1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2023 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static DEFINE_SPINLOCK(reg_indoor_lock); 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 static void reg_process_hint(struct regulatory_request *reg_request); 137 138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 139 { 140 return rcu_dereference_rtnl(cfg80211_regdomain); 141 } 142 143 /* 144 * Returns the regulatory domain associated with the wiphy. 145 * 146 * Requires any of RTNL, wiphy mutex or RCU protection. 147 */ 148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 149 { 150 return rcu_dereference_check(wiphy->regd, 151 lockdep_is_held(&wiphy->mtx) || 152 lockdep_rtnl_is_held()); 153 } 154 EXPORT_SYMBOL(get_wiphy_regdom); 155 156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 157 { 158 switch (dfs_region) { 159 case NL80211_DFS_UNSET: 160 return "unset"; 161 case NL80211_DFS_FCC: 162 return "FCC"; 163 case NL80211_DFS_ETSI: 164 return "ETSI"; 165 case NL80211_DFS_JP: 166 return "JP"; 167 } 168 return "Unknown"; 169 } 170 171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 172 { 173 const struct ieee80211_regdomain *regd = NULL; 174 const struct ieee80211_regdomain *wiphy_regd = NULL; 175 enum nl80211_dfs_regions dfs_region; 176 177 rcu_read_lock(); 178 regd = get_cfg80211_regdom(); 179 dfs_region = regd->dfs_region; 180 181 if (!wiphy) 182 goto out; 183 184 wiphy_regd = get_wiphy_regdom(wiphy); 185 if (!wiphy_regd) 186 goto out; 187 188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 189 dfs_region = wiphy_regd->dfs_region; 190 goto out; 191 } 192 193 if (wiphy_regd->dfs_region == regd->dfs_region) 194 goto out; 195 196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 197 dev_name(&wiphy->dev), 198 reg_dfs_region_str(wiphy_regd->dfs_region), 199 reg_dfs_region_str(regd->dfs_region)); 200 201 out: 202 rcu_read_unlock(); 203 204 return dfs_region; 205 } 206 207 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 208 { 209 if (!r) 210 return; 211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 212 } 213 214 static struct regulatory_request *get_last_request(void) 215 { 216 return rcu_dereference_rtnl(last_request); 217 } 218 219 /* Used to queue up regulatory hints */ 220 static LIST_HEAD(reg_requests_list); 221 static DEFINE_SPINLOCK(reg_requests_lock); 222 223 /* Used to queue up beacon hints for review */ 224 static LIST_HEAD(reg_pending_beacons); 225 static DEFINE_SPINLOCK(reg_pending_beacons_lock); 226 227 /* Used to keep track of processed beacon hints */ 228 static LIST_HEAD(reg_beacon_list); 229 230 struct reg_beacon { 231 struct list_head list; 232 struct ieee80211_channel chan; 233 }; 234 235 static void reg_check_chans_work(struct work_struct *work); 236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 237 238 static void reg_todo(struct work_struct *work); 239 static DECLARE_WORK(reg_work, reg_todo); 240 241 /* We keep a static world regulatory domain in case of the absence of CRDA */ 242 static const struct ieee80211_regdomain world_regdom = { 243 .n_reg_rules = 8, 244 .alpha2 = "00", 245 .reg_rules = { 246 /* IEEE 802.11b/g, channels 1..11 */ 247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 248 /* IEEE 802.11b/g, channels 12..13. */ 249 REG_RULE(2467-10, 2472+10, 20, 6, 20, 250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 251 /* IEEE 802.11 channel 14 - Only JP enables 252 * this and for 802.11b only */ 253 REG_RULE(2484-10, 2484+10, 20, 6, 20, 254 NL80211_RRF_NO_IR | 255 NL80211_RRF_NO_OFDM), 256 /* IEEE 802.11a, channel 36..48 */ 257 REG_RULE(5180-10, 5240+10, 80, 6, 20, 258 NL80211_RRF_NO_IR | 259 NL80211_RRF_AUTO_BW), 260 261 /* IEEE 802.11a, channel 52..64 - DFS required */ 262 REG_RULE(5260-10, 5320+10, 80, 6, 20, 263 NL80211_RRF_NO_IR | 264 NL80211_RRF_AUTO_BW | 265 NL80211_RRF_DFS), 266 267 /* IEEE 802.11a, channel 100..144 - DFS required */ 268 REG_RULE(5500-10, 5720+10, 160, 6, 20, 269 NL80211_RRF_NO_IR | 270 NL80211_RRF_DFS), 271 272 /* IEEE 802.11a, channel 149..165 */ 273 REG_RULE(5745-10, 5825+10, 80, 6, 20, 274 NL80211_RRF_NO_IR), 275 276 /* IEEE 802.11ad (60GHz), channels 1..3 */ 277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 278 } 279 }; 280 281 /* protected by RTNL */ 282 static const struct ieee80211_regdomain *cfg80211_world_regdom = 283 &world_regdom; 284 285 static char *ieee80211_regdom = "00"; 286 static char user_alpha2[2]; 287 static const struct ieee80211_regdomain *cfg80211_user_regdom; 288 289 module_param(ieee80211_regdom, charp, 0444); 290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 291 292 static void reg_free_request(struct regulatory_request *request) 293 { 294 if (request == &core_request_world) 295 return; 296 297 if (request != get_last_request()) 298 kfree(request); 299 } 300 301 static void reg_free_last_request(void) 302 { 303 struct regulatory_request *lr = get_last_request(); 304 305 if (lr != &core_request_world && lr) 306 kfree_rcu(lr, rcu_head); 307 } 308 309 static void reg_update_last_request(struct regulatory_request *request) 310 { 311 struct regulatory_request *lr; 312 313 lr = get_last_request(); 314 if (lr == request) 315 return; 316 317 reg_free_last_request(); 318 rcu_assign_pointer(last_request, request); 319 } 320 321 static void reset_regdomains(bool full_reset, 322 const struct ieee80211_regdomain *new_regdom) 323 { 324 const struct ieee80211_regdomain *r; 325 326 ASSERT_RTNL(); 327 328 r = get_cfg80211_regdom(); 329 330 /* avoid freeing static information or freeing something twice */ 331 if (r == cfg80211_world_regdom) 332 r = NULL; 333 if (cfg80211_world_regdom == &world_regdom) 334 cfg80211_world_regdom = NULL; 335 if (r == &world_regdom) 336 r = NULL; 337 338 rcu_free_regdom(r); 339 rcu_free_regdom(cfg80211_world_regdom); 340 341 cfg80211_world_regdom = &world_regdom; 342 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 343 344 if (!full_reset) 345 return; 346 347 reg_update_last_request(&core_request_world); 348 } 349 350 /* 351 * Dynamic world regulatory domain requested by the wireless 352 * core upon initialization 353 */ 354 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 355 { 356 struct regulatory_request *lr; 357 358 lr = get_last_request(); 359 360 WARN_ON(!lr); 361 362 reset_regdomains(false, rd); 363 364 cfg80211_world_regdom = rd; 365 } 366 367 bool is_world_regdom(const char *alpha2) 368 { 369 if (!alpha2) 370 return false; 371 return alpha2[0] == '0' && alpha2[1] == '0'; 372 } 373 374 static bool is_alpha2_set(const char *alpha2) 375 { 376 if (!alpha2) 377 return false; 378 return alpha2[0] && alpha2[1]; 379 } 380 381 static bool is_unknown_alpha2(const char *alpha2) 382 { 383 if (!alpha2) 384 return false; 385 /* 386 * Special case where regulatory domain was built by driver 387 * but a specific alpha2 cannot be determined 388 */ 389 return alpha2[0] == '9' && alpha2[1] == '9'; 390 } 391 392 static bool is_intersected_alpha2(const char *alpha2) 393 { 394 if (!alpha2) 395 return false; 396 /* 397 * Special case where regulatory domain is the 398 * result of an intersection between two regulatory domain 399 * structures 400 */ 401 return alpha2[0] == '9' && alpha2[1] == '8'; 402 } 403 404 static bool is_an_alpha2(const char *alpha2) 405 { 406 if (!alpha2) 407 return false; 408 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 409 } 410 411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 412 { 413 if (!alpha2_x || !alpha2_y) 414 return false; 415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 416 } 417 418 static bool regdom_changes(const char *alpha2) 419 { 420 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 421 422 if (!r) 423 return true; 424 return !alpha2_equal(r->alpha2, alpha2); 425 } 426 427 /* 428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 430 * has ever been issued. 431 */ 432 static bool is_user_regdom_saved(void) 433 { 434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 435 return false; 436 437 /* This would indicate a mistake on the design */ 438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 439 "Unexpected user alpha2: %c%c\n", 440 user_alpha2[0], user_alpha2[1])) 441 return false; 442 443 return true; 444 } 445 446 static const struct ieee80211_regdomain * 447 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 448 { 449 struct ieee80211_regdomain *regd; 450 unsigned int i; 451 452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 453 GFP_KERNEL); 454 if (!regd) 455 return ERR_PTR(-ENOMEM); 456 457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 458 459 for (i = 0; i < src_regd->n_reg_rules; i++) 460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 461 sizeof(struct ieee80211_reg_rule)); 462 463 return regd; 464 } 465 466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 467 { 468 ASSERT_RTNL(); 469 470 if (!IS_ERR(cfg80211_user_regdom)) 471 kfree(cfg80211_user_regdom); 472 cfg80211_user_regdom = reg_copy_regd(rd); 473 } 474 475 struct reg_regdb_apply_request { 476 struct list_head list; 477 const struct ieee80211_regdomain *regdom; 478 }; 479 480 static LIST_HEAD(reg_regdb_apply_list); 481 static DEFINE_MUTEX(reg_regdb_apply_mutex); 482 483 static void reg_regdb_apply(struct work_struct *work) 484 { 485 struct reg_regdb_apply_request *request; 486 487 rtnl_lock(); 488 489 mutex_lock(®_regdb_apply_mutex); 490 while (!list_empty(®_regdb_apply_list)) { 491 request = list_first_entry(®_regdb_apply_list, 492 struct reg_regdb_apply_request, 493 list); 494 list_del(&request->list); 495 496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 497 kfree(request); 498 } 499 mutex_unlock(®_regdb_apply_mutex); 500 501 rtnl_unlock(); 502 } 503 504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 505 506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 507 { 508 struct reg_regdb_apply_request *request; 509 510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 511 if (!request) { 512 kfree(regdom); 513 return -ENOMEM; 514 } 515 516 request->regdom = regdom; 517 518 mutex_lock(®_regdb_apply_mutex); 519 list_add_tail(&request->list, ®_regdb_apply_list); 520 mutex_unlock(®_regdb_apply_mutex); 521 522 schedule_work(®_regdb_work); 523 return 0; 524 } 525 526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 527 /* Max number of consecutive attempts to communicate with CRDA */ 528 #define REG_MAX_CRDA_TIMEOUTS 10 529 530 static u32 reg_crda_timeouts; 531 532 static void crda_timeout_work(struct work_struct *work); 533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 534 535 static void crda_timeout_work(struct work_struct *work) 536 { 537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 538 rtnl_lock(); 539 reg_crda_timeouts++; 540 restore_regulatory_settings(true, false); 541 rtnl_unlock(); 542 } 543 544 static void cancel_crda_timeout(void) 545 { 546 cancel_delayed_work(&crda_timeout); 547 } 548 549 static void cancel_crda_timeout_sync(void) 550 { 551 cancel_delayed_work_sync(&crda_timeout); 552 } 553 554 static void reset_crda_timeouts(void) 555 { 556 reg_crda_timeouts = 0; 557 } 558 559 /* 560 * This lets us keep regulatory code which is updated on a regulatory 561 * basis in userspace. 562 */ 563 static int call_crda(const char *alpha2) 564 { 565 char country[12]; 566 char *env[] = { country, NULL }; 567 int ret; 568 569 snprintf(country, sizeof(country), "COUNTRY=%c%c", 570 alpha2[0], alpha2[1]); 571 572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 574 return -EINVAL; 575 } 576 577 if (!is_world_regdom((char *) alpha2)) 578 pr_debug("Calling CRDA for country: %c%c\n", 579 alpha2[0], alpha2[1]); 580 else 581 pr_debug("Calling CRDA to update world regulatory domain\n"); 582 583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 584 if (ret) 585 return ret; 586 587 queue_delayed_work(system_power_efficient_wq, 588 &crda_timeout, msecs_to_jiffies(3142)); 589 return 0; 590 } 591 #else 592 static inline void cancel_crda_timeout(void) {} 593 static inline void cancel_crda_timeout_sync(void) {} 594 static inline void reset_crda_timeouts(void) {} 595 static inline int call_crda(const char *alpha2) 596 { 597 return -ENODATA; 598 } 599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 600 601 /* code to directly load a firmware database through request_firmware */ 602 static const struct fwdb_header *regdb; 603 604 struct fwdb_country { 605 u8 alpha2[2]; 606 __be16 coll_ptr; 607 /* this struct cannot be extended */ 608 } __packed __aligned(4); 609 610 struct fwdb_collection { 611 u8 len; 612 u8 n_rules; 613 u8 dfs_region; 614 /* no optional data yet */ 615 /* aligned to 2, then followed by __be16 array of rule pointers */ 616 } __packed __aligned(4); 617 618 enum fwdb_flags { 619 FWDB_FLAG_NO_OFDM = BIT(0), 620 FWDB_FLAG_NO_OUTDOOR = BIT(1), 621 FWDB_FLAG_DFS = BIT(2), 622 FWDB_FLAG_NO_IR = BIT(3), 623 FWDB_FLAG_AUTO_BW = BIT(4), 624 }; 625 626 struct fwdb_wmm_ac { 627 u8 ecw; 628 u8 aifsn; 629 __be16 cot; 630 } __packed; 631 632 struct fwdb_wmm_rule { 633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 635 } __packed; 636 637 struct fwdb_rule { 638 u8 len; 639 u8 flags; 640 __be16 max_eirp; 641 __be32 start, end, max_bw; 642 /* start of optional data */ 643 __be16 cac_timeout; 644 __be16 wmm_ptr; 645 } __packed __aligned(4); 646 647 #define FWDB_MAGIC 0x52474442 648 #define FWDB_VERSION 20 649 650 struct fwdb_header { 651 __be32 magic; 652 __be32 version; 653 struct fwdb_country country[]; 654 } __packed __aligned(4); 655 656 static int ecw2cw(int ecw) 657 { 658 return (1 << ecw) - 1; 659 } 660 661 static bool valid_wmm(struct fwdb_wmm_rule *rule) 662 { 663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 664 int i; 665 666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 669 u8 aifsn = ac[i].aifsn; 670 671 if (cw_min >= cw_max) 672 return false; 673 674 if (aifsn < 1) 675 return false; 676 } 677 678 return true; 679 } 680 681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 682 { 683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 684 685 if ((u8 *)rule + sizeof(rule->len) > data + size) 686 return false; 687 688 /* mandatory fields */ 689 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 690 return false; 691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 693 struct fwdb_wmm_rule *wmm; 694 695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 696 return false; 697 698 wmm = (void *)(data + wmm_ptr); 699 700 if (!valid_wmm(wmm)) 701 return false; 702 } 703 return true; 704 } 705 706 static bool valid_country(const u8 *data, unsigned int size, 707 const struct fwdb_country *country) 708 { 709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 710 struct fwdb_collection *coll = (void *)(data + ptr); 711 __be16 *rules_ptr; 712 unsigned int i; 713 714 /* make sure we can read len/n_rules */ 715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 716 return false; 717 718 /* make sure base struct and all rules fit */ 719 if ((u8 *)coll + ALIGN(coll->len, 2) + 720 (coll->n_rules * 2) > data + size) 721 return false; 722 723 /* mandatory fields must exist */ 724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 725 return false; 726 727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 728 729 for (i = 0; i < coll->n_rules; i++) { 730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 731 732 if (!valid_rule(data, size, rule_ptr)) 733 return