xref: /linux/net/wireless/reg.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61 
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...)			\
64 	printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68 
69 static struct regulatory_request core_request_world = {
70 	.initiator = NL80211_REGDOM_SET_BY_CORE,
71 	.alpha2[0] = '0',
72 	.alpha2[1] = '0',
73 	.intersect = false,
74 	.processed = true,
75 	.country_ie_env = ENVIRON_ANY,
76 };
77 
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80 
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83 
84 static struct device_type reg_device_type = {
85 	.uevent = reg_device_uevent,
86 };
87 
88 /*
89  * Central wireless core regulatory domains, we only need two,
90  * the current one and a world regulatory domain in case we have no
91  * information to give us an alpha2
92  */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94 
95 /*
96  * Protects static reg.c components:
97  *     - cfg80211_world_regdom
98  *     - cfg80211_regdom
99  *     - last_request
100  */
101 static DEFINE_MUTEX(reg_mutex);
102 
103 static inline void assert_reg_lock(void)
104 {
105 	lockdep_assert_held(&reg_mutex);
106 }
107 
108 /* Used to queue up regulatory hints */
109 static LIST_HEAD(reg_requests_list);
110 static spinlock_t reg_requests_lock;
111 
112 /* Used to queue up beacon hints for review */
113 static LIST_HEAD(reg_pending_beacons);
114 static spinlock_t reg_pending_beacons_lock;
115 
116 /* Used to keep track of processed beacon hints */
117 static LIST_HEAD(reg_beacon_list);
118 
119 struct reg_beacon {
120 	struct list_head list;
121 	struct ieee80211_channel chan;
122 };
123 
124 static void reg_todo(struct work_struct *work);
125 static DECLARE_WORK(reg_work, reg_todo);
126 
127 static void reg_timeout_work(struct work_struct *work);
128 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
129 
130 /* We keep a static world regulatory domain in case of the absence of CRDA */
131 static const struct ieee80211_regdomain world_regdom = {
132 	.n_reg_rules = 5,
133 	.alpha2 =  "00",
134 	.reg_rules = {
135 		/* IEEE 802.11b/g, channels 1..11 */
136 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
137 		/* IEEE 802.11b/g, channels 12..13. No HT40
138 		 * channel fits here. */
139 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
140 			NL80211_RRF_PASSIVE_SCAN |
141 			NL80211_RRF_NO_IBSS),
142 		/* IEEE 802.11 channel 14 - Only JP enables
143 		 * this and for 802.11b only */
144 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
145 			NL80211_RRF_PASSIVE_SCAN |
146 			NL80211_RRF_NO_IBSS |
147 			NL80211_RRF_NO_OFDM),
148 		/* IEEE 802.11a, channel 36..48 */
149 		REG_RULE(5180-10, 5240+10, 40, 6, 20,
150                         NL80211_RRF_PASSIVE_SCAN |
151                         NL80211_RRF_NO_IBSS),
152 
153 		/* NB: 5260 MHz - 5700 MHz requies DFS */
154 
155 		/* IEEE 802.11a, channel 149..165 */
156 		REG_RULE(5745-10, 5825+10, 40, 6, 20,
157 			NL80211_RRF_PASSIVE_SCAN |
158 			NL80211_RRF_NO_IBSS),
159 	}
160 };
161 
162 static const struct ieee80211_regdomain *cfg80211_world_regdom =
163 	&world_regdom;
164 
165 static char *ieee80211_regdom = "00";
166 static char user_alpha2[2];
167 
168 module_param(ieee80211_regdom, charp, 0444);
169 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
170 
171 static void reset_regdomains(bool full_reset)
172 {
173 	/* avoid freeing static information or freeing something twice */
174 	if (cfg80211_regdomain == cfg80211_world_regdom)
175 		cfg80211_regdomain = NULL;
176 	if (cfg80211_world_regdom == &world_regdom)
177 		cfg80211_world_regdom = NULL;
178 	if (cfg80211_regdomain == &world_regdom)
179 		cfg80211_regdomain = NULL;
180 
181 	kfree(cfg80211_regdomain);
182 	kfree(cfg80211_world_regdom);
183 
184 	cfg80211_world_regdom = &world_regdom;
185 	cfg80211_regdomain = NULL;
186 
187 	if (!full_reset)
188 		return;
189 
190 	if (last_request != &core_request_world)
191 		kfree(last_request);
192 	last_request = &core_request_world;
193 }
194 
195 /*
196  * Dynamic world regulatory domain requested by the wireless
197  * core upon initialization
198  */
199 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
200 {
201 	BUG_ON(!last_request);
202 
203 	reset_regdomains(false);
204 
205 	cfg80211_world_regdom = rd;
206 	cfg80211_regdomain = rd;
207 }
208 
209 bool is_world_regdom(const char *alpha2)
210 {
211 	if (!alpha2)
212 		return false;
213 	if (alpha2[0] == '0' && alpha2[1] == '0')
214 		return true;
215 	return false;
216 }
217 
218 static bool is_alpha2_set(const char *alpha2)
219 {
220 	if (!alpha2)
221 		return false;
222 	if (alpha2[0] != 0 && alpha2[1] != 0)
223 		return true;
224 	return false;
225 }
226 
227 static bool is_unknown_alpha2(const char *alpha2)
228 {
229 	if (!alpha2)
230 		return false;
231 	/*
232 	 * Special case where regulatory domain was built by driver
233 	 * but a specific alpha2 cannot be determined
234 	 */
235 	if (alpha2[0] == '9' && alpha2[1] == '9')
236 		return true;
237 	return false;
238 }
239 
240 static bool is_intersected_alpha2(const char *alpha2)
241 {
242 	if (!alpha2)
243 		return false;
244 	/*
245 	 * Special case where regulatory domain is the
246 	 * result of an intersection between two regulatory domain
247 	 * structures
248 	 */
249 	if (alpha2[0] == '9' && alpha2[1] == '8')
250 		return true;
251 	return false;
252 }
253 
254 static bool is_an_alpha2(const char *alpha2)
255 {
256 	if (!alpha2)
257 		return false;
258 	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
259 		return true;
260 	return false;
261 }
262 
263 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
264 {
265 	if (!alpha2_x || !alpha2_y)
266 		return false;
267 	if (alpha2_x[0] == alpha2_y[0] &&
268 		alpha2_x[1] == alpha2_y[1])
269 		return true;
270 	return false;
271 }
272 
273 static bool regdom_changes(const char *alpha2)
274 {
275 	assert_cfg80211_lock();
276 
277 	if (!cfg80211_regdomain)
278 		return true;
279 	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
280 		return false;
281 	return true;
282 }
283 
284 /*
285  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
286  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
287  * has ever been issued.
