1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2026 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/device/faux.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <linux/units.h> 61 62 #include <net/cfg80211.h> 63 #include "core.h" 64 #include "reg.h" 65 #include "rdev-ops.h" 66 #include "nl80211.h" 67 68 /* 69 * Grace period we give before making sure all current interfaces reside on 70 * channels allowed by the current regulatory domain. 71 */ 72 #define REG_ENFORCE_GRACE_MS 60000 73 74 /** 75 * enum reg_request_treatment - regulatory request treatment 76 * 77 * @REG_REQ_OK: continue processing the regulatory request 78 * @REG_REQ_IGNORE: ignore the regulatory request 79 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 80 * be intersected with the current one. 81 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 82 * regulatory settings, and no further processing is required. 83 */ 84 enum reg_request_treatment { 85 REG_REQ_OK, 86 REG_REQ_IGNORE, 87 REG_REQ_INTERSECT, 88 REG_REQ_ALREADY_SET, 89 }; 90 91 static struct regulatory_request core_request_world = { 92 .initiator = NL80211_REGDOM_SET_BY_CORE, 93 .alpha2[0] = '0', 94 .alpha2[1] = '0', 95 .intersect = false, 96 .processed = true, 97 .country_ie_env = ENVIRON_ANY, 98 }; 99 100 /* 101 * Receipt of information from last regulatory request, 102 * protected by RTNL (and can be accessed with RCU protection) 103 */ 104 static struct regulatory_request __rcu *last_request = 105 (void __force __rcu *)&core_request_world; 106 107 /* To trigger userspace events and load firmware */ 108 static struct faux_device *reg_fdev; 109 110 /* 111 * Central wireless core regulatory domains, we only need two, 112 * the current one and a world regulatory domain in case we have no 113 * information to give us an alpha2. 114 * (protected by RTNL, can be read under RCU) 115 */ 116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 117 118 /* 119 * Number of devices that registered to the core 120 * that support cellular base station regulatory hints 121 * (protected by RTNL) 122 */ 123 static int reg_num_devs_support_basehint; 124 125 /* 126 * State variable indicating if the platform on which the devices 127 * are attached is operating in an indoor environment. The state variable 128 * is relevant for all registered devices. 129 */ 130 static bool reg_is_indoor; 131 static DEFINE_SPINLOCK(reg_indoor_lock); 132 133 /* Used to track the userspace process controlling the indoor setting */ 134 static u32 reg_is_indoor_portid; 135 136 static void restore_regulatory_settings(bool reset_user, bool cached); 137 static void print_regdomain(const struct ieee80211_regdomain *rd); 138 static void reg_process_hint(struct regulatory_request *reg_request); 139 140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 141 { 142 return rcu_dereference_rtnl(cfg80211_regdomain); 143 } 144 145 /* 146 * Returns the regulatory domain associated with the wiphy. 147 * 148 * Requires any of RTNL, wiphy mutex or RCU protection. 149 */ 150 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 151 { 152 return rcu_dereference_check(wiphy->regd, 153 lockdep_is_held(&wiphy->mtx) || 154 lockdep_rtnl_is_held()); 155 } 156 EXPORT_SYMBOL(get_wiphy_regdom); 157 158 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 159 { 160 switch (dfs_region) { 161 case NL80211_DFS_UNSET: 162 return "unset"; 163 case NL80211_DFS_FCC: 164 return "FCC"; 165 case NL80211_DFS_ETSI: 166 return "ETSI"; 167 case NL80211_DFS_JP: 168 return "JP"; 169 } 170 return "Unknown"; 171 } 172 173 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 174 { 175 const struct ieee80211_regdomain *regd = NULL; 176 const struct ieee80211_regdomain *wiphy_regd = NULL; 177 enum nl80211_dfs_regions dfs_region; 178 179 rcu_read_lock(); 180 regd = get_cfg80211_regdom(); 181 dfs_region = regd->dfs_region; 182 183 if (!wiphy) 184 goto out; 185 186 wiphy_regd = get_wiphy_regdom(wiphy); 187 if (!wiphy_regd) 188 goto out; 189 190 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 191 dfs_region = wiphy_regd->dfs_region; 192 goto out; 193 } 194 195 if (wiphy_regd->dfs_region == regd->dfs_region) 196 goto out; 197 198 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 199 dev_name(&wiphy->dev), 200 reg_dfs_region_str(wiphy_regd->dfs_region), 201 reg_dfs_region_str(regd->dfs_region)); 202 203 out: 204 rcu_read_unlock(); 205 206 return dfs_region; 207 } 208 209 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 210 { 211 if (!r) 212 return; 213 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 214 } 215 216 static struct regulatory_request *get_last_request(void) 217 { 218 return rcu_dereference_rtnl(last_request); 219 } 220 221 /* Used to queue up regulatory hints */ 222 static LIST_HEAD(reg_requests_list); 223 static DEFINE_SPINLOCK(reg_requests_lock); 224 225 /* Used to queue up beacon hints for review */ 226 static LIST_HEAD(reg_pending_beacons); 227 static DEFINE_SPINLOCK(reg_pending_beacons_lock); 228 229 /* Used to keep track of processed beacon hints */ 230 static LIST_HEAD(reg_beacon_list); 231 232 struct reg_beacon { 233 struct list_head list; 234 struct ieee80211_channel chan; 235 }; 236 237 static void reg_check_chans_work(struct work_struct *work); 238 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 239 240 static void reg_todo(struct work_struct *work); 241 static DECLARE_WORK(reg_work, reg_todo); 242 243 /* We keep a static world regulatory domain in case of the absence of CRDA */ 244 static const struct ieee80211_regdomain world_regdom = { 245 .n_reg_rules = 8, 246 .alpha2 = "00", 247 .reg_rules = { 248 /* IEEE 802.11b/g, channels 1..11 */ 249 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 250 /* IEEE 802.11b/g, channels 12..13. */ 251 REG_RULE(2467-10, 2472+10, 20, 6, 20, 252 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 253 /* IEEE 802.11 channel 14 - Only JP enables 254 * this and for 802.11b only */ 255 REG_RULE(2484-10, 2484+10, 20, 6, 20, 256 NL80211_RRF_NO_IR | 257 NL80211_RRF_NO_OFDM), 258 /* IEEE 802.11a, channel 36..48 */ 259 REG_RULE(5180-10, 5240+10, 80, 6, 20, 260 NL80211_RRF_NO_IR | 261 NL80211_RRF_AUTO_BW), 262 263 /* IEEE 802.11a, channel 52..64 - DFS required */ 264 REG_RULE(5260-10, 5320+10, 80, 6, 20, 265 NL80211_RRF_NO_IR | 266 NL80211_RRF_AUTO_BW | 267 NL80211_RRF_DFS), 268 269 /* IEEE 802.11a, channel 100..144 - DFS required */ 270 REG_RULE(5500-10, 5720+10, 160, 6, 20, 271 NL80211_RRF_NO_IR | 272 NL80211_RRF_DFS), 273 274 /* IEEE 802.11a, channel 149..165 */ 275 REG_RULE(5745-10, 5825+10, 80, 6, 20, 276 NL80211_RRF_NO_IR), 277 278 /* IEEE 802.11ad (60GHz), channels 1..3 */ 279 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 280 } 281 }; 282 283 /* protected by RTNL */ 284 static const struct ieee80211_regdomain *cfg80211_world_regdom = 285 &world_regdom; 286 287 static char *ieee80211_regdom = "00"; 288 static char user_alpha2[2]; 289 static const struct ieee80211_regdomain *cfg80211_user_regdom; 290 291 module_param(ieee80211_regdom, charp, 0444); 292 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 293 294 static void reg_free_request(struct regulatory_request *request) 295 { 296 if (request == &core_request_world) 297 return; 298 299 if (request != get_last_request()) 300 kfree(request); 301 } 302 303 static void reg_free_last_request(void) 304 { 305 struct regulatory_request *lr = get_last_request(); 306 307 if (lr != &core_request_world && lr) 308 kfree_rcu(lr, rcu_head); 309 } 310 311 static void reg_update_last_request(struct regulatory_request *request) 312 { 313 struct regulatory_request *lr; 314 315 lr = get_last_request(); 316 if (lr == request) 317 return; 318 319 reg_free_last_request(); 320 rcu_assign_pointer(last_request, request); 321 } 322 323 static void reset_regdomains(bool full_reset, 324 const struct ieee80211_regdomain *new_regdom) 325 { 326 const struct ieee80211_regdomain *r; 327 328 ASSERT_RTNL(); 329 330 r = get_cfg80211_regdom(); 331 332 /* avoid freeing static information or freeing something twice */ 333 if (r == cfg80211_world_regdom) 334 r = NULL; 335 if (cfg80211_world_regdom == &world_regdom) 336 cfg80211_world_regdom = NULL; 337 if (r == &world_regdom) 338 r = NULL; 339 340 rcu_free_regdom(r); 341 rcu_free_regdom(cfg80211_world_regdom); 342 343 cfg80211_world_regdom = &world_regdom; 344 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 345 346 if (!full_reset) 347 return; 348 349 reg_update_last_request(&core_request_world); 350 } 351 352 /* 353 * Dynamic world regulatory domain requested by the wireless 354 * core upon initialization 355 */ 356 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 357 { 358 struct regulatory_request *lr; 359 360 lr = get_last_request(); 361 362 WARN_ON(!lr); 363 364 reset_regdomains(false, rd); 365 366 cfg80211_world_regdom = rd; 367 } 368 369 bool is_world_regdom(const char *alpha2) 370 { 371 if (!alpha2) 372 return false; 373 return alpha2[0] == '0' && alpha2[1] == '0'; 374 } 375 376 static bool is_alpha2_set(const char *alpha2) 377 { 378 if (!alpha2) 379 return false; 380 return alpha2[0] && alpha2[1]; 381 } 382 383 static bool is_unknown_alpha2(const char *alpha2) 384 { 385 if (!alpha2) 386 return false; 387 /* 388 * Special case where regulatory domain was built by driver 389 * but a specific alpha2 cannot be determined 390 */ 391 return alpha2[0] == '9' && alpha2[1] == '9'; 392 } 393 394 static bool is_intersected_alpha2(const char *alpha2) 395 { 396 if (!alpha2) 397 return false; 398 /* 399 * Special case where regulatory domain is the 400 * result of an intersection between two regulatory domain 401 * structures 402 */ 403 return alpha2[0] == '9' && alpha2[1] == '8'; 404 } 405 406 static bool is_an_alpha2(const char *alpha2) 407 { 408 if (!alpha2) 409 return false; 410 return isascii(alpha2[0]) && isalpha(alpha2[0]) && 411 isascii(alpha2[1]) && isalpha(alpha2[1]); 412 } 413 414 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 415 { 416 if (!alpha2_x || !alpha2_y) 417 return false; 418 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 419 } 420 421 static bool regdom_changes(const char *alpha2) 422 { 423 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 424 425 if (!r) 426 return true; 427 return !alpha2_equal(r->alpha2, alpha2); 428 } 429 430 /* 431 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 432 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 433 * has ever been issued. 434 */ 435 static bool is_user_regdom_saved(void) 436 { 437 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 438 return false; 439 440 /* This would indicate a mistake on the design */ 441 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 442 "Unexpected user alpha2: %c%c\n", 443 user_alpha2[0], user_alpha2[1])) 444 return false; 445 446 return true; 447 } 448 449 static const struct ieee80211_regdomain * 450 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 451 { 452 struct ieee80211_regdomain *regd; 453 unsigned int i; 454 455 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 456 GFP_KERNEL); 457 if (!regd) 458 return ERR_PTR(-ENOMEM); 459 460 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 461 462 for (i = 0; i < src_regd->n_reg_rules; i++) 463 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 464 sizeof(struct ieee80211_reg_rule)); 465 466 return regd; 467 } 468 469 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 470 { 471 ASSERT_RTNL(); 472 473 if (!IS_ERR(cfg80211_user_regdom)) 474 kfree(cfg80211_user_regdom); 475 cfg80211_user_regdom = reg_copy_regd(rd); 476 } 477 478 struct reg_regdb_apply_request { 479 struct list_head list; 480 const struct ieee80211_regdomain *regdom; 481 }; 482 483 static LIST_HEAD(reg_regdb_apply_list); 484 static DEFINE_MUTEX(reg_regdb_apply_mutex); 485 486 static void reg_regdb_apply(struct work_struct *work) 487 { 488 struct reg_regdb_apply_request *request; 489 490 rtnl_lock(); 491 492 mutex_lock(®_regdb_apply_mutex); 493 while (!list_empty(®_regdb_apply_list)) { 494 request = list_first_entry(®_regdb_apply_list, 495 struct reg_regdb_apply_request, 496 list); 497 list_del(&request->list); 498 499 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 500 kfree(request); 501 } 502 mutex_unlock(®_regdb_apply_mutex); 503 504 rtnl_unlock(); 505 } 506 507 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 508 509 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 510 { 511 struct reg_regdb_apply_request *request; 512 513 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 514 if (!request) { 515 kfree(regdom); 516 return -ENOMEM; 517 } 518 519 request->regdom = regdom; 520 521 mutex_lock(®_regdb_apply_mutex); 522 list_add_tail(&request->list, ®_regdb_apply_list); 523 mutex_unlock(®_regdb_apply_mutex); 524 525 schedule_work(®_regdb_work); 526 return 0; 527 } 528 529 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 530 /* Max number of consecutive attempts to communicate with CRDA */ 531 #define REG_MAX_CRDA_TIMEOUTS 10 532 533 static u32 reg_crda_timeouts; 534 535 static void crda_timeout_work(struct work_struct *work); 536 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 537 538 static void crda_timeout_work(struct work_struct *work) 539 { 540 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 541 rtnl_lock(); 542 reg_crda_timeouts++; 543 restore_regulatory_settings(true, false); 544 rtnl_unlock(); 545 } 546 547 static void cancel_crda_timeout(void) 548 { 549 cancel_delayed_work(&crda_timeout); 550 } 551 552 static void cancel_crda_timeout_sync(void) 553 { 554 cancel_delayed_work_sync(&crda_timeout); 555 } 556 557 static void reset_crda_timeouts(void) 558 { 559 reg_crda_timeouts = 0; 560 } 561 562 /* 563 * This lets us keep regulatory code which is updated on a regulatory 564 * basis in userspace. 