAR) { 2571 if (reg_rule->dfs_cac_ms) 2572 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2573 else 2574 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2575 } 2576 2577 chan->max_power = chan->max_reg_power; 2578 } 2579 2580 static void handle_band_custom(struct wiphy *wiphy, 2581 struct ieee80211_supported_band *sband, 2582 const struct ieee80211_regdomain *regd) 2583 { 2584 unsigned int i; 2585 2586 if (!sband) 2587 return; 2588 2589 /* 2590 * We currently assume that you always want at least 20 MHz, 2591 * otherwise channel 12 might get enabled if this rule is 2592 * compatible to US, which permits 2402 - 2472 MHz. 2593 */ 2594 for (i = 0; i < sband->n_channels; i++) 2595 handle_channel_custom(wiphy, &sband->channels[i], regd, 2596 MHZ_TO_KHZ(20)); 2597 } 2598 2599 /* Used by drivers prior to wiphy registration */ 2600 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2601 const struct ieee80211_regdomain *regd) 2602 { 2603 const struct ieee80211_regdomain *new_regd, *tmp; 2604 enum nl80211_band band; 2605 unsigned int bands_set = 0; 2606 2607 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2608 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2609 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2610 2611 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2612 if (!wiphy->bands[band]) 2613 continue; 2614 handle_band_custom(wiphy, wiphy->bands[band], regd); 2615 bands_set++; 2616 } 2617 2618 /* 2619 * no point in calling this if it won't have any effect 2620 * on your device's supported bands. 2621 */ 2622 WARN_ON(!bands_set); 2623 new_regd = reg_copy_regd(regd); 2624 if (IS_ERR(new_regd)) 2625 return; 2626 2627 rtnl_lock(); 2628 wiphy_lock(wiphy); 2629 2630 tmp = get_wiphy_regdom(wiphy); 2631 rcu_assign_pointer(wiphy->regd, new_regd); 2632 rcu_free_regdom(tmp); 2633 2634 wiphy_unlock(wiphy); 2635 rtnl_unlock(); 2636 } 2637 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2638 2639 static void reg_set_request_processed(void) 2640 { 2641 bool need_more_processing = false; 2642 struct regulatory_request *lr = get_last_request(); 2643 2644 lr->processed = true; 2645 2646 spin_lock(®_requests_lock); 2647 if (!list_empty(®_requests_list)) 2648 need_more_processing = true; 2649 spin_unlock(®_requests_lock); 2650 2651 cancel_crda_timeout(); 2652 2653 if (need_more_processing) 2654 schedule_work(®_work); 2655 } 2656 2657 /** 2658 * reg_process_hint_core - process core regulatory requests 2659 * @core_request: a pending core regulatory request 2660 * 2661 * The wireless subsystem can use this function to process 2662 * a regulatory request issued by the regulatory core. 2663 */ 2664 static enum reg_request_treatment 2665 reg_process_hint_core(struct regulatory_request *core_request) 2666 { 2667 if (reg_query_database(core_request)) { 2668 core_request->intersect = false; 2669 core_request->processed = false; 2670 reg_update_last_request(core_request); 2671 return REG_REQ_OK; 2672 } 2673 2674 return REG_REQ_IGNORE; 2675 } 2676 2677 static enum reg_request_treatment 2678 __reg_process_hint_user(struct regulatory_request *user_request) 2679 { 2680 struct regulatory_request *lr = get_last_request(); 2681 2682 if (reg_request_cell_base(user_request)) 2683 return reg_ignore_cell_hint(user_request); 2684 2685 if (reg_request_cell_base(lr)) 2686 return REG_REQ_IGNORE; 2687 2688 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2689 return REG_REQ_INTERSECT; 2690 /* 2691 * If the user knows better the user should set the regdom 2692 * to their country before the IE is picked up 2693 */ 2694 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2695 lr->intersect) 2696 return REG_REQ_IGNORE; 2697 /* 2698 * Process user requests only after previous user/driver/core 2699 * requests have been processed 2700 */ 2701 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2702 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2703 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2704 regdom_changes(lr->alpha2)) 2705 return REG_REQ_IGNORE; 2706 2707 if (!regdom_changes(user_request->alpha2)) 2708 return REG_REQ_ALREADY_SET; 2709 2710 return REG_REQ_OK; 2711 } 2712 2713 /** 2714 * reg_process_hint_user - process user regulatory requests 2715 * @user_request: a pending user regulatory request 2716 * 2717 * The wireless subsystem can use this function to process 2718 * a regulatory request initiated by userspace. 2719 */ 2720 static enum reg_request_treatment 2721 reg_process_hint_user(struct regulatory_request *user_request) 2722 { 2723 enum reg_request_treatment treatment; 2724 2725 treatment = __reg_process_hint_user(user_request); 2726 if (treatment == REG_REQ_IGNORE || 2727 treatment == REG_REQ_ALREADY_SET) 2728 return REG_REQ_IGNORE; 2729 2730 user_request->intersect = treatment == REG_REQ_INTERSECT; 2731 user_request->processed = false; 2732 2733 if (reg_query_database(user_request)) { 2734 reg_update_last_request(user_request); 2735 user_alpha2[0] = user_request->alpha2[0]; 2736 user_alpha2[1] = user_request->alpha2[1]; 2737 return REG_REQ_OK; 2738 } 2739 2740 return REG_REQ_IGNORE; 2741 } 2742 2743 static enum reg_request_treatment 2744 __reg_process_hint_driver(struct regulatory_request *driver_request) 2745 { 2746 struct regulatory_request *lr = get_last_request(); 2747 2748 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2749 if (regdom_changes(driver_request->alpha2)) 2750 return REG_REQ_OK; 2751 return REG_REQ_ALREADY_SET; 2752 } 2753 2754 /* 2755 * This would happen if you unplug and plug your card 2756 * back in or if you add a new device for which the previously 2757 * loaded card also agrees on the regulatory domain. 2758 */ 2759 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2760 !regdom_changes(driver_request->alpha2)) 2761 return REG_REQ_ALREADY_SET; 2762 2763 return REG_REQ_INTERSECT; 2764 } 2765 2766 /** 2767 * reg_process_hint_driver - process driver regulatory requests 2768 * @wiphy: the wireless device for the regulatory request 2769 * @driver_request: a pending driver regulatory request 2770 * 2771 * The wireless subsystem can use this function to process 2772 * a regulatory request issued by an 802.11 driver. 2773 * 2774 * Returns one of the different reg request treatment values. 