false; 734 } 735 736 return true; 737 } 738 739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 740 #include <keys/asymmetric-type.h> 741 742 static struct key *builtin_regdb_keys; 743 744 static int __init load_builtin_regdb_keys(void) 745 { 746 builtin_regdb_keys = 747 keyring_alloc(".builtin_regdb_keys", 748 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 749 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 750 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 751 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 752 if (IS_ERR(builtin_regdb_keys)) 753 return PTR_ERR(builtin_regdb_keys); 754 755 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 756 757 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 758 x509_load_certificate_list(shipped_regdb_certs, 759 shipped_regdb_certs_len, 760 builtin_regdb_keys); 761 #endif 762 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 763 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 764 x509_load_certificate_list(extra_regdb_certs, 765 extra_regdb_certs_len, 766 builtin_regdb_keys); 767 #endif 768 769 return 0; 770 } 771 772 MODULE_FIRMWARE("regulatory.db.p7s"); 773 774 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 775 { 776 const struct firmware *sig; 777 bool result; 778 779 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 780 return false; 781 782 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 783 builtin_regdb_keys, 784 VERIFYING_UNSPECIFIED_SIGNATURE, 785 NULL, NULL) == 0; 786 787 release_firmware(sig); 788 789 return result; 790 } 791 792 static void free_regdb_keyring(void) 793 { 794 key_put(builtin_regdb_keys); 795 } 796 #else 797 static int load_builtin_regdb_keys(void) 798 { 799 return 0; 800 } 801 802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 803 { 804 return true; 805 } 806 807 static void free_regdb_keyring(void) 808 { 809 } 810 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 811 812 static bool valid_regdb(const u8 *data, unsigned int size) 813 { 814 const struct fwdb_header *hdr = (void *)data; 815 const struct fwdb_country *country; 816 817 if (size < sizeof(*hdr)) 818 return false; 819 820 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 821 return false; 822 823 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 824 return false; 825 826 if (!regdb_has_valid_signature(data, size)) 827 return false; 828 829 country = &hdr->country[0]; 830 while ((u8 *)(country + 1) <= data + size) { 831 if (!country->coll_ptr) 832 break; 833 if (!valid_country(data, size, country)) 834 return false; 835 country++; 836 } 837 838 return true; 839 } 840 841 static void set_wmm_rule(const struct fwdb_header *db, 842 const struct fwdb_country *country, 843 const struct fwdb_rule *rule, 844 struct ieee80211_reg_rule *rrule) 845 { 846 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 847 struct fwdb_wmm_rule *wmm; 848 unsigned int i, wmm_ptr; 849 850 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 851 wmm = (void *)((u8 *)db + wmm_ptr); 852 853 if (!valid_wmm(wmm)) { 854 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 855 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 856 country->alpha2[0], country->alpha2[1]); 857 return; 858 } 859 860 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 861 wmm_rule->client[i].cw_min = 862 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 863 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 864 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 865 wmm_rule->client[i].cot = 866 1000 * be16_to_cpu(wmm->client[i].cot); 867 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 868 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 869 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 870 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 871 } 872 873 rrule->has_wmm = true; 874 } 875 876 static int __regdb_query_wmm(const struct fwdb_header *db, 877 const struct fwdb_country *country, int freq, 878 struct ieee80211_reg_rule *rrule) 879 { 880 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 881 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 882 int i; 883 884 for (i = 0; i < coll->n_rules; i++) { 885 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 886 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 887 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 888 889 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 890 continue; 891 892 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 893 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 894 set_wmm_rule(db, country, rule, rrule); 895 return 0; 896 } 897 } 898 899 return -ENODATA; 900 } 901 902 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 903 { 904 const struct fwdb_header *hdr = regdb; 905 const struct fwdb_country *country; 906 907 if (!regdb) 908 return -ENODATA; 909 910 if (IS_ERR(regdb)) 911 return PTR_ERR(regdb); 912 913 country = &hdr->country[0]; 914 while (country->coll_ptr) { 915 if (alpha2_equal(alpha2, country->alpha2)) 916 return __regdb_query_wmm(regdb, country, freq, rule); 917 918 country++; 919 } 920 921 return -ENODATA; 922 } 923 EXPORT_SYMBOL(reg_query_regdb_wmm); 924 925 static int regdb_query_country(const struct fwdb_header *db, 926 const struct fwdb_country *country) 927 { 928 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 929 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 930 struct ieee80211_regdomain *regdom; 931 unsigned int i; 932 933 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 934 GFP_KERNEL); 935 if (!regdom) 936 return -ENOMEM; 937 938 regdom->n_reg_rules = coll->n_rules; 939 regdom->alpha2[0] = country->alpha2[0]; 940 regdom->alpha2[1] = country->alpha2[1]; 941 regdom->dfs_region = coll->dfs_region; 942 943 for (i = 0; i < regdom->n_reg_rules; i++) { 944 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 945 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 946 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 947 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 948 949 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 950 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 951 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 952 953 rrule->power_rule.max_antenna_gain = 0; 954 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 955 956 rrule->flags = 0; 957 if (rule->flags & FWDB_FLAG_NO_OFDM) 958 rrule->flags |= NL80211_RRF_NO_OFDM; 959 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 960 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 961 if (rule->flags & FWDB_FLAG_DFS) 962 rrule->flags |= NL80211_RRF_DFS; 963 if (rule->flags & FWDB_FLAG_NO_IR) 964 rrule->flags |= NL80211_RRF_NO_IR; 965 if (rule->flags & FWDB_FLAG_AUTO_BW) 966 rrule->flags |= NL80211_RRF_AUTO_BW; 967 968 rrule->dfs_cac_ms = 0; 969 970 /* handle optional data */ 971 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 972 rrule->dfs_cac_ms = 973 1000 * be16_to_cpu(rule->cac_timeout); 974 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 975 set_wmm_rule(db, country, rule, rrule); 976 } 977 978 return reg_schedule_apply(regdom); 979 } 980 981 static int query_regdb(const char *alpha2) 982 { 983 const struct fwdb_header *hdr = regdb; 984 const struct fwdb_country *country; 985 986 ASSERT_RTNL(); 987 988 if (IS_ERR(regdb)) 989 return PTR_ERR(regdb); 990 991 country = &hdr->country[0]; 992 while (country->coll_ptr) { 993 if (alpha2_equal(alpha2, country->alpha2)) 994 return regdb_query_country(regdb, country); 995 country++; 996 } 997 998 return -ENODATA; 999 } 1000 1001 static void regdb_fw_cb(const struct firmware *fw, void *context) 1002 { 1003 int set_error = 0; 1004 bool restore = true; 1005 void *db; 1006 1007 if (!fw) { 1008 pr_info("failed to load regulatory.db\n"); 1009 set_error = -ENODATA; 1010 } else if (!valid_regdb(fw->data, fw->size)) { 1011 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1012 set_error = -EINVAL; 1013 } 1014 1015 rtnl_lock(); 1016 if (regdb && !IS_ERR(regdb)) { 1017 /* negative case - a bug 1018 * positive case - can happen due to race in case of multiple cb's in 1019 * queue, due to usage of asynchronous callback 1020 * 1021 * Either case, just restore and free new db. 1022 */ 1023 } else if (set_error) { 1024 regdb = ERR_PTR(set_error); 1025 } else if (fw) { 1026 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1027 if (db) { 1028 regdb = db; 1029 restore = context && query_regdb(context); 1030 } else { 1031 restore = true; 1032 } 1033 } 1034 1035 if (restore) 1036 restore_regulatory_settings(true, false); 1037 1038 rtnl_unlock(); 1039 1040 kfree(context); 1041 1042 release_firmware(fw); 1043 } 1044 1045 MODULE_FIRMWARE("regulatory.db"); 1046 1047 static int query_regdb_file(const char *alpha2) 1048 { 1049 int err; 1050 1051 ASSERT_RTNL(); 1052 1053 if (regdb) 1054 return query_regdb(alpha2); 1055 1056 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1057 if (!alpha2) 1058 return -ENOMEM; 1059 1060 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1061 ®_pdev->dev, GFP_KERNEL, 1062 (void *)alpha2, regdb_fw_cb); 1063 if (err) 1064 kfree(alpha2); 1065 1066 return err; 1067 } 1068 1069 int reg_reload_regdb(void) 1070 { 1071 const struct firmware *fw; 1072 void *db; 1073 int err; 1074 const struct ieee80211_regdomain *current_regdomain; 1075 struct regulatory_request *request; 1076 1077 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1078 if (err) 1079 return err; 1080 1081 if (!valid_regdb(fw->data, fw->size)) { 1082 err = -ENODATA; 1083 goto out; 1084 } 1085 1086 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1087 if (!db) { 1088 err = -ENOMEM; 1089 goto out; 1090 } 1091 1092 rtnl_lock(); 1093 if (!IS_ERR_OR_NULL(regdb)) 1094 kfree(regdb); 1095 regdb = db; 1096 1097 /* reset regulatory domain */ 1098 current_regdomain = get_cfg80211_regdom(); 1099 1100 request = kzalloc(sizeof(*request), GFP_KERNEL); 1101 if (!request) { 1102 err = -ENOMEM; 1103 goto out_unlock; 1104 } 1105 1106 request->wiphy_idx = WIPHY_IDX_INVALID; 1107 request->alpha2[0] = current_regdomain->alpha2[0]; 1108 request->alpha2[1] = current_regdomain->alpha2[1]; 1109 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1110 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER; 1111 1112 reg_process_hint(request); 1113 1114 out_unlock: 1115 rtnl_unlock(); 1116 out: 1117 release_firmware(fw); 1118 return err; 1119 } 1120 1121 static bool reg_query_database(struct regulatory_request *request) 1122 { 1123 if (query_regdb_file(request->alpha2) == 0) 1124 return true; 1125 1126 if (call_crda(request->alpha2) == 0) 1127 return true; 1128 1129 return false; 1130 } 1131 1132 bool reg_is_valid_request(const char *alpha2) 1133 { 1134 struct regulatory_request *lr = get_last_request(); 1135 1136 if (!lr || lr->processed) 1137 return false; 1138 1139 return alpha2_equal(lr->alpha2, alpha2); 1140 } 1141 1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1143 { 1144 struct regulatory_request *lr = get_last_request(); 1145 1146 /* 1147 * Follow the driver's regulatory domain, if present, unless a country 1148 * IE has been processed or a user wants to help complaince further 1149 */ 1150 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1151 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1152 wiphy->regd) 1153 return get_wiphy_regdom(wiphy); 1154 1155 return get_cfg80211_regdom(); 1156 } 1157 1158 static unsigned int 1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1160 const struct ieee80211_reg_rule *rule) 1161 { 1162 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1163 const struct ieee80211_freq_range *freq_range_tmp; 1164 const struct ieee80211_reg_rule *tmp; 1165 u32 start_freq, end_freq, idx, no; 1166 1167 for (idx = 0; idx < rd->n_reg_rules; idx++) 1168 if (rule == &rd->reg_rules[idx]) 1169 break; 1170 1171 if (idx == rd->n_reg_rules) 1172 return 0; 1173 1174 /* get start_freq */ 1175 no = idx; 1176 1177 while (no) { 1178 tmp = &rd->reg_rules[--no]; 1179 freq_range_tmp = &tmp->freq_range; 1180 1181 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1182 break; 1183 1184 freq_range = freq_range_tmp; 1185 } 1186 1187 start_freq = freq_range->start_freq_khz; 1188 1189 /* get end_freq */ 1190 freq_range = &rule->freq_range; 1191 no = idx; 1192 1193 while (no < rd->n_reg_rules - 1) { 1194 tmp = &rd->reg_rules[++no]; 1195 freq_range_tmp = &tmp->freq_range; 1196 1197 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1198 break; 1199 1200 freq_range = freq_range_tmp; 1201 } 1202 1203 end_freq = freq_range->end_freq_khz; 1204 1205 return end_freq - start_freq; 1206 } 1207 1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1209 const struct ieee80211_reg_rule *rule) 1210 { 1211 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1212 1213 if (rule->flags & NL80211_RRF_NO_320MHZ) 1214 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160)); 1215 if (rule->flags & NL80211_RRF_NO_160MHZ) 1216 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1217 if (rule->flags & NL80211_RRF_NO_80MHZ) 1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1219 1220 /* 1221 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1222 * are not allowed. 1223 */ 1224 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1225 rule->flags & NL80211_RRF_NO_HT40PLUS) 1226 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1227 1228 return bw; 1229 } 1230 1231 /* Sanity check on a regulatory rule */ 1232 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1233 { 1234 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1235 u32 freq_diff; 1236 1237 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1238 return false; 1239 1240 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1241 return false; 1242 1243 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1244 1245 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1246 freq_range->max_bandwidth_khz > freq_diff) 1247 return false; 1248 1249 return true; 1250 } 1251 1252 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1253 { 1254 const struct ieee80211_reg_rule *reg_rule = NULL; 1255 unsigned int i; 1256 1257 if (!rd->n_reg_rules) 1258 return false; 1259 1260 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1261 return false; 1262 1263 for (i = 0; i < rd->n_reg_rules; i++) { 1264 reg_rule = &rd->reg_rules[i]; 1265 if (!is_valid_reg_rule(reg_rule)) 1266 return false; 1267 } 1268 1269 return true; 1270 } 1271 1272 /** 1273 * freq_in_rule_band - tells us if a frequency is in a frequency band 1274 * @freq_range: frequency rule we want to query 1275 * @freq_khz: frequency we are inquiring about 1276 * 1277 * This lets us know if a specific frequency rule is or is not relevant to 1278 * a specific frequency's band. Bands are device specific and artificial 1279 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1280 * however it is safe for now to assume that a frequency rule should not be 1281 * part of a frequency's band if the start freq or end freq are off by more 1282 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1283 * 60 GHz band. 1284 * This resolution can be lowered and should be considered as we add 1285 * regulatory rule support for other "bands". 