xref: /linux/net/wireless/reg.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2023 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137 
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140 	return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142 
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 	return rcu_dereference_check(wiphy->regd,
151 				     lockdep_is_held(&wiphy->mtx) ||
152 				     lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155 
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158 	switch (dfs_region) {
159 	case NL80211_DFS_UNSET:
160 		return "unset";
161 	case NL80211_DFS_FCC:
162 		return "FCC";
163 	case NL80211_DFS_ETSI:
164 		return "ETSI";
165 	case NL80211_DFS_JP:
166 		return "JP";
167 	}
168 	return "Unknown";
169 }
170 
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173 	const struct ieee80211_regdomain *regd = NULL;
174 	const struct ieee80211_regdomain *wiphy_regd = NULL;
175 	enum nl80211_dfs_regions dfs_region;
176 
177 	rcu_read_lock();
178 	regd = get_cfg80211_regdom();
179 	dfs_region = regd->dfs_region;
180 
181 	if (!wiphy)
182 		goto out;
183 
184 	wiphy_regd = get_wiphy_regdom(wiphy);
185 	if (!wiphy_regd)
186 		goto out;
187 
188 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 		dfs_region = wiphy_regd->dfs_region;
190 		goto out;
191 	}
192 
193 	if (wiphy_regd->dfs_region == regd->dfs_region)
194 		goto out;
195 
196 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 		 dev_name(&wiphy->dev),
198 		 reg_dfs_region_str(wiphy_regd->dfs_region),
199 		 reg_dfs_region_str(regd->dfs_region));
200 
201 out:
202 	rcu_read_unlock();
203 
204 	return dfs_region;
205 }
206 
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209 	if (!r)
210 		return;
211 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213 
214 static struct regulatory_request *get_last_request(void)
215 {
216 	return rcu_dereference_rtnl(last_request);
217 }
218 
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222 
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226 
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229 
230 struct reg_beacon {
231 	struct list_head list;
232 	struct ieee80211_channel chan;
233 };
234 
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237 
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240 
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243 	.n_reg_rules = 8,
244 	.alpha2 =  "00",
245 	.reg_rules = {
246 		/* IEEE 802.11b/g, channels 1..11 */
247 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 		/* IEEE 802.11b/g, channels 12..13. */
249 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 		/* IEEE 802.11 channel 14 - Only JP enables
252 		 * this and for 802.11b only */
253 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 			NL80211_RRF_NO_IR |
255 			NL80211_RRF_NO_OFDM),
256 		/* IEEE 802.11a, channel 36..48 */
257 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260 
261 		/* IEEE 802.11a, channel 52..64 - DFS required */
262 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 			NL80211_RRF_NO_IR |
264 			NL80211_RRF_AUTO_BW |
265 			NL80211_RRF_DFS),
266 
267 		/* IEEE 802.11a, channel 100..144 - DFS required */
268 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 			NL80211_RRF_NO_IR |
270 			NL80211_RRF_DFS),
271 
272 		/* IEEE 802.11a, channel 149..165 */
273 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 			NL80211_RRF_NO_IR),
275 
276 		/* IEEE 802.11ad (60GHz), channels 1..3 */
277 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 	}
279 };
280 
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 	&world_regdom;
284 
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288 
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291 
292 static void reg_free_request(struct regulatory_request *request)
293 {
294 	if (request == &core_request_world)
295 		return;
296 
297 	if (request != get_last_request())
298 		kfree(request);
299 }
300 
301 static void reg_free_last_request(void)
302 {
303 	struct regulatory_request *lr = get_last_request();
304 
305 	if (lr != &core_request_world && lr)
306 		kfree_rcu(lr, rcu_head);
307 }
308 
309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311 	struct regulatory_request *lr;
312 
313 	lr = get_last_request();
314 	if (lr == request)
315 		return;
316 
317 	reg_free_last_request();
318 	rcu_assign_pointer(last_request, request);
319 }
320 
321 static void reset_regdomains(bool full_reset,