565 */ 566 static int call_crda(const char *alpha2) 567 { 568 char country[12]; 569 char *env[] = { country, NULL }; 570 int ret; 571 572 snprintf(country, sizeof(country), "COUNTRY=%c%c", 573 alpha2[0], alpha2[1]); 574 575 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 576 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 577 return -EINVAL; 578 } 579 580 if (!is_world_regdom((char *) alpha2)) 581 pr_debug("Calling CRDA for country: %c%c\n", 582 alpha2[0], alpha2[1]); 583 else 584 pr_debug("Calling CRDA to update world regulatory domain\n"); 585 586 ret = kobject_uevent_env(®_fdev->dev.kobj, KOBJ_CHANGE, env); 587 if (ret) 588 return ret; 589 590 queue_delayed_work(system_power_efficient_wq, 591 &crda_timeout, msecs_to_jiffies(3142)); 592 return 0; 593 } 594 #else 595 static inline void cancel_crda_timeout(void) {} 596 static inline void cancel_crda_timeout_sync(void) {} 597 static inline void reset_crda_timeouts(void) {} 598 static inline int call_crda(const char *alpha2) 599 { 600 return -ENODATA; 601 } 602 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 603 604 /* code to directly load a firmware database through request_firmware */ 605 static const struct fwdb_header *regdb; 606 607 struct fwdb_country { 608 u8 alpha2[2]; 609 __be16 coll_ptr; 610 /* this struct cannot be extended */ 611 } __packed __aligned(4); 612 613 struct fwdb_collection { 614 u8 len; 615 u8 n_rules; 616 u8 dfs_region; 617 /* no optional data yet */ 618 /* aligned to 2, then followed by __be16 array of rule pointers */ 619 } __packed __aligned(4); 620 621 enum fwdb_flags { 622 FWDB_FLAG_NO_OFDM = BIT(0), 623 FWDB_FLAG_NO_OUTDOOR = BIT(1), 624 FWDB_FLAG_DFS = BIT(2), 625 FWDB_FLAG_NO_IR = BIT(3), 626 FWDB_FLAG_AUTO_BW = BIT(4), 627 }; 628 629 struct fwdb_wmm_ac { 630 u8 ecw; 631 u8 aifsn; 632 __be16 cot; 633 } __packed; 634 635 struct fwdb_wmm_rule { 636 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 637 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 638 } __packed; 639 640 struct fwdb_rule { 641 u8 len; 642 u8 flags; 643 __be16 max_eirp; 644 __be32 start, end, max_bw; 645 /* start of optional data */ 646 __be16 cac_timeout; 647 __be16 wmm_ptr; 648 } __packed __aligned(4); 649 650 #define FWDB_MAGIC 0x52474442 651 #define FWDB_VERSION 20 652 653 struct fwdb_header { 654 __be32 magic; 655 __be32 version; 656 struct fwdb_country country[]; 657 } __packed __aligned(4); 658 659 static int ecw2cw(int ecw) 660 { 661 return (1 << ecw) - 1; 662 } 663 664 static bool valid_wmm(struct fwdb_wmm_rule *rule) 665 { 666 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 667 int i; 668 669 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 670 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 671 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 672 u8 aifsn = ac[i].aifsn; 673 674 if (cw_min >= cw_max) 675 return false; 676 677 if (aifsn < 1) 678 return false; 679 } 680 681 return true; 682 } 683 684 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 685 { 686 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 687 688 if ((u8 *)rule + sizeof(rule->len) > data + size) 689 return false; 690 691 /* mandatory fields */ 692 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 693 return false; 694 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 695 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 696 struct fwdb_wmm_rule *wmm; 697 698 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 699 return false; 700 701 wmm = (void *)(data + wmm_ptr); 702 703 if (!valid_wmm(wmm)) 704 return false; 705 } 706 return true; 707 } 708 709 static bool valid_country(const u8 *data, unsigned int size, 710 const struct fwdb_country *country) 711 { 712 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 713 struct fwdb_collection *coll = (void *)(data + ptr); 714 __be16 *rules_ptr; 715 unsigned int i; 716 717 /* make sure we can read len/n_rules */ 718 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 719 return false; 720 721 /* make sure base struct and all rules fit */ 722 if ((u8 *)coll + ALIGN(coll->len, 2) + 723 (coll->n_rules * 2) > data + size) 724 return false; 725 726 /* mandatory fields must exist */ 727 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 728 return false; 729 730 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 731 732 for (i = 0; i < coll->n_rules; i++) { 733 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 734 735 if (!valid_rule(data, size, rule_ptr)) 736 return false; 737 } 738 739 return true; 740 } 741 742 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 743 #include <keys/asymmetric-type.h> 744 745 static struct key *builtin_regdb_keys; 746 747 static int __init load_builtin_regdb_keys(void) 748 { 749 builtin_regdb_keys = 750 keyring_alloc(".builtin_regdb_keys", 751 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 752 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 753 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 754 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 755 if (IS_ERR(builtin_regdb_keys)) 756 return PTR_ERR(builtin_regdb_keys); 757 758 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 759 760 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 761 x509_load_certificate_list(shipped_regdb_certs, 762 shipped_regdb_certs_len, 763 builtin_regdb_keys); 764 #endif 765 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 766 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 767 x509_load_certificate_list(extra_regdb_certs, 768 extra_regdb_certs_len, 769 builtin_regdb_keys); 770 #endif 771 772 return 0; 773 } 774 775 MODULE_FIRMWARE("regulatory.db.p7s"); 776 777 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 778 { 779 const struct firmware *sig; 780 bool result; 781 782 if (request_firmware(&sig, "regulatory.db.p7s", ®_fdev->dev)) 783 return false; 784 785 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 786 builtin_regdb_keys, 787 VERIFYING_UNSPECIFIED_SIGNATURE, 788 NULL, NULL) == 0; 789 790 release_firmware(sig); 791 792 return result; 793 } 794 795 static void free_regdb_keyring(void) 796 { 797 key_put(builtin_regdb_keys); 798 } 799 #else 800 static int load_builtin_regdb_keys(void) 801 { 802 return 0; 803 } 804 805 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 806 { 807 return true; 808 } 809 810 static void free_regdb_keyring(void) 811 { 812 } 813 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 814 815 static bool valid_regdb(const u8 *data, unsigned int size) 816 { 817 const struct fwdb_header *hdr = (void *)data; 818 const struct fwdb_country *country; 819 820 if (size < sizeof(*hdr)) 821 return false; 822 823 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 824 return false; 825 826 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 827 return false; 828 829 if (!regdb_has_valid_signature(data, size)) 830 return false; 831 832 country = &hdr->country[0]; 833 while ((u8 *)(country + 1) <= data + size) { 834 if (!country->coll_ptr) 835 break; 836 if (!valid_country(data, size, country)) 837 return false; 838 country++; 839 } 840 841 return true; 842 } 843 844 static void set_wmm_rule(const struct fwdb_header *db, 845 const struct fwdb_country *country, 846 const struct fwdb_rule *rule, 847 struct ieee80211_reg_rule *rrule) 848 { 849 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 850 struct fwdb_wmm_rule *wmm; 851 unsigned int i, wmm_ptr; 852 853 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 854 wmm = (void *)((u8 *)db + wmm_ptr); 855 856 if (!valid_wmm(wmm)) { 857 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 858 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 859 country->alpha2[0], country->alpha2[1]); 860 return; 861 } 862 863 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 864 wmm_rule->client[i].cw_min = 865 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 866 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 867 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 868 wmm_rule->client[i].cot = 869 1000 * be16_to_cpu(wmm->client[i].cot); 870 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 871 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 872 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 873 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 874 } 875 876 rrule->has_wmm = true; 877 } 878 879 static int __regdb_query_wmm(const struct fwdb_header *db, 880 const struct fwdb_country *country, int freq, 881 struct ieee80211_reg_rule *rrule) 882 { 883 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 884 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 885 int i; 886 887 for (i = 0; i < coll->n_rules; i++) { 888 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 889 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 890 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 891 892 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 893 continue; 894 895 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 896 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 897 set_wmm_rule(db, country, rule, rrule); 898 return 0; 899 } 900 } 901 902 return -ENODATA; 903 } 904 905 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 906 { 907 const struct fwdb_header *hdr = regdb; 908 const struct fwdb_country *country; 909 910 if (!regdb) 911 return -ENODATA; 912 913 if (IS_ERR(regdb)) 914 return PTR_ERR(regdb); 915 916 country = &hdr->country[0]; 917 while (country->coll_ptr) { 918 if (alpha2_equal(alpha2, country->alpha2)) 919 return __regdb_query_wmm(regdb, country, freq, rule); 920 921 country++; 922 } 923 924 return -ENODATA; 925 } 926 EXPORT_SYMBOL(reg_query_regdb_wmm); 927 928 static int regdb_query_country(const struct fwdb_header *db, 929 const struct fwdb_country *country) 930 { 931 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 932 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 933 struct ieee80211_regdomain *regdom; 934 unsigned int i; 935 936 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 937 GFP_KERNEL); 938 if (!regdom) 939 return -ENOMEM; 940 941 regdom->n_reg_rules = coll->n_rules; 942 regdom->alpha2[0] = country->alpha2[0]; 943 regdom->alpha2[1] = country->alpha2[1]; 944 regdom->dfs_region = coll->dfs_region; 945 946 for (i = 0; i < regdom->n_reg_rules; i++) { 947 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 948 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 949 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 950 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 951 952 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 953 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 954 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 955 956 rrule->power_rule.max_antenna_gain = 0; 957 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 958 959 rrule->flags = 0; 960 if (rule->flags & FWDB_FLAG_NO_OFDM) 961 rrule->flags |= NL80211_RRF_NO_OFDM; 962 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 963 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 964 if (rule->flags & FWDB_FLAG_DFS) 965 rrule->flags |= NL80211_RRF_DFS; 966 if (rule->flags & FWDB_FLAG_NO_IR) 967 rrule->flags |= NL80211_RRF_NO_IR; 968 if (rule->flags & FWDB_FLAG_AUTO_BW) 969 rrule->flags |= NL80211_RRF_AUTO_BW; 970 971 rrule->dfs_cac_ms = 0; 972 973 /* handle optional data */ 974 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 975 rrule->dfs_cac_ms = 976 1000 * be16_to_cpu(rule->cac_timeout); 977 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 978 set_wmm_rule(db, country, rule, rrule); 979 } 980 981 return reg_schedule_apply(regdom); 982 } 983 984 static int query_regdb(const char *alpha2) 985 { 986 const struct fwdb_header *hdr = regdb; 987 const struct fwdb_country *country; 988 989 ASSERT_RTNL(); 990 991 if (IS_ERR(regdb)) 992 return PTR_ERR(regdb); 993 994 country = &hdr->country[0]; 995 while (country->coll_ptr) { 996 if (alpha2_equal(alpha2, country->alpha2)) 997 return regdb_query_country(regdb, country); 998 country++; 999 } 1000 1001 return -ENODATA; 1002 } 1003 1004 static void regdb_fw_cb(const struct firmware *fw, void *context) 1005 { 1006 int set_error = 0; 1007 bool restore = true; 1008 void *db; 1009 1010 if (!fw) { 1011 pr_info("failed to load regulatory.db\n"); 1012 set_error = -ENODATA; 1013 } else if (!valid_regdb(fw->data, fw->size)) { 1014 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1015 set_error = -EINVAL; 1016 } 1017 1018 rtnl_lock(); 1019 if (regdb && !IS_ERR(regdb)) { 1020 /* negative case - a bug 1021 * positive case - can happen due to race in case of multiple cb's in 1022 * queue, due to usage of asynchronous callback 1023 * 1024 * Either case, just restore and free new db. 1025 */ 1026 } else if (set_error) { 1027 regdb = ERR_PTR(set_error); 1028 } else if (fw) { 1029 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1030 if (db) { 1031 regdb = db; 1032 restore = context && query_regdb(context); 1033 } else { 1034 restore = true; 1035 } 1036 } 1037 1038 if (restore) 1039 restore_regulatory_settings(true, false); 1040 1041 rtnl_unlock(); 1042 1043 kfree(context); 1044 1045 release_firmware(fw); 1046 } 1047 1048 MODULE_FIRMWARE("regulatory.db"); 1049 1050 static int query_regdb_file(const char *alpha2) 1051 { 1052 int err; 1053 1054 ASSERT_RTNL(); 1055 1056 if (regdb) 1057 return query_regdb(alpha2); 1058 1059 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1060 if (!alpha2) 1061 return -ENOMEM; 1062 1063 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1064 ®_fdev->dev, GFP_KERNEL, 1065 (void *)alpha2, regdb_fw_cb); 1066 if (err) 1067 kfree(alpha2); 1068 1069 return err; 1070 } 1071 1072 int reg_reload_regdb(void) 1073 { 1074 const struct firmware *fw; 1075 void *db; 1076 int err; 1077 const struct ieee80211_regdomain *current_regdomain; 1078 struct regulatory_request *request; 1079 1080 err = request_firmware(&fw, "regulatory.db", ®_fdev->dev); 1081 if (err) 1082 return err; 1083 1084 if (!valid_regdb(fw->data, fw->size)) { 1085 err = -ENODATA; 1086 goto out; 1087 } 1088 1089 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1090 if (!db) { 1091 err = -ENOMEM; 1092 goto out; 1093 } 1094 1095 rtnl_lock(); 1096 if (!IS_ERR_OR_NULL(regdb)) 1097 kfree(regdb); 1098 regdb = db; 1099 1100 /* reset regulatory domain */ 1101 current_regdomain = get_cfg80211_regdom(); 1102 1103 request = kzalloc(sizeof(*request), GFP_KERNEL); 1104 if (!request) { 1105 err = -ENOMEM; 1106 goto out_unlock; 1107 } 1108 1109 request->wiphy_idx = WIPHY_IDX_INVALID; 1110 request->alpha2[0] = current_regdomain->alpha2[0]; 1111 request->alpha2[1] = current_regdomain->alpha2[1]; 1112 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1113 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER; 1114 1115 reg_process_hint(request); 1116 1117 out_unlock: 1118 rtnl_unlock(); 1119 out: 1120 release_firmware(fw); 1121 return err; 1122 } 1123 1124 static bool reg_query_database(struct regulatory_request *request) 1125 { 1126 if (query_regdb_file(request->alpha2) == 0) 1127 return true; 1128 1129 if (call_crda(request->alpha2) == 0) 1130 return true; 1131 1132 return false; 1133 } 1134 1135 bool reg_is_valid_request(const char *alpha2) 1136 { 1137 struct regulatory_request *lr = get_last_request(); 1138 1139 if (!lr || lr->processed) 1140 return false; 1141 1142 return alpha2_equal(lr->alpha2, alpha2); 1143 } 1144 1145 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1146 { 1147 struct regulatory_request *lr = get_last_request(); 1148 1149 /* 1150 * Follow the driver's regulatory domain, if present, unless a country 1151 * IE has been processed or a user wants to help compliance further 1152 */ 1153 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1154 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1155 wiphy->regd) 1156 return get_wiphy_regdom(wiphy); 1157 1158 return get_cfg80211_regdom(); 1159 } 1160 1161 static unsigned int 1162 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1163 const struct ieee80211_reg_rule *rule) 1164 { 1165 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1166 const struct ieee80211_freq_range *freq_range_tmp; 1167 const struct ieee80211_reg_rule *tmp; 1168 u32 start_freq, end_freq, idx, no; 1169 1170 for (idx = 0; idx < rd->n_reg_rules; idx++) 1171 if (rule == &rd->reg_rules[idx]) 1172 break; 1173 1174 if (idx == rd->n_reg_rules) 1175 return 0; 1176 1177 /* get start_freq */ 1178 no = idx; 1179 1180 while (no) { 1181 tmp = &rd->reg_rules[--no]; 1182 freq_range_tmp = &tmp->freq_range; 1183 1184 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1185 break; 1186 1187 freq_range = freq_range_tmp; 1188 } 1189 1190 start_freq = freq_range->start_freq_khz; 1191 1192 /* get end_freq */ 1193 freq_range = &rule->freq_range; 1194 no = idx; 1195 1196 while (no < rd->n_reg_rules - 1) { 1197 tmp = &rd->reg_rules[++no]; 1198 freq_range_tmp = &tmp->freq_range; 1199 1200 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1201 break; 1202 1203 freq_range = freq_range_tmp; 1204 } 1205 1206 end_freq = freq_range->end_freq_khz; 1207 1208 return end_freq - start_freq; 1209 } 1210 1211 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1212 const struct ieee80211_reg_rule *rule) 1213 { 1214 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1215 1216 if (rule->flags & NL80211_RRF_NO_320MHZ) 1217 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160)); 1218 if (rule->flags & NL80211_RRF_NO_160MHZ) 1219 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1220 if (rule->flags & NL80211_RRF_NO_80MHZ) 1221 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1222 1223 /* 1224 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1225 * are not allowed. 