xref: /linux/net/wireless/reg.c (revision 31af04cd60d3162a58213363fd740a2b0cf0a08e)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user);
135 
136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
137 {
138 	return rcu_dereference_rtnl(cfg80211_regdomain);
139 }
140 
141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
142 {
143 	return rcu_dereference_rtnl(wiphy->regd);
144 }
145 
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
147 {
148 	switch (dfs_region) {
149 	case NL80211_DFS_UNSET:
150 		return "unset";
151 	case NL80211_DFS_FCC:
152 		return "FCC";
153 	case NL80211_DFS_ETSI:
154 		return "ETSI";
155 	case NL80211_DFS_JP:
156 		return "JP";
157 	}
158 	return "Unknown";
159 }
160 
161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
162 {
163 	const struct ieee80211_regdomain *regd = NULL;
164 	const struct ieee80211_regdomain *wiphy_regd = NULL;
165 
166 	regd = get_cfg80211_regdom();
167 	if (!wiphy)
168 		goto out;
169 
170 	wiphy_regd = get_wiphy_regdom(wiphy);
171 	if (!wiphy_regd)
172 		goto out;
173 
174 	if (wiphy_regd->dfs_region == regd->dfs_region)
175 		goto out;
176 
177 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178 		 dev_name(&wiphy->dev),
179 		 reg_dfs_region_str(wiphy_regd->dfs_region),
180 		 reg_dfs_region_str(regd->dfs_region));
181 
182 out:
183 	return regd->dfs_region;
184 }
185 
186 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
187 {
188 	if (!r)
189 		return;
190 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
191 }
192 
193 static struct regulatory_request *get_last_request(void)
194 {
195 	return rcu_dereference_rtnl(last_request);
196 }
197 
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list);
200 static spinlock_t reg_requests_lock;
201 
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons);
204 static spinlock_t reg_pending_beacons_lock;
205 
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list);
208 
209 struct reg_beacon {
210 	struct list_head list;
211 	struct ieee80211_channel chan;
212 };
213 
214 static void reg_check_chans_work(struct work_struct *work);
215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
216 
217 static void reg_todo(struct work_struct *work);
218 static DECLARE_WORK(reg_work, reg_todo);
219 
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom = {
222 	.n_reg_rules = 8,
223 	.alpha2 =  "00",
224 	.reg_rules = {
225 		/* IEEE 802.11b/g, channels 1..11 */
226 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227 		/* IEEE 802.11b/g, channels 12..13. */
228 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
229 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
230 		/* IEEE 802.11 channel 14 - Only JP enables
231 		 * this and for 802.11b only */
232 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
233 			NL80211_RRF_NO_IR |
234 			NL80211_RRF_NO_OFDM),
235 		/* IEEE 802.11a, channel 36..48 */
236 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
237                         NL80211_RRF_NO_IR |
238                         NL80211_RRF_AUTO_BW),
239 
240 		/* IEEE 802.11a, channel 52..64 - DFS required */
241 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
242 			NL80211_RRF_NO_IR |
243 			NL80211_RRF_AUTO_BW |
244 			NL80211_RRF_DFS),
245 
246 		/* IEEE 802.11a, channel 100..144 - DFS required */
247 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
248 			NL80211_RRF_NO_IR |
249 			NL80211_RRF_DFS),
250 
251 		/* IEEE 802.11a, channel 149..165 */
252 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
253 			NL80211_RRF_NO_IR),
254 
255 		/* IEEE 802.11ad (60GHz), channels 1..3 */
256 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
257 	}
258 };
259 
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain *cfg80211_world_regdom =
262 	&world_regdom;
263 
264 static char *ieee80211_regdom = "00";
265 static char user_alpha2[2];
266 
267 module_param(ieee80211_regdom, charp, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
269 
270 static void reg_free_request(struct regulatory_request *request)
271 {
272 	if (request == &core_request_world)
273 		return;
274 
275 	if (request != get_last_request())
276 		kfree(request);
277 }
278 
279 static void reg_free_last_request(void)
280 {
281 	struct regulatory_request *lr = get_last_request();
282 
283 	if (lr != &core_request_world && lr)
284 		kfree_rcu(lr, rcu_head);
285 }
286 
287 static void reg_update_last_request(struct regulatory_request *request)
288 {
289 	struct regulatory_request *lr;
290 
291 	lr = get_last_request();
292 	if (lr == request)
293 		return;
294 
295 	reg_free_last_request();
296 	rcu_assign_pointer(last_request, request);
297 }
298 
299 static void reset_regdomains(bool full_reset,
300 			     const struct ieee80211_regdomain *new_regdom)
301 {
302 	const struct ieee80211_regdomain *r;
303 
304 	ASSERT_RTNL();
305 
306 	r = get_cfg80211_regdom();
307 
308 	/* avoid freeing static information or freeing something twice */
309 	if (r == cfg80211_world_regdom)
310 		r = NULL;
311 	if (cfg80211_world_regdom == &world_regdom)
312 		cfg80211_world_regdom = NULL;
313 	if (r == &world_regdom)
314 		r = NULL;
315 
316 	rcu_free_regdom(r);
317 	rcu_free_regdom(cfg80211_world_regdom);
318 
319 	cfg80211_world_regdom = &world_regdom;
320 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
321 
322 	if (!full_reset)
323 		return;
324 
325 	reg_update_last_request(&core_request_world);
326 }
327 
328 /*
329  * Dynamic world regulatory domain requested by the wireless
330  * core upon initialization
331  */
332 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
333 {
334 	struct regulatory_request *lr;
335 
336 	lr = get_last_request();
337 
338 	WARN_ON(!lr);
339 
340 	reset_regdomains(false, rd);
341 
342 	cfg80211_world_regdom = rd;
343 }
344 
345 bool is_world_regdom(const char *alpha2)
346 {
347 	if (!alpha2)
348 		return false;
349 	return alpha2[0] == '0' && alpha2[1] == '0';
350 }
351 
352 static bool is_alpha2_set(const char *alpha2)
353 {
354 	if (!alpha2)
355 		return false;
356 	return alpha2[0] && alpha2[1];
357 }
358 
359 static bool is_unknown_alpha2(const char *alpha2)
360 {
361 	if (!alpha2)
362 		return false;
363 	/*
364 	 * Special case where regulatory domain was built by driver
365 	 * but a specific alpha2 cannot be determined
366 	 */
367 	return alpha2[0] == '9' && alpha2[1] == '9';
368 }
369 
370 static bool is_intersected_alpha2(const char *alpha2)
371 {
372 	if (!alpha2)
373 		return false;
374 	/*
375 	 * Special case where regulatory domain is the
376 	 * result of an intersection between two regulatory domain
377 	 * structures
378 	 */
379 	return alpha2[0] == '9' && alpha2[1] == '8';
380 }
381 
382 static bool is_an_alpha2(const char *alpha2)
383 {
384 	if (!alpha2)
385 		return false;
386 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
387 }
388 
389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
390 {
391 	if (!alpha2_x || !alpha2_y)
392 		return false;
393 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
394 }
395 
396 static bool regdom_changes(const char *alpha2)
397 {
398 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
399 
400 	if (!r)
401 		return true;
402 	return !alpha2_equal(r->alpha2, alpha2);
403 }
404 
405 /*
406  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408  * has ever been issued.
409  */
410 static bool is_user_regdom_saved(void)
411 {
412 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
413 		return false;
414 
415 	/* This would indicate a mistake on the design */
416 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
417 		 "Unexpected user alpha2: %c%c\n",
418 		 user_alpha2[0], user_alpha2[1]))
419 		return false;
420 
421 	return true;
422 }
423 
424 static const struct ieee80211_regdomain *
425 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
426 {
427 	struct ieee80211_regdomain *regd;
428 	int size_of_regd;
429 	unsigned int i;
430 
431 	size_of_regd =
432 		sizeof(struct ieee80211_regdomain) +
433 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
434 
435 	regd = kzalloc(size_of_regd, GFP_KERNEL);
436 	if (!regd)
437 		return ERR_PTR(-ENOMEM);
438 
439 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
440 
441 	for (i = 0; i < src_regd->n_reg_rules; i++)
442 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
443 		       sizeof(struct ieee80211_reg_rule));
444 
445 	return regd;
446 }
447 
448 struct reg_regdb_apply_request {
449 	struct list_head list;
450 	const struct ieee80211_regdomain *regdom;
451 };
452 
453 static LIST_HEAD(reg_regdb_apply_list);
454 static DEFINE_MUTEX(reg_regdb_apply_mutex);
455 
456 static void reg_regdb_apply(struct work_struct *work)
457 {
458 	struct reg_regdb_apply_request *request;
459 
460 	rtnl_lock();
461 
462 	mutex_lock(&reg_regdb_apply_mutex);
463 	while (!list_empty(&reg_regdb_apply_list)) {
464 		request = list_first_entry(&reg_regdb_apply_list,
465 					   struct reg_regdb_apply_request,
466 					   list);
467 		list_del(&request->list);
468 
469 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
470 		kfree(request);
471 	}
472 	mutex_unlock(&reg_regdb_apply_mutex);
473 
474 	rtnl_unlock();
475 }
476 
477 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
478 
479 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
480 {
481 	struct reg_regdb_apply_request *request;
482 
483 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
484 	if (!request) {
485 		kfree(regdom);
486 		return -ENOMEM;
487 	}
488 
489 	request->regdom = regdom;
490 
491 	mutex_lock(&reg_regdb_apply_mutex);
492 	list_add_tail(&request->list, &reg_regdb_apply_list);
493 	mutex_unlock(&reg_regdb_apply_mutex);
494 
495 	schedule_work(&reg_regdb_work);
496 	return 0;
497 }
498 
499 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
500 /* Max number of consecutive attempts to communicate with CRDA  */
501 #define REG_MAX_CRDA_TIMEOUTS 10
502 
503 static u32 reg_crda_timeouts;
504 
505 static void crda_timeout_work(struct work_struct *work);
506 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
507 
508 static void crda_timeout_work(struct work_struct *work)
509 {
510 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
511 	rtnl_lock();
512 	reg_crda_timeouts++;
513 	restore_regulatory_settings(true);
514 	rtnl_unlock();
515 }
516 
517 static void cancel_crda_timeout(void)
518 {
519 	cancel_delayed_work(&crda_timeout);
520 }
521 
522 static void cancel_crda_timeout_sync(void)
523 {
524 	cancel_delayed_work_sync(&crda_timeout);
525 }
526 
527 static void reset_crda_timeouts(void)
528 {
529 	reg_crda_timeouts = 0;
530 }
531 
532 /*
533  * This lets us keep regulatory code which is updated on a regulatory
534  * basis in userspace.
535  */
536 static int call_crda(const char *alpha2)
537 {
538 	char country[12];
539 	char *env[] = { country, NULL };
540 	int ret;
541 
542 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
543 		 alpha2[0], alpha2[1]);
544 
545 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
546 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
547 		return -EINVAL;
548 	}
549 
550 	if (!is_world_regdom((char *) alpha2))
551 		pr_debug("Calling CRDA for country: %c%c\n",
552 			 alpha2[0], alpha2[1]);
553 	else
554 		pr_debug("Calling CRDA to update world regulatory domain\n");
555 
556 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
557 	if (ret)
558 		return ret;
559 
560 	queue_delayed_work(system_power_efficient_wq,
561 			   &crda_timeout, msecs_to_jiffies(3142));
562 	return 0;
563 }
564 #else
565 static inline void cancel_crda_timeout(void) {}
566 static inline void cancel_crda_timeout_sync(void) {}
567 static inline void reset_crda_timeouts(void) {}
568 static inline int call_crda(const char *alpha2)
569 {
570 	return -ENODATA;
571 }
572 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
573 
574 /* code to directly load a firmware database through request_firmware */
575 static const struct fwdb_header *regdb;
576 
577 struct fwdb_country {
578 	u8 alpha2[2];
579 	__be16 coll_ptr;
580 	/* this struct cannot be extended */
581 } __packed __aligned(4);
582 
583 struct fwdb_collection {
584 	u8 len;
585 	u8 n_rules;
586 	u8 dfs_region;
587 	/* no optional data yet */
588 	/* aligned to 2, then followed by __be16 array of rule pointers */
589 } __packed __aligned(4);
590 
591 enum fwdb_flags {
592 	FWDB_FLAG_NO_OFDM	= BIT(0),
593 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
594 	FWDB_FLAG_DFS		= BIT(2),
595 	FWDB_FLAG_NO_IR		= BIT(3),
596 	FWDB_FLAG_AUTO_BW	= BIT(4),
597 };
598 
599 struct fwdb_wmm_ac {
600 	u8 ecw;
601 	u8 aifsn;
602 	__be16 cot;
603 } __packed;
604 
605 struct fwdb_wmm_rule {
606 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
607 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
608 } __packed;
609 
610 struct fwdb_rule {
611 	u8 len;
612 	u8 flags;
613 	__be16 max_eirp;
614 	__be32 start, end, max_bw;
615 	/* start of optional data */
616 	__be16 cac_timeout;
617 	__be16 wmm_ptr;
618 } __packed __aligned(4);
619 
620 #define FWDB_MAGIC 0x52474442
621 #define FWDB_VERSION 20
622 
623 struct fwdb_header {
624 	__be32 magic;
625 	__be32 version;
626 	struct fwdb_country country[];
627 } __packed __aligned(4);
628 
629 static int ecw2cw(int ecw)
630 {
631 	return (1 << ecw) - 1;
632 }
633 
634 static bool valid_wmm(struct fwdb_wmm_rule *rule)
635 {
636 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
637 	int i;
638 
639 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
640 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
641 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
642 		u8 aifsn = ac[i].aifsn;
643 
644 		if (cw_min >= cw_max)
645 			return false;
646 
647 		if (aifsn < 1)
648 			return false;
649 	}
650 
651 	return true;
652 }
653 
654 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
655 {
656 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
657 
658 	if ((u8 *)rule + sizeof(rule->len) > data + size)
659 		return false;
660 
661 	/* mandatory fields */
662 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
663 		return false;
664 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
665 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
666 		struct fwdb_wmm_rule *wmm;
667 
668 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
669 			return false;
670 
671 		wmm = (void *)(data + wmm_ptr);
672 
673 		if (!valid_wmm(wmm))
674 			return false;
675 	}
676 	return true;
677 }
678 
679 static bool valid_country(const u8 *data, unsigned int size,
680 			  const struct fwdb_country *country)
681 {
682 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
683 	struct fwdb_collection *coll = (void *)(data + ptr);
684 	__be16 *rules_ptr;
685 	unsigned int i;
686 
687 	/* make sure we can read len/n_rules */
688 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
689 		return false;
690 
691 	/* make sure base struct and all rules fit */
692 	if ((u8 *)coll + ALIGN(coll->len, 2) +
693 	    (coll->n_rules * 2) > data + size)
694 		return false;
695 
696 	/* mandatory fields must exist */
697 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
698 		return false;
699 
700 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
701 
702 	for (i = 0; i < coll->n_rules; i++) {
703 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
704 
705 		if (!valid_rule(data, size, rule_ptr))
706 			return false;
707 	}
708 
709 	return true;
710 }
711 
712 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
713 static struct key *builtin_regdb_keys;
714 
715 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
716 {
717 	const u8 *end = p + buflen;
718 	size_t plen;
719 	key_ref_t key;
720 
721 	while (p < end) {
722 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
723 		 * than 256 bytes in size.