1286 * 1287 * Returns: whether or not the frequency is in the range 1288 */ 1289 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1290 u32 freq_khz) 1291 { 1292 #define ONE_GHZ_IN_KHZ 1000000 1293 /* 1294 * From 802.11ad: directional multi-gigabit (DMG): 1295 * Pertaining to operation in a frequency band containing a channel 1296 * with the Channel starting frequency above 45 GHz. 1297 */ 1298 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1299 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1300 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1301 return true; 1302 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1303 return true; 1304 return false; 1305 #undef ONE_GHZ_IN_KHZ 1306 } 1307 1308 /* 1309 * Later on we can perhaps use the more restrictive DFS 1310 * region but we don't have information for that yet so 1311 * for now simply disallow conflicts. 1312 */ 1313 static enum nl80211_dfs_regions 1314 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1315 const enum nl80211_dfs_regions dfs_region2) 1316 { 1317 if (dfs_region1 != dfs_region2) 1318 return NL80211_DFS_UNSET; 1319 return dfs_region1; 1320 } 1321 1322 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1323 const struct ieee80211_wmm_ac *wmm_ac2, 1324 struct ieee80211_wmm_ac *intersect) 1325 { 1326 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1327 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1328 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1329 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1330 } 1331 1332 /* 1333 * Helper for regdom_intersect(), this does the real 1334 * mathematical intersection fun 1335 */ 1336 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1337 const struct ieee80211_regdomain *rd2, 1338 const struct ieee80211_reg_rule *rule1, 1339 const struct ieee80211_reg_rule *rule2, 1340 struct ieee80211_reg_rule *intersected_rule) 1341 { 1342 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1343 struct ieee80211_freq_range *freq_range; 1344 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1345 struct ieee80211_power_rule *power_rule; 1346 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1347 struct ieee80211_wmm_rule *wmm_rule; 1348 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1349 1350 freq_range1 = &rule1->freq_range; 1351 freq_range2 = &rule2->freq_range; 1352 freq_range = &intersected_rule->freq_range; 1353 1354 power_rule1 = &rule1->power_rule; 1355 power_rule2 = &rule2->power_rule; 1356 power_rule = &intersected_rule->power_rule; 1357 1358 wmm_rule1 = &rule1->wmm_rule; 1359 wmm_rule2 = &rule2->wmm_rule; 1360 wmm_rule = &intersected_rule->wmm_rule; 1361 1362 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1363 freq_range2->start_freq_khz); 1364 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1365 freq_range2->end_freq_khz); 1366 1367 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1368 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1369 1370 if (rule1->flags & NL80211_RRF_AUTO_BW) 1371 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1372 if (rule2->flags & NL80211_RRF_AUTO_BW) 1373 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1374 1375 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1376 1377 intersected_rule->flags = rule1->flags | rule2->flags; 1378 1379 /* 1380 * In case NL80211_RRF_AUTO_BW requested for both rules 1381 * set AUTO_BW in intersected rule also. Next we will 1382 * calculate BW correctly in handle_channel function. 1383 * In other case remove AUTO_BW flag while we calculate 1384 * maximum bandwidth correctly and auto calculation is 1385 * not required. 1386 */ 1387 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1388 (rule2->flags & NL80211_RRF_AUTO_BW)) 1389 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1390 else 1391 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1392 1393 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1394 if (freq_range->max_bandwidth_khz > freq_diff) 1395 freq_range->max_bandwidth_khz = freq_diff; 1396 1397 power_rule->max_eirp = min(power_rule1->max_eirp, 1398 power_rule2->max_eirp); 1399 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1400 power_rule2->max_antenna_gain); 1401 1402 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1403 rule2->dfs_cac_ms); 1404 1405 if (rule1->has_wmm && rule2->has_wmm) { 1406 u8 ac; 1407 1408 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1409 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1410 &wmm_rule2->client[ac], 1411 &wmm_rule->client[ac]); 1412 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1413 &wmm_rule2->ap[ac], 1414 &wmm_rule->ap[ac]); 1415 } 1416 1417 intersected_rule->has_wmm = true; 1418 } else if (rule1->has_wmm) { 1419 *wmm_rule = *wmm_rule1; 1420 intersected_rule->has_wmm = true; 1421 } else if (rule2->has_wmm) { 1422 *wmm_rule = *wmm_rule2; 1423 intersected_rule->has_wmm = true; 1424 } else { 1425 intersected_rule->has_wmm = false; 1426 } 1427 1428 if (!is_valid_reg_rule(intersected_rule)) 1429 return -EINVAL; 1430 1431 return 0; 1432 } 1433 1434 /* check whether old rule contains new rule */ 1435 static bool rule_contains(struct ieee80211_reg_rule *r1, 1436 struct ieee80211_reg_rule *r2) 1437 { 1438 /* for simplicity, currently consider only same flags */ 1439 if (r1->flags != r2->flags) 1440 return false; 1441 1442 /* verify r1 is more restrictive */ 1443 if ((r1->power_rule.max_antenna_gain > 1444 r2->power_rule.max_antenna_gain) || 1445 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1446 return false; 1447 1448 /* make sure r2's range is contained within r1 */ 1449 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1450 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1451 return false; 1452 1453 /* and finally verify that r1.max_bw >= r2.max_bw */ 1454 if (r1->freq_range.max_bandwidth_khz < 1455 r2->freq_range.max_bandwidth_khz) 1456 return false; 1457 1458 return true; 1459 } 1460 1461 /* add or extend current rules. do nothing if rule is already contained */ 1462 static void add_rule(struct ieee80211_reg_rule *rule, 1463 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1464 { 1465 struct ieee80211_reg_rule *tmp_rule; 1466 int i; 1467 1468 for (i = 0; i < *n_rules; i++) { 1469 tmp_rule = ®_rules[i]; 1470 /* rule is already contained - do nothing */ 1471 if (rule_contains(tmp_rule, rule)) 1472 return; 1473 1474 /* extend rule if possible */ 1475 if (rule_contains(rule, tmp_rule)) { 1476 memcpy(tmp_rule, rule, sizeof(*rule)); 1477 return; 1478 } 1479 } 1480 1481 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1482 (*n_rules)++; 1483 } 1484 1485 /** 1486 * regdom_intersect - do the intersection between two regulatory domains 1487 * @rd1: first regulatory domain 1488 * @rd2: second regulatory domain 1489 * 1490 * Use this function to get the intersection between two regulatory domains. 1491 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1492 * as no one single alpha2 can represent this regulatory domain. 1493 * 1494 * Returns a pointer to the regulatory domain structure which will hold the 1495 * resulting intersection of rules between rd1 and rd2. We will 1496 * kzalloc() this structure for you. 1497 * 1498 * Returns: the intersected regdomain 1499 */ 1500 static struct ieee80211_regdomain * 1501 regdom_intersect(const struct ieee80211_regdomain *rd1, 1502 const struct ieee80211_regdomain *rd2) 1503 { 1504 int r; 1505 unsigned int x, y; 1506 unsigned int num_rules = 0; 1507 const struct ieee80211_reg_rule *rule1, *rule2; 1508 struct ieee80211_reg_rule intersected_rule; 1509 struct ieee80211_regdomain *rd; 1510 1511 if (!rd1 || !rd2) 1512 return NULL; 1513 1514 /* 1515 * First we get a count of the rules we'll need, then we actually 1516 * build them. This is to so we can malloc() and free() a 1517 * regdomain once. The reason we use reg_rules_intersect() here 1518 * is it will return -EINVAL if the rule computed makes no sense. 1519 * All rules that do check out OK are valid. 1520 */ 1521 1522 for (x = 0; x < rd1->n_reg_rules; x++) { 1523 rule1 = &rd1->reg_rules[x]; 1524 for (y = 0; y < rd2->n_reg_rules; y++) { 1525 rule2 = &rd2->reg_rules[y]; 1526 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1527 &intersected_rule)) 1528 num_rules++; 1529 } 1530 } 1531 1532 if (!num_rules) 1533 return NULL; 1534 1535 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1536 if (!rd) 1537 return NULL; 1538 1539 for (x = 0; x < rd1->n_reg_rules; x++) { 1540 rule1 = &rd1->reg_rules[x]; 1541 for (y = 0; y < rd2->n_reg_rules; y++) { 1542 rule2 = &rd2->reg_rules[y]; 1543 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1544 &intersected_rule); 1545 /* 1546 * No need to memset here the intersected rule here as 1547 * we're not using the stack anymore 1548 */ 1549 if (r) 1550 continue; 1551 1552 add_rule(&intersected_rule, rd->reg_rules, 1553 &rd->n_reg_rules); 1554 } 1555 } 1556 1557 rd->alpha2[0] = '9'; 1558 rd->alpha2[1] = '8'; 1559 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1560 rd2->dfs_region); 1561 1562 return rd; 1563 } 1564 1565 /* 1566 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1567 * want to just have the channel structure use these 1568 */ 1569 static u32 map_regdom_flags(u32 rd_flags) 1570 { 1571 u32 channel_flags = 0; 1572 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1573 channel_flags |= IEEE80211_CHAN_NO_IR; 1574 if (rd_flags & NL80211_RRF_DFS) 1575 channel_flags |= IEEE80211_CHAN_RADAR; 1576 if (rd_flags & NL80211_RRF_NO_OFDM) 1577 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1578 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1579 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1580 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1581 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1582 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1583 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1584 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1585 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1586 if (rd_flags & NL80211_RRF_NO_80MHZ) 1587 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1588 if (rd_flags & NL80211_RRF_NO_160MHZ) 1589 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1590 if (rd_flags & NL80211_RRF_NO_HE) 1591 channel_flags |= IEEE80211_CHAN_NO_HE; 1592 if (rd_flags & NL80211_RRF_NO_320MHZ) 1593 channel_flags |= IEEE80211_CHAN_NO_320MHZ; 1594 if (rd_flags & NL80211_RRF_NO_EHT) 1595 channel_flags |= IEEE80211_CHAN_NO_EHT; 1596 if (rd_flags & NL80211_RRF_PSD) 1597 channel_flags |= IEEE80211_CHAN_PSD; 1598 return channel_flags; 1599 } 1600 1601 static const struct ieee80211_reg_rule * 1602 freq_reg_info_regd(u32 center_freq, 1603 const struct ieee80211_regdomain *regd, u32 bw) 1604 { 1605 int i; 1606 bool band_rule_found = false; 1607 bool bw_fits = false; 1608 1609 if (!regd) 1610 return ERR_PTR(-EINVAL); 1611 1612 for (i = 0; i < regd->n_reg_rules; i++) { 1613 const struct ieee80211_reg_rule *rr; 1614 const struct ieee80211_freq_range *fr = NULL; 1615 1616 rr = ®d->reg_rules[i]; 1617 fr = &rr->freq_range; 1618 1619 /* 1620 * We only need to know if one frequency rule was 1621 * in center_freq's band, that's enough, so let's 1622 * not overwrite it once found 1623 */ 1624 if (!band_rule_found) 1625 band_rule_found = freq_in_rule_band(fr, center_freq); 1626 1627 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1628 1629 if (band_rule_found && bw_fits) 1630 return rr; 1631 } 1632 1633 if (!band_rule_found) 1634 return ERR_PTR(-ERANGE); 1635 1636 return ERR_PTR(-EINVAL); 1637 } 1638 1639 static const struct ieee80211_reg_rule * 1640 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1641 { 1642 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1643 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1644 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE); 1645 int i = ARRAY_SIZE(bws) - 1; 1646 u32 bw; 1647 1648 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1649 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1650 if (!IS_ERR(reg_rule)) 1651 return reg_rule; 1652 } 1653 1654 return reg_rule; 1655 } 1656 1657 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1658 u32 center_freq) 1659 { 1660 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1661 1662 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1663 } 1664 EXPORT_SYMBOL(freq_reg_info); 1665 1666 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1667 { 1668 switch (initiator) { 1669 case NL80211_REGDOM_SET_BY_CORE: 1670 return "core"; 1671 case NL80211_REGDOM_SET_BY_USER: 1672 return "user"; 1673 case NL80211_REGDOM_SET_BY_DRIVER: 1674 return "driver"; 1675 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1676 return "country element"; 1677 default: 1678 WARN_ON(1); 1679 return "bug"; 1680 } 1681 } 1682 EXPORT_SYMBOL(reg_initiator_name); 1683 1684 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1685 const struct ieee80211_reg_rule *reg_rule, 1686 const struct ieee80211_channel *chan) 1687 { 1688 const struct ieee80211_freq_range *freq_range = NULL; 1689 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1690 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1691 1692 freq_range = ®_rule->freq_range; 1693 1694 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1695 center_freq_khz = ieee80211_channel_to_khz(chan); 1696 /* Check if auto calculation requested */ 1697 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1698 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1699 1700 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1701 if (!cfg80211_does_bw_fit_range(freq_range, 1702 center_freq_khz, 1703 MHZ_TO_KHZ(10))) 1704 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1705 if (!cfg80211_does_bw_fit_range(freq_range, 1706 center_freq_khz, 1707 MHZ_TO_KHZ(20))) 1708 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1709 1710 if (is_s1g) { 1711 /* S1G is strict about non overlapping channels. We can 1712 * calculate which bandwidth is allowed per channel by finding 1713 * the largest bandwidth which cleanly divides the freq_range. 