1226 */ 1227 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1228 rule->flags & NL80211_RRF_NO_HT40PLUS) 1229 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1230 1231 return bw; 1232 } 1233 1234 /* Sanity check on a regulatory rule */ 1235 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1236 { 1237 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1238 u32 freq_diff; 1239 1240 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1241 return false; 1242 1243 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1244 return false; 1245 1246 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1247 1248 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1249 freq_range->max_bandwidth_khz > freq_diff) 1250 return false; 1251 1252 return true; 1253 } 1254 1255 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1256 { 1257 const struct ieee80211_reg_rule *reg_rule = NULL; 1258 unsigned int i; 1259 1260 if (!rd->n_reg_rules) 1261 return false; 1262 1263 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1264 return false; 1265 1266 for (i = 0; i < rd->n_reg_rules; i++) { 1267 reg_rule = &rd->reg_rules[i]; 1268 if (!is_valid_reg_rule(reg_rule)) 1269 return false; 1270 } 1271 1272 return true; 1273 } 1274 1275 /** 1276 * freq_in_rule_band - tells us if a frequency is in a frequency band 1277 * @freq_range: frequency rule we want to query 1278 * @freq_khz: frequency we are inquiring about 1279 * 1280 * This lets us know if a specific frequency rule is or is not relevant to 1281 * a specific frequency's band. Bands are device specific and artificial 1282 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1283 * however it is safe for now to assume that a frequency rule should not be 1284 * part of a frequency's band if the start freq or end freq are off by more 1285 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1286 * 60 GHz band. 1287 * This resolution can be lowered and should be considered as we add 1288 * regulatory rule support for other "bands". 1289 * 1290 * Returns: whether or not the frequency is in the range 1291 */ 1292 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1293 u32 freq_khz) 1294 { 1295 /* 1296 * From 802.11ad: directional multi-gigabit (DMG): 1297 * Pertaining to operation in a frequency band containing a channel 1298 * with the Channel starting frequency above 45 GHz. 1299 */ 1300 u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ; 1301 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1302 return true; 1303 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1304 return true; 1305 return false; 1306 } 1307 1308 /* 1309 * Later on we can perhaps use the more restrictive DFS 1310 * region but we don't have information for that yet so 1311 * for now simply disallow conflicts. 1312 */ 1313 static enum nl80211_dfs_regions 1314 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1315 const enum nl80211_dfs_regions dfs_region2) 1316 { 1317 if (dfs_region1 != dfs_region2) 1318 return NL80211_DFS_UNSET; 1319 return dfs_region1; 1320 } 1321 1322 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1323 const struct ieee80211_wmm_ac *wmm_ac2, 1324 struct ieee80211_wmm_ac *intersect) 1325 { 1326 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1327 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1328 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1329 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1330 } 1331 1332 /* 1333 * Helper for regdom_intersect(), this does the real 1334 * mathematical intersection fun 1335 */ 1336 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1337 const struct ieee80211_regdomain *rd2, 1338 const struct ieee80211_reg_rule *rule1, 1339 const struct ieee80211_reg_rule *rule2, 1340 struct ieee80211_reg_rule *intersected_rule) 1341 { 1342 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1343 struct ieee80211_freq_range *freq_range; 1344 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1345 struct ieee80211_power_rule *power_rule; 1346 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1347 struct ieee80211_wmm_rule *wmm_rule; 1348 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1349 1350 freq_range1 = &rule1->freq_range; 1351 freq_range2 = &rule2->freq_range; 1352 freq_range = &intersected_rule->freq_range; 1353 1354 power_rule1 = &rule1->power_rule; 1355 power_rule2 = &rule2->power_rule; 1356 power_rule = &intersected_rule->power_rule; 1357 1358 wmm_rule1 = &rule1->wmm_rule; 1359 wmm_rule2 = &rule2->wmm_rule; 1360 wmm_rule = &intersected_rule->wmm_rule; 1361 1362 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1363 freq_range2->start_freq_khz); 1364 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1365 freq_range2->end_freq_khz); 1366 1367 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1368 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1369 1370 if (rule1->flags & NL80211_RRF_AUTO_BW) 1371 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1372 if (rule2->flags & NL80211_RRF_AUTO_BW) 1373 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1374 1375 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1376 1377 intersected_rule->flags = rule1->flags | rule2->flags; 1378 1379 /* 1380 * In case NL80211_RRF_AUTO_BW requested for both rules 1381 * set AUTO_BW in intersected rule also. Next we will 1382 * calculate BW correctly in handle_channel function. 1383 * In other case remove AUTO_BW flag while we calculate 1384 * maximum bandwidth correctly and auto calculation is 1385 * not required. 1386 */ 1387 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1388 (rule2->flags & NL80211_RRF_AUTO_BW)) 1389 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1390 else 1391 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1392 1393 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1394 if (freq_range->max_bandwidth_khz > freq_diff) 1395 freq_range->max_bandwidth_khz = freq_diff; 1396 1397 power_rule->max_eirp = min(power_rule1->max_eirp, 1398 power_rule2->max_eirp); 1399 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1400 power_rule2->max_antenna_gain); 1401 1402 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1403 rule2->dfs_cac_ms); 1404 1405 if (rule1->has_wmm && rule2->has_wmm) { 1406 u8 ac; 1407 1408 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1409 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1410 &wmm_rule2->client[ac], 1411 &wmm_rule->client[ac]); 1412 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1413 &wmm_rule2->ap[ac], 1414 &wmm_rule->ap[ac]); 1415 } 1416 1417 intersected_rule->has_wmm = true; 1418 } else if (rule1->has_wmm) { 1419 *wmm_rule = *wmm_rule1; 1420 intersected_rule->has_wmm = true; 1421 } else if (rule2->has_wmm) { 1422 *wmm_rule = *wmm_rule2; 1423 intersected_rule->has_wmm = true; 1424 } else { 1425 intersected_rule->has_wmm = false; 1426 } 1427 1428 if (!is_valid_reg_rule(intersected_rule)) 1429 return -EINVAL; 1430 1431 return 0; 1432 } 1433 1434 /* check whether old rule contains new rule */ 1435 static bool rule_contains(struct ieee80211_reg_rule *r1, 1436 struct ieee80211_reg_rule *r2) 1437 { 1438 /* for simplicity, currently consider only same flags */ 1439 if (r1->flags != r2->flags) 1440 return false; 1441 1442 /* verify r1 is more restrictive */ 1443 if ((r1->power_rule.max_antenna_gain > 1444 r2->power_rule.max_antenna_gain) || 1445 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1446 return false; 1447 1448 /* make sure r2's range is contained within r1 */ 1449 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1450 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1451 return false; 1452 1453 /* and finally verify that r1.max_bw >= r2.max_bw */ 1454 if (r1->freq_range.max_bandwidth_khz < 1455 r2->freq_range.max_bandwidth_khz) 1456 return false; 1457 1458 return true; 1459 } 1460 1461 /* add or extend current rules. do nothing if rule is already contained */ 1462 static void add_rule(struct ieee80211_reg_rule *rule, 1463 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1464 { 1465 struct ieee80211_reg_rule *tmp_rule; 1466 int i; 1467 1468 for (i = 0; i < *n_rules; i++) { 1469 tmp_rule = ®_rules[i]; 1470 /* rule is already contained - do nothing */ 1471 if (rule_contains(tmp_rule, rule)) 1472 return; 1473 1474 /* extend rule if possible */ 1475 if (rule_contains(rule, tmp_rule)) { 1476 memcpy(tmp_rule, rule, sizeof(*rule)); 1477 return; 1478 } 1479 } 1480 1481 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1482 (*n_rules)++; 1483 } 1484 1485 /** 1486 * regdom_intersect - do the intersection between two regulatory domains 1487 * @rd1: first regulatory domain 1488 * @rd2: second regulatory domain 1489 * 1490 * Use this function to get the intersection between two regulatory domains. 1491 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1492 * as no one single alpha2 can represent this regulatory domain. 1493 * 1494 * Returns a pointer to the regulatory domain structure which will hold the 1495 * resulting intersection of rules between rd1 and rd2. We will 1496 * kzalloc() this structure for you. 1497 * 1498 * Returns: the intersected regdomain 1499 */ 1500 static struct ieee80211_regdomain * 1501 regdom_intersect(const struct ieee80211_regdomain *rd1, 1502 const struct ieee80211_regdomain *rd2) 1503 { 1504 int r; 1505 unsigned int x, y; 1506 unsigned int num_rules = 0; 1507 const struct ieee80211_reg_rule *rule1, *rule2; 1508 struct ieee80211_reg_rule intersected_rule; 1509 struct ieee80211_regdomain *rd; 1510 1511 if (!rd1 || !rd2) 1512 return NULL; 1513 1514 /* 1515 * First we get a count of the rules we'll need, then we actually 1516 * build them. This is to so we can malloc() and free() a 1517 * regdomain once. The reason we use reg_rules_intersect() here 1518 * is it will return -EINVAL if the rule computed makes no sense. 1519 * All rules that do check out OK are valid. 1520 */ 1521 1522 for (x = 0; x < rd1->n_reg_rules; x++) { 1523 rule1 = &rd1->reg_rules[x]; 1524 for (y = 0; y < rd2->n_reg_rules; y++) { 1525 rule2 = &rd2->reg_rules[y]; 1526 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1527 &intersected_rule)) 1528 num_rules++; 1529 } 1530 } 1531 1532 if (!num_rules) 1533 return NULL; 1534 1535 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1536 if (!rd) 1537 return NULL; 1538 1539 for (x = 0; x < rd1->n_reg_rules; x++) { 1540 rule1 = &rd1->reg_rules[x]; 1541 for (y = 0; y < rd2->n_reg_rules; y++) { 1542 rule2 = &rd2->reg_rules[y]; 1543 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1544 &intersected_rule); 1545 /* 1546 * No need to memset here the intersected rule here as 1547 * we're not using the stack anymore 1548 */ 1549 if (r) 1550 continue; 1551 1552 add_rule(&intersected_rule, rd->reg_rules, 1553 &rd->n_reg_rules); 1554 } 1555 } 1556 1557 rd->alpha2[0] = '9'; 1558 rd->alpha2[1] = '8'; 1559 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1560 rd2->dfs_region); 1561 1562 return rd; 1563 } 1564 1565 /* 1566 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1567 * want to just have the channel structure use these 1568 */ 1569 static u32 map_regdom_flags(u32 rd_flags) 1570 { 1571 u32 channel_flags = 0; 1572 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1573 channel_flags |= IEEE80211_CHAN_NO_IR; 1574 if (rd_flags & NL80211_RRF_DFS) 1575 channel_flags |= IEEE80211_CHAN_RADAR; 1576 if (rd_flags & NL80211_RRF_NO_OFDM) 1577 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1578 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1579 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1580 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1581 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1582 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1583 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1584 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1585 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1586 if (rd_flags & NL80211_RRF_NO_80MHZ) 1587 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1588 if (rd_flags & NL80211_RRF_NO_160MHZ) 1589 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1590 if (rd_flags & NL80211_RRF_NO_HE) 1591 channel_flags |= IEEE80211_CHAN_NO_HE; 1592 if (rd_flags & NL80211_RRF_NO_320MHZ) 1593 channel_flags |= IEEE80211_CHAN_NO_320MHZ; 1594 if (rd_flags & NL80211_RRF_NO_EHT) 1595 channel_flags |= IEEE80211_CHAN_NO_EHT; 1596 if (rd_flags & NL80211_RRF_DFS_CONCURRENT) 1597 channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT; 1598 if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT) 1599 channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT; 1600 if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT) 1601 channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT; 1602 if (rd_flags & NL80211_RRF_PSD) 1603 channel_flags |= IEEE80211_CHAN_PSD; 1604 if (rd_flags & NL80211_RRF_ALLOW_6GHZ_VLP_AP) 1605 channel_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP; 1606 if (rd_flags & NL80211_RRF_ALLOW_20MHZ_ACTIVITY) 1607 channel_flags |= IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY; 1608 if (rd_flags & NL80211_RRF_NO_UHR) 1609 channel_flags |= IEEE80211_CHAN_NO_UHR; 1610 return channel_flags; 1611 } 1612 1613 static const struct ieee80211_reg_rule * 1614 freq_reg_info_regd(u32 center_freq, 1615 const struct ieee80211_regdomain *regd, u32 bw) 1616 { 1617 int i; 1618 bool band_rule_found = false; 1619 bool bw_fits = false; 1620 1621 if (!regd) 1622 return ERR_PTR(-EINVAL); 1623 1624 for (i = 0; i < regd->n_reg_rules; i++) { 1625 const struct ieee80211_reg_rule *rr; 1626 const struct ieee80211_freq_range *fr = NULL; 1627 1628 rr = ®d->reg_rules[i]; 1629 fr = &rr->freq_range; 1630 1631 /* 1632 * We only need to know if one frequency rule was 1633 * in center_freq's band, that's enough, so let's 1634 * not overwrite it once found 1635 */ 1636 if (!band_rule_found) 1637 band_rule_found = freq_in_rule_band(fr, center_freq); 1638 1639 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1640 1641 if (band_rule_found && bw_fits) 1642 return rr; 1643 } 1644 1645 if (!band_rule_found) 1646 return ERR_PTR(-ERANGE); 1647 1648 return ERR_PTR(-EINVAL); 1649 } 1650 1651 static const struct ieee80211_reg_rule * 1652 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1653 { 1654 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1655 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1656 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE); 1657 int i = ARRAY_SIZE(bws) - 1; 1658 u32 bw; 1659 1660 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1661 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1662 if (!IS_ERR(reg_rule)) 1663 return reg_rule; 1664 } 1665 1666 return reg_rule; 1667 } 1668 1669 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1670 u32 center_freq) 1671 { 1672 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1673 1674 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1675 } 1676 EXPORT_SYMBOL(freq_reg_info); 1677 1678 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1679 { 1680 switch (initiator) { 1681 case NL80211_REGDOM_SET_BY_CORE: 1682 return "core"; 1683 case NL80211_REGDOM_SET_BY_USER: 1684 return "user"; 1685 case NL80211_REGDOM_SET_BY_DRIVER: 1686 return "driver"; 1687 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1688 return "country element"; 1689 default: 1690 WARN_ON(1); 1691 return "bug"; 1692 } 1693 } 1694 EXPORT_SYMBOL(reg_initiator_name); 1695 1696 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1697 const struct ieee80211_reg_rule *reg_rule, 1698 const struct ieee80211_channel *chan) 1699 { 1700 const struct ieee80211_freq_range *freq_range = NULL; 1701 