724 		 */
725 		if (end - p < 4)
726 			goto dodgy_cert;
727 		if (p[0] != 0x30 &&
728 		    p[1] != 0x82)
729 			goto dodgy_cert;
730 		plen = (p[2] << 8) | p[3];
731 		plen += 4;
732 		if (plen > end - p)
733 			goto dodgy_cert;
734 
735 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
736 					   "asymmetric", NULL, p, plen,
737 					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
738 					    KEY_USR_VIEW | KEY_USR_READ),
739 					   KEY_ALLOC_NOT_IN_QUOTA |
740 					   KEY_ALLOC_BUILT_IN |
741 					   KEY_ALLOC_BYPASS_RESTRICTION);
742 		if (IS_ERR(key)) {
743 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
744 			       PTR_ERR(key));
745 		} else {
746 			pr_notice("Loaded X.509 cert '%s'\n",
747 				  key_ref_to_ptr(key)->description);
748 			key_ref_put(key);
749 		}
750 		p += plen;
751 	}
752 
753 	return;
754 
755 dodgy_cert:
756 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
757 }
758 
759 static int __init load_builtin_regdb_keys(void)
760 {
761 	builtin_regdb_keys =
762 		keyring_alloc(".builtin_regdb_keys",
763 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
764 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
766 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
767 	if (IS_ERR(builtin_regdb_keys))
768 		return PTR_ERR(builtin_regdb_keys);
769 
770 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
771 
772 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
773 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
774 #endif
775 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
776 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
777 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
778 #endif
779 
780 	return 0;
781 }
782 
783 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
784 {
785 	const struct firmware *sig;
786 	bool result;
787 
788 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
789 		return false;
790 
791 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
792 					builtin_regdb_keys,
793 					VERIFYING_UNSPECIFIED_SIGNATURE,
794 					NULL, NULL) == 0;
795 
796 	release_firmware(sig);
797 
798 	return result;
799 }
800 
801 static void free_regdb_keyring(void)
802 {
803 	key_put(builtin_regdb_keys);
804 }
805 #else
806 static int load_builtin_regdb_keys(void)
807 {
808 	return 0;
809 }
810 
811 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
812 {
813 	return true;
814 }
815 
816 static void free_regdb_keyring(void)
817 {
818 }
819 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
820 
821 static bool valid_regdb(const u8 *data, unsigned int size)
822 {
823 	const struct fwdb_header *hdr = (void *)data;
824 	const struct fwdb_country *country;
825 
826 	if (size < sizeof(*hdr))
827 		return false;
828 
829 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
830 		return false;
831 
832 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
833 		return false;
834 
835 	if (!regdb_has_valid_signature(data, size))
836 		return false;
837 
838 	country = &hdr->country[0];
839 	while ((u8 *)(country + 1) <= data + size) {
840 		if (!country->coll_ptr)
841 			break;
842 		if (!valid_country(data, size, country))
843 			return false;
844 		country++;
845 	}
846 
847 	return true;
848 }
849 
850 static void set_wmm_rule(const struct fwdb_header *db,
851 			 const struct fwdb_country *country,
852 			 const struct fwdb_rule *rule,
853 			 struct ieee80211_reg_rule *rrule)
854 {
855 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
856 	struct fwdb_wmm_rule *wmm;
857 	unsigned int i, wmm_ptr;
858 
859 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
860 	wmm = (void *)((u8 *)db + wmm_ptr);
861 
862 	if (!valid_wmm(wmm)) {
863 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
864 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
865 		       country->alpha2[0], country->alpha2[1]);
866 		return;
867 	}
868 
869 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
870 		wmm_rule->client[i].cw_min =
871 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
872 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
873 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
874 		wmm_rule->client[i].cot =
875 			1000 * be16_to_cpu(wmm->client[i].cot);
876 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
877 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
878 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
879 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
880 	}
881 
882 	rrule->has_wmm = true;
883 }
884 
885 static int __regdb_query_wmm(const struct fwdb_header *db,
886 			     const struct fwdb_country *country, int freq,
887 			     struct ieee80211_reg_rule *rrule)
888 {
889 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
890 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
891 	int i;
892 
893 	for (i = 0; i < coll->n_rules; i++) {
894 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
895 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
896 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
897 
898 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
899 			continue;
900 
901 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
902 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
903 			set_wmm_rule(db, country, rule, rrule);
904 			return 0;
905 		}
906 	}
907 
908 	return -ENODATA;
909 }
910 
911 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
912 {
913 	const struct fwdb_header *hdr = regdb;
914 	const struct fwdb_country *country;
915 
916 	if (!regdb)
917 		return -ENODATA;
918 
919 	if (IS_ERR(regdb))
920 		return PTR_ERR(regdb);
921 
922 	country = &hdr->country[0];
923 	while (country->coll_ptr) {
924 		if (alpha2_equal(alpha2, country->alpha2))
925 			return __regdb_query_wmm(regdb, country, freq, rule);
926 
927 		country++;
928 	}
929 
930 	return -ENODATA;
931 }
932 EXPORT_SYMBOL(reg_query_regdb_wmm);
933 
934 static int regdb_query_country(const struct fwdb_header *db,
935 			       const struct fwdb_country *country)
936 {
937 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
938 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
939 	struct ieee80211_regdomain *regdom;
940 	unsigned int size_of_regd, i;
941 
942 	size_of_regd = sizeof(struct ieee80211_regdomain) +
943 		coll->n_rules * sizeof(struct ieee80211_reg_rule);
944 
945 	regdom = kzalloc(size_of_regd, GFP_KERNEL);
946 	if (!regdom)
947 		return -ENOMEM;
948 
949 	regdom->n_reg_rules = coll->n_rules;
950 	regdom->alpha2[0] = country->alpha2[0];
951 	regdom->alpha2[1] = country->alpha2[1];
952 	regdom->dfs_region = coll->dfs_region;
953 
954 	for (i = 0; i < regdom->n_reg_rules; i++) {
955 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
956 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
957 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
958 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
959 
960 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
961 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
962 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
963 
964 		rrule->power_rule.max_antenna_gain = 0;
965 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
966 
967 		rrule->flags = 0;
968 		if (rule->flags & FWDB_FLAG_NO_OFDM)
969 			rrule->flags |= NL80211_RRF_NO_OFDM;
970 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
971 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
972 		if (rule->flags & FWDB_FLAG_DFS)
973 			rrule->flags |= NL80211_RRF_DFS;
974 		if (rule->flags & FWDB_FLAG_NO_IR)
975 			rrule->flags |= NL80211_RRF_NO_IR;
976 		if (rule->flags & FWDB_FLAG_AUTO_BW)
977 			rrule->flags |= NL80211_RRF_AUTO_BW;
978 
979 		rrule->dfs_cac_ms = 0;
980 
981 		/* handle optional data */
982 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
983 			rrule->dfs_cac_ms =
984 				1000 * be16_to_cpu(rule->cac_timeout);
985 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
986 			set_wmm_rule(db, country, rule, rrule);
987 	}
988 
989 	return reg_schedule_apply(regdom);
990 }
991 
992 static int query_regdb(const char *alpha2)
993 {
994 	const struct fwdb_header *hdr = regdb;
995 	const struct fwdb_country *country;
996 
997 	ASSERT_RTNL();
998 
999 	if (IS_ERR(regdb))
1000 		return PTR_ERR(regdb);
1001 
1002 	country = &hdr->country[0];
1003 	while (country->coll_ptr) {
1004 		if (alpha2_equal(alpha2, country->alpha2))
1005 			return regdb_query_country(regdb, country);
1006 		country++;
1007 	}
1008 
1009 	return -ENODATA;
1010 }
1011 
1012 static void regdb_fw_cb(const struct firmware *fw, void *context)
1013 {
1014 	int set_error = 0;
1015 	bool restore = true;
1016 	void *db;
1017 
1018 	if (!fw) {
1019 		pr_info("failed to load regulatory.db\n");
1020 		set_error = -ENODATA;
1021 	} else if (!valid_regdb(fw->data, fw->size)) {
1022 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1023 		set_error = -EINVAL;
1024 	}
1025 
1026 	rtnl_lock();
1027 	if (regdb && !IS_ERR(regdb)) {
1028 		/* negative case - a bug
1029 		 * positive case - can happen due to race in case of multiple cb's in
1030 		 * queue, due to usage of asynchronous callback
1031 		 *
1032 		 * Either case, just restore and free new db.
1033 		 */
1034 	} else if (set_error) {
1035 		regdb = ERR_PTR(set_error);
1036 	} else if (fw) {
1037 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1038 		if (db) {
1039 			regdb = db;
1040 			restore = context && query_regdb(context);
1041 		} else {
1042 			restore = true;
1043 		}
1044 	}
1045 
1046 	if (restore)
1047 		restore_regulatory_settings(true);
1048 
1049 	rtnl_unlock();
1050 
1051 	kfree(context);
1052 
1053 	release_firmware(fw);
1054 }
1055 
1056 static int query_regdb_file(const char *alpha2)
1057 {
1058 	ASSERT_RTNL();
1059 
1060 	if (regdb)
1061 		return query_regdb(alpha2);
1062 
1063 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1064 	if (!alpha2)
1065 		return -ENOMEM;
1066 
1067 	return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1068 				       &reg_pdev->dev, GFP_KERNEL,
1069 				       (void *)alpha2, regdb_fw_cb);
1070 }
1071 
1072 int reg_reload_regdb(void)
1073 {
1074 	const struct firmware *fw;
1075 	void *db;
1076 	int err;
1077 
1078 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1079 	if (err)
1080 		return err;
1081 
1082 	if (!valid_regdb(fw->data, fw->size)) {
1083 		err = -ENODATA;
1084 		goto out;
1085 	}
1086 
1087 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1088 	if (!db) {
1089 		err = -ENOMEM;
1090 		goto out;
1091 	}
1092 
1093 	rtnl_lock();
1094 	if (!IS_ERR_OR_NULL(regdb))
1095 		kfree(regdb);
1096 	regdb = db;
1097 	rtnl_unlock();
1098 
1099  out:
1100 	release_firmware(fw);
1101 	return err;
1102 }
1103 
1104 static bool reg_query_database(struct regulatory_request *request)
1105 {
1106 	if (query_regdb_file(request->alpha2) == 0)
1107 		return true;
1108 
1109 	if (call_crda(request->alpha2) == 0)
1110 		return true;
1111 
1112 	return false;
1113 }
1114 
1115 bool reg_is_valid_request(const char *alpha2)
1116 {
1117 	struct regulatory_request *lr = get_last_request();
1118 
1119 	if (!lr || lr->processed)
1120 		return false;
1121 
1122 	return alpha2_equal(lr->alpha2, alpha2);
1123 }
1124 
1125 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1126 {
1127 	struct regulatory_request *lr = get_last_request();
1128 
1129 	/*
1130 	 * Follow the driver's regulatory domain, if present, unless a country
1131 	 * IE has been processed or a user wants to help complaince further
1132 	 */
1133 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1134 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1135 	    wiphy->regd)
1136 		return get_wiphy_regdom(wiphy);
1137 
1138 	return get_cfg80211_regdom();
1139 }
1140 
1141 static unsigned int
1142 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1143 				 const struct ieee80211_reg_rule *rule)
1144 {
1145 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1146 	const struct ieee80211_freq_range *freq_range_tmp;
1147 	const struct ieee80211_reg_rule *tmp;
1148 	u32 start_freq, end_freq, idx, no;
1149 
1150 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1151 		if (rule == &rd->reg_rules[idx])
1152 			break;
1153 
1154 	if (idx == rd->n_reg_rules)
1155 		return 0;
1156 
1157 	/* get start_freq */
1158 	no = idx;
1159 
1160 	while (no) {
1161 		tmp = &rd->reg_rules[--no];
1162 		freq_range_tmp = &tmp->freq_range;
1163 
1164 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1165 			break;
1166 
1167 		freq_range = freq_range_tmp;
1168 	}
1169 
1170 	start_freq = freq_range->start_freq_khz;
1171 
1172 	/* get end_freq */
1173 	freq_range = &rule->freq_range;
1174 	no = idx;
1175 
1176 	while (no < rd->n_reg_rules - 1) {
1177 		tmp = &rd->reg_rules[++no];
1178 		freq_range_tmp = &tmp->freq_range;
1179 
1180 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1181 			break;
1182 
1183 		freq_range = freq_range_tmp;
1184 	}
1185 
1186 	end_freq = freq_range->end_freq_khz;
1187 
1188 	return end_freq - start_freq;
1189 }
1190 
1191 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1192 				   const struct ieee80211_reg_rule *rule)
1193 {
1194 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1195 
1196 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1197 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1198 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1199 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1200 
1201 	/*
1202 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1203 	 * are not allowed.