2775 */ 2776 static enum reg_request_treatment 2777 reg_process_hint_driver(struct wiphy *wiphy, 2778 struct regulatory_request *driver_request) 2779 { 2780 const struct ieee80211_regdomain *regd, *tmp; 2781 enum reg_request_treatment treatment; 2782 2783 treatment = __reg_process_hint_driver(driver_request); 2784 2785 switch (treatment) { 2786 case REG_REQ_OK: 2787 break; 2788 case REG_REQ_IGNORE: 2789 return REG_REQ_IGNORE; 2790 case REG_REQ_INTERSECT: 2791 case REG_REQ_ALREADY_SET: 2792 regd = reg_copy_regd(get_cfg80211_regdom()); 2793 if (IS_ERR(regd)) 2794 return REG_REQ_IGNORE; 2795 2796 tmp = get_wiphy_regdom(wiphy); 2797 ASSERT_RTNL(); 2798 wiphy_lock(wiphy); 2799 rcu_assign_pointer(wiphy->regd, regd); 2800 wiphy_unlock(wiphy); 2801 rcu_free_regdom(tmp); 2802 } 2803 2804 2805 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2806 driver_request->processed = false; 2807 2808 /* 2809 * Since CRDA will not be called in this case as we already 2810 * have applied the requested regulatory domain before we just 2811 * inform userspace we have processed the request 2812 */ 2813 if (treatment == REG_REQ_ALREADY_SET) { 2814 nl80211_send_reg_change_event(driver_request); 2815 reg_update_last_request(driver_request); 2816 reg_set_request_processed(); 2817 return REG_REQ_ALREADY_SET; 2818 } 2819 2820 if (reg_query_database(driver_request)) { 2821 reg_update_last_request(driver_request); 2822 return REG_REQ_OK; 2823 } 2824 2825 return REG_REQ_IGNORE; 2826 } 2827 2828 static enum reg_request_treatment 2829 __reg_process_hint_country_ie(struct wiphy *wiphy, 2830 struct regulatory_request *country_ie_request) 2831 { 2832 struct wiphy *last_wiphy = NULL; 2833 struct regulatory_request *lr = get_last_request(); 2834 2835 if (reg_request_cell_base(lr)) { 2836 /* Trust a Cell base station over the AP's country IE */ 2837 if (regdom_changes(country_ie_request->alpha2)) 2838 return REG_REQ_IGNORE; 2839 return REG_REQ_ALREADY_SET; 2840 } else { 2841 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2842 return REG_REQ_IGNORE; 2843 } 2844 2845 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2846 return -EINVAL; 2847 2848 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2849 return REG_REQ_OK; 2850 2851 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2852 2853 if (last_wiphy != wiphy) { 2854 /* 2855 * Two cards with two APs claiming different 2856 * Country IE alpha2s. We could 2857 * intersect them, but that seems unlikely 2858 * to be correct. Reject second one for now. 2859 */ 2860 if (regdom_changes(country_ie_request->alpha2)) 2861 return REG_REQ_IGNORE; 2862 return REG_REQ_ALREADY_SET; 2863 } 2864 2865 if (regdom_changes(country_ie_request->alpha2)) 2866 return REG_REQ_OK; 2867 return REG_REQ_ALREADY_SET; 2868 } 2869 2870 /** 2871 * reg_process_hint_country_ie - process regulatory requests from country IEs 2872 * @wiphy: the wireless device for the regulatory request 2873 * @country_ie_request: a regulatory request from a country IE 2874 * 2875 * The wireless subsystem can use this function to process 2876 * a regulatory request issued by a country Information Element. 2877 * 2878 * Returns one of the different reg request treatment values. 2879 */ 2880 static enum reg_request_treatment 2881 reg_process_hint_country_ie(struct wiphy *wiphy, 2882 struct regulatory_request *country_ie_request) 2883 { 2884 enum reg_request_treatment treatment; 2885 2886 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2887 2888 switch (treatment) { 2889 case REG_REQ_OK: 2890 break; 2891 case REG_REQ_IGNORE: 2892 return REG_REQ_IGNORE; 2893 case REG_REQ_ALREADY_SET: 2894 reg_free_request(country_ie_request); 2895 return REG_REQ_ALREADY_SET; 2896 case REG_REQ_INTERSECT: 2897 /* 2898 * This doesn't happen yet, not sure we 2899 * ever want to support it for this case. 2900 */ 2901 WARN_ONCE(1, "Unexpected intersection for country elements"); 2902 return REG_REQ_IGNORE; 2903 } 2904 2905 country_ie_request->intersect = false; 2906 country_ie_request->processed = false; 2907 2908 if (reg_query_database(country_ie_request)) { 2909 reg_update_last_request(country_ie_request); 2910 return REG_REQ_OK; 2911 } 2912 2913 return REG_REQ_IGNORE; 2914 } 2915 2916 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2917 { 2918 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2919 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2920 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2921 bool dfs_domain_same; 2922 2923 rcu_read_lock(); 2924 2925 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2926 wiphy1_regd = rcu_dereference(wiphy1->regd); 2927 if (!wiphy1_regd) 2928 wiphy1_regd = cfg80211_regd; 2929 2930 wiphy2_regd = rcu_dereference(wiphy2->regd); 2931 if (!wiphy2_regd) 2932 wiphy2_regd = cfg80211_regd; 2933 2934 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2935 2936 rcu_read_unlock(); 2937 2938 return dfs_domain_same; 2939 } 2940 2941 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2942 struct ieee80211_channel *src_chan) 2943 { 2944 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2945 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2946 return; 2947 2948 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2949 src_chan->flags & IEEE80211_CHAN_DISABLED) 2950 return; 2951 2952 if (src_chan->center_freq == dst_chan->center_freq && 2953 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2954 dst_chan->dfs_state = src_chan->dfs_state; 2955 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2956 } 2957 } 2958 2959 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2960 struct wiphy *src_wiphy) 2961 { 2962 struct ieee80211_supported_band *src_sband, *dst_sband; 2963 struct ieee80211_channel *src_chan, *dst_chan; 2964 int i, j, band; 2965 2966 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2967 return; 2968 2969 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2970 dst_sband = dst_wiphy->bands[band]; 2971 src_sband = src_wiphy->bands[band]; 2972 if (!dst_sband || !src_sband) 2973 continue; 2974 2975 for (i = 0; i < dst_sband->n_channels; i++) { 2976 dst_chan = &dst_sband->channels[i]; 2977 for (j = 0; j < src_sband->n_channels; j++) { 2978 src_chan = &src_sband->channels[j]; 2979 reg_copy_dfs_chan_state(dst_chan, src_chan); 2980 } 2981 } 2982 } 2983 } 2984 2985 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2986 { 2987 struct cfg80211_registered_device *rdev; 2988 2989 ASSERT_RTNL(); 2990 2991 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2992 if (wiphy == &rdev->wiphy) 2993 continue; 2994 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2995 } 2996 } 2997 2998 /* This processes *all* regulatory hints */ 2999 static void reg_process_hint(struct regulatory_request *reg_request) 3000 { 3001 struct wiphy *wiphy = NULL; 3002 enum reg_request_treatment treatment; 3003 enum nl80211_reg_initiator initiator = reg_request->initiator; 3004 3005 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 3006 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 3007 3008 switch (initiator) { 3009 case NL80211_REGDOM_SET_BY_CORE: 3010 treatment = reg_process_hint_core(reg_request); 3011 break; 3012 case NL80211_REGDOM_SET_BY_USER: 3013 treatment = reg_process_hint_user(reg_request); 3014 break; 3015 case NL80211_REGDOM_SET_BY_DRIVER: 3016 if (!wiphy) 3017 goto out_free; 3018 treatment = reg_process_hint_driver(wiphy, reg_request); 3019 break; 3020 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3021 if (!wiphy) 3022 goto out_free; 3023 treatment = reg_process_hint_country_ie(wiphy, reg_request); 3024 break; 3025 default: 3026 WARN(1, "invalid initiator %d\n", initiator); 3027 goto out_free; 3028 } 3029 3030 if (treatment == REG_REQ_IGNORE) 3031 goto out_free; 3032 3033 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 3034 "unexpected treatment value %d\n", treatment); 3035 3036 /* This is required so that the orig_* parameters are saved. 3037 * NOTE: treatment must be set for any case that reaches here! 3038 */ 3039 if (treatment == REG_REQ_ALREADY_SET && wiphy && 3040 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 3041 wiphy_update_regulatory(wiphy, initiator); 3042 wiphy_all_share_dfs_chan_state(wiphy); 3043 reg_check_channels(); 3044 } 3045 3046 return; 3047 3048 out_free: 3049 reg_free_request(reg_request); 3050 } 3051 3052 static void notify_self_managed_wiphys(struct regulatory_request *request) 3053 { 3054 struct cfg80211_registered_device *rdev; 3055 struct wiphy *wiphy; 3056 3057 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3058 wiphy = &rdev->wiphy; 3059 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 3060 request->initiator == NL80211_REGDOM_SET_BY_USER) 3061 reg_call_notifier(wiphy, request); 3062 } 3063 } 3064 3065 /* 3066 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 3067 * Regulatory hints come on a first come first serve basis and we 3068 * must process each one atomically. 3069 */ 3070 static void reg_process_pending_hints(void) 3071 { 3072 struct regulatory_request *reg_request, *lr; 3073 3074 lr = get_last_request(); 3075 3076 /* When last_request->processed becomes true this will be rescheduled */ 3077 if (lr && !lr->processed) { 3078 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3079 return; 3080 } 3081 3082 spin_lock(®_requests_lock); 3083 3084 if (list_empty(®_requests_list)) { 3085 spin_unlock(®_requests_lock); 3086 return; 3087 } 3088 3089 reg_request = list_first_entry(®_requests_list, 3090 struct regulatory_request, 3091 list); 3092 list_del_init(®_request->list); 3093 3094 spin_unlock(®_requests_lock); 3095 3096 notify_self_managed_wiphys(reg_request); 3097 3098 reg_process_hint(reg_request); 3099 3100 lr = get_last_request(); 3101 3102 spin_lock(®_requests_lock); 3103 if (!list_empty(®_requests_list) && lr && lr->processed) 3104 schedule_work(®_work); 3105 spin_unlock(®_requests_lock); 3106 } 3107 3108 /* Processes beacon hints -- this has nothing to do with country IEs */ 3109 static void reg_process_pending_beacon_hints(void) 3110 { 3111 struct cfg80211_registered_device *rdev; 3112 struct reg_beacon *pending_beacon, *tmp; 3113 3114 /* This goes through the _pending_ beacon list */ 3115 spin_lock_bh(®_pending_beacons_lock); 3116 3117 list_for_each_entry_safe(pending_beacon, tmp, 3118 ®_pending_beacons, list) { 3119 list_del_init(&pending_beacon->list); 3120 3121 /* Applies the beacon hint to current wiphys */ 3122 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 3123 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3124 3125 /* Remembers the beacon hint for new wiphys or reg changes */ 3126 list_add_tail(&pending_beacon->list, ®_beacon_list); 3127 } 3128 3129 spin_unlock_bh(®_pending_beacons_lock); 3130 } 3131 3132 static void reg_process_self_managed_hint(struct wiphy *wiphy) 3133 { 3134 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3135 const struct ieee80211_regdomain *tmp; 3136 const struct ieee80211_regdomain *regd; 3137 enum nl80211_band band; 3138 struct regulatory_request request = {}; 3139 3140 ASSERT_RTNL(); 3141 lockdep_assert_wiphy(wiphy); 3142 3143 spin_lock(®_requests_lock); 3144 regd = rdev->requested_regd; 3145 rdev->requested_regd = NULL; 3146 spin_unlock(®_requests_lock); 3147 3148 if (!regd) 3149 return; 3150 3151 tmp = get_wiphy_regdom(wiphy); 3152 rcu_assign_pointer(wiphy->regd, regd); 3153 rcu_free_regdom(tmp); 3154 3155 for (band = 0; band < NUM_NL80211_BANDS; band++) 3156 handle_band_custom(wiphy, wiphy->bands[band], regd); 3157 3158 reg_process_ht_flags(wiphy); 3159 3160 request.wiphy_idx = get_wiphy_idx(wiphy); 3161 request.alpha2[0] = regd->alpha2[0]; 3162 request.alpha2[1] = regd->alpha2[1]; 3163 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3164 3165 nl80211_send_wiphy_reg_change_event(&request); 3166 } 3167 3168 static void reg_process_self_managed_hints(void) 3169 { 3170 struct cfg80211_registered_device *rdev; 3171 3172 ASSERT_RTNL(); 3173 3174 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3175 wiphy_lock(&rdev->wiphy); 3176 reg_process_self_managed_hint(&rdev->wiphy); 3177 wiphy_unlock(&rdev->wiphy); 3178 } 3179 3180 reg_check_channels(); 3181 } 3182 3183 static void reg_todo(struct work_struct *work) 3184 { 3185 rtnl_lock(); 3186 reg_process_pending_hints(); 3187 reg_process_pending_beacon_hints(); 3188 reg_process_self_managed_hints(); 3189 rtnl_unlock(); 3190 } 3191 3192 static void queue_regulatory_request(struct regulatory_request *request) 3193 { 3194 request->alpha2[0] = toupper(request->alpha2[0]); 3195 request->alpha2[1] = toupper(request->alpha2[1]); 3196 3197 spin_lock(®_requests_lock); 3198 list_add_tail(&request->list, ®_requests_list); 3199 spin_unlock(®_requests_lock); 3200 3201 schedule_work(®_work); 3202 } 3203 3204 /* 3205 * Core regulatory hint -- happens during cfg80211_init() 3206 * and when we restore regulatory settings. 