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1702 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1703 1704 freq_range = ®_rule->freq_range; 1705 1706 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1707 center_freq_khz = ieee80211_channel_to_khz(chan); 1708 /* Check if auto calculation requested */ 1709 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1710 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1711 1712 if (is_s1g) { 1713 if (max_bandwidth_khz < MHZ_TO_KHZ(16)) 1714 bw_flags |= IEEE80211_CHAN_NO_16MHZ; 1715 if (max_bandwidth_khz < MHZ_TO_KHZ(8)) 1716 bw_flags |= IEEE80211_CHAN_NO_8MHZ; 1717 if (max_bandwidth_khz < MHZ_TO_KHZ(4)) 1718 bw_flags |= IEEE80211_CHAN_NO_4MHZ; 1719 return bw_flags; 1720 } 1721 1722 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1723 if (!cfg80211_does_bw_fit_range(freq_range, 1724 center_freq_khz, 1725 MHZ_TO_KHZ(10))) 1726 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1727 if (!cfg80211_does_bw_fit_range(freq_range, 1728 center_freq_khz, 1729 MHZ_TO_KHZ(20))) 1730 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1731 1732 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1733 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1734 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1735 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1736 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1737 bw_flags |= IEEE80211_CHAN_NO_HT40; 1738 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1739 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1740 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1741 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1742 if (max_bandwidth_khz < MHZ_TO_KHZ(320)) 1743 bw_flags |= IEEE80211_CHAN_NO_320MHZ; 1744 1745 return bw_flags; 1746 } 1747 1748 static void handle_channel_single_rule(struct wiphy *wiphy, 1749 enum nl80211_reg_initiator initiator, 1750 struct ieee80211_channel *chan, 1751 u32 flags, 1752 struct regulatory_request *lr, 1753 struct wiphy *request_wiphy, 1754 const struct ieee80211_reg_rule *reg_rule) 1755 { 1756 u32 bw_flags = 0; 1757 const struct ieee80211_power_rule *power_rule = NULL; 1758 const struct ieee80211_regdomain *regd; 1759 1760 regd = reg_get_regdomain(wiphy); 1761 1762 power_rule = ®_rule->power_rule; 1763 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1764 1765 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1766 request_wiphy && request_wiphy == wiphy && 1767 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1768 /* 1769 * This guarantees the driver's requested regulatory domain 1770 * will always be used as a base for further regulatory 1771 * settings 1772 */ 1773 chan->flags = chan->orig_flags = 1774 map_regdom_flags(reg_rule->flags) | bw_flags; 1775 chan->max_antenna_gain = chan->orig_mag = 1776 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1777 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1778 (int) MBM_TO_DBM(power_rule->max_eirp); 1779 1780 if (chan->flags & IEEE80211_CHAN_RADAR) { 1781 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1782 if (reg_rule->dfs_cac_ms) 1783 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1784 } 1785 1786 if (chan->flags & IEEE80211_CHAN_PSD) 1787 chan->psd = reg_rule->psd; 1788 1789 return; 1790 } 1791 1792 chan->dfs_state = NL80211_DFS_USABLE; 1793 chan->dfs_state_entered = jiffies; 1794 1795 chan->beacon_found = false; 1796 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1797 chan->max_antenna_gain = 1798 min_t(int, chan->orig_mag, 1799 MBI_TO_DBI(power_rule->max_antenna_gain)); 1800 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1801 1802 if (chan->flags & IEEE80211_CHAN_RADAR) { 1803 if (reg_rule->dfs_cac_ms) 1804 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1805 else 1806 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1807 } 1808 1809 if (chan->flags & IEEE80211_CHAN_PSD) 1810 chan->psd = reg_rule->psd; 1811 1812 if (chan->orig_mpwr) { 1813 /* 1814 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1815 * will always follow the passed country IE power settings. 1816 */ 1817 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1818 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1819 chan->max_power = chan->max_reg_power; 1820 else 1821 chan->max_power = min(chan->orig_mpwr, 1822 chan->max_reg_power); 1823 } else 1824 chan->max_power = chan->max_reg_power; 1825 } 1826 1827 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1828 enum nl80211_reg_initiator initiator, 1829 struct ieee80211_channel *chan, 1830 u32 flags, 1831 struct regulatory_request *lr, 1832 struct wiphy *request_wiphy, 1833 const struct ieee80211_reg_rule *rrule1, 1834 const struct ieee80211_reg_rule *rrule2, 1835 struct ieee80211_freq_range *comb_range) 1836 { 1837 u32 bw_flags1 = 0; 1838 u32 bw_flags2 = 0; 1839 const struct ieee80211_power_rule *power_rule1 = NULL; 1840 const struct ieee80211_power_rule *power_rule2 = NULL; 1841 const struct ieee80211_regdomain *regd; 1842 1843 regd = reg_get_regdomain(wiphy); 1844 1845 power_rule1 = &rrule1->power_rule; 1846 power_rule2 = &rrule2->power_rule; 1847 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1848 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1849 1850 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1851 request_wiphy && request_wiphy == wiphy && 1852 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1853 /* This guarantees the driver's requested regulatory domain 1854 * will always be used as a base for further regulatory 1855 * settings 1856 */ 1857 chan->flags = 1858 map_regdom_flags(rrule1->flags) | 1859 map_regdom_flags(rrule2->flags) | 1860 bw_flags1 | 1861 bw_flags2; 1862 chan->orig_flags = chan->flags; 1863 chan->max_antenna_gain = 1864 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1865 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1866 chan->orig_mag = chan->max_antenna_gain; 1867 chan->max_reg_power = 1868 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1869 MBM_TO_DBM(power_rule2->max_eirp)); 1870 chan->max_power = chan->max_reg_power; 1871 chan->orig_mpwr = chan->max_reg_power; 1872 1873 if (chan->flags & IEEE80211_CHAN_RADAR) { 1874 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1875 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1876 chan->dfs_cac_ms = max_t(unsigned int, 1877 rrule1->dfs_cac_ms, 1878 rrule2->dfs_cac_ms); 1879 } 1880 1881 if ((rrule1->flags & NL80211_RRF_PSD) && 1882 (rrule2->flags & NL80211_RRF_PSD)) 1883 chan->psd = min_t(s8, rrule1->psd, rrule2->psd); 1884 else 1885 chan->flags &= ~NL80211_RRF_PSD; 1886 1887 return; 1888 } 1889 1890 chan->dfs_state = NL80211_DFS_USABLE; 1891 chan->dfs_state_entered = jiffies; 1892 1893 chan->beacon_found = false; 1894 chan->flags = flags | bw_flags1 | bw_flags2 | 1895 map_regdom_flags(rrule1->flags) | 1896 map_regdom_flags(rrule2->flags); 1897 1898 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1899 * (otherwise no adj. rule case), recheck therefore 1900 */ 1901 if (cfg80211_does_bw_fit_range(comb_range, 1902 ieee80211_channel_to_khz(chan), 1903 MHZ_TO_KHZ(10))) 1904 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1905 if (cfg80211_does_bw_fit_range(comb_range, 1906 ieee80211_channel_to_khz(chan), 1907 MHZ_TO_KHZ(20))) 1908 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1909 1910 chan->max_antenna_gain = 1911 min_t(int, chan->orig_mag, 1912 min_t(int, 1913 MBI_TO_DBI(power_rule1->max_antenna_gain), 1914 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1915 chan->max_reg_power = min_t(int, 1916 MBM_TO_DBM(power_rule1->max_eirp), 1917 MBM_TO_DBM(power_rule2->max_eirp)); 1918 1919 if (chan->flags & IEEE80211_CHAN_RADAR) { 1920 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1921 chan->dfs_cac_ms = max_t(unsigned int, 1922 rrule1->dfs_cac_ms, 1923 rrule2->dfs_cac_ms); 1924 else 1925 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1926 } 1927 1928 if (chan->orig_mpwr) { 1929 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1930 * will always follow the passed country IE power settings. 1931 */ 1932 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1933 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1934 chan->max_power = chan->max_reg_power; 1935 else 1936 chan->max_power = min(chan->orig_mpwr, 1937 chan->max_reg_power); 1938 } else { 1939 chan->max_power = chan->max_reg_power; 1940 } 1941 } 1942 1943 /* Note that right now we assume the desired channel bandwidth 1944 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1945 * per channel, the primary and the extension channel). 1946 */ 1947 static void handle_channel(struct wiphy *wiphy, 1948 enum nl80211_reg_initiator initiator, 1949 struct ieee80211_channel *chan) 1950 { 1951 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1952 struct regulatory_request *lr = get_last_request(); 1953 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1954 const struct ieee80211_reg_rule *rrule = NULL; 1955 const struct ieee80211_reg_rule *rrule1 = NULL; 1956 const struct ieee80211_reg_rule *rrule2 = NULL; 1957 1958 u32 flags = chan->orig_flags; 1959 1960 rrule = freq_reg_info(wiphy, orig_chan_freq); 1961 if (IS_ERR(rrule)) { 1962 /* check for adjacent match, therefore get rules for 1963 * chan - 20 MHz and chan + 20 MHz and test 1964 * if reg rules are adjacent 1965 */ 1966 rrule1 = freq_reg_info(wiphy, 1967 orig_chan_freq - MHZ_TO_KHZ(20)); 1968 rrule2 = freq_reg_info(wiphy, 1969 orig_chan_freq + MHZ_TO_KHZ(20)); 1970 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 1971 struct ieee80211_freq_range comb_range; 1972 1973 if (rrule1->freq_range.end_freq_khz != 1974 rrule2->freq_range.start_freq_khz) 1975 goto disable_chan; 1976 1977 comb_range.start_freq_khz = 1978 rrule1->freq_range.start_freq_khz; 1979 comb_range.end_freq_khz = 1980 rrule2->freq_range.end_freq_khz; 1981 comb_range.max_bandwidth_khz = 1982 min_t(u32, 1983 rrule1->freq_range.max_bandwidth_khz, 1984 rrule2->freq_range.max_bandwidth_khz); 1985 1986 if (!cfg80211_does_bw_fit_range(&comb_range, 1987 orig_chan_freq, 1988 MHZ_TO_KHZ(20))) 1989 goto disable_chan; 1990 1991 handle_channel_adjacent_rules(wiphy, initiator, chan, 1992 flags, lr, request_wiphy, 1993 rrule1, rrule2, 1994 &comb_range); 1995 return; 1996 } 1997 1998 disable_chan: 1999 /* We will disable all channels that do not match our 2000 * received regulatory rule unless the hint is coming 2001 * from a Country IE and the Country IE had no information 2002 * about a band. The IEEE 802.11 spec allows for an AP 2003 * to send only a subset of the regulatory rules allowed, 2004 * so an AP in the US that only supports 2.4 GHz may only send 2005 * a country IE with information for the 2.4 GHz band 2006 * while 5 GHz is still supported. 2007 */ 2008 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2009 PTR_ERR(rrule) == -ERANGE) 2010 return; 2011 2012 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2013 request_wiphy && request_wiphy == wiphy && 2014 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2015 pr_debug("Disabling freq %d.%03d MHz for good\n", 2016 chan->center_freq, chan->freq_offset); 2017 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2018 chan->flags = chan->orig_flags; 2019 } else { 2020 pr_debug("Disabling freq %d.%03d MHz\n", 2021 chan->center_freq, chan->freq_offset); 2022 chan->flags |= IEEE80211_CHAN_DISABLED; 2023 } 2024 return; 2025 } 2026 2027 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2028 request_wiphy, rrule); 2029 } 2030 2031 static void handle_band(struct wiphy *wiphy, 2032 enum nl80211_reg_initiator initiator, 2033 struct ieee80211_supported_band *sband) 2034 { 2035 unsigned int i; 2036 2037 if (!sband) 2038 return; 2039 2040 for (i = 0; i < sband->n_channels; i++) 2041 handle_channel(wiphy, initiator, &sband->channels[i]); 2042 } 2043 2044 static bool reg_request_cell_base(struct regulatory_request *request) 2045 { 2046 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2047 return false; 2048 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2049 } 2050 2051 bool reg_last_request_cell_base(void) 2052 { 2053 return reg_request_cell_base(get_last_request()); 2054 } 2055 2056 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2057 /* Core specific check */ 2058 static enum reg_request_treatment 2059 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2060 { 2061 struct regulatory_request *lr = get_last_request(); 2062 2063 if (!reg_num_devs_support_basehint) 2064 return REG_REQ_IGNORE; 2065 2066 if (reg_request_cell_base(lr) && 2067 !regdom_changes(pending_request->alpha2)) 2068 return REG_REQ_ALREADY_SET; 2069 2070 return REG_REQ_OK; 2071 } 2072 2073 /* Device specific check */ 2074 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2075 { 2076 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2077 } 2078 #else 2079 static enum reg_request_treatment 2080 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2081 { 2082 return REG_REQ_IGNORE; 2083 } 2084 2085 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2086 { 2087 return true; 2088 } 2089 #endif 2090 2091 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2092 { 2093 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2094 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2095 return true; 2096 return false; 2097 } 2098 2099 static bool ignore_reg_update(struct wiphy *wiphy, 2100 enum nl80211_reg_initiator initiator) 2101 { 2102 struct regulatory_request *lr = get_last_request(); 2103 2104 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2105 return true; 2106 2107 if (!lr) { 2108 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2109 reg_initiator_name(initiator)); 2110 return true; 2111 } 2112 2113 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2114 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2115 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2116 reg_initiator_name(initiator)); 2117 return true; 2118 } 2119 2120 /* 2121 * wiphy->regd will be set once the device has its own 2122 * desired regulatory domain set 2123 */ 2124 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2125 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2126 !is_world_regdom(lr->alpha2)) { 2127 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2128 reg_initiator_name(initiator)); 2129 return true; 2130 } 2131 2132 if (reg_request_cell_base(lr)) 2133 return reg_dev_ignore_cell_hint(wiphy); 2134 2135 return false; 2136 } 2137 2138 static bool reg_is_world_roaming(struct wiphy *wiphy) 2139 { 2140 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2141 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2142 struct regulatory_request *lr = get_last_request(); 2143 2144 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2145 return true; 2146 2147 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2148 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2149 return true; 2150 2151 return false; 2152 } 2153 2154 static void reg_call_notifier(struct wiphy *wiphy, 2155 struct regulatory_request *request) 2156 { 2157 if (wiphy->reg_notifier) 2158 wiphy->reg_notifier(wiphy, request); 2159 } 2160 2161 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2162 struct reg_beacon *reg_beacon) 2163 { 2164 struct ieee80211_supported_band *sband; 2165 struct ieee80211_channel *chan; 2166 bool channel_changed = false; 2167 struct ieee80211_channel chan_before; 2168 struct regulatory_request *lr = get_last_request(); 2169 2170 sband = wiphy->bands[reg_beacon->chan.band]; 2171 chan = &sband->channels[chan_idx]; 2172 2173 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2174 return; 2175 2176 if (chan->beacon_found) 2177 return; 2178 2179 chan->beacon_found = true; 2180 