xref: /linux/net/wireless/reg.c (revision 37a93dd5c49b5fda807fd204edf2547c3493319c)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2026 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/device/faux.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <linux/units.h>
61 
62 #include <net/cfg80211.h>
63 #include "core.h"
64 #include "reg.h"
65 #include "rdev-ops.h"
66 #include "nl80211.h"
67 
68 /*
69  * Grace period we give before making sure all current interfaces reside on
70  * channels allowed by the current regulatory domain.
71  */
72 #define REG_ENFORCE_GRACE_MS 60000
73 
74 /**
75  * enum reg_request_treatment - regulatory request treatment
76  *
77  * @REG_REQ_OK: continue processing the regulatory request
78  * @REG_REQ_IGNORE: ignore the regulatory request
79  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
80  *	be intersected with the current one.
81  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
82  *	regulatory settings, and no further processing is required.
83  */
84 enum reg_request_treatment {
85 	REG_REQ_OK,
86 	REG_REQ_IGNORE,
87 	REG_REQ_INTERSECT,
88 	REG_REQ_ALREADY_SET,
89 };
90 
91 static struct regulatory_request core_request_world = {
92 	.initiator = NL80211_REGDOM_SET_BY_CORE,
93 	.alpha2[0] = '0',
94 	.alpha2[1] = '0',
95 	.intersect = false,
96 	.processed = true,
97 	.country_ie_env = ENVIRON_ANY,
98 };
99 
100 /*
101  * Receipt of information from last regulatory request,
102  * protected by RTNL (and can be accessed with RCU protection)
103  */
104 static struct regulatory_request __rcu *last_request =
105 	(void __force __rcu *)&core_request_world;
106 
107 /* To trigger userspace events and load firmware */
108 static struct faux_device *reg_fdev;
109 
110 /*
111  * Central wireless core regulatory domains, we only need two,
112  * the current one and a world regulatory domain in case we have no
113  * information to give us an alpha2.
114  * (protected by RTNL, can be read under RCU)
115  */
116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117 
118 /*
119  * Number of devices that registered to the core
120  * that support cellular base station regulatory hints
121  * (protected by RTNL)
122  */
123 static int reg_num_devs_support_basehint;
124 
125 /*
126  * State variable indicating if the platform on which the devices
127  * are attached is operating in an indoor environment. The state variable
128  * is relevant for all registered devices.
129  */
130 static bool reg_is_indoor;
131 static DEFINE_SPINLOCK(reg_indoor_lock);
132 
133 /* Used to track the userspace process controlling the indoor setting */
134 static u32 reg_is_indoor_portid;
135 
136 static void restore_regulatory_settings(bool reset_user, bool cached);
137 static void print_regdomain(const struct ieee80211_regdomain *rd);
138 static void reg_process_hint(struct regulatory_request *reg_request);
139 
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142 	return rcu_dereference_rtnl(cfg80211_regdomain);
143 }
144 
145 /*
146  * Returns the regulatory domain associated with the wiphy.
147  *
148  * Requires any of RTNL, wiphy mutex or RCU protection.
149  */
150 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
151 {
152 	return rcu_dereference_check(wiphy->regd,
153 				     lockdep_is_held(&wiphy->mtx) ||
154 				     lockdep_rtnl_is_held());
155 }
156 EXPORT_SYMBOL(get_wiphy_regdom);
157 
158 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
159 {
160 	switch (dfs_region) {
161 	case NL80211_DFS_UNSET:
162 		return "unset";
163 	case NL80211_DFS_FCC:
164 		return "FCC";
165 	case NL80211_DFS_ETSI:
166 		return "ETSI";
167 	case NL80211_DFS_JP:
168 		return "JP";
169 	}
170 	return "Unknown";
171 }
172 
173 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
174 {
175 	const struct ieee80211_regdomain *regd = NULL;
176 	const struct ieee80211_regdomain *wiphy_regd = NULL;
177 	enum nl80211_dfs_regions dfs_region;
178 
179 	rcu_read_lock();
180 	regd = get_cfg80211_regdom();
181 	dfs_region = regd->dfs_region;
182 
183 	if (!wiphy)
184 		goto out;
185 
186 	wiphy_regd = get_wiphy_regdom(wiphy);
187 	if (!wiphy_regd)
188 		goto out;
189 
190 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
191 		dfs_region = wiphy_regd->dfs_region;
192 		goto out;
193 	}
194 
195 	if (wiphy_regd->dfs_region == regd->dfs_region)
196 		goto out;
197 
198 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
199 		 dev_name(&wiphy->dev),
200 		 reg_dfs_region_str(wiphy_regd->dfs_region),
201 		 reg_dfs_region_str(regd->dfs_region));
202 
203 out:
204 	rcu_read_unlock();
205 
206 	return dfs_region;
207 }
208 
209 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
210 {
211 	if (!r)
212 		return;
213 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
214 }
215 
216 static struct regulatory_request *get_last_request(void)
217 {
218 	return rcu_dereference_rtnl(last_request);
219 }
220 
221 /* Used to queue up regulatory hints */
222 static LIST_HEAD(reg_requests_list);
223 static DEFINE_SPINLOCK(reg_requests_lock);
224 
225 /* Used to queue up beacon hints for review */
226 static LIST_HEAD(reg_pending_beacons);
227 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
228 
229 /* Used to keep track of processed beacon hints */
230 static LIST_HEAD(reg_beacon_list);
231 
232 struct reg_beacon {
233 	struct list_head list;
234 	struct ieee80211_channel chan;
235 };
236 
237 static void reg_check_chans_work(struct work_struct *work);
238 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
239 
240 static void reg_todo(struct work_struct *work);
241 static DECLARE_WORK(reg_work, reg_todo);
242 
243 /* We keep a static world regulatory domain in case of the absence of CRDA */
244 static const struct ieee80211_regdomain world_regdom = {
245 	.n_reg_rules = 8,
246 	.alpha2 =  "00",
247 	.reg_rules = {
248 		/* IEEE 802.11b/g, channels 1..11 */
249 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
250 		/* IEEE 802.11b/g, channels 12..13. */
251 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
252 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
253 		/* IEEE 802.11 channel 14 - Only JP enables
254 		 * this and for 802.11b only */
255 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
256 			NL80211_RRF_NO_IR |
257 			NL80211_RRF_NO_OFDM),
258 		/* IEEE 802.11a, channel 36..48 */
259 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
260                         NL80211_RRF_NO_IR |
261                         NL80211_RRF_AUTO_BW),
262 
263 		/* IEEE 802.11a, channel 52..64 - DFS required */
264 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
265 			NL80211_RRF_NO_IR |
266 			NL80211_RRF_AUTO_BW |
267 			NL80211_RRF_DFS),
268 
269 		/* IEEE 802.11a, channel 100..144 - DFS required */
270 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
271 			NL80211_RRF_NO_IR |
272 			NL80211_RRF_DFS),
273 
274 		/* IEEE 802.11a, channel 149..165 */
275 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
276 			NL80211_RRF_NO_IR),
277 
278 		/* IEEE 802.11ad (60GHz), channels 1..3 */
279 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
280 	}
281 };
282 
283 /* protected by RTNL */
284 static const struct ieee80211_regdomain *cfg80211_world_regdom =
285 	&world_regdom;
286 
287 static char *ieee80211_regdom = "00";
288 static char user_alpha2[2];
289 static const struct ieee80211_regdomain *cfg80211_user_regdom;
290 
291 module_param(ieee80211_regdom, charp, 0444);
292 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
293 
294 static void reg_free_request(struct regulatory_request *request)
295 {
296 	if (request == &core_request_world)
297 		return;
298 
299 	if (request != get_last_request())
300 		kfree(request);
301 }
302 
303 static void reg_free_last_request(void)
304 {
305 	struct regulatory_request *lr = get_last_request();
306 
307 	if (lr != &core_request_world && lr)
308 		kfree_rcu(lr, rcu_head);
309 }
310 
311 static void reg_update_last_request(struct regulatory_request *request)
312 {
313 	struct regulatory_request *lr;
314 
315 	lr = get_last_request();
316 	if (lr == request)
317 		return;
318 
319 	reg_free_last_request();
320 	rcu_assign_pointer(last_request, request);
321 }
322 
323 static void reset_regdomains(bool full_reset,
324 			     const struct ieee80211_regdomain *new_regdom)
325 {
326 	const struct ieee80211_regdomain *r;
327 
328 	ASSERT_RTNL();
329 
330 	r = get_cfg80211_regdom();
331 
332 	/* avoid freeing static information or freeing something twice */
333 	if (r == cfg80211_world_regdom)
334 		r = NULL;
335 	if (cfg80211_world_regdom == &world_regdom)
336 		cfg80211_world_regdom = NULL;
337 	if (r == &world_regdom)
338 		r = NULL;
339 
340 	rcu_free_regdom(r);
341 	rcu_free_regdom(cfg80211_world_regdom);
342 
343 	cfg80211_world_regdom = &world_regdom;
344 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
345 
346 	if (!full_reset)
347 		return;
348 
349 	reg_update_last_request(&core_request_world);
350 }
351 
352 /*
353  * Dynamic world regulatory domain requested by the wireless
354  * core upon initialization
355  */
356 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
357 {
358 	struct regulatory_request *lr;
359 
360 	lr = get_last_request();
361 
362 	WARN_ON(!lr);
363 
364 	reset_regdomains(false, rd);
365 
366 	cfg80211_world_regdom = rd;
367 }
368 
369 bool is_world_regdom(const char *alpha2)
370 {
371 	if (!alpha2)
372 		return false;
373 	return alpha2[0] == '0' && alpha2[1] == '0';
374 }
375 
376 static bool is_alpha2_set(const char *alpha2)
377 {
378 	if (!alpha2)
379 		return false;
380 	return alpha2[0] && alpha2[1];
381 }
382 
383 static bool is_unknown_alpha2(const char *alpha2)
384 {
385 	if (!alpha2)
386 		return false;
387 	/*
388 	 * Special case where regulatory domain was built by driver
389 	 * but a specific alpha2 cannot be determined
390 	 */
391 	return alpha2[0] == '9' && alpha2[1] == '9';
392 }
393 
394 static bool is_intersected_alpha2(const char *alpha2)
395 {
396 	if (!alpha2)
397 		return false;
398 	/*
399 	 * Special case where regulatory domain is the
400 	 * result of an intersection between two regulatory domain
401 	 * structures
402 	 */
403 	return alpha2[0] == '9' && alpha2[1] == '8';
404 }
405 
406 static bool is_an_alpha2(const char *alpha2)
407 {
408 	if (!alpha2)
409 		return false;
410 	return isascii(alpha2[0]) && isalpha(alpha2[0]) &&
411 	       isascii(alpha2[1]) && isalpha(alpha2[1]);
412 }
413 
414 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
415 {
416 	if (!alpha2_x || !alpha2_y)
417 		return false;
418 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
419 }
420 
421 static bool regdom_changes(const char *alpha2)
422 {
423 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
424 
425 	if (!r)
426 		return true;
427 	return !alpha2_equal(r->alpha2, alpha2);
428 }
429 
430 /*
431  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
432  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
433  * has ever been issued.
434  */
435 static bool is_user_regdom_saved(void)
436 {
437 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
438 		return false;
439 
440 	/* This would indicate a mistake on the design */
441 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
442 		 "Unexpected user alpha2: %c%c\n",
443 		 user_alpha2[0], user_alpha2[1]))
444 		return false;
445 
446 	return true;
447 }
448 
449 static const struct ieee80211_regdomain *
450 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
451 {
452 	struct ieee80211_regdomain *regd;
453 	unsigned int i;
454 
455 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
456 		       GFP_KERNEL);
457 	if (!regd)
458 		return ERR_PTR(-ENOMEM);
459 
460 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
461 
462 	for (i = 0; i < src_regd->n_reg_rules; i++)
463 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
464 		       sizeof(struct ieee80211_reg_rule));
465 
466 	return regd;
467 }
468 
469 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
470 {
471 	ASSERT_RTNL();
472 
473 	if (!IS_ERR(cfg80211_user_regdom))
474 		kfree(cfg80211_user_regdom);
475 	cfg80211_user_regdom = reg_copy_regd(rd);
476 }
477 
478 struct reg_regdb_apply_request {
479 	struct list_head list;
480 	const struct ieee80211_regdomain *regdom;
481 };
482 
483 static LIST_HEAD(reg_regdb_apply_list);
484 static DEFINE_MUTEX(reg_regdb_apply_mutex);
485 
486 static void reg_regdb_apply(struct work_struct *work)
487 {
488 	struct reg_regdb_apply_request *request;
489 
490 	rtnl_lock();
491 
492 	mutex_lock(&reg_regdb_apply_mutex);
493 	while (!list_empty(&reg_regdb_apply_list)) {
494 		request = list_first_entry(&reg_regdb_apply_list,
495 					   struct reg_regdb_apply_request,
496 					   list);
497 		list_del(&request->list);
498 
499 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
500 		kfree(request);
501 	}
502 	mutex_unlock(&reg_regdb_apply_mutex);
503 
504 	rtnl_unlock();
505 }
506 
507 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
508 
509 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
510 {
511 	struct reg_regdb_apply_request *request;
512 
513 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
514 	if (!request) {
515 		kfree(regdom);
516 		return -ENOMEM;
517 	}
518 
519 	request->regdom = regdom;
520 
521 	mutex_lock(&reg_regdb_apply_mutex);
522 	list_add_tail(&request->list, &reg_regdb_apply_list);
523 	mutex_unlock(&reg_regdb_apply_mutex);
524 
525 	schedule_work(&reg_regdb_work);
526 	return 0;
527 }
528 
529 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
530 /* Max number of consecutive attempts to communicate with CRDA  */
531 #define REG_MAX_CRDA_TIMEOUTS 10
532 
533 static u32 reg_crda_timeouts;
534 
535 static void crda_timeout_work(struct work_struct *work);
536 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
537 
538 static void crda_timeout_work(struct work_struct *work)
539 {
540 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
541 	rtnl_lock();
542 	reg_crda_timeouts++;
543 	restore_regulatory_settings(true, false);
544 	rtnl_unlock();
545 }
546 
547 static void cancel_crda_timeout(void)
548 {
549 	cancel_delayed_work(&crda_timeout);
550 }
551 
552 static void cancel_crda_timeout_sync(void)
553 {
554 	cancel_delayed_work_sync(&crda_timeout);
555 }
556 
557 static void reset_crda_timeouts(void)
558 {
559 	reg_crda_timeouts = 0;
560 }
561 
562 /*
563  * This lets us keep regulatory code which is updated on a regulatory
564  * basis in userspace.