288  */
289 static bool is_user_regdom_saved(void)
290 {
291 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
292 		return false;
293 
294 	/* This would indicate a mistake on the design */
295 	if (WARN((!is_world_regdom(user_alpha2) &&
296 		  !is_an_alpha2(user_alpha2)),
297 		 "Unexpected user alpha2: %c%c\n",
298 		 user_alpha2[0],
299 	         user_alpha2[1]))
300 		return false;
301 
302 	return true;
303 }
304 
305 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
306 			 const struct ieee80211_regdomain *src_regd)
307 {
308 	struct ieee80211_regdomain *regd;
309 	int size_of_regd = 0;
310 	unsigned int i;
311 
312 	size_of_regd = sizeof(struct ieee80211_regdomain) +
313 	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
314 
315 	regd = kzalloc(size_of_regd, GFP_KERNEL);
316 	if (!regd)
317 		return -ENOMEM;
318 
319 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
320 
321 	for (i = 0; i < src_regd->n_reg_rules; i++)
322 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
323 			sizeof(struct ieee80211_reg_rule));
324 
325 	*dst_regd = regd;
326 	return 0;
327 }
328 
329 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
330 struct reg_regdb_search_request {
331 	char alpha2[2];
332 	struct list_head list;
333 };
334 
335 static LIST_HEAD(reg_regdb_search_list);
336 static DEFINE_MUTEX(reg_regdb_search_mutex);
337 
338 static void reg_regdb_search(struct work_struct *work)
339 {
340 	struct reg_regdb_search_request *request;
341 	const struct ieee80211_regdomain *curdom, *regdom;
342 	int i, r;
343 
344 	mutex_lock(&reg_regdb_search_mutex);
345 	while (!list_empty(&reg_regdb_search_list)) {
346 		request = list_first_entry(&reg_regdb_search_list,
347 					   struct reg_regdb_search_request,
348 					   list);
349 		list_del(&request->list);
350 
351 		for (i=0; i<reg_regdb_size; i++) {
352 			curdom = reg_regdb[i];
353 
354 			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
355 				r = reg_copy_regd(&regdom, curdom);
356 				if (r)
357 					break;
358 				mutex_lock(&cfg80211_mutex);
359 				set_regdom(regdom);
360 				mutex_unlock(&cfg80211_mutex);
361 				break;
362 			}
363 		}
364 
365 		kfree(request);
366 	}
367 	mutex_unlock(&reg_regdb_search_mutex);
368 }
369 
370 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
371 
372 static void reg_regdb_query(const char *alpha2)
373 {
374 	struct reg_regdb_search_request *request;
375 
376 	if (!alpha2)
377 		return;
378 
379 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
380 	if (!request)
381 		return;
382 
383 	memcpy(request->alpha2, alpha2, 2);
384 
385 	mutex_lock(&reg_regdb_search_mutex);
386 	list_add_tail(&request->list, &reg_regdb_search_list);
387 	mutex_unlock(&reg_regdb_search_mutex);
388 
389 	schedule_work(&reg_regdb_work);
390 }
391 
392 /* Feel free to add any other sanity checks here */
393 static void reg_regdb_size_check(void)
394 {
395 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
396 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
397 }
398 #else
399 static inline void reg_regdb_size_check(void) {}
400 static inline void reg_regdb_query(const char *alpha2) {}
401 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
402 
403 /*
404  * This lets us keep regulatory code which is updated on a regulatory
405  * basis in userspace. Country information is filled in by
406  * reg_device_uevent
407  */
408 static int call_crda(const char *alpha2)
409 {
410 	if (!is_world_regdom((char *) alpha2))
411 		pr_info("Calling CRDA for country: %c%c\n",
412 			alpha2[0], alpha2[1]);
413 	else
414 		pr_info("Calling CRDA to update world regulatory domain\n");
415 
416 	/* query internal regulatory database (if it exists) */
417 	reg_regdb_query(alpha2);
418 
419 	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
420 }
421 
422 /* Used by nl80211 before kmalloc'ing our regulatory domain */
423 bool reg_is_valid_request(const char *alpha2)
424 {
425 	assert_cfg80211_lock();
426 
427 	if (!last_request)
428 		return false;
429 
430 	return alpha2_equal(last_request->alpha2, alpha2);
431 }
432 
433 /* Sanity check on a regulatory rule */
434 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
435 {
436 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
437 	u32 freq_diff;
438 
439 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
440 		return false;
441 
442 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
443 		return false;
444 
445 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
446 
447 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
448 			freq_range->max_bandwidth_khz > freq_diff)
449 		return false;
450 
451 	return true;
452 }
453 
454 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
455 {
456 	const struct ieee80211_reg_rule *reg_rule = NULL;
457 	unsigned int i;
458 
459 	if (!rd->n_reg_rules)
460 		return false;
461 
462 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
463 		return false;
464 
465 	for (i = 0; i < rd->n_reg_rules; i++) {
466 		reg_rule = &rd->reg_rules[i];
467 		if (!is_valid_reg_rule(reg_rule))
468 			return false;
469 	}
470 
471 	return true;
472 }
473 
474 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
475 			    u32 center_freq_khz,
476 			    u32 bw_khz)
477 {
478 	u32 start_freq_khz, end_freq_khz;
479 
480 	start_freq_khz = center_freq_khz - (bw_khz/2);
481 	end_freq_khz = center_freq_khz + (bw_khz/2);
482 
483 	if (start_freq_khz >= freq_range->start_freq_khz &&
484 	    end_freq_khz <= freq_range->end_freq_khz)
485 		return true;
486 
487 	return false;
488 }
489 
490 /**
491  * freq_in_rule_band - tells us if a frequency is in a frequency band
492  * @freq_range: frequency rule we want to query
493  * @freq_khz: frequency we are inquiring about
494  *
495  * This lets us know if a specific frequency rule is or is not relevant to
496  * a specific frequency's band. Bands are device specific and artificial
497  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
498  * safe for now to assume that a frequency rule should not be part of a
499  * frequency's band if the start freq or end freq are off by more than 2 GHz.
500  * This resolution can be lowered and should be considered as we add
501  * regulatory rule support for other "bands".
502  **/
503 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
504 	u32 freq_khz)
505 {
506 #define ONE_GHZ_IN_KHZ	1000000
507 	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
508 		return true;
509 	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
510 		return true;
511 	return false;
512 #undef ONE_GHZ_IN_KHZ
513 }
514 
515 /*
516  * Helper for regdom_intersect(), this does the real
517  * mathematical intersection fun
518  */
519 static int reg_rules_intersect(
520 	const struct ieee80211_reg_rule *rule1,
521 	const struct ieee80211_reg_rule *rule2,
522 	struct ieee80211_reg_rule *intersected_rule)
523 {
524 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
525 	struct ieee80211_freq_range *freq_range;
526 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
527 	struct ieee80211_power_rule *power_rule;
528 	u32 freq_diff;
529 
530 	freq_range1 = &rule1->freq_range;
531 	freq_range2 = &rule2->freq_range;
532 	freq_range = &intersected_rule->freq_range;
533 
534 	power_rule1 = &rule1->power_rule;
535 	power_rule2 = &rule2->power_rule;
536 	power_rule = &intersected_rule->power_rule;
537 
538 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
539 		freq_range2->start_freq_khz);
540 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
541 		freq_range2->end_freq_khz);
542 	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
543 		freq_range2->max_bandwidth_khz);
544 
545 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
546 	if (freq_range->max_bandwidth_khz > freq_diff)
547 		freq_range->max_bandwidth_khz = freq_diff;
548 
549 	power_rule->max_eirp = min(power_rule1->max_eirp,
550 		power_rule2->max_eirp);
551 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
552 		power_rule2->max_antenna_gain);
553 
554 	intersected_rule->flags = (rule1->flags | rule2->flags);
555 
556 	if (!is_valid_reg_rule(intersected_rule))
557 		return -EINVAL;
558 
559 	return 0;
560 }
561 
562 /**
563  * regdom_intersect - do the intersection between two regulatory domains
564  * @rd1: first regulatory domain
565  * @rd2: second regulatory domain
566  *
567  * Use this function to get the intersection between two regulatory domains.
568  * Once completed we will mark the alpha2 for the rd as intersected, "98",
569  * as no one single alpha2 can represent this regulatory domain.
570  *
571  * Returns a pointer to the regulatory domain structure which will hold the
572  * resulting intersection of rules between rd1 and rd2. We will
573  * kzalloc() this structure for you.
574  */
575 static struct ieee80211_regdomain *regdom_intersect(
576 	const struct ieee80211_regdomain *rd1,
577 	const struct ieee80211_regdomain *rd2)
578 {
579 	int r, size_of_regd;
580 	unsigned int x, y;
581 	unsigned int num_rules = 0, rule_idx = 0;
582 	const struct ieee80211_reg_rule *rule1, *rule2;
583 	struct ieee80211_reg_rule *intersected_rule;
584 	struct ieee80211_regdomain *rd;
585 	/* This is just a dummy holder to help us count */
586 	struct ieee80211_reg_rule irule;
587 
588 	/* Uses the stack temporarily for counter arithmetic */
589 	intersected_rule = &irule;
590 
591 	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
592 
593 	if (!rd1 || !rd2)
594 		return NULL;
595 
596 	/*
597 	 * First we get a count of the rules we'll need, then we actually
598 	 * build them. This is to so we can malloc() and free() a
599 	 * regdomain once. The reason we use reg_rules_intersect() here
600 	 * is it will return -EINVAL if the rule computed makes no sense.
601 	 * All rules that do check out OK are valid.