2181 if (!reg_is_world_roaming(wiphy)) 2182 return; 2183 2184 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2185 return; 2186 2187 chan_before = *chan; 2188 2189 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2190 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2191 channel_changed = true; 2192 } 2193 2194 if (channel_changed) { 2195 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2196 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON) 2197 reg_call_notifier(wiphy, lr); 2198 } 2199 } 2200 2201 /* 2202 * Called when a scan on a wiphy finds a beacon on 2203 * new channel 2204 */ 2205 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2206 struct reg_beacon *reg_beacon) 2207 { 2208 unsigned int i; 2209 struct ieee80211_supported_band *sband; 2210 2211 if (!wiphy->bands[reg_beacon->chan.band]) 2212 return; 2213 2214 sband = wiphy->bands[reg_beacon->chan.band]; 2215 2216 for (i = 0; i < sband->n_channels; i++) 2217 handle_reg_beacon(wiphy, i, reg_beacon); 2218 } 2219 2220 /* 2221 * Called upon reg changes or a new wiphy is added 2222 */ 2223 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2224 { 2225 unsigned int i; 2226 struct ieee80211_supported_band *sband; 2227 struct reg_beacon *reg_beacon; 2228 2229 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2230 if (!wiphy->bands[reg_beacon->chan.band]) 2231 continue; 2232 sband = wiphy->bands[reg_beacon->chan.band]; 2233 for (i = 0; i < sband->n_channels; i++) 2234 handle_reg_beacon(wiphy, i, reg_beacon); 2235 } 2236 } 2237 2238 /* Reap the advantages of previously found beacons */ 2239 static void reg_process_beacons(struct wiphy *wiphy) 2240 { 2241 /* 2242 * Means we are just firing up cfg80211, so no beacons would 2243 * have been processed yet. 2244 */ 2245 if (!last_request) 2246 return; 2247 wiphy_update_beacon_reg(wiphy); 2248 } 2249 2250 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2251 { 2252 if (!chan) 2253 return false; 2254 if (chan->flags & IEEE80211_CHAN_DISABLED) 2255 return false; 2256 /* This would happen when regulatory rules disallow HT40 completely */ 2257 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2258 return false; 2259 return true; 2260 } 2261 2262 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2263 struct ieee80211_channel *channel) 2264 { 2265 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2266 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2267 const struct ieee80211_regdomain *regd; 2268 unsigned int i; 2269 u32 flags; 2270 2271 if (!is_ht40_allowed(channel)) { 2272 channel->flags |= IEEE80211_CHAN_NO_HT40; 2273 return; 2274 } 2275 2276 /* 2277 * We need to ensure the extension channels exist to 2278 * be able to use HT40- or HT40+, this finds them (or not) 2279 */ 2280 for (i = 0; i < sband->n_channels; i++) { 2281 struct ieee80211_channel *c = &sband->channels[i]; 2282 2283 if (c->center_freq == (channel->center_freq - 20)) 2284 channel_before = c; 2285 if (c->center_freq == (channel->center_freq + 20)) 2286 channel_after = c; 2287 } 2288 2289 flags = 0; 2290 regd = get_wiphy_regdom(wiphy); 2291 if (regd) { 2292 const struct ieee80211_reg_rule *reg_rule = 2293 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2294 regd, MHZ_TO_KHZ(20)); 2295 2296 if (!IS_ERR(reg_rule)) 2297 flags = reg_rule->flags; 2298 } 2299 2300 /* 2301 * Please note that this assumes target bandwidth is 20 MHz, 2302 * if that ever changes we also need to change the below logic 2303 * to include that as well. 2304 */ 2305 if (!is_ht40_allowed(channel_before) || 2306 flags & NL80211_RRF_NO_HT40MINUS) 2307 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2308 else 2309 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2310 2311 if (!is_ht40_allowed(channel_after) || 2312 flags & NL80211_RRF_NO_HT40PLUS) 2313 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2314 else 2315 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2316 } 2317 2318 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2319 struct ieee80211_supported_band *sband) 2320 { 2321 unsigned int i; 2322 2323 if (!sband) 2324 return; 2325 2326 for (i = 0; i < sband->n_channels; i++) 2327 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2328 } 2329 2330 static void reg_process_ht_flags(struct wiphy *wiphy) 2331 { 2332 enum nl80211_band band; 2333 2334 if (!wiphy) 2335 return; 2336 2337 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2338 /* 2339 * Don't apply HT flags to channels within the S1G band. 2340 * Each bonded channel will instead be validated individually 2341 * within cfg80211_s1g_usable(). 2342 */ 2343 if (band == NL80211_BAND_S1GHZ) 2344 continue; 2345 2346 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2347 } 2348 } 2349 2350 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2351 { 2352 struct cfg80211_chan_def chandef = {}; 2353 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2354 enum nl80211_iftype iftype; 2355 bool ret; 2356 int link; 2357 2358 iftype = wdev->iftype; 2359 2360 /* make sure the interface is active */ 2361 if (!wdev->netdev || !netif_running(wdev->netdev)) 2362 return true; 2363 2364 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) { 2365 struct ieee80211_channel *chan; 2366 2367 if (!wdev->valid_links && link > 0) 2368 break; 2369 if (wdev->valid_links && !(wdev->valid_links & BIT(link))) 2370 continue; 2371 switch (iftype) { 2372 case NL80211_IFTYPE_AP: 2373 case NL80211_IFTYPE_P2P_GO: 2374 if (!wdev->links[link].ap.beacon_interval) 2375 continue; 2376 chandef = wdev->links[link].ap.chandef; 2377 break; 2378 case NL80211_IFTYPE_MESH_POINT: 2379 if (!wdev->u.mesh.beacon_interval) 2380 continue; 2381 chandef = wdev->u.mesh.chandef; 2382 break; 2383 case NL80211_IFTYPE_ADHOC: 2384 if (!wdev->u.ibss.ssid_len) 2385 continue; 2386 chandef = wdev->u.ibss.chandef; 2387 break; 2388 case NL80211_IFTYPE_STATION: 2389 case NL80211_IFTYPE_P2P_CLIENT: 2390 /* Maybe we could consider disabling that link only? */ 2391 if (!wdev->links[link].client.current_bss) 2392 continue; 2393 2394 chan = wdev->links[link].client.current_bss->pub.channel; 2395 if (!chan) 2396 continue; 2397 2398 if (!rdev->ops->get_channel || 2399 rdev_get_channel(rdev, wdev, link, &chandef)) 2400 cfg80211_chandef_create(&chandef, chan, 2401 NL80211_CHAN_NO_HT); 2402 break; 2403 case NL80211_IFTYPE_MONITOR: 2404 case NL80211_IFTYPE_AP_VLAN: 2405 case NL80211_IFTYPE_P2P_DEVICE: 2406 /* no enforcement required */ 2407 break; 2408 case NL80211_IFTYPE_OCB: 2409 if (!wdev->u.ocb.chandef.chan) 2410 continue; 2411 chandef = wdev->u.ocb.chandef; 2412 break; 2413 case NL80211_IFTYPE_NAN: 2414 /* we have no info, but NAN is also pretty universal */ 2415 continue; 2416 default: 2417 /* others not implemented for now */ 2418 WARN_ON_ONCE(1); 2419 break; 2420 } 2421 2422 switch (iftype) { 2423 case NL80211_IFTYPE_AP: 2424 case NL80211_IFTYPE_P2P_GO: 2425 case NL80211_IFTYPE_ADHOC: 2426 case NL80211_IFTYPE_MESH_POINT: 2427 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, 2428 iftype); 2429 if (!ret) 2430 return ret; 2431 break; 2432 case NL80211_IFTYPE_STATION: 2433 case NL80211_IFTYPE_P2P_CLIENT: 2434 ret = cfg80211_chandef_usable(wiphy, &chandef, 2435 IEEE80211_CHAN_DISABLED); 2436 if (!ret) 2437 return ret; 2438 break; 2439 default: 2440 break; 2441 } 2442 } 2443 2444 return true; 2445 } 2446 2447 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2448 { 2449 struct wireless_dev *wdev; 2450 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2451 2452 guard(wiphy)(wiphy); 2453 2454 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2455 if (!reg_wdev_chan_valid(wiphy, wdev)) 2456 cfg80211_leave(rdev, wdev, -1); 2457 } 2458 2459 static void reg_check_chans_work(struct work_struct *work) 2460 { 2461 struct cfg80211_registered_device *rdev; 2462 2463 pr_debug("Verifying active interfaces after reg change\n"); 2464 rtnl_lock(); 2465 2466 for_each_rdev(rdev) 2467 reg_leave_invalid_chans(&rdev->wiphy); 2468 2469 rtnl_unlock(); 2470 } 2471 2472 void reg_check_channels(void) 2473 { 2474 /* 2475 * Give usermode a chance to do something nicer (move to another 2476 * channel, orderly disconnection), before forcing a disconnection. 2477 */ 2478 mod_delayed_work(system_power_efficient_wq, 2479 ®_check_chans, 2480 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2481 } 2482 2483 static void wiphy_update_regulatory(struct wiphy *wiphy, 2484 enum nl80211_reg_initiator initiator) 2485 { 2486 enum nl80211_band band; 2487 struct regulatory_request *lr = get_last_request(); 2488 2489 if (ignore_reg_update(wiphy, initiator)) { 2490 /* 2491 * Regulatory updates set by CORE are ignored for custom 2492 * regulatory cards. Let us notify the changes to the driver, 2493 * as some drivers used this to restore its orig_* reg domain. 2494 */ 2495 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2496 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2497 !(wiphy->regulatory_flags & 2498 REGULATORY_WIPHY_SELF_MANAGED)) 2499 reg_call_notifier(wiphy, lr); 2500 return; 2501 } 2502 2503 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2504 2505 for (band = 0; band < NUM_NL80211_BANDS; band++) 2506 handle_band(wiphy, initiator, wiphy->bands[band]); 2507 2508 reg_process_beacons(wiphy); 2509 reg_process_ht_flags(wiphy); 2510 reg_call_notifier(wiphy, lr); 2511 } 2512 2513 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2514 { 2515 struct cfg80211_registered_device *rdev; 2516 struct wiphy *wiphy; 2517 2518 ASSERT_RTNL(); 2519 2520 for_each_rdev(rdev) { 2521 wiphy = &rdev->wiphy; 2522 wiphy_update_regulatory(wiphy, initiator); 2523 } 2524 2525 reg_check_channels(); 2526 } 2527 2528 static void handle_channel_custom(struct wiphy *wiphy, 2529 struct ieee80211_channel *chan, 2530 const struct ieee80211_regdomain *regd, 2531 u32 min_bw) 2532 { 2533 u32 bw_flags = 0; 2534 const struct ieee80211_reg_rule *reg_rule = NULL; 2535 const struct ieee80211_power_rule *power_rule = NULL; 2536 u32 bw, center_freq_khz; 2537 2538 center_freq_khz = ieee80211_channel_to_khz(chan); 2539 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2540 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2541 if (!IS_ERR(reg_rule)) 2542 break; 2543 } 2544 2545 if (IS_ERR_OR_NULL(reg_rule)) { 2546 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2547 chan->center_freq, chan->freq_offset); 2548 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2549 chan->flags |= IEEE80211_CHAN_DISABLED; 2550 } else { 2551 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2552 chan->flags = chan->orig_flags; 2553 } 2554 return; 2555 } 2556 2557 power_rule = ®_rule->power_rule; 2558 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2559 2560 chan->dfs_state_entered = jiffies; 2561 chan->dfs_state = NL80211_DFS_USABLE; 2562 2563 chan->beacon_found = false; 2564 2565 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2566 chan->flags = chan->orig_flags | bw_flags | 2567 map_regdom_flags(reg_rule->flags); 2568 else 2569 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2570 2571 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2572 chan->max_reg_power = chan->max_power = 2573 (int) MBM_TO_DBM(power_rule->max_eirp); 2574 2575 if (chan->flags & IEEE80211_CHAN_RADAR) { 2576 if (reg_rule->dfs_cac_ms) 2577 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2578 else 2579 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2580 } 2581 2582 if (chan->flags & IEEE80211_CHAN_PSD) 2583 chan->psd = reg_rule->psd; 2584 2585 chan->max_power = chan->max_reg_power; 2586 } 2587 2588 static void handle_band_custom(struct wiphy *wiphy, 2589 struct ieee80211_supported_band *sband, 2590 const struct ieee80211_regdomain *regd) 2591 { 2592 unsigned int i; 2593 2594 if (!sband) 2595 return; 2596 2597 /* 2598 * We currently assume that you always want at least 20 MHz, 2599 * otherwise channel 12 might get enabled if this rule is 2600 * compatible to US, which permits 2402 - 2472 MHz. 2601 */ 2602 for (i = 0; i < sband->n_channels; i++) 2603 handle_channel_custom(wiphy, &sband->channels[i], regd, 2604 MHZ_TO_KHZ(20)); 2605 } 2606 2607 /* Used by drivers prior to wiphy registration */ 2608 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2609 const struct ieee80211_regdomain *regd) 2610 { 2611 const struct ieee80211_regdomain *new_regd, *tmp; 2612 enum nl80211_band band; 2613 unsigned int bands_set = 0; 2614 2615 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2616 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2617 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2618 2619 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2620 if (!wiphy->bands[band]) 2621 continue; 2622 handle_band_custom(wiphy, wiphy->bands[band], regd); 2623 bands_set++; 2624 } 2625 2626 /* 2627 * no point in calling this if it won't have any effect 2628 * on your device's supported bands. 2629 */ 2630 WARN_ON(!bands_set); 2631 new_regd = reg_copy_regd(regd); 2632 if (IS_ERR(new_regd)) 2633 return; 2634 2635 rtnl_lock(); 2636 scoped_guard(wiphy, wiphy) { 2637 tmp = get_wiphy_regdom(wiphy); 2638 rcu_assign_pointer(wiphy->regd, new_regd); 2639 rcu_free_regdom(tmp); 2640 } 2641 rtnl_unlock(); 2642 } 2643 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2644 2645 static void reg_set_request_processed(void) 2646 { 2647 bool need_more_processing = false; 2648 struct regulatory_request *lr = get_last_request(); 2649 2650 lr->processed = true; 2651 2652 spin_lock(®_requests_lock); 2653 if (!list_empty(®_requests_list)) 2654 need_more_processing = true; 2655 spin_unlock(®_requests_lock); 2656 2657 cancel_crda_timeout(); 2658 2659 if (need_more_processing) 2660 schedule_work(®_work); 2661 } 2662 2663 /** 2664 * reg_process_hint_core - process core regulatory requests 2665 * @core_request: a pending core regulatory request 2666 * 2667 * The wireless subsystem can use this function to process 2668 * a regulatory request issued by the regulatory core. 2669 * 2670 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the 2671 * hint was processed or ignored 2672 */ 2673 static enum reg_request_treatment 2674 reg_process_hint_core(struct regulatory_request *core_request) 2675 { 2676 if (reg_query_database(core_request)) { 2677 core_request->intersect = false; 2678 core_request->processed = false; 2679 reg_update_last_request(core_request); 2680 return REG_REQ_OK; 2681 } 2682 2683 return REG_REQ_IGNORE; 2684 } 2685 2686 static enum reg_request_treatment 2687 __reg_process_hint_user(struct regulatory_request *user_request) 2688 { 2689 struct regulatory_request *lr = get_last_request(); 2690 2691 if (reg_request_cell_base(user_request)) 2692 return reg_ignore_cell_hint(user_request); 2693 2694 if (reg_request_cell_base(lr)) 2695 return REG_REQ_IGNORE; 2696 2697 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2698 return REG_REQ_INTERSECT; 2699 /* 2700 * If the user knows better the user should set the regdom 2701 * to their country before the IE is picked up 2702 */ 2703 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2704 lr->intersect) 2705 return REG_REQ_IGNORE; 2706 /* 2707 * Process user requests only after previous user/driver/core 2708 * requests have been processed 2709 */ 2710 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2711 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2712 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2713 regdom_changes(lr->alpha2)) 2714 return REG_REQ_IGNORE; 2715 2716 if (!regdom_changes(user_request->alpha2)) 2717 return REG_REQ_ALREADY_SET; 2718 2719 return REG_REQ_OK; 2720 } 2721 2722 /** 2723 * reg_process_hint_user - process user regulatory requests 2724 * @user_request: a pending user regulatory request 2725 * 2726 * The wireless subsystem can use this function to process 2727 * a regulatory request initiated by userspace. 