1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static spinlock_t reg_indoor_lock; 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user); 135 136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 137 { 138 return rcu_dereference_rtnl(cfg80211_regdomain); 139 } 140 141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 142 { 143 return rcu_dereference_rtnl(wiphy->regd); 144 } 145 146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 147 { 148 switch (dfs_region) { 149 case NL80211_DFS_UNSET: 150 return "unset"; 151 case NL80211_DFS_FCC: 152 return "FCC"; 153 case NL80211_DFS_ETSI: 154 return "ETSI"; 155 case NL80211_DFS_JP: 156 return "JP"; 157 } 158 return "Unknown"; 159 } 160 161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 162 { 163 const struct ieee80211_regdomain *regd = NULL; 164 const struct ieee80211_regdomain *wiphy_regd = NULL; 165 166 regd = get_cfg80211_regdom(); 167 if (!wiphy) 168 goto out; 169 170 wiphy_regd = get_wiphy_regdom(wiphy); 171 if (!wiphy_regd) 172 goto out; 173 174 if (wiphy_regd->dfs_region == regd->dfs_region) 175 goto out; 176 177 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 178 dev_name(&wiphy->dev), 179 reg_dfs_region_str(wiphy_regd->dfs_region), 180 reg_dfs_region_str(regd->dfs_region)); 181 182 out: 183 return regd->dfs_region; 184 } 185 186 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 187 { 188 if (!r) 189 return; 190 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 191 } 192 193 static struct regulatory_request *get_last_request(void) 194 { 195 return rcu_dereference_rtnl(last_request); 196 } 197 198 /* Used to queue up regulatory hints */ 199 static LIST_HEAD(reg_requests_list); 200 static spinlock_t reg_requests_lock; 201 202 /* Used to queue up beacon hints for review */ 203 static LIST_HEAD(reg_pending_beacons); 204 static spinlock_t reg_pending_beacons_lock; 205 206 /* Used to keep track of processed beacon hints */ 207 static LIST_HEAD(reg_beacon_list); 208 209 struct reg_beacon { 210 struct list_head list; 211 struct ieee80211_channel chan; 212 }; 213 214 static void reg_check_chans_work(struct work_struct *work); 215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 216 217 static void reg_todo(struct work_struct *work); 218 static DECLARE_WORK(reg_work, reg_todo); 219 220 /* We keep a static world regulatory domain in case of the absence of CRDA */ 221 static const struct ieee80211_regdomain world_regdom = { 222 .n_reg_rules = 8, 223 .alpha2 = "00", 224 .reg_rules = { 225 /* IEEE 802.11b/g, channels 1..11 */ 226 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 227 /* IEEE 802.11b/g, channels 12..13. */ 228 REG_RULE(2467-10, 2472+10, 20, 6, 20, 229 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 230 /* IEEE 802.11 channel 14 - Only JP enables 231 * this and for 802.11b only */ 232 REG_RULE(2484-10, 2484+10, 20, 6, 20, 233 NL80211_RRF_NO_IR | 234 NL80211_RRF_NO_OFDM), 235 /* IEEE 802.11a, channel 36..48 */ 236 REG_RULE(5180-10, 5240+10, 80, 6, 20, 237 NL80211_RRF_NO_IR | 238 NL80211_RRF_AUTO_BW), 239 240 /* IEEE 802.11a, channel 52..64 - DFS required */ 241 REG_RULE(5260-10, 5320+10, 80, 6, 20, 242 NL80211_RRF_NO_IR | 243 NL80211_RRF_AUTO_BW | 244 NL80211_RRF_DFS), 245 246 /* IEEE 802.11a, channel 100..144 - DFS required */ 247 REG_RULE(5500-10, 5720+10, 160, 6, 20, 248 NL80211_RRF_NO_IR | 249 NL80211_RRF_DFS), 250 251 /* IEEE 802.11a, channel 149..165 */ 252 REG_RULE(5745-10, 5825+10, 80, 6, 20, 253 NL80211_RRF_NO_IR), 254 255 /* IEEE 802.11ad (60GHz), channels 1..3 */ 256 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 257 } 258 }; 259 260 /* protected by RTNL */ 261 static const struct ieee80211_regdomain *cfg80211_world_regdom = 262 &world_regdom; 263 264 static char *ieee80211_regdom = "00"; 265 static char user_alpha2[2]; 266 267 module_param(ieee80211_regdom, charp, 0444); 268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 269 270 static void reg_free_request(struct regulatory_request *request) 271 { 272 if (request == &core_request_world) 273 return; 274 275 if (request != get_last_request()) 276 kfree(request); 277 } 278 279 static void reg_free_last_request(void) 280 { 281 struct regulatory_request *lr = get_last_request(); 282 283 if (lr != &core_request_world && lr) 284 kfree_rcu(lr, rcu_head); 285 } 286 287 static void reg_update_last_request(struct regulatory_request *request) 288 { 289 struct regulatory_request *lr; 290 291 lr = get_last_request(); 292 if (lr == request) 293 return; 294 295 reg_free_last_request(); 296 rcu_assign_pointer(last_request, request); 297 } 298 299 static void reset_regdomains(bool full_reset, 300 const struct ieee80211_regdomain *new_regdom) 301 { 302 const struct ieee80211_regdomain *r; 303 304 ASSERT_RTNL(); 305 306 r = get_cfg80211_regdom(); 307 308 /* avoid freeing static information or freeing something twice */ 309 if (r == cfg80211_world_regdom) 310 r = NULL; 311 if (cfg80211_world_regdom == &world_regdom) 312 cfg80211_world_regdom = NULL; 313 if (r == &world_regdom) 314 r = NULL; 315 316 rcu_free_regdom(r); 317 rcu_free_regdom(cfg80211_world_regdom); 318 319 cfg80211_world_regdom = &world_regdom; 320 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 321 322 if (!full_reset) 323 return; 324 325 reg_update_last_request(&core_request_world); 326 } 327 328 /* 329 * Dynamic world regulatory domain requested by the wireless 330 * core upon initialization 331 */ 332 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 333 { 334 struct regulatory_request *lr; 335 336 lr = get_last_request(); 337 338 WARN_ON(!lr); 339 340 reset_regdomains(false, rd); 341 342 cfg80211_world_regdom = rd; 343 } 344 345 bool is_world_regdom(const char *alpha2) 346 { 347 if (!alpha2) 348 return false; 349 return alpha2[0] == '0' && alpha2[1] == '0'; 350 } 351 352 static bool is_alpha2_set(const char *alpha2) 353 { 354 if (!alpha2) 355 return false; 356 return alpha2[0] && alpha2[1]; 357 } 358 359 static bool is_unknown_alpha2(const char *alpha2) 360 { 361 if (!alpha2) 362 return false; 363 /* 364 * Special case where regulatory domain was built by driver 365 * but a specific alpha2 cannot be determined 366 */ 367 return alpha2[0] == '9' && alpha2[1] == '9'; 368 } 369 370 static bool is_intersected_alpha2(const char *alpha2) 371 { 372 if (!alpha2) 373 return false; 374 /* 375 * Special case where regulatory domain is the 376 * result of an intersection between two regulatory domain 377 * structures 378 */ 379 return alpha2[0] == '9' && alpha2[1] == '8'; 380 } 381 382 static bool is_an_alpha2(const char *alpha2) 383 { 384 if (!alpha2) 385 return false; 386 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 387 } 388 389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 390 { 391 if (!alpha2_x || !alpha2_y) 392 return false; 393 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 394 } 395 396 static bool regdom_changes(const char *alpha2) 397 { 398 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 399 400 if (!r) 401 return true; 402 return !alpha2_equal(r->alpha2, alpha2); 403 } 404 405 /* 406 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 407 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 408 * has ever been issued. 409 */ 410 static bool is_user_regdom_saved(void) 411 { 412 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 413 return false; 414 415 /* This would indicate a mistake on the design */ 416 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 417 "Unexpected user alpha2: %c%c\n", 418 user_alpha2[0], user_alpha2[1])) 419 return false; 420 421 return true; 422 } 423 424 static const struct ieee80211_regdomain * 425 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 426 { 427 struct ieee80211_regdomain *regd; 428 int size_of_regd; 429 unsigned int i; 430 431 size_of_regd = 432 sizeof(struct ieee80211_regdomain) + 433 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 434 435 regd = kzalloc(size_of_regd, GFP_KERNEL); 436 if (!regd) 437 return ERR_PTR(-ENOMEM); 438 439 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 440 441 for (i = 0; i < src_regd->n_reg_rules; i++) 442 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 443 sizeof(struct ieee80211_reg_rule)); 444 445 return regd; 446 } 447 448 struct reg_regdb_apply_request { 449 struct list_head list; 450 const struct ieee80211_regdomain *regdom; 451 }; 452 453 static LIST_HEAD(reg_regdb_apply_list); 454 static DEFINE_MUTEX(reg_regdb_apply_mutex); 455 456 static void reg_regdb_apply(struct work_struct *work) 457 { 458 struct reg_regdb_apply_request *request; 459 460 rtnl_lock(); 461 462 mutex_lock(®_regdb_apply_mutex); 463 while (!list_empty(®_regdb_apply_list)) { 464 request = list_first_entry(®_regdb_apply_list, 465 struct reg_regdb_apply_request, 466 list); 467 list_del(&request->list); 468 469 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 470 kfree(request); 471 } 472 mutex_unlock(®_regdb_apply_mutex); 473 474 rtnl_unlock(); 475 } 476 477 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 478 479 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 480 { 481 struct reg_regdb_apply_request *request; 482 483 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 484 if (!request) { 485 kfree(regdom); 486 return -ENOMEM; 487 } 488 489 request->regdom = regdom; 490 491 mutex_lock(®_regdb_apply_mutex); 492 list_add_tail(&request->list, ®_regdb_apply_list); 493 mutex_unlock(®_regdb_apply_mutex); 494 495 schedule_work(®_regdb_work); 496 return 0; 497 } 498 499 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 500 /* Max number of consecutive attempts to communicate with CRDA */ 501 #define REG_MAX_CRDA_TIMEOUTS 10 502 503 static u32 reg_crda_timeouts; 504 505 static void crda_timeout_work(struct work_struct *work); 506 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 507 508 static void crda_timeout_work(struct work_struct *work) 509 { 510 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 511 rtnl_lock(); 512 reg_crda_timeouts++; 513 restore_regulatory_settings(true); 514 rtnl_unlock(); 515 } 516 517 static void cancel_crda_timeout(void) 518 { 519 cancel_delayed_work(&crda_timeout); 520 } 521 522 static void cancel_crda_timeout_sync(void) 523 { 524 cancel_delayed_work_sync(&crda_timeout); 525 } 526 527 static void reset_crda_timeouts(void) 528 { 529 reg_crda_timeouts = 0; 530 } 531 532 /* 533 * This lets us keep regulatory code which is updated on a regulatory 534 * basis in userspace. 535 */ 536 static int call_crda(const char *alpha2) 537 { 538 char country[12]; 539 char *env[] = { country, NULL }; 540 int ret; 541 542 snprintf(country, sizeof(country), "COUNTRY=%c%c", 543 alpha2[0], alpha2[1]); 544 545 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 546 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 547 return -EINVAL; 548 } 549 550 if (!is_world_regdom((char *) alpha2)) 551 pr_debug("Calling CRDA for country: %c%c\n", 552 alpha2[0], alpha2[1]); 553 else 554 pr_debug("Calling CRDA to update world regulatory domain\n"); 555 556 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 557 if (ret) 558 return ret; 559 560 queue_delayed_work(system_power_efficient_wq, 561 &crda_timeout, msecs_to_jiffies(3142)); 562 return 0; 563 } 564 #else 565 static inline void cancel_crda_timeout(void) {} 566 static inline void cancel_crda_timeout_sync(void) {} 567 static inline void reset_crda_timeouts(void) {} 568 static inline int call_crda(const char *alpha2) 569 { 570 return -ENODATA; 571 } 572 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 573 574 /* code to directly load a firmware database through request_firmware */ 575 static const struct fwdb_header *regdb; 576 577 struct fwdb_country { 578 u8 alpha2[2]; 579 __be16 coll_ptr; 580 /* this struct cannot be extended */ 581 } __packed __aligned(4); 582 583 struct fwdb_collection { 584 u8 len; 585 u8 n_rules; 586 u8 dfs_region; 587 /* no optional data yet */ 588 /* aligned to 2, then followed by __be16 array of rule pointers */ 589 } __packed __aligned(4); 590 591 enum fwdb_flags { 592 FWDB_FLAG_NO_OFDM = BIT(0), 593 FWDB_FLAG_NO_OUTDOOR = BIT(1), 594 FWDB_FLAG_DFS = BIT(2), 595 FWDB_FLAG_NO_IR = BIT(3), 596 FWDB_FLAG_AUTO_BW = BIT(4), 597 }; 598 599 struct fwdb_wmm_ac { 600 u8 ecw; 601 u8 aifsn; 602 __be16 cot; 603 } __packed; 604 605 struct fwdb_wmm_rule { 606 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 607 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 608 } __packed; 609 610 struct fwdb_rule { 611 u8 len; 612 u8 flags; 613 __be16 max_eirp; 614 __be32 start, end, max_bw; 615 /* start of optional data */ 616 __be16 cac_timeout; 617 __be16 wmm_ptr; 618 } __packed __aligned(4); 619 620 #define FWDB_MAGIC 0x52474442 621 #define FWDB_VERSION 20 622 623 struct fwdb_header { 624 __be32 magic; 625 __be32 version; 626 struct fwdb_country country[]; 627 } __packed __aligned(4); 628 629 static int ecw2cw(int ecw) 630 { 631 return (1 << ecw) - 1; 632 } 633 634 static bool valid_wmm(struct fwdb_wmm_rule *rule) 635 { 636 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 637 int i; 638 639 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 640 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 641 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 642 u8 aifsn = ac[i].aifsn; 643 644 if (cw_min >= cw_max) 645 return false; 646 647 if (aifsn < 1) 648 return false; 649 } 650 651 return true; 652 } 653 654 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 655 { 656 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 657 658 if ((u8 *)rule + sizeof(rule->len) > data + size) 659 return false; 660 661 /* mandatory