565  */
566 static int call_crda(const char *alpha2)
567 {
568 	char country[12];
569 	char *env[] = { country, NULL };
570 	int ret;
571 
572 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
573 		 alpha2[0], alpha2[1]);
574 
575 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
576 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
577 		return -EINVAL;
578 	}
579 
580 	if (!is_world_regdom((char *) alpha2))
581 		pr_debug("Calling CRDA for country: %c%c\n",
582 			 alpha2[0], alpha2[1]);
583 	else
584 		pr_debug("Calling CRDA to update world regulatory domain\n");
585 
586 	ret = kobject_uevent_env(&reg_fdev->dev.kobj, KOBJ_CHANGE, env);
587 	if (ret)
588 		return ret;
589 
590 	queue_delayed_work(system_power_efficient_wq,
591 			   &crda_timeout, msecs_to_jiffies(3142));
592 	return 0;
593 }
594 #else
595 static inline void cancel_crda_timeout(void) {}
596 static inline void cancel_crda_timeout_sync(void) {}
597 static inline void reset_crda_timeouts(void) {}
598 static inline int call_crda(const char *alpha2)
599 {
600 	return -ENODATA;
601 }
602 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
603 
604 /* code to directly load a firmware database through request_firmware */
605 static const struct fwdb_header *regdb;
606 
607 struct fwdb_country {
608 	u8 alpha2[2];
609 	__be16 coll_ptr;
610 	/* this struct cannot be extended */
611 } __packed __aligned(4);
612 
613 struct fwdb_collection {
614 	u8 len;
615 	u8 n_rules;
616 	u8 dfs_region;
617 	/* no optional data yet */
618 	/* aligned to 2, then followed by __be16 array of rule pointers */
619 } __packed __aligned(4);
620 
621 enum fwdb_flags {
622 	FWDB_FLAG_NO_OFDM	= BIT(0),
623 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
624 	FWDB_FLAG_DFS		= BIT(2),
625 	FWDB_FLAG_NO_IR		= BIT(3),
626 	FWDB_FLAG_AUTO_BW	= BIT(4),
627 };
628 
629 struct fwdb_wmm_ac {
630 	u8 ecw;
631 	u8 aifsn;
632 	__be16 cot;
633 } __packed;
634 
635 struct fwdb_wmm_rule {
636 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
637 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
638 } __packed;
639 
640 struct fwdb_rule {
641 	u8 len;
642 	u8 flags;
643 	__be16 max_eirp;
644 	__be32 start, end, max_bw;
645 	/* start of optional data */
646 	__be16 cac_timeout;
647 	__be16 wmm_ptr;
648 } __packed __aligned(4);
649 
650 #define FWDB_MAGIC 0x52474442
651 #define FWDB_VERSION 20
652 
653 struct fwdb_header {
654 	__be32 magic;
655 	__be32 version;
656 	struct fwdb_country country[];
657 } __packed __aligned(4);
658 
659 static int ecw2cw(int ecw)
660 {
661 	return (1 << ecw) - 1;
662 }
663 
664 static bool valid_wmm(struct fwdb_wmm_rule *rule)
665 {
666 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
667 	int i;
668 
669 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
670 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
671 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
672 		u8 aifsn = ac[i].aifsn;
673 
674 		if (cw_min >= cw_max)
675 			return false;
676 
677 		if (aifsn < 1)
678 			return false;
679 	}
680 
681 	return true;
682 }
683 
684 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
685 {
686 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
687 
688 	if ((u8 *)rule + sizeof(rule->len) > data + size)
689 		return false;
690 
691 	/* mandatory fields */
692 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
693 		return false;
694 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
695 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
696 		struct fwdb_wmm_rule *wmm;
697 
698 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
699 			return false;
700 
701 		wmm = (void *)(data + wmm_ptr);
702 
703 		if (!valid_wmm(wmm))
704 			return false;
705 	}
706 	return true;
707 }
708 
709 static bool valid_country(const u8 *data, unsigned int size,
710 			  const struct fwdb_country *country)
711 {
712 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
713 	struct fwdb_collection *coll = (void *)(data + ptr);
714 	__be16 *rules_ptr;
715 	unsigned int i;
716 
717 	/* make sure we can read len/n_rules */
718 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
719 		return false;
720 
721 	/* make sure base struct and all rules fit */
722 	if ((u8 *)coll + ALIGN(coll->len, 2) +
723 	    (coll->n_rules * 2) > data + size)
724 		return false;
725 
726 	/* mandatory fields must exist */
727 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
728 		return false;
729 
730 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
731 
732 	for (i = 0; i < coll->n_rules; i++) {
733 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
734 
735 		if (!valid_rule(data, size, rule_ptr))
736 			return false;
737 	}
738 
739 	return true;
740 }
741 
742 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
743 #include <keys/asymmetric-type.h>
744 
745 static struct key *builtin_regdb_keys;
746 
747 static int __init load_builtin_regdb_keys(void)
748 {
749 	builtin_regdb_keys =
750 		keyring_alloc(".builtin_regdb_keys",
751 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
752 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
753 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
754 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
755 	if (IS_ERR(builtin_regdb_keys))
756 		return PTR_ERR(builtin_regdb_keys);
757 
758 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
759 
760 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
761 	x509_load_certificate_list(shipped_regdb_certs,
762 				   shipped_regdb_certs_len,
763 				   builtin_regdb_keys);
764 #endif
765 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
766 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
767 		x509_load_certificate_list(extra_regdb_certs,
768 					   extra_regdb_certs_len,
769 					   builtin_regdb_keys);
770 #endif
771 
772 	return 0;
773 }
774 
775 MODULE_FIRMWARE("regulatory.db.p7s");
776 
777 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
778 {
779 	const struct firmware *sig;
780 	bool result;
781 
782 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_fdev->dev))
783 		return false;
784 
785 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
786 					builtin_regdb_keys,
787 					VERIFYING_UNSPECIFIED_SIGNATURE,
788 					NULL, NULL) == 0;
789 
790 	release_firmware(sig);
791 
792 	return result;
793 }
794 
795 static void free_regdb_keyring(void)
796 {
797 	key_put(builtin_regdb_keys);
798 }
799 #else
800 static int load_builtin_regdb_keys(void)
801 {
802 	return 0;
803 }
804 
805 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
806 {
807 	return true;
808 }
809 
810 static void free_regdb_keyring(void)
811 {
812 }
813 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
814 
815 static bool valid_regdb(const u8 *data, unsigned int size)
816 {
817 	const struct fwdb_header *hdr = (void *)data;
818 	const struct fwdb_country *country;
819 
820 	if (size < sizeof(*hdr))
821 		return false;
822 
823 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
824 		return false;
825 
826 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
827 		return false;
828 
829 	if (!regdb_has_valid_signature(data, size))
830 		return false;
831 
832 	country = &hdr->country[0];
833 	while ((u8 *)(country + 1) <= data + size) {
834 		if (!country->coll_ptr)
835 			break;
836 		if (!valid_country(data, size, country))
837 			return false;
838 		country++;
839 	}
840 
841 	return true;
842 }
843 
844 static void set_wmm_rule(const struct fwdb_header *db,
845 			 const struct fwdb_country *country,
846 			 const struct fwdb_rule *rule,
847 			 struct ieee80211_reg_rule *rrule)
848 {
849 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
850 	struct fwdb_wmm_rule *wmm;
851 	unsigned int i, wmm_ptr;
852 
853 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
854 	wmm = (void *)((u8 *)db + wmm_ptr);
855 
856 	if (!valid_wmm(wmm)) {
857 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
858 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
859 		       country->alpha2[0], country->alpha2[1]);
860 		return;
861 	}
862 
863 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
864 		wmm_rule->client[i].cw_min =
865 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
866 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
867 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
868 		wmm_rule->client[i].cot =
869 			1000 * be16_to_cpu(wmm->client[i].cot);
870 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
871 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
872 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
873 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
874 	}
875 
876 	rrule->has_wmm = true;
877 }
878 
879 static int __regdb_query_wmm(const struct fwdb_header *db,
880 			     const struct fwdb_country *country, int freq,
881 			     struct ieee80211_reg_rule *rrule)
882 {
883 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
884 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
885 	int i;
886 
887 	for (i = 0; i < coll->n_rules; i++) {
888 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
889 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
890 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
891 
892 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
893 			continue;
894 
895 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
896 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
897 			set_wmm_rule(db, country, rule, rrule);
898 			return 0;
899 		}
900 	}
901 
902 	return -ENODATA;
903 }
904 
905 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
906 {
907 	const struct fwdb_header *hdr = regdb;
908 	const struct fwdb_country *country;
909 
910 	if (!regdb)
911 		return -ENODATA;
912 
913 	if (IS_ERR(regdb))
914 		return PTR_ERR(regdb);
915 
916 	country = &hdr->country[0];
917 	while (country->coll_ptr) {
918 		if (alpha2_equal(alpha2, country->alpha2))
919 			return __regdb_query_wmm(regdb, country, freq, rule);
920 
921 		country++;
922 	}
923 
924 	return -ENODATA;
925 }
926 EXPORT_SYMBOL(reg_query_regdb_wmm);
927 
928 static int regdb_query_country(const struct fwdb_header *db,
929 			       const struct fwdb_country *country)
930 {
931 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
932 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
933 	struct ieee80211_regdomain *regdom;
934 	unsigned int i;
935 
936 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
937 			 GFP_KERNEL);
938 	if (!regdom)
939 		return -ENOMEM;
940 
941 	regdom->n_reg_rules = coll->n_rules;
942 	regdom->alpha2[0] = country->alpha2[0];
943 	regdom->alpha2[1] = country->alpha2[1];
944 	regdom->dfs_region = coll->dfs_region;
945 
946 	for (i = 0; i < regdom->n_reg_rules; i++) {
947 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
948 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
949 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
950 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
951 
952 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
953 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
954 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
955 
956 		rrule->power_rule.max_antenna_gain = 0;
957 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
958 
959 		rrule->flags = 0;
960 		if (rule->flags & FWDB_FLAG_NO_OFDM)
961 			rrule->flags |= NL80211_RRF_NO_OFDM;
962 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
963 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
964 		if (rule->flags & FWDB_FLAG_DFS)
965 			rrule->flags |= NL80211_RRF_DFS;
966 		if (rule->flags & FWDB_FLAG_NO_IR)
967 			rrule->flags |= NL80211_RRF_NO_IR;
968 		if (rule->flags & FWDB_FLAG_AUTO_BW)
969 			rrule->flags |= NL80211_RRF_AUTO_BW;
970 
971 		rrule->dfs_cac_ms = 0;
972 
973 		/* handle optional data */
974 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
975 			rrule->dfs_cac_ms =
976 				1000 * be16_to_cpu(rule->cac_timeout);
977 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
978 			set_wmm_rule(db, country, rule, rrule);
979 	}
980 
981 	return reg_schedule_apply(regdom);
982 }
983 
984 static int query_regdb(const char *alpha2)
985 {
986 	const struct fwdb_header *hdr = regdb;
987 	const struct fwdb_country *country;
988 
989 	ASSERT_RTNL();
990 
991 	if (IS_ERR(regdb))
992 		return PTR_ERR(regdb);
993 
994 	country = &hdr->country[0];
995 	while (country->coll_ptr) {
996 		if (alpha2_equal(alpha2, country->alpha2))
997 			return regdb_query_country(regdb, country);
998 		country++;
999 	}
1000 
1001 	return -ENODATA;
1002 }
1003 
1004 static void regdb_fw_cb(const struct firmware *fw, void *context)
1005 {
1006 	int set_error = 0;
1007 	bool restore = true;
1008 	void *db;
1009 
1010 	if (!fw) {
1011 		pr_info("failed to load regulatory.db\n");
1012 		set_error = -ENODATA;
1013 	} else if (!valid_regdb(fw->data, fw->size)) {
1014 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1015 		set_error = -EINVAL;
1016 	}
1017 
1018 	rtnl_lock();
1019 	if (regdb && !IS_ERR(regdb)) {
1020 		/* negative case - a bug
1021 		 * positive case - can happen due to race in case of multiple cb's in
1022 		 * queue, due to usage of asynchronous callback
1023 		 *
1024 		 * Either case, just restore and free new db.
1025 		 */
1026 	} else if (set_error) {
1027 		regdb = ERR_PTR(set_error);
1028 	} else if (fw) {
1029 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1030 		if (db) {
1031 			regdb = db;
1032 			restore = context && query_regdb(context);
1033 		} else {
1034 			restore = true;
1035 		}
1036 	}
1037 
1038 	if (restore)
1039 		restore_regulatory_settings(true, false);
1040 
1041 	rtnl_unlock();
1042 
1043 	kfree(context);
1044 
1045 	release_firmware(fw);
1046 }
1047 
1048 MODULE_FIRMWARE("regulatory.db");
1049 
1050 static int query_regdb_file(const char *alpha2)
1051 {
1052 	int err;
1053 
1054 	ASSERT_RTNL();
1055 
1056 	if (regdb)
1057 		return query_regdb(alpha2);
1058 
1059 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1060 	if (!alpha2)
1061 		return -ENOMEM;
1062 
1063 	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1064 				      &reg_fdev->dev, GFP_KERNEL,
1065 				      (void *)alpha2, regdb_fw_cb);
1066 	if (err)
1067 		kfree(alpha2);
1068 
1069 	return err;
1070 }
1071 
1072 int reg_reload_regdb(void)
1073 {
1074 	const struct firmware *fw;
1075 	void *db;
1076 	int err;
1077 	const struct ieee80211_regdomain *current_regdomain;
1078 	struct regulatory_request *request;
1079 
1080 	err = request_firmware(&fw, "regulatory.db", &reg_fdev->dev);
1081 	if (err)
1082 		return err;
1083 
1084 	if (!valid_regdb(fw->data, fw->size)) {
1085 		err = -ENODATA;
1086 		goto out;
1087 	}
1088 
1089 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1090 	if (!db) {
1091 		err = -ENOMEM;
1092 		goto out;
1093 	}
1094 
1095 	rtnl_lock();
1096 	if (!IS_ERR_OR_NULL(regdb))
1097 		kfree(regdb);
1098 	regdb = db;
1099 
1100 	/* reset regulatory domain */
1101 	current_regdomain = get_cfg80211_regdom();
1102 
1103 	request = kzalloc(sizeof(*request), GFP_KERNEL);
1104 	if (!request) {
1105 		err = -ENOMEM;
1106 		goto out_unlock;
1107 	}
1108 
1109 	request->wiphy_idx = WIPHY_IDX_INVALID;
1110 	request->alpha2[0] = current_regdomain->alpha2[0];
1111 	request->alpha2[1] = current_regdomain->alpha2[1];
1112 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1113 	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1114 
1115 	reg_process_hint(request);
1116 
1117 out_unlock:
1118 	rtnl_unlock();
1119  out:
1120 	release_firmware(fw);
1121 	return err;
1122 }
1123 
1124 static bool reg_query_database(struct regulatory_request *request)
1125 {
1126 	if (query_regdb_file(request->alpha2) == 0)
1127 		return true;
1128 
1129 	if (call_crda(request->alpha2) == 0)
1130 		return true;
1131 
1132 	return false;
1133 }
1134 
1135 bool reg_is_valid_request(const char *alpha2)
1136 {
1137 	struct regulatory_request *lr = get_last_request();
1138 
1139 	if (!lr || lr->processed)
1140 		return false;
1141 
1142 	return alpha2_equal(lr->alpha2, alpha2);
1143 }
1144 
1145 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1146 {
1147 	struct regulatory_request *lr = get_last_request();
1148 
1149 	/*
1150 	 * Follow the driver's regulatory domain, if present, unless a country
1151 	 * IE has been processed or a user wants to help compliance further
1152 	 */
1153 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1154 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1155 	    wiphy->regd)
1156 		return get_wiphy_regdom(wiphy);
1157 
1158 	return get_cfg80211_regdom();
1159 }
1160 
1161 static unsigned int
1162 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1163 				 const struct ieee80211_reg_rule *rule)
1164 {
1165 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1166 	const struct ieee80211_freq_range *freq_range_tmp;
1167 	const struct ieee80211_reg_rule *tmp;
1168 	u32 start_freq, end_freq, idx, no;
1169 
1170 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1171 		if (rule == &rd->reg_rules[idx])
1172 			break;
1173 
1174 	if (idx == rd->n_reg_rules)
1175 		return 0;
1176 
1177 	/* get start_freq */
1178 	no = idx;
1179 
1180 	while (no) {
1181 		tmp = &rd->reg_rules[--no];
1182 		freq_range_tmp = &tmp->freq_range;
1183 
1184 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1185 			break;
1186 
1187 		freq_range = freq_range_tmp;
1188 	}
1189 
1190 	start_freq = freq_range->start_freq_khz;
1191 
1192 	/* get end_freq */
1193 	freq_range = &rule->freq_range;
1194 	no = idx;
1195 
1196 	while (no < rd->n_reg_rules - 1) {
1197 		tmp = &rd->reg_rules[++no];
1198 		freq_range_tmp = &tmp->freq_range;
1199 
1200 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1201 			break;
1202 
1203 		freq_range = freq_range_tmp;
1204 	}
1205 
1206 	end_freq = freq_range->end_freq_khz;
1207 
1208 	return end_freq - start_freq;
1209 }
1210 
1211 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1212 				   const struct ieee80211_reg_rule *rule)
1213 {
1214 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1215 
1216 	if (rule->flags & NL80211_RRF_NO_320MHZ)
1217 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1218 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1219 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1220 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1221 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1222 
1223 	/*
1224 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1225 	 * are not allowed.