602 	 */
603 
604 	for (x = 0; x < rd1->n_reg_rules; x++) {
605 		rule1 = &rd1->reg_rules[x];
606 		for (y = 0; y < rd2->n_reg_rules; y++) {
607 			rule2 = &rd2->reg_rules[y];
608 			if (!reg_rules_intersect(rule1, rule2,
609 					intersected_rule))
610 				num_rules++;
611 			memset(intersected_rule, 0,
612 					sizeof(struct ieee80211_reg_rule));
613 		}
614 	}
615 
616 	if (!num_rules)
617 		return NULL;
618 
619 	size_of_regd = sizeof(struct ieee80211_regdomain) +
620 		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
621 
622 	rd = kzalloc(size_of_regd, GFP_KERNEL);
623 	if (!rd)
624 		return NULL;
625 
626 	for (x = 0; x < rd1->n_reg_rules; x++) {
627 		rule1 = &rd1->reg_rules[x];
628 		for (y = 0; y < rd2->n_reg_rules; y++) {
629 			rule2 = &rd2->reg_rules[y];
630 			/*
631 			 * This time around instead of using the stack lets
632 			 * write to the target rule directly saving ourselves
633 			 * a memcpy()
634 			 */
635 			intersected_rule = &rd->reg_rules[rule_idx];
636 			r = reg_rules_intersect(rule1, rule2,
637 				intersected_rule);
638 			/*
639 			 * No need to memset here the intersected rule here as
640 			 * we're not using the stack anymore
641 			 */
642 			if (r)
643 				continue;
644 			rule_idx++;
645 		}
646 	}
647 
648 	if (rule_idx != num_rules) {
649 		kfree(rd);
650 		return NULL;
651 	}
652 
653 	rd->n_reg_rules = num_rules;
654 	rd->alpha2[0] = '9';
655 	rd->alpha2[1] = '8';
656 
657 	return rd;
658 }
659 
660 /*
661  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
662  * want to just have the channel structure use these
663  */
664 static u32 map_regdom_flags(u32 rd_flags)
665 {
666 	u32 channel_flags = 0;
667 	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
668 		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
669 	if (rd_flags & NL80211_RRF_NO_IBSS)
670 		channel_flags |= IEEE80211_CHAN_NO_IBSS;
671 	if (rd_flags & NL80211_RRF_DFS)
672 		channel_flags |= IEEE80211_CHAN_RADAR;
673 	return channel_flags;
674 }
675 
676 static int freq_reg_info_regd(struct wiphy *wiphy,
677 			      u32 center_freq,
678 			      u32 desired_bw_khz,
679 			      const struct ieee80211_reg_rule **reg_rule,
680 			      const struct ieee80211_regdomain *custom_regd)
681 {
682 	int i;
683 	bool band_rule_found = false;
684 	const struct ieee80211_regdomain *regd;
685 	bool bw_fits = false;
686 
687 	if (!desired_bw_khz)
688 		desired_bw_khz = MHZ_TO_KHZ(20);
689 
690 	regd = custom_regd ? custom_regd : cfg80211_regdomain;
691 
692 	/*
693 	 * Follow the driver's regulatory domain, if present, unless a country
694 	 * IE has been processed or a user wants to help complaince further
695 	 */
696 	if (!custom_regd &&
697 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
698 	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
699 	    wiphy->regd)
700 		regd = wiphy->regd;
701 
702 	if (!regd)
703 		return -EINVAL;
704 
705 	for (i = 0; i < regd->n_reg_rules; i++) {
706 		const struct ieee80211_reg_rule *rr;
707 		const struct ieee80211_freq_range *fr = NULL;
708 
709 		rr = &regd->reg_rules[i];
710 		fr = &rr->freq_range;
711 
712 		/*
713 		 * We only need to know if one frequency rule was
714 		 * was in center_freq's band, that's enough, so lets
715 		 * not overwrite it once found
716 		 */
717 		if (!band_rule_found)
718 			band_rule_found = freq_in_rule_band(fr, center_freq);
719 
720 		bw_fits = reg_does_bw_fit(fr,
721 					  center_freq,
722 					  desired_bw_khz);
723 
724 		if (band_rule_found && bw_fits) {
725 			*reg_rule = rr;
726 			return 0;
727 		}
728 	}
729 
730 	if (!band_rule_found)
731 		return -ERANGE;
732 
733 	return -EINVAL;
734 }
735 
736 int freq_reg_info(struct wiphy *wiphy,
737 		  u32 center_freq,
738 		  u32 desired_bw_khz,
739 		  const struct ieee80211_reg_rule **reg_rule)
740 {
741 	assert_cfg80211_lock();
742 	return freq_reg_info_regd(wiphy,
743 				  center_freq,
744 				  desired_bw_khz,
745 				  reg_rule,
746 				  NULL);
747 }
748 EXPORT_SYMBOL(freq_reg_info);
749 
750 #ifdef CONFIG_CFG80211_REG_DEBUG
751 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
752 {
753 	switch (initiator) {
754 	case NL80211_REGDOM_SET_BY_CORE:
755 		return "Set by core";
756 	case NL80211_REGDOM_SET_BY_USER:
757 		return "Set by user";
758 	case NL80211_REGDOM_SET_BY_DRIVER:
759 		return "Set by driver";
760 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
761 		return "Set by country IE";
762 	default:
763 		WARN_ON(1);
764 		return "Set by bug";
765 	}
766 }
767 
768 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
769 				    u32 desired_bw_khz,
770 				    const struct ieee80211_reg_rule *reg_rule)
771 {
772 	const struct ieee80211_power_rule *power_rule;
773 	const struct ieee80211_freq_range *freq_range;
774 	char max_antenna_gain[32];
775 
776 	power_rule = &reg_rule->power_rule;
777 	freq_range = &reg_rule->freq_range;
778 
779 	if (!power_rule->max_antenna_gain)
780 		snprintf(max_antenna_gain, 32, "N/A");
781 	else
782 		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
783 
784 	REG_DBG_PRINT("Updating information on frequency %d MHz "
785 		      "for a %d MHz width channel with regulatory rule:\n",
786 		      chan->center_freq,
787 		      KHZ_TO_MHZ(desired_bw_khz));
788 
789 	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
790 		      freq_range->start_freq_khz,
791 		      freq_range->end_freq_khz,
792 		      freq_range->max_bandwidth_khz,
793 		      max_antenna_gain,
794 		      power_rule->max_eirp);
795 }
796 #else
797 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
798 				    u32 desired_bw_khz,
799 				    const struct ieee80211_reg_rule *reg_rule)
800 {
801 	return;
802 }
803 #endif
804 
805 /*
806  * Note that right now we assume the desired channel bandwidth
807  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
808  * per channel, the primary and the extension channel). To support
809  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
810  * new ieee80211_channel.target_bw and re run the regulatory check
811  * on the wiphy with the target_bw specified. Then we can simply use
812  * that below for the desired_bw_khz below.
813  */
814 static void handle_channel(struct wiphy *wiphy,
815 			   enum nl80211_reg_initiator initiator,
816 			   enum ieee80211_band band,
817 			   unsigned int chan_idx)
818 {
819 	int r;
820 	u32 flags, bw_flags = 0;
821 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
822 	const struct ieee80211_reg_rule *reg_rule = NULL;
823 	const struct ieee80211_power_rule *power_rule = NULL;
824 	const struct ieee80211_freq_range *freq_range = NULL;
825 	struct ieee80211_supported_band *sband;
826 	struct ieee80211_channel *chan;
827 	struct wiphy *request_wiphy = NULL;
828 
829 	assert_cfg80211_lock();
830 
831 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
832 
833 	sband = wiphy->bands[band];
834 	BUG_ON(chan_idx >= sband->n_channels);
835 	chan = &sband->channels[chan_idx];
836 
837 	flags = chan->orig_flags;
838 
839 	r = freq_reg_info(wiphy,
840 			  MHZ_TO_KHZ(chan->center_freq),
841 			  desired_bw_khz,
842 			  &reg_rule);
843 
844 	if (r) {
845 		/*
846 		 * We will disable all channels that do not match our
847 		 * received regulatory rule unless the hint is coming
848 		 * from a Country IE and the Country IE had no information
849 		 * about a band. The IEEE 802.11 spec allows for an AP
850 		 * to send only a subset of the regulatory rules allowed,
851 		 * so an AP in the US that only supports 2.4 GHz may only send
852 		 * a country IE with information for the 2.4 GHz band
853 		 * while 5 GHz is still supported.
854 		 */
855 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
856 		    r == -ERANGE)
857 			return;
858 
859 		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
860 		chan->flags = IEEE80211_CHAN_DISABLED;
861 		return;
862 	}
863 
864 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
865 
866 	power_rule = &reg_rule->power_rule;
867 	freq_range = &reg_rule->freq_range;
868 
869 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
870 		bw_flags = IEEE80211_CHAN_NO_HT40;
871 
872 	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
873 	    request_wiphy && request_wiphy == wiphy &&
874 	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
875 		/*
876 		 * This guarantees the driver's requested regulatory domain
877 		 * will always be used as a base for further regulatory
878 		 * settings
879 		 */
880 		chan->flags = chan->orig_flags =
881 			map_regdom_flags(reg_rule->flags) | bw_flags;
882 		chan->max_antenna_gain = chan->orig_mag =
883 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
884 		chan->max_power = chan->orig_mpwr =
885 			(int) MBM_TO_DBM(power_rule->max_eirp);
886 		return;
887 	}
888 
889 	chan->beacon_found = false;
890 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
891 	chan->max_antenna_gain = min(chan->orig_mag,
892 		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
893 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
894 	chan->max_power = min(chan->max_power, chan->max_reg_power);
895 }
896 
897 static void handle_band(struct wiphy *wiphy,
898 			enum ieee80211_band band,
899 			enum nl80211_reg_initiator initiator)
900 {
901 	unsigned int i;
902 	struct ieee80211_supported_band *sband;
903 
904 	BUG_ON(!wiphy->bands[band]);
905 	sband = wiphy->bands[band];
906 
907 	for (i = 0; i < sband->n_channels; i++)
908 		handle_channel(wiphy, initiator, band, i);
909 }
910 
911 static bool ignore_reg_update(struct wiphy *wiphy,
912 			      enum nl80211_reg_initiator initiator)
913 {
914 	if (!last_request) {
915 		REG_DBG_PRINT("Ignoring regulatory request %s since "
916 			      "last_request is not set\n",
917 			      reg_initiator_name(initiator));
918 		return true;
919 	}
920 
921 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
922 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
923 		REG_DBG_PRINT("Ignoring regulatory request %s "
924 			      "since the driver uses its own custom "
925 			      "regulatory domain\n",
926 			      reg_initiator_name(initiator));
927 		return true;
928 	}
929 
930 	/*
931 	 * wiphy->regd will be set once the device has its own
932 	 * desired regulatory domain set
933 	 */
934 	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
935 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
936 	    !is_world_regdom(last_request->alpha2)) {
937 		REG_DBG_PRINT("Ignoring regulatory request %s "
938 			      "since the driver requires its own regulatory "
939 			      "domain to be set first\n",
940 			      reg_initiator_name(initiator));
941 		return true;
942 	}
943 
944 	return false;
945 }
946 
947 static void handle_reg_beacon(struct wiphy *wiphy,
948 			      unsigned int chan_idx,
949 			      struct reg_beacon *reg_beacon)
950 {
951 	struct ieee80211_supported_band *sband;
952 	struct ieee80211_channel *chan;
953 	bool channel_changed = false;
954 	struct ieee80211_channel chan_before;
955 
956 	assert_cfg80211_lock();
957 
958 	sband = wiphy->bands[reg_beacon->chan.band];
959 	chan = &sband->channels[chan_idx];
960 
961 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
962 		return;
963 
964 	if (chan->beacon_found)
965 		return;
966 
967 	chan->beacon_found = true;
968 
969 	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
970 		return;
971 
972 	chan_before.center_freq = chan->center_freq;
973 	chan_before.flags = chan->flags;
974 
975 	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
976 		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
977 		channel_changed = true;
978 	}
979 
980 	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
981 		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
982 		channel_changed = true;
983 	}
984 
985 	if (channel_changed)
986 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
987 }
988 
989 /*
990  * Called when a scan on a wiphy finds a beacon on
991  * new channel
992  */
993 static void wiphy_update_new_beacon(struct wiphy *wiphy,
994 				    struct reg_beacon *reg_beacon)
995 {
996 	unsigned int i;
997 	struct ieee80211_supported_band *sband;
998 
999 	assert_cfg80211_lock();
1000 
1001 	if (!wiphy->bands[reg_beacon->chan.band])
1002 		return;
1003 
1004 	sband = wiphy->bands[reg_beacon->chan.band];
1005 
1006 	for (i = 0; i < sband->n_channels; i++)
1007 		handle_reg_beacon(wiphy, i, reg_beacon);
1008 }
1009 
1010 /*
1011  * Called upon reg changes or a new wiphy is added
1012  */
1013 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1014 {
1015 	unsigned int i;
1016 	struct ieee80211_supported_band *sband;
1017 	struct reg_beacon *reg_beacon;
1018 
1019 	assert_cfg80211_lock();
1020 
1021 	if (list_empty(&reg_beacon_list))
1022 		return;
1023 
1024 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1025 		if (!wiphy->bands[reg_beacon->chan.band])
1026 			continue;
1027 		sband = wiphy->bands[reg_beacon->chan.band];
1028 		for (i = 0; i < sband->n_channels; i++)
1029 			handle_reg_beacon(wiphy, i, reg_beacon);
1030 	}
1031 }
1032 
1033 static bool reg_is_world_roaming(struct wiphy *wiphy)
1034 {
1035 	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1036 	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1037 		return true;
1038 	if (last_request &&
1039 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1040 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1041 		return true;
1042 	return false;
1043 }
1044 
1045 /* Reap the advantages of previously found beacons */
1046 static void reg_process_beacons(struct wiphy *wiphy)
1047 {
1048 	/*
1049 	 * Means we are just firing up cfg80211, so no beacons would
1050 	 * have been processed yet.