fields */ 662 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 663 return false; 664 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 665 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 666 struct fwdb_wmm_rule *wmm; 667 668 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 669 return false; 670 671 wmm = (void *)(data + wmm_ptr); 672 673 if (!valid_wmm(wmm)) 674 return false; 675 } 676 return true; 677 } 678 679 static bool valid_country(const u8 *data, unsigned int size, 680 const struct fwdb_country *country) 681 { 682 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 683 struct fwdb_collection *coll = (void *)(data + ptr); 684 __be16 *rules_ptr; 685 unsigned int i; 686 687 /* make sure we can read len/n_rules */ 688 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 689 return false; 690 691 /* make sure base struct and all rules fit */ 692 if ((u8 *)coll + ALIGN(coll->len, 2) + 693 (coll->n_rules * 2) > data + size) 694 return false; 695 696 /* mandatory fields must exist */ 697 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 698 return false; 699 700 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 701 702 for (i = 0; i < coll->n_rules; i++) { 703 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 704 705 if (!valid_rule(data, size, rule_ptr)) 706 return false; 707 } 708 709 return true; 710 } 711 712 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 713 static struct key *builtin_regdb_keys; 714 715 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 716 { 717 const u8 *end = p + buflen; 718 size_t plen; 719 key_ref_t key; 720 721 while (p < end) { 722 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 723 * than 256 bytes in size. 724 */ 725 if (end - p < 4) 726 goto dodgy_cert; 727 if (p[0] != 0x30 && 728 p[1] != 0x82) 729 goto dodgy_cert; 730 plen = (p[2] << 8) | p[3]; 731 plen += 4; 732 if (plen > end - p) 733 goto dodgy_cert; 734 735 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 736 "asymmetric", NULL, p, plen, 737 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 738 KEY_USR_VIEW | KEY_USR_READ), 739 KEY_ALLOC_NOT_IN_QUOTA | 740 KEY_ALLOC_BUILT_IN | 741 KEY_ALLOC_BYPASS_RESTRICTION); 742 if (IS_ERR(key)) { 743 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 744 PTR_ERR(key)); 745 } else { 746 pr_notice("Loaded X.509 cert '%s'\n", 747 key_ref_to_ptr(key)->description); 748 key_ref_put(key); 749 } 750 p += plen; 751 } 752 753 return; 754 755 dodgy_cert: 756 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 757 } 758 759 static int __init load_builtin_regdb_keys(void) 760 { 761 builtin_regdb_keys = 762 keyring_alloc(".builtin_regdb_keys", 763 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 765 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 766 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 767 if (IS_ERR(builtin_regdb_keys)) 768 return PTR_ERR(builtin_regdb_keys); 769 770 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 771 772 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 773 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 774 #endif 775 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 776 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 777 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 778 #endif 779 780 return 0; 781 } 782 783 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 784 { 785 const struct firmware *sig; 786 bool result; 787 788 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 789 return false; 790 791 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 792 builtin_regdb_keys, 793 VERIFYING_UNSPECIFIED_SIGNATURE, 794 NULL, NULL) == 0; 795 796 release_firmware(sig); 797 798 return result; 799 } 800 801 static void free_regdb_keyring(void) 802 { 803 key_put(builtin_regdb_keys); 804 } 805 #else 806 static int load_builtin_regdb_keys(void) 807 { 808 return 0; 809 } 810 811 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 812 { 813 return true; 814 } 815 816 static void free_regdb_keyring(void) 817 { 818 } 819 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 820 821 static bool valid_regdb(const u8 *data, unsigned int size) 822 { 823 const struct fwdb_header *hdr = (void *)data; 824 const struct fwdb_country *country; 825 826 if (size < sizeof(*hdr)) 827 return false; 828 829 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 830 return false; 831 832 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 833 return false; 834 835 if (!regdb_has_valid_signature(data, size)) 836 return false; 837 838 country = &hdr->country[0]; 839 while ((u8 *)(country + 1) <= data + size) { 840 if (!country->coll_ptr) 841 break; 842 if (!valid_country(data, size, country)) 843 return false; 844 country++; 845 } 846 847 return true; 848 } 849 850 static void set_wmm_rule(const struct fwdb_header *db, 851 const struct fwdb_country *country, 852 const struct fwdb_rule *rule, 853 struct ieee80211_reg_rule *rrule) 854 { 855 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 856 struct fwdb_wmm_rule *wmm; 857 unsigned int i, wmm_ptr; 858 859 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 860 wmm = (void *)((u8 *)db + wmm_ptr); 861 862 if (!valid_wmm(wmm)) { 863 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 864 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 865 country->alpha2[0], country->alpha2[1]); 866 return; 867 } 868 869 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 870 wmm_rule->client[i].cw_min = 871 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 872 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 873 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 874 wmm_rule->client[i].cot = 875 1000 * be16_to_cpu(wmm->client[i].cot); 876 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 877 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 878 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 879 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 880 } 881 882 rrule->has_wmm = true; 883 } 884 885 static int __regdb_query_wmm(const struct fwdb_header *db, 886 const struct fwdb_country *country, int freq, 887 struct ieee80211_reg_rule *rrule) 888 { 889 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 890 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 891 int i; 892 893 for (i = 0; i < coll->n_rules; i++) { 894 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 895 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 896 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 897 898 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 899 continue; 900 901 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 902 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 903 set_wmm_rule(db, country, rule, rrule); 904 return 0; 905 } 906 } 907 908 return -ENODATA; 909 } 910 911 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 912 { 913 const struct fwdb_header *hdr = regdb; 914 const struct fwdb_country *country; 915 916 if (!regdb) 917 return -ENODATA; 918 919 if (IS_ERR(regdb)) 920 return PTR_ERR(regdb); 921 922 country = &hdr->country[0]; 923 while (country->coll_ptr) { 924 if (alpha2_equal(alpha2, country->alpha2)) 925 return __regdb_query_wmm(regdb, country, freq, rule); 926 927 country++; 928 } 929 930 return -ENODATA; 931 } 932 EXPORT_SYMBOL(reg_query_regdb_wmm); 933 934 static int regdb_query_country(const struct fwdb_header *db, 935 const struct fwdb_country *country) 936 { 937 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 938 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 939 struct ieee80211_regdomain *regdom; 940 unsigned int size_of_regd, i; 941 942 size_of_regd = sizeof(struct ieee80211_regdomain) + 943 coll->n_rules * sizeof(struct ieee80211_reg_rule); 944 945 regdom = kzalloc(size_of_regd, GFP_KERNEL); 946 if (!regdom) 947 return -ENOMEM; 948 949 regdom->n_reg_rules = coll->n_rules; 950 regdom->alpha2[0] = country->alpha2[0]; 951 regdom->alpha2[1] = country->alpha2[1]; 952 regdom->dfs_region = coll->dfs_region; 953 954 for (i = 0; i < regdom->n_reg_rules; i++) { 955 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 956 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 957 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 958 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 959 960 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 961 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 962 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 963 964 rrule->power_rule.max_antenna_gain = 0; 965 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 966 967 rrule->flags = 0; 968 if (rule->flags & FWDB_FLAG_NO_OFDM) 969 rrule->flags |= NL80211_RRF_NO_OFDM; 970 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 971 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 972 if (rule->flags & FWDB_FLAG_DFS) 973 rrule->flags |= NL80211_RRF_DFS; 974 if (rule->flags & FWDB_FLAG_NO_IR) 975 rrule->flags |= NL80211_RRF_NO_IR; 976 if (rule->flags & FWDB_FLAG_AUTO_BW) 977 rrule->flags |= NL80211_RRF_AUTO_BW; 978 979 rrule->dfs_cac_ms = 0; 980 981 /* handle optional data */ 982 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 983 rrule->dfs_cac_ms = 984 1000 * be16_to_cpu(rule->cac_timeout); 985 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 986 set_wmm_rule(db, country, rule, rrule); 987 } 988 989 return reg_schedule_apply(regdom); 990 } 991 992 static int query_regdb(const char *alpha2) 993 { 994 const struct fwdb_header *hdr = regdb; 995 const struct fwdb_country *country; 996 997 ASSERT_RTNL(); 998 999 if (IS_ERR(regdb)) 1000 return PTR_ERR(regdb); 1001 1002 country = &hdr->country[0]; 1003 while (country->coll_ptr) { 1004 if (alpha2_equal(alpha2, country->alpha2)) 1005 return regdb_query_country(regdb, country); 1006 country++; 1007 } 1008 1009 return -ENODATA; 1010 } 1011 1012 static void regdb_fw_cb(const struct firmware *fw, void *context) 1013 { 1014 int set_error = 0; 1015 bool restore = true; 1016 void *db; 1017 1018 if (!fw) { 1019 pr_info("failed to load regulatory.db\n"); 1020 set_error = -ENODATA; 1021 } else if (!valid_regdb(fw->data, fw->size)) { 1022 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1023 set_error = -EINVAL; 1024 } 1025 1026 rtnl_lock(); 1027 if (regdb && !IS_ERR(regdb)) { 1028 /* negative case - a bug 1029 * positive case - can happen due to race in case of multiple cb's in 1030 * queue, due to usage of asynchronous callback 1031 * 1032 * Either case, just restore and free new db. 1033 */ 1034 } else if (set_error) { 1035 regdb = ERR_PTR(set_error); 1036 } else if (fw) { 1037 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1038 if (db) { 1039 regdb = db; 1040 restore = context && query_regdb(context); 1041 } else { 1042 restore = true; 1043 } 1044 } 1045 1046 if (restore) 1047 restore_regulatory_settings(true); 1048 1049 rtnl_unlock(); 1050 1051 kfree(context); 1052 1053 release_firmware(fw); 1054 } 1055 1056 static int query_regdb_file(const char *alpha2) 1057 { 1058 ASSERT_RTNL(); 1059 1060 if (regdb) 1061 return query_regdb(alpha2); 1062 1063 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1064 if (!alpha2) 1065 return -ENOMEM; 1066 1067 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1068 ®_pdev->dev, GFP_KERNEL, 1069 (void *)alpha2, regdb_fw_cb); 1070 } 1071 1072 int reg_reload_regdb(void) 1073 { 1074 const struct firmware *fw; 1075 void *db; 1076 int err; 1077 1078 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1079 if (err) 1080 return err; 1081 1082 if (!valid_regdb(fw->data, fw->size)) { 1083 err = -ENODATA; 1084 goto out; 1085 } 1086 1087 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1088 if (!db) { 1089 err = -ENOMEM; 1090 goto out; 1091 } 1092 1093 rtnl_lock(); 1094 if (!IS_ERR_OR_NULL(regdb)) 1095 kfree(regdb); 1096 regdb = db; 1097 rtnl_unlock(); 1098 1099 out: 1100 release_firmware(fw); 1101 return err; 1102 } 1103 1104 static bool reg_query_database(struct regulatory_request *request) 1105 { 1106 if (query_regdb_file(request->alpha2) == 0) 1107 return true; 1108 1109 if (call_crda(request->alpha2) == 0) 1110 return true; 1111 1112 return false; 1113 } 1114 1115 bool reg_is_valid_request(const char *alpha2) 1116 { 1117 struct regulatory_request *lr = get_last_request(); 1118 1119 if (!lr || lr->processed) 1120 return false; 1121 1122 return alpha2_equal(lr->alpha2, alpha2); 1123 } 1124 1125 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1126 { 1127 struct regulatory_request *lr = get_last_request(); 1128 1129 /* 1130 * Follow the driver's regulatory domain, if present, unless a country 1131 * IE has been processed or a user wants to help complaince further 1132 */ 1133 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1134 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1135 wiphy->regd) 1136 return get_wiphy_regdom(wiphy); 1137 1138 return get_cfg80211_regdom(); 1139 } 1140 1141 static unsigned int 1142 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1143 const struct ieee80211_reg_rule *rule) 1144 { 1145 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1146 const struct ieee80211_freq_range *freq_range_tmp; 1147 const struct ieee80211_reg_rule *tmp; 1148 u32 start_freq, end_freq, idx, no; 1149 1150 for (idx = 0; idx < rd->n_reg_rules; idx++) 1151 if (rule == &rd->reg_rules[idx]) 1152 break; 1153 1154 if (idx == rd->n_reg_rules) 1155 return 0; 1156 1157 /* get start_freq */ 1158 no = idx; 1159 1160 while (no) { 1161 tmp = &rd->reg_rules[--no]; 1162 freq_range_tmp = &tmp->freq_range; 1163 1164 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1165 break; 1166 1167 freq_range = freq_range_tmp; 1168 } 1169 1170 start_freq = freq_range->start_freq_khz; 1171 1172 /* get end_freq */ 1173 freq_range = &rule->freq_range; 1174 no = idx; 1175 1176 while (no < rd->n_reg_rules - 1) { 1177 tmp = &rd->reg_rules[++no]; 1178 freq_range_tmp = &tmp->freq_range; 1179 1180 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1181 break; 1182 1183 freq_range = freq_range_tmp; 1184 } 1185 1186 end_freq = freq_range->end_freq_khz; 1187 1188 return end_freq - start_freq; 1189 } 1190 1191 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1192 const struct ieee80211_reg_rule *rule) 1193 { 1194 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1195 1196 if (rule->flags & NL80211_RRF_NO_160MHZ) 1197 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1198 if (rule->flags & NL80211_RRF_NO_80MHZ) 1199 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1200 1201 /* 1202 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1203 * are not allowed. 