3207 */ 3208 static int regulatory_hint_core(const char *alpha2) 3209 { 3210 struct regulatory_request *request; 3211 3212 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3213 if (!request) 3214 return -ENOMEM; 3215 3216 request->alpha2[0] = alpha2[0]; 3217 request->alpha2[1] = alpha2[1]; 3218 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3219 request->wiphy_idx = WIPHY_IDX_INVALID; 3220 3221 queue_regulatory_request(request); 3222 3223 return 0; 3224 } 3225 3226 /* User hints */ 3227 int regulatory_hint_user(const char *alpha2, 3228 enum nl80211_user_reg_hint_type user_reg_hint_type) 3229 { 3230 struct regulatory_request *request; 3231 3232 if (WARN_ON(!alpha2)) 3233 return -EINVAL; 3234 3235 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3236 return -EINVAL; 3237 3238 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3239 if (!request) 3240 return -ENOMEM; 3241 3242 request->wiphy_idx = WIPHY_IDX_INVALID; 3243 request->alpha2[0] = alpha2[0]; 3244 request->alpha2[1] = alpha2[1]; 3245 request->initiator = NL80211_REGDOM_SET_BY_USER; 3246 request->user_reg_hint_type = user_reg_hint_type; 3247 3248 /* Allow calling CRDA again */ 3249 reset_crda_timeouts(); 3250 3251 queue_regulatory_request(request); 3252 3253 return 0; 3254 } 3255 3256 int regulatory_hint_indoor(bool is_indoor, u32 portid) 3257 { 3258 spin_lock(®_indoor_lock); 3259 3260 /* It is possible that more than one user space process is trying to 3261 * configure the indoor setting. To handle such cases, clear the indoor 3262 * setting in case that some process does not think that the device 3263 * is operating in an indoor environment. In addition, if a user space 3264 * process indicates that it is controlling the indoor setting, save its 3265 * portid, i.e., make it the owner. 3266 */ 3267 reg_is_indoor = is_indoor; 3268 if (reg_is_indoor) { 3269 if (!reg_is_indoor_portid) 3270 reg_is_indoor_portid = portid; 3271 } else { 3272 reg_is_indoor_portid = 0; 3273 } 3274 3275 spin_unlock(®_indoor_lock); 3276 3277 if (!is_indoor) 3278 reg_check_channels(); 3279 3280 return 0; 3281 } 3282 3283 void regulatory_netlink_notify(u32 portid) 3284 { 3285 spin_lock(®_indoor_lock); 3286 3287 if (reg_is_indoor_portid != portid) { 3288 spin_unlock(®_indoor_lock); 3289 return; 3290 } 3291 3292 reg_is_indoor = false; 3293 reg_is_indoor_portid = 0; 3294 3295 spin_unlock(®_indoor_lock); 3296 3297 reg_check_channels(); 3298 } 3299 3300 /* Driver hints */ 3301 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3302 { 3303 struct regulatory_request *request; 3304 3305 if (WARN_ON(!alpha2 || !wiphy)) 3306 return -EINVAL; 3307 3308 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3309 3310 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3311 if (!request) 3312 return -ENOMEM; 3313 3314 request->wiphy_idx = get_wiphy_idx(wiphy); 3315 3316 request->alpha2[0] = alpha2[0]; 3317 request->alpha2[1] = alpha2[1]; 3318 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3319 3320 /* Allow calling CRDA again */ 3321 reset_crda_timeouts(); 3322 3323 queue_regulatory_request(request); 3324 3325 return 0; 3326 } 3327 EXPORT_SYMBOL(regulatory_hint); 3328 3329 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3330 const u8 *country_ie, u8 country_ie_len) 3331 { 3332 char alpha2[2]; 3333 enum environment_cap env = ENVIRON_ANY; 3334 struct regulatory_request *request = NULL, *lr; 3335 3336 /* IE len must be evenly divisible by 2 */ 3337 if (country_ie_len & 0x01) 3338 return; 3339 3340 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3341 return; 3342 3343 request = kzalloc(sizeof(*request), GFP_KERNEL); 3344 if (!request) 3345 return; 3346 3347 alpha2[0] = country_ie[0]; 3348 alpha2[1] = country_ie[1]; 3349 3350 if (country_ie[2] == 'I') 3351 env = ENVIRON_INDOOR; 3352 else if (country_ie[2] == 'O') 3353 env = ENVIRON_OUTDOOR; 3354 3355 rcu_read_lock(); 3356 lr = get_last_request(); 3357 3358 if (unlikely(!lr)) 3359 goto out; 3360 3361 /* 3362 * We will run this only upon a successful connection on cfg80211. 3363 * We leave conflict resolution to the workqueue, where can hold 3364 * the RTNL. 3365 */ 3366 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3367 lr->wiphy_idx != WIPHY_IDX_INVALID) 3368 goto out; 3369 3370 request->wiphy_idx = get_wiphy_idx(wiphy); 3371 request->alpha2[0] = alpha2[0]; 3372 request->alpha2[1] = alpha2[1]; 3373 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3374 request->country_ie_env = env; 3375 3376 /* Allow calling CRDA again */ 3377 reset_crda_timeouts(); 3378 3379 queue_regulatory_request(request); 3380 request = NULL; 3381 out: 3382 kfree(request); 3383 rcu_read_unlock(); 3384 } 3385 3386 static void restore_alpha2(char *alpha2, bool reset_user) 3387 { 3388 /* indicates there is no alpha2 to consider for restoration */ 3389 alpha2[0] = '9'; 3390 alpha2[1] = '7'; 3391 3392 /* The user setting has precedence over the module parameter */ 3393 if (is_user_regdom_saved()) { 3394 /* Unless we're asked to ignore it and reset it */ 3395 if (reset_user) { 3396 pr_debug("Restoring regulatory settings including user preference\n"); 3397 user_alpha2[0] = '9'; 3398 user_alpha2[1] = '7'; 3399 3400 /* 3401 * If we're ignoring user settings, we still need to 3402 * check the module parameter to ensure we put things 3403 * back as they were for a full restore. 3404 */ 3405 if (!is_world_regdom(ieee80211_regdom)) { 3406 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3407 ieee80211_regdom[0], ieee80211_regdom[1]); 3408 alpha2[0] = ieee80211_regdom[0]; 3409 alpha2[1] = ieee80211_regdom[1]; 3410 } 3411 } else { 3412 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3413 user_alpha2[0], user_alpha2[1]); 3414 alpha2[0] = user_alpha2[0]; 3415 alpha2[1] = user_alpha2[1]; 3416 } 3417 } else if (!is_world_regdom(ieee80211_regdom)) { 3418 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3419 ieee80211_regdom[0], ieee80211_regdom[1]); 3420 alpha2[0] = ieee80211_regdom[0]; 3421 alpha2[1] = ieee80211_regdom[1]; 3422 } else 3423 pr_debug("Restoring regulatory settings\n"); 3424 } 3425 3426 static void restore_custom_reg_settings(struct wiphy *wiphy) 3427 { 3428 struct ieee80211_supported_band *sband; 3429 enum nl80211_band band; 3430 struct ieee80211_channel *chan; 3431 int i; 3432 3433 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3434 sband = wiphy->bands[band]; 3435 if (!sband) 3436 continue; 3437 for (i = 0; i < sband->n_channels; i++) { 3438 chan = &sband->channels[i]; 3439 chan->flags = chan->orig_flags; 3440 chan->max_antenna_gain = chan->orig_mag; 3441 chan->max_power = chan->orig_mpwr; 3442 chan->beacon_found = false; 3443 } 3444 } 3445 } 3446 3447 /* 3448 * Restoring regulatory settings involves ignoring any 3449 * possibly stale country IE information and user regulatory 3450 * settings if so desired, this includes any beacon hints 3451 * learned as we could have traveled outside to another country 3452 * after disconnection. To restore regulatory settings we do 3453 * exactly what we did at bootup: 3454 * 3455 * - send a core regulatory hint 3456 * - send a user regulatory hint if applicable 3457 * 3458 * Device drivers that send a regulatory hint for a specific country 3459 * keep their own regulatory domain on wiphy->regd so that does 3460 * not need to be remembered. 