1204 	 */
1205 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1206 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1207 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1208 
1209 	return bw;
1210 }
1211 
1212 /* Sanity check on a regulatory rule */
1213 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1214 {
1215 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1216 	u32 freq_diff;
1217 
1218 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1219 		return false;
1220 
1221 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1222 		return false;
1223 
1224 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1225 
1226 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1227 	    freq_range->max_bandwidth_khz > freq_diff)
1228 		return false;
1229 
1230 	return true;
1231 }
1232 
1233 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1234 {
1235 	const struct ieee80211_reg_rule *reg_rule = NULL;
1236 	unsigned int i;
1237 
1238 	if (!rd->n_reg_rules)
1239 		return false;
1240 
1241 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1242 		return false;
1243 
1244 	for (i = 0; i < rd->n_reg_rules; i++) {
1245 		reg_rule = &rd->reg_rules[i];
1246 		if (!is_valid_reg_rule(reg_rule))
1247 			return false;
1248 	}
1249 
1250 	return true;
1251 }
1252 
1253 /**
1254  * freq_in_rule_band - tells us if a frequency is in a frequency band
1255  * @freq_range: frequency rule we want to query
1256  * @freq_khz: frequency we are inquiring about
1257  *
1258  * This lets us know if a specific frequency rule is or is not relevant to
1259  * a specific frequency's band. Bands are device specific and artificial
1260  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1261  * however it is safe for now to assume that a frequency rule should not be
1262  * part of a frequency's band if the start freq or end freq are off by more
1263  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1264  * 60 GHz band.
1265  * This resolution can be lowered and should be considered as we add
1266  * regulatory rule support for other "bands".
1267  **/
1268 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1269 			      u32 freq_khz)
1270 {
1271 #define ONE_GHZ_IN_KHZ	1000000
1272 	/*
1273 	 * From 802.11ad: directional multi-gigabit (DMG):
1274 	 * Pertaining to operation in a frequency band containing a channel
1275 	 * with the Channel starting frequency above 45 GHz.
1276 	 */
1277 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1278 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1279 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1280 		return true;
1281 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1282 		return true;
1283 	return false;
1284 #undef ONE_GHZ_IN_KHZ
1285 }
1286 
1287 /*
1288  * Later on we can perhaps use the more restrictive DFS
1289  * region but we don't have information for that yet so
1290  * for now simply disallow conflicts.
1291  */
1292 static enum nl80211_dfs_regions
1293 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1294 			 const enum nl80211_dfs_regions dfs_region2)
1295 {
1296 	if (dfs_region1 != dfs_region2)
1297 		return NL80211_DFS_UNSET;
1298 	return dfs_region1;
1299 }
1300 
1301 /*
1302  * Helper for regdom_intersect(), this does the real
1303  * mathematical intersection fun
1304  */
1305 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1306 			       const struct ieee80211_regdomain *rd2,
1307 			       const struct ieee80211_reg_rule *rule1,
1308 			       const struct ieee80211_reg_rule *rule2,
1309 			       struct ieee80211_reg_rule *intersected_rule)
1310 {
1311 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1312 	struct ieee80211_freq_range *freq_range;
1313 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1314 	struct ieee80211_power_rule *power_rule;
1315 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1316 
1317 	freq_range1 = &rule1->freq_range;
1318 	freq_range2 = &rule2->freq_range;
1319 	freq_range = &intersected_rule->freq_range;
1320 
1321 	power_rule1 = &rule1->power_rule;
1322 	power_rule2 = &rule2->power_rule;
1323 	power_rule = &intersected_rule->power_rule;
1324 
1325 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1326 					 freq_range2->start_freq_khz);
1327 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1328 				       freq_range2->end_freq_khz);
1329 
1330 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1331 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1332 
1333 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1334 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1335 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1336 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1337 
1338 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1339 
1340 	intersected_rule->flags = rule1->flags | rule2->flags;
1341 
1342 	/*
1343 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1344 	 * set AUTO_BW in intersected rule also. Next we will
1345 	 * calculate BW correctly in handle_channel function.
1346 	 * In other case remove AUTO_BW flag while we calculate
1347 	 * maximum bandwidth correctly and auto calculation is
1348 	 * not required.
1349 	 */
1350 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1351 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1352 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1353 	else
1354 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1355 
1356 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1357 	if (freq_range->max_bandwidth_khz > freq_diff)
1358 		freq_range->max_bandwidth_khz = freq_diff;
1359 
1360 	power_rule->max_eirp = min(power_rule1->max_eirp,
1361 		power_rule2->max_eirp);
1362 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1363 		power_rule2->max_antenna_gain);
1364 
1365 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1366 					   rule2->dfs_cac_ms);
1367 
1368 	if (!is_valid_reg_rule(intersected_rule))
1369 		return -EINVAL;
1370 
1371 	return 0;
1372 }
1373 
1374 /* check whether old rule contains new rule */
1375 static bool rule_contains(struct ieee80211_reg_rule *r1,
1376 			  struct ieee80211_reg_rule *r2)
1377 {
1378 	/* for simplicity, currently consider only same flags */
1379 	if (r1->flags != r2->flags)
1380 		return false;
1381 
1382 	/* verify r1 is more restrictive */
1383 	if ((r1->power_rule.max_antenna_gain >
1384 	     r2->power_rule.max_antenna_gain) ||
1385 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1386 		return false;
1387 
1388 	/* make sure r2's range is contained within r1 */
1389 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1390 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1391 		return false;
1392 
1393 	/* and finally verify that r1.max_bw >= r2.max_bw */
1394 	if (r1->freq_range.max_bandwidth_khz <
1395 	    r2->freq_range.max_bandwidth_khz)
1396 		return false;
1397 
1398 	return true;
1399 }
1400 
1401 /* add or extend current rules. do nothing if rule is already contained */
1402 static void add_rule(struct ieee80211_reg_rule *rule,
1403 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1404 {
1405 	struct ieee80211_reg_rule *tmp_rule;
1406 	int i;
1407 
1408 	for (i = 0; i < *n_rules; i++) {
1409 		tmp_rule = &reg_rules[i];
1410 		/* rule is already contained - do nothing */
1411 		if (rule_contains(tmp_rule, rule))
1412 			return;
1413 
1414 		/* extend rule if possible */
1415 		if (rule_contains(rule, tmp_rule)) {
1416 			memcpy(tmp_rule, rule, sizeof(*rule));
1417 			return;
1418 		}
1419 	}
1420 
1421 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1422 	(*n_rules)++;
1423 }
1424 
1425 /**
1426  * regdom_intersect - do the intersection between two regulatory domains
1427  * @rd1: first regulatory domain
1428  * @rd2: second regulatory domain
1429  *
1430  * Use this function to get the intersection between two regulatory domains.
1431  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1432  * as no one single alpha2 can represent this regulatory domain.
1433  *
1434  * Returns a pointer to the regulatory domain structure which will hold the
1435  * resulting intersection of rules between rd1 and rd2. We will
1436  * kzalloc() this structure for you.
1437  */
1438 static struct ieee80211_regdomain *
1439 regdom_intersect(const struct ieee80211_regdomain *rd1,
1440 		 const struct ieee80211_regdomain *rd2)
1441 {
1442 	int r, size_of_regd;
1443 	unsigned int x, y;
1444 	unsigned int num_rules = 0;
1445 	const struct ieee80211_reg_rule *rule1, *rule2;
1446 	struct ieee80211_reg_rule intersected_rule;
1447 	struct ieee80211_regdomain *rd;
1448 
1449 	if (!rd1 || !rd2)
1450 		return NULL;
1451 
1452 	/*
1453 	 * First we get a count of the rules we'll need, then we actually
1454 	 * build them. This is to so we can malloc() and free() a
1455 	 * regdomain once. The reason we use reg_rules_intersect() here
1456 	 * is it will return -EINVAL if the rule computed makes no sense.
1457 	 * All rules that do check out OK are valid.
1458 	 */
1459 
1460 	for (x = 0; x < rd1->n_reg_rules; x++) {
1461 		rule1 = &rd1->reg_rules[x];
1462 		for (y = 0; y < rd2->n_reg_rules; y++) {
1463 			rule2 = &rd2->reg_rules[y];
1464 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1465 						 &intersected_rule))
1466 				num_rules++;
1467 		}
1468 	}
1469 
1470 	if (!num_rules)
1471 		return NULL;
1472 
1473 	size_of_regd = sizeof(struct ieee80211_regdomain) +
1474 		       num_rules * sizeof(struct ieee80211_reg_rule);
1475 
1476 	rd = kzalloc(size_of_regd, GFP_KERNEL);
1477 	if (!rd)
1478 		return NULL;
1479 
1480 	for (x = 0; x < rd1->n_reg_rules; x++) {
1481 		rule1 = &rd1->reg_rules[x];
1482 		for (y = 0; y < rd2->n_reg_rules; y++) {
1483 			rule2 = &rd2->reg_rules[y];
1484 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1485 						&intersected_rule);
1486 			/*
1487 			 * No need to memset here the intersected rule here as
1488 			 * we're not using the stack anymore
1489 			 */
1490 			if (r)
1491 				continue;
1492 
1493 			add_rule(&intersected_rule, rd->reg_rules,
1494 				 &rd->n_reg_rules);
1495 		}
1496 	}
1497 
1498 	rd->alpha2[0] = '9';
1499 	rd->alpha2[1] = '8';
1500 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1501 						  rd2->dfs_region);
1502 
1503 	return rd;
1504 }
1505 
1506 /*
1507  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1508  * want to just have the channel structure use these
1509  */
1510 static u32 map_regdom_flags(u32 rd_flags)
1511 {
1512 	u32 channel_flags = 0;
1513 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1514 		channel_flags |= IEEE80211_CHAN_NO_IR;
1515 	if (rd_flags & NL80211_RRF_DFS)
1516 		channel_flags |= IEEE80211_CHAN_RADAR;
1517 	if (rd_flags & NL80211_RRF_NO_OFDM)
1518 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1519 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1520 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1521 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1522 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1523 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1524 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1525 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1526 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1527 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1528 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1529 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1530 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1531 	return channel_flags;
1532 }
1533 
1534 static const struct ieee80211_reg_rule *
1535 freq_reg_info_regd(u32 center_freq,
1536 		   const struct ieee80211_regdomain *regd, u32 bw)
1537 {
1538 	int i;
1539 	bool band_rule_found = false;
1540 	bool bw_fits = false;
1541 
1542 	if (!regd)
1543 		return ERR_PTR(-EINVAL);
1544 
1545 	for (i = 0; i < regd->n_reg_rules; i++) {
1546 		const struct ieee80211_reg_rule *rr;
1547 		const struct ieee80211_freq_range *fr = NULL;
1548 
1549 		rr = &regd->reg_rules[i];
1550 		fr = &rr->freq_range;
1551 
1552 		/*
1553 		 * We only need to know if one frequency rule was
1554 		 * was in center_freq's band, that's enough, so lets
1555 		 * not overwrite it once found
1556 		 */
1557 		if (!band_rule_found)
1558 			band_rule_found = freq_in_rule_band(fr, center_freq);
1559 
1560 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1561 
1562 		if (band_rule_found && bw_fits)
1563 			return rr;
1564 	}
1565 
1566 	if (!band_rule_found)
1567 		return ERR_PTR(-ERANGE);
1568 
1569 	return ERR_PTR(-EINVAL);
1570 }
1571 
1572 static const struct ieee80211_reg_rule *
1573 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1574 {
1575 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1576 	const struct ieee80211_reg_rule *reg_rule = NULL;
1577 	u32 bw;
1578 
1579 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1580 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1581 		if (!IS_ERR(reg_rule))
1582 			return reg_rule;
1583 	}
1584 
1585 	return reg_rule;
1586 }
1587 
1588 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1589 					       u32 center_freq)
1590 {
1591 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1592 }
1593 EXPORT_SYMBOL(freq_reg_info);
1594 
1595 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1596 {
1597 	switch (initiator) {
1598 	case NL80211_REGDOM_SET_BY_CORE:
1599 		return "core";
1600 	case NL80211_REGDOM_SET_BY_USER:
1601 		return "user";
1602 	case NL80211_REGDOM_SET_BY_DRIVER:
1603 		return "driver";
1604 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1605 		return "country element";
1606 	default:
1607 		WARN_ON(1);
1608 		return "bug";
1609 	}
1610 }
1611 EXPORT_SYMBOL(reg_initiator_name);
1612 
1613 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1614 					  const struct ieee80211_reg_rule *reg_rule,
1615 					  const struct ieee80211_channel *chan)
1616 {
1617 	const struct ieee80211_freq_range *freq_range = NULL;
1618 	u32 max_bandwidth_khz, bw_flags = 0;
1619 
1620 	freq_range = &reg_rule->freq_range;
1621 
1622 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1623 	/* Check if auto calculation requested */
1624 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1625 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1626 
1627 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1628 	if (!cfg80211_does_bw_fit_range(freq_range,
1629 					MHZ_TO_KHZ(chan->center_freq),
1630 					MHZ_TO_KHZ(10)))
1631 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1632 	if (!cfg80211_does_bw_fit_range(freq_range,
1633 					MHZ_TO_KHZ(chan->center_freq),
1634 					MHZ_TO_KHZ(20)))
1635 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1636 
1637 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1638 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1639 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1640 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1641 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1642 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1643 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1644 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1645 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1646 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1647 	return bw_flags;
1648 }
1649 
1650 /*
1651  * Note that right now we assume the desired channel bandwidth
1652  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1653  * per channel, the primary and the extension channel).