1204 */ 1205 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1206 rule->flags & NL80211_RRF_NO_HT40PLUS) 1207 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1208 1209 return bw; 1210 } 1211 1212 /* Sanity check on a regulatory rule */ 1213 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1214 { 1215 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1216 u32 freq_diff; 1217 1218 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1219 return false; 1220 1221 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1222 return false; 1223 1224 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1225 1226 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1227 freq_range->max_bandwidth_khz > freq_diff) 1228 return false; 1229 1230 return true; 1231 } 1232 1233 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1234 { 1235 const struct ieee80211_reg_rule *reg_rule = NULL; 1236 unsigned int i; 1237 1238 if (!rd->n_reg_rules) 1239 return false; 1240 1241 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1242 return false; 1243 1244 for (i = 0; i < rd->n_reg_rules; i++) { 1245 reg_rule = &rd->reg_rules[i]; 1246 if (!is_valid_reg_rule(reg_rule)) 1247 return false; 1248 } 1249 1250 return true; 1251 } 1252 1253 /** 1254 * freq_in_rule_band - tells us if a frequency is in a frequency band 1255 * @freq_range: frequency rule we want to query 1256 * @freq_khz: frequency we are inquiring about 1257 * 1258 * This lets us know if a specific frequency rule is or is not relevant to 1259 * a specific frequency's band. Bands are device specific and artificial 1260 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1261 * however it is safe for now to assume that a frequency rule should not be 1262 * part of a frequency's band if the start freq or end freq are off by more 1263 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1264 * 60 GHz band. 1265 * This resolution can be lowered and should be considered as we add 1266 * regulatory rule support for other "bands". 1267 **/ 1268 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1269 u32 freq_khz) 1270 { 1271 #define ONE_GHZ_IN_KHZ 1000000 1272 /* 1273 * From 802.11ad: directional multi-gigabit (DMG): 1274 * Pertaining to operation in a frequency band containing a channel 1275 * with the Channel starting frequency above 45 GHz. 1276 */ 1277 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1278 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1279 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1280 return true; 1281 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1282 return true; 1283 return false; 1284 #undef ONE_GHZ_IN_KHZ 1285 } 1286 1287 /* 1288 * Later on we can perhaps use the more restrictive DFS 1289 * region but we don't have information for that yet so 1290 * for now simply disallow conflicts. 1291 */ 1292 static enum nl80211_dfs_regions 1293 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1294 const enum nl80211_dfs_regions dfs_region2) 1295 { 1296 if (dfs_region1 != dfs_region2) 1297 return NL80211_DFS_UNSET; 1298 return dfs_region1; 1299 } 1300 1301 /* 1302 * Helper for regdom_intersect(), this does the real 1303 * mathematical intersection fun 1304 */ 1305 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1306 const struct ieee80211_regdomain *rd2, 1307 const struct ieee80211_reg_rule *rule1, 1308 const struct ieee80211_reg_rule *rule2, 1309 struct ieee80211_reg_rule *intersected_rule) 1310 { 1311 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1312 struct ieee80211_freq_range *freq_range; 1313 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1314 struct ieee80211_power_rule *power_rule; 1315 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1316 1317 freq_range1 = &rule1->freq_range; 1318 freq_range2 = &rule2->freq_range; 1319 freq_range = &intersected_rule->freq_range; 1320 1321 power_rule1 = &rule1->power_rule; 1322 power_rule2 = &rule2->power_rule; 1323 power_rule = &intersected_rule->power_rule; 1324 1325 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1326 freq_range2->start_freq_khz); 1327 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1328 freq_range2->end_freq_khz); 1329 1330 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1331 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1332 1333 if (rule1->flags & NL80211_RRF_AUTO_BW) 1334 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1335 if (rule2->flags & NL80211_RRF_AUTO_BW) 1336 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1337 1338 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1339 1340 intersected_rule->flags = rule1->flags | rule2->flags; 1341 1342 /* 1343 * In case NL80211_RRF_AUTO_BW requested for both rules 1344 * set AUTO_BW in intersected rule also. Next we will 1345 * calculate BW correctly in handle_channel function. 1346 * In other case remove AUTO_BW flag while we calculate 1347 * maximum bandwidth correctly and auto calculation is 1348 * not required. 1349 */ 1350 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1351 (rule2->flags & NL80211_RRF_AUTO_BW)) 1352 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1353 else 1354 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1355 1356 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1357 if (freq_range->max_bandwidth_khz > freq_diff) 1358 freq_range->max_bandwidth_khz = freq_diff; 1359 1360 power_rule->max_eirp = min(power_rule1->max_eirp, 1361 power_rule2->max_eirp); 1362 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1363 power_rule2->max_antenna_gain); 1364 1365 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1366 rule2->dfs_cac_ms); 1367 1368 if (!is_valid_reg_rule(intersected_rule)) 1369 return -EINVAL; 1370 1371 return 0; 1372 } 1373 1374 /* check whether old rule contains new rule */ 1375 static bool rule_contains(struct ieee80211_reg_rule *r1, 1376 struct ieee80211_reg_rule *r2) 1377 { 1378 /* for simplicity, currently consider only same flags */ 1379 if (r1->flags != r2->flags) 1380 return false; 1381 1382 /* verify r1 is more restrictive */ 1383 if ((r1->power_rule.max_antenna_gain > 1384 r2->power_rule.max_antenna_gain) || 1385 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1386 return false; 1387 1388 /* make sure r2's range is contained within r1 */ 1389 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1390 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1391 return false; 1392 1393 /* and finally verify that r1.max_bw >= r2.max_bw */ 1394 if (r1->freq_range.max_bandwidth_khz < 1395 r2->freq_range.max_bandwidth_khz) 1396 return false; 1397 1398 return true; 1399 } 1400 1401 /* add or extend current rules. do nothing if rule is already contained */ 1402 static void add_rule(struct ieee80211_reg_rule *rule, 1403 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1404 { 1405 struct ieee80211_reg_rule *tmp_rule; 1406 int i; 1407 1408 for (i = 0; i < *n_rules; i++) { 1409 tmp_rule = ®_rules[i]; 1410 /* rule is already contained - do nothing */ 1411 if (rule_contains(tmp_rule, rule)) 1412 return; 1413 1414 /* extend rule if possible */ 1415 if (rule_contains(rule, tmp_rule)) { 1416 memcpy(tmp_rule, rule, sizeof(*rule)); 1417 return; 1418 } 1419 } 1420 1421 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1422 (*n_rules)++; 1423 } 1424 1425 /** 1426 * regdom_intersect - do the intersection between two regulatory domains 1427 * @rd1: first regulatory domain 1428 * @rd2: second regulatory domain 1429 * 1430 * Use this function to get the intersection between two regulatory domains. 1431 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1432 * as no one single alpha2 can represent this regulatory domain. 1433 * 1434 * Returns a pointer to the regulatory domain structure which will hold the 1435 * resulting intersection of rules between rd1 and rd2. We will 1436 * kzalloc() this structure for you. 1437 */ 1438 static struct ieee80211_regdomain * 1439 regdom_intersect(const struct ieee80211_regdomain *rd1, 1440 const struct ieee80211_regdomain *rd2) 1441 { 1442 int r, size_of_regd; 1443 unsigned int x, y; 1444 unsigned int num_rules = 0; 1445 const struct ieee80211_reg_rule *rule1, *rule2; 1446 struct ieee80211_reg_rule intersected_rule; 1447 struct ieee80211_regdomain *rd; 1448 1449 if (!rd1 || !rd2) 1450 return NULL; 1451 1452 /* 1453 * First we get a count of the rules we'll need, then we actually 1454 * build them. This is to so we can malloc() and free() a 1455 * regdomain once. The reason we use reg_rules_intersect() here 1456 * is it will return -EINVAL if the rule computed makes no sense. 1457 * All rules that do check out OK are valid. 1458 */ 1459 1460 for (x = 0; x < rd1->n_reg_rules; x++) { 1461 rule1 = &rd1->reg_rules[x]; 1462 for (y = 0; y < rd2->n_reg_rules; y++) { 1463 rule2 = &rd2->reg_rules[y]; 1464 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1465 &intersected_rule)) 1466 num_rules++; 1467 } 1468 } 1469 1470 if (!num_rules) 1471 return NULL; 1472 1473 size_of_regd = sizeof(struct ieee80211_regdomain) + 1474 num_rules * sizeof(struct ieee80211_reg_rule); 1475 1476 rd = kzalloc(size_of_regd, GFP_KERNEL); 1477 if (!rd) 1478 return NULL; 1479 1480 for (x = 0; x < rd1->n_reg_rules; x++) { 1481 rule1 = &rd1->reg_rules[x]; 1482 for (y = 0; y < rd2->n_reg_rules; y++) { 1483 rule2 = &rd2->reg_rules[y]; 1484 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1485 &intersected_rule); 1486 /* 1487 * No need to memset here the intersected rule here as 1488 * we're not using the stack anymore 1489 */ 1490 if (r) 1491 continue; 1492 1493 add_rule(&intersected_rule, rd->reg_rules, 1494 &rd->n_reg_rules); 1495 } 1496 } 1497 1498 rd->alpha2[0] = '9'; 1499 rd->alpha2[1] = '8'; 1500 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1501 rd2->dfs_region); 1502 1503 return rd; 1504 } 1505 1506 /* 1507 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1508 * want to just have the channel structure use these 1509 */ 1510 static u32 map_regdom_flags(u32 rd_flags) 1511 { 1512 u32 channel_flags = 0; 1513 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1514 channel_flags |= IEEE80211_CHAN_NO_IR; 1515 if (rd_flags & NL80211_RRF_DFS) 1516 channel_flags |= IEEE80211_CHAN_RADAR; 1517 if (rd_flags & NL80211_RRF_NO_OFDM) 1518 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1519 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1520 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1521 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1522 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1523 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1524 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1525 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1526 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1527 if (rd_flags & NL80211_RRF_NO_80MHZ) 1528 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1529 if (rd_flags & NL80211_RRF_NO_160MHZ) 1530 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1531 return channel_flags; 1532 } 1533 1534 static const struct ieee80211_reg_rule * 1535 freq_reg_info_regd(u32 center_freq, 1536 const struct ieee80211_regdomain *regd, u32 bw) 1537 { 1538 int i; 1539 bool band_rule_found = false; 1540 bool bw_fits = false; 1541 1542 if (!regd) 1543 return ERR_PTR(-EINVAL); 1544 1545 for (i = 0; i < regd->n_reg_rules; i++) { 1546 const struct ieee80211_reg_rule *rr; 1547 const struct ieee80211_freq_range *fr = NULL; 1548 1549 rr = ®d->reg_rules[i]; 1550 fr = &rr->freq_range; 1551 1552 /* 1553 * We only need to know if one frequency rule was 1554 * was in center_freq's band, that's enough, so lets 1555 * not overwrite it once found 1556 */ 1557 if (!band_rule_found) 1558 band_rule_found = freq_in_rule_band(fr, center_freq); 1559 1560 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1561 1562 if (band_rule_found && bw_fits) 1563 return rr; 1564 } 1565 1566 if (!band_rule_found) 1567 return ERR_PTR(-ERANGE); 1568 1569 return ERR_PTR(-EINVAL); 1570 } 1571 1572 static const struct ieee80211_reg_rule * 1573 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1574 { 1575 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1576 const struct ieee80211_reg_rule *reg_rule = NULL; 1577 u32 bw; 1578 1579 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 1580 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1581 if (!IS_ERR(reg_rule)) 1582 return reg_rule; 1583 } 1584 1585 return reg_rule; 1586 } 1587 1588 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1589 u32 center_freq) 1590 { 1591 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); 1592 } 1593 EXPORT_SYMBOL(freq_reg_info); 1594 1595 