3461 */ 3462 static void restore_regulatory_settings(bool reset_user, bool cached) 3463 { 3464 char alpha2[2]; 3465 char world_alpha2[2]; 3466 struct reg_beacon *reg_beacon, *btmp; 3467 LIST_HEAD(tmp_reg_req_list); 3468 struct cfg80211_registered_device *rdev; 3469 3470 ASSERT_RTNL(); 3471 3472 /* 3473 * Clear the indoor setting in case that it is not controlled by user 3474 * space, as otherwise there is no guarantee that the device is still 3475 * operating in an indoor environment. 3476 */ 3477 spin_lock(®_indoor_lock); 3478 if (reg_is_indoor && !reg_is_indoor_portid) { 3479 reg_is_indoor = false; 3480 reg_check_channels(); 3481 } 3482 spin_unlock(®_indoor_lock); 3483 3484 reset_regdomains(true, &world_regdom); 3485 restore_alpha2(alpha2, reset_user); 3486 3487 /* 3488 * If there's any pending requests we simply 3489 * stash them to a temporary pending queue and 3490 * add then after we've restored regulatory 3491 * settings. 3492 */ 3493 spin_lock(®_requests_lock); 3494 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3495 spin_unlock(®_requests_lock); 3496 3497 /* Clear beacon hints */ 3498 spin_lock_bh(®_pending_beacons_lock); 3499 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3500 list_del(®_beacon->list); 3501 kfree(reg_beacon); 3502 } 3503 spin_unlock_bh(®_pending_beacons_lock); 3504 3505 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3506 list_del(®_beacon->list); 3507 kfree(reg_beacon); 3508 } 3509 3510 /* First restore to the basic regulatory settings */ 3511 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3512 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3513 3514 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3515 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3516 continue; 3517 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3518 restore_custom_reg_settings(&rdev->wiphy); 3519 } 3520 3521 if (cached && (!is_an_alpha2(alpha2) || 3522 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3523 reset_regdomains(false, cfg80211_world_regdom); 3524 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3525 print_regdomain(get_cfg80211_regdom()); 3526 nl80211_send_reg_change_event(&core_request_world); 3527 reg_set_request_processed(); 3528 3529 if (is_an_alpha2(alpha2) && 3530 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3531 struct regulatory_request *ureq; 3532 3533 spin_lock(®_requests_lock); 3534 ureq = list_last_entry(®_requests_list, 3535 struct regulatory_request, 3536 list); 3537 list_del(&ureq->list); 3538 spin_unlock(®_requests_lock); 3539 3540 notify_self_managed_wiphys(ureq); 3541 reg_update_last_request(ureq); 3542 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3543 REGD_SOURCE_CACHED); 3544 } 3545 } else { 3546 regulatory_hint_core(world_alpha2); 3547 3548 /* 3549 * This restores the ieee80211_regdom module parameter 3550 * preference or the last user requested regulatory 3551 * settings, user regulatory settings takes precedence. 3552 */ 3553 if (is_an_alpha2(alpha2)) 3554 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3555 } 3556 3557 spin_lock(®_requests_lock); 3558 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3559 spin_unlock(®_requests_lock); 3560 3561 pr_debug("Kicking the queue\n"); 3562 3563 schedule_work(®_work); 3564 } 3565 3566 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3567 { 3568 struct cfg80211_registered_device *rdev; 3569 struct wireless_dev *wdev; 3570 3571 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3572 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3573 wdev_lock(wdev); 3574 if (!(wdev->wiphy->regulatory_flags & flag)) { 3575 wdev_unlock(wdev); 3576 return false; 3577 } 3578 wdev_unlock(wdev); 3579 } 3580 } 3581 3582 return true; 3583 } 3584 3585 void regulatory_hint_disconnect(void) 3586 { 3587 /* Restore of regulatory settings is not required when wiphy(s) 3588 * ignore IE from connected access point but clearance of beacon hints 3589 * is required when wiphy(s) supports beacon hints. 3590 */ 3591 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3592 struct reg_beacon *reg_beacon, *btmp; 3593 3594 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3595 return; 3596 3597 spin_lock_bh(®_pending_beacons_lock); 3598 list_for_each_entry_safe(reg_beacon, btmp, 3599 ®_pending_beacons, list) { 3600 list_del(®_beacon->list); 3601 kfree(reg_beacon); 3602 } 3603 spin_unlock_bh(®_pending_beacons_lock); 3604 3605 list_for_each_entry_safe(reg_beacon, btmp, 3606 ®_beacon_list, list) { 3607 list_del(®_beacon->list); 3608 kfree(reg_beacon); 3609 } 3610 3611 return; 3612 } 3613 3614 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3615 restore_regulatory_settings(false, true); 3616 } 3617 3618 static bool freq_is_chan_12_13_14(u32 freq) 3619 { 3620 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3621 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3622 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3623 return true; 3624 return false; 3625 } 3626 3627 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3628 { 3629 struct reg_beacon *pending_beacon; 3630 3631 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3632 if (ieee80211_channel_equal(beacon_chan, 3633 &pending_beacon->chan)) 3634 return true; 3635 return false; 3636 } 3637 3638 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3639 struct ieee80211_channel *beacon_chan, 3640 gfp_t gfp) 3641 { 3642 struct reg_beacon *reg_beacon; 3643 bool processing; 3644 3645 if (beacon_chan->beacon_found || 3646 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3647 (beacon_chan->band == NL80211_BAND_2GHZ && 3648 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3649 return 0; 