2728 * 2729 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the 2730 * hint was processed or ignored 2731 */ 2732 static enum reg_request_treatment 2733 reg_process_hint_user(struct regulatory_request *user_request) 2734 { 2735 enum reg_request_treatment treatment; 2736 2737 treatment = __reg_process_hint_user(user_request); 2738 if (treatment == REG_REQ_IGNORE || 2739 treatment == REG_REQ_ALREADY_SET) 2740 return REG_REQ_IGNORE; 2741 2742 user_request->intersect = treatment == REG_REQ_INTERSECT; 2743 user_request->processed = false; 2744 2745 if (reg_query_database(user_request)) { 2746 reg_update_last_request(user_request); 2747 user_alpha2[0] = user_request->alpha2[0]; 2748 user_alpha2[1] = user_request->alpha2[1]; 2749 return REG_REQ_OK; 2750 } 2751 2752 return REG_REQ_IGNORE; 2753 } 2754 2755 static enum reg_request_treatment 2756 __reg_process_hint_driver(struct regulatory_request *driver_request) 2757 { 2758 struct regulatory_request *lr = get_last_request(); 2759 2760 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2761 if (regdom_changes(driver_request->alpha2)) 2762 return REG_REQ_OK; 2763 return REG_REQ_ALREADY_SET; 2764 } 2765 2766 /* 2767 * This would happen if you unplug and plug your card 2768 * back in or if you add a new device for which the previously 2769 * loaded card also agrees on the regulatory domain. 2770 */ 2771 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2772 !regdom_changes(driver_request->alpha2)) 2773 return REG_REQ_ALREADY_SET; 2774 2775 return REG_REQ_INTERSECT; 2776 } 2777 2778 /** 2779 * reg_process_hint_driver - process driver regulatory requests 2780 * @wiphy: the wireless device for the regulatory request 2781 * @driver_request: a pending driver regulatory request 2782 * 2783 * The wireless subsystem can use this function to process 2784 * a regulatory request issued by an 802.11 driver. 2785 * 2786 * Returns: one of the different reg request treatment values. 2787 */ 2788 static enum reg_request_treatment 2789 reg_process_hint_driver(struct wiphy *wiphy, 2790 struct regulatory_request *driver_request) 2791 { 2792 const struct ieee80211_regdomain *regd, *tmp; 2793 enum reg_request_treatment treatment; 2794 2795 treatment = __reg_process_hint_driver(driver_request); 2796 2797 switch (treatment) { 2798 case REG_REQ_OK: 2799 break; 2800 case REG_REQ_IGNORE: 2801 return REG_REQ_IGNORE; 2802 case REG_REQ_INTERSECT: 2803 case REG_REQ_ALREADY_SET: 2804 regd = reg_copy_regd(get_cfg80211_regdom()); 2805 if (IS_ERR(regd)) 2806 return REG_REQ_IGNORE; 2807 2808 tmp = get_wiphy_regdom(wiphy); 2809 ASSERT_RTNL(); 2810 scoped_guard(wiphy, wiphy) { 2811 rcu_assign_pointer(wiphy->regd, regd); 2812 } 2813 rcu_free_regdom(tmp); 2814 } 2815 2816 2817 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2818 driver_request->processed = false; 2819 2820 /* 2821 * Since CRDA will not be called in this case as we already 2822 * have applied the requested regulatory domain before we just 2823 * inform userspace we have processed the request 2824 */ 2825 if (treatment == REG_REQ_ALREADY_SET) { 2826 nl80211_send_reg_change_event(driver_request); 2827 reg_update_last_request(driver_request); 2828 reg_set_request_processed(); 2829 return REG_REQ_ALREADY_SET; 2830 } 2831 2832 if (reg_query_database(driver_request)) { 2833 reg_update_last_request(driver_request); 2834 return REG_REQ_OK; 2835 } 2836 2837 return REG_REQ_IGNORE; 2838 } 2839 2840 static enum reg_request_treatment 2841 __reg_process_hint_country_ie(struct wiphy *wiphy, 2842 struct regulatory_request *country_ie_request) 2843 { 2844 struct wiphy *last_wiphy = NULL; 2845 struct regulatory_request *lr = get_last_request(); 2846 2847 if (reg_request_cell_base(lr)) { 2848 /* Trust a Cell base station over the AP's country IE */ 2849 if (regdom_changes(country_ie_request->alpha2)) 2850 return REG_REQ_IGNORE; 2851 return REG_REQ_ALREADY_SET; 2852 } else { 2853 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2854 return REG_REQ_IGNORE; 2855 } 2856 2857 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2858 return -EINVAL; 2859 2860 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2861 return REG_REQ_OK; 2862 2863 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2864 2865 if (last_wiphy != wiphy) { 2866 /* 2867 * Two cards with two APs claiming different 2868 * Country IE alpha2s. We could 2869 * intersect them, but that seems unlikely 2870 * to be correct. Reject second one for now. 2871 */ 2872 if (regdom_changes(country_ie_request->alpha2)) 2873 return REG_REQ_IGNORE; 2874 return REG_REQ_ALREADY_SET; 2875 } 2876 2877 if (regdom_changes(country_ie_request->alpha2)) 2878 return REG_REQ_OK; 2879 return REG_REQ_ALREADY_SET; 2880 } 2881 2882 /** 2883 * reg_process_hint_country_ie - process regulatory requests from country IEs 2884 * @wiphy: the wireless device for the regulatory request 2885 * @country_ie_request: a regulatory request from a country IE 2886 * 2887 * The wireless subsystem can use this function to process 2888 * a regulatory request issued by a country Information Element. 2889 * 2890 * Returns: one of the different reg request treatment values. 2891 */ 2892 static enum reg_request_treatment 2893 reg_process_hint_country_ie(struct wiphy *wiphy, 2894 struct regulatory_request *country_ie_request) 2895 { 2896 enum reg_request_treatment treatment; 2897 2898 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2899 2900 switch (treatment) { 2901 case REG_REQ_OK: 2902 break; 2903 case REG_REQ_IGNORE: 2904 return REG_REQ_IGNORE; 2905 case REG_REQ_ALREADY_SET: 2906 reg_free_request(country_ie_request); 2907 return REG_REQ_ALREADY_SET; 2908 case REG_REQ_INTERSECT: 2909 /* 2910 * This doesn't happen yet, not sure we 2911 * ever want to support it for this case. 2912 */ 2913 WARN_ONCE(1, "Unexpected intersection for country elements"); 2914 return REG_REQ_IGNORE; 2915 } 2916 2917 country_ie_request->intersect = false; 2918 country_ie_request->processed = false; 2919 2920 if (reg_query_database(country_ie_request)) { 2921 reg_update_last_request(country_ie_request); 2922 return REG_REQ_OK; 2923 } 2924 2925 return REG_REQ_IGNORE; 2926 } 2927 2928 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2929 { 2930 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2931 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2932 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2933 bool dfs_domain_same; 2934 2935 rcu_read_lock(); 2936 2937 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2938 wiphy1_regd = rcu_dereference(wiphy1->regd); 2939 if (!wiphy1_regd) 2940 wiphy1_regd = cfg80211_regd; 2941 2942 wiphy2_regd = rcu_dereference(wiphy2->regd); 2943 if (!wiphy2_regd) 2944 wiphy2_regd = cfg80211_regd; 2945 2946 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2947 2948 rcu_read_unlock(); 2949 2950 return dfs_domain_same; 2951 } 2952 2953 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2954 struct ieee80211_channel *src_chan) 2955 { 2956 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2957 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2958 return; 2959 2960 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2961 src_chan->flags & IEEE80211_CHAN_DISABLED) 2962 return; 2963 2964 if (src_chan->center_freq == dst_chan->center_freq && 2965 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2966 dst_chan->dfs_state = src_chan->dfs_state; 2967 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2968 } 2969 } 2970 2971 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2972 struct wiphy *src_wiphy) 2973 { 2974 struct ieee80211_supported_band *src_sband, *dst_sband; 2975 struct ieee80211_channel *src_chan, *dst_chan; 2976 int i, j, band; 2977 2978 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2979 return; 2980 2981 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2982 dst_sband = dst_wiphy->bands[band]; 2983 src_sband = src_wiphy->bands[band]; 2984 if (!dst_sband || !src_sband) 2985 continue; 2986 2987 for (i = 0; i < dst_sband->n_channels; i++) { 2988 dst_chan = &dst_sband->channels[i]; 2989 for (j = 0; j < src_sband->n_channels; j++) { 2990 src_chan = &src_sband->channels[j]; 2991 reg_copy_dfs_chan_state(dst_chan, src_chan); 2992 } 2993 } 2994 } 2995 } 2996 2997 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2998 { 2999 struct cfg80211_registered_device *rdev; 3000 3001 ASSERT_RTNL(); 3002 3003 for_each_rdev(rdev) { 3004 if (wiphy == &rdev->wiphy) 3005 continue; 3006 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 3007 } 3008 } 3009 3010 /* This processes *all* regulatory hints */ 3011 static void reg_process_hint(struct regulatory_request *reg_request) 3012 { 3013 struct wiphy *wiphy = NULL; 3014 enum reg_request_treatment treatment; 3015 enum nl80211_reg_initiator initiator = reg_request->initiator; 3016 3017 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 3018 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 3019 3020 switch (initiator) { 3021 case NL80211_REGDOM_SET_BY_CORE: 3022 treatment = reg_process_hint_core(reg_request); 3023 break; 3024 case NL80211_REGDOM_SET_BY_USER: 3025 treatment = reg_process_hint_user(reg_request); 3026 break; 3027 case NL80211_REGDOM_SET_BY_DRIVER: 3028 if (!wiphy) 3029 goto out_free; 3030 treatment = reg_process_hint_driver(wiphy, reg_request); 3031 break; 3032 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3033 if (!wiphy) 3034 goto out_free; 3035 treatment = reg_process_hint_country_ie(wiphy, reg_request); 3036 break; 3037 default: 3038 WARN(1, "invalid initiator %d\n", initiator); 3039 goto out_free; 3040 } 3041 3042 if (treatment == REG_REQ_IGNORE) 3043 goto out_free; 3044 3045 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 3046 "unexpected treatment value %d\n", treatment); 3047 3048 /* This is required so that the orig_* parameters are saved. 3049 * NOTE: treatment must be set for any case that reaches here! 3050 */ 3051 if (treatment == REG_REQ_ALREADY_SET && wiphy && 3052 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 3053 wiphy_update_regulatory(wiphy, initiator); 3054 wiphy_all_share_dfs_chan_state(wiphy); 3055 reg_check_channels(); 3056 } 3057 3058 return; 3059 3060 out_free: 3061 reg_free_request(reg_request); 3062 } 3063 3064 static void notify_self_managed_wiphys(struct regulatory_request *request) 3065 { 3066 struct cfg80211_registered_device *rdev; 3067 struct wiphy *wiphy; 3068 3069 for_each_rdev(rdev) { 3070 wiphy = &rdev->wiphy; 3071 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 3072 request->initiator == NL80211_REGDOM_SET_BY_USER) 3073 reg_call_notifier(wiphy, request); 3074 } 3075 } 3076 3077 /* 3078 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 3079 * Regulatory hints come on a first come first serve basis and we 3080 * must process each one atomically. 3081 */ 3082 static void reg_process_pending_hints(void) 3083 { 3084 struct regulatory_request *reg_request, *lr; 3085 3086 lr = get_last_request(); 3087 3088 /* When last_request->processed becomes true this will be rescheduled */ 3089 if (lr && !lr->processed) { 3090 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3091 return; 3092 } 3093 3094 spin_lock(®_requests_lock); 3095 3096 if (list_empty(®_requests_list)) { 3097 spin_unlock(®_requests_lock); 3098 return; 3099 } 3100 3101 reg_request = list_first_entry(®_requests_list, 3102 struct regulatory_request, 3103 list); 3104 list_del_init(®_request->list); 3105 3106 spin_unlock(®_requests_lock); 3107 3108 notify_self_managed_wiphys(reg_request); 3109 3110 reg_process_hint(reg_request); 3111 3112 lr = get_last_request(); 3113 3114 spin_lock(®_requests_lock); 3115 if (!list_empty(®_requests_list) && lr && lr->processed) 3116 schedule_work(®_work); 3117 spin_unlock(®_requests_lock); 3118 } 3119 3120 /* Processes beacon hints -- this has nothing to do with country IEs */ 3121 static void reg_process_pending_beacon_hints(void) 3122 { 3123 struct cfg80211_registered_device *rdev; 3124 struct reg_beacon *pending_beacon, *tmp; 3125 3126 /* This goes through the _pending_ beacon list */ 3127 spin_lock_bh(®_pending_beacons_lock); 3128 3129 list_for_each_entry_safe(pending_beacon, tmp, 3130 ®_pending_beacons, list) { 3131 list_del_init(&pending_beacon->list); 3132 3133 /* Applies the beacon hint to current wiphys */ 3134 for_each_rdev(rdev) 3135 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3136 3137 /* Remembers the beacon hint for new wiphys or reg changes */ 3138 list_add_tail(&pending_beacon->list, ®_beacon_list); 3139 } 3140 3141 spin_unlock_bh(®_pending_beacons_lock); 3142 } 3143 3144 static void reg_process_self_managed_hint(struct wiphy *wiphy) 3145 { 3146 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3147 const struct ieee80211_regdomain *tmp; 3148 const struct ieee80211_regdomain *regd; 3149 enum nl80211_band band; 3150 struct regulatory_request request = {}; 3151 3152 ASSERT_RTNL(); 3153 lockdep_assert_wiphy(wiphy); 3154 3155 spin_lock(®_requests_lock); 3156 regd = rdev->requested_regd; 3157 rdev->requested_regd = NULL; 3158 spin_unlock(®_requests_lock); 3159 3160 if (!regd) 3161 return; 3162 3163 tmp = get_wiphy_regdom(wiphy); 3164 rcu_assign_pointer(wiphy->regd, regd); 3165 rcu_free_regdom(tmp); 3166 3167 for (band = 0; band < NUM_NL80211_BANDS; band++) 3168 handle_band_custom(wiphy, wiphy->bands[band], regd); 3169 3170 reg_process_ht_flags(wiphy); 3171 3172 request.wiphy_idx = get_wiphy_idx(wiphy); 3173 request.alpha2[0] = regd->alpha2[0]; 3174 request.alpha2[1] = regd->alpha2[1]; 3175 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3176 3177 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER) 3178 reg_call_notifier(wiphy, &request); 3179 3180 nl80211_send_wiphy_reg_change_event(&request); 3181 } 3182 3183 static void reg_process_self_managed_hints(void) 3184 { 3185 struct cfg80211_registered_device *rdev; 3186 3187 ASSERT_RTNL(); 3188 3189 for_each_rdev(rdev) { 3190 guard(wiphy)(&rdev->wiphy); 3191 3192 reg_process_self_managed_hint(&rdev->wiphy); 3193 } 3194 3195 reg_check_channels(); 3196 } 3197 3198 static void reg_todo(struct work_struct *work) 3199 { 3200 rtnl_lock(); 3201 reg_process_pending_hints(); 3202 reg_process_pending_beacon_hints(); 3203 reg_process_self_managed_hints(); 3204 rtnl_unlock(); 3205 } 3206 3207 static void queue_regulatory_request(struct regulatory_request *request) 3208 { 3209 request->alpha2[0] = toupper(request->alpha2[0]); 3210 request->alpha2[1] = toupper(request->alpha2[1]); 3211 3212 spin_lock(®_requests_lock); 3213 list_add_tail(&request->list, ®_requests_list); 3214 spin_unlock(®_requests_lock); 3215 3216 schedule_work(®_work); 3217 } 3218 3219 /* 3220 * Core regulatory hint -- happens during cfg80211_init() 3221 * and when we restore regulatory settings. 