1051 	 */
1052 	if (!last_request)
1053 		return;
1054 	if (!reg_is_world_roaming(wiphy))
1055 		return;
1056 	wiphy_update_beacon_reg(wiphy);
1057 }
1058 
1059 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1060 {
1061 	if (!chan)
1062 		return true;
1063 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1064 		return true;
1065 	/* This would happen when regulatory rules disallow HT40 completely */
1066 	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1067 		return true;
1068 	return false;
1069 }
1070 
1071 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1072 					 enum ieee80211_band band,
1073 					 unsigned int chan_idx)
1074 {
1075 	struct ieee80211_supported_band *sband;
1076 	struct ieee80211_channel *channel;
1077 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1078 	unsigned int i;
1079 
1080 	assert_cfg80211_lock();
1081 
1082 	sband = wiphy->bands[band];
1083 	BUG_ON(chan_idx >= sband->n_channels);
1084 	channel = &sband->channels[chan_idx];
1085 
1086 	if (is_ht40_not_allowed(channel)) {
1087 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1088 		return;
1089 	}
1090 
1091 	/*
1092 	 * We need to ensure the extension channels exist to
1093 	 * be able to use HT40- or HT40+, this finds them (or not)
1094 	 */
1095 	for (i = 0; i < sband->n_channels; i++) {
1096 		struct ieee80211_channel *c = &sband->channels[i];
1097 		if (c->center_freq == (channel->center_freq - 20))
1098 			channel_before = c;
1099 		if (c->center_freq == (channel->center_freq + 20))
1100 			channel_after = c;
1101 	}
1102 
1103 	/*
1104 	 * Please note that this assumes target bandwidth is 20 MHz,
1105 	 * if that ever changes we also need to change the below logic
1106 	 * to include that as well.
1107 	 */
1108 	if (is_ht40_not_allowed(channel_before))
1109 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1110 	else
1111 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1112 
1113 	if (is_ht40_not_allowed(channel_after))
1114 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1115 	else
1116 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1117 }
1118 
1119 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1120 				      enum ieee80211_band band)
1121 {
1122 	unsigned int i;
1123 	struct ieee80211_supported_band *sband;
1124 
1125 	BUG_ON(!wiphy->bands[band]);
1126 	sband = wiphy->bands[band];
1127 
1128 	for (i = 0; i < sband->n_channels; i++)
1129 		reg_process_ht_flags_channel(wiphy, band, i);
1130 }
1131 
1132 static void reg_process_ht_flags(struct wiphy *wiphy)
1133 {
1134 	enum ieee80211_band band;
1135 
1136 	if (!wiphy)
1137 		return;
1138 
1139 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1140 		if (wiphy->bands[band])
1141 			reg_process_ht_flags_band(wiphy, band);
1142 	}
1143 
1144 }
1145 
1146 static void wiphy_update_regulatory(struct wiphy *wiphy,
1147 				    enum nl80211_reg_initiator initiator)
1148 {
1149 	enum ieee80211_band band;
1150 
1151 	assert_reg_lock();
1152 
1153 	if (ignore_reg_update(wiphy, initiator))
1154 		return;
1155 
1156 	last_request->dfs_region = cfg80211_regdomain->dfs_region;
1157 
1158 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1159 		if (wiphy->bands[band])
1160 			handle_band(wiphy, band, initiator);
1161 	}
1162 
1163 	reg_process_beacons(wiphy);
1164 	reg_process_ht_flags(wiphy);
1165 	if (wiphy->reg_notifier)
1166 		wiphy->reg_notifier(wiphy, last_request);
1167 }
1168 
1169 void regulatory_update(struct wiphy *wiphy,
1170 		       enum nl80211_reg_initiator setby)
1171 {
1172 	mutex_lock(&reg_mutex);
1173 	wiphy_update_regulatory(wiphy, setby);
1174 	mutex_unlock(&reg_mutex);
1175 }
1176 
1177 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1178 {
1179 	struct cfg80211_registered_device *rdev;
1180 	struct wiphy *wiphy;
1181 
1182 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1183 		wiphy = &rdev->wiphy;
1184 		wiphy_update_regulatory(wiphy, initiator);
1185 		/*
1186 		 * Regulatory updates set by CORE are ignored for custom
1187 		 * regulatory cards. Let us notify the changes to the driver,
1188 		 * as some drivers used this to restore its orig_* reg domain.
1189 		 */
1190 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1191 		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1192 		    wiphy->reg_notifier)
1193 			wiphy->reg_notifier(wiphy, last_request);
1194 	}
1195 }
1196 
1197 static void handle_channel_custom(struct wiphy *wiphy,
1198 				  enum ieee80211_band band,
1199 				  unsigned int chan_idx,
1200 				  const struct ieee80211_regdomain *regd)
1201 {
1202 	int r;
1203 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1204 	u32 bw_flags = 0;
1205 	const struct ieee80211_reg_rule *reg_rule = NULL;
1206 	const struct ieee80211_power_rule *power_rule = NULL;
1207 	const struct ieee80211_freq_range *freq_range = NULL;
1208 	struct ieee80211_supported_band *sband;
1209 	struct ieee80211_channel *chan;
1210 
1211 	assert_reg_lock();
1212 
1213 	sband = wiphy->bands[band];
1214 	BUG_ON(chan_idx >= sband->n_channels);
1215 	chan = &sband->channels[chan_idx];
1216 
1217 	r = freq_reg_info_regd(wiphy,
1218 			       MHZ_TO_KHZ(chan->center_freq),
1219 			       desired_bw_khz,
1220 			       &reg_rule,
1221 			       regd);
1222 
1223 	if (r) {
1224 		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1225 			      "regd has no rule that fits a %d MHz "
1226 			      "wide channel\n",
1227 			      chan->center_freq,
1228 			      KHZ_TO_MHZ(desired_bw_khz));
1229 		chan->flags = IEEE80211_CHAN_DISABLED;
1230 		return;
1231 	}
1232 
1233 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1234 
1235 	power_rule = &reg_rule->power_rule;
1236 	freq_range = &reg_rule->freq_range;
1237 
1238 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1239 		bw_flags = IEEE80211_CHAN_NO_HT40;
1240 
1241 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1242 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1243 	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1244 }
1245 
1246 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1247 			       const struct ieee80211_regdomain *regd)
1248 {
1249 	unsigned int i;
1250 	struct ieee80211_supported_band *sband;
1251 
1252 	BUG_ON(!wiphy->bands[band]);
1253 	sband = wiphy->bands[band];
1254 
1255 	for (i = 0; i < sband->n_channels; i++)
1256 		handle_channel_custom(wiphy, band, i, regd);
1257 }
1258 
1259 /* Used by drivers prior to wiphy registration */
1260 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1261 				   const struct ieee80211_regdomain *regd)
1262 {
1263 	enum ieee80211_band band;
1264 	unsigned int bands_set = 0;
1265 
1266 	mutex_lock(&reg_mutex);
1267 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1268 		if (!wiphy->bands[band])
1269 			continue;
1270 		handle_band_custom(wiphy, band, regd);
1271 		bands_set++;
1272 	}
1273 	mutex_unlock(&reg_mutex);
1274 
1275 	/*
1276 	 * no point in calling this if it won't have any effect
1277 	 * on your device's supportd bands.