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1596 { 1597 switch (initiator) { 1598 case NL80211_REGDOM_SET_BY_CORE: 1599 return "core"; 1600 case NL80211_REGDOM_SET_BY_USER: 1601 return "user"; 1602 case NL80211_REGDOM_SET_BY_DRIVER: 1603 return "driver"; 1604 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1605 return "country element"; 1606 default: 1607 WARN_ON(1); 1608 return "bug"; 1609 } 1610 } 1611 EXPORT_SYMBOL(reg_initiator_name); 1612 1613 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1614 const struct ieee80211_reg_rule *reg_rule, 1615 const struct ieee80211_channel *chan) 1616 { 1617 const struct ieee80211_freq_range *freq_range = NULL; 1618 u32 max_bandwidth_khz, bw_flags = 0; 1619 1620 freq_range = ®_rule->freq_range; 1621 1622 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1623 /* Check if auto calculation requested */ 1624 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1625 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1626 1627 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1628 if (!cfg80211_does_bw_fit_range(freq_range, 1629 MHZ_TO_KHZ(chan->center_freq), 1630 MHZ_TO_KHZ(10))) 1631 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1632 if (!cfg80211_does_bw_fit_range(freq_range, 1633 MHZ_TO_KHZ(chan->center_freq), 1634 MHZ_TO_KHZ(20))) 1635 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1636 1637 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1638 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1639 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1640 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1641 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1642 bw_flags |= IEEE80211_CHAN_NO_HT40; 1643 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1644 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1645 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1646 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1647 return bw_flags; 1648 } 1649 1650 /* 1651 * Note that right now we assume the desired channel bandwidth 1652 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1653 * per channel, the primary and the extension channel). 1654 */ 1655 static void handle_channel(struct wiphy *wiphy, 1656 enum nl80211_reg_initiator initiator, 1657 struct ieee80211_channel *chan) 1658 { 1659 u32 flags, bw_flags = 0; 1660 const struct ieee80211_reg_rule *reg_rule = NULL; 1661 const struct ieee80211_power_rule *power_rule = NULL; 1662 struct wiphy *request_wiphy = NULL; 1663 struct regulatory_request *lr = get_last_request(); 1664 const struct ieee80211_regdomain *regd; 1665 1666 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1667 1668 flags = chan->orig_flags; 1669 1670 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1671 if (IS_ERR(reg_rule)) { 1672 /* 1673 * We will disable all channels that do not match our 1674 * received regulatory rule unless the hint is coming 1675 * from a Country IE and the Country IE had no information 1676 * about a band. The IEEE 802.11 spec allows for an AP 1677 * to send only a subset of the regulatory rules allowed, 1678 * so an AP in the US that only supports 2.4 GHz may only send 1679 * a country IE with information for the 2.4 GHz band 1680 * while 5 GHz is still supported. 1681 */ 1682 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1683 PTR_ERR(reg_rule) == -ERANGE) 1684 return; 1685 1686 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1687 request_wiphy && request_wiphy == wiphy && 1688 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1689 pr_debug("Disabling freq %d MHz for good\n", 1690 chan->center_freq); 1691 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1692 chan->flags = chan->orig_flags; 1693 } else { 1694 pr_debug("Disabling freq %d MHz\n", 1695 chan->center_freq); 1696 chan->flags |= IEEE80211_CHAN_DISABLED; 1697 } 1698 return; 1699 } 1700 1701 regd = reg_get_regdomain(wiphy); 1702 1703 power_rule = ®_rule->power_rule; 1704 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1705 1706 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1707 request_wiphy && request_wiphy == wiphy && 1708 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1709 /* 1710 * This guarantees the driver's requested regulatory domain 1711 * will always be used as a base for further regulatory 1712 * settings 1713 */ 1714 chan->flags = chan->orig_flags = 1715 map_regdom_flags(reg_rule->flags) | bw_flags; 1716 chan->max_antenna_gain = chan->orig_mag = 1717 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1718 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1719 (int) MBM_TO_DBM(power_rule->max_eirp); 1720 1721 if (chan->flags & IEEE80211_CHAN_RADAR) { 1722 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1723 if (reg_rule->dfs_cac_ms) 1724 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1725 } 1726 1727 return; 1728 } 1729 1730 chan->dfs_state = NL80211_DFS_USABLE; 1731 chan->dfs_state_entered = jiffies; 1732 1733 chan->beacon_found = false; 1734 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1735 chan->max_antenna_gain = 1736 min_t(int, chan->orig_mag, 1737 MBI_TO_DBI(power_rule->max_antenna_gain)); 1738 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1739 1740 if (chan->flags & IEEE80211_CHAN_RADAR) { 1741 if (reg_rule->dfs_cac_ms) 1742 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1743 else 1744 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1745 } 1746 1747 if (chan->orig_mpwr) { 1748 /* 1749 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1750 * will always follow the passed country IE power settings. 1751 */ 1752 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1753 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1754 chan->max_power = chan->max_reg_power; 1755 else 1756 chan->max_power = min(chan->orig_mpwr, 1757 chan->max_reg_power); 1758 } else 1759 chan->max_power = chan->max_reg_power; 1760 } 1761 1762 static void handle_band(struct wiphy *wiphy, 1763 enum nl80211_reg_initiator initiator, 1764 struct ieee80211_supported_band *sband) 1765 { 1766 unsigned int i; 1767 1768 if (!sband) 1769 return; 1770 1771 for (i = 0; i < sband->n_channels; i++) 1772 handle_channel(wiphy, initiator, &sband->channels[i]); 1773 } 1774 1775 static bool reg_request_cell_base(struct regulatory_request *request) 1776 { 1777 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1778 return false; 1779 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1780 } 1781 1782 bool reg_last_request_cell_base(void) 1783 { 1784 return reg_request_cell_base(get_last_request()); 1785 } 1786 1787 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1788 /* Core specific check */ 1789 static enum reg_request_treatment 1790 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1791 { 1792 struct regulatory_request *lr = get_last_request(); 1793 1794 if (!reg_num_devs_support_basehint) 1795 return REG_REQ_IGNORE; 1796 1797 if (reg_request_cell_base(lr) && 1798 !regdom_changes(pending_request->alpha2)) 1799 return REG_REQ_ALREADY_SET; 1800 1801 return REG_REQ_OK; 1802 } 1803 1804 /* Device specific check */ 1805 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1806 { 1807 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1808 } 1809 #else 1810 static enum reg_request_treatment 1811 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1812 { 1813 return REG_REQ_IGNORE; 1814 } 1815 1816 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1817 { 1818 return true; 1819 } 1820 #endif 1821 1822 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1823 { 1824 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1825 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1826 return true; 1827 return false; 1828 } 1829 1830 static bool ignore_reg_update(struct wiphy *wiphy, 1831 enum nl80211_reg_initiator initiator) 1832 { 1833 struct regulatory_request *lr = get_last_request(); 1834 1835 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1836 return true; 1837 1838 if (!lr) { 1839 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 1840 reg_initiator_name(initiator)); 1841 return true; 1842 } 1843 1844 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1845 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1846 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 1847 reg_initiator_name(initiator)); 1848 return true; 1849 } 1850 1851 /* 1852 * wiphy->regd will be set once the device has its own 1853 * desired regulatory domain set 1854 */ 1855 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1856 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1857 !is_world_regdom(lr->alpha2)) { 1858 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 1859 reg_initiator_name(initiator)); 1860 return true; 1861 } 1862 1863 if (reg_request_cell_base(lr)) 1864 return reg_dev_ignore_cell_hint(wiphy); 1865 1866 return false; 1867 } 1868 1869 static bool reg_is_world_roaming(struct wiphy *wiphy) 1870 { 1871 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1872 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1873 struct regulatory_request *lr = get_last_request(); 1874 1875 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1876 return true; 1877 1878 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1879 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1880 return true; 1881 1882 return false; 1883 } 1884 1885 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1886 struct reg_beacon *reg_beacon) 1887 { 1888 struct ieee80211_supported_band *sband; 1889 struct ieee80211_channel *chan; 1890 bool channel_changed = false; 1891 struct ieee80211_channel chan_before; 1892 1893 sband = wiphy->bands[reg_beacon->chan.band]; 1894 chan = &sband->channels[chan_idx]; 1895 1896 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1897 return; 1898 1899 if (chan->beacon_found) 1900 return; 1901 1902 chan->beacon_found = true; 1903 1904 if (!reg_is_world_roaming(wiphy)) 1905 return; 1906 1907 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1908 return; 1909 1910 chan_before = *chan; 1911 1912 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1913 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1914 channel_changed = true; 1915 } 1916 1917 if (channel_changed) 1918 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1919 } 1920 1921 /* 1922 * Called when a scan on a wiphy finds a beacon on 1923 * new channel 1924 */ 1925 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1926 struct reg_beacon *reg_beacon) 1927 { 1928 unsigned int i; 1929 struct ieee80211_supported_band *sband; 1930 1931 if (!wiphy->bands[reg_beacon->chan.band]) 1932 return; 1933 1934 sband = wiphy->bands[reg_beacon->chan.band]; 1935 1936 for (i = 0; i < sband->n_channels; i++) 1937 handle_reg_beacon(wiphy, i, reg_beacon); 1938 } 1939 1940 /* 1941 * Called upon reg changes or a new wiphy is added 1942 */ 1943 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1944 { 1945 unsigned int i; 1946 struct ieee80211_supported_band *sband; 1947 struct reg_beacon *reg_beacon; 1948 1949 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1950 if (!wiphy->bands[reg_beacon->chan.band]) 1951 continue; 1952 sband = wiphy->bands[reg_beacon->chan.band]; 1953 for (i = 0; i < sband->n_channels; i++) 1954 handle_reg_beacon(wiphy, i, reg_beacon); 1955 } 1956 } 1957 1958 /* Reap the advantages of previously found beacons */ 1959 static void reg_process_beacons(struct wiphy *wiphy) 1960 { 1961 /* 1962 * Means we are just firing up cfg80211, so no beacons would 1963 * have been processed yet. 1964 */ 1965 if (!last_request) 1966 return; 1967 wiphy_update_beacon_reg(wiphy); 1968 } 1969 1970 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1971 { 1972 if (!chan) 1973 return false; 1974 if (chan->flags & IEEE80211_CHAN_DISABLED) 1975 return false; 1976 /* This would happen when regulatory rules disallow HT40 completely */ 1977 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1978 return false; 1979 return true; 1980 } 1981 1982 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1983 struct ieee80211_channel *channel) 1984 { 1985 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1986 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1987 const struct ieee80211_regdomain *regd; 1988 unsigned int i; 1989 u32 flags; 1990 1991 if (!is_ht40_allowed(channel)) { 1992 channel->flags |= IEEE80211_CHAN_NO_HT40; 1993 return; 1994 } 1995 1996 /* 1997 * We need to ensure the extension channels exist to 1998 * be able to use HT40- or HT40+, this finds them (or not) 1999 */ 2000 for (i = 0; i < sband->n_channels; i++) { 2001 struct ieee80211_channel *c = &sband->channels[i]; 2002 2003 if (c->center_freq == (channel->center_freq - 20)) 2004 channel_before = c; 2005 if (c->center_freq == (channel->center_freq + 20)) 2006 channel_after = c; 2007 } 2008 2009 flags = 0; 2010 regd = get_wiphy_regdom(wiphy); 2011 if (regd) { 2012 const struct ieee80211_reg_rule *reg_rule = 2013 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2014 regd, MHZ_TO_KHZ(20)); 2015 2016 if (!IS_ERR(reg_rule)) 2017 flags = reg_rule->flags; 2018 } 2019 2020 /* 2021 * Please note that this assumes target bandwidth is 20 MHz, 2022 * if that ever changes we also need to change the below logic 2023 * to include that as well. 2024 */ 2025 if (!is_ht40_allowed(channel_before) || 2026 flags & NL80211_RRF_NO_HT40MINUS) 2027 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2028 else 2029 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2030 2031 if (!is_ht40_allowed(channel_after) || 2032 flags & NL80211_RRF_NO_HT40PLUS) 2033 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2034 