1226 	 */
1227 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1228 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1229 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1230 
1231 	return bw;
1232 }
1233 
1234 /* Sanity check on a regulatory rule */
1235 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1236 {
1237 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1238 	u32 freq_diff;
1239 
1240 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1241 		return false;
1242 
1243 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1244 		return false;
1245 
1246 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1247 
1248 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1249 	    freq_range->max_bandwidth_khz > freq_diff)
1250 		return false;
1251 
1252 	return true;
1253 }
1254 
1255 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1256 {
1257 	const struct ieee80211_reg_rule *reg_rule = NULL;
1258 	unsigned int i;
1259 
1260 	if (!rd->n_reg_rules)
1261 		return false;
1262 
1263 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1264 		return false;
1265 
1266 	for (i = 0; i < rd->n_reg_rules; i++) {
1267 		reg_rule = &rd->reg_rules[i];
1268 		if (!is_valid_reg_rule(reg_rule))
1269 			return false;
1270 	}
1271 
1272 	return true;
1273 }
1274 
1275 /**
1276  * freq_in_rule_band - tells us if a frequency is in a frequency band
1277  * @freq_range: frequency rule we want to query
1278  * @freq_khz: frequency we are inquiring about
1279  *
1280  * This lets us know if a specific frequency rule is or is not relevant to
1281  * a specific frequency's band. Bands are device specific and artificial
1282  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1283  * however it is safe for now to assume that a frequency rule should not be
1284  * part of a frequency's band if the start freq or end freq are off by more
1285  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1286  * 60 GHz band.
1287  * This resolution can be lowered and should be considered as we add
1288  * regulatory rule support for other "bands".
1289  *
1290  * Returns: whether or not the frequency is in the range
1291  */
1292 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1293 			      u32 freq_khz)
1294 {
1295 	/*
1296 	 * From 802.11ad: directional multi-gigabit (DMG):
1297 	 * Pertaining to operation in a frequency band containing a channel
1298 	 * with the Channel starting frequency above 45 GHz.
1299 	 */
1300 	u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ;
1301 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1302 		return true;
1303 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1304 		return true;
1305 	return false;
1306 }
1307 
1308 /*
1309  * Later on we can perhaps use the more restrictive DFS
1310  * region but we don't have information for that yet so
1311  * for now simply disallow conflicts.
1312  */
1313 static enum nl80211_dfs_regions
1314 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1315 			 const enum nl80211_dfs_regions dfs_region2)
1316 {
1317 	if (dfs_region1 != dfs_region2)
1318 		return NL80211_DFS_UNSET;
1319 	return dfs_region1;
1320 }
1321 
1322 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1323 				    const struct ieee80211_wmm_ac *wmm_ac2,
1324 				    struct ieee80211_wmm_ac *intersect)
1325 {
1326 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1327 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1328 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1329 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1330 }
1331 
1332 /*
1333  * Helper for regdom_intersect(), this does the real
1334  * mathematical intersection fun
1335  */
1336 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1337 			       const struct ieee80211_regdomain *rd2,
1338 			       const struct ieee80211_reg_rule *rule1,
1339 			       const struct ieee80211_reg_rule *rule2,
1340 			       struct ieee80211_reg_rule *intersected_rule)
1341 {
1342 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1343 	struct ieee80211_freq_range *freq_range;
1344 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1345 	struct ieee80211_power_rule *power_rule;
1346 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1347 	struct ieee80211_wmm_rule *wmm_rule;
1348 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1349 
1350 	freq_range1 = &rule1->freq_range;
1351 	freq_range2 = &rule2->freq_range;
1352 	freq_range = &intersected_rule->freq_range;
1353 
1354 	power_rule1 = &rule1->power_rule;
1355 	power_rule2 = &rule2->power_rule;
1356 	power_rule = &intersected_rule->power_rule;
1357 
1358 	wmm_rule1 = &rule1->wmm_rule;
1359 	wmm_rule2 = &rule2->wmm_rule;
1360 	wmm_rule = &intersected_rule->wmm_rule;
1361 
1362 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1363 					 freq_range2->start_freq_khz);
1364 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1365 				       freq_range2->end_freq_khz);
1366 
1367 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1368 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1369 
1370 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1371 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1372 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1373 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1374 
1375 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1376 
1377 	intersected_rule->flags = rule1->flags | rule2->flags;
1378 
1379 	/*
1380 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1381 	 * set AUTO_BW in intersected rule also. Next we will
1382 	 * calculate BW correctly in handle_channel function.
1383 	 * In other case remove AUTO_BW flag while we calculate
1384 	 * maximum bandwidth correctly and auto calculation is
1385 	 * not required.
1386 	 */
1387 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1388 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1389 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1390 	else
1391 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1392 
1393 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1394 	if (freq_range->max_bandwidth_khz > freq_diff)
1395 		freq_range->max_bandwidth_khz = freq_diff;
1396 
1397 	power_rule->max_eirp = min(power_rule1->max_eirp,
1398 		power_rule2->max_eirp);
1399 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1400 		power_rule2->max_antenna_gain);
1401 
1402 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1403 					   rule2->dfs_cac_ms);
1404 
1405 	if (rule1->has_wmm && rule2->has_wmm) {
1406 		u8 ac;
1407 
1408 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1409 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1410 						&wmm_rule2->client[ac],
1411 						&wmm_rule->client[ac]);
1412 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1413 						&wmm_rule2->ap[ac],
1414 						&wmm_rule->ap[ac]);
1415 		}
1416 
1417 		intersected_rule->has_wmm = true;
1418 	} else if (rule1->has_wmm) {
1419 		*wmm_rule = *wmm_rule1;
1420 		intersected_rule->has_wmm = true;
1421 	} else if (rule2->has_wmm) {
1422 		*wmm_rule = *wmm_rule2;
1423 		intersected_rule->has_wmm = true;
1424 	} else {
1425 		intersected_rule->has_wmm = false;
1426 	}
1427 
1428 	if (!is_valid_reg_rule(intersected_rule))
1429 		return -EINVAL;
1430 
1431 	return 0;
1432 }
1433 
1434 /* check whether old rule contains new rule */
1435 static bool rule_contains(struct ieee80211_reg_rule *r1,
1436 			  struct ieee80211_reg_rule *r2)
1437 {
1438 	/* for simplicity, currently consider only same flags */
1439 	if (r1->flags != r2->flags)
1440 		return false;
1441 
1442 	/* verify r1 is more restrictive */
1443 	if ((r1->power_rule.max_antenna_gain >
1444 	     r2->power_rule.max_antenna_gain) ||
1445 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1446 		return false;
1447 
1448 	/* make sure r2's range is contained within r1 */
1449 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1450 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1451 		return false;
1452 
1453 	/* and finally verify that r1.max_bw >= r2.max_bw */
1454 	if (r1->freq_range.max_bandwidth_khz <
1455 	    r2->freq_range.max_bandwidth_khz)
1456 		return false;
1457 
1458 	return true;
1459 }
1460 
1461 /* add or extend current rules. do nothing if rule is already contained */
1462 static void add_rule(struct ieee80211_reg_rule *rule,
1463 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1464 {
1465 	struct ieee80211_reg_rule *tmp_rule;
1466 	int i;
1467 
1468 	for (i = 0; i < *n_rules; i++) {
1469 		tmp_rule = &reg_rules[i];
1470 		/* rule is already contained - do nothing */
1471 		if (rule_contains(tmp_rule, rule))
1472 			return;
1473 
1474 		/* extend rule if possible */
1475 		if (rule_contains(rule, tmp_rule)) {
1476 			memcpy(tmp_rule, rule, sizeof(*rule));
1477 			return;
1478 		}
1479 	}
1480 
1481 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1482 	(*n_rules)++;
1483 }
1484 
1485 /**
1486  * regdom_intersect - do the intersection between two regulatory domains
1487  * @rd1: first regulatory domain
1488  * @rd2: second regulatory domain
1489  *
1490  * Use this function to get the intersection between two regulatory domains.
1491  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1492  * as no one single alpha2 can represent this regulatory domain.
1493  *
1494  * Returns a pointer to the regulatory domain structure which will hold the
1495  * resulting intersection of rules between rd1 and rd2. We will
1496  * kzalloc() this structure for you.
1497  *
1498  * Returns: the intersected regdomain
1499  */
1500 static struct ieee80211_regdomain *
1501 regdom_intersect(const struct ieee80211_regdomain *rd1,
1502 		 const struct ieee80211_regdomain *rd2)
1503 {
1504 	int r;
1505 	unsigned int x, y;
1506 	unsigned int num_rules = 0;
1507 	const struct ieee80211_reg_rule *rule1, *rule2;
1508 	struct ieee80211_reg_rule intersected_rule;
1509 	struct ieee80211_regdomain *rd;
1510 
1511 	if (!rd1 || !rd2)
1512 		return NULL;
1513 
1514 	/*
1515 	 * First we get a count of the rules we'll need, then we actually
1516 	 * build them. This is to so we can malloc() and free() a
1517 	 * regdomain once. The reason we use reg_rules_intersect() here
1518 	 * is it will return -EINVAL if the rule computed makes no sense.
1519 	 * All rules that do check out OK are valid.
1520 	 */
1521 
1522 	for (x = 0; x < rd1->n_reg_rules; x++) {
1523 		rule1 = &rd1->reg_rules[x];
1524 		for (y = 0; y < rd2->n_reg_rules; y++) {
1525 			rule2 = &rd2->reg_rules[y];
1526 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1527 						 &intersected_rule))
1528 				num_rules++;
1529 		}
1530 	}
1531 
1532 	if (!num_rules)
1533 		return NULL;
1534 
1535 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1536 	if (!rd)
1537 		return NULL;
1538 
1539 	for (x = 0; x < rd1->n_reg_rules; x++) {
1540 		rule1 = &rd1->reg_rules[x];
1541 		for (y = 0; y < rd2->n_reg_rules; y++) {
1542 			rule2 = &rd2->reg_rules[y];
1543 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1544 						&intersected_rule);
1545 			/*
1546 			 * No need to memset here the intersected rule here as
1547 			 * we're not using the stack anymore
1548 			 */
1549 			if (r)
1550 				continue;
1551 
1552 			add_rule(&intersected_rule, rd->reg_rules,
1553 				 &rd->n_reg_rules);
1554 		}
1555 	}
1556 
1557 	rd->alpha2[0] = '9';
1558 	rd->alpha2[1] = '8';
1559 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1560 						  rd2->dfs_region);
1561 
1562 	return rd;
1563 }
1564 
1565 /*
1566  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1567  * want to just have the channel structure use these
1568  */
1569 static u32 map_regdom_flags(u32 rd_flags)
1570 {
1571 	u32 channel_flags = 0;
1572 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1573 		channel_flags |= IEEE80211_CHAN_NO_IR;
1574 	if (rd_flags & NL80211_RRF_DFS)
1575 		channel_flags |= IEEE80211_CHAN_RADAR;
1576 	if (rd_flags & NL80211_RRF_NO_OFDM)
1577 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1578 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1579 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1580 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1581 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1582 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1583 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1584 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1585 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1586 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1587 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1588 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1589 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1590 	if (rd_flags & NL80211_RRF_NO_HE)
1591 		channel_flags |= IEEE80211_CHAN_NO_HE;
1592 	if (rd_flags & NL80211_RRF_NO_320MHZ)
1593 		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1594 	if (rd_flags & NL80211_RRF_NO_EHT)
1595 		channel_flags |= IEEE80211_CHAN_NO_EHT;
1596 	if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1597 		channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1598 	if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT)
1599 		channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
1600 	if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT)
1601 		channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
1602 	if (rd_flags & NL80211_RRF_PSD)
1603 		channel_flags |= IEEE80211_CHAN_PSD;
1604 	if (rd_flags & NL80211_RRF_ALLOW_6GHZ_VLP_AP)
1605 		channel_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
1606 	if (rd_flags & NL80211_RRF_ALLOW_20MHZ_ACTIVITY)
1607 		channel_flags |= IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY;
1608 	if (rd_flags & NL80211_RRF_NO_UHR)
1609 		channel_flags |= IEEE80211_CHAN_NO_UHR;
1610 	return channel_flags;
1611 }
1612 
1613 static const struct ieee80211_reg_rule *
1614 freq_reg_info_regd(u32 center_freq,
1615 		   const struct ieee80211_regdomain *regd, u32 bw)
1616 {
1617 	int i;
1618 	bool band_rule_found = false;
1619 	bool bw_fits = false;
1620 
1621 	if (!regd)
1622 		return ERR_PTR(-EINVAL);
1623 
1624 	for (i = 0; i < regd->n_reg_rules; i++) {
1625 		const struct ieee80211_reg_rule *rr;
1626 		const struct ieee80211_freq_range *fr = NULL;
1627 
1628 		rr = &regd->reg_rules[i];
1629 		fr = &rr->freq_range;
1630 
1631 		/*
1632 		 * We only need to know if one frequency rule was
1633 		 * in center_freq's band, that's enough, so let's
1634 		 * not overwrite it once found
1635 		 */
1636 		if (!band_rule_found)
1637 			band_rule_found = freq_in_rule_band(fr, center_freq);
1638 
1639 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1640 
1641 		if (band_rule_found && bw_fits)
1642 			return rr;
1643 	}
1644 
1645 	if (!band_rule_found)
1646 		return ERR_PTR(-ERANGE);
1647 
1648 	return ERR_PTR(-EINVAL);
1649 }
1650 
1651 static const struct ieee80211_reg_rule *
1652 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1653 {
1654 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1655 	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1656 	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1657 	int i = ARRAY_SIZE(bws) - 1;
1658 	u32 bw;
1659 
1660 	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1661 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1662 		if (!IS_ERR(reg_rule))
1663 			return reg_rule;
1664 	}
1665 
1666 	return reg_rule;
1667 }
1668 
1669 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1670 					       u32 center_freq)
1671 {
1672 	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1673 
1674 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1675 }
1676 EXPORT_SYMBOL(freq_reg_info);
1677 
1678 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1679 {
1680 	switch (initiator) {
1681 	case NL80211_REGDOM_SET_BY_CORE:
1682 		return "core";
1683 	case NL80211_REGDOM_SET_BY_USER:
1684 		return "user";
1685 	case NL80211_REGDOM_SET_BY_DRIVER:
1686 		return "driver";
1687 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1688 		return "country element";
1689 	default:
1690 		WARN_ON(1);
1691 		return "bug";
1692 	}
1693 }
1694 EXPORT_SYMBOL(reg_initiator_name);
1695 
1696 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1697 					  const struct ieee80211_reg_rule *reg_rule,
1698 					  const struct ieee80211_channel *chan)
1699 {
1700 	const struct ieee80211_freq_range *freq_range = NULL;
1701 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1702 	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1703 
1704 	freq_range = &reg_rule->freq_range;
1705 
1706 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1707 	center_freq_khz = ieee80211_channel_to_khz(chan);
1708 	/* Check if auto calculation requested */
1709 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1710 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1711 
1712 	if (is_s1g) {
1713 		if (max_bandwidth_khz < MHZ_TO_KHZ(16))
1714 			bw_flags |= IEEE80211_CHAN_NO_16MHZ;
1715 		if (max_bandwidth_khz < MHZ_TO_KHZ(8))
1716 			bw_flags |= IEEE80211_CHAN_NO_8MHZ;
1717 		if (max_bandwidth_khz < MHZ_TO_KHZ(4))
1718 			bw_flags |= IEEE80211_CHAN_NO_4MHZ;
1719 		return bw_flags;
1720 	}
1721 
1722 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1723 	if (!cfg80211_does_bw_fit_range(freq_range,
1724 					center_freq_khz,
1725 					MHZ_TO_KHZ(10)))
1726 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1727 	if (!cfg80211_does_bw_fit_range(freq_range,
1728 					center_freq_khz,
1729 					MHZ_TO_KHZ(20)))
1730 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1731 
1732 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1733 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1734 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1735 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1736 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1737 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1738 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1739 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1740 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1741 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1742 	if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1743 		bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1744 
1745 	return bw_flags;
1746 }
1747 
1748 static void handle_channel_single_rule(struct wiphy *wiphy,
1749 				       enum nl80211_reg_initiator initiator,
1750 				       struct ieee80211_channel *chan,
1751 				       u32 flags,
1752 				       struct regulatory_request *lr,
1753 				       struct wiphy *request_wiphy,
1754 				       const struct ieee80211_reg_rule *reg_rule)
1755 {
1756 	u32 bw_flags = 0;
1757 	const struct ieee80211_power_rule *power_rule = NULL;
1758 	const struct ieee80211_regdomain *regd;
1759 
1760 	regd = reg_get_regdomain(wiphy);
1761 
1762 	power_rule = &reg_rule->power_rule;
1763 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1764 
1765 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1766 	    request_wiphy && request_wiphy == wiphy &&
1767 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1768 		/*
1769 		 * This guarantees the driver's requested regulatory domain
1770 		 * will always be used as a base for further regulatory
1771 		 * settings
1772 		 */
1773 		chan->flags = chan->orig_flags =
1774 			map_regdom_flags(reg_rule->flags) | bw_flags;
1775 		chan->max_antenna_gain = chan->orig_mag =
1776 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1777 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1778 			(int) MBM_TO_DBM(power_rule->max_eirp);
1779 
1780 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1781 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1782 			if (reg_rule->dfs_cac_ms)
1783 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1784 		}
1785 
1786 		if (chan->flags & IEEE80211_CHAN_PSD)
1787 			chan->psd = reg_rule->psd;
1788 
1789 		return;
1790 	}
1791 
1792 	chan->dfs_state = NL80211_DFS_USABLE;
1793 	chan->dfs_state_entered = jiffies;
1794 
1795 	chan->beacon_found = false;
1796 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1797 	chan->max_antenna_gain =
1798 		min_t(int, chan->orig_mag,
1799 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1800 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1801 
1802 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1803 		if (reg_rule->dfs_cac_ms)
1804 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1805 		else
1806 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1807 	}
1808 
1809 	if (chan->flags & IEEE80211_CHAN_PSD)
1810 		chan->psd = reg_rule->psd;
1811 
1812 	if (chan->orig_mpwr) {
1813 		/*
1814 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1815 		 * will always follow the passed country IE power settings.