1278 	 */
1279 	WARN_ON(!bands_set);
1280 }
1281 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1282 
1283 /*
1284  * Return value which can be used by ignore_request() to indicate
1285  * it has been determined we should intersect two regulatory domains
1286  */
1287 #define REG_INTERSECT	1
1288 
1289 /* This has the logic which determines when a new request
1290  * should be ignored. */
1291 static int ignore_request(struct wiphy *wiphy,
1292 			  struct regulatory_request *pending_request)
1293 {
1294 	struct wiphy *last_wiphy = NULL;
1295 
1296 	assert_cfg80211_lock();
1297 
1298 	/* All initial requests are respected */
1299 	if (!last_request)
1300 		return 0;
1301 
1302 	switch (pending_request->initiator) {
1303 	case NL80211_REGDOM_SET_BY_CORE:
1304 		return 0;
1305 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1306 
1307 		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1308 
1309 		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1310 			return -EINVAL;
1311 		if (last_request->initiator ==
1312 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1313 			if (last_wiphy != wiphy) {
1314 				/*
1315 				 * Two cards with two APs claiming different
1316 				 * Country IE alpha2s. We could
1317 				 * intersect them, but that seems unlikely
1318 				 * to be correct. Reject second one for now.
1319 				 */
1320 				if (regdom_changes(pending_request->alpha2))
1321 					return -EOPNOTSUPP;
1322 				return -EALREADY;
1323 			}
1324 			/*
1325 			 * Two consecutive Country IE hints on the same wiphy.
1326 			 * This should be picked up early by the driver/stack
1327 			 */
1328 			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1329 				return 0;
1330 			return -EALREADY;
1331 		}
1332 		return 0;
1333 	case NL80211_REGDOM_SET_BY_DRIVER:
1334 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1335 			if (regdom_changes(pending_request->alpha2))
1336 				return 0;
1337 			return -EALREADY;
1338 		}
1339 
1340 		/*
1341 		 * This would happen if you unplug and plug your card
1342 		 * back in or if you add a new device for which the previously
1343 		 * loaded card also agrees on the regulatory domain.
1344 		 */
1345 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1346 		    !regdom_changes(pending_request->alpha2))
1347 			return -EALREADY;
1348 
1349 		return REG_INTERSECT;
1350 	case NL80211_REGDOM_SET_BY_USER:
1351 		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1352 			return REG_INTERSECT;
1353 		/*
1354 		 * If the user knows better the user should set the regdom
1355 		 * to their country before the IE is picked up
1356 		 */
1357 		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1358 			  last_request->intersect)
1359 			return -EOPNOTSUPP;
1360 		/*
1361 		 * Process user requests only after previous user/driver/core
1362 		 * requests have been processed
1363 		 */
1364 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1365 		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1366 		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1367 			if (regdom_changes(last_request->alpha2))
1368 				return -EAGAIN;
1369 		}
1370 
1371 		if (!regdom_changes(pending_request->alpha2))
1372 			return -EALREADY;
1373 
1374 		return 0;
1375 	}
1376 
1377 	return -EINVAL;
1378 }
1379 
1380 static void reg_set_request_processed(void)
1381 {
1382 	bool need_more_processing = false;
1383 
1384 	last_request->processed = true;
1385 
1386 	spin_lock(&reg_requests_lock);
1387 	if (!list_empty(&reg_requests_list))
1388 		need_more_processing = true;
1389 	spin_unlock(&reg_requests_lock);
1390 
1391 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1392 		cancel_delayed_work(&reg_timeout);
1393 
1394 	if (need_more_processing)
1395 		schedule_work(&reg_work);
1396 }
1397 
1398 /**
1399  * __regulatory_hint - hint to the wireless core a regulatory domain
1400  * @wiphy: if the hint comes from country information from an AP, this
1401  *	is required to be set to the wiphy that received the information
1402  * @pending_request: the regulatory request currently being processed
1403  *
1404  * The Wireless subsystem can use this function to hint to the wireless core
1405  * what it believes should be the current regulatory domain.
1406  *
1407  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1408  * already been set or other standard error codes.
1409  *
1410  * Caller must hold &cfg80211_mutex and &reg_mutex
1411  */
1412 static int __regulatory_hint(struct wiphy *wiphy,
1413 			     struct regulatory_request *pending_request)
1414 {
1415 	bool intersect = false;
1416 	int r = 0;
1417 
1418 	assert_cfg80211_lock();
1419 
1420 	r = ignore_request(wiphy, pending_request);
1421 
1422 	if (r == REG_INTERSECT) {
1423 		if (pending_request->initiator ==
1424 		    NL80211_REGDOM_SET_BY_DRIVER) {
1425 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1426 			if (r) {
1427 				kfree(pending_request);
1428 				return r;
1429 			}
1430 		}
1431 		intersect = true;
1432 	} else if (r) {
1433 		/*
1434 		 * If the regulatory domain being requested by the
1435 		 * driver has already been set just copy it to the
1436 		 * wiphy
1437 		 */
1438 		if (r == -EALREADY &&
1439 		    pending_request->initiator ==
1440 		    NL80211_REGDOM_SET_BY_DRIVER) {
1441 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1442 			if (r) {
1443 				kfree(pending_request);
1444 				return r;
1445 			}
1446 			r = -EALREADY;
1447 			goto new_request;
1448 		}
1449 		kfree(pending_request);
1450 		return r;
1451 	}
1452 
1453 new_request:
1454 	if (last_request != &core_request_world)
1455 		kfree(last_request);
1456 
1457 	last_request = pending_request;
1458 	last_request->intersect = intersect;
1459 
1460 	pending_request = NULL;
1461 
1462 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1463 		user_alpha2[0] = last_request->alpha2[0];
1464 		user_alpha2[1] = last_request->alpha2[1];
1465 	}
1466 
1467 	/* When r == REG_INTERSECT we do need to call CRDA */
1468 	if (r < 0) {
1469 		/*
1470 		 * Since CRDA will not be called in this case as we already
1471 		 * have applied the requested regulatory domain before we just
1472 		 * inform userspace we have processed the request
1473 		 */
1474 		if (r == -EALREADY) {
1475 			nl80211_send_reg_change_event(last_request);
1476 			reg_set_request_processed();
1477 		}
1478 		return r;
1479 	}
1480 
1481 	return call_crda(last_request->alpha2);
1482 }
1483 
1484 /* This processes *all* regulatory hints */
1485 static void reg_process_hint(struct regulatory_request *reg_request,
1486 			     enum nl80211_reg_initiator reg_initiator)
1487 {
1488 	int r = 0;
1489 	struct wiphy *wiphy = NULL;
1490 
1491 	BUG_ON(!reg_request->alpha2);
1492 
1493 	if (wiphy_idx_valid(reg_request->wiphy_idx))
1494 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1495 
1496 	if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1497 	    !wiphy) {
1498 		kfree(reg_request);
1499 		return;
1500 	}
1501 
1502 	r = __regulatory_hint(wiphy, reg_request);
1503 	/* This is required so that the orig_* parameters are saved */
1504 	if (r == -EALREADY && wiphy &&
1505 	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1506 		wiphy_update_regulatory(wiphy, reg_initiator);
1507 		return;
1508 	}
1509 
1510 	/*
1511 	 * We only time out user hints, given that they should be the only
1512 	 * source of bogus requests.
1513 	 */
1514 	if (r != -EALREADY &&
1515 	    reg_initiator == NL80211_REGDOM_SET_BY_USER)
1516 		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1517 }
1518 
1519 /*
1520  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1521  * Regulatory hints come on a first come first serve basis and we
1522  * must process each one atomically.
1523  */
1524 static void reg_process_pending_hints(void)
1525 {
1526 	struct regulatory_request *reg_request;
1527 
1528 	mutex_lock(&cfg80211_mutex);
1529 	mutex_lock(&reg_mutex);
1530 
1531 	/* When last_request->processed becomes true this will be rescheduled */
1532 	if (last_request && !last_request->processed) {
1533 		REG_DBG_PRINT("Pending regulatory request, waiting "
1534 			      "for it to be processed...\n");
1535 		goto out;
1536 	}
1537 
1538 	spin_lock(&reg_requests_lock);
1539 
1540 	if (list_empty(&reg_requests_list)) {
1541 		spin_unlock(&reg_requests_lock);
1542 		goto out;
1543 	}
1544 
1545 	reg_request = list_first_entry(&reg_requests_list,
1546 				       struct regulatory_request,
1547 				       list);
1548 	list_del_init(&reg_request->list);
1549 
1550 	spin_unlock(&reg_requests_lock);
1551 
1552 	reg_process_hint(reg_request, reg_request->initiator);
1553 
1554 out:
1555 	mutex_unlock(&reg_mutex);
1556 	mutex_unlock(&cfg80211_mutex);
1557 }
1558 
1559 /* Processes beacon hints -- this has nothing to do with country IEs */
1560 static void reg_process_pending_beacon_hints(void)
1561 {
1562 	struct cfg80211_registered_device *rdev;
1563 	struct reg_beacon *pending_beacon, *tmp;
1564 
1565 	/*
1566 	 * No need to hold the reg_mutex here as we just touch wiphys
1567 	 * and do not read or access regulatory variables.