else 2035 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2036 } 2037 2038 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2039 struct ieee80211_supported_band *sband) 2040 { 2041 unsigned int i; 2042 2043 if (!sband) 2044 return; 2045 2046 for (i = 0; i < sband->n_channels; i++) 2047 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2048 } 2049 2050 static void reg_process_ht_flags(struct wiphy *wiphy) 2051 { 2052 enum nl80211_band band; 2053 2054 if (!wiphy) 2055 return; 2056 2057 for (band = 0; band < NUM_NL80211_BANDS; band++) 2058 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2059 } 2060 2061 static void reg_call_notifier(struct wiphy *wiphy, 2062 struct regulatory_request *request) 2063 { 2064 if (wiphy->reg_notifier) 2065 wiphy->reg_notifier(wiphy, request); 2066 } 2067 2068 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2069 { 2070 struct cfg80211_chan_def chandef; 2071 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2072 enum nl80211_iftype iftype; 2073 2074 wdev_lock(wdev); 2075 iftype = wdev->iftype; 2076 2077 /* make sure the interface is active */ 2078 if (!wdev->netdev || !netif_running(wdev->netdev)) 2079 goto wdev_inactive_unlock; 2080 2081 switch (iftype) { 2082 case NL80211_IFTYPE_AP: 2083 case NL80211_IFTYPE_P2P_GO: 2084 if (!wdev->beacon_interval) 2085 goto wdev_inactive_unlock; 2086 chandef = wdev->chandef; 2087 break; 2088 case NL80211_IFTYPE_ADHOC: 2089 if (!wdev->ssid_len) 2090 goto wdev_inactive_unlock; 2091 chandef = wdev->chandef; 2092 break; 2093 case NL80211_IFTYPE_STATION: 2094 case NL80211_IFTYPE_P2P_CLIENT: 2095 if (!wdev->current_bss || 2096 !wdev->current_bss->pub.channel) 2097 goto wdev_inactive_unlock; 2098 2099 if (!rdev->ops->get_channel || 2100 rdev_get_channel(rdev, wdev, &chandef)) 2101 cfg80211_chandef_create(&chandef, 2102 wdev->current_bss->pub.channel, 2103 NL80211_CHAN_NO_HT); 2104 break; 2105 case NL80211_IFTYPE_MONITOR: 2106 case NL80211_IFTYPE_AP_VLAN: 2107 case NL80211_IFTYPE_P2P_DEVICE: 2108 /* no enforcement required */ 2109 break; 2110 default: 2111 /* others not implemented for now */ 2112 WARN_ON(1); 2113 break; 2114 } 2115 2116 wdev_unlock(wdev); 2117 2118 switch (iftype) { 2119 case NL80211_IFTYPE_AP: 2120 case NL80211_IFTYPE_P2P_GO: 2121 case NL80211_IFTYPE_ADHOC: 2122 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 2123 case NL80211_IFTYPE_STATION: 2124 case NL80211_IFTYPE_P2P_CLIENT: 2125 return cfg80211_chandef_usable(wiphy, &chandef, 2126 IEEE80211_CHAN_DISABLED); 2127 default: 2128 break; 2129 } 2130 2131 return true; 2132 2133 wdev_inactive_unlock: 2134 wdev_unlock(wdev); 2135 return true; 2136 } 2137 2138 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2139 { 2140 struct wireless_dev *wdev; 2141 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2142 2143 ASSERT_RTNL(); 2144 2145 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2146 if (!reg_wdev_chan_valid(wiphy, wdev)) 2147 cfg80211_leave(rdev, wdev); 2148 } 2149 2150 static void reg_check_chans_work(struct work_struct *work) 2151 { 2152 struct cfg80211_registered_device *rdev; 2153 2154 pr_debug("Verifying active interfaces after reg change\n"); 2155 rtnl_lock(); 2156 2157 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2158 if (!(rdev->wiphy.regulatory_flags & 2159 REGULATORY_IGNORE_STALE_KICKOFF)) 2160 reg_leave_invalid_chans(&rdev->wiphy); 2161 2162 rtnl_unlock(); 2163 } 2164 2165 static void reg_check_channels(void) 2166 { 2167 /* 2168 * Give usermode a chance to do something nicer (move to another 2169 * channel, orderly disconnection), before forcing a disconnection. 2170 */ 2171 mod_delayed_work(system_power_efficient_wq, 2172 ®_check_chans, 2173 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2174 } 2175 2176 static void wiphy_update_regulatory(struct wiphy *wiphy, 2177 enum nl80211_reg_initiator initiator) 2178 { 2179 enum nl80211_band band; 2180 struct regulatory_request *lr = get_last_request(); 2181 2182 if (ignore_reg_update(wiphy, initiator)) { 2183 /* 2184 * Regulatory updates set by CORE are ignored for custom 2185 * regulatory cards. Let us notify the changes to the driver, 2186 * as some drivers used this to restore its orig_* reg domain. 2187 */ 2188 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2189 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2190 !(wiphy->regulatory_flags & 2191 REGULATORY_WIPHY_SELF_MANAGED)) 2192 reg_call_notifier(wiphy, lr); 2193 return; 2194 } 2195 2196 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2197 2198 for (band = 0; band < NUM_NL80211_BANDS; band++) 2199 handle_band(wiphy, initiator, wiphy->bands[band]); 2200 2201 reg_process_beacons(wiphy); 2202 reg_process_ht_flags(wiphy); 2203 reg_call_notifier(wiphy, lr); 2204 } 2205 2206 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2207 { 2208 struct cfg80211_registered_device *rdev; 2209 struct wiphy *wiphy; 2210 2211 ASSERT_RTNL(); 2212 2213 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2214 wiphy = &rdev->wiphy; 2215 wiphy_update_regulatory(wiphy, initiator); 2216 } 2217 2218 reg_check_channels(); 2219 } 2220 2221 static void handle_channel_custom(struct wiphy *wiphy, 2222 struct ieee80211_channel *chan, 2223 const struct ieee80211_regdomain *regd) 2224 { 2225 u32 bw_flags = 0; 2226 const struct ieee80211_reg_rule *reg_rule = NULL; 2227 const struct ieee80211_power_rule *power_rule = NULL; 2228 u32 bw; 2229 2230 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) { 2231 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq), 2232 regd, bw); 2233 if (!IS_ERR(reg_rule)) 2234 break; 2235 } 2236 2237 if (IS_ERR(reg_rule)) { 2238 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n", 2239 chan->center_freq); 2240 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2241 chan->flags |= IEEE80211_CHAN_DISABLED; 2242 } else { 2243 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2244 chan->flags = chan->orig_flags; 2245 } 2246 return; 2247 } 2248 2249 power_rule = ®_rule->power_rule; 2250 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2251 2252 chan->dfs_state_entered = jiffies; 2253 chan->dfs_state = NL80211_DFS_USABLE; 2254 2255 chan->beacon_found = false; 2256 2257 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2258 chan->flags = chan->orig_flags | bw_flags | 2259 map_regdom_flags(reg_rule->flags); 2260 else 2261 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2262 2263 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2264 chan->max_reg_power = chan->max_power = 2265 (int) MBM_TO_DBM(power_rule->max_eirp); 2266 2267 if (chan->flags & IEEE80211_CHAN_RADAR) { 2268 if (reg_rule->dfs_cac_ms) 2269 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2270 else 2271 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2272 } 2273 2274 chan->max_power = chan->max_reg_power; 2275 } 2276 2277 static void handle_band_custom(struct wiphy *wiphy, 2278 struct ieee80211_supported_band *sband, 2279 const struct ieee80211_regdomain *regd) 2280 { 2281 unsigned int i; 2282 2283 if (!sband) 2284 return; 2285 2286 for (i = 0; i < sband->n_channels; i++) 2287 handle_channel_custom(wiphy, &sband->channels[i], regd); 2288 } 2289 2290 /* Used by drivers prior to wiphy registration */ 2291 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2292 const struct ieee80211_regdomain *regd) 2293 { 2294 enum nl80211_band band; 2295 unsigned int bands_set = 0; 2296 2297 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2298 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2299 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2300 2301 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2302 if (!wiphy->bands[band]) 2303 continue; 2304 handle_band_custom(wiphy, wiphy->bands[band], regd); 2305 bands_set++; 2306 } 2307 2308 /* 2309 * no point in calling this if it won't have any effect 2310 * on your device's supported bands. 2311 */ 2312 WARN_ON(!bands_set); 2313 } 2314 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2315 2316 static void reg_set_request_processed(void) 2317 { 2318 bool need_more_processing = false; 2319 struct regulatory_request *lr = get_last_request(); 2320 2321 lr->processed = true; 2322 2323 spin_lock(®_requests_lock); 2324 if (!list_empty(®_requests_list)) 2325 need_more_processing = true; 2326 spin_unlock(®_requests_lock); 2327 2328 cancel_crda_timeout(); 2329 2330 if (need_more_processing) 2331 schedule_work(®_work); 2332 } 2333 2334 /** 2335 * reg_process_hint_core - process core regulatory requests 2336 * @pending_request: a pending core regulatory request 2337 * 2338 * The wireless subsystem can use this function to process 2339 * a regulatory request issued by the regulatory core. 2340 */ 2341 static enum reg_request_treatment 2342 reg_process_hint_core(struct regulatory_request *core_request) 2343 { 2344 if (reg_query_database(core_request)) { 2345 core_request->intersect = false; 2346 core_request->processed = false; 2347 reg_update_last_request(core_request); 2348 return REG_REQ_OK; 2349 } 2350 2351 return REG_REQ_IGNORE; 2352 } 2353 2354 static enum reg_request_treatment 2355 __reg_process_hint_user(struct regulatory_request *user_request) 2356 { 2357 struct regulatory_request *lr = get_last_request(); 2358 2359 if (reg_request_cell_base(user_request)) 2360 return reg_ignore_cell_hint(user_request); 2361 2362 if (reg_request_cell_base(lr)) 2363 return REG_REQ_IGNORE; 2364 2365 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2366 return REG_REQ_INTERSECT; 2367 /* 2368 * If the user knows better the user should set the regdom 2369 * to their country before the IE is picked up 2370 */ 2371 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2372 lr->intersect) 2373 return REG_REQ_IGNORE; 2374 /* 2375 * Process user requests only after previous user/driver/core 2376 * requests have been processed 2377 */ 2378 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2379 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2380 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2381 regdom_changes(lr->alpha2)) 2382 return REG_REQ_IGNORE; 2383 2384 if (!regdom_changes(user_request->alpha2)) 2385 return REG_REQ_ALREADY_SET; 2386 2387 return REG_REQ_OK; 2388 } 2389 2390 /** 2391 * reg_process_hint_user - process user regulatory requests 2392 * @user_request: a pending user regulatory request 2393 * 2394 * The wireless subsystem can use this function to process 2395 * a regulatory request initiated by userspace. 2396 */ 2397 static enum reg_request_treatment 2398 reg_process_hint_user(struct regulatory_request *user_request) 2399 { 2400 enum reg_request_treatment treatment; 2401 2402 treatment = __reg_process_hint_user(user_request); 2403 if (treatment == REG_REQ_IGNORE || 2404 treatment == REG_REQ_ALREADY_SET) 2405 return REG_REQ_IGNORE; 2406 2407 user_request->intersect = treatment == REG_REQ_INTERSECT; 2408 user_request->processed = false; 2409 2410 if (reg_query_database(user_request)) { 2411 reg_update_last_request(user_request); 2412 user_alpha2[0] = user_request->alpha2[0]; 2413 user_alpha2[1] = user_request->alpha2[1]; 2414 return REG_REQ_OK; 2415 } 2416 2417 return REG_REQ_IGNORE; 2418 } 2419 2420 static enum reg_request_treatment 2421 __reg_process_hint_driver(struct regulatory_request *driver_request) 2422 { 2423 struct regulatory_request *lr = get_last_request(); 2424 2425 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2426 if (regdom_changes(driver_request->alpha2)) 2427 return REG_REQ_OK; 2428 return REG_REQ_ALREADY_SET; 2429 } 2430 2431 /* 2432 * This would happen if you unplug and plug your card 2433 * back in or if you add a new device for which the previously 2434 * loaded card also agrees on the regulatory domain. 2435 */ 2436 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2437 !regdom_changes(driver_request->alpha2)) 2438 return REG_REQ_ALREADY_SET; 2439 2440 return REG_REQ_INTERSECT; 2441 } 2442 2443 /** 2444 * reg_process_hint_driver - process driver regulatory requests 2445 * @driver_request: a pending driver regulatory request 2446 * 2447 * The wireless subsystem can use this function to process 2448 * a regulatory request issued by an 802.11 driver. 2449 * 2450 * Returns one of the different reg request treatment values. 