3222 */ 3223 static int regulatory_hint_core(const char *alpha2) 3224 { 3225 struct regulatory_request *request; 3226 3227 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3228 if (!request) 3229 return -ENOMEM; 3230 3231 request->alpha2[0] = alpha2[0]; 3232 request->alpha2[1] = alpha2[1]; 3233 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3234 request->wiphy_idx = WIPHY_IDX_INVALID; 3235 3236 queue_regulatory_request(request); 3237 3238 return 0; 3239 } 3240 3241 /* User hints */ 3242 int regulatory_hint_user(const char *alpha2, 3243 enum nl80211_user_reg_hint_type user_reg_hint_type) 3244 { 3245 struct regulatory_request *request; 3246 3247 if (WARN_ON(!alpha2)) 3248 return -EINVAL; 3249 3250 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3251 return -EINVAL; 3252 3253 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3254 if (!request) 3255 return -ENOMEM; 3256 3257 request->wiphy_idx = WIPHY_IDX_INVALID; 3258 request->alpha2[0] = alpha2[0]; 3259 request->alpha2[1] = alpha2[1]; 3260 request->initiator = NL80211_REGDOM_SET_BY_USER; 3261 request->user_reg_hint_type = user_reg_hint_type; 3262 3263 /* Allow calling CRDA again */ 3264 reset_crda_timeouts(); 3265 3266 queue_regulatory_request(request); 3267 3268 return 0; 3269 } 3270 3271 void regulatory_hint_indoor(bool is_indoor, u32 portid) 3272 { 3273 spin_lock(®_indoor_lock); 3274 3275 /* It is possible that more than one user space process is trying to 3276 * configure the indoor setting. To handle such cases, clear the indoor 3277 * setting in case that some process does not think that the device 3278 * is operating in an indoor environment. In addition, if a user space 3279 * process indicates that it is controlling the indoor setting, save its 3280 * portid, i.e., make it the owner. 3281 */ 3282 reg_is_indoor = is_indoor; 3283 if (reg_is_indoor) { 3284 if (!reg_is_indoor_portid) 3285 reg_is_indoor_portid = portid; 3286 } else { 3287 reg_is_indoor_portid = 0; 3288 } 3289 3290 spin_unlock(®_indoor_lock); 3291 3292 if (!is_indoor) 3293 reg_check_channels(); 3294 } 3295 3296 void regulatory_netlink_notify(u32 portid) 3297 { 3298 spin_lock(®_indoor_lock); 3299 3300 if (reg_is_indoor_portid != portid) { 3301 spin_unlock(®_indoor_lock); 3302 return; 3303 } 3304 3305 reg_is_indoor = false; 3306 reg_is_indoor_portid = 0; 3307 3308 spin_unlock(®_indoor_lock); 3309 3310 reg_check_channels(); 3311 } 3312 3313 /* Driver hints */ 3314 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3315 { 3316 struct regulatory_request *request; 3317 3318 if (WARN_ON(!alpha2 || !wiphy)) 3319 return -EINVAL; 3320 3321 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3322 3323 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3324 if (!request) 3325 return -ENOMEM; 3326 3327 request->wiphy_idx = get_wiphy_idx(wiphy); 3328 3329 request->alpha2[0] = alpha2[0]; 3330 request->alpha2[1] = alpha2[1]; 3331 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3332 3333 /* Allow calling CRDA again */ 3334 reset_crda_timeouts(); 3335 3336 queue_regulatory_request(request); 3337 3338 return 0; 3339 } 3340 EXPORT_SYMBOL(regulatory_hint); 3341 3342 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3343 const u8 *country_ie, u8 country_ie_len) 3344 { 3345 char alpha2[2]; 3346 enum environment_cap env = ENVIRON_ANY; 3347 struct regulatory_request *request = NULL, *lr; 3348 3349 /* IE len must be evenly divisible by 2 */ 3350 if (country_ie_len & 0x01) 3351 return; 3352 3353 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3354 return; 3355 3356 request = kzalloc(sizeof(*request), GFP_KERNEL); 3357 if (!request) 3358 return; 3359 3360 alpha2[0] = country_ie[0]; 3361 alpha2[1] = country_ie[1]; 3362 3363 if (country_ie[2] == 'I') 3364 env = ENVIRON_INDOOR; 3365 else if (country_ie[2] == 'O') 3366 env = ENVIRON_OUTDOOR; 3367 3368 rcu_read_lock(); 3369 lr = get_last_request(); 3370 3371 if (unlikely(!lr)) 3372 goto out; 3373 3374 /* 3375 * We will run this only upon a successful connection on cfg80211. 3376 * We leave conflict resolution to the workqueue, where can hold 3377 * the RTNL. 3378 */ 3379 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3380 lr->wiphy_idx != WIPHY_IDX_INVALID) 3381 goto out; 3382 3383 request->wiphy_idx = get_wiphy_idx(wiphy); 3384 request->alpha2[0] = alpha2[0]; 3385 request->alpha2[1] = alpha2[1]; 3386 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3387 request->country_ie_env = env; 3388 3389 /* Allow calling CRDA again */ 3390 reset_crda_timeouts(); 3391 3392 queue_regulatory_request(request); 3393 request = NULL; 3394 out: 3395 kfree(request); 3396 rcu_read_unlock(); 3397 } 3398 3399 static void restore_alpha2(char *alpha2, bool reset_user) 3400 { 3401 /* indicates there is no alpha2 to consider for restoration */ 3402 alpha2[0] = '9'; 3403 alpha2[1] = '7'; 3404 3405 /* The user setting has precedence over the module parameter */ 3406 if (is_user_regdom_saved()) { 3407 /* Unless we're asked to ignore it and reset it */ 3408 if (reset_user) { 3409 pr_debug("Restoring regulatory settings including user preference\n"); 3410 user_alpha2[0] = '9'; 3411 user_alpha2[1] = '7'; 3412 3413 /* 3414 * If we're ignoring user settings, we still need to 3415 * check the module parameter to ensure we put things 3416 * back as they were for a full restore. 3417 */ 3418 if (!is_world_regdom(ieee80211_regdom)) { 3419 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3420 ieee80211_regdom[0], ieee80211_regdom[1]); 3421 alpha2[0] = ieee80211_regdom[0]; 3422 alpha2[1] = ieee80211_regdom[1]; 3423 } 3424 } else { 3425 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3426 user_alpha2[0], user_alpha2[1]); 3427 alpha2[0] = user_alpha2[0]; 3428 alpha2[1] = user_alpha2[1]; 3429 } 3430 } else if (!is_world_regdom(ieee80211_regdom)) { 3431 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3432 ieee80211_regdom[0], ieee80211_regdom[1]); 3433 alpha2[0] = ieee80211_regdom[0]; 3434 alpha2[1] = ieee80211_regdom[1]; 3435 } else 3436 pr_debug("Restoring regulatory settings\n"); 3437 } 3438 3439 static void restore_custom_reg_settings(struct wiphy *wiphy) 3440 { 3441 struct ieee80211_supported_band *sband; 3442 enum nl80211_band band; 3443 struct ieee80211_channel *chan; 3444 int i; 3445 3446 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3447 sband = wiphy->bands[band]; 3448 if (!sband) 3449 continue; 3450 for (i = 0; i < sband->n_channels; i++) { 3451 chan = &sband->channels[i]; 3452 chan->flags = chan->orig_flags; 3453 chan->max_antenna_gain = chan->orig_mag; 3454 chan->max_power = chan->orig_mpwr; 3455 chan->beacon_found = false; 3456 } 3457 } 3458 } 3459 3460 /* 3461 * Restoring regulatory settings involves ignoring any 3462 * possibly stale country IE information and user regulatory 3463 * settings if so desired, this includes any beacon hints 3464 * learned as we could have traveled outside to another country 3465 * after disconnection. To restore regulatory settings we do 3466 * exactly what we did at bootup: 3467 * 3468 * - send a core regulatory hint 3469 * - send a user regulatory hint if applicable 3470 * 3471 * Device drivers that send a regulatory hint for a specific country 3472 * keep their own regulatory domain on wiphy->regd so that does 3473 * not need to be remembered. 3474 */ 3475 static void restore_regulatory_settings(bool reset_user, bool cached) 3476 { 3477 char alpha2[2]; 3478 char world_alpha2[2]; 3479 struct reg_beacon *reg_beacon, *btmp; 3480 LIST_HEAD(tmp_reg_req_list); 3481 struct cfg80211_registered_device *rdev; 3482 3483 ASSERT_RTNL(); 3484 3485 /* 3486 * Clear the indoor setting in case that it is not controlled by user 3487 * space, as otherwise there is no guarantee that the device is still 3488 * operating in an indoor environment. 3489 */ 3490 spin_lock(®_indoor_lock); 3491 if (reg_is_indoor && !reg_is_indoor_portid) { 3492 reg_is_indoor = false; 3493 reg_check_channels(); 3494 } 3495 spin_unlock(®_indoor_lock); 3496 3497 reset_regdomains(true, &world_regdom); 3498 restore_alpha2(alpha2, reset_user); 3499 3500 /* 3501 * If there's any pending requests we simply 3502 * stash them to a temporary pending queue and 3503 * add then after we've restored regulatory 3504 * settings. 3505 */ 3506 spin_lock(®_requests_lock); 3507 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3508 spin_unlock(®_requests_lock); 3509 3510 /* Clear beacon hints */ 3511 spin_lock_bh(®_pending_beacons_lock); 3512 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3513 list_del(®_beacon->list); 3514 kfree(reg_beacon); 3515 } 3516 spin_unlock_bh(®_pending_beacons_lock); 3517 3518 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3519 list_del(®_beacon->list); 3520 kfree(reg_beacon); 3521 } 3522 3523 /* First restore to the basic regulatory settings */ 3524 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3525 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3526 3527 for_each_rdev(rdev) { 3528 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3529 continue; 3530 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3531 restore_custom_reg_settings(&rdev->wiphy); 3532 } 3533 3534 if (cached && (!is_an_alpha2(alpha2) || 3535 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3536 reset_regdomains(false, cfg80211_world_regdom); 3537 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3538 print_regdomain(get_cfg80211_regdom()); 3539 nl80211_send_reg_change_event(&core_request_world); 3540 reg_set_request_processed(); 3541 3542 if (is_an_alpha2(alpha2) && 3543 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3544 struct regulatory_request *ureq; 3545 3546 spin_lock(®_requests_lock); 3547 ureq = list_last_entry(®_requests_list, 3548 struct regulatory_request, 3549 list); 3550 list_del(&ureq->list); 3551 spin_unlock(®_requests_lock); 3552 3553 notify_self_managed_wiphys(ureq); 3554 reg_update_last_request(ureq); 3555 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3556 REGD_SOURCE_CACHED); 3557 } 3558 } else { 3559 regulatory_hint_core(world_alpha2); 3560 3561 /* 3562 * This restores the ieee80211_regdom module parameter 3563 * preference or the last user requested regulatory 3564 * settings, user regulatory settings takes precedence. 3565 */ 3566 if (is_an_alpha2(alpha2)) 3567 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3568 } 3569 3570 spin_lock(®_requests_lock); 3571 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3572 spin_unlock(®_requests_lock); 3573 3574 pr_debug("Kicking the queue\n"); 3575 3576 schedule_work(®_work); 3577 } 3578 3579 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3580 { 3581 struct cfg80211_registered_device *rdev; 3582 struct wireless_dev *wdev; 3583 3584 for_each_rdev(rdev) { 3585 guard(wiphy)(&rdev->wiphy); 3586 3587 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3588 if (!(wdev->wiphy->regulatory_flags & flag)) 3589 return false; 3590 } 3591 } 3592 3593 return true; 3594 } 3595 3596 void regulatory_hint_disconnect(void) 3597 { 3598 /* Restore of regulatory settings is not required when wiphy(s) 3599 * ignore IE from connected access point but clearance of beacon hints 3600 * is required when wiphy(s) supports beacon hints. 3601 */ 3602 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3603 struct reg_beacon *reg_beacon, *btmp; 3604 3605 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3606 return; 3607 3608 spin_lock_bh(®_pending_beacons_lock); 3609 list_for_each_entry_safe(reg_beacon, btmp, 3610 ®_pending_beacons, list) { 3611 list_del(®_beacon->list); 3612 kfree(reg_beacon); 3613 } 3614 spin_unlock_bh(®_pending_beacons_lock); 3615 3616 list_for_each_entry_safe(reg_beacon, btmp, 3617 ®_beacon_list, list) { 3618 list_del(®_beacon->list); 3619 kfree(reg_beacon); 3620 } 3621 3622 return; 3623 } 3624 3625 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3626 restore_regulatory_settings(false, true); 3627 } 3628 3629 static bool freq_is_chan_12_13_14(u32 freq) 3630 { 3631 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3632 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3633 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3634 return true; 3635 return false; 3636 } 3637 3638 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3639 { 3640 struct reg_beacon *pending_beacon; 3641 3642 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3643 if (ieee80211_channel_equal(beacon_chan, 3644 &pending_beacon->chan)) 3645 return true; 3646 return false; 3647 } 3648 3649 void regulatory_hint_found_beacon(struct wiphy *wiphy, 3650 struct ieee80211_channel *beacon_chan, 3651 gfp_t gfp) 3652 { 3653 struct reg_beacon *reg_beacon; 3654 bool processing; 3655 3656 if (beacon_chan->beacon_found || 3657 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3658 (beacon_chan->band == NL80211_BAND_2GHZ && 3659 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3660 return; 3661 3662 spin_lock_bh(®_pending_beacons_lock); 3663 processing = pending_reg_beacon(beacon_chan); 3664 spin_unlock_bh(®_pending_beacons_lock); 3665 3666 if (processing) 3667 return; 3668 3669 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3670 if (!reg_beacon) 3671 return; 3672 3673 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3674 beacon_chan->center_freq, beacon_chan->freq_offset, 3675 ieee80211_freq_khz_to_channel( 3676 ieee80211_channel_to_khz(beacon_chan)), 3677 wiphy_name(wiphy)); 3678 3679 memcpy(®_beacon->chan, beacon_chan, 3680 sizeof(struct ieee80211_channel)); 3681 3682 /* 3683 * Since we can be called from BH or and non-BH context 3684 * we must use spin_lock_bh() 3685 */ 3686 spin_lock_bh(®_pending_beacons_lock); 3687 list_add_tail(®_beacon->list, ®_pending_beacons); 3688 spin_unlock_bh(®_pending_beacons_lock); 3689 3690 schedule_work(®_work); 3691 } 3692 3693 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3694 { 3695 unsigned int i; 3696 const struct ieee80211_reg_rule *reg_rule = NULL; 3697 const struct ieee80211_freq_range *freq_range = NULL; 3698 const struct ieee80211_power_rule *power_rule = NULL; 3699 char bw[32], cac_time[32]; 3700 3701 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3702 3703 for (i = 0; i < rd->n_reg_rules; i++) { 3704 reg_rule = &rd->reg_rules[i]; 3705 freq_range = ®_rule->freq_range; 3706 power_rule = ®_rule->power_rule; 3707 3708 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3709 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", 3710 freq_range->max_bandwidth_khz, 3711 reg_get_max_bandwidth(rd, reg_rule)); 3712 else 3713 snprintf(bw, sizeof(bw), "%d KHz", 3714 freq_range->max_bandwidth_khz); 3715 3716 if (reg_rule->flags & NL80211_RRF_DFS) 3717 scnprintf(cac_time, sizeof(cac_time), "%u s", 3718 reg_rule->dfs_cac_ms/1000); 3719 else 3720 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3721 3722 3723 /* 3724 * There may not be documentation for max antenna gain 3725 * in certain regions 3726 */ 3727 if (power_rule->max_antenna_gain) 3728 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3729 freq_range->start_freq_khz, 3730 freq_range->end_freq_khz, 3731 bw, 3732 power_rule->max_antenna_gain, 3733 power_rule->max_eirp, 3734 cac_time); 3735 else 3736 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3737 freq_range->start_freq_khz, 3738 freq_range->end_freq_khz, 3739 bw, 3740 power_rule->max_eirp, 3741 cac_time); 3742 } 3743 } 3744 3745 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3746 { 3747 switch (dfs_region) { 3748 case NL80211_DFS_UNSET: 3749 case NL80211_DFS_FCC: 3750 case NL80211_DFS_ETSI: 3751 case NL80211_DFS_JP: 3752 return true; 3753 default: 3754 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3755 return false; 3756 } 3757 } 3758 3759 static void print_regdomain(const struct ieee80211_regdomain *rd) 3760 { 3761 struct regulatory_request *lr = get_last_request(); 3762 3763 if (is_intersected_alpha2(rd->alpha2)) { 3764 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3765 struct cfg80211_registered_device *rdev; 3766 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3767 if (rdev) { 3768 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3769 rdev->country_ie_alpha2[0], 3770 rdev->country_ie_alpha2[1]); 3771 } else 3772 pr_debug("Current regulatory domain intersected:\n"); 3773 } else 3774 pr_debug("Current regulatory domain intersected:\n"); 3775 } else if (is_world_regdom(rd->alpha2)) { 3776 pr_debug("World regulatory domain updated:\n"); 3777 } else { 3778 if (is_unknown_alpha2(rd->alpha2)) 3779 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3780 else { 3781 if (reg_request_cell_base(lr)) 3782 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3783 