1568 	 */
1569 	mutex_lock(&cfg80211_mutex);
1570 
1571 	/* This goes through the _pending_ beacon list */
1572 	spin_lock_bh(&reg_pending_beacons_lock);
1573 
1574 	if (list_empty(&reg_pending_beacons)) {
1575 		spin_unlock_bh(&reg_pending_beacons_lock);
1576 		goto out;
1577 	}
1578 
1579 	list_for_each_entry_safe(pending_beacon, tmp,
1580 				 &reg_pending_beacons, list) {
1581 
1582 		list_del_init(&pending_beacon->list);
1583 
1584 		/* Applies the beacon hint to current wiphys */
1585 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1586 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1587 
1588 		/* Remembers the beacon hint for new wiphys or reg changes */
1589 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1590 	}
1591 
1592 	spin_unlock_bh(&reg_pending_beacons_lock);
1593 out:
1594 	mutex_unlock(&cfg80211_mutex);
1595 }
1596 
1597 static void reg_todo(struct work_struct *work)
1598 {
1599 	reg_process_pending_hints();
1600 	reg_process_pending_beacon_hints();
1601 }
1602 
1603 static void queue_regulatory_request(struct regulatory_request *request)
1604 {
1605 	if (isalpha(request->alpha2[0]))
1606 		request->alpha2[0] = toupper(request->alpha2[0]);
1607 	if (isalpha(request->alpha2[1]))
1608 		request->alpha2[1] = toupper(request->alpha2[1]);
1609 
1610 	spin_lock(&reg_requests_lock);
1611 	list_add_tail(&request->list, &reg_requests_list);
1612 	spin_unlock(&reg_requests_lock);
1613 
1614 	schedule_work(&reg_work);
1615 }
1616 
1617 /*
1618  * Core regulatory hint -- happens during cfg80211_init()
1619  * and when we restore regulatory settings.
1620  */
1621 static int regulatory_hint_core(const char *alpha2)
1622 {
1623 	struct regulatory_request *request;
1624 
1625 	request = kzalloc(sizeof(struct regulatory_request),
1626 			  GFP_KERNEL);
1627 	if (!request)
1628 		return -ENOMEM;
1629 
1630 	request->alpha2[0] = alpha2[0];
1631 	request->alpha2[1] = alpha2[1];
1632 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1633 
1634 	queue_regulatory_request(request);
1635 
1636 	return 0;
1637 }
1638 
1639 /* User hints */
1640 int regulatory_hint_user(const char *alpha2)
1641 {
1642 	struct regulatory_request *request;
1643 
1644 	BUG_ON(!alpha2);
1645 
1646 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1647 	if (!request)
1648 		return -ENOMEM;
1649 
1650 	request->wiphy_idx = WIPHY_IDX_STALE;
1651 	request->alpha2[0] = alpha2[0];
1652 	request->alpha2[1] = alpha2[1];
1653 	request->initiator = NL80211_REGDOM_SET_BY_USER;
1654 
1655 	queue_regulatory_request(request);
1656 
1657 	return 0;
1658 }
1659 
1660 /* Driver hints */
1661 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1662 {
1663 	struct regulatory_request *request;
1664 
1665 	BUG_ON(!alpha2);
1666 	BUG_ON(!wiphy);
1667 
1668 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1669 	if (!request)
1670 		return -ENOMEM;
1671 
1672 	request->wiphy_idx = get_wiphy_idx(wiphy);
1673 
1674 	/* Must have registered wiphy first */
1675 	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1676 
1677 	request->alpha2[0] = alpha2[0];
1678 	request->alpha2[1] = alpha2[1];
1679 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1680 
1681 	queue_regulatory_request(request);
1682 
1683 	return 0;
1684 }
1685 EXPORT_SYMBOL(regulatory_hint);
1686 
1687 /*
1688  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1689  * therefore cannot iterate over the rdev list here.
1690  */
1691 void regulatory_hint_11d(struct wiphy *wiphy,
1692 			 enum ieee80211_band band,
1693 			 u8 *country_ie,
1694 			 u8 country_ie_len)
1695 {
1696 	char alpha2[2];
1697 	enum environment_cap env = ENVIRON_ANY;
1698 	struct regulatory_request *request;
1699 
1700 	mutex_lock(&reg_mutex);
1701 
1702 	if (unlikely(!last_request))
1703 		goto out;
1704 
1705 	/* IE len must be evenly divisible by 2 */
1706 	if (country_ie_len & 0x01)
1707 		goto out;
1708 
1709 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1710 		goto out;
1711 
1712 	alpha2[0] = country_ie[0];
1713 	alpha2[1] = country_ie[1];
1714 
1715 	if (country_ie[2] == 'I')
1716 		env = ENVIRON_INDOOR;
1717 	else if (country_ie[2] == 'O')
1718 		env = ENVIRON_OUTDOOR;
1719 
1720 	/*
1721 	 * We will run this only upon a successful connection on cfg80211.
1722 	 * We leave conflict resolution to the workqueue, where can hold
1723 	 * cfg80211_mutex.
1724 	 */
1725 	if (likely(last_request->initiator ==
1726 	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1727 	    wiphy_idx_valid(last_request->wiphy_idx)))
1728 		goto out;
1729 
1730 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1731 	if (!request)
1732 		goto out;
1733 
1734 	request->wiphy_idx = get_wiphy_idx(wiphy);
1735 	request->alpha2[0] = alpha2[0];
1736 	request->alpha2[1] = alpha2[1];
1737 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1738 	request->country_ie_env = env;
1739 
1740 	mutex_unlock(&reg_mutex);
1741 
1742 	queue_regulatory_request(request);
1743 
1744 	return;
1745 
1746 out:
1747 	mutex_unlock(&reg_mutex);
1748 }
1749 
1750 static void restore_alpha2(char *alpha2, bool reset_user)
1751 {
1752 	/* indicates there is no alpha2 to consider for restoration */
1753 	alpha2[0] = '9';
1754 	alpha2[1] = '7';
1755 
1756 	/* The user setting has precedence over the module parameter */
1757 	if (is_user_regdom_saved()) {
1758 		/* Unless we're asked to ignore it and reset it */
1759 		if (reset_user) {
1760 			REG_DBG_PRINT("Restoring regulatory settings "
1761 			       "including user preference\n");
1762 			user_alpha2[0] = '9';
1763 			user_alpha2[1] = '7';
1764 
1765 			/*
1766 			 * If we're ignoring user settings, we still need to
1767 			 * check the module parameter to ensure we put things
1768 			 * back as they were for a full restore.
1769 			 */
1770 			if (!is_world_regdom(ieee80211_regdom)) {
1771 				REG_DBG_PRINT("Keeping preference on "
1772 				       "module parameter ieee80211_regdom: %c%c\n",
1773 				       ieee80211_regdom[0],
1774 				       ieee80211_regdom[1]);
1775 				alpha2[0] = ieee80211_regdom[0];
1776 				alpha2[1] = ieee80211_regdom[1];
1777 			}
1778 		} else {
1779 			REG_DBG_PRINT("Restoring regulatory settings "
1780 			       "while preserving user preference for: %c%c\n",
1781 			       user_alpha2[0],
1782 			       user_alpha2[1]);
1783 			alpha2[0] = user_alpha2[0];
1784 			alpha2[1] = user_alpha2[1];
1785 		}
1786 	} else if (!is_world_regdom(ieee80211_regdom)) {
1787 		REG_DBG_PRINT("Keeping preference on "
1788 		       "module parameter ieee80211_regdom: %c%c\n",
1789 		       ieee80211_regdom[0],
1790 		       ieee80211_regdom[1]);
1791 		alpha2[0] = ieee80211_regdom[0];
1792 		alpha2[1] = ieee80211_regdom[1];
1793 	} else
1794 		REG_DBG_PRINT("Restoring regulatory settings\n");
1795 }
1796 
1797 static void restore_custom_reg_settings(struct wiphy *wiphy)
1798 {
1799 	struct ieee80211_supported_band *sband;
1800 	enum ieee80211_band band;
1801 	struct ieee80211_channel *chan;
1802 	int i;
1803 
1804 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1805 		sband = wiphy->bands[band];
1806 		if (!sband)
1807 			continue;
1808 		for (i = 0; i < sband->n_channels; i++) {
1809 			chan = &sband->channels[i];
1810 			chan->flags = chan->orig_flags;
1811 			chan->max_antenna_gain = chan->orig_mag;
1812 			chan->max_power = chan->orig_mpwr;
1813 		}
1814 	}
1815 }
1816 
1817 /*
1818  * Restoring regulatory settings involves ingoring any
1819  * possibly stale country IE information and user regulatory
1820  * settings if so desired, this includes any beacon hints
1821  * learned as we could have traveled outside to another country
1822  * after disconnection. To restore regulatory settings we do
1823  * exactly what we did at bootup:
1824  *
1825  *   - send a core regulatory hint
1826  *   - send a user regulatory hint if applicable
1827  *
1828  * Device drivers that send a regulatory hint for a specific country
1829  * keep their own regulatory domain on wiphy->regd so that does does
1830  * not need to be remembered.
1831  */
1832 static void restore_regulatory_settings(bool reset_user)
1833 {
1834 	char alpha2[2];
1835 	char world_alpha2[2];
1836 	struct reg_beacon *reg_beacon, *btmp;
1837 	struct regulatory_request *reg_request, *tmp;
1838 	LIST_HEAD(tmp_reg_req_list);
1839 	struct cfg80211_registered_device *rdev;
1840 
1841 	mutex_lock(&cfg80211_mutex);
1842 	mutex_lock(&reg_mutex);
1843 
1844 	reset_regdomains(true);
1845 	restore_alpha2(alpha2, reset_user);
1846 
1847 	/*
1848 	 * If there's any pending requests we simply
1849 	 * stash them to a temporary pending queue and
1850 	 * add then after we've restored regulatory
1851 	 * settings.