1816 		 */
1817 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1818 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1819 			chan->max_power = chan->max_reg_power;
1820 		else
1821 			chan->max_power = min(chan->orig_mpwr,
1822 					      chan->max_reg_power);
1823 	} else
1824 		chan->max_power = chan->max_reg_power;
1825 }
1826 
1827 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1828 					  enum nl80211_reg_initiator initiator,
1829 					  struct ieee80211_channel *chan,
1830 					  u32 flags,
1831 					  struct regulatory_request *lr,
1832 					  struct wiphy *request_wiphy,
1833 					  const struct ieee80211_reg_rule *rrule1,
1834 					  const struct ieee80211_reg_rule *rrule2,
1835 					  struct ieee80211_freq_range *comb_range)
1836 {
1837 	u32 bw_flags1 = 0;
1838 	u32 bw_flags2 = 0;
1839 	const struct ieee80211_power_rule *power_rule1 = NULL;
1840 	const struct ieee80211_power_rule *power_rule2 = NULL;
1841 	const struct ieee80211_regdomain *regd;
1842 
1843 	regd = reg_get_regdomain(wiphy);
1844 
1845 	power_rule1 = &rrule1->power_rule;
1846 	power_rule2 = &rrule2->power_rule;
1847 	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1848 	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1849 
1850 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1851 	    request_wiphy && request_wiphy == wiphy &&
1852 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1853 		/* This guarantees the driver's requested regulatory domain
1854 		 * will always be used as a base for further regulatory
1855 		 * settings
1856 		 */
1857 		chan->flags =
1858 			map_regdom_flags(rrule1->flags) |
1859 			map_regdom_flags(rrule2->flags) |
1860 			bw_flags1 |
1861 			bw_flags2;
1862 		chan->orig_flags = chan->flags;
1863 		chan->max_antenna_gain =
1864 			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1865 			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1866 		chan->orig_mag = chan->max_antenna_gain;
1867 		chan->max_reg_power =
1868 			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1869 			      MBM_TO_DBM(power_rule2->max_eirp));
1870 		chan->max_power = chan->max_reg_power;
1871 		chan->orig_mpwr = chan->max_reg_power;
1872 
1873 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1874 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1875 			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1876 				chan->dfs_cac_ms = max_t(unsigned int,
1877 							 rrule1->dfs_cac_ms,
1878 							 rrule2->dfs_cac_ms);
1879 		}
1880 
1881 		if ((rrule1->flags & NL80211_RRF_PSD) &&
1882 		    (rrule2->flags & NL80211_RRF_PSD))
1883 			chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1884 		else
1885 			chan->flags &= ~NL80211_RRF_PSD;
1886 
1887 		return;
1888 	}
1889 
1890 	chan->dfs_state = NL80211_DFS_USABLE;
1891 	chan->dfs_state_entered = jiffies;
1892 
1893 	chan->beacon_found = false;
1894 	chan->flags = flags | bw_flags1 | bw_flags2 |
1895 		      map_regdom_flags(rrule1->flags) |
1896 		      map_regdom_flags(rrule2->flags);
1897 
1898 	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1899 	 * (otherwise no adj. rule case), recheck therefore
1900 	 */
1901 	if (cfg80211_does_bw_fit_range(comb_range,
1902 				       ieee80211_channel_to_khz(chan),
1903 				       MHZ_TO_KHZ(10)))
1904 		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1905 	if (cfg80211_does_bw_fit_range(comb_range,
1906 				       ieee80211_channel_to_khz(chan),
1907 				       MHZ_TO_KHZ(20)))
1908 		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1909 
1910 	chan->max_antenna_gain =
1911 		min_t(int, chan->orig_mag,
1912 		      min_t(int,
1913 			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1914 			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1915 	chan->max_reg_power = min_t(int,
1916 				    MBM_TO_DBM(power_rule1->max_eirp),
1917 				    MBM_TO_DBM(power_rule2->max_eirp));
1918 
1919 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1920 		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1921 			chan->dfs_cac_ms = max_t(unsigned int,
1922 						 rrule1->dfs_cac_ms,
1923 						 rrule2->dfs_cac_ms);
1924 		else
1925 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1926 	}
1927 
1928 	if (chan->orig_mpwr) {
1929 		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1930 		 * will always follow the passed country IE power settings.
1931 		 */
1932 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1933 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1934 			chan->max_power = chan->max_reg_power;
1935 		else
1936 			chan->max_power = min(chan->orig_mpwr,
1937 					      chan->max_reg_power);
1938 	} else {
1939 		chan->max_power = chan->max_reg_power;
1940 	}
1941 }
1942 
1943 /* Note that right now we assume the desired channel bandwidth
1944  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1945  * per channel, the primary and the extension channel).
1946  */
1947 static void handle_channel(struct wiphy *wiphy,
1948 			   enum nl80211_reg_initiator initiator,
1949 			   struct ieee80211_channel *chan)
1950 {
1951 	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1952 	struct regulatory_request *lr = get_last_request();
1953 	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1954 	const struct ieee80211_reg_rule *rrule = NULL;
1955 	const struct ieee80211_reg_rule *rrule1 = NULL;
1956 	const struct ieee80211_reg_rule *rrule2 = NULL;
1957 
1958 	u32 flags = chan->orig_flags;
1959 
1960 	rrule = freq_reg_info(wiphy, orig_chan_freq);
1961 	if (IS_ERR(rrule)) {
1962 		/* check for adjacent match, therefore get rules for
1963 		 * chan - 20 MHz and chan + 20 MHz and test
1964 		 * if reg rules are adjacent
1965 		 */
1966 		rrule1 = freq_reg_info(wiphy,
1967 				       orig_chan_freq - MHZ_TO_KHZ(20));
1968 		rrule2 = freq_reg_info(wiphy,
1969 				       orig_chan_freq + MHZ_TO_KHZ(20));
1970 		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1971 			struct ieee80211_freq_range comb_range;
1972 
1973 			if (rrule1->freq_range.end_freq_khz !=
1974 			    rrule2->freq_range.start_freq_khz)
1975 				goto disable_chan;
1976 
1977 			comb_range.start_freq_khz =
1978 				rrule1->freq_range.start_freq_khz;
1979 			comb_range.end_freq_khz =
1980 				rrule2->freq_range.end_freq_khz;
1981 			comb_range.max_bandwidth_khz =
1982 				min_t(u32,
1983 				      rrule1->freq_range.max_bandwidth_khz,
1984 				      rrule2->freq_range.max_bandwidth_khz);
1985 
1986 			if (!cfg80211_does_bw_fit_range(&comb_range,
1987 							orig_chan_freq,
1988 							MHZ_TO_KHZ(20)))
1989 				goto disable_chan;
1990 
1991 			handle_channel_adjacent_rules(wiphy, initiator, chan,
1992 						      flags, lr, request_wiphy,
1993 						      rrule1, rrule2,
1994 						      &comb_range);
1995 			return;
1996 		}
1997 
1998 disable_chan:
1999 		/* We will disable all channels that do not match our
2000 		 * received regulatory rule unless the hint is coming
2001 		 * from a Country IE and the Country IE had no information
2002 		 * about a band. The IEEE 802.11 spec allows for an AP
2003 		 * to send only a subset of the regulatory rules allowed,
2004 		 * so an AP in the US that only supports 2.4 GHz may only send
2005 		 * a country IE with information for the 2.4 GHz band
2006 		 * while 5 GHz is still supported.
2007 		 */
2008 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2009 		    PTR_ERR(rrule) == -ERANGE)
2010 			return;
2011 
2012 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2013 		    request_wiphy && request_wiphy == wiphy &&
2014 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2015 			pr_debug("Disabling freq %d.%03d MHz for good\n",
2016 				 chan->center_freq, chan->freq_offset);
2017 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2018 			chan->flags = chan->orig_flags;
2019 		} else {
2020 			pr_debug("Disabling freq %d.%03d MHz\n",
2021 				 chan->center_freq, chan->freq_offset);
2022 			chan->flags |= IEEE80211_CHAN_DISABLED;
2023 		}
2024 		return;
2025 	}
2026 
2027 	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2028 				   request_wiphy, rrule);
2029 }
2030 
2031 static void handle_band(struct wiphy *wiphy,
2032 			enum nl80211_reg_initiator initiator,
2033 			struct ieee80211_supported_band *sband)
2034 {
2035 	unsigned int i;
2036 
2037 	if (!sband)
2038 		return;
2039 
2040 	for (i = 0; i < sband->n_channels; i++)
2041 		handle_channel(wiphy, initiator, &sband->channels[i]);
2042 }
2043 
2044 static bool reg_request_cell_base(struct regulatory_request *request)
2045 {
2046 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2047 		return false;
2048 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2049 }
2050 
2051 bool reg_last_request_cell_base(void)
2052 {
2053 	return reg_request_cell_base(get_last_request());
2054 }
2055 
2056 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2057 /* Core specific check */
2058 static enum reg_request_treatment
2059 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2060 {
2061 	struct regulatory_request *lr = get_last_request();
2062 
2063 	if (!reg_num_devs_support_basehint)
2064 		return REG_REQ_IGNORE;
2065 
2066 	if (reg_request_cell_base(lr) &&
2067 	    !regdom_changes(pending_request->alpha2))
2068 		return REG_REQ_ALREADY_SET;
2069 
2070 	return REG_REQ_OK;
2071 }
2072 
2073 /* Device specific check */
2074 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2075 {
2076 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2077 }
2078 #else
2079 static enum reg_request_treatment
2080 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2081 {
2082 	return REG_REQ_IGNORE;
2083 }
2084 
2085 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2086 {
2087 	return true;
2088 }
2089 #endif
2090 
2091 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2092 {
2093 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2094 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2095 		return true;
2096 	return false;
2097 }
2098 
2099 static bool ignore_reg_update(struct wiphy *wiphy,
2100 			      enum nl80211_reg_initiator initiator)
2101 {
2102 	struct regulatory_request *lr = get_last_request();
2103 
2104 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2105 		return true;
2106 
2107 	if (!lr) {
2108 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2109 			 reg_initiator_name(initiator));
2110 		return true;
2111 	}
2112 
2113 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2114 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2115 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2116 			 reg_initiator_name(initiator));
2117 		return true;
2118 	}
2119 
2120 	/*
2121 	 * wiphy->regd will be set once the device has its own
2122 	 * desired regulatory domain set
2123 	 */
2124 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2125 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2126 	    !is_world_regdom(lr->alpha2)) {
2127 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2128 			 reg_initiator_name(initiator));
2129 		return true;
2130 	}
2131 
2132 	if (reg_request_cell_base(lr))
2133 		return reg_dev_ignore_cell_hint(wiphy);
2134 
2135 	return false;
2136 }
2137 
2138 static bool reg_is_world_roaming(struct wiphy *wiphy)
2139 {
2140 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2141 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2142 	struct regulatory_request *lr = get_last_request();
2143 
2144 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2145 		return true;
2146 
2147 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2148 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2149 		return true;
2150 
2151 	return false;
2152 }
2153 
2154 static void reg_call_notifier(struct wiphy *wiphy,
2155 			      struct regulatory_request *request)
2156 {
2157 	if (wiphy->reg_notifier)
2158 		wiphy->reg_notifier(wiphy, request);
2159 }
2160 
2161 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2162 			      struct reg_beacon *reg_beacon)
2163 {
2164 	struct ieee80211_supported_band *sband;
2165 	struct ieee80211_channel *chan;
2166 	bool channel_changed = false;
2167 	struct ieee80211_channel chan_before;
2168 	struct regulatory_request *lr = get_last_request();
2169 
2170 	sband = wiphy->bands[reg_beacon->chan.band];
2171 	chan = &sband->channels[chan_idx];
2172 
2173 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2174 		return;
2175 
2176 	if (chan->beacon_found)
2177 		return;
2178 
2179 	chan->beacon_found = true;
2180 
2181 	if (!reg_is_world_roaming(wiphy))
2182 		return;
2183 
2184 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2185 		return;
2186 
2187 	chan_before = *chan;
2188 
2189 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2190 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2191 		channel_changed = true;
2192 	}
2193 
2194 	if (channel_changed) {
2195 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2196 		if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2197 			reg_call_notifier(wiphy, lr);
2198 	}
2199 }
2200 
2201 /*
2202  * Called when a scan on a wiphy finds a beacon on
2203  * new channel
2204  */
2205 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2206 				    struct reg_beacon *reg_beacon)
2207 {
2208 	unsigned int i;
2209 	struct ieee80211_supported_band *sband;
2210 
2211 	if (!wiphy->bands[reg_beacon->chan.band])
2212 		return;
2213 
2214 	sband = wiphy->bands[reg_beacon->chan.band];
2215 
2216 	for (i = 0; i < sband->n_channels; i++)
2217 		handle_reg_beacon(wiphy, i, reg_beacon);
2218 }
2219 
2220 /*
2221  * Called upon reg changes or a new wiphy is added
2222  */
2223 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2224 {
2225 	unsigned int i;
2226 	struct ieee80211_supported_band *sband;
2227 	struct reg_beacon *reg_beacon;
2228 
2229 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2230 		if (!wiphy->bands[reg_beacon->chan.band])
2231 			continue;
2232 		sband = wiphy->bands[reg_beacon->chan.band];
2233 		for (i = 0; i < sband->n_channels; i++)
2234 			handle_reg_beacon(wiphy, i, reg_beacon);
2235 	}
2236 }
2237 
2238 /* Reap the advantages of previously found beacons */
2239 static void reg_process_beacons(struct wiphy *wiphy)
2240 {
2241 	/*
2242 	 * Means we are just firing up cfg80211, so no beacons would
2243 	 * have been processed yet.
2244 	 */
2245 	if (!last_request)
2246 		return;
2247 	wiphy_update_beacon_reg(wiphy);
2248 }
2249 
2250 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2251 {
2252 	if (!chan)
2253 		return false;
2254 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2255 		return false;
2256 	/* This would happen when regulatory rules disallow HT40 completely */
2257 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2258 		return false;
2259 	return true;
2260 }
2261 
2262 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2263 					 struct ieee80211_channel *channel)
2264 {
2265 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2266 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2267 	const struct ieee80211_regdomain *regd;
2268 	unsigned int i;
2269 	u32 flags;
2270 
2271 	if (!is_ht40_allowed(channel)) {
2272 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2273 		return;
2274 	}
2275 
2276 	/*
2277 	 * We need to ensure the extension channels exist to
2278 	 * be able to use HT40- or HT40+, this finds them (or not)
2279 	 */
2280 	for (i = 0; i < sband->n_channels; i++) {
2281 		struct ieee80211_channel *c = &sband->channels[i];
2282 
2283 		if (c->center_freq == (channel->center_freq - 20))
2284 			channel_before = c;
2285 		if (c->center_freq == (channel->center_freq + 20))
2286 			channel_after = c;
2287 	}
2288 
2289 	flags = 0;
2290 	regd = get_wiphy_regdom(wiphy);
2291 	if (regd) {
2292 		const struct ieee80211_reg_rule *reg_rule =
2293 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2294 					   regd, MHZ_TO_KHZ(20));
2295 
2296 		if (!IS_ERR(reg_rule))
2297 			flags = reg_rule->flags;
2298 	}
2299 
2300 	/*
2301 	 * Please note that this assumes target bandwidth is 20 MHz,
2302 	 * if that ever changes we also need to change the below logic
2303 	 * to include that as well.