3650 3651 spin_lock_bh(®_pending_beacons_lock); 3652 processing = pending_reg_beacon(beacon_chan); 3653 spin_unlock_bh(®_pending_beacons_lock); 3654 3655 if (processing) 3656 return 0; 3657 3658 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3659 if (!reg_beacon) 3660 return -ENOMEM; 3661 3662 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3663 beacon_chan->center_freq, beacon_chan->freq_offset, 3664 ieee80211_freq_khz_to_channel( 3665 ieee80211_channel_to_khz(beacon_chan)), 3666 wiphy_name(wiphy)); 3667 3668 memcpy(®_beacon->chan, beacon_chan, 3669 sizeof(struct ieee80211_channel)); 3670 3671 /* 3672 * Since we can be called from BH or and non-BH context 3673 * we must use spin_lock_bh() 3674 */ 3675 spin_lock_bh(®_pending_beacons_lock); 3676 list_add_tail(®_beacon->list, ®_pending_beacons); 3677 spin_unlock_bh(®_pending_beacons_lock); 3678 3679 schedule_work(®_work); 3680 3681 return 0; 3682 } 3683 3684 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3685 { 3686 unsigned int i; 3687 const struct ieee80211_reg_rule *reg_rule = NULL; 3688 const struct ieee80211_freq_range *freq_range = NULL; 3689 const struct ieee80211_power_rule *power_rule = NULL; 3690 char bw[32], cac_time[32]; 3691 3692 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3693 3694 for (i = 0; i < rd->n_reg_rules; i++) { 3695 reg_rule = &rd->reg_rules[i]; 3696 freq_range = ®_rule->freq_range; 3697 power_rule = ®_rule->power_rule; 3698 3699 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3700 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", 3701 freq_range->max_bandwidth_khz, 3702 reg_get_max_bandwidth(rd, reg_rule)); 3703 else 3704 snprintf(bw, sizeof(bw), "%d KHz", 3705 freq_range->max_bandwidth_khz); 3706 3707 if (reg_rule->flags & NL80211_RRF_DFS) 3708 scnprintf(cac_time, sizeof(cac_time), "%u s", 3709 reg_rule->dfs_cac_ms/1000); 3710 else 3711 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3712 3713 3714 /* 3715 * There may not be documentation for max antenna gain 3716 * in certain regions 3717 */ 3718 if (power_rule->max_antenna_gain) 3719 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3720 freq_range->start_freq_khz, 3721 freq_range->end_freq_khz, 3722 bw, 3723 power_rule->max_antenna_gain, 3724 power_rule->max_eirp, 3725 cac_time); 3726 else 3727 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3728 freq_range->start_freq_khz, 3729 freq_range->end_freq_khz, 3730 bw, 3731 power_rule->max_eirp, 3732 cac_time); 3733 } 3734 } 3735 3736 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3737 { 3738 switch (dfs_region) { 3739 case NL80211_DFS_UNSET: 3740 case NL80211_DFS_FCC: 3741 case NL80211_DFS_ETSI: 3742 case NL80211_DFS_JP: 3743 return true; 3744 default: 3745 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3746 return false; 3747 } 3748 } 3749 3750 static void print_regdomain(const struct ieee80211_regdomain *rd) 3751 { 3752 struct regulatory_request *lr = get_last_request(); 3753 3754 if (is_intersected_alpha2(rd->alpha2)) { 3755 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3756 struct cfg80211_registered_device *rdev; 3757 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3758 if (rdev) { 3759 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3760 rdev->country_ie_alpha2[0], 3761 rdev->country_ie_alpha2[1]); 3762 } else 3763 pr_debug("Current regulatory domain intersected:\n"); 3764 } else 3765 pr_debug("Current regulatory domain intersected:\n"); 3766 } else if (is_world_regdom(rd->alpha2)) { 3767 pr_debug("World regulatory domain updated:\n"); 3768 } else { 3769 if (is_unknown_alpha2(rd->alpha2)) 3770 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3771 else { 3772 if (reg_request_cell_base(lr)) 3773 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3774 rd->alpha2[0], rd->alpha2[1]); 3775 else 3776 pr_debug("Regulatory domain changed to country: %c%c\n", 3777 rd->alpha2[0], rd->alpha2[1]); 3778 } 3779 } 3780 3781 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3782 print_rd_rules(rd); 3783 } 3784 3785 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3786 { 3787 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3788 print_rd_rules(rd); 3789 } 3790 3791 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3792 { 3793 if (!is_world_regdom(rd->alpha2)) 3794 return -EINVAL; 3795 update_world_regdomain(rd); 3796 return 0; 3797 } 3798 3799 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3800 struct regulatory_request *user_request) 3801 { 3802 const struct ieee80211_regdomain *intersected_rd = NULL; 3803 3804 if (!regdom_changes(rd->alpha2)) 3805 return -EALREADY; 3806 3807 if (!is_valid_rd(rd)) { 3808 pr_err("Invalid regulatory domain detected: %c%c\n", 3809 rd->alpha2[0], rd->alpha2[1]); 3810 print_regdomain_info(rd); 3811 return -EINVAL; 3812 } 3813 3814 if (!user_request->intersect) { 3815 reset_regdomains(false, rd); 3816 return 0; 3817 } 3818 3819 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3820 if (!intersected_rd) 3821 return -EINVAL; 3822 3823 kfree(rd); 3824 rd = NULL; 3825 reset_regdomains(false, intersected_rd); 3826 3827 return 0; 3828 } 3829 3830 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3831 struct regulatory_request *driver_request) 3832 { 3833 const struct ieee80211_regdomain *regd; 3834 const struct ieee80211_regdomain *intersected_rd = NULL; 3835 const struct ieee80211_regdomain *tmp; 3836 struct wiphy *request_wiphy; 3837 3838 if (is_world_regdom(rd->alpha2)) 3839 return -EINVAL; 3840 3841 if (!regdom_changes(rd->alpha2)) 3842 return -EALREADY; 3843 3844 if (!is_valid_rd(rd)) { 3845 pr_err("Invalid regulatory domain detected: %c%c\n", 3846 rd->alpha2[0], rd->alpha2[1]); 3847 print_regdomain_info(rd); 3848 return -EINVAL; 3849 } 3850 3851 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3852 if (!request_wiphy) 3853 return -ENODEV; 3854 3855 if (!driver_request->intersect) { 3856 ASSERT_RTNL(); 3857 wiphy_lock(request_wiphy); 3858 if (request_wiphy->regd) { 3859 wiphy_unlock(request_wiphy); 3860 return -EALREADY; 3861 } 3862 3863 regd = reg_copy_regd(rd); 3864 if (IS_ERR(regd)) { 3865 wiphy_unlock(request_wiphy); 3866 return PTR_ERR(regd); 3867 } 3868 3869 rcu_assign_pointer(request_wiphy->regd, regd); 3870 wiphy_unlock(request_wiphy); 3871 reset_regdomains(false, rd); 3872 return 0; 3873 } 3874 3875 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3876 if (!intersected_rd) 3877 return -EINVAL; 3878 3879 /* 3880 * We can trash what CRDA provided now. 3881 * However if a driver requested this specific regulatory 3882 * domain we keep it for its private use 3883 */ 3884 tmp = get_wiphy_regdom(request_wiphy); 3885 rcu_assign_pointer(request_wiphy->regd, rd); 3886 rcu_free_regdom(tmp); 3887 3888 rd = NULL; 3889 3890 reset_regdomains(false, intersected_rd); 3891 3892 return 0; 3893 } 3894 3895 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3896 struct regulatory_request *country_ie_request) 3897 { 3898 struct wiphy *request_wiphy; 3899 3900 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3901 !is_unknown_alpha2(rd->alpha2)) 3902 return -EINVAL; 3903 3904 /* 3905 * Lets only bother proceeding on the same alpha2 if the current 3906 * rd is non static (it means CRDA was present and was used last) 3907 * and the pending request came in from a country IE 3908 */ 3909 3910 if (!is_valid_rd(rd)) { 3911 pr_err("Invalid regulatory domain detected: %c%c\n", 3912 rd->alpha2[0], rd->alpha2[1]); 3913 print_regdomain_info(rd); 3914 return -EINVAL; 3915 } 3916 3917 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3918 if (!request_wiphy) 3919 return -ENODEV; 3920 3921 if (country_ie_request->intersect) 3922 return -EINVAL; 3923 3924 reset_regdomains(false, rd); 3925 return 0; 3926 } 3927 3928 /* 3929 * Use this call to set the current regulatory domain. Conflicts with 3930 * multiple drivers can be ironed out later. Caller must've already 3931 * kmalloc'd the rd structure. 3932 */ 3933 int set_regdom(const struct ieee80211_regdomain *rd, 3934 enum ieee80211_regd_source regd_src) 3935 { 3936 struct regulatory_request *lr; 3937 bool user_reset = false; 3938 int r; 3939 3940 if (IS_ERR_OR_NULL(rd)) 3941 return -ENODATA; 3942 3943 if (!reg_is_valid_request(rd->alpha2)) { 3944 kfree(rd); 3945 return -EINVAL; 3946 } 3947 3948 if (regd_src == REGD_SOURCE_CRDA) 3949 reset_crda_timeouts(); 3950 3951 lr = get_last_request(); 3952 3953 /* Note that this doesn't update the wiphys, this is done below */ 3954 switch (lr->initiator) { 3955 case NL80211_REGDOM_SET_BY_CORE: 3956 r = reg_set_rd_core(rd); 3957 break; 3958 case NL80211_REGDOM_SET_BY_USER: 3959 cfg80211_save_user_regdom(rd); 3960 r = reg_set_rd_user(rd, lr); 3961 user_reset = true; 3962 break; 3963 case NL80211_REGDOM_SET_BY_DRIVER: 3964 r = reg_set_rd_driver(rd, lr); 3965 break; 3966 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3967 r = reg_set_rd_country_ie(rd, lr); 3968 break; 3969 default: 3970 WARN(1, "invalid initiator %d\n", lr->initiator); 3971 kfree(rd); 3972 return -EINVAL; 3973 } 3974 3975 if (r) { 3976 switch (r) { 3977 case -EALREADY: 3978 reg_set_request_processed(); 3979 break; 3980 default: 3981 /* Back to world regulatory in case of errors */ 3982 restore_regulatory_settings(user_reset, false); 3983 } 3984 3985 kfree(rd); 3986 return r; 3987 } 3988 3989 /* This would make this whole thing pointless */ 3990 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3991 return -EINVAL; 3992 3993 /* update all wiphys now with the new established regulatory domain */ 3994 update_all_wiphy_regulatory(lr->initiator); 3995 3996 print_regdomain(get_cfg80211_regdom()); 3997 3998 nl80211_send_reg_change_event(lr); 3999 4000 reg_set_request_processed(); 4001 4002 return 0; 4003 } 4004 4005 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 4006 struct ieee80211_regdomain *rd) 4007 { 4008 const struct ieee80211_regdomain *regd; 4009 const struct ieee80211_regdomain *prev_regd; 4010 struct cfg80211_registered_device *rdev; 4011 4012 if (WARN_ON(!wiphy || !rd)) 4013 return -EINVAL; 4014 4015 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 4016 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 4017 return -EPERM; 4018 4019 if (WARN(!is_valid_rd(rd), 4020 "Invalid regulatory domain detected: %c%c\n", 4021 rd->alpha2[0], rd->alpha2[1])) { 4022 print_regdomain_info(rd); 4023 return -EINVAL; 4024 } 4025 4026 regd = reg_copy_regd(rd); 4027 if (IS_ERR(regd)) 4028 return PTR_ERR(regd); 4029 4030 rdev = wiphy_to_rdev(wiphy); 4031 4032 spin_lock(®_requests_lock); 4033 prev_regd = rdev->requested_regd; 4034 rdev->requested_regd = regd; 4035 spin_unlock(®_requests_lock); 4036 4037 kfree(prev_regd); 4038 return 0; 4039 } 4040 4041 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 4042 struct ieee80211_regdomain *rd) 4043 { 4044 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 4045 4046 if (ret) 4047 return ret; 4048 4049 schedule_work(®_work); 4050 return 0; 4051 } 4052 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 4053 4054 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 4055 struct ieee80211_regdomain *rd) 4056 { 4057 int ret; 4058 4059 ASSERT_RTNL(); 4060 4061 ret = __regulatory_set_wiphy_regd(wiphy, rd); 4062 if (ret) 4063 return ret; 4064 4065 /* process the request immediately */ 4066 reg_process_self_managed_hint(wiphy); 4067 reg_check_channels(); 4068 return 0; 4069 } 4070 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync); 4071 4072 void wiphy_regulatory_register(struct wiphy *wiphy) 4073 { 4074 struct regulatory_request *lr = get_last_request(); 4075 4076 /* self-managed devices ignore beacon hints and country IE */ 4077 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 4078 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 4079 REGULATORY_COUNTRY_IE_IGNORE; 4080 4081 /* 4082 * The last request may have been received before this 4083 * registration call. Call the driver notifier if 4084 * initiator is USER. 4085 */ 4086 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 4087 reg_call_notifier(wiphy, lr); 4088 } 4089 4090 if (!reg_dev_ignore_cell_hint(wiphy)) 4091 reg_num_devs_support_basehint++; 4092 4093 wiphy_update_regulatory(wiphy, lr->initiator); 4094 wiphy_all_share_dfs_chan_state(wiphy); 4095 reg_process_self_managed_hints(); 4096 } 4097 4098 void wiphy_regulatory_deregister(struct wiphy *wiphy) 4099 { 4100 struct wiphy *request_wiphy = NULL; 4101 struct regulatory_request *lr; 4102 4103 lr = get_last_request(); 4104 4105 if (!reg_dev_ignore_cell_hint(wiphy)) 4106 reg_num_devs_support_basehint--; 4107 4108 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4109 RCU_INIT_POINTER(wiphy->regd, NULL); 4110 4111 if (lr) 4112 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4113 4114 if (!request_wiphy || request_wiphy != wiphy) 4115 return; 4116 4117 lr->wiphy_idx = WIPHY_IDX_INVALID; 