1852 	 */
1853 	spin_lock(&reg_requests_lock);
1854 	if (!list_empty(&reg_requests_list)) {
1855 		list_for_each_entry_safe(reg_request, tmp,
1856 					 &reg_requests_list, list) {
1857 			if (reg_request->initiator !=
1858 			    NL80211_REGDOM_SET_BY_USER)
1859 				continue;
1860 			list_del(&reg_request->list);
1861 			list_add_tail(&reg_request->list, &tmp_reg_req_list);
1862 		}
1863 	}
1864 	spin_unlock(&reg_requests_lock);
1865 
1866 	/* Clear beacon hints */
1867 	spin_lock_bh(&reg_pending_beacons_lock);
1868 	if (!list_empty(&reg_pending_beacons)) {
1869 		list_for_each_entry_safe(reg_beacon, btmp,
1870 					 &reg_pending_beacons, list) {
1871 			list_del(&reg_beacon->list);
1872 			kfree(reg_beacon);
1873 		}
1874 	}
1875 	spin_unlock_bh(&reg_pending_beacons_lock);
1876 
1877 	if (!list_empty(&reg_beacon_list)) {
1878 		list_for_each_entry_safe(reg_beacon, btmp,
1879 					 &reg_beacon_list, list) {
1880 			list_del(&reg_beacon->list);
1881 			kfree(reg_beacon);
1882 		}
1883 	}
1884 
1885 	/* First restore to the basic regulatory settings */
1886 	cfg80211_regdomain = cfg80211_world_regdom;
1887 	world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1888 	world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1889 
1890 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1891 		if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1892 			restore_custom_reg_settings(&rdev->wiphy);
1893 	}
1894 
1895 	mutex_unlock(&reg_mutex);
1896 	mutex_unlock(&cfg80211_mutex);
1897 
1898 	regulatory_hint_core(world_alpha2);
1899 
1900 	/*
1901 	 * This restores the ieee80211_regdom module parameter
1902 	 * preference or the last user requested regulatory
1903 	 * settings, user regulatory settings takes precedence.
1904 	 */
1905 	if (is_an_alpha2(alpha2))
1906 		regulatory_hint_user(user_alpha2);
1907 
1908 	if (list_empty(&tmp_reg_req_list))
1909 		return;
1910 
1911 	mutex_lock(&cfg80211_mutex);
1912 	mutex_lock(&reg_mutex);
1913 
1914 	spin_lock(&reg_requests_lock);
1915 	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1916 		REG_DBG_PRINT("Adding request for country %c%c back "
1917 			      "into the queue\n",
1918 			      reg_request->alpha2[0],
1919 			      reg_request->alpha2[1]);
1920 		list_del(&reg_request->list);
1921 		list_add_tail(&reg_request->list, &reg_requests_list);
1922 	}
1923 	spin_unlock(&reg_requests_lock);
1924 
1925 	mutex_unlock(&reg_mutex);
1926 	mutex_unlock(&cfg80211_mutex);
1927 
1928 	REG_DBG_PRINT("Kicking the queue\n");
1929 
1930 	schedule_work(&reg_work);
1931 }
1932 
1933 void regulatory_hint_disconnect(void)
1934 {
1935 	REG_DBG_PRINT("All devices are disconnected, going to "
1936 		      "restore regulatory settings\n");
1937 	restore_regulatory_settings(false);
1938 }
1939 
1940 static bool freq_is_chan_12_13_14(u16 freq)
1941 {
1942 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1943 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1944 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1945 		return true;
1946 	return false;
1947 }
1948 
1949 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1950 				 struct ieee80211_channel *beacon_chan,
1951 				 gfp_t gfp)
1952 {
1953 	struct reg_beacon *reg_beacon;
1954 
1955 	if (likely((beacon_chan->beacon_found ||
1956 	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1957 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1958 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1959 		return 0;
1960 
1961 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1962 	if (!reg_beacon)
1963 		return -ENOMEM;
1964 
1965 	REG_DBG_PRINT("Found new beacon on "
1966 		      "frequency: %d MHz (Ch %d) on %s\n",
1967 		      beacon_chan->center_freq,
1968 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
1969 		      wiphy_name(wiphy));
1970 
1971 	memcpy(&reg_beacon->chan, beacon_chan,
1972 		sizeof(struct ieee80211_channel));
1973 
1974 
1975 	/*
1976 	 * Since we can be called from BH or and non-BH context
1977 	 * we must use spin_lock_bh()
1978 	 */
1979 	spin_lock_bh(&reg_pending_beacons_lock);
1980 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1981 	spin_unlock_bh(&reg_pending_beacons_lock);
1982 
1983 	schedule_work(&reg_work);
1984 
1985 	return 0;
1986 }
1987 
1988 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1989 {
1990 	unsigned int i;
1991 	const struct ieee80211_reg_rule *reg_rule = NULL;
1992 	const struct ieee80211_freq_range *freq_range = NULL;
1993 	const struct ieee80211_power_rule *power_rule = NULL;
1994 
1995 	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1996 
1997 	for (i = 0; i < rd->n_reg_rules; i++) {
1998 		reg_rule = &rd->reg_rules[i];
1999 		freq_range = &reg_rule->freq_range;
2000 		power_rule = &reg_rule->power_rule;
2001 
2002 		/*
2003 		 * There may not be documentation for max antenna gain
2004 		 * in certain regions
2005 		 */
2006 		if (power_rule->max_antenna_gain)
2007 			pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2008 				freq_range->start_freq_khz,
2009 				freq_range->end_freq_khz,
2010 				freq_range->max_bandwidth_khz,
2011 				power_rule->max_antenna_gain,
2012 				power_rule->max_eirp);
2013 		else
2014 			pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2015 				freq_range->start_freq_khz,
2016 				freq_range->end_freq_khz,
2017 				freq_range->max_bandwidth_khz,
2018 				power_rule->max_eirp);
2019 	}
2020 }
2021 
2022 bool reg_supported_dfs_region(u8 dfs_region)
2023 {
2024 	switch (dfs_region) {
2025 	case NL80211_DFS_UNSET:
2026 	case NL80211_DFS_FCC:
2027 	case NL80211_DFS_ETSI:
2028 	case NL80211_DFS_JP:
2029 		return true;
2030 	default:
2031 		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2032 			      dfs_region);
2033 		return false;
2034 	}
2035 }
2036 
2037 static void print_dfs_region(u8 dfs_region)
2038 {
2039 	if (!dfs_region)
2040 		return;
2041 
2042 	switch (dfs_region) {
2043 	case NL80211_DFS_FCC:
2044 		pr_info(" DFS Master region FCC");
2045 		break;
2046 	case NL80211_DFS_ETSI:
2047 		pr_info(" DFS Master region ETSI");
2048 		break;
2049 	case NL80211_DFS_JP:
2050 		pr_info(" DFS Master region JP");
2051 		break;
2052 	default:
2053 		pr_info(" DFS Master region Uknown");
2054 		break;
2055 	}
2056 }
2057 
2058 static void print_regdomain(const struct ieee80211_regdomain *rd)
2059 {
2060 
2061 	if (is_intersected_alpha2(rd->alpha2)) {
2062 
2063 		if (last_request->initiator ==
2064 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2065 			struct cfg80211_registered_device *rdev;
2066 			rdev = cfg80211_rdev_by_wiphy_idx(
2067 				last_request->wiphy_idx);
2068 			if (rdev) {
2069 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2070 					rdev->country_ie_alpha2[0],
2071 					rdev->country_ie_alpha2[1]);
2072 			} else
2073 				pr_info("Current regulatory domain intersected:\n");
2074 		} else
2075 			pr_info("Current regulatory domain intersected:\n");
2076 	} else if (is_world_regdom(rd->alpha2))
2077 		pr_info("World regulatory domain updated:\n");
2078 	else {
2079 		if (is_unknown_alpha2(rd->alpha2))
2080 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2081 		else
2082 			pr_info("Regulatory domain changed to country: %c%c\n",
2083 				rd->alpha2[0], rd->alpha2[1]);
2084 	}
2085 	print_dfs_region(rd->dfs_region);
2086 	print_rd_rules(rd);
2087 }
2088 
2089 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2090 {
2091 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2092 	print_rd_rules(rd);
2093 }
2094 
2095 /* Takes ownership of rd only if it doesn't fail */
2096 static int __set_regdom(const struct ieee80211_regdomain *rd)
2097 {
2098 	const struct ieee80211_regdomain *intersected_rd = NULL;
2099 	struct cfg80211_registered_device *rdev = NULL;
2100 	struct wiphy *request_wiphy;
2101 	/* Some basic sanity checks first */
2102 
2103 	if (is_world_regdom(rd->alpha2)) {
2104 		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2105 			return -EINVAL;
2106 		update_world_regdomain(rd);
2107 		return 0;
2108 	}
2109 
2110 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2111 			!is_unknown_alpha2(rd->alpha2))
2112 		return -EINVAL;
2113 
2114 	if (!last_request)
2115 		return -EINVAL;
2116 
2117 	/*
2118 	 * Lets only bother proceeding on the same alpha2 if the current
2119 	 * rd is non static (it means CRDA was present and was used last)
2120 	 * and the pending request came in from a country IE
2121 	 */
2122 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2123 		/*
2124 		 * If someone else asked us to change the rd lets only bother
2125 		 * checking if the alpha2 changes if CRDA was already called
2126 		 */
2127 		if (!regdom_changes(rd->alpha2))
2128 			return -EINVAL;
2129 	}
2130 
2131 	/*
2132 	 * Now lets set the regulatory domain, update all driver channels
2133 	 * and finally inform them of what we have done, in case they want
2134 	 * to review or adjust their own settings based on their own
2135 	 * internal EEPROM data
2136 	 */
2137 
2138 	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2139 		return -EINVAL;
2140 
2141 	if (!is_valid_rd(rd)) {
2142 		pr_err("Invalid regulatory domain detected:\n");
2143 		print_regdomain_info(rd);
2144 		return -EINVAL;
2145 	}
2146 
2147 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2148 	if (!request_wiphy &&
2149 	    (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2150 	     last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2151 		schedule_delayed_work(&reg_timeout, 0);
2152 		return -ENODEV;
2153 	}
2154 
2155 	if (!last_request->intersect) {
2156 		int r;
2157 
2158 		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2159 			reset_regdomains(false);
2160 			cfg80211_regdomain = rd;
2161 			return 0;
2162 		}
2163 
2164 		/*
2165 		 * For a driver hint, lets copy the regulatory domain the
2166 		 * driver wanted to the wiphy to deal with conflicts
2167 		 */
2168 
2169 		/*
2170 		 * Userspace could have sent two replies with only
2171 		 * one kernel request.