2304 	 */
2305 	if (!is_ht40_allowed(channel_before) ||
2306 	    flags & NL80211_RRF_NO_HT40MINUS)
2307 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2308 	else
2309 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2310 
2311 	if (!is_ht40_allowed(channel_after) ||
2312 	    flags & NL80211_RRF_NO_HT40PLUS)
2313 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2314 	else
2315 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2316 }
2317 
2318 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2319 				      struct ieee80211_supported_band *sband)
2320 {
2321 	unsigned int i;
2322 
2323 	if (!sband)
2324 		return;
2325 
2326 	for (i = 0; i < sband->n_channels; i++)
2327 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2328 }
2329 
2330 static void reg_process_ht_flags(struct wiphy *wiphy)
2331 {
2332 	enum nl80211_band band;
2333 
2334 	if (!wiphy)
2335 		return;
2336 
2337 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2338 		/*
2339 		 * Don't apply HT flags to channels within the S1G band.
2340 		 * Each bonded channel will instead be validated individually
2341 		 * within cfg80211_s1g_usable().
2342 		 */
2343 		if (band == NL80211_BAND_S1GHZ)
2344 			continue;
2345 
2346 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2347 	}
2348 }
2349 
2350 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2351 {
2352 	struct cfg80211_chan_def chandef = {};
2353 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2354 	enum nl80211_iftype iftype;
2355 	bool ret;
2356 	int link;
2357 
2358 	iftype = wdev->iftype;
2359 
2360 	/* make sure the interface is active */
2361 	if (!wdev->netdev || !netif_running(wdev->netdev))
2362 		return true;
2363 
2364 	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2365 		struct ieee80211_channel *chan;
2366 
2367 		if (!wdev->valid_links && link > 0)
2368 			break;
2369 		if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2370 			continue;
2371 		switch (iftype) {
2372 		case NL80211_IFTYPE_AP:
2373 		case NL80211_IFTYPE_P2P_GO:
2374 			if (!wdev->links[link].ap.beacon_interval)
2375 				continue;
2376 			chandef = wdev->links[link].ap.chandef;
2377 			break;
2378 		case NL80211_IFTYPE_MESH_POINT:
2379 			if (!wdev->u.mesh.beacon_interval)
2380 				continue;
2381 			chandef = wdev->u.mesh.chandef;
2382 			break;
2383 		case NL80211_IFTYPE_ADHOC:
2384 			if (!wdev->u.ibss.ssid_len)
2385 				continue;
2386 			chandef = wdev->u.ibss.chandef;
2387 			break;
2388 		case NL80211_IFTYPE_STATION:
2389 		case NL80211_IFTYPE_P2P_CLIENT:
2390 			/* Maybe we could consider disabling that link only? */
2391 			if (!wdev->links[link].client.current_bss)
2392 				continue;
2393 
2394 			chan = wdev->links[link].client.current_bss->pub.channel;
2395 			if (!chan)
2396 				continue;
2397 
2398 			if (!rdev->ops->get_channel ||
2399 			    rdev_get_channel(rdev, wdev, link, &chandef))
2400 				cfg80211_chandef_create(&chandef, chan,
2401 							NL80211_CHAN_NO_HT);
2402 			break;
2403 		case NL80211_IFTYPE_MONITOR:
2404 		case NL80211_IFTYPE_AP_VLAN:
2405 		case NL80211_IFTYPE_P2P_DEVICE:
2406 			/* no enforcement required */
2407 			break;
2408 		case NL80211_IFTYPE_OCB:
2409 			if (!wdev->u.ocb.chandef.chan)
2410 				continue;
2411 			chandef = wdev->u.ocb.chandef;
2412 			break;
2413 		case NL80211_IFTYPE_NAN:
2414 			/* we have no info, but NAN is also pretty universal */
2415 			continue;
2416 		default:
2417 			/* others not implemented for now */
2418 			WARN_ON_ONCE(1);
2419 			break;
2420 		}
2421 
2422 		switch (iftype) {
2423 		case NL80211_IFTYPE_AP:
2424 		case NL80211_IFTYPE_P2P_GO:
2425 		case NL80211_IFTYPE_ADHOC:
2426 		case NL80211_IFTYPE_MESH_POINT:
2427 			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2428 							    iftype);
2429 			if (!ret)
2430 				return ret;
2431 			break;
2432 		case NL80211_IFTYPE_STATION:
2433 		case NL80211_IFTYPE_P2P_CLIENT:
2434 			ret = cfg80211_chandef_usable(wiphy, &chandef,
2435 						      IEEE80211_CHAN_DISABLED);
2436 			if (!ret)
2437 				return ret;
2438 			break;
2439 		default:
2440 			break;
2441 		}
2442 	}
2443 
2444 	return true;
2445 }
2446 
2447 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2448 {
2449 	struct wireless_dev *wdev;
2450 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2451 
2452 	guard(wiphy)(wiphy);
2453 
2454 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2455 		if (!reg_wdev_chan_valid(wiphy, wdev))
2456 			cfg80211_leave(rdev, wdev, -1);
2457 }
2458 
2459 static void reg_check_chans_work(struct work_struct *work)
2460 {
2461 	struct cfg80211_registered_device *rdev;
2462 
2463 	pr_debug("Verifying active interfaces after reg change\n");
2464 	rtnl_lock();
2465 
2466 	for_each_rdev(rdev)
2467 		reg_leave_invalid_chans(&rdev->wiphy);
2468 
2469 	rtnl_unlock();
2470 }
2471 
2472 void reg_check_channels(void)
2473 {
2474 	/*
2475 	 * Give usermode a chance to do something nicer (move to another
2476 	 * channel, orderly disconnection), before forcing a disconnection.
2477 	 */
2478 	mod_delayed_work(system_power_efficient_wq,
2479 			 &reg_check_chans,
2480 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2481 }
2482 
2483 static void wiphy_update_regulatory(struct wiphy *wiphy,
2484 				    enum nl80211_reg_initiator initiator)
2485 {
2486 	enum nl80211_band band;
2487 	struct regulatory_request *lr = get_last_request();
2488 
2489 	if (ignore_reg_update(wiphy, initiator)) {
2490 		/*
2491 		 * Regulatory updates set by CORE are ignored for custom
2492 		 * regulatory cards. Let us notify the changes to the driver,
2493 		 * as some drivers used this to restore its orig_* reg domain.
2494 		 */
2495 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2496 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2497 		    !(wiphy->regulatory_flags &
2498 		      REGULATORY_WIPHY_SELF_MANAGED))
2499 			reg_call_notifier(wiphy, lr);
2500 		return;
2501 	}
2502 
2503 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2504 
2505 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2506 		handle_band(wiphy, initiator, wiphy->bands[band]);
2507 
2508 	reg_process_beacons(wiphy);
2509 	reg_process_ht_flags(wiphy);
2510 	reg_call_notifier(wiphy, lr);
2511 }
2512 
2513 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2514 {
2515 	struct cfg80211_registered_device *rdev;
2516 	struct wiphy *wiphy;
2517 
2518 	ASSERT_RTNL();
2519 
2520 	for_each_rdev(rdev) {
2521 		wiphy = &rdev->wiphy;
2522 		wiphy_update_regulatory(wiphy, initiator);
2523 	}
2524 
2525 	reg_check_channels();
2526 }
2527 
2528 static void handle_channel_custom(struct wiphy *wiphy,
2529 				  struct ieee80211_channel *chan,
2530 				  const struct ieee80211_regdomain *regd,
2531 				  u32 min_bw)
2532 {
2533 	u32 bw_flags = 0;
2534 	const struct ieee80211_reg_rule *reg_rule = NULL;
2535 	const struct ieee80211_power_rule *power_rule = NULL;
2536 	u32 bw, center_freq_khz;
2537 
2538 	center_freq_khz = ieee80211_channel_to_khz(chan);
2539 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2540 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2541 		if (!IS_ERR(reg_rule))
2542 			break;
2543 	}
2544 
2545 	if (IS_ERR_OR_NULL(reg_rule)) {
2546 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2547 			 chan->center_freq, chan->freq_offset);
2548 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2549 			chan->flags |= IEEE80211_CHAN_DISABLED;
2550 		} else {
2551 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2552 			chan->flags = chan->orig_flags;
2553 		}
2554 		return;
2555 	}
2556 
2557 	power_rule = &reg_rule->power_rule;
2558 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2559 
2560 	chan->dfs_state_entered = jiffies;
2561 	chan->dfs_state = NL80211_DFS_USABLE;
2562 
2563 	chan->beacon_found = false;
2564 
2565 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2566 		chan->flags = chan->orig_flags | bw_flags |
2567 			      map_regdom_flags(reg_rule->flags);
2568 	else
2569 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2570 
2571 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2572 	chan->max_reg_power = chan->max_power =
2573 		(int) MBM_TO_DBM(power_rule->max_eirp);
2574 
2575 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2576 		if (reg_rule->dfs_cac_ms)
2577 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2578 		else
2579 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2580 	}
2581 
2582 	if (chan->flags & IEEE80211_CHAN_PSD)
2583 		chan->psd = reg_rule->psd;
2584 
2585 	chan->max_power = chan->max_reg_power;
2586 }
2587 
2588 static void handle_band_custom(struct wiphy *wiphy,
2589 			       struct ieee80211_supported_band *sband,
2590 			       const struct ieee80211_regdomain *regd)
2591 {
2592 	unsigned int i;
2593 
2594 	if (!sband)
2595 		return;
2596 
2597 	/*
2598 	 * We currently assume that you always want at least 20 MHz,
2599 	 * otherwise channel 12 might get enabled if this rule is
2600 	 * compatible to US, which permits 2402 - 2472 MHz.
2601 	 */
2602 	for (i = 0; i < sband->n_channels; i++)
2603 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2604 				      MHZ_TO_KHZ(20));
2605 }
2606 
2607 /* Used by drivers prior to wiphy registration */
2608 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2609 				   const struct ieee80211_regdomain *regd)
2610 {
2611 	const struct ieee80211_regdomain *new_regd, *tmp;
2612 	enum nl80211_band band;
2613 	unsigned int bands_set = 0;
2614 
2615 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2616 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2617 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2618 
2619 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2620 		if (!wiphy->bands[band])
2621 			continue;
2622 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2623 		bands_set++;
2624 	}
2625 
2626 	/*
2627 	 * no point in calling this if it won't have any effect
2628 	 * on your device's supported bands.
2629 	 */
2630 	WARN_ON(!bands_set);
2631 	new_regd = reg_copy_regd(regd);
2632 	if (IS_ERR(new_regd))
2633 		return;
2634 
2635 	rtnl_lock();
2636 	scoped_guard(wiphy, wiphy) {
2637 		tmp = get_wiphy_regdom(wiphy);
2638 		rcu_assign_pointer(wiphy->regd, new_regd);
2639 		rcu_free_regdom(tmp);
2640 	}
2641 	rtnl_unlock();
2642 }
2643 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2644 
2645 static void reg_set_request_processed(void)
2646 {
2647 	bool need_more_processing = false;
2648 	struct regulatory_request *lr = get_last_request();
2649 
2650 	lr->processed = true;
2651 
2652 	spin_lock(&reg_requests_lock);
2653 	if (!list_empty(&reg_requests_list))
2654 		need_more_processing = true;
2655 	spin_unlock(&reg_requests_lock);
2656 
2657 	cancel_crda_timeout();
2658 
2659 	if (need_more_processing)
2660 		schedule_work(&reg_work);
2661 }
2662 
2663 /**
2664  * reg_process_hint_core - process core regulatory requests
2665  * @core_request: a pending core regulatory request
2666  *
2667  * The wireless subsystem can use this function to process
2668  * a regulatory request issued by the regulatory core.
2669  *
2670  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2671  *	hint was processed or ignored
2672  */
2673 static enum reg_request_treatment
2674 reg_process_hint_core(struct regulatory_request *core_request)
2675 {
2676 	if (reg_query_database(core_request)) {
2677 		core_request->intersect = false;
2678 		core_request->processed = false;
2679 		reg_update_last_request(core_request);
2680 		return REG_REQ_OK;
2681 	}
2682 
2683 	return REG_REQ_IGNORE;
2684 }
2685 
2686 static enum reg_request_treatment
2687 __reg_process_hint_user(struct regulatory_request *user_request)
2688 {
2689 	struct regulatory_request *lr = get_last_request();
2690 
2691 	if (reg_request_cell_base(user_request))
2692 		return reg_ignore_cell_hint(user_request);
2693 
2694 	if (reg_request_cell_base(lr))
2695 		return REG_REQ_IGNORE;
2696 
2697 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2698 		return REG_REQ_INTERSECT;
2699 	/*
2700 	 * If the user knows better the user should set the regdom
2701 	 * to their country before the IE is picked up
2702 	 */
2703 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2704 	    lr->intersect)
2705 		return REG_REQ_IGNORE;
2706 	/*
2707 	 * Process user requests only after previous user/driver/core
2708 	 * requests have been processed
2709 	 */
2710 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2711 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2712 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2713 	    regdom_changes(lr->alpha2))
2714 		return REG_REQ_IGNORE;
2715 
2716 	if (!regdom_changes(user_request->alpha2))
2717 		return REG_REQ_ALREADY_SET;
2718 
2719 	return REG_REQ_OK;
2720 }
2721 
2722 /**
2723  * reg_process_hint_user - process user regulatory requests
2724  * @user_request: a pending user regulatory request
2725  *
2726  * The wireless subsystem can use this function to process
2727  * a regulatory request initiated by userspace.
2728  *
2729  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2730  *	hint was processed or ignored
2731  */
2732 static enum reg_request_treatment
2733 reg_process_hint_user(struct regulatory_request *user_request)
2734 {
2735 	enum reg_request_treatment treatment;
2736 
2737 	treatment = __reg_process_hint_user(user_request);
2738 	if (treatment == REG_REQ_IGNORE ||
2739 	    treatment == REG_REQ_ALREADY_SET)
2740 		return REG_REQ_IGNORE;
2741 
2742 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2743 	user_request->processed = false;
2744 
2745 	if (reg_query_database(user_request)) {
2746 		reg_update_last_request(user_request);
2747 		user_alpha2[0] = user_request->alpha2[0];
2748 		user_alpha2[1] = user_request->alpha2[1];
2749 		return REG_REQ_OK;
2750 	}
2751 
2752 	return REG_REQ_IGNORE;
2753 }
2754 
2755 static enum reg_request_treatment
2756 __reg_process_hint_driver(struct regulatory_request *driver_request)
2757 {
2758 	struct regulatory_request *lr = get_last_request();
2759 
2760 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2761 		if (regdom_changes(driver_request->alpha2))
2762 			return REG_REQ_OK;
2763 		return REG_REQ_ALREADY_SET;
2764 	}
2765 
2766 	/*
2767 	 * This would happen if you unplug and plug your card
2768 	 * back in or if you add a new device for which the previously
2769 	 * loaded card also agrees on the regulatory domain.
2770 	 */
2771 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2772 	    !regdom_changes(driver_request->alpha2))
2773 		return REG_REQ_ALREADY_SET;
2774 
2775 	return REG_REQ_INTERSECT;
2776 }
2777 
2778 /**
2779  * reg_process_hint_driver - process driver regulatory requests
2780  * @wiphy: the wireless device for the regulatory request
2781  * @driver_request: a pending driver regulatory request
2782  *
2783  * The wireless subsystem can use this function to process
2784  * a regulatory request issued by an 802.11 driver.
2785  *
2786  * Returns: one of the different reg request treatment values.