1714 */ 1715 int edge_offset; 1716 int ch_bw = max_bandwidth_khz; 1717 1718 while (ch_bw) { 1719 edge_offset = (center_freq_khz - ch_bw / 2) - 1720 freq_range->start_freq_khz; 1721 if (edge_offset % ch_bw == 0) { 1722 switch (KHZ_TO_MHZ(ch_bw)) { 1723 case 1: 1724 bw_flags |= IEEE80211_CHAN_1MHZ; 1725 break; 1726 case 2: 1727 bw_flags |= IEEE80211_CHAN_2MHZ; 1728 break; 1729 case 4: 1730 bw_flags |= IEEE80211_CHAN_4MHZ; 1731 break; 1732 case 8: 1733 bw_flags |= IEEE80211_CHAN_8MHZ; 1734 break; 1735 case 16: 1736 bw_flags |= IEEE80211_CHAN_16MHZ; 1737 break; 1738 default: 1739 /* If we got here, no bandwidths fit on 1740 * this frequency, ie. band edge. 1741 */ 1742 bw_flags |= IEEE80211_CHAN_DISABLED; 1743 break; 1744 } 1745 break; 1746 } 1747 ch_bw /= 2; 1748 } 1749 } else { 1750 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1751 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1752 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1753 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1754 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1755 bw_flags |= IEEE80211_CHAN_NO_HT40; 1756 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1757 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1758 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1759 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1760 if (max_bandwidth_khz < MHZ_TO_KHZ(320)) 1761 bw_flags |= IEEE80211_CHAN_NO_320MHZ; 1762 } 1763 return bw_flags; 1764 } 1765 1766 static void handle_channel_single_rule(struct wiphy *wiphy, 1767 enum nl80211_reg_initiator initiator, 1768 struct ieee80211_channel *chan, 1769 u32 flags, 1770 struct regulatory_request *lr, 1771 struct wiphy *request_wiphy, 1772 const struct ieee80211_reg_rule *reg_rule) 1773 { 1774 u32 bw_flags = 0; 1775 const struct ieee80211_power_rule *power_rule = NULL; 1776 const struct ieee80211_regdomain *regd; 1777 1778 regd = reg_get_regdomain(wiphy); 1779 1780 power_rule = ®_rule->power_rule; 1781 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1782 1783 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1784 request_wiphy && request_wiphy == wiphy && 1785 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1786 /* 1787 * This guarantees the driver's requested regulatory domain 1788 * will always be used as a base for further regulatory 1789 * settings 1790 */ 1791 chan->flags = chan->orig_flags = 1792 map_regdom_flags(reg_rule->flags) | bw_flags; 1793 chan->max_antenna_gain = chan->orig_mag = 1794 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1795 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1796 (int) MBM_TO_DBM(power_rule->max_eirp); 1797 1798 if (chan->flags & IEEE80211_CHAN_RADAR) { 1799 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1800 if (reg_rule->dfs_cac_ms) 1801 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1802 } 1803 1804 if (chan->flags & IEEE80211_CHAN_PSD) 1805 chan->psd = reg_rule->psd; 1806 1807 return; 1808 } 1809 1810 chan->dfs_state = NL80211_DFS_USABLE; 1811 chan->dfs_state_entered = jiffies; 1812 1813 chan->beacon_found = false; 1814 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1815 chan->max_antenna_gain = 1816 min_t(int, chan->orig_mag, 1817 MBI_TO_DBI(power_rule->max_antenna_gain)); 1818 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1819 1820 if (chan->flags & IEEE80211_CHAN_RADAR) { 1821 if (reg_rule->dfs_cac_ms) 1822 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1823 else 1824 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1825 } 1826 1827 if (chan->flags & IEEE80211_CHAN_PSD) 1828 chan->psd = reg_rule->psd; 1829 1830 if (chan->orig_mpwr) { 1831 /* 1832 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1833 * will always follow the passed country IE power settings. 1834 */ 1835 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1836 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1837 chan->max_power = chan->max_reg_power; 1838 else 1839 chan->max_power = min(chan->orig_mpwr, 1840 chan->max_reg_power); 1841 } else 1842 chan->max_power = chan->max_reg_power; 1843 } 1844 1845 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1846 enum nl80211_reg_initiator initiator, 1847 struct ieee80211_channel *chan, 1848 u32 flags, 1849 struct regulatory_request *lr, 1850 struct wiphy *request_wiphy, 1851 const struct ieee80211_reg_rule *rrule1, 1852 const struct ieee80211_reg_rule *rrule2, 1853 struct ieee80211_freq_range *comb_range) 1854 { 1855 u32 bw_flags1 = 0; 1856 u32 bw_flags2 = 0; 1857 const struct ieee80211_power_rule *power_rule1 = NULL; 1858 const struct ieee80211_power_rule *power_rule2 = NULL; 1859 const struct ieee80211_regdomain *regd; 1860 1861 regd = reg_get_regdomain(wiphy); 1862 1863 power_rule1 = &rrule1->power_rule; 1864 power_rule2 = &rrule2->power_rule; 1865 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1866 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1867 1868 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1869 request_wiphy && request_wiphy == wiphy && 1870 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1871 /* This guarantees the driver's requested regulatory domain 1872 * will always be used as a base for further regulatory 1873 * settings 1874 */ 1875 chan->flags = 1876 map_regdom_flags(rrule1->flags) | 1877 map_regdom_flags(rrule2->flags) | 1878 bw_flags1 | 1879 bw_flags2; 1880 chan->orig_flags = chan->flags; 1881 chan->max_antenna_gain = 1882 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1883 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1884 chan->orig_mag = chan->max_antenna_gain; 1885 chan->max_reg_power = 1886 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1887 MBM_TO_DBM(power_rule2->max_eirp)); 1888 chan->max_power = chan->max_reg_power; 1889 chan->orig_mpwr = chan->max_reg_power; 1890 1891 if (chan->flags & IEEE80211_CHAN_RADAR) { 1892 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1893 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1894 chan->dfs_cac_ms = max_t(unsigned int, 1895 rrule1->dfs_cac_ms, 1896 rrule2->dfs_cac_ms); 1897 } 1898 1899 if ((rrule1->flags & NL80211_RRF_PSD) && 1900 (rrule2->flags & NL80211_RRF_PSD)) 1901 chan->psd = min_t(s8, rrule1->psd, rrule2->psd); 1902 else 1903 chan->flags &= ~NL80211_RRF_PSD; 1904 1905 return; 1906 } 1907 1908 chan->dfs_state = NL80211_DFS_USABLE; 1909 chan->dfs_state_entered = jiffies; 1910 1911 chan->beacon_found = false; 1912 chan->flags = flags | bw_flags1 | bw_flags2 | 1913 map_regdom_flags(rrule1->flags) | 1914 map_regdom_flags(rrule2->flags); 1915 1916 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1917 * (otherwise no adj. rule case), recheck therefore 1918 */ 1919 if (cfg80211_does_bw_fit_range(comb_range, 1920 ieee80211_channel_to_khz(chan), 1921 MHZ_TO_KHZ(10))) 1922 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1923 if (cfg80211_does_bw_fit_range(comb_range, 1924 ieee80211_channel_to_khz(chan), 1925 MHZ_TO_KHZ(20))) 1926 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1927 1928 chan->max_antenna_gain = 1929 min_t(int, chan->orig_mag, 1930 min_t(int, 1931 MBI_TO_DBI(power_rule1->max_antenna_gain), 1932 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1933 chan->max_reg_power = min_t(int, 1934 MBM_TO_DBM(power_rule1->max_eirp), 1935 MBM_TO_DBM(power_rule2->max_eirp)); 1936 1937 if (chan->flags & IEEE80211_CHAN_RADAR) { 1938 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1939 chan->dfs_cac_ms = max_t(unsigned int, 1940 rrule1->dfs_cac_ms, 1941 rrule2->dfs_cac_ms); 1942 else 1943 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1944 } 1945 1946 if (chan->orig_mpwr) { 1947 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1948 * will always follow the passed country IE power settings. 1949 */ 1950 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1951 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1952 chan->max_power = chan->max_reg_power; 1953 else 1954 chan->max_power = min(chan->orig_mpwr, 1955 chan->max_reg_power); 1956 } else { 1957 chan->max_power = chan->max_reg_power; 1958 } 1959 } 1960 1961 /* Note that right now we assume the desired channel bandwidth 1962 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1963 * per channel, the primary and the extension channel). 1964 */ 1965 static void handle_channel(struct wiphy *wiphy, 1966 enum nl80211_reg_initiator initiator, 1967 struct ieee80211_channel *chan) 1968 { 1969 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1970 struct regulatory_request *lr = get_last_request(); 1971 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1972 const struct ieee80211_reg_rule *rrule = NULL; 1973 const struct ieee80211_reg_rule *rrule1 = NULL; 1974 const struct ieee80211_reg_rule *rrule2 = NULL; 1975 1976 u32 flags = chan->orig_flags; 1977 1978 rrule = freq_reg_info(wiphy, orig_chan_freq); 1979 if (IS_ERR(rrule)) { 1980 /* check for adjacent match, therefore get rules for 1981 * chan - 20 MHz and chan + 20 MHz and test 1982 * if reg rules are adjacent 1983 */ 1984 rrule1 = freq_reg_info(wiphy, 1985 orig_chan_freq - MHZ_TO_KHZ(20)); 1986 rrule2 = freq_reg_info(wiphy, 1987 orig_chan_freq + MHZ_TO_KHZ(20)); 1988 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 1989 struct ieee80211_freq_range comb_range; 1990 1991 if (rrule1->freq_range.end_freq_khz != 1992 rrule2->freq_range.start_freq_khz) 1993 goto disable_chan; 1994 1995 comb_range.start_freq_khz = 1996 rrule1->freq_range.start_freq_khz; 1997 comb_range.end_freq_khz = 1998 rrule2->freq_range.end_freq_khz; 1999 comb_range.max_bandwidth_khz = 2000 min_t(u32, 2001 rrule1->freq_range.max_bandwidth_khz, 2002 rrule2->freq_range.max_bandwidth_khz); 2003 2004 if (!cfg80211_does_bw_fit_range(&comb_range, 2005 orig_chan_freq, 2006 MHZ_TO_KHZ(20))) 2007 goto disable_chan; 2008 2009 handle_channel_adjacent_rules(wiphy, initiator, chan, 2010 flags, lr, request_wiphy, 2011 rrule1, rrule2, 2012 &comb_range); 2013 return; 2014 } 2015 2016 disable_chan: 2017 /* We will disable all channels that do not match our 2018 * received regulatory rule unless the hint is coming 2019 * from a Country IE and the Country IE had no information 2020 * about a band. The IEEE 802.11 spec allows for an AP 2021 * to send only a subset of the regulatory rules allowed, 2022 * so an AP in the US that only supports 2.4 GHz may only send 2023 * a country IE with information for the 2.4 GHz band 2024 * while 5 GHz is still supported. 2025 */ 2026 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2027 PTR_ERR(rrule) == -ERANGE) 2028 return; 2029 2030 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2031 request_wiphy && request_wiphy == wiphy && 2032 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2033 pr_debug("Disabling freq %d.%03d MHz for good\n", 2034 chan->center_freq, chan->freq_offset); 2035 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2036 chan->flags = chan->orig_flags; 2037 } else { 2038 pr_debug("Disabling freq %d.%03d MHz\n", 2039 chan->center_freq, chan->freq_offset); 2040 chan->flags |= IEEE80211_CHAN_DISABLED; 2041 } 2042 return; 2043 } 2044 2045 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2046 request_wiphy, rrule); 2047 } 2048 2049 static void handle_band(struct wiphy *wiphy, 2050 enum nl80211_reg_initiator initiator, 2051 struct ieee80211_supported_band *sband) 2052 { 2053 unsigned int i; 2054 2055 if (!sband) 2056 return; 2057 2058 for (i = 0; i < sband->n_channels; i++) 2059 handle_channel(wiphy, initiator, &sband->channels[i]); 2060 } 2061 2062 static bool reg_request_cell_base(struct regulatory_request *request) 2063 { 2064 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2065 return false; 2066 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2067 } 2068 2069 bool reg_last_request_cell_base(void) 2070 { 2071 return reg_request_cell_base(get_last_request()); 2072 } 2073 2074 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2075 /* Core specific check */ 2076 static enum reg_request_treatment 2077 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2078 { 2079 struct regulatory_request *lr = get_last_request(); 2080 2081 if (!reg_num_devs_support_basehint) 2082 return REG_REQ_IGNORE; 2083 2084 if (reg_request_cell_base(lr) && 2085 !regdom_changes(pending_request->alpha2)) 2086 return REG_REQ_ALREADY_SET; 2087 2088 return REG_REQ_OK; 2089 } 2090 2091 /* Device specific check */ 2092 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2093 { 2094 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2095 } 2096 #else 2097 static enum reg_request_treatment 2098 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2099 { 2100 return REG_REQ_IGNORE; 2101 } 2102 2103 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2104 { 2105 return true; 2106 } 2107 #endif 2108 2109 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2110 { 2111 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2112 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2113 return true; 2114 return false; 2115 } 2116 2117 static bool ignore_reg_update(struct wiphy *wiphy, 2118 enum nl80211_reg_initiator initiator) 2119 { 2120 struct regulatory_request *lr = get_last_request(); 2121 2122 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2123 return true; 2124 2125 if (!lr) { 2126 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2127 reg_initiator_name(initiator)); 2128 return true; 2129 } 2130 2131 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2132 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2133 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2134 reg_initiator_name(initiator)); 2135 return true; 2136 } 2137 2138 /* 2139 * wiphy->regd will be set once the device has its own 2140 * desired regulatory domain set 2141 */ 2142 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2143 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2144 !is_world_regdom(lr->alpha2)) { 2145 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2146 reg_initiator_name(initiator)); 2147 return true; 2148 } 2149 2150 if (reg_request_cell_base(lr)) 2151 return reg_dev_ignore_cell_hint(wiphy); 2152 2153 return false; 2154 } 2155 2156 static bool reg_is_world_roaming(struct wiphy *wiphy) 2157 { 2158 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2159 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2160 struct regulatory_request *lr = get_last_request(); 2161 2162 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2163 return true; 2164 2165 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2166 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2167 return true; 2168 2169 return false; 2170 } 2171 2172 static void reg_call_notifier(struct wiphy *wiphy, 2173 struct regulatory_request *request) 2174 { 2175 if (wiphy->reg_notifier) 2176 wiphy->reg_notifier(wiphy, request); 2177 } 2178 2179 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2180 struct reg_beacon *reg_beacon) 2181 { 2182 struct ieee80211_supported_band *sband; 2183 struct ieee80211_channel *chan; 2184 bool channel_changed = false; 2185 struct ieee80211_channel chan_before; 2186 struct regulatory_request *lr = get_last_request(); 2187 2188 sband = wiphy->bands[reg_beacon->chan.band]; 2189 chan = &sband->channels[chan_idx]; 2190 2191 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2192 return; 2193 2194 if (chan->beacon_found) 2195 return; 2196 2197 chan->beacon_found = true; 2198 2199 if (!reg_is_world_roaming(wiphy)) 2200 return; 2201 2202 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2203 return; 2204 2205 chan_before = *chan; 2206 2207 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2208 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2209 channel_changed = true; 2210 } 2211 2212 if (channel_changed) { 2213 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2214 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON) 2215 reg_call_notifier(wiphy, lr); 2216 } 2217 } 2218 2219 /* 2220 * Called when a scan on a wiphy finds a beacon on 2221 * new channel 2222 */ 2223 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2224 struct reg_beacon *reg_beacon) 2225 { 2226 unsigned int i; 2227 struct ieee80211_supported_band *sband; 2228 2229 if (!wiphy->bands[reg_beacon->chan.band]) 2230 return; 2231 2232 sband = wiphy->bands[reg_beacon->chan.band]; 2233 2234 for (i = 0; i < sband->n_channels; i++) 2235 handle_reg_beacon(wiphy, i, reg_beacon); 2236 } 2237 2238 /* 2239 * Called upon reg changes or a new wiphy is added 2240 */ 2241 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2242 { 2243 unsigned int i; 2244 struct ieee80211_supported_band *sband; 2245 struct reg_beacon *reg_beacon; 2246 2247 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2248 if (!wiphy->bands[reg_beacon->chan.band]) 2249 continue; 2250 sband = wiphy->bands[reg_beacon->chan.band]; 