rd->alpha2[0], rd->alpha2[1]); 3784 else 3785 pr_debug("Regulatory domain changed to country: %c%c\n", 3786 rd->alpha2[0], rd->alpha2[1]); 3787 } 3788 } 3789 3790 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3791 print_rd_rules(rd); 3792 } 3793 3794 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3795 { 3796 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3797 print_rd_rules(rd); 3798 } 3799 3800 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3801 { 3802 if (!is_world_regdom(rd->alpha2)) 3803 return -EINVAL; 3804 update_world_regdomain(rd); 3805 return 0; 3806 } 3807 3808 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3809 struct regulatory_request *user_request) 3810 { 3811 const struct ieee80211_regdomain *intersected_rd = NULL; 3812 3813 if (!regdom_changes(rd->alpha2)) 3814 return -EALREADY; 3815 3816 if (!is_valid_rd(rd)) { 3817 pr_err("Invalid regulatory domain detected: %c%c\n", 3818 rd->alpha2[0], rd->alpha2[1]); 3819 print_regdomain_info(rd); 3820 return -EINVAL; 3821 } 3822 3823 if (!user_request->intersect) { 3824 reset_regdomains(false, rd); 3825 return 0; 3826 } 3827 3828 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3829 if (!intersected_rd) 3830 return -EINVAL; 3831 3832 kfree(rd); 3833 rd = NULL; 3834 reset_regdomains(false, intersected_rd); 3835 3836 return 0; 3837 } 3838 3839 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3840 struct regulatory_request *driver_request) 3841 { 3842 const struct ieee80211_regdomain *regd; 3843 const struct ieee80211_regdomain *intersected_rd = NULL; 3844 const struct ieee80211_regdomain *tmp = NULL; 3845 struct wiphy *request_wiphy; 3846 3847 if (is_world_regdom(rd->alpha2)) 3848 return -EINVAL; 3849 3850 if (!regdom_changes(rd->alpha2)) 3851 return -EALREADY; 3852 3853 if (!is_valid_rd(rd)) { 3854 pr_err("Invalid regulatory domain detected: %c%c\n", 3855 rd->alpha2[0], rd->alpha2[1]); 3856 print_regdomain_info(rd); 3857 return -EINVAL; 3858 } 3859 3860 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3861 if (!request_wiphy) 3862 return -ENODEV; 3863 3864 if (!driver_request->intersect) { 3865 ASSERT_RTNL(); 3866 scoped_guard(wiphy, request_wiphy) { 3867 if (request_wiphy->regd) 3868 tmp = get_wiphy_regdom(request_wiphy); 3869 3870 regd = reg_copy_regd(rd); 3871 if (IS_ERR(regd)) 3872 return PTR_ERR(regd); 3873 3874 rcu_assign_pointer(request_wiphy->regd, regd); 3875 rcu_free_regdom(tmp); 3876 } 3877 3878 reset_regdomains(false, rd); 3879 return 0; 3880 } 3881 3882 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3883 if (!intersected_rd) 3884 return -EINVAL; 3885 3886 /* 3887 * We can trash what CRDA provided now. 3888 * However if a driver requested this specific regulatory 3889 * domain we keep it for its private use 3890 */ 3891 tmp = get_wiphy_regdom(request_wiphy); 3892 rcu_assign_pointer(request_wiphy->regd, rd); 3893 rcu_free_regdom(tmp); 3894 3895 rd = NULL; 3896 3897 reset_regdomains(false, intersected_rd); 3898 3899 return 0; 3900 } 3901 3902 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3903 struct regulatory_request *country_ie_request) 3904 { 3905 struct wiphy *request_wiphy; 3906 3907 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3908 !is_unknown_alpha2(rd->alpha2)) 3909 return -EINVAL; 3910 3911 /* 3912 * Lets only bother proceeding on the same alpha2 if the current 3913 * rd is non static (it means CRDA was present and was used last) 3914 * and the pending request came in from a country IE 3915 */ 3916 3917 if (!is_valid_rd(rd)) { 3918 pr_err("Invalid regulatory domain detected: %c%c\n", 3919 rd->alpha2[0], rd->alpha2[1]); 3920 print_regdomain_info(rd); 3921 return -EINVAL; 3922 } 3923 3924 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3925 if (!request_wiphy) 3926 return -ENODEV; 3927 3928 if (country_ie_request->intersect) 3929 return -EINVAL; 3930 3931 reset_regdomains(false, rd); 3932 return 0; 3933 } 3934 3935 /* 3936 * Use this call to set the current regulatory domain. Conflicts with 3937 * multiple drivers can be ironed out later. Caller must've already 3938 * kmalloc'd the rd structure. 3939 */ 3940 int set_regdom(const struct ieee80211_regdomain *rd, 3941 enum ieee80211_regd_source regd_src) 3942 { 3943 struct regulatory_request *lr; 3944 bool user_reset = false; 3945 int r; 3946 3947 if (IS_ERR_OR_NULL(rd)) 3948 return -ENODATA; 3949 3950 if (!reg_is_valid_request(rd->alpha2)) { 3951 kfree(rd); 3952 return -EINVAL; 3953 } 3954 3955 if (regd_src == REGD_SOURCE_CRDA) 3956 reset_crda_timeouts(); 3957 3958 lr = get_last_request(); 3959 3960 /* Note that this doesn't update the wiphys, this is done below */ 3961 switch (lr->initiator) { 3962 case NL80211_REGDOM_SET_BY_CORE: 3963 r = reg_set_rd_core(rd); 3964 break; 3965 case NL80211_REGDOM_SET_BY_USER: 3966 cfg80211_save_user_regdom(rd); 3967 r = reg_set_rd_user(rd, lr); 3968 user_reset = true; 3969 break; 3970 case NL80211_REGDOM_SET_BY_DRIVER: 3971 r = reg_set_rd_driver(rd, lr); 3972 break; 3973 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3974 r = reg_set_rd_country_ie(rd, lr); 3975 break; 3976 default: 3977 WARN(1, "invalid initiator %d\n", lr->initiator); 3978 kfree(rd); 3979 return -EINVAL; 3980 } 3981 3982 if (r) { 3983 switch (r) { 3984 case -EALREADY: 3985 reg_set_request_processed(); 3986 break; 3987 default: 3988 /* Back to world regulatory in case of errors */ 3989 restore_regulatory_settings(user_reset, false); 3990 } 3991 3992 kfree(rd); 3993 return r; 3994 } 3995 3996 /* This would make this whole thing pointless */ 3997 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3998 return -EINVAL; 3999 4000 /* update all wiphys now with the new established regulatory domain */ 4001 update_all_wiphy_regulatory(lr->initiator); 4002 4003 print_regdomain(get_cfg80211_regdom()); 4004 4005 nl80211_send_reg_change_event(lr); 4006 4007 reg_set_request_processed(); 4008 4009 return 0; 4010 } 4011 4012 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 4013 struct ieee80211_regdomain *rd) 4014 { 4015 const struct ieee80211_regdomain *regd; 4016 const struct ieee80211_regdomain *prev_regd; 4017 struct cfg80211_registered_device *rdev; 4018 4019 if (WARN_ON(!wiphy || !rd)) 4020 return -EINVAL; 4021 4022 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 4023 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 4024 return -EPERM; 4025 4026 if (WARN(!is_valid_rd(rd), 4027 "Invalid regulatory domain detected: %c%c\n", 4028 rd->alpha2[0], rd->alpha2[1])) { 4029 print_regdomain_info(rd); 4030 return -EINVAL; 4031 } 4032 4033 regd = reg_copy_regd(rd); 4034 if (IS_ERR(regd)) 4035 return PTR_ERR(regd); 4036 4037 rdev = wiphy_to_rdev(wiphy); 4038 4039 spin_lock(®_requests_lock); 4040 prev_regd = rdev->requested_regd; 4041 rdev->requested_regd = regd; 4042 spin_unlock(®_requests_lock); 4043 4044 kfree(prev_regd); 4045 return 0; 4046 } 4047 4048 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 4049 struct ieee80211_regdomain *rd) 4050 { 4051 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 4052 4053 if (ret) 4054 return ret; 4055 4056 schedule_work(®_work); 4057 return 0; 4058 } 4059 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 4060 4061 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 4062 struct ieee80211_regdomain *rd) 4063 { 4064 int ret; 4065 4066 ASSERT_RTNL(); 4067 4068 ret = __regulatory_set_wiphy_regd(wiphy, rd); 4069 if (ret) 4070 return ret; 4071 4072 /* process the request immediately */ 4073 reg_process_self_managed_hint(wiphy); 4074 reg_check_channels(); 4075 return 0; 4076 } 4077 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync); 4078 4079 void wiphy_regulatory_register(struct wiphy *wiphy) 4080 { 4081 struct regulatory_request *lr = get_last_request(); 4082 4083 /* self-managed devices ignore beacon hints and country IE */ 4084 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 4085 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 4086 REGULATORY_COUNTRY_IE_IGNORE; 4087 4088 /* 4089 * The last request may have been received before this 4090 * registration call. Call the driver notifier if 4091 * initiator is USER. 4092 */ 4093 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 4094 reg_call_notifier(wiphy, lr); 4095 } 4096 4097 if (!reg_dev_ignore_cell_hint(wiphy)) 4098 reg_num_devs_support_basehint++; 4099 4100 wiphy_update_regulatory(wiphy, lr->initiator); 4101 wiphy_all_share_dfs_chan_state(wiphy); 4102 reg_process_self_managed_hints(); 4103 } 4104 4105 void wiphy_regulatory_deregister(struct wiphy *wiphy) 4106 { 4107 struct wiphy *request_wiphy = NULL; 4108 struct regulatory_request *lr; 4109 4110 lr = get_last_request(); 4111 4112 if (!reg_dev_ignore_cell_hint(wiphy)) 4113 reg_num_devs_support_basehint--; 4114 4115 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4116 RCU_INIT_POINTER(wiphy->regd, NULL); 4117 4118 if (lr) 4119 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4120 4121 if (!request_wiphy || request_wiphy != wiphy) 4122 return; 4123 4124 lr->wiphy_idx = WIPHY_IDX_INVALID; 4125 lr->country_ie_env = ENVIRON_ANY; 4126 } 4127 4128 /* 4129 * See FCC notices for UNII band definitions 4130 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4131 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4132 */ 4133 int cfg80211_get_unii(int freq) 4134 { 4135 /* UNII-1 */ 4136 if (freq >= 5150 && freq <= 5250) 4137 return 0; 4138 4139 /* UNII-2A */ 4140 if (freq > 5250 && freq <= 5350) 4141 return 1; 4142 4143 /* UNII-2B */ 4144 if (freq > 5350 && freq <= 5470) 4145 return 2; 4146 4147 /* UNII-2C */ 4148 if (freq > 5470 && freq <= 5725) 4149 return 3; 4150 4151 /* UNII-3 */ 4152 if (freq > 5725 && freq <= 5825) 4153 return 4; 4154 4155 /* UNII-5 */ 4156 if (freq > 5925 && freq <= 6425) 4157 return 5; 4158 4159 /* UNII-6 */ 4160 if (freq > 6425 && freq <= 6525) 4161 return 6; 4162 4163 /* UNII-7 */ 4164 if (freq > 6525 && freq <= 6875) 4165 return 7; 4166 4167 /* UNII-8 */ 4168 if (freq > 6875 && freq <= 7125) 4169 return 8; 4170 4171 return -EINVAL; 4172 } 4173 4174 bool regulatory_indoor_allowed(void) 4175 { 4176 return reg_is_indoor; 4177 } 4178 4179 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4180 { 4181 const struct ieee80211_regdomain *regd = NULL; 4182 const struct ieee80211_regdomain *wiphy_regd = NULL; 4183 bool pre_cac_allowed = false; 4184 4185 rcu_read_lock(); 4186 4187 regd = rcu_dereference(cfg80211_regdomain); 4188 wiphy_regd = rcu_dereference(wiphy->regd); 4189 if (!wiphy_regd) { 4190 if (regd->dfs_region == NL80211_DFS_ETSI) 4191 pre_cac_allowed = true; 4192 4193 rcu_read_unlock(); 4194 4195 return pre_cac_allowed; 4196 } 4197 4198 if (regd->dfs_region == wiphy_regd->dfs_region && 4199 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4200 pre_cac_allowed = true; 4201 4202 rcu_read_unlock(); 4203 4204 return pre_cac_allowed; 4205 } 4206 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4207 4208 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4209 { 4210 struct wireless_dev *wdev; 4211 unsigned int link_id; 4212 4213 guard(wiphy)(&rdev->wiphy); 4214 4215 /* If we finished CAC or received radar, we should end any 4216 * CAC running on the same channels. 4217 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4218 * either all channels are available - those the CAC_FINISHED 4219 * event has effected another wdev state, or there is a channel 4220 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4221 * event has effected another wdev state. 4222 * In both cases we should end the CAC on the wdev. 4223 */ 4224 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4225 struct cfg80211_chan_def *chandef; 4226 4227 for_each_valid_link(wdev, link_id) { 4228 if (!wdev->links[link_id].cac_started) 4229 continue; 4230 4231 chandef = wdev_chandef(wdev, link_id); 4232 if (!chandef) 4233 continue; 4234 4235 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef)) 4236 rdev_end_cac(rdev, wdev->netdev, link_id); 4237 } 4238 } 4239 } 4240 4241 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4242 struct cfg80211_chan_def *chandef, 4243 enum nl80211_dfs_state dfs_state, 4244 enum nl80211_radar_event event) 4245 { 4246 struct cfg80211_registered_device *rdev; 4247 4248 ASSERT_RTNL(); 4249 4250 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4251 return; 4252 4253 for_each_rdev(rdev) { 4254 if (wiphy == &rdev->wiphy) 4255 continue; 4256 4257 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4258 continue; 4259 4260 if (!ieee80211_get_channel(&rdev->wiphy, 4261 chandef->chan->center_freq)) 4262 continue; 4263 4264 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4265 4266 if (event == NL80211_RADAR_DETECTED || 4267 event == NL80211_RADAR_CAC_FINISHED) { 4268 cfg80211_sched_dfs_chan_update(rdev); 4269 cfg80211_check_and_end_cac(rdev); 4270 } 4271 4272 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4273 } 4274 } 4275 4276 static int __init regulatory_init_db(void) 4277 { 4278 int err; 4279 4280 /* 4281 * It's possible that - due to other bugs/issues - cfg80211 4282 * never called regulatory_init() below, or that it failed; 4283 * in that case, don't try to do any further work here as 4284 * it's doomed to lead to crashes. 4285 */ 4286 if (!reg_fdev) 4287 return -EINVAL; 4288 4289 err = load_builtin_regdb_keys(); 4290 if (err) { 4291 faux_device_destroy(reg_fdev); 4292 return err; 4293 } 4294 4295 /* We always try to get an update for the static regdomain */ 4296 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4297 if (err) { 4298 if (err == -ENOMEM) { 4299 faux_device_destroy(reg_fdev); 4300 return err; 4301 } 4302 /* 4303 * N.B. kobject_uevent_env() can fail mainly for when we're out 4304 * memory which is handled and propagated appropriately above 4305 * but it can also fail during a netlink_broadcast() or during 4306 * early boot for call_usermodehelper(). For now treat these 4307 * errors as non-fatal. 4308 */ 4309 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4310 } 4311 4312 /* 4313 * Finally, if the user set the module parameter treat it 4314 * as a user hint. 4315 */ 4316 if (!is_world_regdom(ieee80211_regdom)) 4317 regulatory_hint_user(ieee80211_regdom, 4318 NL80211_USER_REG_HINT_USER); 4319 4320 return 0; 4321 } 4322 #ifndef MODULE 4323 late_initcall(regulatory_init_db); 4324 #endif 4325 4326 int __init regulatory_init(void) 4327 { 4328 reg_fdev = faux_device_create("regulatory", NULL, NULL); 4329 if (!reg_fdev) 4330 return -ENODEV; 4331 4332 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4333 4334 user_alpha2[0] = '9'; 4335 user_alpha2[1] = '7'; 4336 4337 #ifdef MODULE 4338 return regulatory_init_db(); 4339 #else 4340 return 0; 4341 #endif 4342 } 4343 4344 void regulatory_exit(void) 4345 { 4346 struct regulatory_request *reg_request, *tmp; 4347 struct reg_beacon *reg_beacon, *btmp; 4348 4349 cancel_work_sync(®_work); 4350 cancel_crda_timeout_sync(); 4351 cancel_delayed_work_sync(®_check_chans); 4352 4353 /* Lock to suppress warnings */ 4354 rtnl_lock(); 4355 reset_regdomains(true, NULL); 4356 rtnl_unlock(); 4357 4358 dev_set_uevent_suppress(®_fdev->dev, true); 4359 4360 faux_device_destroy(reg_fdev); 4361 4362 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4363 list_del(®_beacon->list); 4364 kfree(reg_beacon); 4365 } 4366 4367 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4368 list_del(®_beacon->list); 4369 kfree(reg_beacon); 4370 } 4371 4372 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4373 list_del(®_request->list); 4374 kfree(reg_request); 4375 } 4376 4377 if (!IS_ERR_OR_NULL(regdb)) 4378 kfree(regdb); 4379 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4380 kfree(cfg80211_user_regdom); 4381 4382 free_regdb_keyring(); 4383 } 4384