2451 */ 2452 static enum reg_request_treatment 2453 reg_process_hint_driver(struct wiphy *wiphy, 2454 struct regulatory_request *driver_request) 2455 { 2456 const struct ieee80211_regdomain *regd, *tmp; 2457 enum reg_request_treatment treatment; 2458 2459 treatment = __reg_process_hint_driver(driver_request); 2460 2461 switch (treatment) { 2462 case REG_REQ_OK: 2463 break; 2464 case REG_REQ_IGNORE: 2465 return REG_REQ_IGNORE; 2466 case REG_REQ_INTERSECT: 2467 case REG_REQ_ALREADY_SET: 2468 regd = reg_copy_regd(get_cfg80211_regdom()); 2469 if (IS_ERR(regd)) 2470 return REG_REQ_IGNORE; 2471 2472 tmp = get_wiphy_regdom(wiphy); 2473 rcu_assign_pointer(wiphy->regd, regd); 2474 rcu_free_regdom(tmp); 2475 } 2476 2477 2478 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2479 driver_request->processed = false; 2480 2481 /* 2482 * Since CRDA will not be called in this case as we already 2483 * have applied the requested regulatory domain before we just 2484 * inform userspace we have processed the request 2485 */ 2486 if (treatment == REG_REQ_ALREADY_SET) { 2487 nl80211_send_reg_change_event(driver_request); 2488 reg_update_last_request(driver_request); 2489 reg_set_request_processed(); 2490 return REG_REQ_ALREADY_SET; 2491 } 2492 2493 if (reg_query_database(driver_request)) { 2494 reg_update_last_request(driver_request); 2495 return REG_REQ_OK; 2496 } 2497 2498 return REG_REQ_IGNORE; 2499 } 2500 2501 static enum reg_request_treatment 2502 __reg_process_hint_country_ie(struct wiphy *wiphy, 2503 struct regulatory_request *country_ie_request) 2504 { 2505 struct wiphy *last_wiphy = NULL; 2506 struct regulatory_request *lr = get_last_request(); 2507 2508 if (reg_request_cell_base(lr)) { 2509 /* Trust a Cell base station over the AP's country IE */ 2510 if (regdom_changes(country_ie_request->alpha2)) 2511 return REG_REQ_IGNORE; 2512 return REG_REQ_ALREADY_SET; 2513 } else { 2514 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2515 return REG_REQ_IGNORE; 2516 } 2517 2518 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2519 return -EINVAL; 2520 2521 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2522 return REG_REQ_OK; 2523 2524 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2525 2526 if (last_wiphy != wiphy) { 2527 /* 2528 * Two cards with two APs claiming different 2529 * Country IE alpha2s. We could 2530 * intersect them, but that seems unlikely 2531 * to be correct. Reject second one for now. 2532 */ 2533 if (regdom_changes(country_ie_request->alpha2)) 2534 return REG_REQ_IGNORE; 2535 return REG_REQ_ALREADY_SET; 2536 } 2537 2538 if (regdom_changes(country_ie_request->alpha2)) 2539 return REG_REQ_OK; 2540 return REG_REQ_ALREADY_SET; 2541 } 2542 2543 /** 2544 * reg_process_hint_country_ie - process regulatory requests from country IEs 2545 * @country_ie_request: a regulatory request from a country IE 2546 * 2547 * The wireless subsystem can use this function to process 2548 * a regulatory request issued by a country Information Element. 2549 * 2550 * Returns one of the different reg request treatment values. 2551 */ 2552 static enum reg_request_treatment 2553 reg_process_hint_country_ie(struct wiphy *wiphy, 2554 struct regulatory_request *country_ie_request) 2555 { 2556 enum reg_request_treatment treatment; 2557 2558 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2559 2560 switch (treatment) { 2561 case REG_REQ_OK: 2562 break; 2563 case REG_REQ_IGNORE: 2564 return REG_REQ_IGNORE; 2565 case REG_REQ_ALREADY_SET: 2566 reg_free_request(country_ie_request); 2567 return REG_REQ_ALREADY_SET; 2568 case REG_REQ_INTERSECT: 2569 /* 2570 * This doesn't happen yet, not sure we 2571 * ever want to support it for this case. 2572 */ 2573 WARN_ONCE(1, "Unexpected intersection for country elements"); 2574 return REG_REQ_IGNORE; 2575 } 2576 2577 country_ie_request->intersect = false; 2578 country_ie_request->processed = false; 2579 2580 if (reg_query_database(country_ie_request)) { 2581 reg_update_last_request(country_ie_request); 2582 return REG_REQ_OK; 2583 } 2584 2585 return REG_REQ_IGNORE; 2586 } 2587 2588 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2589 { 2590 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2591 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2592 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2593 bool dfs_domain_same; 2594 2595 rcu_read_lock(); 2596 2597 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2598 wiphy1_regd = rcu_dereference(wiphy1->regd); 2599 if (!wiphy1_regd) 2600 wiphy1_regd = cfg80211_regd; 2601 2602 wiphy2_regd = rcu_dereference(wiphy2->regd); 2603 if (!wiphy2_regd) 2604 wiphy2_regd = cfg80211_regd; 2605 2606 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2607 2608 rcu_read_unlock(); 2609 2610 return dfs_domain_same; 2611 } 2612 2613 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2614 struct ieee80211_channel *src_chan) 2615 { 2616 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2617 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2618 return; 2619 2620 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2621 src_chan->flags & IEEE80211_CHAN_DISABLED) 2622 return; 2623 2624 if (src_chan->center_freq == dst_chan->center_freq && 2625 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2626 dst_chan->dfs_state = src_chan->dfs_state; 2627 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2628 } 2629 } 2630 2631 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2632 struct wiphy *src_wiphy) 2633 { 2634 struct ieee80211_supported_band *src_sband, *dst_sband; 2635 struct ieee80211_channel *src_chan, *dst_chan; 2636 int i, j, band; 2637 2638 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2639 return; 2640 2641 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2642 dst_sband = dst_wiphy->bands[band]; 2643 src_sband = src_wiphy->bands[band]; 2644 if (!dst_sband || !src_sband) 2645 continue; 2646 2647 for (i = 0; i < dst_sband->n_channels; i++) { 2648 dst_chan = &dst_sband->channels[i]; 2649 for (j = 0; j < src_sband->n_channels; j++) { 2650 src_chan = &src_sband->channels[j]; 2651 reg_copy_dfs_chan_state(dst_chan, src_chan); 2652 } 2653 } 2654 } 2655 } 2656 2657 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2658 { 2659 struct cfg80211_registered_device *rdev; 2660 2661 ASSERT_RTNL(); 2662 2663 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2664 if (wiphy == &rdev->wiphy) 2665 continue; 2666 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2667 } 2668 } 2669 2670 /* This processes *all* regulatory hints */ 2671 static void reg_process_hint(struct regulatory_request *reg_request) 2672 { 2673 struct wiphy *wiphy = NULL; 2674 enum reg_request_treatment treatment; 2675 enum nl80211_reg_initiator initiator = reg_request->initiator; 2676 2677 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2678 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2679 2680 switch (initiator) { 2681 case NL80211_REGDOM_SET_BY_CORE: 2682 treatment = reg_process_hint_core(reg_request); 2683 break; 2684 case NL80211_REGDOM_SET_BY_USER: 2685 treatment = reg_process_hint_user(reg_request); 2686 break; 2687 case NL80211_REGDOM_SET_BY_DRIVER: 2688 if (!wiphy) 2689 goto out_free; 2690 treatment = reg_process_hint_driver(wiphy, reg_request); 2691 break; 2692 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2693 if (!wiphy) 2694 goto out_free; 2695 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2696 break; 2697 default: 2698 WARN(1, "invalid initiator %d\n", initiator); 2699 goto out_free; 2700 } 2701 2702 if (treatment == REG_REQ_IGNORE) 2703 goto out_free; 2704 2705 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2706 "unexpected treatment value %d\n", treatment); 2707 2708 /* This is required so that the orig_* parameters are saved. 2709 * NOTE: treatment must be set for any case that reaches here! 2710 */ 2711 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2712 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2713 wiphy_update_regulatory(wiphy, initiator); 2714 wiphy_all_share_dfs_chan_state(wiphy); 2715 reg_check_channels(); 2716 } 2717 2718 return; 2719 2720 out_free: 2721 reg_free_request(reg_request); 2722 } 2723 2724 static void notify_self_managed_wiphys(struct regulatory_request *request) 2725 { 2726 struct cfg80211_registered_device *rdev; 2727 struct wiphy *wiphy; 2728 2729 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2730 wiphy = &rdev->wiphy; 2731 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 2732 request->initiator == NL80211_REGDOM_SET_BY_USER && 2733 request->user_reg_hint_type == 2734 NL80211_USER_REG_HINT_CELL_BASE) 2735 reg_call_notifier(wiphy, request); 2736 } 2737 } 2738 2739 /* 2740 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2741 * Regulatory hints come on a first come first serve basis and we 2742 * must process each one atomically. 2743 */ 2744 static void reg_process_pending_hints(void) 2745 { 2746 struct regulatory_request *reg_request, *lr; 2747 2748 lr = get_last_request(); 2749 2750 /* When last_request->processed becomes true this will be rescheduled */ 2751 if (lr && !lr->processed) { 2752 reg_process_hint(lr); 2753 return; 2754 } 2755 2756 spin_lock(®_requests_lock); 2757 2758 if (list_empty(®_requests_list)) { 2759 spin_unlock(®_requests_lock); 2760 return; 2761 } 2762 2763 reg_request = list_first_entry(®_requests_list, 2764 struct regulatory_request, 2765 list); 2766 list_del_init(®_request->list); 2767 2768 spin_unlock(®_requests_lock); 2769 2770 notify_self_managed_wiphys(reg_request); 2771 2772 reg_process_hint(reg_request); 2773 2774 lr = get_last_request(); 2775 2776 spin_lock(®_requests_lock); 2777 if (!list_empty(®_requests_list) && lr && lr->processed) 2778 schedule_work(®_work); 2779 spin_unlock(®_requests_lock); 2780 } 2781 2782 /* Processes beacon hints -- this has nothing to do with country IEs */ 2783 static void reg_process_pending_beacon_hints(void) 2784 { 2785 struct cfg80211_registered_device *rdev; 2786 struct reg_beacon *pending_beacon, *tmp; 2787 2788 /* This goes through the _pending_ beacon list */ 2789 spin_lock_bh(®_pending_beacons_lock); 2790 2791 list_for_each_entry_safe(pending_beacon, tmp, 2792 ®_pending_beacons, list) { 2793 list_del_init(&pending_beacon->list); 2794 2795 /* Applies the beacon hint to current wiphys */ 2796 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2797 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 2798 2799 /* Remembers the beacon hint for new wiphys or reg changes */ 2800 list_add_tail(&pending_beacon->list, ®_beacon_list); 2801 } 2802 2803 spin_unlock_bh(®_pending_beacons_lock); 2804 } 2805 2806 static void reg_process_self_managed_hints(void) 2807 { 2808 struct cfg80211_registered_device *rdev; 2809 struct wiphy *wiphy; 2810 const struct ieee80211_regdomain *tmp; 2811 const struct ieee80211_regdomain *regd; 2812 enum nl80211_band band; 2813 struct regulatory_request request = {}; 2814 2815 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2816 wiphy = &rdev->wiphy; 2817 2818 spin_lock(®_requests_lock); 2819 regd = rdev->requested_regd; 2820 rdev->requested_regd = NULL; 2821 spin_unlock(®_requests_lock); 2822 2823 if (regd == NULL) 2824 continue; 2825 2826 tmp = get_wiphy_regdom(wiphy); 2827 rcu_assign_pointer(wiphy->regd, regd); 2828 rcu_free_regdom(tmp); 2829 2830 for (band = 0; band < NUM_NL80211_BANDS; band++) 2831 handle_band_custom(wiphy, wiphy->bands[band], regd); 2832 2833 reg_process_ht_flags(wiphy); 2834 2835 request.wiphy_idx = get_wiphy_idx(wiphy); 2836 request.alpha2[0] = regd->alpha2[0]; 2837 request.alpha2[1] = regd->alpha2[1]; 2838 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 2839 2840 nl80211_send_wiphy_reg_change_event(&request); 2841 } 2842 2843 reg_check_channels(); 2844 } 2845 2846 static void reg_todo(struct work_struct *work) 2847 { 2848 rtnl_lock(); 2849 reg_process_pending_hints(); 2850 reg_process_pending_beacon_hints(); 2851 reg_process_self_managed_hints(); 2852 rtnl_unlock(); 2853 } 2854 2855 static void queue_regulatory_request(struct regulatory_request *request) 2856 { 2857 request->alpha2[0] = toupper(request->alpha2[0]); 2858 request->alpha2[1] = toupper(request->alpha2[1]); 2859 2860 spin_lock(®_requests_lock); 2861 list_add_tail(&request->list, ®_requests_list); 2862 spin_unlock(®_requests_lock); 2863 2864 schedule_work(®_work); 2865 } 2866 2867 /* 2868 * Core regulatory hint -- happens during cfg80211_init() 2869 * and when we restore regulatory settings. 2870 */ 2871 static int regulatory_hint_core(const char *alpha2) 2872 { 2873 struct regulatory_request *request; 2874 2875 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2876 if (!request) 2877 return -ENOMEM; 2878 2879 request->alpha2[0] = alpha2[0]; 2880 request->alpha2[1] = alpha2[1]; 2881 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2882 request->wiphy_idx = WIPHY_IDX_INVALID; 2883 2884 queue_regulatory_request(request); 2885 2886 return 0; 2887 } 2888 2889 /* User hints */ 2890 int regulatory_hint_user(const char *alpha2, 2891 enum nl80211_user_reg_hint_type user_reg_hint_type) 2892 { 2893 struct regulatory_request *request; 2894 2895 if (WARN_ON(!alpha2)) 2896 return -EINVAL; 2897 2898 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2899 if (!request) 2900 return -ENOMEM; 2901 2902 request->wiphy_idx = WIPHY_IDX_INVALID; 2903 request->alpha2[0] = alpha2[0]; 2904 request->alpha2[1] = alpha2[1]; 2905 request->initiator = NL80211_REGDOM_SET_BY_USER; 2906 request->user_reg_hint_type = user_reg_hint_type; 2907 2908 /* Allow calling CRDA again */ 2909 reset_crda_timeouts(); 2910 2911 queue_regulatory_request(request); 2912 2913 return 0; 2914 } 2915 2916 int regulatory_hint_indoor(bool is_indoor, u32 portid) 2917 { 2918 spin_lock(®_indoor_lock); 2919 2920 /* It is possible that more than one user space process is trying to 2921 * configure the indoor setting. To handle such cases, clear the indoor 2922 * setting in case that some process does not think that the device 2923 * is operating in an indoor environment. In addition, if a user space 2924 * process indicates that it is controlling the indoor setting, save its 2925 * portid, i.e., make it the owner. 