1654  */
1655 static void handle_channel(struct wiphy *wiphy,
1656 			   enum nl80211_reg_initiator initiator,
1657 			   struct ieee80211_channel *chan)
1658 {
1659 	u32 flags, bw_flags = 0;
1660 	const struct ieee80211_reg_rule *reg_rule = NULL;
1661 	const struct ieee80211_power_rule *power_rule = NULL;
1662 	struct wiphy *request_wiphy = NULL;
1663 	struct regulatory_request *lr = get_last_request();
1664 	const struct ieee80211_regdomain *regd;
1665 
1666 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1667 
1668 	flags = chan->orig_flags;
1669 
1670 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1671 	if (IS_ERR(reg_rule)) {
1672 		/*
1673 		 * We will disable all channels that do not match our
1674 		 * received regulatory rule unless the hint is coming
1675 		 * from a Country IE and the Country IE had no information
1676 		 * about a band. The IEEE 802.11 spec allows for an AP
1677 		 * to send only a subset of the regulatory rules allowed,
1678 		 * so an AP in the US that only supports 2.4 GHz may only send
1679 		 * a country IE with information for the 2.4 GHz band
1680 		 * while 5 GHz is still supported.
1681 		 */
1682 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1683 		    PTR_ERR(reg_rule) == -ERANGE)
1684 			return;
1685 
1686 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1687 		    request_wiphy && request_wiphy == wiphy &&
1688 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1689 			pr_debug("Disabling freq %d MHz for good\n",
1690 				 chan->center_freq);
1691 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1692 			chan->flags = chan->orig_flags;
1693 		} else {
1694 			pr_debug("Disabling freq %d MHz\n",
1695 				 chan->center_freq);
1696 			chan->flags |= IEEE80211_CHAN_DISABLED;
1697 		}
1698 		return;
1699 	}
1700 
1701 	regd = reg_get_regdomain(wiphy);
1702 
1703 	power_rule = &reg_rule->power_rule;
1704 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1705 
1706 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1707 	    request_wiphy && request_wiphy == wiphy &&
1708 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1709 		/*
1710 		 * This guarantees the driver's requested regulatory domain
1711 		 * will always be used as a base for further regulatory
1712 		 * settings
1713 		 */
1714 		chan->flags = chan->orig_flags =
1715 			map_regdom_flags(reg_rule->flags) | bw_flags;
1716 		chan->max_antenna_gain = chan->orig_mag =
1717 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1718 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1719 			(int) MBM_TO_DBM(power_rule->max_eirp);
1720 
1721 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1722 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1723 			if (reg_rule->dfs_cac_ms)
1724 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1725 		}
1726 
1727 		return;
1728 	}
1729 
1730 	chan->dfs_state = NL80211_DFS_USABLE;
1731 	chan->dfs_state_entered = jiffies;
1732 
1733 	chan->beacon_found = false;
1734 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1735 	chan->max_antenna_gain =
1736 		min_t(int, chan->orig_mag,
1737 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1738 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1739 
1740 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1741 		if (reg_rule->dfs_cac_ms)
1742 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1743 		else
1744 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1745 	}
1746 
1747 	if (chan->orig_mpwr) {
1748 		/*
1749 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1750 		 * will always follow the passed country IE power settings.
1751 		 */
1752 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1753 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1754 			chan->max_power = chan->max_reg_power;
1755 		else
1756 			chan->max_power = min(chan->orig_mpwr,
1757 					      chan->max_reg_power);
1758 	} else
1759 		chan->max_power = chan->max_reg_power;
1760 }
1761 
1762 static void handle_band(struct wiphy *wiphy,
1763 			enum nl80211_reg_initiator initiator,
1764 			struct ieee80211_supported_band *sband)
1765 {
1766 	unsigned int i;
1767 
1768 	if (!sband)
1769 		return;
1770 
1771 	for (i = 0; i < sband->n_channels; i++)
1772 		handle_channel(wiphy, initiator, &sband->channels[i]);
1773 }
1774 
1775 static bool reg_request_cell_base(struct regulatory_request *request)
1776 {
1777 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1778 		return false;
1779 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1780 }
1781 
1782 bool reg_last_request_cell_base(void)
1783 {
1784 	return reg_request_cell_base(get_last_request());
1785 }
1786 
1787 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1788 /* Core specific check */
1789 static enum reg_request_treatment
1790 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1791 {
1792 	struct regulatory_request *lr = get_last_request();
1793 
1794 	if (!reg_num_devs_support_basehint)
1795 		return REG_REQ_IGNORE;
1796 
1797 	if (reg_request_cell_base(lr) &&
1798 	    !regdom_changes(pending_request->alpha2))
1799 		return REG_REQ_ALREADY_SET;
1800 
1801 	return REG_REQ_OK;
1802 }
1803 
1804 /* Device specific check */
1805 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1806 {
1807 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1808 }
1809 #else
1810 static enum reg_request_treatment
1811 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1812 {
1813 	return REG_REQ_IGNORE;
1814 }
1815 
1816 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1817 {
1818 	return true;
1819 }
1820 #endif
1821 
1822 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1823 {
1824 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1825 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1826 		return true;
1827 	return false;
1828 }
1829 
1830 static bool ignore_reg_update(struct wiphy *wiphy,
1831 			      enum nl80211_reg_initiator initiator)
1832 {
1833 	struct regulatory_request *lr = get_last_request();
1834 
1835 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1836 		return true;
1837 
1838 	if (!lr) {
1839 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1840 			 reg_initiator_name(initiator));
1841 		return true;
1842 	}
1843 
1844 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1845 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1846 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1847 			 reg_initiator_name(initiator));
1848 		return true;
1849 	}
1850 
1851 	/*
1852 	 * wiphy->regd will be set once the device has its own
1853 	 * desired regulatory domain set
1854 	 */
1855 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1856 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1857 	    !is_world_regdom(lr->alpha2)) {
1858 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1859 			 reg_initiator_name(initiator));
1860 		return true;
1861 	}
1862 
1863 	if (reg_request_cell_base(lr))
1864 		return reg_dev_ignore_cell_hint(wiphy);
1865 
1866 	return false;
1867 }
1868 
1869 static bool reg_is_world_roaming(struct wiphy *wiphy)
1870 {
1871 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1872 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1873 	struct regulatory_request *lr = get_last_request();
1874 
1875 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1876 		return true;
1877 
1878 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1879 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1880 		return true;
1881 
1882 	return false;
1883 }
1884 
1885 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1886 			      struct reg_beacon *reg_beacon)
1887 {
1888 	struct ieee80211_supported_band *sband;
1889 	struct ieee80211_channel *chan;
1890 	bool channel_changed = false;
1891 	struct ieee80211_channel chan_before;
1892 
1893 	sband = wiphy->bands[reg_beacon->chan.band];
1894 	chan = &sband->channels[chan_idx];
1895 
1896 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1897 		return;
1898 
1899 	if (chan->beacon_found)
1900 		return;
1901 
1902 	chan->beacon_found = true;
1903 
1904 	if (!reg_is_world_roaming(wiphy))
1905 		return;
1906 
1907 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1908 		return;
1909 
1910 	chan_before = *chan;
1911 
1912 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1913 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1914 		channel_changed = true;
1915 	}
1916 
1917 	if (channel_changed)
1918 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1919 }
1920 
1921 /*
1922  * Called when a scan on a wiphy finds a beacon on
1923  * new channel
1924  */
1925 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1926 				    struct reg_beacon *reg_beacon)
1927 {
1928 	unsigned int i;
1929 	struct ieee80211_supported_band *sband;
1930 
1931 	if (!wiphy->bands[reg_beacon->chan.band])
1932 		return;
1933 
1934 	sband = wiphy->bands[reg_beacon->chan.band];
1935 
1936 	for (i = 0; i < sband->n_channels; i++)
1937 		handle_reg_beacon(wiphy, i, reg_beacon);
1938 }
1939 
1940 /*
1941  * Called upon reg changes or a new wiphy is added
1942  */
1943 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1944 {
1945 	unsigned int i;
1946 	struct ieee80211_supported_band *sband;
1947 	struct reg_beacon *reg_beacon;
1948 
1949 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1950 		if (!wiphy->bands[reg_beacon->chan.band])
1951 			continue;
1952 		sband = wiphy->bands[reg_beacon->chan.band];
1953 		for (i = 0; i < sband->n_channels; i++)
1954 			handle_reg_beacon(wiphy, i, reg_beacon);
1955 	}
1956 }
1957 
1958 /* Reap the advantages of previously found beacons */
1959 static void reg_process_beacons(struct wiphy *wiphy)
1960 {
1961 	/*
1962 	 * Means we are just firing up cfg80211, so no beacons would
1963 	 * have been processed yet.
1964 	 */
1965 	if (!last_request)
1966 		return;
1967 	wiphy_update_beacon_reg(wiphy);
1968 }
1969 
1970 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1971 {
1972 	if (!chan)
1973 		return false;
1974 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1975 		return false;
1976 	/* This would happen when regulatory rules disallow HT40 completely */
1977 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1978 		return false;
1979 	return true;
1980 }
1981 
1982 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1983 					 struct ieee80211_channel *channel)
1984 {
1985 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1986 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1987 	const struct ieee80211_regdomain *regd;
1988 	unsigned int i;
1989 	u32 flags;
1990 
1991 	if (!is_ht40_allowed(channel)) {
1992 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1993 		return;
1994 	}
1995 
1996 	/*
1997 	 * We need to ensure the extension channels exist to
1998 	 * be able to use HT40- or HT40+, this finds them (or not)
1999 	 */
2000 	for (i = 0; i < sband->n_channels; i++) {
2001 		struct ieee80211_channel *c = &sband->channels[i];
2002 
2003 		if (c->center_freq == (channel->center_freq - 20))
2004 			channel_before = c;
2005 		if (c->center_freq == (channel->center_freq + 20))
2006 			channel_after = c;
2007 	}
2008 
2009 	flags = 0;
2010 	regd = get_wiphy_regdom(wiphy);
2011 	if (regd) {
2012 		const struct ieee80211_reg_rule *reg_rule =
2013 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2014 					   regd, MHZ_TO_KHZ(20));
2015 
2016 		if (!IS_ERR(reg_rule))
2017 			flags = reg_rule->flags;
2018 	}
2019 
2020 	/*
2021 	 * Please note that this assumes target bandwidth is 20 MHz,
2022 	 * if that ever changes we also need to change the below logic
2023 	 * to include that as well.
2024 	 */
2025 	if (!is_ht40_allowed(channel_before) ||
2026 	    flags & NL80211_RRF_NO_HT40MINUS)
2027 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2028 	else
2029 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2030 
2031 	if (!is_ht40_allowed(channel_after) ||
2032 	    flags & NL80211_RRF_NO_HT40PLUS)
2033 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2034 	else
2035 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2036 }
2037 
2038 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2039 				      struct ieee80211_supported_band *sband)
2040 {
2041 	unsigned int i;
2042 
2043 	if (!sband)
2044 		return;
2045 
2046 	for (i = 0; i < sband->n_channels; i++)
2047 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2048 }
2049 
2050 static void reg_process_ht_flags(struct wiphy *wiphy)
2051 {
2052 	enum nl80211_band band;
2053 
2054 	if (!wiphy)
2055 		return;
2056 
2057 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2058 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2059 }
2060 
2061 static void reg_call_notifier(struct wiphy *wiphy,
2062 			      struct regulatory_request *request)
2063 {
2064 	if (wiphy->reg_notifier)
2065 		wiphy->reg_notifier(wiphy, request);
2066 }
2067 
2068 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2069 {
2070 	struct cfg80211_chan_def chandef;
2071 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2072 	enum nl80211_iftype iftype;
2073 
2074 	wdev_lock(wdev);
2075 	iftype = wdev->iftype;
2076 
2077 	/* make sure the interface is active */
2078 	if (!wdev->netdev || !netif_running(wdev->netdev))
2079 		goto wdev_inactive_unlock;
2080 
2081 	switch (iftype) {
2082 	case NL80211_IFTYPE_AP:
2083 	case NL80211_IFTYPE_P2P_GO:
2084 		if (!wdev->beacon_interval)
2085 			goto wdev_inactive_unlock;
2086 		chandef = wdev->chandef;
2087 		break;
2088 	case NL80211_IFTYPE_ADHOC:
2089 		if (!wdev->ssid_len)
2090 			goto wdev_inactive_unlock;
2091 		chandef = wdev->chandef;
2092 		break;
2093 	case NL80211_IFTYPE_STATION:
2094 	case NL80211_IFTYPE_P2P_CLIENT:
2095 		if (!wdev->current_bss ||
2096 		    !wdev->current_bss->pub.channel)
2097 			goto wdev_inactive_unlock;
2098 
2099 		if (!rdev->ops->get_channel ||
2100 		    rdev_get_channel(rdev, wdev, &chandef))
2101 			cfg80211_chandef_create(&chandef,
2102 						wdev->current_bss->pub.channel,
2103 						NL80211_CHAN_NO_HT);
2104 		break;
2105 	case NL80211_IFTYPE_MONITOR:
2106 	case NL80211_IFTYPE_AP_VLAN:
2107 	case NL80211_IFTYPE_P2P_DEVICE:
2108 		/* no enforcement required */
2109 		break;
2110 	default:
2111 		/* others not implemented for now */
2112 		WARN_ON(1);
2113 		break;
2114 	}
2115 
2116 	wdev_unlock(wdev);
2117 
2118 	switch (iftype) {
2119 	case NL80211_IFTYPE_AP:
2120 	case NL80211_IFTYPE_P2P_GO:
2121 	case NL80211_IFTYPE_ADHOC:
2122 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2123 	case NL80211_IFTYPE_STATION:
2124 	case NL80211_IFTYPE_P2P_CLIENT:
2125 		return cfg80211_chandef_usable(wiphy, &chandef,
2126 					       IEEE80211_CHAN_DISABLED);
2127 	default:
2128 		break;
2129 	}
2130 
2131 	return true;
2132 
2133 wdev_inactive_unlock:
2134 	wdev_unlock(wdev);
2135 	return true;
2136 }
2137 
2138 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2139 {
2140 	struct wireless_dev *wdev;
2141 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2142 
2143 	ASSERT_RTNL();
2144 
2145 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2146 		if (!reg_wdev_chan_valid(wiphy, wdev))
2147 			cfg80211_leave(rdev, wdev);
2148 }
2149 
2150 static void reg_check_chans_work(struct work_struct *work)
2151 {
2152 	struct cfg80211_registered_device *rdev;
2153 
2154 	pr_debug("Verifying active interfaces after reg change\n");
2155 	rtnl_lock();
2156 
2157 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2158 		if (!(rdev->wiphy.regulatory_flags &
2159 		      REGULATORY_IGNORE_STALE_KICKOFF))
2160 			reg_leave_invalid_chans(&rdev->wiphy);
2161 
2162 	rtnl_unlock();
2163 }
2164 
2165 static void reg_check_channels(void)
2166 {
2167 	/*
2168 	 * Give usermode a chance to do something nicer (move to another
2169 	 * channel, orderly disconnection), before forcing a disconnection.