2172 		 */
2173 		if (request_wiphy->regd)
2174 			return -EALREADY;
2175 
2176 		r = reg_copy_regd(&request_wiphy->regd, rd);
2177 		if (r)
2178 			return r;
2179 
2180 		reset_regdomains(false);
2181 		cfg80211_regdomain = rd;
2182 		return 0;
2183 	}
2184 
2185 	/* Intersection requires a bit more work */
2186 
2187 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2188 
2189 		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2190 		if (!intersected_rd)
2191 			return -EINVAL;
2192 
2193 		/*
2194 		 * We can trash what CRDA provided now.
2195 		 * However if a driver requested this specific regulatory
2196 		 * domain we keep it for its private use
2197 		 */
2198 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2199 			request_wiphy->regd = rd;
2200 		else
2201 			kfree(rd);
2202 
2203 		rd = NULL;
2204 
2205 		reset_regdomains(false);
2206 		cfg80211_regdomain = intersected_rd;
2207 
2208 		return 0;
2209 	}
2210 
2211 	if (!intersected_rd)
2212 		return -EINVAL;
2213 
2214 	rdev = wiphy_to_dev(request_wiphy);
2215 
2216 	rdev->country_ie_alpha2[0] = rd->alpha2[0];
2217 	rdev->country_ie_alpha2[1] = rd->alpha2[1];
2218 	rdev->env = last_request->country_ie_env;
2219 
2220 	BUG_ON(intersected_rd == rd);
2221 
2222 	kfree(rd);
2223 	rd = NULL;
2224 
2225 	reset_regdomains(false);
2226 	cfg80211_regdomain = intersected_rd;
2227 
2228 	return 0;
2229 }
2230 
2231 
2232 /*
2233  * Use this call to set the current regulatory domain. Conflicts with
2234  * multiple drivers can be ironed out later. Caller must've already
2235  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2236  */
2237 int set_regdom(const struct ieee80211_regdomain *rd)
2238 {
2239 	int r;
2240 
2241 	assert_cfg80211_lock();
2242 
2243 	mutex_lock(&reg_mutex);
2244 
2245 	/* Note that this doesn't update the wiphys, this is done below */
2246 	r = __set_regdom(rd);
2247 	if (r) {
2248 		kfree(rd);
2249 		mutex_unlock(&reg_mutex);
2250 		return r;
2251 	}
2252 
2253 	/* This would make this whole thing pointless */
2254 	if (!last_request->intersect)
2255 		BUG_ON(rd != cfg80211_regdomain);
2256 
2257 	/* update all wiphys now with the new established regulatory domain */
2258 	update_all_wiphy_regulatory(last_request->initiator);
2259 
2260 	print_regdomain(cfg80211_regdomain);
2261 
2262 	nl80211_send_reg_change_event(last_request);
2263 
2264 	reg_set_request_processed();
2265 
2266 	mutex_unlock(&reg_mutex);
2267 
2268 	return r;
2269 }
2270 
2271 #ifdef CONFIG_HOTPLUG
2272 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2273 {
2274 	if (last_request && !last_request->processed) {
2275 		if (add_uevent_var(env, "COUNTRY=%c%c",
2276 				   last_request->alpha2[0],
2277 				   last_request->alpha2[1]))
2278 			return -ENOMEM;
2279 	}
2280 
2281 	return 0;
2282 }
2283 #else
2284 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2285 {
2286 	return -ENODEV;
2287 }
2288 #endif /* CONFIG_HOTPLUG */
2289 
2290 /* Caller must hold cfg80211_mutex */
2291 void reg_device_remove(struct wiphy *wiphy)
2292 {
2293 	struct wiphy *request_wiphy = NULL;
2294 
2295 	assert_cfg80211_lock();
2296 
2297 	mutex_lock(&reg_mutex);
2298 
2299 	kfree(wiphy->regd);
2300 
2301 	if (last_request)
2302 		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2303 
2304 	if (!request_wiphy || request_wiphy != wiphy)
2305 		goto out;
2306 
2307 	last_request->wiphy_idx = WIPHY_IDX_STALE;
2308 	last_request->country_ie_env = ENVIRON_ANY;
2309 out:
2310 	mutex_unlock(&reg_mutex);
2311 }
2312 
2313 static void reg_timeout_work(struct work_struct *work)
2314 {
2315 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2316 		      "restoring regulatory settings\n");
2317 	restore_regulatory_settings(true);
2318 }
2319 
2320 int __init regulatory_init(void)
2321 {
2322 	int err = 0;
2323 
2324 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2325 	if (IS_ERR(reg_pdev))
2326 		return PTR_ERR(reg_pdev);
2327 
2328 	reg_pdev->dev.type = &reg_device_type;
2329 
2330 	spin_lock_init(&reg_requests_lock);
2331 	spin_lock_init(&reg_pending_beacons_lock);
2332 
2333 	reg_regdb_size_check();
2334 
2335 	cfg80211_regdomain = cfg80211_world_regdom;
2336 
2337 	user_alpha2[0] = '9';
2338 	user_alpha2[1] = '7';
2339 
2340 	/* We always try to get an update for the static regdomain */
2341 	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2342 	if (err) {
2343 		if (err == -ENOMEM)
2344 			return err;
2345 		/*
2346 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2347 		 * memory which is handled and propagated appropriately above
2348 		 * but it can also fail during a netlink_broadcast() or during
2349 		 * early boot for call_usermodehelper(). For now treat these
2350 		 * errors as non-fatal.
2351 		 */
2352 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2353 #ifdef CONFIG_CFG80211_REG_DEBUG
2354 		/* We want to find out exactly why when debugging */
2355 		WARN_ON(err);
2356 #endif
2357 	}
2358 
2359 	/*
2360 	 * Finally, if the user set the module parameter treat it
2361 	 * as a user hint.
2362 	 */
2363 	if (!is_world_regdom(ieee80211_regdom))
2364 		regulatory_hint_user(ieee80211_regdom);
2365 
2366 	return 0;
2367 }
2368 
2369 void /* __init_or_exit */ regulatory_exit(void)
2370 {
2371 	struct regulatory_request *reg_request, *tmp;
2372 	struct reg_beacon *reg_beacon, *btmp;
2373 
2374 	cancel_work_sync(&reg_work);
2375 	cancel_delayed_work_sync(&reg_timeout);
2376 
2377 	mutex_lock(&cfg80211_mutex);
2378 	mutex_lock(&reg_mutex);
2379 
2380 	reset_regdomains(true);
2381 
2382 	dev_set_uevent_suppress(&reg_pdev->dev, true);
2383 
2384 	platform_device_unregister(reg_pdev);
2385 
2386 	spin_lock_bh(&reg_pending_beacons_lock);
2387 	if (!list_empty(&reg_pending_beacons)) {
2388 		list_for_each_entry_safe(reg_beacon, btmp,
2389 					 &reg_pending_beacons, list) {
2390 			list_del(&reg_beacon->list);
2391 			kfree(reg_beacon);
2392 		}
2393 	}
2394 	spin_unlock_bh(&reg_pending_beacons_lock);
2395 
2396 	if (!list_empty(&reg_beacon_list)) {
2397 		list_for_each_entry_safe(reg_beacon, btmp,
2398 					 &reg_beacon_list, list) {
2399 			list_del(&reg_beacon->list);
2400 			kfree(reg_beacon);
2401 		}
2402 	}
2403 
2404 	spin_lock(&reg_requests_lock);
2405 	if (!list_empty(&reg_requests_list)) {
2406 		list_for_each_entry_safe(reg_request, tmp,
2407 					 &reg_requests_list, list) {
2408 			list_del(&reg_request->list);
2409 			kfree(reg_request);
2410 		}
2411 	}
2412 	spin_unlock(&reg_requests_lock);
2413 
2414 	mutex_unlock(&reg_mutex);
2415 	mutex_unlock(&cfg80211_mutex);
2416 }
2417