2251 for (i = 0; i < sband->n_channels; i++) 2252 handle_reg_beacon(wiphy, i, reg_beacon); 2253 } 2254 } 2255 2256 /* Reap the advantages of previously found beacons */ 2257 static void reg_process_beacons(struct wiphy *wiphy) 2258 { 2259 /* 2260 * Means we are just firing up cfg80211, so no beacons would 2261 * have been processed yet. 2262 */ 2263 if (!last_request) 2264 return; 2265 wiphy_update_beacon_reg(wiphy); 2266 } 2267 2268 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2269 { 2270 if (!chan) 2271 return false; 2272 if (chan->flags & IEEE80211_CHAN_DISABLED) 2273 return false; 2274 /* This would happen when regulatory rules disallow HT40 completely */ 2275 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2276 return false; 2277 return true; 2278 } 2279 2280 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2281 struct ieee80211_channel *channel) 2282 { 2283 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2284 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2285 const struct ieee80211_regdomain *regd; 2286 unsigned int i; 2287 u32 flags; 2288 2289 if (!is_ht40_allowed(channel)) { 2290 channel->flags |= IEEE80211_CHAN_NO_HT40; 2291 return; 2292 } 2293 2294 /* 2295 * We need to ensure the extension channels exist to 2296 * be able to use HT40- or HT40+, this finds them (or not) 2297 */ 2298 for (i = 0; i < sband->n_channels; i++) { 2299 struct ieee80211_channel *c = &sband->channels[i]; 2300 2301 if (c->center_freq == (channel->center_freq - 20)) 2302 channel_before = c; 2303 if (c->center_freq == (channel->center_freq + 20)) 2304 channel_after = c; 2305 } 2306 2307 flags = 0; 2308 regd = get_wiphy_regdom(wiphy); 2309 if (regd) { 2310 const struct ieee80211_reg_rule *reg_rule = 2311 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2312 regd, MHZ_TO_KHZ(20)); 2313 2314 if (!IS_ERR(reg_rule)) 2315 flags = reg_rule->flags; 2316 } 2317 2318 /* 2319 * Please note that this assumes target bandwidth is 20 MHz, 2320 * if that ever changes we also need to change the below logic 2321 * to include that as well. 2322 */ 2323 if (!is_ht40_allowed(channel_before) || 2324 flags & NL80211_RRF_NO_HT40MINUS) 2325 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2326 else 2327 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2328 2329 if (!is_ht40_allowed(channel_after) || 2330 flags & NL80211_RRF_NO_HT40PLUS) 2331 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2332 else 2333 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2334 } 2335 2336 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2337 struct ieee80211_supported_band *sband) 2338 { 2339 unsigned int i; 2340 2341 if (!sband) 2342 return; 2343 2344 for (i = 0; i < sband->n_channels; i++) 2345 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2346 } 2347 2348 static void reg_process_ht_flags(struct wiphy *wiphy) 2349 { 2350 enum nl80211_band band; 2351 2352 if (!wiphy) 2353 return; 2354 2355 for (band = 0; band < NUM_NL80211_BANDS; band++) 2356 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2357 } 2358 2359 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2360 { 2361 struct cfg80211_chan_def chandef = {}; 2362 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2363 enum nl80211_iftype iftype; 2364 bool ret; 2365 int link; 2366 2367 iftype = wdev->iftype; 2368 2369 /* make sure the interface is active */ 2370 if (!wdev->netdev || !netif_running(wdev->netdev)) 2371 return true; 2372 2373 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) { 2374 struct ieee80211_channel *chan; 2375 2376 if (!wdev->valid_links && link > 0) 2377 break; 2378 if (wdev->valid_links && !(wdev->valid_links & BIT(link))) 2379 continue; 2380 switch (iftype) { 2381 case NL80211_IFTYPE_AP: 2382 case NL80211_IFTYPE_P2P_GO: 2383 if (!wdev->links[link].ap.beacon_interval) 2384 continue; 2385 chandef = wdev->links[link].ap.chandef; 2386 break; 2387 case NL80211_IFTYPE_MESH_POINT: 2388 if (!wdev->u.mesh.beacon_interval) 2389 continue; 2390 chandef = wdev->u.mesh.chandef; 2391 break; 2392 case NL80211_IFTYPE_ADHOC: 2393 if (!wdev->u.ibss.ssid_len) 2394 continue; 2395 chandef = wdev->u.ibss.chandef; 2396 break; 2397 case NL80211_IFTYPE_STATION: 2398 case NL80211_IFTYPE_P2P_CLIENT: 2399 /* Maybe we could consider disabling that link only? */ 2400 if (!wdev->links[link].client.current_bss) 2401 continue; 2402 2403 chan = wdev->links[link].client.current_bss->pub.channel; 2404 if (!chan) 2405 continue; 2406 2407 if (!rdev->ops->get_channel || 2408 rdev_get_channel(rdev, wdev, link, &chandef)) 2409 cfg80211_chandef_create(&chandef, chan, 2410 NL80211_CHAN_NO_HT); 2411 break; 2412 case NL80211_IFTYPE_MONITOR: 2413 case NL80211_IFTYPE_AP_VLAN: 2414 case NL80211_IFTYPE_P2P_DEVICE: 2415 /* no enforcement required */ 2416 break; 2417 case NL80211_IFTYPE_OCB: 2418 if (!wdev->u.ocb.chandef.chan) 2419 continue; 2420 chandef = wdev->u.ocb.chandef; 2421 break; 2422 case NL80211_IFTYPE_NAN: 2423 /* we have no info, but NAN is also pretty universal */ 2424 continue; 2425 default: 2426 /* others not implemented for now */ 2427 WARN_ON_ONCE(1); 2428 break; 2429 } 2430 2431 switch (iftype) { 2432 case NL80211_IFTYPE_AP: 2433 case NL80211_IFTYPE_P2P_GO: 2434 case NL80211_IFTYPE_ADHOC: 2435 case NL80211_IFTYPE_MESH_POINT: 2436 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, 2437 iftype); 2438 if (!ret) 2439 return ret; 2440 break; 2441 case NL80211_IFTYPE_STATION: 2442 case NL80211_IFTYPE_P2P_CLIENT: 2443 ret = cfg80211_chandef_usable(wiphy, &chandef, 2444 IEEE80211_CHAN_DISABLED); 2445 if (!ret) 2446 return ret; 2447 break; 2448 default: 2449 break; 2450 } 2451 } 2452 2453 return true; 2454 } 2455 2456 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2457 { 2458 struct wireless_dev *wdev; 2459 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2460 2461 wiphy_lock(wiphy); 2462 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2463 if (!reg_wdev_chan_valid(wiphy, wdev)) 2464 cfg80211_leave(rdev, wdev); 2465 wiphy_unlock(wiphy); 2466 } 2467 2468 static void reg_check_chans_work(struct work_struct *work) 2469 { 2470 struct cfg80211_registered_device *rdev; 2471 2472 pr_debug("Verifying active interfaces after reg change\n"); 2473 rtnl_lock(); 2474 2475 for_each_rdev(rdev) 2476 reg_leave_invalid_chans(&rdev->wiphy); 2477 2478 rtnl_unlock(); 2479 } 2480 2481 static void reg_check_channels(void) 2482 { 2483 /* 2484 * Give usermode a chance to do something nicer (move to another 2485 * channel, orderly disconnection), before forcing a disconnection. 2486 */ 2487 mod_delayed_work(system_power_efficient_wq, 2488 ®_check_chans, 2489 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2490 } 2491 2492 static void wiphy_update_regulatory(struct wiphy *wiphy, 2493 enum nl80211_reg_initiator initiator) 2494 { 2495 enum nl80211_band band; 2496 struct regulatory_request *lr = get_last_request(); 2497 2498 if (ignore_reg_update(wiphy, initiator)) { 2499 /* 2500 * Regulatory updates set by CORE are ignored for custom 2501 * regulatory cards. Let us notify the changes to the driver, 2502 * as some drivers used this to restore its orig_* reg domain. 2503 */ 2504 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2505 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2506 !(wiphy->regulatory_flags & 2507 REGULATORY_WIPHY_SELF_MANAGED)) 2508 reg_call_notifier(wiphy, lr); 2509 return; 2510 } 2511 2512 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2513 2514 for (band = 0; band < NUM_NL80211_BANDS; band++) 2515 handle_band(wiphy, initiator, wiphy->bands[band]); 2516 2517 reg_process_beacons(wiphy); 2518 reg_process_ht_flags(wiphy); 2519 reg_call_notifier(wiphy, lr); 2520 } 2521 2522 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2523 { 2524 struct cfg80211_registered_device *rdev; 2525 struct wiphy *wiphy; 2526 2527 ASSERT_RTNL(); 2528 2529 for_each_rdev(rdev) { 2530 wiphy = &rdev->wiphy; 2531 wiphy_update_regulatory(wiphy, initiator); 2532 } 2533 2534 reg_check_channels(); 2535 } 2536 2537 static void handle_channel_custom(struct wiphy *wiphy, 2538 struct ieee80211_channel *chan, 2539 const struct ieee80211_regdomain *regd, 2540 u32 min_bw) 2541 { 2542 u32 bw_flags = 0; 2543 const struct ieee80211_reg_rule *reg_rule = NULL; 2544 const struct ieee80211_power_rule *power_rule = NULL; 2545 u32 bw, center_freq_khz; 2546 2547 center_freq_khz = ieee80211_channel_to_khz(chan); 2548 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2549 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2550 if (!IS_ERR(reg_rule)) 2551 break; 2552 } 2553 2554 if (IS_ERR_OR_NULL(reg_rule)) { 2555 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2556 chan->center_freq, chan->freq_offset); 2557 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2558 chan->flags |= IEEE80211_CHAN_DISABLED; 2559 } else { 2560 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2561 chan->flags = chan->orig_flags; 2562 } 2563 return; 2564 } 2565 2566 power_rule = ®_rule->power_rule; 2567 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2568 2569 chan->dfs_state_entered = jiffies; 2570 chan->dfs_state = NL80211_DFS_USABLE; 2571 2572 chan->beacon_found = false; 2573 2574 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2575 chan->flags = chan->orig_flags | bw_flags | 2576 map_regdom_flags(reg_rule->flags); 2577 else 2578 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2579 2580 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2581 chan->max_reg_power = chan->max_power = 2582 (int) MBM_TO_DBM(power_rule->max_eirp); 2583 2584 if (chan->flags & IEEE80211_CHAN_RADAR) { 2585 if (reg_rule->dfs_cac_ms) 2586 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2587 else 2588 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2589 } 2590 2591 if (chan->flags & IEEE80211_CHAN_PSD) 2592 chan->psd = reg_rule->psd; 2593 2594 chan->max_power = chan->max_reg_power; 2595 } 2596 2597 static void handle_band_custom(struct wiphy *wiphy, 2598 struct ieee80211_supported_band *sband, 2599 const struct ieee80211_regdomain *regd) 2600 { 2601 unsigned int i; 2602 2603 if (!sband) 2604 return; 2605 2606 /* 2607 * We currently assume that you always want at least 20 MHz, 2608 * otherwise channel 12 might get enabled if this rule is 2609 * compatible to US, which permits 2402 - 2472 MHz. 2610 */ 2611 for (i = 0; i < sband->n_channels; i++) 2612 handle_channel_custom(wiphy, &sband->channels[i], regd, 2613 MHZ_TO_KHZ(20)); 2614 } 2615 2616 /* Used by drivers prior to wiphy registration */ 2617 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2618 const struct ieee80211_regdomain *regd) 2619 { 2620 const struct ieee80211_regdomain *new_regd, *tmp; 2621 enum nl80211_band band; 2622 unsigned int bands_set = 0; 2623 2624 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2625 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2626 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2627 2628 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2629 if (!wiphy->bands[band]) 2630 continue; 2631 handle_band_custom(wiphy, wiphy->bands[band], regd); 2632 bands_set++; 2633 } 2634 2635 /* 2636 * no point in calling this if it won't have any effect 2637 * on your device's supported bands. 2638 */ 2639 WARN_ON(!bands_set); 2640 new_regd = reg_copy_regd(regd); 2641 if (IS_ERR(new_regd)) 2642 return; 2643 2644 rtnl_lock(); 2645 wiphy_lock(wiphy); 2646 2647 tmp = get_wiphy_regdom(wiphy); 2648 rcu_assign_pointer(wiphy->regd, new_regd); 2649 rcu_free_regdom(tmp); 2650 2651 wiphy_unlock(wiphy); 2652 rtnl_unlock(); 2653 } 2654 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2655 2656 static void reg_set_request_processed(void) 2657 { 2658 bool need_more_processing = false; 2659 struct regulatory_request *lr = get_last_request(); 2660 2661 lr->processed = true; 2662 2663 spin_lock(®_requests_lock); 2664 if (!list_empty(®_requests_list)) 2665 need_more_processing = true; 2666 spin_unlock(®_requests_lock); 2667 2668 cancel_crda_timeout(); 2669 2670 if (need_more_processing) 2671 schedule_work(®_work); 2672 } 2673 2674 /** 2675 * reg_process_hint_core - process core regulatory requests 2676 * @core_request: a pending core regulatory request 2677 * 2678 * The wireless subsystem can use this function to process 2679 * a regulatory request issued by the regulatory core. 2680 * 2681 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the 2682 * hint was processed or ignored 2683 */ 2684 static enum reg_request_treatment 2685 reg_process_hint_core(struct regulatory_request *core_request) 2686 { 2687 if (reg_query_database(core_request)) { 2688 core_request->intersect = false; 2689 core_request->processed = false; 2690 reg_update_last_request(core_request); 2691 return REG_REQ_OK; 2692 } 2693 2694 return REG_REQ_IGNORE; 2695 } 2696 2697 static enum reg_request_treatment 2698 __reg_process_hint_user(struct regulatory_request *user_request) 2699 { 2700 struct regulatory_request *lr = get_last_request(); 2701 2702 if (reg_request_cell_base(user_request)) 2703 return reg_ignore_cell_hint(user_request); 2704 2705 if (reg_request_cell_base(lr)) 2706 return REG_REQ_IGNORE; 2707 2708 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2709 return REG_REQ_INTERSECT; 2710 /* 2711 * If the user knows better the user should set the regdom 2712 * to their country before the IE is picked up 2713 */ 2714 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2715 lr->intersect) 2716 return REG_REQ_IGNORE; 2717 /* 2718 * Process user requests only after previous user/driver/core 2719 * requests have been processed 2720 */ 2721 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2722 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2723 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2724 regdom_changes(lr->alpha2)) 2725 return REG_REQ_IGNORE; 2726 2727 if (!regdom_changes(user_request->alpha2)) 2728 return REG_REQ_ALREADY_SET; 2729 2730 return REG_REQ_OK; 2731 } 2732 2733 /** 2734 * reg_process_hint_user - process user regulatory requests 2735 * @user_request: a pending user regulatory request 2736 * 2737 * The wireless subsystem can use this function to process 2738 * a regulatory request initiated by userspace. 2739 * 2740 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the 2741 * hint was processed or ignored 2742 */ 2743 static enum reg_request_treatment 2744 reg_process_hint_user(struct regulatory_request *user_request) 2745 { 2746 enum reg_request_treatment treatment; 2747 2748 treatment = __reg_process_hint_user(user_request); 2749 if (treatment == REG_REQ_IGNORE || 2750 treatment == REG_REQ_ALREADY_SET) 2751 return REG_REQ_IGNORE; 2752 2753 user_request->intersect = treatment == REG_REQ_INTERSECT; 2754 user_request->processed = false; 2755 2756 if (reg_query_database(user_request)) { 2757 reg_update_last_request(user_request); 2758 user_alpha2[0] = user_request->alpha2[0]; 2759 user_alpha2[1] = user_request->alpha2[1]; 2760 return REG_REQ_OK; 2761 } 2762 2763 return REG_REQ_IGNORE; 2764 } 2765 2766 static enum reg_request_treatment 2767 __reg_process_hint_driver(struct regulatory_request *driver_request) 2768 { 2769 struct regulatory_request *lr = get_last_request(); 2770 2771 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2772 if (regdom_changes(driver_request->alpha2)) 2773 return REG_REQ_OK; 2774 return REG_REQ_ALREADY_SET; 2775 } 2776 2777 /* 2778 * This would happen if you unplug and plug your card 2779 * back in or if you add a new device for which the previously 2780 * loaded card also agrees on the regulatory domain. 