2787  */
2788 static enum reg_request_treatment
2789 reg_process_hint_driver(struct wiphy *wiphy,
2790 			struct regulatory_request *driver_request)
2791 {
2792 	const struct ieee80211_regdomain *regd, *tmp;
2793 	enum reg_request_treatment treatment;
2794 
2795 	treatment = __reg_process_hint_driver(driver_request);
2796 
2797 	switch (treatment) {
2798 	case REG_REQ_OK:
2799 		break;
2800 	case REG_REQ_IGNORE:
2801 		return REG_REQ_IGNORE;
2802 	case REG_REQ_INTERSECT:
2803 	case REG_REQ_ALREADY_SET:
2804 		regd = reg_copy_regd(get_cfg80211_regdom());
2805 		if (IS_ERR(regd))
2806 			return REG_REQ_IGNORE;
2807 
2808 		tmp = get_wiphy_regdom(wiphy);
2809 		ASSERT_RTNL();
2810 		scoped_guard(wiphy, wiphy) {
2811 			rcu_assign_pointer(wiphy->regd, regd);
2812 		}
2813 		rcu_free_regdom(tmp);
2814 	}
2815 
2816 
2817 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2818 	driver_request->processed = false;
2819 
2820 	/*
2821 	 * Since CRDA will not be called in this case as we already
2822 	 * have applied the requested regulatory domain before we just
2823 	 * inform userspace we have processed the request
2824 	 */
2825 	if (treatment == REG_REQ_ALREADY_SET) {
2826 		nl80211_send_reg_change_event(driver_request);
2827 		reg_update_last_request(driver_request);
2828 		reg_set_request_processed();
2829 		return REG_REQ_ALREADY_SET;
2830 	}
2831 
2832 	if (reg_query_database(driver_request)) {
2833 		reg_update_last_request(driver_request);
2834 		return REG_REQ_OK;
2835 	}
2836 
2837 	return REG_REQ_IGNORE;
2838 }
2839 
2840 static enum reg_request_treatment
2841 __reg_process_hint_country_ie(struct wiphy *wiphy,
2842 			      struct regulatory_request *country_ie_request)
2843 {
2844 	struct wiphy *last_wiphy = NULL;
2845 	struct regulatory_request *lr = get_last_request();
2846 
2847 	if (reg_request_cell_base(lr)) {
2848 		/* Trust a Cell base station over the AP's country IE */
2849 		if (regdom_changes(country_ie_request->alpha2))
2850 			return REG_REQ_IGNORE;
2851 		return REG_REQ_ALREADY_SET;
2852 	} else {
2853 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2854 			return REG_REQ_IGNORE;
2855 	}
2856 
2857 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2858 		return -EINVAL;
2859 
2860 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2861 		return REG_REQ_OK;
2862 
2863 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2864 
2865 	if (last_wiphy != wiphy) {
2866 		/*
2867 		 * Two cards with two APs claiming different
2868 		 * Country IE alpha2s. We could
2869 		 * intersect them, but that seems unlikely
2870 		 * to be correct. Reject second one for now.
2871 		 */
2872 		if (regdom_changes(country_ie_request->alpha2))
2873 			return REG_REQ_IGNORE;
2874 		return REG_REQ_ALREADY_SET;
2875 	}
2876 
2877 	if (regdom_changes(country_ie_request->alpha2))
2878 		return REG_REQ_OK;
2879 	return REG_REQ_ALREADY_SET;
2880 }
2881 
2882 /**
2883  * reg_process_hint_country_ie - process regulatory requests from country IEs
2884  * @wiphy: the wireless device for the regulatory request
2885  * @country_ie_request: a regulatory request from a country IE
2886  *
2887  * The wireless subsystem can use this function to process
2888  * a regulatory request issued by a country Information Element.
2889  *
2890  * Returns: one of the different reg request treatment values.
2891  */
2892 static enum reg_request_treatment
2893 reg_process_hint_country_ie(struct wiphy *wiphy,
2894 			    struct regulatory_request *country_ie_request)
2895 {
2896 	enum reg_request_treatment treatment;
2897 
2898 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2899 
2900 	switch (treatment) {
2901 	case REG_REQ_OK:
2902 		break;
2903 	case REG_REQ_IGNORE:
2904 		return REG_REQ_IGNORE;
2905 	case REG_REQ_ALREADY_SET:
2906 		reg_free_request(country_ie_request);
2907 		return REG_REQ_ALREADY_SET;
2908 	case REG_REQ_INTERSECT:
2909 		/*
2910 		 * This doesn't happen yet, not sure we
2911 		 * ever want to support it for this case.
2912 		 */
2913 		WARN_ONCE(1, "Unexpected intersection for country elements");
2914 		return REG_REQ_IGNORE;
2915 	}
2916 
2917 	country_ie_request->intersect = false;
2918 	country_ie_request->processed = false;
2919 
2920 	if (reg_query_database(country_ie_request)) {
2921 		reg_update_last_request(country_ie_request);
2922 		return REG_REQ_OK;
2923 	}
2924 
2925 	return REG_REQ_IGNORE;
2926 }
2927 
2928 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2929 {
2930 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2931 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2932 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2933 	bool dfs_domain_same;
2934 
2935 	rcu_read_lock();
2936 
2937 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2938 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2939 	if (!wiphy1_regd)
2940 		wiphy1_regd = cfg80211_regd;
2941 
2942 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2943 	if (!wiphy2_regd)
2944 		wiphy2_regd = cfg80211_regd;
2945 
2946 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2947 
2948 	rcu_read_unlock();
2949 
2950 	return dfs_domain_same;
2951 }
2952 
2953 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2954 				    struct ieee80211_channel *src_chan)
2955 {
2956 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2957 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2958 		return;
2959 
2960 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2961 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2962 		return;
2963 
2964 	if (src_chan->center_freq == dst_chan->center_freq &&
2965 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2966 		dst_chan->dfs_state = src_chan->dfs_state;
2967 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2968 	}
2969 }
2970 
2971 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2972 				       struct wiphy *src_wiphy)
2973 {
2974 	struct ieee80211_supported_band *src_sband, *dst_sband;
2975 	struct ieee80211_channel *src_chan, *dst_chan;
2976 	int i, j, band;
2977 
2978 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2979 		return;
2980 
2981 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2982 		dst_sband = dst_wiphy->bands[band];
2983 		src_sband = src_wiphy->bands[band];
2984 		if (!dst_sband || !src_sband)
2985 			continue;
2986 
2987 		for (i = 0; i < dst_sband->n_channels; i++) {
2988 			dst_chan = &dst_sband->channels[i];
2989 			for (j = 0; j < src_sband->n_channels; j++) {
2990 				src_chan = &src_sband->channels[j];
2991 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2992 			}
2993 		}
2994 	}
2995 }
2996 
2997 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2998 {
2999 	struct cfg80211_registered_device *rdev;
3000 
3001 	ASSERT_RTNL();
3002 
3003 	for_each_rdev(rdev) {
3004 		if (wiphy == &rdev->wiphy)
3005 			continue;
3006 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3007 	}
3008 }
3009 
3010 /* This processes *all* regulatory hints */
3011 static void reg_process_hint(struct regulatory_request *reg_request)
3012 {
3013 	struct wiphy *wiphy = NULL;
3014 	enum reg_request_treatment treatment;
3015 	enum nl80211_reg_initiator initiator = reg_request->initiator;
3016 
3017 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3018 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3019 
3020 	switch (initiator) {
3021 	case NL80211_REGDOM_SET_BY_CORE:
3022 		treatment = reg_process_hint_core(reg_request);
3023 		break;
3024 	case NL80211_REGDOM_SET_BY_USER:
3025 		treatment = reg_process_hint_user(reg_request);
3026 		break;
3027 	case NL80211_REGDOM_SET_BY_DRIVER:
3028 		if (!wiphy)
3029 			goto out_free;
3030 		treatment = reg_process_hint_driver(wiphy, reg_request);
3031 		break;
3032 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3033 		if (!wiphy)
3034 			goto out_free;
3035 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3036 		break;
3037 	default:
3038 		WARN(1, "invalid initiator %d\n", initiator);
3039 		goto out_free;
3040 	}
3041 
3042 	if (treatment == REG_REQ_IGNORE)
3043 		goto out_free;
3044 
3045 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3046 	     "unexpected treatment value %d\n", treatment);
3047 
3048 	/* This is required so that the orig_* parameters are saved.
3049 	 * NOTE: treatment must be set for any case that reaches here!
3050 	 */
3051 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3052 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3053 		wiphy_update_regulatory(wiphy, initiator);
3054 		wiphy_all_share_dfs_chan_state(wiphy);
3055 		reg_check_channels();
3056 	}
3057 
3058 	return;
3059 
3060 out_free:
3061 	reg_free_request(reg_request);
3062 }
3063 
3064 static void notify_self_managed_wiphys(struct regulatory_request *request)
3065 {
3066 	struct cfg80211_registered_device *rdev;
3067 	struct wiphy *wiphy;
3068 
3069 	for_each_rdev(rdev) {
3070 		wiphy = &rdev->wiphy;
3071 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3072 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3073 			reg_call_notifier(wiphy, request);
3074 	}
3075 }
3076 
3077 /*
3078  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3079  * Regulatory hints come on a first come first serve basis and we
3080  * must process each one atomically.
3081  */
3082 static void reg_process_pending_hints(void)
3083 {
3084 	struct regulatory_request *reg_request, *lr;
3085 
3086 	lr = get_last_request();
3087 
3088 	/* When last_request->processed becomes true this will be rescheduled */
3089 	if (lr && !lr->processed) {
3090 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3091 		return;
3092 	}
3093 
3094 	spin_lock(&reg_requests_lock);
3095 
3096 	if (list_empty(&reg_requests_list)) {
3097 		spin_unlock(&reg_requests_lock);
3098 		return;
3099 	}
3100 
3101 	reg_request = list_first_entry(&reg_requests_list,
3102 				       struct regulatory_request,
3103 				       list);
3104 	list_del_init(&reg_request->list);
3105 
3106 	spin_unlock(&reg_requests_lock);
3107 
3108 	notify_self_managed_wiphys(reg_request);
3109 
3110 	reg_process_hint(reg_request);
3111 
3112 	lr = get_last_request();
3113 
3114 	spin_lock(&reg_requests_lock);
3115 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3116 		schedule_work(&reg_work);
3117 	spin_unlock(&reg_requests_lock);
3118 }
3119 
3120 /* Processes beacon hints -- this has nothing to do with country IEs */
3121 static void reg_process_pending_beacon_hints(void)
3122 {
3123 	struct cfg80211_registered_device *rdev;
3124 	struct reg_beacon *pending_beacon, *tmp;
3125 
3126 	/* This goes through the _pending_ beacon list */
3127 	spin_lock_bh(&reg_pending_beacons_lock);
3128 
3129 	list_for_each_entry_safe(pending_beacon, tmp,
3130 				 &reg_pending_beacons, list) {
3131 		list_del_init(&pending_beacon->list);
3132 
3133 		/* Applies the beacon hint to current wiphys */
3134 		for_each_rdev(rdev)
3135 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3136 
3137 		/* Remembers the beacon hint for new wiphys or reg changes */
3138 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3139 	}
3140 
3141 	spin_unlock_bh(&reg_pending_beacons_lock);
3142 }
3143 
3144 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3145 {
3146 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3147 	const struct ieee80211_regdomain *tmp;
3148 	const struct ieee80211_regdomain *regd;
3149 	enum nl80211_band band;
3150 	struct regulatory_request request = {};
3151 
3152 	ASSERT_RTNL();
3153 	lockdep_assert_wiphy(wiphy);
3154 
3155 	spin_lock(&reg_requests_lock);
3156 	regd = rdev->requested_regd;
3157 	rdev->requested_regd = NULL;
3158 	spin_unlock(&reg_requests_lock);
3159 
3160 	if (!regd)
3161 		return;
3162 
3163 	tmp = get_wiphy_regdom(wiphy);
3164 	rcu_assign_pointer(wiphy->regd, regd);
3165 	rcu_free_regdom(tmp);
3166 
3167 	for (band = 0; band < NUM_NL80211_BANDS; band++)
3168 		handle_band_custom(wiphy, wiphy->bands[band], regd);
3169 
3170 	reg_process_ht_flags(wiphy);
3171 
3172 	request.wiphy_idx = get_wiphy_idx(wiphy);
3173 	request.alpha2[0] = regd->alpha2[0];
3174 	request.alpha2[1] = regd->alpha2[1];
3175 	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3176 
3177 	if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3178 		reg_call_notifier(wiphy, &request);
3179 
3180 	nl80211_send_wiphy_reg_change_event(&request);
3181 }
3182 
3183 static void reg_process_self_managed_hints(void)
3184 {
3185 	struct cfg80211_registered_device *rdev;
3186 
3187 	ASSERT_RTNL();
3188 
3189 	for_each_rdev(rdev) {
3190 		guard(wiphy)(&rdev->wiphy);
3191 
3192 		reg_process_self_managed_hint(&rdev->wiphy);
3193 	}
3194 
3195 	reg_check_channels();
3196 }
3197 
3198 static void reg_todo(struct work_struct *work)
3199 {
3200 	rtnl_lock();
3201 	reg_process_pending_hints();
3202 	reg_process_pending_beacon_hints();
3203 	reg_process_self_managed_hints();
3204 	rtnl_unlock();
3205 }
3206 
3207 static void queue_regulatory_request(struct regulatory_request *request)
3208 {
3209 	request->alpha2[0] = toupper(request->alpha2[0]);
3210 	request->alpha2[1] = toupper(request->alpha2[1]);
3211 
3212 	spin_lock(&reg_requests_lock);
3213 	list_add_tail(&request->list, &reg_requests_list);
3214 	spin_unlock(&reg_requests_lock);
3215 
3216 	schedule_work(&reg_work);
3217 }
3218 
3219 /*
3220  * Core regulatory hint -- happens during cfg80211_init()
3221  * and when we restore regulatory settings.
3222  */
3223 static int regulatory_hint_core(const char *alpha2)
3224 {
3225 	struct regulatory_request *request;
3226 
3227 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3228 	if (!request)
3229 		return -ENOMEM;
3230 
3231 	request->alpha2[0] = alpha2[0];
3232 	request->alpha2[1] = alpha2[1];
3233 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3234 	request->wiphy_idx = WIPHY_IDX_INVALID;
3235 
3236 	queue_regulatory_request(request);
3237 
3238 	return 0;
3239 }
3240 
3241 /* User hints */
3242 int regulatory_hint_user(const char *alpha2,
3243 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3244 {
3245 	struct regulatory_request *request;
3246 
3247 	if (WARN_ON(!alpha2))
3248 		return -EINVAL;
3249 
3250 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3251 		return -EINVAL;
3252 
3253 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3254 	if (!request)
3255 		return -ENOMEM;
3256 
3257 	request->wiphy_idx = WIPHY_IDX_INVALID;
3258 	request->alpha2[0] = alpha2[0];
3259 	request->alpha2[1] = alpha2[1];
3260 	request->initiator = NL80211_REGDOM_SET_BY_USER;
3261 	request->user_reg_hint_type = user_reg_hint_type;
3262 
3263 	/* Allow calling CRDA again */
3264 	reset_crda_timeouts();
3265 
3266 	queue_regulatory_request(request);
3267 
3268 	return 0;
3269 }
3270 
3271 void regulatory_hint_indoor(bool is_indoor, u32 portid)
3272 {
3273 	spin_lock(&reg_indoor_lock);
3274 
3275 	/* It is possible that more than one user space process is trying to
3276 	 * configure the indoor setting. To handle such cases, clear the indoor
3277 	 * setting in case that some process does not think that the device
3278 	 * is operating in an indoor environment. In addition, if a user space
3279 	 * process indicates that it is controlling the indoor setting, save its
3280 	 * portid, i.e., make it the owner.
3281 	 */
3282 	reg_is_indoor = is_indoor;
3283 	if (reg_is_indoor) {
3284 		if (!reg_is_indoor_portid)
3285 			reg_is_indoor_portid = portid;
3286 	} else {
3287 		reg_is_indoor_portid = 0;
3288 	}
3289 
3290 	spin_unlock(&reg_indoor_lock);
3291 
3292 	if (!is_indoor)
3293 		reg_check_channels();
3294 }
3295 
3296 void regulatory_netlink_notify(u32 portid)
3297 {
3298 	spin_lock(&reg_indoor_lock);
3299 
3300 	if (reg_is_indoor_portid != portid) {
3301 		spin_unlock(&reg_indoor_lock);
3302 		return;
3303 	}
3304 
3305 	reg_is_indoor = false;
3306 	reg_is_indoor_portid = 0;
3307 
3308 	spin_unlock(&reg_indoor_lock);
3309 
3310 	reg_check_channels();
3311 }
3312 
3313 /* Driver hints */
3314 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3315 {
3316 	struct regulatory_request *request;
3317 
3318 	if (WARN_ON(!alpha2 || !wiphy))
3319 		return -EINVAL;
3320 
3321 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3322 
3323 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3324 	if (!request)
3325 		return -ENOMEM;
3326 
3327 	request->wiphy_idx = get_wiphy_idx(wiphy);
3328 
3329 	request->alpha2[0] = alpha2[0];
3330 	request->alpha2[1] = alpha2[1];
3331 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3332 
3333 	/* Allow calling CRDA again */
3334 	reset_crda_timeouts();
3335 
3336 	queue_regulatory_request(request);
3337 
3338 	return 0;
3339 }
3340 EXPORT_SYMBOL(regulatory_hint);
3341 
3342 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3343 				const u8 *country_ie, u8 country_ie_len)
3344 {
3345 	char alpha2[2];
3346 	enum environment_cap env = ENVIRON_ANY;
3347 	struct regulatory_request *request = NULL, *lr;
3348 
3349 	/* IE len must be evenly divisible by 2 */
3350 	if (country_ie_len & 0x01)
3351 		return;
3352 
3353 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3354 		return;
3355 
3356 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3357 	if (!request)
3358 		return;
3359 
3360 	alpha2[0] = country_ie[0];
3361 	alpha2[1] = country_ie[1];
3362 
3363 	if (country_ie[2] == 'I')
3364 		env = ENVIRON_INDOOR;
3365 	else if (country_ie[2] == 'O')
3366 		env = ENVIRON_OUTDOOR;
3367 
3368 	rcu_read_lock();
3369 	lr = get_last_request();
3370 
3371 	if (unlikely(!lr))
3372 		goto out;
3373 
3374 	/*
3375 	 * We will run this only upon a successful connection on cfg80211.