2170 	 */
2171 	mod_delayed_work(system_power_efficient_wq,
2172 			 &reg_check_chans,
2173 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2174 }
2175 
2176 static void wiphy_update_regulatory(struct wiphy *wiphy,
2177 				    enum nl80211_reg_initiator initiator)
2178 {
2179 	enum nl80211_band band;
2180 	struct regulatory_request *lr = get_last_request();
2181 
2182 	if (ignore_reg_update(wiphy, initiator)) {
2183 		/*
2184 		 * Regulatory updates set by CORE are ignored for custom
2185 		 * regulatory cards. Let us notify the changes to the driver,
2186 		 * as some drivers used this to restore its orig_* reg domain.
2187 		 */
2188 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2189 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2190 		    !(wiphy->regulatory_flags &
2191 		      REGULATORY_WIPHY_SELF_MANAGED))
2192 			reg_call_notifier(wiphy, lr);
2193 		return;
2194 	}
2195 
2196 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2197 
2198 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2199 		handle_band(wiphy, initiator, wiphy->bands[band]);
2200 
2201 	reg_process_beacons(wiphy);
2202 	reg_process_ht_flags(wiphy);
2203 	reg_call_notifier(wiphy, lr);
2204 }
2205 
2206 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2207 {
2208 	struct cfg80211_registered_device *rdev;
2209 	struct wiphy *wiphy;
2210 
2211 	ASSERT_RTNL();
2212 
2213 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2214 		wiphy = &rdev->wiphy;
2215 		wiphy_update_regulatory(wiphy, initiator);
2216 	}
2217 
2218 	reg_check_channels();
2219 }
2220 
2221 static void handle_channel_custom(struct wiphy *wiphy,
2222 				  struct ieee80211_channel *chan,
2223 				  const struct ieee80211_regdomain *regd)
2224 {
2225 	u32 bw_flags = 0;
2226 	const struct ieee80211_reg_rule *reg_rule = NULL;
2227 	const struct ieee80211_power_rule *power_rule = NULL;
2228 	u32 bw;
2229 
2230 	for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2231 		reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2232 					      regd, bw);
2233 		if (!IS_ERR(reg_rule))
2234 			break;
2235 	}
2236 
2237 	if (IS_ERR(reg_rule)) {
2238 		pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2239 			 chan->center_freq);
2240 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2241 			chan->flags |= IEEE80211_CHAN_DISABLED;
2242 		} else {
2243 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2244 			chan->flags = chan->orig_flags;
2245 		}
2246 		return;
2247 	}
2248 
2249 	power_rule = &reg_rule->power_rule;
2250 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2251 
2252 	chan->dfs_state_entered = jiffies;
2253 	chan->dfs_state = NL80211_DFS_USABLE;
2254 
2255 	chan->beacon_found = false;
2256 
2257 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2258 		chan->flags = chan->orig_flags | bw_flags |
2259 			      map_regdom_flags(reg_rule->flags);
2260 	else
2261 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2262 
2263 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2264 	chan->max_reg_power = chan->max_power =
2265 		(int) MBM_TO_DBM(power_rule->max_eirp);
2266 
2267 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2268 		if (reg_rule->dfs_cac_ms)
2269 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2270 		else
2271 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2272 	}
2273 
2274 	chan->max_power = chan->max_reg_power;
2275 }
2276 
2277 static void handle_band_custom(struct wiphy *wiphy,
2278 			       struct ieee80211_supported_band *sband,
2279 			       const struct ieee80211_regdomain *regd)
2280 {
2281 	unsigned int i;
2282 
2283 	if (!sband)
2284 		return;
2285 
2286 	for (i = 0; i < sband->n_channels; i++)
2287 		handle_channel_custom(wiphy, &sband->channels[i], regd);
2288 }
2289 
2290 /* Used by drivers prior to wiphy registration */
2291 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2292 				   const struct ieee80211_regdomain *regd)
2293 {
2294 	enum nl80211_band band;
2295 	unsigned int bands_set = 0;
2296 
2297 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2298 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2299 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2300 
2301 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2302 		if (!wiphy->bands[band])
2303 			continue;
2304 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2305 		bands_set++;
2306 	}
2307 
2308 	/*
2309 	 * no point in calling this if it won't have any effect
2310 	 * on your device's supported bands.
2311 	 */
2312 	WARN_ON(!bands_set);
2313 }
2314 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2315 
2316 static void reg_set_request_processed(void)
2317 {
2318 	bool need_more_processing = false;
2319 	struct regulatory_request *lr = get_last_request();
2320 
2321 	lr->processed = true;
2322 
2323 	spin_lock(&reg_requests_lock);
2324 	if (!list_empty(&reg_requests_list))
2325 		need_more_processing = true;
2326 	spin_unlock(&reg_requests_lock);
2327 
2328 	cancel_crda_timeout();
2329 
2330 	if (need_more_processing)
2331 		schedule_work(&reg_work);
2332 }
2333 
2334 /**
2335  * reg_process_hint_core - process core regulatory requests
2336  * @pending_request: a pending core regulatory request
2337  *
2338  * The wireless subsystem can use this function to process
2339  * a regulatory request issued by the regulatory core.
2340  */
2341 static enum reg_request_treatment
2342 reg_process_hint_core(struct regulatory_request *core_request)
2343 {
2344 	if (reg_query_database(core_request)) {
2345 		core_request->intersect = false;
2346 		core_request->processed = false;
2347 		reg_update_last_request(core_request);
2348 		return REG_REQ_OK;
2349 	}
2350 
2351 	return REG_REQ_IGNORE;
2352 }
2353 
2354 static enum reg_request_treatment
2355 __reg_process_hint_user(struct regulatory_request *user_request)
2356 {
2357 	struct regulatory_request *lr = get_last_request();
2358 
2359 	if (reg_request_cell_base(user_request))
2360 		return reg_ignore_cell_hint(user_request);
2361 
2362 	if (reg_request_cell_base(lr))
2363 		return REG_REQ_IGNORE;
2364 
2365 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2366 		return REG_REQ_INTERSECT;
2367 	/*
2368 	 * If the user knows better the user should set the regdom
2369 	 * to their country before the IE is picked up
2370 	 */
2371 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2372 	    lr->intersect)
2373 		return REG_REQ_IGNORE;
2374 	/*
2375 	 * Process user requests only after previous user/driver/core
2376 	 * requests have been processed
2377 	 */
2378 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2379 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2380 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2381 	    regdom_changes(lr->alpha2))
2382 		return REG_REQ_IGNORE;
2383 
2384 	if (!regdom_changes(user_request->alpha2))
2385 		return REG_REQ_ALREADY_SET;
2386 
2387 	return REG_REQ_OK;
2388 }
2389 
2390 /**
2391  * reg_process_hint_user - process user regulatory requests
2392  * @user_request: a pending user regulatory request
2393  *
2394  * The wireless subsystem can use this function to process
2395  * a regulatory request initiated by userspace.
2396  */
2397 static enum reg_request_treatment
2398 reg_process_hint_user(struct regulatory_request *user_request)
2399 {
2400 	enum reg_request_treatment treatment;
2401 
2402 	treatment = __reg_process_hint_user(user_request);
2403 	if (treatment == REG_REQ_IGNORE ||
2404 	    treatment == REG_REQ_ALREADY_SET)
2405 		return REG_REQ_IGNORE;
2406 
2407 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2408 	user_request->processed = false;
2409 
2410 	if (reg_query_database(user_request)) {
2411 		reg_update_last_request(user_request);
2412 		user_alpha2[0] = user_request->alpha2[0];
2413 		user_alpha2[1] = user_request->alpha2[1];
2414 		return REG_REQ_OK;
2415 	}
2416 
2417 	return REG_REQ_IGNORE;
2418 }
2419 
2420 static enum reg_request_treatment
2421 __reg_process_hint_driver(struct regulatory_request *driver_request)
2422 {
2423 	struct regulatory_request *lr = get_last_request();
2424 
2425 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2426 		if (regdom_changes(driver_request->alpha2))
2427 			return REG_REQ_OK;
2428 		return REG_REQ_ALREADY_SET;
2429 	}
2430 
2431 	/*
2432 	 * This would happen if you unplug and plug your card
2433 	 * back in or if you add a new device for which the previously
2434 	 * loaded card also agrees on the regulatory domain.
2435 	 */
2436 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2437 	    !regdom_changes(driver_request->alpha2))
2438 		return REG_REQ_ALREADY_SET;
2439 
2440 	return REG_REQ_INTERSECT;
2441 }
2442 
2443 /**
2444  * reg_process_hint_driver - process driver regulatory requests
2445  * @driver_request: a pending driver regulatory request
2446  *
2447  * The wireless subsystem can use this function to process
2448  * a regulatory request issued by an 802.11 driver.
2449  *
2450  * Returns one of the different reg request treatment values.
2451  */
2452 static enum reg_request_treatment
2453 reg_process_hint_driver(struct wiphy *wiphy,
2454 			struct regulatory_request *driver_request)
2455 {
2456 	const struct ieee80211_regdomain *regd, *tmp;
2457 	enum reg_request_treatment treatment;
2458 
2459 	treatment = __reg_process_hint_driver(driver_request);
2460 
2461 	switch (treatment) {
2462 	case REG_REQ_OK:
2463 		break;
2464 	case REG_REQ_IGNORE:
2465 		return REG_REQ_IGNORE;
2466 	case REG_REQ_INTERSECT:
2467 	case REG_REQ_ALREADY_SET:
2468 		regd = reg_copy_regd(get_cfg80211_regdom());
2469 		if (IS_ERR(regd))
2470 			return REG_REQ_IGNORE;
2471 
2472 		tmp = get_wiphy_regdom(wiphy);
2473 		rcu_assign_pointer(wiphy->regd, regd);
2474 		rcu_free_regdom(tmp);
2475 	}
2476 
2477 
2478 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2479 	driver_request->processed = false;
2480 
2481 	/*
2482 	 * Since CRDA will not be called in this case as we already
2483 	 * have applied the requested regulatory domain before we just
2484 	 * inform userspace we have processed the request
2485 	 */
2486 	if (treatment == REG_REQ_ALREADY_SET) {
2487 		nl80211_send_reg_change_event(driver_request);
2488 		reg_update_last_request(driver_request);
2489 		reg_set_request_processed();
2490 		return REG_REQ_ALREADY_SET;
2491 	}
2492 
2493 	if (reg_query_database(driver_request)) {
2494 		reg_update_last_request(driver_request);
2495 		return REG_REQ_OK;
2496 	}
2497 
2498 	return REG_REQ_IGNORE;
2499 }
2500 
2501 static enum reg_request_treatment
2502 __reg_process_hint_country_ie(struct wiphy *wiphy,
2503 			      struct regulatory_request *country_ie_request)
2504 {
2505 	struct wiphy *last_wiphy = NULL;
2506 	struct regulatory_request *lr = get_last_request();
2507 
2508 	if (reg_request_cell_base(lr)) {
2509 		/* Trust a Cell base station over the AP's country IE */
2510 		if (regdom_changes(country_ie_request->alpha2))
2511 			return REG_REQ_IGNORE;
2512 		return REG_REQ_ALREADY_SET;
2513 	} else {
2514 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2515 			return REG_REQ_IGNORE;
2516 	}
2517 
2518 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2519 		return -EINVAL;
2520 
2521 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2522 		return REG_REQ_OK;
2523 
2524 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2525 
2526 	if (last_wiphy != wiphy) {
2527 		/*
2528 		 * Two cards with two APs claiming different
2529 		 * Country IE alpha2s. We could
2530 		 * intersect them, but that seems unlikely
2531 		 * to be correct. Reject second one for now.
2532 		 */
2533 		if (regdom_changes(country_ie_request->alpha2))
2534 			return REG_REQ_IGNORE;
2535 		return REG_REQ_ALREADY_SET;
2536 	}
2537 
2538 	if (regdom_changes(country_ie_request->alpha2))
2539 		return REG_REQ_OK;
2540 	return REG_REQ_ALREADY_SET;
2541 }
2542 
2543 /**
2544  * reg_process_hint_country_ie - process regulatory requests from country IEs
2545  * @country_ie_request: a regulatory request from a country IE
2546  *
2547  * The wireless subsystem can use this function to process
2548  * a regulatory request issued by a country Information Element.
2549  *
2550  * Returns one of the different reg request treatment values.
2551  */
2552 static enum reg_request_treatment
2553 reg_process_hint_country_ie(struct wiphy *wiphy,
2554 			    struct regulatory_request *country_ie_request)
2555 {
2556 	enum reg_request_treatment treatment;
2557 
2558 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2559 
2560 	switch (treatment) {
2561 	case REG_REQ_OK:
2562 		break;
2563 	case REG_REQ_IGNORE:
2564 		return REG_REQ_IGNORE;
2565 	case REG_REQ_ALREADY_SET:
2566 		reg_free_request(country_ie_request);
2567 		return REG_REQ_ALREADY_SET;
2568 	case REG_REQ_INTERSECT:
2569 		/*
2570 		 * This doesn't happen yet, not sure we
2571 		 * ever want to support it for this case.