2781 */ 2782 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2783 !regdom_changes(driver_request->alpha2)) 2784 return REG_REQ_ALREADY_SET; 2785 2786 return REG_REQ_INTERSECT; 2787 } 2788 2789 /** 2790 * reg_process_hint_driver - process driver regulatory requests 2791 * @wiphy: the wireless device for the regulatory request 2792 * @driver_request: a pending driver regulatory request 2793 * 2794 * The wireless subsystem can use this function to process 2795 * a regulatory request issued by an 802.11 driver. 2796 * 2797 * Returns: one of the different reg request treatment values. 2798 */ 2799 static enum reg_request_treatment 2800 reg_process_hint_driver(struct wiphy *wiphy, 2801 struct regulatory_request *driver_request) 2802 { 2803 const struct ieee80211_regdomain *regd, *tmp; 2804 enum reg_request_treatment treatment; 2805 2806 treatment = __reg_process_hint_driver(driver_request); 2807 2808 switch (treatment) { 2809 case REG_REQ_OK: 2810 break; 2811 case REG_REQ_IGNORE: 2812 return REG_REQ_IGNORE; 2813 case REG_REQ_INTERSECT: 2814 case REG_REQ_ALREADY_SET: 2815 regd = reg_copy_regd(get_cfg80211_regdom()); 2816 if (IS_ERR(regd)) 2817 return REG_REQ_IGNORE; 2818 2819 tmp = get_wiphy_regdom(wiphy); 2820 ASSERT_RTNL(); 2821 wiphy_lock(wiphy); 2822 rcu_assign_pointer(wiphy->regd, regd); 2823 wiphy_unlock(wiphy); 2824 rcu_free_regdom(tmp); 2825 } 2826 2827 2828 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2829 driver_request->processed = false; 2830 2831 /* 2832 * Since CRDA will not be called in this case as we already 2833 * have applied the requested regulatory domain before we just 2834 * inform userspace we have processed the request 2835 */ 2836 if (treatment == REG_REQ_ALREADY_SET) { 2837 nl80211_send_reg_change_event(driver_request); 2838 reg_update_last_request(driver_request); 2839 reg_set_request_processed(); 2840 return REG_REQ_ALREADY_SET; 2841 } 2842 2843 if (reg_query_database(driver_request)) { 2844 reg_update_last_request(driver_request); 2845 return REG_REQ_OK; 2846 } 2847 2848 return REG_REQ_IGNORE; 2849 } 2850 2851 static enum reg_request_treatment 2852 __reg_process_hint_country_ie(struct wiphy *wiphy, 2853 struct regulatory_request *country_ie_request) 2854 { 2855 struct wiphy *last_wiphy = NULL; 2856 struct regulatory_request *lr = get_last_request(); 2857 2858 if (reg_request_cell_base(lr)) { 2859 /* Trust a Cell base station over the AP's country IE */ 2860 if (regdom_changes(country_ie_request->alpha2)) 2861 return REG_REQ_IGNORE; 2862 return REG_REQ_ALREADY_SET; 2863 } else { 2864 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2865 return REG_REQ_IGNORE; 2866 } 2867 2868 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2869 return -EINVAL; 2870 2871 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2872 return REG_REQ_OK; 2873 2874 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2875 2876 if (last_wiphy != wiphy) { 2877 /* 2878 * Two cards with two APs claiming different 2879 * Country IE alpha2s. We could 2880 * intersect them, but that seems unlikely 2881 * to be correct. Reject second one for now. 2882 */ 2883 if (regdom_changes(country_ie_request->alpha2)) 2884 return REG_REQ_IGNORE; 2885 return REG_REQ_ALREADY_SET; 2886 } 2887 2888 if (regdom_changes(country_ie_request->alpha2)) 2889 return REG_REQ_OK; 2890 return REG_REQ_ALREADY_SET; 2891 } 2892 2893 /** 2894 * reg_process_hint_country_ie - process regulatory requests from country IEs 2895 * @wiphy: the wireless device for the regulatory request 2896 * @country_ie_request: a regulatory request from a country IE 2897 * 2898 * The wireless subsystem can use this function to process 2899 * a regulatory request issued by a country Information Element. 2900 * 2901 * Returns: one of the different reg request treatment values. 2902 */ 2903 static enum reg_request_treatment 2904 reg_process_hint_country_ie(struct wiphy *wiphy, 2905 struct regulatory_request *country_ie_request) 2906 { 2907 enum reg_request_treatment treatment; 2908 2909 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2910 2911 switch (treatment) { 2912 case REG_REQ_OK: 2913 break; 2914 case REG_REQ_IGNORE: 2915 return REG_REQ_IGNORE; 2916 case REG_REQ_ALREADY_SET: 2917 reg_free_request(country_ie_request); 2918 return REG_REQ_ALREADY_SET; 2919 case REG_REQ_INTERSECT: 2920 /* 2921 * This doesn't happen yet, not sure we 2922 * ever want to support it for this case. 2923 */ 2924 WARN_ONCE(1, "Unexpected intersection for country elements"); 2925 return REG_REQ_IGNORE; 2926 } 2927 2928 country_ie_request->intersect = false; 2929 country_ie_request->processed = false; 2930 2931 if (reg_query_database(country_ie_request)) { 2932 reg_update_last_request(country_ie_request); 2933 return REG_REQ_OK; 2934 } 2935 2936 return REG_REQ_IGNORE; 2937 } 2938 2939 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2940 { 2941 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2942 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2943 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2944 bool dfs_domain_same; 2945 2946 rcu_read_lock(); 2947 2948 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2949 wiphy1_regd = rcu_dereference(wiphy1->regd); 2950 if (!wiphy1_regd) 2951 wiphy1_regd = cfg80211_regd; 2952 2953 wiphy2_regd = rcu_dereference(wiphy2->regd); 2954 if (!wiphy2_regd) 2955 wiphy2_regd = cfg80211_regd; 2956 2957 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2958 2959 rcu_read_unlock(); 2960 2961 return dfs_domain_same; 2962 } 2963 2964 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2965 struct ieee80211_channel *src_chan) 2966 { 2967 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2968 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2969 return; 2970 2971 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2972 src_chan->flags & IEEE80211_CHAN_DISABLED) 2973 return; 2974 2975 if (src_chan->center_freq == dst_chan->center_freq && 2976 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2977 dst_chan->dfs_state = src_chan->dfs_state; 2978 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2979 } 2980 } 2981 2982 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2983 struct wiphy *src_wiphy) 2984 { 2985 struct ieee80211_supported_band *src_sband, *dst_sband; 2986 struct ieee80211_channel *src_chan, *dst_chan; 2987 int i, j, band; 2988 2989 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2990 return; 2991 2992 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2993 dst_sband = dst_wiphy->bands[band]; 2994 src_sband = src_wiphy->bands[band]; 2995 if (!dst_sband || !src_sband) 2996 continue; 2997 2998 for (i = 0; i < dst_sband->n_channels; i++) { 2999 dst_chan = &dst_sband->channels[i]; 3000 for (j = 0; j < src_sband->n_channels; j++) { 3001 src_chan = &src_sband->channels[j]; 3002 reg_copy_dfs_chan_state(dst_chan, src_chan); 3003 } 3004 } 3005 } 3006 } 3007 3008 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 3009 { 3010 struct cfg80211_registered_device *rdev; 3011 3012 ASSERT_RTNL(); 3013 3014 for_each_rdev(rdev) { 3015 if (wiphy == &rdev->wiphy) 3016 continue; 3017 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 3018 } 3019 } 3020 3021 /* This processes *all* regulatory hints */ 3022 static void reg_process_hint(struct regulatory_request *reg_request) 3023 { 3024 struct wiphy *wiphy = NULL; 3025 enum reg_request_treatment treatment; 3026 enum nl80211_reg_initiator initiator = reg_request->initiator; 3027 3028 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 3029 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 3030 3031 switch (initiator) { 3032 case NL80211_REGDOM_SET_BY_CORE: 3033 treatment = reg_process_hint_core(reg_request); 3034 break; 3035 case NL80211_REGDOM_SET_BY_USER: 3036 treatment = reg_process_hint_user(reg_request); 3037 break; 3038 case NL80211_REGDOM_SET_BY_DRIVER: 3039 if (!wiphy) 3040 goto out_free; 3041 treatment = reg_process_hint_driver(wiphy, reg_request); 3042 break; 3043 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3044 if (!wiphy) 3045 goto out_free; 3046 treatment = reg_process_hint_country_ie(wiphy, reg_request); 3047 break; 3048 default: 3049 WARN(1, "invalid initiator %d\n", initiator); 3050 goto out_free; 3051 } 3052 3053 if (treatment == REG_REQ_IGNORE) 3054 goto out_free; 3055 3056 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 3057 "unexpected treatment value %d\n", treatment); 3058 3059 /* This is required so that the orig_* parameters are saved. 3060 * NOTE: treatment must be set for any case that reaches here! 3061 */ 3062 if (treatment == REG_REQ_ALREADY_SET && wiphy && 3063 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 3064 wiphy_update_regulatory(wiphy, initiator); 3065 wiphy_all_share_dfs_chan_state(wiphy); 3066 reg_check_channels(); 3067 } 3068 3069 return; 3070 3071 out_free: 3072 reg_free_request(reg_request); 3073 } 3074 3075 static void notify_self_managed_wiphys(struct regulatory_request *request) 3076 { 3077 struct cfg80211_registered_device *rdev; 3078 struct wiphy *wiphy; 3079 3080 for_each_rdev(rdev) { 3081 wiphy = &rdev->wiphy; 3082 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 3083 request->initiator == NL80211_REGDOM_SET_BY_USER) 3084 reg_call_notifier(wiphy, request); 3085 } 3086 } 3087 3088 /* 3089 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 3090 * Regulatory hints come on a first come first serve basis and we 3091 * must process each one atomically. 3092 */ 3093 static void reg_process_pending_hints(void) 3094 { 3095 struct regulatory_request *reg_request, *lr; 3096 3097 lr = get_last_request(); 3098 3099 /* When last_request->processed becomes true this will be rescheduled */ 3100 if (lr && !lr->processed) { 3101 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3102 return; 3103 } 3104 3105 spin_lock(®_requests_lock); 3106 3107 if (list_empty(®_requests_list)) { 3108 spin_unlock(®_requests_lock); 3109 return; 3110 } 3111 3112 reg_request = list_first_entry(®_requests_list, 3113 struct regulatory_request, 3114 list); 3115 list_del_init(®_request->list); 3116 3117 spin_unlock(®_requests_lock); 3118 3119 notify_self_managed_wiphys(reg_request); 3120 3121 reg_process_hint(reg_request); 3122 3123 lr = get_last_request(); 3124 3125 spin_lock(®_requests_lock); 3126 if (!list_empty(®_requests_list) && lr && lr->processed) 3127 schedule_work(®_work); 3128 spin_unlock(®_requests_lock); 3129 } 3130 3131 /* Processes beacon hints -- this has nothing to do with country IEs */ 3132 static void reg_process_pending_beacon_hints(void) 3133 { 3134 struct cfg80211_registered_device *rdev; 3135 struct reg_beacon *pending_beacon, *tmp; 3136 3137 /* This goes through the _pending_ beacon list */ 3138 spin_lock_bh(®_pending_beacons_lock); 3139 3140 list_for_each_entry_safe(pending_beacon, tmp, 3141 ®_pending_beacons, list) { 3142 list_del_init(&pending_beacon->list); 3143 3144 /* Applies the beacon hint to current wiphys */ 3145 for_each_rdev(rdev) 3146 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3147 3148 /* Remembers the beacon hint for new wiphys or reg changes */ 3149 list_add_tail(&pending_beacon->list, ®_beacon_list); 3150 } 3151 3152 spin_unlock_bh(®_pending_beacons_lock); 3153 } 3154 3155 static void reg_process_self_managed_hint(struct wiphy *wiphy) 3156 { 3157 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3158 const struct ieee80211_regdomain *tmp; 3159 const struct ieee80211_regdomain *regd; 3160 enum nl80211_band band; 3161 struct regulatory_request request = {}; 3162 3163 ASSERT_RTNL(); 3164 lockdep_assert_wiphy(wiphy); 3165 3166 spin_lock(®_requests_lock); 3167 regd = rdev->requested_regd; 3168 rdev->requested_regd = NULL; 3169 spin_unlock(®_requests_lock); 3170 3171 if (!regd) 3172 return; 3173 3174 tmp = get_wiphy_regdom(wiphy); 3175 rcu_assign_pointer(wiphy->regd, regd); 3176 rcu_free_regdom(tmp); 3177 3178 for (band = 0; band < NUM_NL80211_BANDS; band++) 3179 handle_band_custom(wiphy, wiphy->bands[band], regd); 3180 3181 reg_process_ht_flags(wiphy); 3182 3183 request.wiphy_idx = get_wiphy_idx(wiphy); 3184 request.alpha2[0] = regd->alpha2[0]; 3185 request.alpha2[1] = regd->alpha2[1]; 3186 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3187 3188 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER) 3189 reg_call_notifier(wiphy, &request); 3190 3191 nl80211_send_wiphy_reg_change_event(&request); 3192 } 3193 3194 static void reg_process_self_managed_hints(void) 3195 { 3196 struct cfg80211_registered_device *rdev; 3197 3198 ASSERT_RTNL(); 3199 3200 for_each_rdev(rdev) { 3201 wiphy_lock(&rdev->wiphy); 3202 reg_process_self_managed_hint(&rdev->wiphy); 3203 wiphy_unlock(&rdev->wiphy); 3204 } 3205 3206 reg_check_channels(); 3207 } 3208 3209 static void reg_todo(struct work_struct *work) 3210 { 3211 rtnl_lock(); 3212 reg_process_pending_hints(); 3213 reg_process_pending_beacon_hints(); 3214 reg_process_self_managed_hints(); 3215 rtnl_unlock(); 3216 } 3217 3218 static void queue_regulatory_request(struct regulatory_request *request) 3219 { 3220 request->alpha2[0] = toupper(request->alpha2[0]); 3221 request->alpha2[1] = toupper(request->alpha2[1]); 3222 3223 spin_lock(®_requests_lock); 3224 list_add_tail(&request->list, ®_requests_list); 3225 spin_unlock(®_requests_lock); 3226 3227 schedule_work(®_work); 3228 } 3229 3230 /* 3231 * Core regulatory hint -- happens during cfg80211_init() 3232 * and when we restore regulatory settings. 3233 */ 3234 static int regulatory_hint_core(const char *alpha2) 3235 { 3236 struct regulatory_request *request; 3237 3238 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3239 if (!request) 3240 return -ENOMEM; 3241 3242 request->alpha2[0] = alpha2[0]; 3243 request->alpha2[1] = alpha2[1]; 3244 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3245 request->wiphy_idx = WIPHY_IDX_INVALID; 3246 3247 queue_regulatory_request(request); 3248 3249 return 0; 3250 } 3251 3252 /* User hints */ 3253 int regulatory_hint_user(const char *alpha2, 3254 enum nl80211_user_reg_hint_type user_reg_hint_type) 3255 { 3256 struct regulatory_request *request; 3257 3258 if (WARN_ON(!alpha2)) 3259 return -EINVAL; 3260 3261 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3262 return -EINVAL; 3263 3264 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3265 if (!request) 3266 return -ENOMEM; 3267 3268 request->wiphy_idx = WIPHY_IDX_INVALID; 3269 request->alpha2[0] = alpha2[0]; 3270 request->alpha2[1] = alpha2[1]; 3271 request->initiator = NL80211_REGDOM_SET_BY_USER; 3272 request->user_reg_hint_type = user_reg_hint_type; 3273 3274 /* Allow calling CRDA again */ 3275 reset_crda_timeouts(); 3276 3277 queue_regulatory_request(request); 3278 3279 return 0; 3280 } 3281 3282 int regulatory_hint_indoor(bool is_indoor, u32 portid) 3283 { 3284 spin_lock(®_indoor_lock); 3285 3286 /* It is possible that more than one user space process is trying to 3287 * configure the indoor setting. To handle such cases, clear the indoor 3288 * setting in case that some process does not think that the device 3289 * is operating in an indoor environment. In addition, if a user space 3290 * process indicates that it is controlling the indoor setting, save its 3291 * portid, i.e., make it the owner. 