322 			     const struct ieee80211_regdomain *new_regdom)
323 {
324 	const struct ieee80211_regdomain *r;
325 
326 	ASSERT_RTNL();
327 
328 	r = get_cfg80211_regdom();
329 
330 	/* avoid freeing static information or freeing something twice */
331 	if (r == cfg80211_world_regdom)
332 		r = NULL;
333 	if (cfg80211_world_regdom == &world_regdom)
334 		cfg80211_world_regdom = NULL;
335 	if (r == &world_regdom)
336 		r = NULL;
337 
338 	rcu_free_regdom(r);
339 	rcu_free_regdom(cfg80211_world_regdom);
340 
341 	cfg80211_world_regdom = &world_regdom;
342 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343 
344 	if (!full_reset)
345 		return;
346 
347 	reg_update_last_request(&core_request_world);
348 }
349 
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356 	struct regulatory_request *lr;
357 
358 	lr = get_last_request();
359 
360 	WARN_ON(!lr);
361 
362 	reset_regdomains(false, rd);
363 
364 	cfg80211_world_regdom = rd;
365 }
366 
367 bool is_world_regdom(const char *alpha2)
368 {
369 	if (!alpha2)
370 		return false;
371 	return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373 
374 static bool is_alpha2_set(const char *alpha2)
375 {
376 	if (!alpha2)
377 		return false;
378 	return alpha2[0] && alpha2[1];
379 }
380 
381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383 	if (!alpha2)
384 		return false;
385 	/*
386 	 * Special case where regulatory domain was built by driver
387 	 * but a specific alpha2 cannot be determined
388 	 */
389 	return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391 
392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394 	if (!alpha2)
395 		return false;
396 	/*
397 	 * Special case where regulatory domain is the
398 	 * result of an intersection between two regulatory domain
399 	 * structures
400 	 */
401 	return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403 
404 static bool is_an_alpha2(const char *alpha2)
405 {
406 	if (!alpha2)
407 		return false;
408 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410 
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413 	if (!alpha2_x || !alpha2_y)
414 		return false;
415 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417 
418 static bool regdom_changes(const char *alpha2)
419 {
420 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421 
422 	if (!r)
423 		return true;
424 	return !alpha2_equal(r->alpha2, alpha2);
425 }
426 
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
432 static bool is_user_regdom_saved(void)
433 {
434 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 		return false;
436 
437 	/* This would indicate a mistake on the design */
438 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 		 "Unexpected user alpha2: %c%c\n",
440 		 user_alpha2[0], user_alpha2[1]))
441 		return false;
442 
443 	return true;
444 }
445 
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449 	struct ieee80211_regdomain *regd;
450 	unsigned int i;
451 
452 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 		       GFP_KERNEL);
454 	if (!regd)
455 		return ERR_PTR(-ENOMEM);
456 
457 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458 
459 	for (i = 0; i < src_regd->n_reg_rules; i++)
460 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461 		       sizeof(struct ieee80211_reg_rule));
462 
463 	return regd;
464 }
465 
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468 	ASSERT_RTNL();
469 
470 	if (!IS_ERR(cfg80211_user_regdom))
471 		kfree(cfg80211_user_regdom);
472 	cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474 
475 struct reg_regdb_apply_request {
476 	struct list_head list;
477 	const struct ieee80211_regdomain *regdom;
478 };
479 
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482 
483 static void reg_regdb_apply(struct work_struct *work)
484 {
485 	struct reg_regdb_apply_request *request;
486 
487 	rtnl_lock();
488 
489 	mutex_lock(&reg_regdb_apply_mutex);
490 	while (!list_empty(&reg_regdb_apply_list)) {
491 		request = list_first_entry(&reg_regdb_apply_list,
492 					   struct reg_regdb_apply_request,
493 					   list);
494 		list_del(&request->list);
495 
496 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 		kfree(request);
498 	}
499 	mutex_unlock(&reg_regdb_apply_mutex);
500 
501 	rtnl_unlock();
502 }
503 
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505 
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508 	struct reg_regdb_apply_request *request;
509 
510 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 	if (!request) {