2926 */ 2927 reg_is_indoor = is_indoor; 2928 if (reg_is_indoor) { 2929 if (!reg_is_indoor_portid) 2930 reg_is_indoor_portid = portid; 2931 } else { 2932 reg_is_indoor_portid = 0; 2933 } 2934 2935 spin_unlock(®_indoor_lock); 2936 2937 if (!is_indoor) 2938 reg_check_channels(); 2939 2940 return 0; 2941 } 2942 2943 void regulatory_netlink_notify(u32 portid) 2944 { 2945 spin_lock(®_indoor_lock); 2946 2947 if (reg_is_indoor_portid != portid) { 2948 spin_unlock(®_indoor_lock); 2949 return; 2950 } 2951 2952 reg_is_indoor = false; 2953 reg_is_indoor_portid = 0; 2954 2955 spin_unlock(®_indoor_lock); 2956 2957 reg_check_channels(); 2958 } 2959 2960 /* Driver hints */ 2961 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 2962 { 2963 struct regulatory_request *request; 2964 2965 if (WARN_ON(!alpha2 || !wiphy)) 2966 return -EINVAL; 2967 2968 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 2969 2970 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2971 if (!request) 2972 return -ENOMEM; 2973 2974 request->wiphy_idx = get_wiphy_idx(wiphy); 2975 2976 request->alpha2[0] = alpha2[0]; 2977 request->alpha2[1] = alpha2[1]; 2978 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 2979 2980 /* Allow calling CRDA again */ 2981 reset_crda_timeouts(); 2982 2983 queue_regulatory_request(request); 2984 2985 return 0; 2986 } 2987 EXPORT_SYMBOL(regulatory_hint); 2988 2989 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 2990 const u8 *country_ie, u8 country_ie_len) 2991 { 2992 char alpha2[2]; 2993 enum environment_cap env = ENVIRON_ANY; 2994 struct regulatory_request *request = NULL, *lr; 2995 2996 /* IE len must be evenly divisible by 2 */ 2997 if (country_ie_len & 0x01) 2998 return; 2999 3000 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3001 return; 3002 3003 request = kzalloc(sizeof(*request), GFP_KERNEL); 3004 if (!request) 3005 return; 3006 3007 alpha2[0] = country_ie[0]; 3008 alpha2[1] = country_ie[1]; 3009 3010 if (country_ie[2] == 'I') 3011 env = ENVIRON_INDOOR; 3012 else if (country_ie[2] == 'O') 3013 env = ENVIRON_OUTDOOR; 3014 3015 rcu_read_lock(); 3016 lr = get_last_request(); 3017 3018 if (unlikely(!lr)) 3019 goto out; 3020 3021 /* 3022 * We will run this only upon a successful connection on cfg80211. 3023 * We leave conflict resolution to the workqueue, where can hold 3024 * the RTNL. 3025 */ 3026 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3027 lr->wiphy_idx != WIPHY_IDX_INVALID) 3028 goto out; 3029 3030 request->wiphy_idx = get_wiphy_idx(wiphy); 3031 request->alpha2[0] = alpha2[0]; 3032 request->alpha2[1] = alpha2[1]; 3033 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3034 request->country_ie_env = env; 3035 3036 /* Allow calling CRDA again */ 3037 reset_crda_timeouts(); 3038 3039 queue_regulatory_request(request); 3040 request = NULL; 3041 out: 3042 kfree(request); 3043 rcu_read_unlock(); 3044 } 3045 3046 static void restore_alpha2(char *alpha2, bool reset_user) 3047 { 3048 /* indicates there is no alpha2 to consider for restoration */ 3049 alpha2[0] = '9'; 3050 alpha2[1] = '7'; 3051 3052 /* The user setting has precedence over the module parameter */ 3053 if (is_user_regdom_saved()) { 3054 /* Unless we're asked to ignore it and reset it */ 3055 if (reset_user) { 3056 pr_debug("Restoring regulatory settings including user preference\n"); 3057 user_alpha2[0] = '9'; 3058 user_alpha2[1] = '7'; 3059 3060 /* 3061 * If we're ignoring user settings, we still need to 3062 * check the module parameter to ensure we put things 3063 * back as they were for a full restore. 3064 */ 3065 if (!is_world_regdom(ieee80211_regdom)) { 3066 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3067 ieee80211_regdom[0], ieee80211_regdom[1]); 3068 alpha2[0] = ieee80211_regdom[0]; 3069 alpha2[1] = ieee80211_regdom[1]; 3070 } 3071 } else { 3072 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3073 user_alpha2[0], user_alpha2[1]); 3074 alpha2[0] = user_alpha2[0]; 3075 alpha2[1] = user_alpha2[1]; 3076 } 3077 } else if (!is_world_regdom(ieee80211_regdom)) { 3078 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3079 ieee80211_regdom[0], ieee80211_regdom[1]); 3080 alpha2[0] = ieee80211_regdom[0]; 3081 alpha2[1] = ieee80211_regdom[1]; 3082 } else 3083 pr_debug("Restoring regulatory settings\n"); 3084 } 3085 3086 static void restore_custom_reg_settings(struct wiphy *wiphy) 3087 { 3088 struct ieee80211_supported_band *sband; 3089 enum nl80211_band band; 3090 struct ieee80211_channel *chan; 3091 int i; 3092 3093 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3094 sband = wiphy->bands[band]; 3095 if (!sband) 3096 continue; 3097 for (i = 0; i < sband->n_channels; i++) { 3098 chan = &sband->channels[i]; 3099 chan->flags = chan->orig_flags; 3100 chan->max_antenna_gain = chan->orig_mag; 3101 chan->max_power = chan->orig_mpwr; 3102 chan->beacon_found = false; 3103 } 3104 } 3105 } 3106 3107 /* 3108 * Restoring regulatory settings involves ingoring any 3109 * possibly stale country IE information and user regulatory 3110 * settings if so desired, this includes any beacon hints 3111 * learned as we could have traveled outside to another country 3112 * after disconnection. To restore regulatory settings we do 3113 * exactly what we did at bootup: 3114 * 3115 * - send a core regulatory hint 3116 * - send a user regulatory hint if applicable 3117 * 3118 * Device drivers that send a regulatory hint for a specific country 3119 * keep their own regulatory domain on wiphy->regd so that does does 3120 * not need to be remembered. 3121 */ 3122 static void restore_regulatory_settings(bool reset_user) 3123 { 3124 char alpha2[2]; 3125 char world_alpha2[2]; 3126 struct reg_beacon *reg_beacon, *btmp; 3127 LIST_HEAD(tmp_reg_req_list); 3128 struct cfg80211_registered_device *rdev; 3129 3130 ASSERT_RTNL(); 3131 3132 /* 3133 * Clear the indoor setting in case that it is not controlled by user 3134 * space, as otherwise there is no guarantee that the device is still 3135 * operating in an indoor environment. 3136 */ 3137 spin_lock(®_indoor_lock); 3138 if (reg_is_indoor && !reg_is_indoor_portid) { 3139 reg_is_indoor = false; 3140 reg_check_channels(); 3141 } 3142 spin_unlock(®_indoor_lock); 3143 3144 reset_regdomains(true, &world_regdom); 3145 restore_alpha2(alpha2, reset_user); 3146 3147 /* 3148 * If there's any pending requests we simply 3149 * stash them to a temporary pending queue and 3150 * add then after we've restored regulatory 3151 * settings. 3152 */ 3153 spin_lock(®_requests_lock); 3154 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3155 spin_unlock(®_requests_lock); 3156 3157 /* Clear beacon hints */ 3158 spin_lock_bh(®_pending_beacons_lock); 3159 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3160 list_del(®_beacon->list); 3161 kfree(reg_beacon); 3162 } 3163 spin_unlock_bh(®_pending_beacons_lock); 3164 3165 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3166 list_del(®_beacon->list); 3167 kfree(reg_beacon); 3168 } 3169 3170 /* First restore to the basic regulatory settings */ 3171 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3172 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3173 3174 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3175 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3176 continue; 3177 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3178 restore_custom_reg_settings(&rdev->wiphy); 3179 } 3180 3181 regulatory_hint_core(world_alpha2); 3182 3183 /* 3184 * This restores the ieee80211_regdom module parameter 3185 * preference or the last user requested regulatory 3186 * settings, user regulatory settings takes precedence. 3187 */ 3188 if (is_an_alpha2(alpha2)) 3189 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3190 3191 spin_lock(®_requests_lock); 3192 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3193 spin_unlock(®_requests_lock); 3194 3195 pr_debug("Kicking the queue\n"); 3196 3197 schedule_work(®_work); 3198 } 3199 3200 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3201 { 3202 struct cfg80211_registered_device *rdev; 3203 struct wireless_dev *wdev; 3204 3205 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3206 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3207 wdev_lock(wdev); 3208 if (!(wdev->wiphy->regulatory_flags & flag)) { 3209 wdev_unlock(wdev); 3210 return false; 3211 } 3212 wdev_unlock(wdev); 3213 } 3214 } 3215 3216 return true; 3217 } 3218 3219 void regulatory_hint_disconnect(void) 3220 { 3221 /* Restore of regulatory settings is not required when wiphy(s) 3222 * ignore IE from connected access point but clearance of beacon hints 3223 * is required when wiphy(s) supports beacon hints. 3224 */ 3225 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3226 struct reg_beacon *reg_beacon, *btmp; 3227 3228 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3229 return; 3230 3231 spin_lock_bh(®_pending_beacons_lock); 3232 list_for_each_entry_safe(reg_beacon, btmp, 3233 ®_pending_beacons, list) { 3234 list_del(®_beacon->list); 3235 kfree(reg_beacon); 3236 } 3237 spin_unlock_bh(®_pending_beacons_lock); 3238 3239 list_for_each_entry_safe(reg_beacon, btmp, 3240 ®_beacon_list, list) { 3241 list_del(®_beacon->list); 3242 kfree(reg_beacon); 3243 } 3244 3245 return; 3246 } 3247 3248 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3249 restore_regulatory_settings(false); 3250 } 3251 3252 static bool freq_is_chan_12_13_14(u32 freq) 3253 { 3254 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3255 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3256 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3257 return true; 3258 return false; 3259 } 3260 3261 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3262 { 3263 struct reg_beacon *pending_beacon; 3264 3265 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3266 if (beacon_chan->center_freq == 3267 pending_beacon->chan.center_freq) 3268 return true; 3269 return false; 3270 } 3271 3272 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3273 struct ieee80211_channel *beacon_chan, 3274 gfp_t gfp) 3275 { 3276 struct reg_beacon *reg_beacon; 3277 bool processing; 3278 3279 if (beacon_chan->beacon_found || 3280 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3281 (beacon_chan->band == NL80211_BAND_2GHZ && 3282 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3283 return 0; 3284 3285 spin_lock_bh(®_pending_beacons_lock); 3286 processing = pending_reg_beacon(beacon_chan); 3287 spin_unlock_bh(®_pending_beacons_lock); 3288 3289 if (processing) 3290 return 0; 3291 3292 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3293 if (!reg_beacon) 3294 return -ENOMEM; 3295 3296 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 3297 beacon_chan->center_freq, 3298 ieee80211_frequency_to_channel(beacon_chan->center_freq), 3299 wiphy_name(wiphy)); 3300 3301 memcpy(®_beacon->chan, beacon_chan, 3302 sizeof(struct ieee80211_channel)); 3303 3304 /* 3305 * Since we can be called from BH or and non-BH context 3306 * we must use spin_lock_bh() 3307 */ 3308 spin_lock_bh(®_pending_beacons_lock); 3309 list_add_tail(®_beacon->list, ®_pending_beacons); 3310 spin_unlock_bh(®_pending_beacons_lock); 3311 3312 schedule_work(®_work); 3313 3314 return 0; 3315 } 3316 3317 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3318 { 3319 unsigned int i; 3320 const struct ieee80211_reg_rule *reg_rule = NULL; 3321 const struct ieee80211_freq_range *freq_range = NULL; 3322 const struct ieee80211_power_rule *power_rule = NULL; 3323 char bw[32], cac_time[32]; 3324 3325 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3326 3327 for (i = 0; i < rd->n_reg_rules; i++) { 3328 reg_rule = &rd->reg_rules[i]; 3329 freq_range = ®_rule->freq_range; 3330 power_rule = ®_rule->power_rule; 3331 3332 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3333 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 3334 freq_range->max_bandwidth_khz, 3335 reg_get_max_bandwidth(rd, reg_rule)); 3336 else 3337 snprintf(bw, sizeof(bw), "%d KHz", 3338 freq_range->max_bandwidth_khz); 3339 3340 if (reg_rule->flags & NL80211_RRF_DFS) 3341 scnprintf(cac_time, sizeof(cac_time), "%u s", 3342 reg_rule->dfs_cac_ms/1000); 3343 else 3344 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3345 3346 3347 /* 3348 * There may not be documentation for max antenna gain 3349 * in certain regions 3350 */ 3351 if (power_rule->max_antenna_gain) 3352 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3353 freq_range->start_freq_khz, 3354 freq_range->end_freq_khz, 3355 bw, 3356 power_rule->max_antenna_gain, 3357 power_rule->max_eirp, 3358 cac_time); 3359 else 3360 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3361 freq_range->start_freq_khz, 3362 freq_range->end_freq_khz, 3363 bw, 3364 power_rule->max_eirp, 3365 cac_time); 3366 } 3367 } 3368 3369 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3370 { 3371 switch (dfs_region) { 3372 case NL80211_DFS_UNSET: 3373 case NL80211_DFS_FCC: 3374 case NL80211_DFS_ETSI: 3375 case NL80211_DFS_JP: 3376 return true; 3377 default: 3378 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3379 return false; 3380 } 3381 } 3382 3383 static void print_regdomain(const struct ieee80211_regdomain *rd) 3384 { 3385 struct regulatory_request *lr = get_last_request(); 3386 3387 if (is_intersected_alpha2(rd->alpha2)) { 3388 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3389 struct cfg80211_registered_device *rdev; 3390 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3391 if (rdev) { 3392 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3393 rdev->country_ie_alpha2[0], 3394 rdev->country_ie_alpha2[1]); 3395 } else 3396 pr_debug("Current regulatory domain intersected:\n"); 3397 } else 3398 pr_debug("Current regulatory domain intersected:\n"); 3399 } else if (is_world_regdom(rd->alpha2)) { 3400 pr_debug("World regulatory domain updated:\n"); 3401 } else { 3402 if (is_unknown_alpha2(rd->alpha2)) 3403 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3404 else { 3405 if (reg_request_cell_base(lr)) 3406 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3407 rd->alpha2[0], rd->alpha2[1]); 3408 else 3409 pr_debug("Regulatory domain changed to country: %c%c\n", 3410 rd->alpha2[0], rd->alpha2[1]); 3411 } 3412 } 3413 3414 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3415 print_rd_rules(rd); 3416 } 3417 3418 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3419 { 3420 