3292 */ 3293 reg_is_indoor = is_indoor; 3294 if (reg_is_indoor) { 3295 if (!reg_is_indoor_portid) 3296 reg_is_indoor_portid = portid; 3297 } else { 3298 reg_is_indoor_portid = 0; 3299 } 3300 3301 spin_unlock(®_indoor_lock); 3302 3303 if (!is_indoor) 3304 reg_check_channels(); 3305 3306 return 0; 3307 } 3308 3309 void regulatory_netlink_notify(u32 portid) 3310 { 3311 spin_lock(®_indoor_lock); 3312 3313 if (reg_is_indoor_portid != portid) { 3314 spin_unlock(®_indoor_lock); 3315 return; 3316 } 3317 3318 reg_is_indoor = false; 3319 reg_is_indoor_portid = 0; 3320 3321 spin_unlock(®_indoor_lock); 3322 3323 reg_check_channels(); 3324 } 3325 3326 /* Driver hints */ 3327 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3328 { 3329 struct regulatory_request *request; 3330 3331 if (WARN_ON(!alpha2 || !wiphy)) 3332 return -EINVAL; 3333 3334 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3335 3336 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3337 if (!request) 3338 return -ENOMEM; 3339 3340 request->wiphy_idx = get_wiphy_idx(wiphy); 3341 3342 request->alpha2[0] = alpha2[0]; 3343 request->alpha2[1] = alpha2[1]; 3344 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3345 3346 /* Allow calling CRDA again */ 3347 reset_crda_timeouts(); 3348 3349 queue_regulatory_request(request); 3350 3351 return 0; 3352 } 3353 EXPORT_SYMBOL(regulatory_hint); 3354 3355 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3356 const u8 *country_ie, u8 country_ie_len) 3357 { 3358 char alpha2[2]; 3359 enum environment_cap env = ENVIRON_ANY; 3360 struct regulatory_request *request = NULL, *lr; 3361 3362 /* IE len must be evenly divisible by 2 */ 3363 if (country_ie_len & 0x01) 3364 return; 3365 3366 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3367 return; 3368 3369 request = kzalloc(sizeof(*request), GFP_KERNEL); 3370 if (!request) 3371 return; 3372 3373 alpha2[0] = country_ie[0]; 3374 alpha2[1] = country_ie[1]; 3375 3376 if (country_ie[2] == 'I') 3377 env = ENVIRON_INDOOR; 3378 else if (country_ie[2] == 'O') 3379 env = ENVIRON_OUTDOOR; 3380 3381 rcu_read_lock(); 3382 lr = get_last_request(); 3383 3384 if (unlikely(!lr)) 3385 goto out; 3386 3387 /* 3388 * We will run this only upon a successful connection on cfg80211. 3389 * We leave conflict resolution to the workqueue, where can hold 3390 * the RTNL. 3391 */ 3392 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3393 lr->wiphy_idx != WIPHY_IDX_INVALID) 3394 goto out; 3395 3396 request->wiphy_idx = get_wiphy_idx(wiphy); 3397 request->alpha2[0] = alpha2[0]; 3398 request->alpha2[1] = alpha2[1]; 3399 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3400 request->country_ie_env = env; 3401 3402 /* Allow calling CRDA again */ 3403 reset_crda_timeouts(); 3404 3405 queue_regulatory_request(request); 3406 request = NULL; 3407 out: 3408 kfree(request); 3409 rcu_read_unlock(); 3410 } 3411 3412 static void restore_alpha2(char *alpha2, bool reset_user) 3413 { 3414 /* indicates there is no alpha2 to consider for restoration */ 3415 alpha2[0] = '9'; 3416 alpha2[1] = '7'; 3417 3418 /* The user setting has precedence over the module parameter */ 3419 if (is_user_regdom_saved()) { 3420 /* Unless we're asked to ignore it and reset it */ 3421 if (reset_user) { 3422 pr_debug("Restoring regulatory settings including user preference\n"); 3423 user_alpha2[0] = '9'; 3424 user_alpha2[1] = '7'; 3425 3426 /* 3427 * If we're ignoring user settings, we still need to 3428 * check the module parameter to ensure we put things 3429 * back as they were for a full restore. 3430 */ 3431 if (!is_world_regdom(ieee80211_regdom)) { 3432 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3433 ieee80211_regdom[0], ieee80211_regdom[1]); 3434 alpha2[0] = ieee80211_regdom[0]; 3435 alpha2[1] = ieee80211_regdom[1]; 3436 } 3437 } else { 3438 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3439 user_alpha2[0], user_alpha2[1]); 3440 alpha2[0] = user_alpha2[0]; 3441 alpha2[1] = user_alpha2[1]; 3442 } 3443 } else if (!is_world_regdom(ieee80211_regdom)) { 3444 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3445 ieee80211_regdom[0], ieee80211_regdom[1]); 3446 alpha2[0] = ieee80211_regdom[0]; 3447 alpha2[1] = ieee80211_regdom[1]; 3448 } else 3449 pr_debug("Restoring regulatory settings\n"); 3450 } 3451 3452 static void restore_custom_reg_settings(struct wiphy *wiphy) 3453 { 3454 struct ieee80211_supported_band *sband; 3455 enum nl80211_band band; 3456 struct ieee80211_channel *chan; 3457 int i; 3458 3459 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3460 sband = wiphy->bands[band]; 3461 if (!sband) 3462 continue; 3463 for (i = 0; i < sband->n_channels; i++) { 3464 chan = &sband->channels[i]; 3465 chan->flags = chan->orig_flags; 3466 chan->max_antenna_gain = chan->orig_mag; 3467 chan->max_power = chan->orig_mpwr; 3468 chan->beacon_found = false; 3469 } 3470 } 3471 } 3472 3473 /* 3474 * Restoring regulatory settings involves ignoring any 3475 * possibly stale country IE information and user regulatory 3476 * settings if so desired, this includes any beacon hints 3477 * learned as we could have traveled outside to another country 3478 * after disconnection. To restore regulatory settings we do 3479 * exactly what we did at bootup: 3480 * 3481 * - send a core regulatory hint 3482 * - send a user regulatory hint if applicable 3483 * 3484 * Device drivers that send a regulatory hint for a specific country 3485 * keep their own regulatory domain on wiphy->regd so that does 3486 * not need to be remembered. 3487 */ 3488 static void restore_regulatory_settings(bool reset_user, bool cached) 3489 { 3490 char alpha2[2]; 3491 char world_alpha2[2]; 3492 struct reg_beacon *reg_beacon, *btmp; 3493 LIST_HEAD(tmp_reg_req_list); 3494 struct cfg80211_registered_device *rdev; 3495 3496 ASSERT_RTNL(); 3497 3498 /* 3499 * Clear the indoor setting in case that it is not controlled by user 3500 * space, as otherwise there is no guarantee that the device is still 3501 * operating in an indoor environment. 3502 */ 3503 spin_lock(®_indoor_lock); 3504 if (reg_is_indoor && !reg_is_indoor_portid) { 3505 reg_is_indoor = false; 3506 reg_check_channels(); 3507 } 3508 spin_unlock(®_indoor_lock); 3509 3510 reset_regdomains(true, &world_regdom); 3511 restore_alpha2(alpha2, reset_user); 3512 3513 /* 3514 * If there's any pending requests we simply 3515 * stash them to a temporary pending queue and 3516 * add then after we've restored regulatory 3517 * settings. 3518 */ 3519 spin_lock(®_requests_lock); 3520 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3521 spin_unlock(®_requests_lock); 3522 3523 /* Clear beacon hints */ 3524 spin_lock_bh(®_pending_beacons_lock); 3525 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3526 list_del(®_beacon->list); 3527 kfree(reg_beacon); 3528 } 3529 spin_unlock_bh(®_pending_beacons_lock); 3530 3531 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3532 list_del(®_beacon->list); 3533 kfree(reg_beacon); 3534 } 3535 3536 /* First restore to the basic regulatory settings */ 3537 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3538 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3539 3540 for_each_rdev(rdev) { 3541 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3542 continue; 3543 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3544 restore_custom_reg_settings(&rdev->wiphy); 3545 } 3546 3547 if (cached && (!is_an_alpha2(alpha2) || 3548 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3549 reset_regdomains(false, cfg80211_world_regdom); 3550 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3551 print_regdomain(get_cfg80211_regdom()); 3552 nl80211_send_reg_change_event(&core_request_world); 3553 reg_set_request_processed(); 3554 3555 if (is_an_alpha2(alpha2) && 3556 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3557 struct regulatory_request *ureq; 3558 3559 spin_lock(®_requests_lock); 3560 ureq = list_last_entry(®_requests_list, 3561 struct regulatory_request, 3562 list); 3563 list_del(&ureq->list); 3564 spin_unlock(®_requests_lock); 3565 3566 notify_self_managed_wiphys(ureq); 3567 reg_update_last_request(ureq); 3568 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3569 REGD_SOURCE_CACHED); 3570 } 3571 } else { 3572 regulatory_hint_core(world_alpha2); 3573 3574 /* 3575 * This restores the ieee80211_regdom module parameter 3576 * preference or the last user requested regulatory 3577 * settings, user regulatory settings takes precedence. 3578 */ 3579 if (is_an_alpha2(alpha2)) 3580 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3581 } 3582 3583 spin_lock(®_requests_lock); 3584 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3585 spin_unlock(®_requests_lock); 3586 3587 pr_debug("Kicking the queue\n"); 3588 3589 schedule_work(®_work); 3590 } 3591 3592 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3593 { 3594 struct cfg80211_registered_device *rdev; 3595 struct wireless_dev *wdev; 3596 3597 for_each_rdev(rdev) { 3598 wiphy_lock(&rdev->wiphy); 3599 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3600 if (!(wdev->wiphy->regulatory_flags & flag)) { 3601 wiphy_unlock(&rdev->wiphy); 3602 return false; 3603 } 3604 } 3605 wiphy_unlock(&rdev->wiphy); 3606 } 3607 3608 return true; 3609 } 3610 3611 void regulatory_hint_disconnect(void) 3612 { 3613 /* Restore of regulatory settings is not required when wiphy(s) 3614 * ignore IE from connected access point but clearance of beacon hints 3615 * is required when wiphy(s) supports beacon hints. 3616 */ 3617 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3618 struct reg_beacon *reg_beacon, *btmp; 3619 3620 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3621 return; 3622 3623 spin_lock_bh(®_pending_beacons_lock); 3624 list_for_each_entry_safe(reg_beacon, btmp, 3625 ®_pending_beacons, list) { 3626 list_del(®_beacon->list); 3627 kfree(reg_beacon); 3628 } 3629 spin_unlock_bh(®_pending_beacons_lock); 3630 3631 list_for_each_entry_safe(reg_beacon, btmp, 3632 ®_beacon_list, list) { 3633 list_del(®_beacon->list); 3634 kfree(reg_beacon); 3635 } 3636 3637 return; 3638 } 3639 3640 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3641 restore_regulatory_settings(false, true); 3642 } 3643 3644 static bool freq_is_chan_12_13_14(u32 freq) 3645 { 3646 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3647 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3648 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3649 return true; 3650 return false; 3651 } 3652 3653 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3654 { 3655 struct reg_beacon *pending_beacon; 3656 3657 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3658 if (ieee80211_channel_equal(beacon_chan, 3659 &pending_beacon->chan)) 3660 return true; 3661 return false; 3662 } 3663 3664 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3665 struct ieee80211_channel *beacon_chan, 3666 gfp_t gfp) 3667 { 3668 struct reg_beacon *reg_beacon; 3669 bool processing; 3670 3671 if (beacon_chan->beacon_found || 3672 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3673 (beacon_chan->band == NL80211_BAND_2GHZ && 3674 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3675 return 0; 3676 3677 spin_lock_bh(®_pending_beacons_lock); 3678 processing = pending_reg_beacon(beacon_chan); 3679 spin_unlock_bh(®_pending_beacons_lock); 3680 3681 if (processing) 3682 return 0; 3683 3684 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3685 if (!reg_beacon) 3686 return -ENOMEM; 3687 3688 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3689 beacon_chan->center_freq, beacon_chan->freq_offset, 3690 ieee80211_freq_khz_to_channel( 3691 ieee80211_channel_to_khz(beacon_chan)), 3692 wiphy_name(wiphy)); 3693 3694 memcpy(®_beacon->chan, beacon_chan, 3695 sizeof(struct ieee80211_channel)); 3696 3697 /* 3698 * Since we can be called from BH or and non-BH context 3699 * we must use spin_lock_bh() 3700 */ 3701 spin_lock_bh(®_pending_beacons_lock); 3702 list_add_tail(®_beacon->list, ®_pending_beacons); 3703 spin_unlock_bh(®_pending_beacons_lock); 3704 3705 schedule_work(®_work); 3706 3707 return 0; 3708 } 3709 3710 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3711 { 3712 unsigned int i; 3713 const struct ieee80211_reg_rule *reg_rule = NULL; 3714 const struct ieee80211_freq_range *freq_range = NULL; 3715 const struct ieee80211_power_rule *power_rule = NULL; 3716 char bw[32], cac_time[32]; 3717 3718 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3719 3720 for (i = 0; i < rd->n_reg_rules; i++) { 3721 reg_rule = &rd->reg_rules[i]; 3722 freq_range = ®_rule->freq_range; 3723 power_rule = ®_rule->power_rule; 3724 3725 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3726 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", 3727 freq_range->max_bandwidth_khz, 3728 reg_get_max_bandwidth(rd, reg_rule)); 3729 else 3730 snprintf(bw, sizeof(bw), "%d KHz", 3731 freq_range->max_bandwidth_khz); 3732 3733 if (reg_rule->flags & NL80211_RRF_DFS) 3734 scnprintf(cac_time, sizeof(cac_time), "%u s", 3735 reg_rule->dfs_cac_ms/1000); 3736 else 3737 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3738 3739 3740 /* 3741 * There may not be documentation for max antenna gain 3742 * in certain regions 3743 */ 3744 if (power_rule->max_antenna_gain) 3745 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3746 freq_range->start_freq_khz, 3747 freq_range->end_freq_khz, 3748 bw, 3749 power_rule->max_antenna_gain, 3750 power_rule->max_eirp, 3751 cac_time); 3752 else 3753 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3754 freq_range->start_freq_khz, 3755 freq_range->end_freq_khz, 3756 bw, 3757 power_rule->max_eirp, 3758 cac_time); 3759 } 3760 } 3761 3762 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3763 { 3764 switch (dfs_region) { 3765 case NL80211_DFS_UNSET: 3766 case NL80211_DFS_FCC: 3767 case NL80211_DFS_ETSI: 3768 case NL80211_DFS_JP: 3769 return true; 3770 default: 3771 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3772 return false; 3773 } 3774 } 3775 3776 static void print_regdomain(const struct ieee80211_regdomain *rd) 3777 { 3778 struct regulatory_request *lr = get_last_request(); 3779 3780 if (is_intersected_alpha2(rd->alpha2)) { 3781 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3782 struct cfg80211_registered_device *rdev; 3783 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3784 if (rdev) { 3785 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3786 rdev->country_ie_alpha2[0], 3787 rdev->country_ie_alpha2[1]); 3788 } else 3789 pr_debug("Current regulatory domain intersected:\n"); 3790 } else 3791 pr_debug("Current regulatory domain intersected:\n"); 3792 } else if (is_world_regdom(rd->alpha2)) { 3793 pr_debug("World regulatory domain updated:\n"); 3794 } else { 3795 if (is_unknown_alpha2(rd->alpha2)) 3796 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3797 else { 3798 if (reg_request_cell_base(lr)) 3799 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3800 rd->alpha2[0], rd->alpha2[1]); 3801 else 3802 pr_debug("Regulatory domain changed to country: %c%c\n", 3803 rd->alpha2[0], rd->alpha2[1]); 3804 } 3805 } 3806 3807 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3808 print_rd_rules(rd); 3809 } 3810 3811 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3812 { 3813 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3814 