512 		kfree(regdom);
513 		return -ENOMEM;
514 	}
515 
516 	request->regdom = regdom;
517 
518 	mutex_lock(&reg_regdb_apply_mutex);
519 	list_add_tail(&request->list, &reg_regdb_apply_list);
520 	mutex_unlock(&reg_regdb_apply_mutex);
521 
522 	schedule_work(&reg_regdb_work);
523 	return 0;
524 }
525 
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529 
530 static u32 reg_crda_timeouts;
531 
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534 
535 static void crda_timeout_work(struct work_struct *work)
536 {
537 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 	rtnl_lock();
539 	reg_crda_timeouts++;
540 	restore_regulatory_settings(true, false);
541 	rtnl_unlock();
542 }
543 
544 static void cancel_crda_timeout(void)
545 {
546 	cancel_delayed_work(&crda_timeout);
547 }
548 
549 static void cancel_crda_timeout_sync(void)
550 {
551 	cancel_delayed_work_sync(&crda_timeout);
552 }
553 
554 static void reset_crda_timeouts(void)
555 {
556 	reg_crda_timeouts = 0;
557 }
558 
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565 	char country[12];
566 	char *env[] = { country, NULL };
567 	int ret;
568 
569 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 		 alpha2[0], alpha2[1]);
571 
572 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 		return -EINVAL;
575 	}
576 
577 	if (!is_world_regdom((char *) alpha2))
578 		pr_debug("Calling CRDA for country: %c%c\n",
579 			 alpha2[0], alpha2[1]);
580 	else
581 		pr_debug("Calling CRDA to update world regulatory domain\n");
582 
583 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584 	if (ret)
585 		return ret;
586 
587 	queue_delayed_work(system_power_efficient_wq,
588 			   &crda_timeout, msecs_to_jiffies(3142));
589 	return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597 	return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600 
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603 
604 struct fwdb_country {
605 	u8 alpha2[2];
606 	__be16 coll_ptr;
607 	/* this struct cannot be extended */
608 } __packed __aligned(4);
609 
610 struct fwdb_collection {
611 	u8 len;
612 	u8 n_rules;
613 	u8 dfs_region;
614 	/* no optional data yet */
615 	/* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617 
618 enum fwdb_flags {
619 	FWDB_FLAG_NO_OFDM	= BIT(0),
620 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
621 	FWDB_FLAG_DFS		= BIT(2),
622 	FWDB_FLAG_NO_IR		= BIT(3),
623 	FWDB_FLAG_AUTO_BW	= BIT(4),
624 };
625 
626 struct fwdb_wmm_ac {
627 	u8 ecw;
628 	u8 aifsn;
629 	__be16 cot;
630 } __packed;
631 
632 struct fwdb_wmm_rule {
633 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636 
637 struct fwdb_rule {
638 	u8 len;
639 	u8 flags;
640 	__be16 max_eirp;
641 	__be32 start, end, max_bw;
642 	/* start of optional data */
643 	__be16 cac_timeout;
644 	__be16 wmm_ptr;
645 } __packed __aligned(4);
646 
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649 
650 struct fwdb_header {
651 	__be32 magic;
652 	__be32 version;
653 	struct fwdb_country country[];
654 } __packed __aligned(4);
655 
656 static int ecw2cw(int ecw)
657 {
658 	return (1 << ecw) - 1;
659 }
660 
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 	int i;
665 
666 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 		u8 aifsn = ac[i].aifsn;
670 
671 		if (cw_min >= cw_max)
672 			return false;
673 
674 		if (aifsn < 1)
675 			return false;
676 	}
677 
678 	return true;
679 }
680 
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684 
685 	if ((u8 *)rule + sizeof(rule->len) > data + size)
686 		return false;
687 
688 	/* mandatory fields */
689 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 		return false;
691 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 		struct fwdb_wmm_rule *wmm;
694 
695 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 			return false;
697 
698 		wmm = (void *)(data + wmm_ptr);
699 
700 		if (!valid_wmm(wmm))
701 			return false;
702 	}
703 	return true;
704 }
705 
706 static bool valid_country(const u8 *data, unsigned int size,
707 			  const struct fwdb_country *country)
708 {
709 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 	struct fwdb_collection *coll = (void *)(data + ptr);
711 	__be16 *rules_ptr;
712 	unsigned int i;
713 
714 	/* make sure we can read len/n_rules */
715 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 		return false;
717 
718 	/* make sure base struct and all rules fit */
719 	if ((u8 *)coll + ALIGN(coll->len, 2) +