2572 		 */
2573 		WARN_ONCE(1, "Unexpected intersection for country elements");
2574 		return REG_REQ_IGNORE;
2575 	}
2576 
2577 	country_ie_request->intersect = false;
2578 	country_ie_request->processed = false;
2579 
2580 	if (reg_query_database(country_ie_request)) {
2581 		reg_update_last_request(country_ie_request);
2582 		return REG_REQ_OK;
2583 	}
2584 
2585 	return REG_REQ_IGNORE;
2586 }
2587 
2588 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2589 {
2590 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2591 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2592 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2593 	bool dfs_domain_same;
2594 
2595 	rcu_read_lock();
2596 
2597 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2598 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2599 	if (!wiphy1_regd)
2600 		wiphy1_regd = cfg80211_regd;
2601 
2602 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2603 	if (!wiphy2_regd)
2604 		wiphy2_regd = cfg80211_regd;
2605 
2606 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2607 
2608 	rcu_read_unlock();
2609 
2610 	return dfs_domain_same;
2611 }
2612 
2613 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2614 				    struct ieee80211_channel *src_chan)
2615 {
2616 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2617 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2618 		return;
2619 
2620 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2621 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2622 		return;
2623 
2624 	if (src_chan->center_freq == dst_chan->center_freq &&
2625 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2626 		dst_chan->dfs_state = src_chan->dfs_state;
2627 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2628 	}
2629 }
2630 
2631 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2632 				       struct wiphy *src_wiphy)
2633 {
2634 	struct ieee80211_supported_band *src_sband, *dst_sband;
2635 	struct ieee80211_channel *src_chan, *dst_chan;
2636 	int i, j, band;
2637 
2638 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2639 		return;
2640 
2641 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2642 		dst_sband = dst_wiphy->bands[band];
2643 		src_sband = src_wiphy->bands[band];
2644 		if (!dst_sband || !src_sband)
2645 			continue;
2646 
2647 		for (i = 0; i < dst_sband->n_channels; i++) {
2648 			dst_chan = &dst_sband->channels[i];
2649 			for (j = 0; j < src_sband->n_channels; j++) {
2650 				src_chan = &src_sband->channels[j];
2651 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2652 			}
2653 		}
2654 	}
2655 }
2656 
2657 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2658 {
2659 	struct cfg80211_registered_device *rdev;
2660 
2661 	ASSERT_RTNL();
2662 
2663 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2664 		if (wiphy == &rdev->wiphy)
2665 			continue;
2666 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2667 	}
2668 }
2669 
2670 /* This processes *all* regulatory hints */
2671 static void reg_process_hint(struct regulatory_request *reg_request)
2672 {
2673 	struct wiphy *wiphy = NULL;
2674 	enum reg_request_treatment treatment;
2675 	enum nl80211_reg_initiator initiator = reg_request->initiator;
2676 
2677 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2678 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2679 
2680 	switch (initiator) {
2681 	case NL80211_REGDOM_SET_BY_CORE:
2682 		treatment = reg_process_hint_core(reg_request);
2683 		break;
2684 	case NL80211_REGDOM_SET_BY_USER:
2685 		treatment = reg_process_hint_user(reg_request);
2686 		break;
2687 	case NL80211_REGDOM_SET_BY_DRIVER:
2688 		if (!wiphy)
2689 			goto out_free;
2690 		treatment = reg_process_hint_driver(wiphy, reg_request);
2691 		break;
2692 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2693 		if (!wiphy)
2694 			goto out_free;
2695 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2696 		break;
2697 	default:
2698 		WARN(1, "invalid initiator %d\n", initiator);
2699 		goto out_free;
2700 	}
2701 
2702 	if (treatment == REG_REQ_IGNORE)
2703 		goto out_free;
2704 
2705 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2706 	     "unexpected treatment value %d\n", treatment);
2707 
2708 	/* This is required so that the orig_* parameters are saved.
2709 	 * NOTE: treatment must be set for any case that reaches here!
2710 	 */
2711 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2712 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2713 		wiphy_update_regulatory(wiphy, initiator);
2714 		wiphy_all_share_dfs_chan_state(wiphy);
2715 		reg_check_channels();
2716 	}
2717 
2718 	return;
2719 
2720 out_free:
2721 	reg_free_request(reg_request);
2722 }
2723 
2724 static void notify_self_managed_wiphys(struct regulatory_request *request)
2725 {
2726 	struct cfg80211_registered_device *rdev;
2727 	struct wiphy *wiphy;
2728 
2729 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2730 		wiphy = &rdev->wiphy;
2731 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2732 		    request->initiator == NL80211_REGDOM_SET_BY_USER &&
2733 		    request->user_reg_hint_type ==
2734 				NL80211_USER_REG_HINT_CELL_BASE)
2735 			reg_call_notifier(wiphy, request);
2736 	}
2737 }
2738 
2739 /*
2740  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2741  * Regulatory hints come on a first come first serve basis and we
2742  * must process each one atomically.
2743  */
2744 static void reg_process_pending_hints(void)
2745 {
2746 	struct regulatory_request *reg_request, *lr;
2747 
2748 	lr = get_last_request();
2749 
2750 	/* When last_request->processed becomes true this will be rescheduled */
2751 	if (lr && !lr->processed) {
2752 		reg_process_hint(lr);
2753 		return;
2754 	}
2755 
2756 	spin_lock(&reg_requests_lock);
2757 
2758 	if (list_empty(&reg_requests_list)) {
2759 		spin_unlock(&reg_requests_lock);
2760 		return;
2761 	}
2762 
2763 	reg_request = list_first_entry(&reg_requests_list,
2764 				       struct regulatory_request,
2765 				       list);
2766 	list_del_init(&reg_request->list);
2767 
2768 	spin_unlock(&reg_requests_lock);
2769 
2770 	notify_self_managed_wiphys(reg_request);
2771 
2772 	reg_process_hint(reg_request);
2773 
2774 	lr = get_last_request();
2775 
2776 	spin_lock(&reg_requests_lock);
2777 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2778 		schedule_work(&reg_work);
2779 	spin_unlock(&reg_requests_lock);
2780 }
2781 
2782 /* Processes beacon hints -- this has nothing to do with country IEs */
2783 static void reg_process_pending_beacon_hints(void)
2784 {
2785 	struct cfg80211_registered_device *rdev;
2786 	struct reg_beacon *pending_beacon, *tmp;
2787 
2788 	/* This goes through the _pending_ beacon list */
2789 	spin_lock_bh(&reg_pending_beacons_lock);
2790 
2791 	list_for_each_entry_safe(pending_beacon, tmp,
2792 				 &reg_pending_beacons, list) {
2793 		list_del_init(&pending_beacon->list);
2794 
2795 		/* Applies the beacon hint to current wiphys */
2796 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2797 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2798 
2799 		/* Remembers the beacon hint for new wiphys or reg changes */
2800 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2801 	}
2802 
2803 	spin_unlock_bh(&reg_pending_beacons_lock);
2804 }
2805 
2806 static void reg_process_self_managed_hints(void)
2807 {
2808 	struct cfg80211_registered_device *rdev;
2809 	struct wiphy *wiphy;
2810 	const struct ieee80211_regdomain *tmp;
2811 	const struct ieee80211_regdomain *regd;
2812 	enum nl80211_band band;
2813 	struct regulatory_request request = {};
2814 
2815 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2816 		wiphy = &rdev->wiphy;
2817 
2818 		spin_lock(&reg_requests_lock);
2819 		regd = rdev->requested_regd;
2820 		rdev->requested_regd = NULL;
2821 		spin_unlock(&reg_requests_lock);
2822 
2823 		if (regd == NULL)
2824 			continue;
2825 
2826 		tmp = get_wiphy_regdom(wiphy);
2827 		rcu_assign_pointer(wiphy->regd, regd);
2828 		rcu_free_regdom(tmp);
2829 
2830 		for (band = 0; band < NUM_NL80211_BANDS; band++)
2831 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2832 
2833 		reg_process_ht_flags(wiphy);
2834 
2835 		request.wiphy_idx = get_wiphy_idx(wiphy);
2836 		request.alpha2[0] = regd->alpha2[0];
2837 		request.alpha2[1] = regd->alpha2[1];
2838 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2839 
2840 		nl80211_send_wiphy_reg_change_event(&request);
2841 	}
2842 
2843 	reg_check_channels();
2844 }
2845 
2846 static void reg_todo(struct work_struct *work)
2847 {
2848 	rtnl_lock();
2849 	reg_process_pending_hints();
2850 	reg_process_pending_beacon_hints();
2851 	reg_process_self_managed_hints();
2852 	rtnl_unlock();
2853 }
2854 
2855 static void queue_regulatory_request(struct regulatory_request *request)
2856 {
2857 	request->alpha2[0] = toupper(request->alpha2[0]);
2858 	request->alpha2[1] = toupper(request->alpha2[1]);
2859 
2860 	spin_lock(&reg_requests_lock);
2861 	list_add_tail(&request->list, &reg_requests_list);
2862 	spin_unlock(&reg_requests_lock);
2863 
2864 	schedule_work(&reg_work);
2865 }
2866 
2867 /*
2868  * Core regulatory hint -- happens during cfg80211_init()
2869  * and when we restore regulatory settings.
2870  */
2871 static int regulatory_hint_core(const char *alpha2)
2872 {
2873 	struct regulatory_request *request;
2874 
2875 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2876 	if (!request)
2877 		return -ENOMEM;
2878 
2879 	request->alpha2[0] = alpha2[0];
2880 	request->alpha2[1] = alpha2[1];
2881 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2882 	request->wiphy_idx = WIPHY_IDX_INVALID;
2883 
2884 	queue_regulatory_request(request);
2885 
2886 	return 0;
2887 }
2888 
2889 /* User hints */
2890 int regulatory_hint_user(const char *alpha2,
2891 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2892 {
2893 	struct regulatory_request *request;
2894 
2895 	if (WARN_ON(!alpha2))
2896 		return -EINVAL;
2897 
2898 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2899 	if (!request)
2900 		return -ENOMEM;
2901 
2902 	request->wiphy_idx = WIPHY_IDX_INVALID;
2903 	request->alpha2[0] = alpha2[0];
2904 	request->alpha2[1] = alpha2[1];
2905 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2906 	request->user_reg_hint_type = user_reg_hint_type;
2907 
2908 	/* Allow calling CRDA again */
2909 	reset_crda_timeouts();
2910 
2911 	queue_regulatory_request(request);
2912 
2913 	return 0;
2914 }
2915 
2916 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2917 {
2918 	spin_lock(&reg_indoor_lock);
2919 
2920 	/* It is possible that more than one user space process is trying to
2921 	 * configure the indoor setting. To handle such cases, clear the indoor
2922 	 * setting in case that some process does not think that the device
2923 	 * is operating in an indoor environment. In addition, if a user space
2924 	 * process indicates that it is controlling the indoor setting, save its
2925 	 * portid, i.e., make it the owner.
2926 	 */
2927 	reg_is_indoor = is_indoor;
2928 	if (reg_is_indoor) {
2929 		if (!reg_is_indoor_portid)
2930 			reg_is_indoor_portid = portid;
2931 	} else {
2932 		reg_is_indoor_portid = 0;
2933 	}
2934 
2935 	spin_unlock(&reg_indoor_lock);
2936 
2937 	if (!is_indoor)
2938 		reg_check_channels();
2939 
2940 	return 0;
2941 }
2942 
2943 void regulatory_netlink_notify(u32 portid)
2944 {
2945 	spin_lock(&reg_indoor_lock);
2946 
2947 	if (reg_is_indoor_portid != portid) {
2948 		spin_unlock(&reg_indoor_lock);
2949 		return;
2950 	}
2951 
2952 	reg_is_indoor = false;
2953 	reg_is_indoor_portid = 0;
2954 
2955 	spin_unlock(&reg_indoor_lock);
2956 
2957 	reg_check_channels();
2958 }
2959 
2960 /* Driver hints */
2961 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2962 {
2963 	struct regulatory_request *request;
2964 
2965 	if (WARN_ON(!alpha2 || !wiphy))
2966 		return -EINVAL;
2967 
2968 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2969 
2970 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2971 	if (!request)
2972 		return -ENOMEM;
2973 
2974 	request->wiphy_idx = get_wiphy_idx(wiphy);
2975 
2976 	request->alpha2[0] = alpha2[0];
2977 	request->alpha2[1] = alpha2[1];
2978 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2979 
2980 	/* Allow calling CRDA again */
2981 	reset_crda_timeouts();
2982 
2983 	queue_regulatory_request(request);
2984 
2985 	return 0;
2986 }
2987 EXPORT_SYMBOL(regulatory_hint);
2988 
2989 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2990 				const u8 *country_ie, u8 country_ie_len)
2991 {
2992 	char alpha2[2];
2993 	enum environment_cap env = ENVIRON_ANY;
2994 	struct regulatory_request *request = NULL, *lr;
2995 
2996 	/* IE len must be evenly divisible by 2 */
2997 	if (country_ie_len & 0x01)
2998 		return;
2999 
3000 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3001 		return;
3002 
3003 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3004 	if (!request)
3005 		return;
3006 
3007 	alpha2[0] = country_ie[0];
3008 	alpha2[1] = country_ie[1];
3009 
3010 	if (country_ie[2] == 'I')
3011 		env = ENVIRON_INDOOR;
3012 	else if (country_ie[2] == 'O')
3013 		env = ENVIRON_OUTDOOR;
3014 
3015 	rcu_read_lock();
3016 	lr = get_last_request();
3017 
3018 	if (unlikely(!lr))
3019 		goto out;
3020 
3021 	/*
3022 	 * We will run this only upon a successful connection on cfg80211.
3023 	 * We leave conflict resolution to the workqueue, where can hold
3024 	 * the RTNL.