3376 	 * We leave conflict resolution to the workqueue, where can hold
3377 	 * the RTNL.
3378 	 */
3379 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3380 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3381 		goto out;
3382 
3383 	request->wiphy_idx = get_wiphy_idx(wiphy);
3384 	request->alpha2[0] = alpha2[0];
3385 	request->alpha2[1] = alpha2[1];
3386 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3387 	request->country_ie_env = env;
3388 
3389 	/* Allow calling CRDA again */
3390 	reset_crda_timeouts();
3391 
3392 	queue_regulatory_request(request);
3393 	request = NULL;
3394 out:
3395 	kfree(request);
3396 	rcu_read_unlock();
3397 }
3398 
3399 static void restore_alpha2(char *alpha2, bool reset_user)
3400 {
3401 	/* indicates there is no alpha2 to consider for restoration */
3402 	alpha2[0] = '9';
3403 	alpha2[1] = '7';
3404 
3405 	/* The user setting has precedence over the module parameter */
3406 	if (is_user_regdom_saved()) {
3407 		/* Unless we're asked to ignore it and reset it */
3408 		if (reset_user) {
3409 			pr_debug("Restoring regulatory settings including user preference\n");
3410 			user_alpha2[0] = '9';
3411 			user_alpha2[1] = '7';
3412 
3413 			/*
3414 			 * If we're ignoring user settings, we still need to
3415 			 * check the module parameter to ensure we put things
3416 			 * back as they were for a full restore.
3417 			 */
3418 			if (!is_world_regdom(ieee80211_regdom)) {
3419 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3420 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3421 				alpha2[0] = ieee80211_regdom[0];
3422 				alpha2[1] = ieee80211_regdom[1];
3423 			}
3424 		} else {
3425 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3426 				 user_alpha2[0], user_alpha2[1]);
3427 			alpha2[0] = user_alpha2[0];
3428 			alpha2[1] = user_alpha2[1];
3429 		}
3430 	} else if (!is_world_regdom(ieee80211_regdom)) {
3431 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3432 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3433 		alpha2[0] = ieee80211_regdom[0];
3434 		alpha2[1] = ieee80211_regdom[1];
3435 	} else
3436 		pr_debug("Restoring regulatory settings\n");
3437 }
3438 
3439 static void restore_custom_reg_settings(struct wiphy *wiphy)
3440 {
3441 	struct ieee80211_supported_band *sband;
3442 	enum nl80211_band band;
3443 	struct ieee80211_channel *chan;
3444 	int i;
3445 
3446 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3447 		sband = wiphy->bands[band];
3448 		if (!sband)
3449 			continue;
3450 		for (i = 0; i < sband->n_channels; i++) {
3451 			chan = &sband->channels[i];
3452 			chan->flags = chan->orig_flags;
3453 			chan->max_antenna_gain = chan->orig_mag;
3454 			chan->max_power = chan->orig_mpwr;
3455 			chan->beacon_found = false;
3456 		}
3457 	}
3458 }
3459 
3460 /*
3461  * Restoring regulatory settings involves ignoring any
3462  * possibly stale country IE information and user regulatory
3463  * settings if so desired, this includes any beacon hints
3464  * learned as we could have traveled outside to another country
3465  * after disconnection. To restore regulatory settings we do
3466  * exactly what we did at bootup:
3467  *
3468  *   - send a core regulatory hint
3469  *   - send a user regulatory hint if applicable
3470  *
3471  * Device drivers that send a regulatory hint for a specific country
3472  * keep their own regulatory domain on wiphy->regd so that does
3473  * not need to be remembered.
3474  */
3475 static void restore_regulatory_settings(bool reset_user, bool cached)
3476 {
3477 	char alpha2[2];
3478 	char world_alpha2[2];
3479 	struct reg_beacon *reg_beacon, *btmp;
3480 	LIST_HEAD(tmp_reg_req_list);
3481 	struct cfg80211_registered_device *rdev;
3482 
3483 	ASSERT_RTNL();
3484 
3485 	/*
3486 	 * Clear the indoor setting in case that it is not controlled by user
3487 	 * space, as otherwise there is no guarantee that the device is still
3488 	 * operating in an indoor environment.
3489 	 */
3490 	spin_lock(&reg_indoor_lock);
3491 	if (reg_is_indoor && !reg_is_indoor_portid) {
3492 		reg_is_indoor = false;
3493 		reg_check_channels();
3494 	}
3495 	spin_unlock(&reg_indoor_lock);
3496 
3497 	reset_regdomains(true, &world_regdom);
3498 	restore_alpha2(alpha2, reset_user);
3499 
3500 	/*
3501 	 * If there's any pending requests we simply
3502 	 * stash them to a temporary pending queue and
3503 	 * add then after we've restored regulatory
3504 	 * settings.
3505 	 */
3506 	spin_lock(&reg_requests_lock);
3507 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3508 	spin_unlock(&reg_requests_lock);
3509 
3510 	/* Clear beacon hints */
3511 	spin_lock_bh(&reg_pending_beacons_lock);
3512 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3513 		list_del(&reg_beacon->list);
3514 		kfree(reg_beacon);
3515 	}
3516 	spin_unlock_bh(&reg_pending_beacons_lock);
3517 
3518 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3519 		list_del(&reg_beacon->list);
3520 		kfree(reg_beacon);
3521 	}
3522 
3523 	/* First restore to the basic regulatory settings */
3524 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3525 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3526 
3527 	for_each_rdev(rdev) {
3528 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3529 			continue;
3530 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3531 			restore_custom_reg_settings(&rdev->wiphy);
3532 	}
3533 
3534 	if (cached && (!is_an_alpha2(alpha2) ||
3535 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3536 		reset_regdomains(false, cfg80211_world_regdom);
3537 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3538 		print_regdomain(get_cfg80211_regdom());
3539 		nl80211_send_reg_change_event(&core_request_world);
3540 		reg_set_request_processed();
3541 
3542 		if (is_an_alpha2(alpha2) &&
3543 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3544 			struct regulatory_request *ureq;
3545 
3546 			spin_lock(&reg_requests_lock);
3547 			ureq = list_last_entry(&reg_requests_list,
3548 					       struct regulatory_request,
3549 					       list);
3550 			list_del(&ureq->list);
3551 			spin_unlock(&reg_requests_lock);
3552 
3553 			notify_self_managed_wiphys(ureq);
3554 			reg_update_last_request(ureq);
3555 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3556 				   REGD_SOURCE_CACHED);
3557 		}
3558 	} else {
3559 		regulatory_hint_core(world_alpha2);
3560 
3561 		/*
3562 		 * This restores the ieee80211_regdom module parameter
3563 		 * preference or the last user requested regulatory
3564 		 * settings, user regulatory settings takes precedence.
3565 		 */
3566 		if (is_an_alpha2(alpha2))
3567 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3568 	}
3569 
3570 	spin_lock(&reg_requests_lock);
3571 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3572 	spin_unlock(&reg_requests_lock);
3573 
3574 	pr_debug("Kicking the queue\n");
3575 
3576 	schedule_work(&reg_work);
3577 }
3578 
3579 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3580 {
3581 	struct cfg80211_registered_device *rdev;
3582 	struct wireless_dev *wdev;
3583 
3584 	for_each_rdev(rdev) {
3585 		guard(wiphy)(&rdev->wiphy);
3586 
3587 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3588 			if (!(wdev->wiphy->regulatory_flags & flag))
3589 				return false;
3590 		}
3591 	}
3592 
3593 	return true;
3594 }
3595 
3596 void regulatory_hint_disconnect(void)
3597 {
3598 	/* Restore of regulatory settings is not required when wiphy(s)
3599 	 * ignore IE from connected access point but clearance of beacon hints
3600 	 * is required when wiphy(s) supports beacon hints.
3601 	 */
3602 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3603 		struct reg_beacon *reg_beacon, *btmp;
3604 
3605 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3606 			return;
3607 
3608 		spin_lock_bh(&reg_pending_beacons_lock);
3609 		list_for_each_entry_safe(reg_beacon, btmp,
3610 					 &reg_pending_beacons, list) {
3611 			list_del(&reg_beacon->list);
3612 			kfree(reg_beacon);
3613 		}
3614 		spin_unlock_bh(&reg_pending_beacons_lock);
3615 
3616 		list_for_each_entry_safe(reg_beacon, btmp,
3617 					 &reg_beacon_list, list) {
3618 			list_del(&reg_beacon->list);
3619 			kfree(reg_beacon);
3620 		}
3621 
3622 		return;
3623 	}
3624 
3625 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3626 	restore_regulatory_settings(false, true);
3627 }
3628 
3629 static bool freq_is_chan_12_13_14(u32 freq)
3630 {
3631 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3632 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3633 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3634 		return true;
3635 	return false;
3636 }
3637 
3638 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3639 {
3640 	struct reg_beacon *pending_beacon;
3641 
3642 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3643 		if (ieee80211_channel_equal(beacon_chan,
3644 					    &pending_beacon->chan))
3645 			return true;
3646 	return false;
3647 }
3648 
3649 void regulatory_hint_found_beacon(struct wiphy *wiphy,
3650 				  struct ieee80211_channel *beacon_chan,
3651 				  gfp_t gfp)
3652 {
3653 	struct reg_beacon *reg_beacon;
3654 	bool processing;
3655 
3656 	if (beacon_chan->beacon_found ||
3657 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3658 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3659 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3660 		return;
3661 
3662 	spin_lock_bh(&reg_pending_beacons_lock);
3663 	processing = pending_reg_beacon(beacon_chan);
3664 	spin_unlock_bh(&reg_pending_beacons_lock);
3665 
3666 	if (processing)
3667 		return;
3668 
3669 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3670 	if (!reg_beacon)
3671 		return;
3672 
3673 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3674 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3675 		 ieee80211_freq_khz_to_channel(
3676 			 ieee80211_channel_to_khz(beacon_chan)),
3677 		 wiphy_name(wiphy));
3678 
3679 	memcpy(&reg_beacon->chan, beacon_chan,
3680 	       sizeof(struct ieee80211_channel));
3681 
3682 	/*
3683 	 * Since we can be called from BH or and non-BH context
3684 	 * we must use spin_lock_bh()
3685 	 */
3686 	spin_lock_bh(&reg_pending_beacons_lock);
3687 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3688 	spin_unlock_bh(&reg_pending_beacons_lock);
3689 
3690 	schedule_work(&reg_work);
3691 }
3692 
3693 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3694 {
3695 	unsigned int i;
3696 	const struct ieee80211_reg_rule *reg_rule = NULL;
3697 	const struct ieee80211_freq_range *freq_range = NULL;
3698 	const struct ieee80211_power_rule *power_rule = NULL;
3699 	char bw[32], cac_time[32];
3700 
3701 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3702 
3703 	for (i = 0; i < rd->n_reg_rules; i++) {
3704 		reg_rule = &rd->reg_rules[i];
3705 		freq_range = &reg_rule->freq_range;
3706 		power_rule = &reg_rule->power_rule;
3707 
3708 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3709 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3710 				 freq_range->max_bandwidth_khz,
3711 				 reg_get_max_bandwidth(rd, reg_rule));
3712 		else
3713 			snprintf(bw, sizeof(bw), "%d KHz",
3714 				 freq_range->max_bandwidth_khz);
3715 
3716 		if (reg_rule->flags & NL80211_RRF_DFS)
3717 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3718 				  reg_rule->dfs_cac_ms/1000);
3719 		else
3720 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3721 
3722 
3723 		/*
3724 		 * There may not be documentation for max antenna gain
3725 		 * in certain regions
3726 		 */
3727 		if (power_rule->max_antenna_gain)
3728 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3729 				freq_range->start_freq_khz,
3730 				freq_range->end_freq_khz,
3731 				bw,
3732 				power_rule->max_antenna_gain,
3733 				power_rule->max_eirp,
3734 				cac_time);
3735 		else
3736 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3737 				freq_range->start_freq_khz,
3738 				freq_range->end_freq_khz,
3739 				bw,
3740 				power_rule->max_eirp,
3741 				cac_time);
3742 	}
3743 }
3744 
3745 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3746 {
3747 	switch (dfs_region) {
3748 	case NL80211_DFS_UNSET:
3749 	case NL80211_DFS_FCC:
3750 	case NL80211_DFS_ETSI:
3751 	case NL80211_DFS_JP:
3752 		return true;
3753 	default:
3754 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3755 		return false;
3756 	}
3757 }
3758 
3759 static void print_regdomain(const struct ieee80211_regdomain *rd)
3760 {
3761 	struct regulatory_request *lr = get_last_request();
3762 
3763 	if (is_intersected_alpha2(rd->alpha2)) {
3764 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3765 			struct cfg80211_registered_device *rdev;
3766 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3767 			if (rdev) {
3768 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3769 					rdev->country_ie_alpha2[0],
3770 					rdev->country_ie_alpha2[1]);
3771 			} else
3772 				pr_debug("Current regulatory domain intersected:\n");
3773 		} else
3774 			pr_debug("Current regulatory domain intersected:\n");
3775 	} else if (is_world_regdom(rd->alpha2)) {
3776 		pr_debug("World regulatory domain updated:\n");
3777 	} else {
3778 		if (is_unknown_alpha2(rd->alpha2))
3779 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3780 		else {
3781 			if (reg_request_cell_base(lr))
3782 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3783 					rd->alpha2[0], rd->alpha2[1]);
3784 			else
3785 				pr_debug("Regulatory domain changed to country: %c%c\n",
3786 					rd->alpha2[0], rd->alpha2[1]);
3787 		}
3788 	}
3789 
3790 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3791 	print_rd_rules(rd);
3792 }
3793 
3794 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3795 {
3796 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3797 	print_rd_rules(rd);
3798 }
3799 
3800 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3801 {
3802 	if (!is_world_regdom(rd->alpha2))
3803 		return -EINVAL;
3804 	update_world_regdomain(rd);
3805 	return 0;
3806 }
3807 
3808 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3809 			   struct regulatory_request *user_request)
3810 {
3811 	const struct ieee80211_regdomain *intersected_rd = NULL;
3812 
3813 	if (!regdom_changes(rd->alpha2))
3814 		return -EALREADY;
3815 
3816 	if (!is_valid_rd(rd)) {
3817 		pr_err("Invalid regulatory domain detected: %c%c\n",
3818 		       rd->alpha2[0], rd->alpha2[1]);
3819 		print_regdomain_info(rd);
3820 		return -EINVAL;
3821 	}
3822 
3823 	if (!user_request->intersect) {
3824 		reset_regdomains(false, rd);
3825 		return 0;
3826 	}
3827 
3828 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3829 	if (!intersected_rd)
3830 		return -EINVAL;
3831 
3832 	kfree(rd);
3833 	rd = NULL;
3834 	reset_regdomains(false, intersected_rd);
3835 
3836 	return 0;
3837 }
3838 
3839 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3840 			     struct regulatory_request *driver_request)
3841 {
3842 	const struct ieee80211_regdomain *regd;
3843 	const struct ieee80211_regdomain *intersected_rd = NULL;
3844 	const struct ieee80211_regdomain *tmp = NULL;
3845 	struct wiphy *request_wiphy;
3846 
3847 	if (is_world_regdom(rd->alpha2))
3848 		return -EINVAL;
3849 
3850 	if (!regdom_changes(rd->alpha2))
3851 		return -EALREADY;
3852 
3853 	if (!is_valid_rd(rd)) {
3854 		pr_err("Invalid regulatory domain detected: %c%c\n",
3855 		       rd->alpha2[0], rd->alpha2[1]);
3856 		print_regdomain_info(rd);
3857 		return -EINVAL;
3858 	}
3859 
3860 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3861 	if (!request_wiphy)
3862 		return -ENODEV;
3863 
3864 	if (!driver_request->intersect) {
3865 		ASSERT_RTNL();
3866 		scoped_guard(wiphy, request_wiphy) {
3867 			if (request_wiphy->regd)
3868 				tmp = get_wiphy_regdom(request_wiphy);
3869 
3870 			regd = reg_copy_regd(rd);
3871 			if (IS_ERR(regd))
3872 				return PTR_ERR(regd);
3873 
3874 			rcu_assign_pointer(request_wiphy->regd, regd);
3875 			rcu_free_regdom(tmp);
3876 		}
3877 
3878 		reset_regdomains(false, rd);
3879 		return 0;
3880 	}
3881 
3882 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3883 	if (!intersected_rd)
3884 		return -EINVAL;
3885 
3886 	/*
3887 	 * We can trash what CRDA provided now.