720 	    (coll->n_rules * 2) > data + size)
721 		return false;
722 
723 	/* mandatory fields must exist */
724 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 		return false;
726 
727 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728 
729 	for (i = 0; i < coll->n_rules; i++) {
730 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731 
732 		if (!valid_rule(data, size, rule_ptr))
733 			return false;
734 	}
735 
736 	return true;
737 }
738 
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 #include <keys/asymmetric-type.h>
741 
742 static struct key *builtin_regdb_keys;
743 
744 static int __init load_builtin_regdb_keys(void)
745 {
746 	builtin_regdb_keys =
747 		keyring_alloc(".builtin_regdb_keys",
748 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
749 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
750 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
751 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
752 	if (IS_ERR(builtin_regdb_keys))
753 		return PTR_ERR(builtin_regdb_keys);
754 
755 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
756 
757 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
758 	x509_load_certificate_list(shipped_regdb_certs,
759 				   shipped_regdb_certs_len,
760 				   builtin_regdb_keys);
761 #endif
762 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
763 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
764 		x509_load_certificate_list(extra_regdb_certs,
765 					   extra_regdb_certs_len,
766 					   builtin_regdb_keys);
767 #endif
768 
769 	return 0;
770 }
771 
772 MODULE_FIRMWARE("regulatory.db.p7s");
773 
774 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
775 {
776 	const struct firmware *sig;
777 	bool result;
778 
779 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
780 		return false;
781 
782 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
783 					builtin_regdb_keys,
784 					VERIFYING_UNSPECIFIED_SIGNATURE,
785 					NULL, NULL) == 0;
786 
787 	release_firmware(sig);
788 
789 	return result;
790 }
791 
792 static void free_regdb_keyring(void)
793 {
794 	key_put(builtin_regdb_keys);
795 }
796 #else
797 static int load_builtin_regdb_keys(void)
798 {
799 	return 0;
800 }
801 
802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803 {
804 	return true;
805 }
806 
807 static void free_regdb_keyring(void)
808 {
809 }
810 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
811 
812 static bool valid_regdb(const u8 *data, unsigned int size)
813 {
814 	const struct fwdb_header *hdr = (void *)data;
815 	const struct fwdb_country *country;
816 
817 	if (size < sizeof(*hdr))
818 		return false;
819 
820 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
821 		return false;
822 
823 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
824 		return false;
825 
826 	if (!regdb_has_valid_signature(data, size))
827 		return false;
828 
829 	country = &hdr->country[0];
830 	while ((u8 *)(country + 1) <= data + size) {
831 		if (!country->coll_ptr)
832 			break;
833 		if (!valid_country(data, size, country))
834 			return false;
835 		country++;
836 	}
837 
838 	return true;
839 }
840 
841 static void set_wmm_rule(const struct fwdb_header *db,
842 			 const struct fwdb_country *country,
843 			 const struct fwdb_rule *rule,
844 			 struct ieee80211_reg_rule *rrule)
845 {
846 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
847 	struct fwdb_wmm_rule *wmm;
848 	unsigned int i, wmm_ptr;
849 
850 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
851 	wmm = (void *)((u8 *)db + wmm_ptr);
852 
853 	if (!valid_wmm(wmm)) {
854 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
855 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
856 		       country->alpha2[0], country->alpha2[1]);
857 		return;
858 	}
859 
860 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
861 		wmm_rule->client[i].cw_min =
862 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
863 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
864 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
865 		wmm_rule->client[i].cot =
866 			1000 * be16_to_cpu(wmm->client[i].cot);
867 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
868 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
869 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
870 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
871 	}
872 
873 	rrule->has_wmm = true;
874 }
875 
876 static int __regdb_query_wmm(const struct fwdb_header *db,