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3421 print_rd_rules(rd); 3422 } 3423 3424 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3425 { 3426 if (!is_world_regdom(rd->alpha2)) 3427 return -EINVAL; 3428 update_world_regdomain(rd); 3429 return 0; 3430 } 3431 3432 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3433 struct regulatory_request *user_request) 3434 { 3435 const struct ieee80211_regdomain *intersected_rd = NULL; 3436 3437 if (!regdom_changes(rd->alpha2)) 3438 return -EALREADY; 3439 3440 if (!is_valid_rd(rd)) { 3441 pr_err("Invalid regulatory domain detected: %c%c\n", 3442 rd->alpha2[0], rd->alpha2[1]); 3443 print_regdomain_info(rd); 3444 return -EINVAL; 3445 } 3446 3447 if (!user_request->intersect) { 3448 reset_regdomains(false, rd); 3449 return 0; 3450 } 3451 3452 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3453 if (!intersected_rd) 3454 return -EINVAL; 3455 3456 kfree(rd); 3457 rd = NULL; 3458 reset_regdomains(false, intersected_rd); 3459 3460 return 0; 3461 } 3462 3463 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3464 struct regulatory_request *driver_request) 3465 { 3466 const struct ieee80211_regdomain *regd; 3467 const struct ieee80211_regdomain *intersected_rd = NULL; 3468 const struct ieee80211_regdomain *tmp; 3469 struct wiphy *request_wiphy; 3470 3471 if (is_world_regdom(rd->alpha2)) 3472 return -EINVAL; 3473 3474 if (!regdom_changes(rd->alpha2)) 3475 return -EALREADY; 3476 3477 if (!is_valid_rd(rd)) { 3478 pr_err("Invalid regulatory domain detected: %c%c\n", 3479 rd->alpha2[0], rd->alpha2[1]); 3480 print_regdomain_info(rd); 3481 return -EINVAL; 3482 } 3483 3484 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3485 if (!request_wiphy) 3486 return -ENODEV; 3487 3488 if (!driver_request->intersect) { 3489 if (request_wiphy->regd) 3490 return -EALREADY; 3491 3492 regd = reg_copy_regd(rd); 3493 if (IS_ERR(regd)) 3494 return PTR_ERR(regd); 3495 3496 rcu_assign_pointer(request_wiphy->regd, regd); 3497 reset_regdomains(false, rd); 3498 return 0; 3499 } 3500 3501 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3502 if (!intersected_rd) 3503 return -EINVAL; 3504 3505 /* 3506 * We can trash what CRDA provided now. 3507 * However if a driver requested this specific regulatory 3508 * domain we keep it for its private use 3509 */ 3510 tmp = get_wiphy_regdom(request_wiphy); 3511 rcu_assign_pointer(request_wiphy->regd, rd); 3512 rcu_free_regdom(tmp); 3513 3514 rd = NULL; 3515 3516 reset_regdomains(false, intersected_rd); 3517 3518 return 0; 3519 } 3520 3521 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3522 struct regulatory_request *country_ie_request) 3523 { 3524 struct wiphy *request_wiphy; 3525 3526 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3527 !is_unknown_alpha2(rd->alpha2)) 3528 return -EINVAL; 3529 3530 /* 3531 * Lets only bother proceeding on the same alpha2 if the current 3532 * rd is non static (it means CRDA was present and was used last) 3533 * and the pending request came in from a country IE 3534 */ 3535 3536 if (!is_valid_rd(rd)) { 3537 pr_err("Invalid regulatory domain detected: %c%c\n", 3538 rd->alpha2[0], rd->alpha2[1]); 3539 print_regdomain_info(rd); 3540 return -EINVAL; 3541 } 3542 3543 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3544 if (!request_wiphy) 3545 return -ENODEV; 3546 3547 if (country_ie_request->intersect) 3548 return -EINVAL; 3549 3550 reset_regdomains(false, rd); 3551 return 0; 3552 } 3553 3554 /* 3555 * Use this call to set the current regulatory domain. Conflicts with 3556 * multiple drivers can be ironed out later. Caller must've already 3557 * kmalloc'd the rd structure. 3558 */ 3559 int set_regdom(const struct ieee80211_regdomain *rd, 3560 enum ieee80211_regd_source regd_src) 3561 { 3562 struct regulatory_request *lr; 3563 bool user_reset = false; 3564 int r; 3565 3566 if (!reg_is_valid_request(rd->alpha2)) { 3567 kfree(rd); 3568 return -EINVAL; 3569 } 3570 3571 if (regd_src == REGD_SOURCE_CRDA) 3572 reset_crda_timeouts(); 3573 3574 lr = get_last_request(); 3575 3576 /* Note that this doesn't update the wiphys, this is done below */ 3577 switch (lr->initiator) { 3578 case NL80211_REGDOM_SET_BY_CORE: 3579 r = reg_set_rd_core(rd); 3580 break; 3581 case NL80211_REGDOM_SET_BY_USER: 3582 r = reg_set_rd_user(rd, lr); 3583 user_reset = true; 3584 break; 3585 case NL80211_REGDOM_SET_BY_DRIVER: 3586 r = reg_set_rd_driver(rd, lr); 3587 break; 3588 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3589 r = reg_set_rd_country_ie(rd, lr); 3590 break; 3591 default: 3592 WARN(1, "invalid initiator %d\n", lr->initiator); 3593 kfree(rd); 3594 return -EINVAL; 3595 } 3596 3597 if (r) { 3598 switch (r) { 3599 case -EALREADY: 3600 reg_set_request_processed(); 3601 break; 3602 default: 3603 /* Back to world regulatory in case of errors */ 3604 restore_regulatory_settings(user_reset); 3605 } 3606 3607 kfree(rd); 3608 return r; 3609 } 3610 3611 /* This would make this whole thing pointless */ 3612 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3613 return -EINVAL; 3614 3615 /* update all wiphys now with the new established regulatory domain */ 3616 update_all_wiphy_regulatory(lr->initiator); 3617 3618 print_regdomain(get_cfg80211_regdom()); 3619 3620 nl80211_send_reg_change_event(lr); 3621 3622 reg_set_request_processed(); 3623 3624 return 0; 3625 } 3626 3627 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3628 struct ieee80211_regdomain *rd) 3629 { 3630 const struct ieee80211_regdomain *regd; 3631 const struct ieee80211_regdomain *prev_regd; 3632 struct cfg80211_registered_device *rdev; 3633 3634 if (WARN_ON(!wiphy || !rd)) 3635 return -EINVAL; 3636 3637 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3638 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3639 return -EPERM; 3640 3641 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3642 print_regdomain_info(rd); 3643 return -EINVAL; 3644 } 3645 3646 regd = reg_copy_regd(rd); 3647 if (IS_ERR(regd)) 3648 return PTR_ERR(regd); 3649 3650 rdev = wiphy_to_rdev(wiphy); 3651 3652 spin_lock(®_requests_lock); 3653 prev_regd = rdev->requested_regd; 3654 rdev->requested_regd = regd; 3655 spin_unlock(®_requests_lock); 3656 3657 kfree(prev_regd); 3658 return 0; 3659 } 3660 3661 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3662 struct ieee80211_regdomain *rd) 3663 { 3664 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3665 3666 if (ret) 3667 return ret; 3668 3669 schedule_work(®_work); 3670 return 0; 3671 } 3672 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3673 3674 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3675 struct ieee80211_regdomain *rd) 3676 { 3677 int ret; 3678 3679 ASSERT_RTNL(); 3680 3681 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3682 if (ret) 3683 return ret; 3684 3685 /* process the request immediately */ 3686 reg_process_self_managed_hints(); 3687 return 0; 3688 } 3689 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3690 3691 void wiphy_regulatory_register(struct wiphy *wiphy) 3692 { 3693 struct regulatory_request *lr = get_last_request(); 3694 3695 /* self-managed devices ignore beacon hints and country IE */ 3696 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 3697 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3698 REGULATORY_COUNTRY_IE_IGNORE; 3699 3700 /* 3701 * The last request may have been received before this 3702 * registration call. Call the driver notifier if 3703 * initiator is USER and user type is CELL_BASE. 3704 */ 3705 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 3706 lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE) 3707 reg_call_notifier(wiphy, lr); 3708 } 3709 3710 if (!reg_dev_ignore_cell_hint(wiphy)) 3711 reg_num_devs_support_basehint++; 3712 3713 wiphy_update_regulatory(wiphy, lr->initiator); 3714 wiphy_all_share_dfs_chan_state(wiphy); 3715 } 3716 3717 void wiphy_regulatory_deregister(struct wiphy *wiphy) 3718 { 3719 struct wiphy *request_wiphy = NULL; 3720 struct regulatory_request *lr; 3721 3722 lr = get_last_request(); 3723 3724 if (!reg_dev_ignore_cell_hint(wiphy)) 3725 reg_num_devs_support_basehint--; 3726 3727 rcu_free_regdom(get_wiphy_regdom(wiphy)); 3728 RCU_INIT_POINTER(wiphy->regd, NULL); 3729 3730 if (lr) 3731 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 3732 3733 if (!request_wiphy || request_wiphy != wiphy) 3734 return; 3735 3736 lr->wiphy_idx = WIPHY_IDX_INVALID; 3737 lr->country_ie_env = ENVIRON_ANY; 3738 } 3739 3740 /* 3741 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for 3742 * UNII band definitions 3743 */ 3744 int cfg80211_get_unii(int freq) 3745 { 3746 /* UNII-1 */ 3747 if (freq >= 5150 && freq <= 5250) 3748 return 0; 3749 3750 /* UNII-2A */ 3751 if (freq > 5250 && freq <= 5350) 3752 return 1; 3753 3754 /* UNII-2B */ 3755 if (freq > 5350 && freq <= 5470) 3756 return 2; 3757 3758 /* UNII-2C */ 3759 if (freq > 5470 && freq <= 5725) 3760 return 3; 3761 3762 /* UNII-3 */ 3763 if (freq > 5725 && freq <= 5825) 3764 return 4; 3765 3766 return -EINVAL; 3767 } 3768 3769 bool regulatory_indoor_allowed(void) 3770 { 3771 return reg_is_indoor; 3772 } 3773 3774 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 3775 { 3776 const struct ieee80211_regdomain *regd = NULL; 3777 const struct ieee80211_regdomain *wiphy_regd = NULL; 3778 bool pre_cac_allowed = false; 3779 3780 rcu_read_lock(); 3781 3782 regd = rcu_dereference(cfg80211_regdomain); 3783 wiphy_regd = rcu_dereference(wiphy->regd); 3784 if (!wiphy_regd) { 3785 if (regd->dfs_region == NL80211_DFS_ETSI) 3786 pre_cac_allowed = true; 3787 3788 rcu_read_unlock(); 3789 3790 return pre_cac_allowed; 3791 } 3792 3793 if (regd->dfs_region == wiphy_regd->dfs_region && 3794 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 3795 pre_cac_allowed = true; 3796 3797 rcu_read_unlock(); 3798 3799 return pre_cac_allowed; 3800 } 3801 3802 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 3803 struct cfg80211_chan_def *chandef, 3804 enum nl80211_dfs_state dfs_state, 3805 enum nl80211_radar_event event) 3806 { 3807 struct cfg80211_registered_device *rdev; 3808 3809 ASSERT_RTNL(); 3810 3811 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 3812 return; 3813 3814 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3815 if (wiphy == &rdev->wiphy) 3816 continue; 3817 3818 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 3819 continue; 3820 3821 if (!ieee80211_get_channel(&rdev->wiphy, 3822 chandef->chan->center_freq)) 3823 continue; 3824 3825 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 3826 3827 if (event == NL80211_RADAR_DETECTED || 3828 event == NL80211_RADAR_CAC_FINISHED) 3829 cfg80211_sched_dfs_chan_update(rdev); 3830 3831 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 3832 } 3833 } 3834 3835 static int __init regulatory_init_db(void) 3836 { 3837 int err; 3838 3839 /* 3840 * It's possible that - due to other bugs/issues - cfg80211 3841 * never called regulatory_init() below, or that it failed; 3842 * in that case, don't try to do any further work here as 3843 * it's doomed to lead to crashes. 3844 */ 3845 if (IS_ERR_OR_NULL(reg_pdev)) 3846 return -EINVAL; 3847 3848 err = load_builtin_regdb_keys(); 3849 if (err) 3850 return err; 3851 3852 /* We always try to get an update for the static regdomain */ 3853 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 3854 if (err) { 3855 if (err == -ENOMEM) { 3856 platform_device_unregister(reg_pdev); 3857 return err; 3858 } 3859 /* 3860 * N.B. kobject_uevent_env() can fail mainly for when we're out 3861 * memory which is handled and propagated appropriately above 3862 * but it can also fail during a netlink_broadcast() or during 3863 * early boot for call_usermodehelper(). For now treat these 3864 * errors as non-fatal. 3865 */ 3866 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 3867 } 3868 3869 /* 3870 * Finally, if the user set the module parameter treat it 3871 * as a user hint. 3872 */ 3873 if (!is_world_regdom(ieee80211_regdom)) 3874 regulatory_hint_user(ieee80211_regdom, 3875 NL80211_USER_REG_HINT_USER); 3876 3877 return 0; 3878 } 3879 #ifndef MODULE 3880 late_initcall(regulatory_init_db); 3881 #endif 3882 3883 int __init regulatory_init(void) 3884 { 3885 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 3886 if (IS_ERR(reg_pdev)) 3887 return PTR_ERR(reg_pdev); 3888 3889 spin_lock_init(®_requests_lock); 3890 spin_lock_init(®_pending_beacons_lock); 3891 spin_lock_init(®_indoor_lock); 3892 3893 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 3894 3895 user_alpha2[0] = '9'; 3896 user_alpha2[1] = '7'; 3897 3898 #ifdef MODULE 3899 return regulatory_init_db(); 3900 #else 3901 return 0; 3902 #endif 3903 } 3904 3905 void regulatory_exit(void) 3906 { 3907 struct regulatory_request *reg_request, *tmp; 3908 struct reg_beacon *reg_beacon, *btmp; 3909 3910 cancel_work_sync(®_work); 3911 cancel_crda_timeout_sync(); 3912 cancel_delayed_work_sync(®_check_chans); 3913 3914 /* Lock to suppress warnings */ 3915 rtnl_lock(); 3916 reset_regdomains(true, NULL); 3917 rtnl_unlock(); 3918 3919 dev_set_uevent_suppress(®_pdev->dev, true); 3920 3921 platform_device_unregister(reg_pdev); 3922 3923 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3924 list_del(®_beacon->list); 3925 kfree(reg_beacon); 3926 } 3927 3928 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3929 list_del(®_beacon->list); 3930 kfree(reg_beacon); 3931 } 3932 3933 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 3934 list_del(®_request->list); 3935 kfree(reg_request); 3936 } 3937 3938 if (!IS_ERR_OR_NULL(regdb)) 3939 kfree(regdb); 3940 3941 free_regdb_keyring(); 3942 } 3943