3888 	 * However if a driver requested this specific regulatory
3889 	 * domain we keep it for its private use
3890 	 */
3891 	tmp = get_wiphy_regdom(request_wiphy);
3892 	rcu_assign_pointer(request_wiphy->regd, rd);
3893 	rcu_free_regdom(tmp);
3894 
3895 	rd = NULL;
3896 
3897 	reset_regdomains(false, intersected_rd);
3898 
3899 	return 0;
3900 }
3901 
3902 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3903 				 struct regulatory_request *country_ie_request)
3904 {
3905 	struct wiphy *request_wiphy;
3906 
3907 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3908 	    !is_unknown_alpha2(rd->alpha2))
3909 		return -EINVAL;
3910 
3911 	/*
3912 	 * Lets only bother proceeding on the same alpha2 if the current
3913 	 * rd is non static (it means CRDA was present and was used last)
3914 	 * and the pending request came in from a country IE
3915 	 */
3916 
3917 	if (!is_valid_rd(rd)) {
3918 		pr_err("Invalid regulatory domain detected: %c%c\n",
3919 		       rd->alpha2[0], rd->alpha2[1]);
3920 		print_regdomain_info(rd);
3921 		return -EINVAL;
3922 	}
3923 
3924 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3925 	if (!request_wiphy)
3926 		return -ENODEV;
3927 
3928 	if (country_ie_request->intersect)
3929 		return -EINVAL;
3930 
3931 	reset_regdomains(false, rd);
3932 	return 0;
3933 }
3934 
3935 /*
3936  * Use this call to set the current regulatory domain. Conflicts with
3937  * multiple drivers can be ironed out later. Caller must've already
3938  * kmalloc'd the rd structure.
3939  */
3940 int set_regdom(const struct ieee80211_regdomain *rd,
3941 	       enum ieee80211_regd_source regd_src)
3942 {
3943 	struct regulatory_request *lr;
3944 	bool user_reset = false;
3945 	int r;
3946 
3947 	if (IS_ERR_OR_NULL(rd))
3948 		return -ENODATA;
3949 
3950 	if (!reg_is_valid_request(rd->alpha2)) {
3951 		kfree(rd);
3952 		return -EINVAL;
3953 	}
3954 
3955 	if (regd_src == REGD_SOURCE_CRDA)
3956 		reset_crda_timeouts();
3957 
3958 	lr = get_last_request();
3959 
3960 	/* Note that this doesn't update the wiphys, this is done below */
3961 	switch (lr->initiator) {
3962 	case NL80211_REGDOM_SET_BY_CORE:
3963 		r = reg_set_rd_core(rd);
3964 		break;
3965 	case NL80211_REGDOM_SET_BY_USER:
3966 		cfg80211_save_user_regdom(rd);
3967 		r = reg_set_rd_user(rd, lr);
3968 		user_reset = true;
3969 		break;
3970 	case NL80211_REGDOM_SET_BY_DRIVER:
3971 		r = reg_set_rd_driver(rd, lr);
3972 		break;
3973 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3974 		r = reg_set_rd_country_ie(rd, lr);
3975 		break;
3976 	default:
3977 		WARN(1, "invalid initiator %d\n", lr->initiator);
3978 		kfree(rd);
3979 		return -EINVAL;
3980 	}
3981 
3982 	if (r) {
3983 		switch (r) {
3984 		case -EALREADY:
3985 			reg_set_request_processed();
3986 			break;
3987 		default:
3988 			/* Back to world regulatory in case of errors */
3989 			restore_regulatory_settings(user_reset, false);
3990 		}
3991 
3992 		kfree(rd);
3993 		return r;
3994 	}
3995 
3996 	/* This would make this whole thing pointless */
3997 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3998 		return -EINVAL;
3999 
4000 	/* update all wiphys now with the new established regulatory domain */
4001 	update_all_wiphy_regulatory(lr->initiator);
4002 
4003 	print_regdomain(get_cfg80211_regdom());
4004 
4005 	nl80211_send_reg_change_event(lr);
4006 
4007 	reg_set_request_processed();
4008 
4009 	return 0;
4010 }
4011 
4012 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4013 				       struct ieee80211_regdomain *rd)
4014 {
4015 	const struct ieee80211_regdomain *regd;
4016 	const struct ieee80211_regdomain *prev_regd;
4017 	struct cfg80211_registered_device *rdev;
4018 
4019 	if (WARN_ON(!wiphy || !rd))
4020 		return -EINVAL;
4021 
4022 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4023 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4024 		return -EPERM;
4025 
4026 	if (WARN(!is_valid_rd(rd),
4027 		 "Invalid regulatory domain detected: %c%c\n",
4028 		 rd->alpha2[0], rd->alpha2[1])) {
4029 		print_regdomain_info(rd);
4030 		return -EINVAL;
4031 	}
4032 
4033 	regd = reg_copy_regd(rd);
4034 	if (IS_ERR(regd))
4035 		return PTR_ERR(regd);
4036 
4037 	rdev = wiphy_to_rdev(wiphy);
4038 
4039 	spin_lock(&reg_requests_lock);
4040 	prev_regd = rdev->requested_regd;
4041 	rdev->requested_regd = regd;
4042 	spin_unlock(&reg_requests_lock);
4043 
4044 	kfree(prev_regd);
4045 	return 0;
4046 }
4047 
4048 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4049 			      struct ieee80211_regdomain *rd)
4050 {
4051 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4052 
4053 	if (ret)
4054 		return ret;
4055 
4056 	schedule_work(&reg_work);
4057 	return 0;
4058 }
4059 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4060 
4061 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4062 				   struct ieee80211_regdomain *rd)
4063 {
4064 	int ret;
4065 
4066 	ASSERT_RTNL();
4067 
4068 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4069 	if (ret)
4070 		return ret;
4071 
4072 	/* process the request immediately */
4073 	reg_process_self_managed_hint(wiphy);
4074 	reg_check_channels();
4075 	return 0;
4076 }
4077 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4078 
4079 void wiphy_regulatory_register(struct wiphy *wiphy)
4080 {
4081 	struct regulatory_request *lr = get_last_request();
4082 
4083 	/* self-managed devices ignore beacon hints and country IE */
4084 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4085 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4086 					   REGULATORY_COUNTRY_IE_IGNORE;
4087 
4088 		/*
4089 		 * The last request may have been received before this
4090 		 * registration call. Call the driver notifier if
4091 		 * initiator is USER.
4092 		 */
4093 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4094 			reg_call_notifier(wiphy, lr);
4095 	}
4096 
4097 	if (!reg_dev_ignore_cell_hint(wiphy))
4098 		reg_num_devs_support_basehint++;
4099 
4100 	wiphy_update_regulatory(wiphy, lr->initiator);
4101 	wiphy_all_share_dfs_chan_state(wiphy);
4102 	reg_process_self_managed_hints();
4103 }
4104 
4105 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4106 {
4107 	struct wiphy *request_wiphy = NULL;
4108 	struct regulatory_request *lr;
4109 
4110 	lr = get_last_request();
4111 
4112 	if (!reg_dev_ignore_cell_hint(wiphy))
4113 		reg_num_devs_support_basehint--;
4114 
4115 	rcu_free_regdom(get_wiphy_regdom(wiphy));
4116 	RCU_INIT_POINTER(wiphy->regd, NULL);
4117 
4118 	if (lr)
4119 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4120 
4121 	if (!request_wiphy || request_wiphy != wiphy)
4122 		return;
4123 
4124 	lr->wiphy_idx = WIPHY_IDX_INVALID;
4125 	lr->country_ie_env = ENVIRON_ANY;
4126 }
4127 
4128 /*
4129  * See FCC notices for UNII band definitions
4130  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4131  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4132  */
4133 int cfg80211_get_unii(int freq)
4134 {
4135 	/* UNII-1 */
4136 	if (freq >= 5150 && freq <= 5250)
4137 		return 0;
4138 
4139 	/* UNII-2A */
4140 	if (freq > 5250 && freq <= 5350)
4141 		return 1;
4142 
4143 	/* UNII-2B */
4144 	if (freq > 5350 && freq <= 5470)
4145 		return 2;
4146 
4147 	/* UNII-2C */
4148 	if (freq > 5470 && freq <= 5725)
4149 		return 3;
4150 
4151 	/* UNII-3 */
4152 	if (freq > 5725 && freq <= 5825)
4153 		return 4;
4154 
4155 	/* UNII-5 */
4156 	if (freq > 5925 && freq <= 6425)
4157 		return 5;
4158 
4159 	/* UNII-6 */
4160 	if (freq > 6425 && freq <= 6525)
4161 		return 6;
4162 
4163 	/* UNII-7 */
4164 	if (freq > 6525 && freq <= 6875)
4165 		return 7;
4166 
4167 	/* UNII-8 */
4168 	if (freq > 6875 && freq <= 7125)
4169 		return 8;
4170 
4171 	return -EINVAL;
4172 }
4173 
4174 bool regulatory_indoor_allowed(void)
4175 {
4176 	return reg_is_indoor;
4177 }
4178 
4179 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4180 {
4181 	const struct ieee80211_regdomain *regd = NULL;
4182 	const struct ieee80211_regdomain *wiphy_regd = NULL;
4183 	bool pre_cac_allowed = false;
4184 
4185 	rcu_read_lock();
4186 
4187 	regd = rcu_dereference(cfg80211_regdomain);
4188 	wiphy_regd = rcu_dereference(wiphy->regd);
4189 	if (!wiphy_regd) {
4190 		if (regd->dfs_region == NL80211_DFS_ETSI)
4191 			pre_cac_allowed = true;
4192 
4193 		rcu_read_unlock();
4194 
4195 		return pre_cac_allowed;
4196 	}
4197 
4198 	if (regd->dfs_region == wiphy_regd->dfs_region &&
4199 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4200 		pre_cac_allowed = true;
4201 
4202 	rcu_read_unlock();
4203 
4204 	return pre_cac_allowed;
4205 }
4206 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4207 
4208 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4209 {
4210 	struct wireless_dev *wdev;
4211 	unsigned int link_id;
4212 
4213 	guard(wiphy)(&rdev->wiphy);
4214 
4215 	/* If we finished CAC or received radar, we should end any
4216 	 * CAC running on the same channels.
4217 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4218 	 * either all channels are available - those the CAC_FINISHED
4219 	 * event has effected another wdev state, or there is a channel
4220 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4221 	 * event has effected another wdev state.
4222 	 * In both cases we should end the CAC on the wdev.
4223 	 */
4224 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4225 		struct cfg80211_chan_def *chandef;
4226 
4227 		for_each_valid_link(wdev, link_id) {
4228 			if (!wdev->links[link_id].cac_started)
4229 				continue;
4230 
4231 			chandef = wdev_chandef(wdev, link_id);
4232 			if (!chandef)
4233 				continue;
4234 
4235 			if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4236 				rdev_end_cac(rdev, wdev->netdev, link_id);
4237 		}
4238 	}
4239 }
4240 
4241 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4242 				    struct cfg80211_chan_def *chandef,
4243 				    enum nl80211_dfs_state dfs_state,
4244 				    enum nl80211_radar_event event)
4245 {
4246 	struct cfg80211_registered_device *rdev;
4247 
4248 	ASSERT_RTNL();
4249 
4250 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4251 		return;
4252 
4253 	for_each_rdev(rdev) {
4254 		if (wiphy == &rdev->wiphy)
4255 			continue;
4256 
4257 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4258 			continue;
4259 
4260 		if (!ieee80211_get_channel(&rdev->wiphy,
4261 					   chandef->chan->center_freq))
4262 			continue;
4263 
4264 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4265 
4266 		if (event == NL80211_RADAR_DETECTED ||
4267 		    event == NL80211_RADAR_CAC_FINISHED) {
4268 			cfg80211_sched_dfs_chan_update(rdev);
4269 			cfg80211_check_and_end_cac(rdev);
4270 		}
4271 
4272 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4273 	}
4274 }
4275 
4276 static int __init regulatory_init_db(void)
4277 {
4278 	int err;
4279 
4280 	/*
4281 	 * It's possible that - due to other bugs/issues - cfg80211
4282 	 * never called regulatory_init() below, or that it failed;
4283 	 * in that case, don't try to do any further work here as
4284 	 * it's doomed to lead to crashes.
4285 	 */
4286 	if (!reg_fdev)
4287 		return -EINVAL;
4288 
4289 	err = load_builtin_regdb_keys();
4290 	if (err) {
4291 		faux_device_destroy(reg_fdev);
4292 		return err;
4293 	}
4294 
4295 	/* We always try to get an update for the static regdomain */
4296 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4297 	if (err) {
4298 		if (err == -ENOMEM) {
4299 			faux_device_destroy(reg_fdev);
4300 			return err;
4301 		}
4302 		/*
4303 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4304 		 * memory which is handled and propagated appropriately above
4305 		 * but it can also fail during a netlink_broadcast() or during
4306 		 * early boot for call_usermodehelper(). For now treat these
4307 		 * errors as non-fatal.
4308 		 */
4309 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4310 	}
4311 
4312 	/*
4313 	 * Finally, if the user set the module parameter treat it
4314 	 * as a user hint.
4315 	 */
4316 	if (!is_world_regdom(ieee80211_regdom))
4317 		regulatory_hint_user(ieee80211_regdom,
4318 				     NL80211_USER_REG_HINT_USER);
4319 
4320 	return 0;
4321 }
4322 #ifndef MODULE
4323 late_initcall(regulatory_init_db);
4324 #endif
4325 
4326 int __init regulatory_init(void)
4327 {
4328 	reg_fdev = faux_device_create("regulatory", NULL, NULL);
4329 	if (!reg_fdev)
4330 		return -ENODEV;
4331 
4332 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4333 
4334 	user_alpha2[0] = '9';
4335 	user_alpha2[1] = '7';
4336 
4337 #ifdef MODULE
4338 	return regulatory_init_db();
4339 #else
4340 	return 0;
4341 #endif
4342 }
4343 
4344 void regulatory_exit(void)
4345 {
4346 	struct regulatory_request *reg_request, *tmp;
4347 	struct reg_beacon *reg_beacon, *btmp;
4348 
4349 	cancel_work_sync(&reg_work);
4350 	cancel_crda_timeout_sync();
4351 	cancel_delayed_work_sync(&reg_check_chans);
4352 
4353 	/* Lock to suppress warnings */
4354 	rtnl_lock();
4355 	reset_regdomains(true, NULL);
4356 	rtnl_unlock();
4357 
4358 	dev_set_uevent_suppress(&reg_fdev->dev, true);
4359 
4360 	faux_device_destroy(reg_fdev);
4361 
4362 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4363 		list_del(&reg_beacon->list);
4364 		kfree(reg_beacon);
4365 	}
4366 
4367 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4368 		list_del(&reg_beacon->list);
4369 		kfree(reg_beacon);
4370 	}
4371 
4372 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4373 		list_del(&reg_request->list);
4374 		kfree(reg_request);
4375 	}
4376 
4377 	if (!IS_ERR_OR_NULL(regdb))
4378 		kfree(regdb);
4379 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4380 		kfree(cfg80211_user_regdom);
4381 
4382 	free_regdb_keyring();
4383 }
4384