877 			     const struct fwdb_country *country, int freq,
878 			     struct ieee80211_reg_rule *rrule)
879 {
880 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
881 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
882 	int i;
883 
884 	for (i = 0; i < coll->n_rules; i++) {
885 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
886 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
887 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
888 
889 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
890 			continue;
891 
892 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
893 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
894 			set_wmm_rule(db, country, rule, rrule);
895 			return 0;
896 		}
897 	}
898 
899 	return -ENODATA;
900 }
901 
902 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
903 {
904 	const struct fwdb_header *hdr = regdb;
905 	const struct fwdb_country *country;
906 
907 	if (!regdb)
908 		return -ENODATA;
909 
910 	if (IS_ERR(regdb))
911 		return PTR_ERR(regdb);
912 
913 	country = &hdr->country[0];
914 	while (country->coll_ptr) {
915 		if (alpha2_equal(alpha2, country->alpha2))
916 			return __regdb_query_wmm(regdb, country, freq, rule);
917 
918 		country++;
919 	}
920 
921 	return -ENODATA;
922 }
923 EXPORT_SYMBOL(reg_query_regdb_wmm);
924 
925 static int regdb_query_country(const struct fwdb_header *db,
926 			       const struct fwdb_country *country)
927 {
928 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
929 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
930 	struct ieee80211_regdomain *regdom;
931 	unsigned int i;
932 
933 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
934 			 GFP_KERNEL);
935 	if (!regdom)
936 		return -ENOMEM;
937 
938 	regdom->n_reg_rules = coll->n_rules;
939 	regdom->alpha2[0] = country->alpha2[0];
940 	regdom->alpha2[1] = country->alpha2[1];
941 	regdom->dfs_region = coll->dfs_region;
942 
943 	for (i = 0; i < regdom->n_reg_rules; i++) {
944 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
945 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
946 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
947 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
948 
949 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
950 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
951 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
952 
953 		rrule->power_rule.max_antenna_gain = 0;
954 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
955 
956 		rrule->flags = 0;
957 		if (rule->flags & FWDB_FLAG_NO_OFDM)
958 			rrule->flags |= NL80211_RRF_NO_OFDM;
959 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
960 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
961 		if (rule->flags & FWDB_FLAG_DFS)
962 			rrule->flags |= NL80211_RRF_DFS;
963 		if (rule->flags & FWDB_FLAG_NO_IR)
964 			rrule->flags |= NL80211_RRF_NO_IR;
965 		if (rule->flags & FWDB_FLAG_AUTO_BW)
966 			rrule->flags |= NL80211_RRF_AUTO_BW;
967 
968 		rrule->dfs_cac_ms = 0;
969 
970 		/* handle optional data */
971 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
972 			rrule->dfs_cac_ms =
973 				1000 * be16_to_cpu(rule->cac_timeout);
974 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
975 			set_wmm_rule(db, country, rule, rrule);
976 	}
977 
978 	return reg_schedule_apply(regdom);
979 }
980 
981 static int query_regdb(const char *alpha2)
982 {
983 	const struct fwdb_header *hdr = regdb;
984 	const struct fwdb_country *country;
985 
986 	ASSERT_RTNL();
987 
988 	if (IS_ERR(regdb))
989 		return PTR_ERR(regdb);
990 
991 	country = &hdr->country[0];
992 	while (country->coll_ptr) {
993 		if (alpha2_equal(alpha2, country->alpha2))
994 			return regdb_query_country(regdb, country);
995 		country++;
996 	}
997 
998 	return -ENODATA;
999 }
1000 
1001 static void regdb_fw_cb(const struct firmware *fw, void *context)
1002 {
1003 	int set_error = 0;
1004 	bool restore = true;
1005 	void *db;
1006 
1007 	if (!fw) {
1008 		pr_info("failed to load regulatory.db\n");
1009 		set_error = -ENODATA;
1010 	} else if (!valid_regdb(fw->data, fw->size)) {
1011 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012 		set_error = -EINVAL;
1013 	}
1014 
1015 	rtnl_lock();
1016 	if (regdb && !IS_ERR(regdb)) {
1017 		/* negative case - a bug
1018 		 * positive case - can happen due to race in case of multiple cb's in
1019 		 * queue, due to usage of asynchronous callback
1020 		 *
1021 		 * Either case, just restore and free new db.