3025 	 */
3026 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3027 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3028 		goto out;
3029 
3030 	request->wiphy_idx = get_wiphy_idx(wiphy);
3031 	request->alpha2[0] = alpha2[0];
3032 	request->alpha2[1] = alpha2[1];
3033 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3034 	request->country_ie_env = env;
3035 
3036 	/* Allow calling CRDA again */
3037 	reset_crda_timeouts();
3038 
3039 	queue_regulatory_request(request);
3040 	request = NULL;
3041 out:
3042 	kfree(request);
3043 	rcu_read_unlock();
3044 }
3045 
3046 static void restore_alpha2(char *alpha2, bool reset_user)
3047 {
3048 	/* indicates there is no alpha2 to consider for restoration */
3049 	alpha2[0] = '9';
3050 	alpha2[1] = '7';
3051 
3052 	/* The user setting has precedence over the module parameter */
3053 	if (is_user_regdom_saved()) {
3054 		/* Unless we're asked to ignore it and reset it */
3055 		if (reset_user) {
3056 			pr_debug("Restoring regulatory settings including user preference\n");
3057 			user_alpha2[0] = '9';
3058 			user_alpha2[1] = '7';
3059 
3060 			/*
3061 			 * If we're ignoring user settings, we still need to
3062 			 * check the module parameter to ensure we put things
3063 			 * back as they were for a full restore.
3064 			 */
3065 			if (!is_world_regdom(ieee80211_regdom)) {
3066 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3067 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3068 				alpha2[0] = ieee80211_regdom[0];
3069 				alpha2[1] = ieee80211_regdom[1];
3070 			}
3071 		} else {
3072 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3073 				 user_alpha2[0], user_alpha2[1]);
3074 			alpha2[0] = user_alpha2[0];
3075 			alpha2[1] = user_alpha2[1];
3076 		}
3077 	} else if (!is_world_regdom(ieee80211_regdom)) {
3078 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3079 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3080 		alpha2[0] = ieee80211_regdom[0];
3081 		alpha2[1] = ieee80211_regdom[1];
3082 	} else
3083 		pr_debug("Restoring regulatory settings\n");
3084 }
3085 
3086 static void restore_custom_reg_settings(struct wiphy *wiphy)
3087 {
3088 	struct ieee80211_supported_band *sband;
3089 	enum nl80211_band band;
3090 	struct ieee80211_channel *chan;
3091 	int i;
3092 
3093 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3094 		sband = wiphy->bands[band];
3095 		if (!sband)
3096 			continue;
3097 		for (i = 0; i < sband->n_channels; i++) {
3098 			chan = &sband->channels[i];
3099 			chan->flags = chan->orig_flags;
3100 			chan->max_antenna_gain = chan->orig_mag;
3101 			chan->max_power = chan->orig_mpwr;
3102 			chan->beacon_found = false;
3103 		}
3104 	}
3105 }
3106 
3107 /*
3108  * Restoring regulatory settings involves ingoring any
3109  * possibly stale country IE information and user regulatory
3110  * settings if so desired, this includes any beacon hints
3111  * learned as we could have traveled outside to another country
3112  * after disconnection. To restore regulatory settings we do
3113  * exactly what we did at bootup:
3114  *
3115  *   - send a core regulatory hint
3116  *   - send a user regulatory hint if applicable
3117  *
3118  * Device drivers that send a regulatory hint for a specific country
3119  * keep their own regulatory domain on wiphy->regd so that does does
3120  * not need to be remembered.
3121  */
3122 static void restore_regulatory_settings(bool reset_user)
3123 {
3124 	char alpha2[2];
3125 	char world_alpha2[2];
3126 	struct reg_beacon *reg_beacon, *btmp;
3127 	LIST_HEAD(tmp_reg_req_list);
3128 	struct cfg80211_registered_device *rdev;
3129 
3130 	ASSERT_RTNL();
3131 
3132 	/*
3133 	 * Clear the indoor setting in case that it is not controlled by user
3134 	 * space, as otherwise there is no guarantee that the device is still
3135 	 * operating in an indoor environment.
3136 	 */
3137 	spin_lock(&reg_indoor_lock);
3138 	if (reg_is_indoor && !reg_is_indoor_portid) {
3139 		reg_is_indoor = false;
3140 		reg_check_channels();
3141 	}
3142 	spin_unlock(&reg_indoor_lock);
3143 
3144 	reset_regdomains(true, &world_regdom);
3145 	restore_alpha2(alpha2, reset_user);
3146 
3147 	/*
3148 	 * If there's any pending requests we simply
3149 	 * stash them to a temporary pending queue and
3150 	 * add then after we've restored regulatory
3151 	 * settings.
3152 	 */
3153 	spin_lock(&reg_requests_lock);
3154 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3155 	spin_unlock(&reg_requests_lock);
3156 
3157 	/* Clear beacon hints */
3158 	spin_lock_bh(&reg_pending_beacons_lock);
3159 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3160 		list_del(&reg_beacon->list);
3161 		kfree(reg_beacon);
3162 	}
3163 	spin_unlock_bh(&reg_pending_beacons_lock);
3164 
3165 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3166 		list_del(&reg_beacon->list);
3167 		kfree(reg_beacon);
3168 	}
3169 
3170 	/* First restore to the basic regulatory settings */
3171 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3172 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3173 
3174 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3175 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3176 			continue;
3177 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3178 			restore_custom_reg_settings(&rdev->wiphy);
3179 	}
3180 
3181 	regulatory_hint_core(world_alpha2);
3182 
3183 	/*
3184 	 * This restores the ieee80211_regdom module parameter
3185 	 * preference or the last user requested regulatory
3186 	 * settings, user regulatory settings takes precedence.
3187 	 */
3188 	if (is_an_alpha2(alpha2))
3189 		regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3190 
3191 	spin_lock(&reg_requests_lock);
3192 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3193 	spin_unlock(&reg_requests_lock);
3194 
3195 	pr_debug("Kicking the queue\n");
3196 
3197 	schedule_work(&reg_work);
3198 }
3199 
3200 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3201 {
3202 	struct cfg80211_registered_device *rdev;
3203 	struct wireless_dev *wdev;
3204 
3205 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3206 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3207 			wdev_lock(wdev);
3208 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3209 				wdev_unlock(wdev);
3210 				return false;
3211 			}
3212 			wdev_unlock(wdev);
3213 		}
3214 	}
3215 
3216 	return true;
3217 }
3218 
3219 void regulatory_hint_disconnect(void)
3220 {
3221 	/* Restore of regulatory settings is not required when wiphy(s)
3222 	 * ignore IE from connected access point but clearance of beacon hints
3223 	 * is required when wiphy(s) supports beacon hints.
3224 	 */
3225 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3226 		struct reg_beacon *reg_beacon, *btmp;
3227 
3228 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3229 			return;
3230 
3231 		spin_lock_bh(&reg_pending_beacons_lock);
3232 		list_for_each_entry_safe(reg_beacon, btmp,
3233 					 &reg_pending_beacons, list) {
3234 			list_del(&reg_beacon->list);
3235 			kfree(reg_beacon);
3236 		}
3237 		spin_unlock_bh(&reg_pending_beacons_lock);
3238 
3239 		list_for_each_entry_safe(reg_beacon, btmp,
3240 					 &reg_beacon_list, list) {
3241 			list_del(&reg_beacon->list);
3242 			kfree(reg_beacon);
3243 		}
3244 
3245 		return;
3246 	}
3247 
3248 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3249 	restore_regulatory_settings(false);
3250 }
3251 
3252 static bool freq_is_chan_12_13_14(u32 freq)
3253 {
3254 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3255 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3256 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3257 		return true;
3258 	return false;
3259 }
3260 
3261 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3262 {
3263 	struct reg_beacon *pending_beacon;
3264 
3265 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3266 		if (beacon_chan->center_freq ==
3267 		    pending_beacon->chan.center_freq)
3268 			return true;
3269 	return false;
3270 }
3271 
3272 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3273 				 struct ieee80211_channel *beacon_chan,
3274 				 gfp_t gfp)
3275 {
3276 	struct reg_beacon *reg_beacon;
3277 	bool processing;
3278 
3279 	if (beacon_chan->beacon_found ||
3280 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3281 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3282 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3283 		return 0;
3284 
3285 	spin_lock_bh(&reg_pending_beacons_lock);
3286 	processing = pending_reg_beacon(beacon_chan);
3287 	spin_unlock_bh(&reg_pending_beacons_lock);
3288 
3289 	if (processing)
3290 		return 0;
3291 
3292 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3293 	if (!reg_beacon)
3294 		return -ENOMEM;
3295 
3296 	pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3297 		 beacon_chan->center_freq,
3298 		 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3299 		 wiphy_name(wiphy));
3300 
3301 	memcpy(&reg_beacon->chan, beacon_chan,
3302 	       sizeof(struct ieee80211_channel));
3303 
3304 	/*
3305 	 * Since we can be called from BH or and non-BH context
3306 	 * we must use spin_lock_bh()
3307 	 */
3308 	spin_lock_bh(&reg_pending_beacons_lock);
3309 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3310 	spin_unlock_bh(&reg_pending_beacons_lock);
3311 
3312 	schedule_work(&reg_work);
3313 
3314 	return 0;
3315 }
3316 
3317 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3318 {
3319 	unsigned int i;
3320 	const struct ieee80211_reg_rule *reg_rule = NULL;
3321 	const struct ieee80211_freq_range *freq_range = NULL;
3322 	const struct ieee80211_power_rule *power_rule = NULL;
3323 	char bw[32], cac_time[32];
3324 
3325 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3326 
3327 	for (i = 0; i < rd->n_reg_rules; i++) {
3328 		reg_rule = &rd->reg_rules[i];
3329 		freq_range = &reg_rule->freq_range;
3330 		power_rule = &reg_rule->power_rule;
3331 
3332 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3333 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3334 				 freq_range->max_bandwidth_khz,
3335 				 reg_get_max_bandwidth(rd, reg_rule));
3336 		else
3337 			snprintf(bw, sizeof(bw), "%d KHz",
3338 				 freq_range->max_bandwidth_khz);
3339 
3340 		if (reg_rule->flags & NL80211_RRF_DFS)
3341 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3342 				  reg_rule->dfs_cac_ms/1000);
3343 		else
3344 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3345 
3346 
3347 		/*
3348 		 * There may not be documentation for max antenna gain
3349 		 * in certain regions
3350 		 */
3351 		if (power_rule->max_antenna_gain)
3352 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3353 				freq_range->start_freq_khz,
3354 				freq_range->end_freq_khz,
3355 				bw,
3356 				power_rule->max_antenna_gain,
3357 				power_rule->max_eirp,
3358 				cac_time);
3359 		else
3360 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3361 				freq_range->start_freq_khz,
3362 				freq_range->end_freq_khz,
3363 				bw,
3364 				power_rule->max_eirp,
3365 				cac_time);
3366 	}
3367 }
3368 
3369 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3370 {
3371 	switch (dfs_region) {
3372 	case NL80211_DFS_UNSET:
3373 	case NL80211_DFS_FCC:
3374 	case NL80211_DFS_ETSI:
3375 	case NL80211_DFS_JP:
3376 		return true;
3377 	default:
3378 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3379 		return false;
3380 	}
3381 }
3382 
3383 static void print_regdomain(const struct ieee80211_regdomain *rd)
3384 {
3385 	struct regulatory_request *lr = get_last_request();
3386 
3387 	if (is_intersected_alpha2(rd->alpha2)) {
3388 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3389 			struct cfg80211_registered_device *rdev;
3390 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3391 			if (rdev) {
3392 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3393 					rdev->country_ie_alpha2[0],
3394 					rdev->country_ie_alpha2[1]);
3395 			} else
3396 				pr_debug("Current regulatory domain intersected:\n");
3397 		} else
3398 			pr_debug("Current regulatory domain intersected:\n");
3399 	} else if (is_world_regdom(rd->alpha2)) {
3400 		pr_debug("World regulatory domain updated:\n");
3401 	} else {
3402 		if (is_unknown_alpha2(rd->alpha2))
3403 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3404 		else {
3405 			if (reg_request_cell_base(lr))
3406 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3407 					rd->alpha2[0], rd->alpha2[1]);
3408 			else
3409 				pr_debug("Regulatory domain changed to country: %c%c\n",
3410 					rd->alpha2[0], rd->alpha2[1]);
3411 		}
3412 	}
3413 
3414 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3415 	print_rd_rules(rd);
3416 }
3417 
3418 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3419 {
3420 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3421 	print_rd_rules(rd);
3422 }
3423 
3424 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3425 {
3426 	if (!is_world_regdom(rd->alpha2))
3427 		return -EINVAL;
3428 	update_world_regdomain(rd);
3429 	return 0;
3430 }
3431 
3432 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3433 			   struct regulatory_request *user_request)
3434 {
3435 	const struct ieee80211_regdomain *intersected_rd = NULL;
3436 
3437 	if (!regdom_changes(rd->alpha2))
3438 		return -EALREADY;
3439 
3440 	if (!is_valid_rd(rd)) {
3441 		pr_err("Invalid regulatory domain detected: %c%c\n",
3442 		       rd->alpha2[0], rd->alpha2[1]);
3443 		print_regdomain_info(rd);
3444 		return -EINVAL;
3445 	}
3446 
3447 	if (!user_request->intersect) {
3448 		reset_regdomains(false, rd);
3449 		return 0;
3450 	}
3451 
3452 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3453 	if (!intersected_rd)
3454 		return -EINVAL;
3455 
3456 	kfree(rd);
3457 	rd = NULL;
3458 	reset_regdomains(false, intersected_rd);
3459 
3460 	return 0;
3461 }
3462 
3463 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3464 			     struct regulatory_request *driver_request)
3465 {
3466 	const struct ieee80211_regdomain *regd;
3467 	const struct ieee80211_regdomain *intersected_rd = NULL;
3468 	const struct ieee80211_regdomain *tmp;
3469 	struct wiphy *request_wiphy;
3470 
3471 	if (is_world_regdom(rd->alpha2))
3472 		return -EINVAL;
3473 
3474 	if (!regdom_changes(rd->alpha2))
3475 		return -EALREADY;
3476 
3477 	if (!is_valid_rd(rd)) {
3478 		pr_err("Invalid regulatory domain detected: %c%c\n",
3479 		       rd->alpha2[0], rd->alpha2[1]);
3480 		print_regdomain_info(rd);
3481 		return -EINVAL;
3482 	}
3483 
3484 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3485 	if (!request_wiphy)
3486 		return -ENODEV;
3487 
3488 	if (!driver_request->intersect) {
3489 		if (request_wiphy->regd)
3490 			return -EALREADY;
3491 
3492 		regd = reg_copy_regd(rd);
3493 		if (IS_ERR(regd))
3494 			return PTR_ERR(regd);
3495 
3496 		rcu_assign_pointer(request_wiphy->regd, regd);
3497 		reset_regdomains(false, rd);
3498 		return 0;
3499 	}
3500 
3501 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3502 	if (!intersected_rd)
3503 		return -EINVAL;
3504 
3505 	/*
3506 	 * We can trash what CRDA provided now.