print_rd_rules(rd); 3815 } 3816 3817 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3818 { 3819 if (!is_world_regdom(rd->alpha2)) 3820 return -EINVAL; 3821 update_world_regdomain(rd); 3822 return 0; 3823 } 3824 3825 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3826 struct regulatory_request *user_request) 3827 { 3828 const struct ieee80211_regdomain *intersected_rd = NULL; 3829 3830 if (!regdom_changes(rd->alpha2)) 3831 return -EALREADY; 3832 3833 if (!is_valid_rd(rd)) { 3834 pr_err("Invalid regulatory domain detected: %c%c\n", 3835 rd->alpha2[0], rd->alpha2[1]); 3836 print_regdomain_info(rd); 3837 return -EINVAL; 3838 } 3839 3840 if (!user_request->intersect) { 3841 reset_regdomains(false, rd); 3842 return 0; 3843 } 3844 3845 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3846 if (!intersected_rd) 3847 return -EINVAL; 3848 3849 kfree(rd); 3850 rd = NULL; 3851 reset_regdomains(false, intersected_rd); 3852 3853 return 0; 3854 } 3855 3856 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3857 struct regulatory_request *driver_request) 3858 { 3859 const struct ieee80211_regdomain *regd; 3860 const struct ieee80211_regdomain *intersected_rd = NULL; 3861 const struct ieee80211_regdomain *tmp = NULL; 3862 struct wiphy *request_wiphy; 3863 3864 if (is_world_regdom(rd->alpha2)) 3865 return -EINVAL; 3866 3867 if (!regdom_changes(rd->alpha2)) 3868 return -EALREADY; 3869 3870 if (!is_valid_rd(rd)) { 3871 pr_err("Invalid regulatory domain detected: %c%c\n", 3872 rd->alpha2[0], rd->alpha2[1]); 3873 print_regdomain_info(rd); 3874 return -EINVAL; 3875 } 3876 3877 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3878 if (!request_wiphy) 3879 return -ENODEV; 3880 3881 if (!driver_request->intersect) { 3882 ASSERT_RTNL(); 3883 wiphy_lock(request_wiphy); 3884 if (request_wiphy->regd) 3885 tmp = get_wiphy_regdom(request_wiphy); 3886 3887 regd = reg_copy_regd(rd); 3888 if (IS_ERR(regd)) { 3889 wiphy_unlock(request_wiphy); 3890 return PTR_ERR(regd); 3891 } 3892 3893 rcu_assign_pointer(request_wiphy->regd, regd); 3894 rcu_free_regdom(tmp); 3895 wiphy_unlock(request_wiphy); 3896 reset_regdomains(false, rd); 3897 return 0; 3898 } 3899 3900 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3901 if (!intersected_rd) 3902 return -EINVAL; 3903 3904 /* 3905 * We can trash what CRDA provided now. 3906 * However if a driver requested this specific regulatory 3907 * domain we keep it for its private use 3908 */ 3909 tmp = get_wiphy_regdom(request_wiphy); 3910 rcu_assign_pointer(request_wiphy->regd, rd); 3911 rcu_free_regdom(tmp); 3912 3913 rd = NULL; 3914 3915 reset_regdomains(false, intersected_rd); 3916 3917 return 0; 3918 } 3919 3920 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3921 struct regulatory_request *country_ie_request) 3922 { 3923 struct wiphy *request_wiphy; 3924 3925 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3926 !is_unknown_alpha2(rd->alpha2)) 3927 return -EINVAL; 3928 3929 /* 3930 * Lets only bother proceeding on the same alpha2 if the current 3931 * rd is non static (it means CRDA was present and was used last) 3932 * and the pending request came in from a country IE 3933 */ 3934 3935 if (!is_valid_rd(rd)) { 3936 pr_err("Invalid regulatory domain detected: %c%c\n", 3937 rd->alpha2[0], rd->alpha2[1]); 3938 print_regdomain_info(rd); 3939 return -EINVAL; 3940 } 3941 3942 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3943 if (!request_wiphy) 3944 return -ENODEV; 3945 3946 if (country_ie_request->intersect) 3947 return -EINVAL; 3948 3949 reset_regdomains(false, rd); 3950 return 0; 3951 } 3952 3953 /* 3954 * Use this call to set the current regulatory domain. Conflicts with 3955 * multiple drivers can be ironed out later. Caller must've already 3956 * kmalloc'd the rd structure. 3957 */ 3958 int set_regdom(const struct ieee80211_regdomain *rd, 3959 enum ieee80211_regd_source regd_src) 3960 { 3961 struct regulatory_request *lr; 3962 bool user_reset = false; 3963 int r; 3964 3965 if (IS_ERR_OR_NULL(rd)) 3966 return -ENODATA; 3967 3968 if (!reg_is_valid_request(rd->alpha2)) { 3969 kfree(rd); 3970 return -EINVAL; 3971 } 3972 3973 if (regd_src == REGD_SOURCE_CRDA) 3974 reset_crda_timeouts(); 3975 3976 lr = get_last_request(); 3977 3978 /* Note that this doesn't update the wiphys, this is done below */ 3979 switch (lr->initiator) { 3980 case NL80211_REGDOM_SET_BY_CORE: 3981 r = reg_set_rd_core(rd); 3982 break; 3983 case NL80211_REGDOM_SET_BY_USER: 3984 cfg80211_save_user_regdom(rd); 3985 r = reg_set_rd_user(rd, lr); 3986 user_reset = true; 3987 break; 3988 case NL80211_REGDOM_SET_BY_DRIVER: 3989 r = reg_set_rd_driver(rd, lr); 3990 break; 3991 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3992 r = reg_set_rd_country_ie(rd, lr); 3993 break; 3994 default: 3995 WARN(1, "invalid initiator %d\n", lr->initiator); 3996 kfree(rd); 3997 return -EINVAL; 3998 } 3999 4000 if (r) { 4001 switch (r) { 4002 case -EALREADY: 4003 reg_set_request_processed(); 4004 break; 4005 default: 4006 /* Back to world regulatory in case of errors */ 4007 restore_regulatory_settings(user_reset, false); 4008 } 4009 4010 kfree(rd); 4011 return r; 4012 } 4013 4014 /* This would make this whole thing pointless */ 4015 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 4016 return -EINVAL; 4017 4018 /* update all wiphys now with the new established regulatory domain */ 4019 update_all_wiphy_regulatory(lr->initiator); 4020 4021 print_regdomain(get_cfg80211_regdom()); 4022 4023 nl80211_send_reg_change_event(lr); 4024 4025 reg_set_request_processed(); 4026 4027 return 0; 4028 } 4029 4030 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 4031 struct ieee80211_regdomain *rd) 4032 { 4033 const struct ieee80211_regdomain *regd; 4034 const struct ieee80211_regdomain *prev_regd; 4035 struct cfg80211_registered_device *rdev; 4036 4037 if (WARN_ON(!wiphy || !rd)) 4038 return -EINVAL; 4039 4040 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 4041 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 4042 return -EPERM; 4043 4044 if (WARN(!is_valid_rd(rd), 4045 "Invalid regulatory domain detected: %c%c\n", 4046 rd->alpha2[0], rd->alpha2[1])) { 4047 print_regdomain_info(rd); 4048 return -EINVAL; 4049 } 4050 4051 regd = reg_copy_regd(rd); 4052 if (IS_ERR(regd)) 4053 return PTR_ERR(regd); 4054 4055 rdev = wiphy_to_rdev(wiphy); 4056 4057 spin_lock(®_requests_lock); 4058 prev_regd = rdev->requested_regd; 4059 rdev->requested_regd = regd; 4060 spin_unlock(®_requests_lock); 4061 4062 kfree(prev_regd); 4063 return 0; 4064 } 4065 4066 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 4067 struct ieee80211_regdomain *rd) 4068 { 4069 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 4070 4071 if (ret) 4072 return ret; 4073 4074 schedule_work(®_work); 4075 return 0; 4076 } 4077 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 4078 4079 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 4080 struct ieee80211_regdomain *rd) 4081 { 4082 int ret; 4083 4084 ASSERT_RTNL(); 4085 4086 ret = __regulatory_set_wiphy_regd(wiphy, rd); 4087 if (ret) 4088 return ret; 4089 4090 /* process the request immediately */ 4091 reg_process_self_managed_hint(wiphy); 4092 reg_check_channels(); 4093 return 0; 4094 } 4095 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync); 4096 4097 void wiphy_regulatory_register(struct wiphy *wiphy) 4098 { 4099 struct regulatory_request *lr = get_last_request(); 4100 4101 /* self-managed devices ignore beacon hints and country IE */ 4102 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 4103 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 4104 REGULATORY_COUNTRY_IE_IGNORE; 4105 4106 /* 4107 * The last request may have been received before this 4108 * registration call. Call the driver notifier if 4109 * initiator is USER. 4110 */ 4111 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 4112 reg_call_notifier(wiphy, lr); 4113 } 4114 4115 if (!reg_dev_ignore_cell_hint(wiphy)) 4116 reg_num_devs_support_basehint++; 4117 4118 wiphy_update_regulatory(wiphy, lr->initiator); 4119 wiphy_all_share_dfs_chan_state(wiphy); 4120 reg_process_self_managed_hints(); 4121 } 4122 4123 void wiphy_regulatory_deregister(struct wiphy *wiphy) 4124 { 4125 struct wiphy *request_wiphy = NULL; 4126 struct regulatory_request *lr; 4127 4128 lr = get_last_request(); 4129 4130 if (!reg_dev_ignore_cell_hint(wiphy)) 4131 reg_num_devs_support_basehint--; 4132 4133 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4134 RCU_INIT_POINTER(wiphy->regd, NULL); 4135 4136 if (lr) 4137 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4138 4139 if (!request_wiphy || request_wiphy != wiphy) 4140 return; 4141 4142 lr->wiphy_idx = WIPHY_IDX_INVALID; 4143 lr->country_ie_env = ENVIRON_ANY; 4144 } 4145 4146 /* 4147 * See FCC notices for UNII band definitions 4148 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4149 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4150 */ 4151 int cfg80211_get_unii(int freq) 4152 { 4153 /* UNII-1 */ 4154 if (freq >= 5150 && freq <= 5250) 4155 return 0; 4156 4157 /* UNII-2A */ 4158 if (freq > 5250 && freq <= 5350) 4159 return 1; 4160 4161 /* UNII-2B */ 4162 if (freq > 5350 && freq <= 5470) 4163 return 2; 4164 4165 /* UNII-2C */ 4166 if (freq > 5470 && freq <= 5725) 4167 return 3; 4168 4169 /* UNII-3 */ 4170 if (freq > 5725 && freq <= 5825) 4171 return 4; 4172 4173 /* UNII-5 */ 4174 if (freq > 5925 && freq <= 6425) 4175 return 5; 4176 4177 /* UNII-6 */ 4178 if (freq > 6425 && freq <= 6525) 4179 return 6; 4180 4181 /* UNII-7 */ 4182 if (freq > 6525 && freq <= 6875) 4183 return 7; 4184 4185 /* UNII-8 */ 4186 if (freq > 6875 && freq <= 7125) 4187 return 8; 4188 4189 return -EINVAL; 4190 } 4191 4192 bool regulatory_indoor_allowed(void) 4193 { 4194 return reg_is_indoor; 4195 } 4196 4197 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4198 { 4199 const struct ieee80211_regdomain *regd = NULL; 4200 const struct ieee80211_regdomain *wiphy_regd = NULL; 4201 bool pre_cac_allowed = false; 4202 4203 rcu_read_lock(); 4204 4205 regd = rcu_dereference(cfg80211_regdomain); 4206 wiphy_regd = rcu_dereference(wiphy->regd); 4207 if (!wiphy_regd) { 4208 if (regd->dfs_region == NL80211_DFS_ETSI) 4209 pre_cac_allowed = true; 4210 4211 rcu_read_unlock(); 4212 4213 return pre_cac_allowed; 4214 } 4215 4216 if (regd->dfs_region == wiphy_regd->dfs_region && 4217 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4218 pre_cac_allowed = true; 4219 4220 rcu_read_unlock(); 4221 4222 return pre_cac_allowed; 4223 } 4224 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4225 4226 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4227 { 4228 struct wireless_dev *wdev; 4229 /* If we finished CAC or received radar, we should end any 4230 * CAC running on the same channels. 4231 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4232 * either all channels are available - those the CAC_FINISHED 4233 * event has effected another wdev state, or there is a channel 4234 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4235 * event has effected another wdev state. 4236 * In both cases we should end the CAC on the wdev. 4237 */ 4238 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4239 struct cfg80211_chan_def *chandef; 4240 4241 if (!wdev->cac_started) 4242 continue; 4243 4244 /* FIXME: radar detection is tied to link 0 for now */ 4245 chandef = wdev_chandef(wdev, 0); 4246 if (!chandef) 4247 continue; 4248 4249 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef)) 4250 rdev_end_cac(rdev, wdev->netdev); 4251 } 4252 } 4253 4254 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4255 struct cfg80211_chan_def *chandef, 4256 enum nl80211_dfs_state dfs_state, 4257 enum nl80211_radar_event event) 4258 { 4259 struct cfg80211_registered_device *rdev; 4260 4261 ASSERT_RTNL(); 4262 4263 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4264 return; 4265 4266 for_each_rdev(rdev) { 4267 if (wiphy == &rdev->wiphy) 4268 continue; 4269 4270 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4271 continue; 4272 4273 if (!ieee80211_get_channel(&rdev->wiphy, 4274 chandef->chan->center_freq)) 4275 continue; 4276 4277 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4278 4279 if (event == NL80211_RADAR_DETECTED || 4280 event == NL80211_RADAR_CAC_FINISHED) { 4281 cfg80211_sched_dfs_chan_update(rdev); 4282 cfg80211_check_and_end_cac(rdev); 4283 } 4284 4285 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4286 } 4287 } 4288 4289 static int __init regulatory_init_db(void) 4290 { 4291 int err; 4292 4293 /* 4294 * It's possible that - due to other bugs/issues - cfg80211 4295 * never called regulatory_init() below, or that it failed; 4296 * in that case, don't try to do any further work here as 4297 * it's doomed to lead to crashes. 4298 */ 4299 if (IS_ERR_OR_NULL(reg_pdev)) 4300 return -EINVAL; 4301 4302 err = load_builtin_regdb_keys(); 4303 if (err) { 4304 platform_device_unregister(reg_pdev); 4305 return err; 4306 } 4307 4308 /* We always try to get an update for the static regdomain */ 4309 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4310 if (err) { 4311 if (err == -ENOMEM) { 4312 platform_device_unregister(reg_pdev); 4313 return err; 4314 } 4315 /* 4316 * N.B. kobject_uevent_env() can fail mainly for when we're out 4317 * memory which is handled and propagated appropriately above 4318 * but it can also fail during a netlink_broadcast() or during 4319 * early boot for call_usermodehelper(). For now treat these 4320 * errors as non-fatal. 4321 */ 4322 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4323 } 4324 4325 /* 4326 * Finally, if the user set the module parameter treat it 4327 * as a user hint. 4328 */ 4329 if (!is_world_regdom(ieee80211_regdom)) 4330 regulatory_hint_user(ieee80211_regdom, 4331 NL80211_USER_REG_HINT_USER); 4332 4333 return 0; 4334 } 4335 #ifndef MODULE 4336 late_initcall(regulatory_init_db); 4337 #endif 4338 4339 int __init regulatory_init(void) 4340 { 4341 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4342 if (IS_ERR(reg_pdev)) 4343 return PTR_ERR(reg_pdev); 4344 4345 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4346 4347 user_alpha2[0] = '9'; 4348 user_alpha2[1] = '7'; 4349 4350 #ifdef MODULE 4351 return regulatory_init_db(); 4352 #else 4353 return 0; 4354 #endif 4355 } 4356 4357 void regulatory_exit(void) 4358 { 4359 struct regulatory_request *reg_request, *tmp; 4360 struct reg_beacon *reg_beacon, *btmp; 4361 4362 cancel_work_sync(®_work); 4363 cancel_crda_timeout_sync(); 4364 cancel_delayed_work_sync(®_check_chans); 4365 4366 /* Lock to suppress warnings */ 4367 rtnl_lock(); 4368 reset_regdomains(true, NULL); 4369 rtnl_unlock(); 4370 4371 dev_set_uevent_suppress(®_pdev->dev, true); 4372 4373 platform_device_unregister(reg_pdev); 4374 4375 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4376 list_del(®_beacon->list); 4377 kfree(reg_beacon); 4378 } 4379 4380 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4381 list_del(®_beacon->list); 4382 kfree(reg_beacon); 4383 } 4384 4385 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4386 list_del(®_request->list); 4387 kfree(reg_request); 4388 } 4389 4390 if (!IS_ERR_OR_NULL(regdb)) 4391 kfree(regdb); 4392 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4393 kfree(cfg80211_user_regdom); 4394 4395 free_regdb_keyring(); 4396 } 4397