4118 lr->country_ie_env = ENVIRON_ANY; 4119 } 4120 4121 /* 4122 * See FCC notices for UNII band definitions 4123 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4124 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4125 */ 4126 int cfg80211_get_unii(int freq) 4127 { 4128 /* UNII-1 */ 4129 if (freq >= 5150 && freq <= 5250) 4130 return 0; 4131 4132 /* UNII-2A */ 4133 if (freq > 5250 && freq <= 5350) 4134 return 1; 4135 4136 /* UNII-2B */ 4137 if (freq > 5350 && freq <= 5470) 4138 return 2; 4139 4140 /* UNII-2C */ 4141 if (freq > 5470 && freq <= 5725) 4142 return 3; 4143 4144 /* UNII-3 */ 4145 if (freq > 5725 && freq <= 5825) 4146 return 4; 4147 4148 /* UNII-5 */ 4149 if (freq > 5925 && freq <= 6425) 4150 return 5; 4151 4152 /* UNII-6 */ 4153 if (freq > 6425 && freq <= 6525) 4154 return 6; 4155 4156 /* UNII-7 */ 4157 if (freq > 6525 && freq <= 6875) 4158 return 7; 4159 4160 /* UNII-8 */ 4161 if (freq > 6875 && freq <= 7125) 4162 return 8; 4163 4164 return -EINVAL; 4165 } 4166 4167 bool regulatory_indoor_allowed(void) 4168 { 4169 return reg_is_indoor; 4170 } 4171 4172 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4173 { 4174 const struct ieee80211_regdomain *regd = NULL; 4175 const struct ieee80211_regdomain *wiphy_regd = NULL; 4176 bool pre_cac_allowed = false; 4177 4178 rcu_read_lock(); 4179 4180 regd = rcu_dereference(cfg80211_regdomain); 4181 wiphy_regd = rcu_dereference(wiphy->regd); 4182 if (!wiphy_regd) { 4183 if (regd->dfs_region == NL80211_DFS_ETSI) 4184 pre_cac_allowed = true; 4185 4186 rcu_read_unlock(); 4187 4188 return pre_cac_allowed; 4189 } 4190 4191 if (regd->dfs_region == wiphy_regd->dfs_region && 4192 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4193 pre_cac_allowed = true; 4194 4195 rcu_read_unlock(); 4196 4197 return pre_cac_allowed; 4198 } 4199 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4200 4201 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4202 { 4203 struct wireless_dev *wdev; 4204 /* If we finished CAC or received radar, we should end any 4205 * CAC running on the same channels. 4206 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4207 * either all channels are available - those the CAC_FINISHED 4208 * event has effected another wdev state, or there is a channel 4209 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4210 * event has effected another wdev state. 4211 * In both cases we should end the CAC on the wdev. 4212 */ 4213 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4214 if (wdev->cac_started && 4215 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef)) 4216 rdev_end_cac(rdev, wdev->netdev); 4217 } 4218 } 4219 4220 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4221 struct cfg80211_chan_def *chandef, 4222 enum nl80211_dfs_state dfs_state, 4223 enum nl80211_radar_event event) 4224 { 4225 struct cfg80211_registered_device *rdev; 4226 4227 ASSERT_RTNL(); 4228 4229 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4230 return; 4231 4232 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 4233 if (wiphy == &rdev->wiphy) 4234 continue; 4235 4236 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4237 continue; 4238 4239 if (!ieee80211_get_channel(&rdev->wiphy, 4240 chandef->chan->center_freq)) 4241 continue; 4242 4243 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4244 4245 if (event == NL80211_RADAR_DETECTED || 4246 event == NL80211_RADAR_CAC_FINISHED) { 4247 cfg80211_sched_dfs_chan_update(rdev); 4248 cfg80211_check_and_end_cac(rdev); 4249 } 4250 4251 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4252 } 4253 } 4254 4255 static int __init regulatory_init_db(void) 4256 { 4257 int err; 4258 4259 /* 4260 * It's possible that - due to other bugs/issues - cfg80211 4261 * never called regulatory_init() below, or that it failed; 4262 * in that case, don't try to do any further work here as 4263 * it's doomed to lead to crashes. 4264 */ 4265 if (IS_ERR_OR_NULL(reg_pdev)) 4266 return -EINVAL; 4267 4268 err = load_builtin_regdb_keys(); 4269 if (err) 4270 return err; 4271 4272 /* We always try to get an update for the static regdomain */ 4273 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4274 if (err) { 4275 if (err == -ENOMEM) { 4276 platform_device_unregister(reg_pdev); 4277 return err; 4278 } 4279 /* 4280 * N.B. kobject_uevent_env() can fail mainly for when we're out 4281 * memory which is handled and propagated appropriately above 4282 * but it can also fail during a netlink_broadcast() or during 4283 * early boot for call_usermodehelper(). For now treat these 4284 * errors as non-fatal. 4285 */ 4286 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4287 } 4288 4289 /* 4290 * Finally, if the user set the module parameter treat it 4291 * as a user hint. 4292 */ 4293 if (!is_world_regdom(ieee80211_regdom)) 4294 regulatory_hint_user(ieee80211_regdom, 4295 NL80211_USER_REG_HINT_USER); 4296 4297 return 0; 4298 } 4299 #ifndef MODULE 4300 late_initcall(regulatory_init_db); 4301 #endif 4302 4303 int __init regulatory_init(void) 4304 { 4305 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4306 if (IS_ERR(reg_pdev)) 4307 return PTR_ERR(reg_pdev); 4308 4309 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4310 4311 user_alpha2[0] = '9'; 4312 user_alpha2[1] = '7'; 4313 4314 #ifdef MODULE 4315 return regulatory_init_db(); 4316 #else 4317 return 0; 4318 #endif 4319 } 4320 4321 void regulatory_exit(void) 4322 { 4323 struct regulatory_request *reg_request, *tmp; 4324 struct reg_beacon *reg_beacon, *btmp; 4325 4326 cancel_work_sync(®_work); 4327 cancel_crda_timeout_sync(); 4328 cancel_delayed_work_sync(®_check_chans); 4329 4330 /* Lock to suppress warnings */ 4331 rtnl_lock(); 4332 reset_regdomains(true, NULL); 4333 rtnl_unlock(); 4334 4335 dev_set_uevent_suppress(®_pdev->dev, true); 4336 4337 platform_device_unregister(reg_pdev); 4338 4339 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4340 list_del(®_beacon->list); 4341 kfree(reg_beacon); 4342 } 4343 4344 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4345 list_del(®_beacon->list); 4346 kfree(reg_beacon); 4347 } 4348 4349 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4350 list_del(®_request->list); 4351 kfree(reg_request); 4352 } 4353 4354 if (!IS_ERR_OR_NULL(regdb)) 4355 kfree(regdb); 4356 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4357 kfree(cfg80211_user_regdom); 4358 4359 free_regdb_keyring(); 4360 } 4361