3507 	 * However if a driver requested this specific regulatory
3508 	 * domain we keep it for its private use
3509 	 */
3510 	tmp = get_wiphy_regdom(request_wiphy);
3511 	rcu_assign_pointer(request_wiphy->regd, rd);
3512 	rcu_free_regdom(tmp);
3513 
3514 	rd = NULL;
3515 
3516 	reset_regdomains(false, intersected_rd);
3517 
3518 	return 0;
3519 }
3520 
3521 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3522 				 struct regulatory_request *country_ie_request)
3523 {
3524 	struct wiphy *request_wiphy;
3525 
3526 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3527 	    !is_unknown_alpha2(rd->alpha2))
3528 		return -EINVAL;
3529 
3530 	/*
3531 	 * Lets only bother proceeding on the same alpha2 if the current
3532 	 * rd is non static (it means CRDA was present and was used last)
3533 	 * and the pending request came in from a country IE
3534 	 */
3535 
3536 	if (!is_valid_rd(rd)) {
3537 		pr_err("Invalid regulatory domain detected: %c%c\n",
3538 		       rd->alpha2[0], rd->alpha2[1]);
3539 		print_regdomain_info(rd);
3540 		return -EINVAL;
3541 	}
3542 
3543 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3544 	if (!request_wiphy)
3545 		return -ENODEV;
3546 
3547 	if (country_ie_request->intersect)
3548 		return -EINVAL;
3549 
3550 	reset_regdomains(false, rd);
3551 	return 0;
3552 }
3553 
3554 /*
3555  * Use this call to set the current regulatory domain. Conflicts with
3556  * multiple drivers can be ironed out later. Caller must've already
3557  * kmalloc'd the rd structure.
3558  */
3559 int set_regdom(const struct ieee80211_regdomain *rd,
3560 	       enum ieee80211_regd_source regd_src)
3561 {
3562 	struct regulatory_request *lr;
3563 	bool user_reset = false;
3564 	int r;
3565 
3566 	if (!reg_is_valid_request(rd->alpha2)) {
3567 		kfree(rd);
3568 		return -EINVAL;
3569 	}
3570 
3571 	if (regd_src == REGD_SOURCE_CRDA)
3572 		reset_crda_timeouts();
3573 
3574 	lr = get_last_request();
3575 
3576 	/* Note that this doesn't update the wiphys, this is done below */
3577 	switch (lr->initiator) {
3578 	case NL80211_REGDOM_SET_BY_CORE:
3579 		r = reg_set_rd_core(rd);
3580 		break;
3581 	case NL80211_REGDOM_SET_BY_USER:
3582 		r = reg_set_rd_user(rd, lr);
3583 		user_reset = true;
3584 		break;
3585 	case NL80211_REGDOM_SET_BY_DRIVER:
3586 		r = reg_set_rd_driver(rd, lr);
3587 		break;
3588 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3589 		r = reg_set_rd_country_ie(rd, lr);
3590 		break;
3591 	default:
3592 		WARN(1, "invalid initiator %d\n", lr->initiator);
3593 		kfree(rd);
3594 		return -EINVAL;
3595 	}
3596 
3597 	if (r) {
3598 		switch (r) {
3599 		case -EALREADY:
3600 			reg_set_request_processed();
3601 			break;
3602 		default:
3603 			/* Back to world regulatory in case of errors */
3604 			restore_regulatory_settings(user_reset);
3605 		}
3606 
3607 		kfree(rd);
3608 		return r;
3609 	}
3610 
3611 	/* This would make this whole thing pointless */
3612 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3613 		return -EINVAL;
3614 
3615 	/* update all wiphys now with the new established regulatory domain */
3616 	update_all_wiphy_regulatory(lr->initiator);
3617 
3618 	print_regdomain(get_cfg80211_regdom());
3619 
3620 	nl80211_send_reg_change_event(lr);
3621 
3622 	reg_set_request_processed();
3623 
3624 	return 0;
3625 }
3626 
3627 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3628 				       struct ieee80211_regdomain *rd)
3629 {
3630 	const struct ieee80211_regdomain *regd;
3631 	const struct ieee80211_regdomain *prev_regd;
3632 	struct cfg80211_registered_device *rdev;
3633 
3634 	if (WARN_ON(!wiphy || !rd))
3635 		return -EINVAL;
3636 
3637 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3638 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3639 		return -EPERM;
3640 
3641 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3642 		print_regdomain_info(rd);
3643 		return -EINVAL;
3644 	}
3645 
3646 	regd = reg_copy_regd(rd);
3647 	if (IS_ERR(regd))
3648 		return PTR_ERR(regd);
3649 
3650 	rdev = wiphy_to_rdev(wiphy);
3651 
3652 	spin_lock(&reg_requests_lock);
3653 	prev_regd = rdev->requested_regd;
3654 	rdev->requested_regd = regd;
3655 	spin_unlock(&reg_requests_lock);
3656 
3657 	kfree(prev_regd);
3658 	return 0;
3659 }
3660 
3661 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3662 			      struct ieee80211_regdomain *rd)
3663 {
3664 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3665 
3666 	if (ret)
3667 		return ret;
3668 
3669 	schedule_work(&reg_work);
3670 	return 0;
3671 }
3672 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3673 
3674 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3675 					struct ieee80211_regdomain *rd)
3676 {
3677 	int ret;
3678 
3679 	ASSERT_RTNL();
3680 
3681 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3682 	if (ret)
3683 		return ret;
3684 
3685 	/* process the request immediately */
3686 	reg_process_self_managed_hints();
3687 	return 0;
3688 }
3689 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3690 
3691 void wiphy_regulatory_register(struct wiphy *wiphy)
3692 {
3693 	struct regulatory_request *lr = get_last_request();
3694 
3695 	/* self-managed devices ignore beacon hints and country IE */
3696 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3697 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3698 					   REGULATORY_COUNTRY_IE_IGNORE;
3699 
3700 		/*
3701 		 * The last request may have been received before this
3702 		 * registration call. Call the driver notifier if
3703 		 * initiator is USER and user type is CELL_BASE.
3704 		 */
3705 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
3706 		    lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE)
3707 			reg_call_notifier(wiphy, lr);
3708 	}
3709 
3710 	if (!reg_dev_ignore_cell_hint(wiphy))
3711 		reg_num_devs_support_basehint++;
3712 
3713 	wiphy_update_regulatory(wiphy, lr->initiator);
3714 	wiphy_all_share_dfs_chan_state(wiphy);
3715 }
3716 
3717 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3718 {
3719 	struct wiphy *request_wiphy = NULL;
3720 	struct regulatory_request *lr;
3721 
3722 	lr = get_last_request();
3723 
3724 	if (!reg_dev_ignore_cell_hint(wiphy))
3725 		reg_num_devs_support_basehint--;
3726 
3727 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3728 	RCU_INIT_POINTER(wiphy->regd, NULL);
3729 
3730 	if (lr)
3731 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3732 
3733 	if (!request_wiphy || request_wiphy != wiphy)
3734 		return;
3735 
3736 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3737 	lr->country_ie_env = ENVIRON_ANY;
3738 }
3739 
3740 /*
3741  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3742  * UNII band definitions
3743  */
3744 int cfg80211_get_unii(int freq)
3745 {
3746 	/* UNII-1 */
3747 	if (freq >= 5150 && freq <= 5250)
3748 		return 0;
3749 
3750 	/* UNII-2A */
3751 	if (freq > 5250 && freq <= 5350)
3752 		return 1;
3753 
3754 	/* UNII-2B */
3755 	if (freq > 5350 && freq <= 5470)
3756 		return 2;
3757 
3758 	/* UNII-2C */
3759 	if (freq > 5470 && freq <= 5725)
3760 		return 3;
3761 
3762 	/* UNII-3 */
3763 	if (freq > 5725 && freq <= 5825)
3764 		return 4;
3765 
3766 	return -EINVAL;
3767 }
3768 
3769 bool regulatory_indoor_allowed(void)
3770 {
3771 	return reg_is_indoor;
3772 }
3773 
3774 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3775 {
3776 	const struct ieee80211_regdomain *regd = NULL;
3777 	const struct ieee80211_regdomain *wiphy_regd = NULL;
3778 	bool pre_cac_allowed = false;
3779 
3780 	rcu_read_lock();
3781 
3782 	regd = rcu_dereference(cfg80211_regdomain);
3783 	wiphy_regd = rcu_dereference(wiphy->regd);
3784 	if (!wiphy_regd) {
3785 		if (regd->dfs_region == NL80211_DFS_ETSI)
3786 			pre_cac_allowed = true;
3787 
3788 		rcu_read_unlock();
3789 
3790 		return pre_cac_allowed;
3791 	}
3792 
3793 	if (regd->dfs_region == wiphy_regd->dfs_region &&
3794 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3795 		pre_cac_allowed = true;
3796 
3797 	rcu_read_unlock();
3798 
3799 	return pre_cac_allowed;
3800 }
3801 
3802 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3803 				    struct cfg80211_chan_def *chandef,
3804 				    enum nl80211_dfs_state dfs_state,
3805 				    enum nl80211_radar_event event)
3806 {
3807 	struct cfg80211_registered_device *rdev;
3808 
3809 	ASSERT_RTNL();
3810 
3811 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3812 		return;
3813 
3814 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3815 		if (wiphy == &rdev->wiphy)
3816 			continue;
3817 
3818 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3819 			continue;
3820 
3821 		if (!ieee80211_get_channel(&rdev->wiphy,
3822 					   chandef->chan->center_freq))
3823 			continue;
3824 
3825 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3826 
3827 		if (event == NL80211_RADAR_DETECTED ||
3828 		    event == NL80211_RADAR_CAC_FINISHED)
3829 			cfg80211_sched_dfs_chan_update(rdev);
3830 
3831 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3832 	}
3833 }
3834 
3835 static int __init regulatory_init_db(void)
3836 {
3837 	int err;
3838 
3839 	/*
3840 	 * It's possible that - due to other bugs/issues - cfg80211
3841 	 * never called regulatory_init() below, or that it failed;
3842 	 * in that case, don't try to do any further work here as
3843 	 * it's doomed to lead to crashes.
3844 	 */
3845 	if (IS_ERR_OR_NULL(reg_pdev))
3846 		return -EINVAL;
3847 
3848 	err = load_builtin_regdb_keys();
3849 	if (err)
3850 		return err;
3851 
3852 	/* We always try to get an update for the static regdomain */
3853 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3854 	if (err) {
3855 		if (err == -ENOMEM) {
3856 			platform_device_unregister(reg_pdev);
3857 			return err;
3858 		}
3859 		/*
3860 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3861 		 * memory which is handled and propagated appropriately above
3862 		 * but it can also fail during a netlink_broadcast() or during
3863 		 * early boot for call_usermodehelper(). For now treat these
3864 		 * errors as non-fatal.
3865 		 */
3866 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3867 	}
3868 
3869 	/*
3870 	 * Finally, if the user set the module parameter treat it
3871 	 * as a user hint.
3872 	 */
3873 	if (!is_world_regdom(ieee80211_regdom))
3874 		regulatory_hint_user(ieee80211_regdom,
3875 				     NL80211_USER_REG_HINT_USER);
3876 
3877 	return 0;
3878 }
3879 #ifndef MODULE
3880 late_initcall(regulatory_init_db);
3881 #endif
3882 
3883 int __init regulatory_init(void)
3884 {
3885 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3886 	if (IS_ERR(reg_pdev))
3887 		return PTR_ERR(reg_pdev);
3888 
3889 	spin_lock_init(&reg_requests_lock);
3890 	spin_lock_init(&reg_pending_beacons_lock);
3891 	spin_lock_init(&reg_indoor_lock);
3892 
3893 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3894 
3895 	user_alpha2[0] = '9';
3896 	user_alpha2[1] = '7';
3897 
3898 #ifdef MODULE
3899 	return regulatory_init_db();
3900 #else
3901 	return 0;
3902 #endif
3903 }
3904 
3905 void regulatory_exit(void)
3906 {
3907 	struct regulatory_request *reg_request, *tmp;
3908 	struct reg_beacon *reg_beacon, *btmp;
3909 
3910 	cancel_work_sync(&reg_work);
3911 	cancel_crda_timeout_sync();
3912 	cancel_delayed_work_sync(&reg_check_chans);
3913 
3914 	/* Lock to suppress warnings */
3915 	rtnl_lock();
3916 	reset_regdomains(true, NULL);
3917 	rtnl_unlock();
3918 
3919 	dev_set_uevent_suppress(&reg_pdev->dev, true);
3920 
3921 	platform_device_unregister(reg_pdev);
3922 
3923 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3924 		list_del(&reg_beacon->list);
3925 		kfree(reg_beacon);
3926 	}
3927 
3928 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3929 		list_del(&reg_beacon->list);
3930 		kfree(reg_beacon);
3931 	}
3932 
3933 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3934 		list_del(&reg_request->list);
3935 		kfree(reg_request);
3936 	}
3937 
3938 	if (!IS_ERR_OR_NULL(regdb))
3939 		kfree(regdb);
3940 
3941 	free_regdb_keyring();
3942 }
3943