1022 		 */
1023 	} else if (set_error) {
1024 		regdb = ERR_PTR(set_error);
1025 	} else if (fw) {
1026 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027 		if (db) {
1028 			regdb = db;
1029 			restore = context && query_regdb(context);
1030 		} else {
1031 			restore = true;
1032 		}
1033 	}
1034 
1035 	if (restore)
1036 		restore_regulatory_settings(true, false);
1037 
1038 	rtnl_unlock();
1039 
1040 	kfree(context);
1041 
1042 	release_firmware(fw);
1043 }
1044 
1045 MODULE_FIRMWARE("regulatory.db");
1046 
1047 static int query_regdb_file(const char *alpha2)
1048 {
1049 	int err;
1050 
1051 	ASSERT_RTNL();
1052 
1053 	if (regdb)
1054 		return query_regdb(alpha2);
1055 
1056 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057 	if (!alpha2)
1058 		return -ENOMEM;
1059 
1060 	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061 				      &reg_pdev->dev, GFP_KERNEL,
1062 				      (void *)alpha2, regdb_fw_cb);
1063 	if (err)
1064 		kfree(alpha2);
1065 
1066 	return err;
1067 }
1068 
1069 int reg_reload_regdb(void)
1070 {
1071 	const struct firmware *fw;
1072 	void *db;
1073 	int err;
1074 	const struct ieee80211_regdomain *current_regdomain;
1075 	struct regulatory_request *request;
1076 
1077 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1078 	if (err)
1079 		return err;
1080 
1081 	if (!valid_regdb(fw->data, fw->size)) {
1082 		err = -ENODATA;
1083 		goto out;
1084 	}
1085 
1086 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087 	if (!db) {
1088 		err = -ENOMEM;
1089 		goto out;
1090 	}
1091 
1092 	rtnl_lock();
1093 	if (!IS_ERR_OR_NULL(regdb))
1094 		kfree(regdb);
1095 	regdb = db;
1096 
1097 	/* reset regulatory domain */
1098 	current_regdomain = get_cfg80211_regdom();
1099 
1100 	request = kzalloc(sizeof(*request), GFP_KERNEL);
1101 	if (!request) {
1102 		err = -ENOMEM;
1103 		goto out_unlock;
1104 	}
1105 
1106 	request->wiphy_idx = WIPHY_IDX_INVALID;
1107 	request->alpha2[0] = current_regdomain->alpha2[0];
1108 	request->alpha2[1] = current_regdomain->alpha2[1];
1109 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110 	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111 
1112 	reg_process_hint(request);
1113 
1114 out_unlock:
1115 	rtnl_unlock();
1116  out:
1117 	release_firmware(fw);
1118 	return err;
1119 }
1120 
1121 static bool reg_query_database(struct regulatory_request *request)
1122 {
1123 	if (query_regdb_file(request->alpha2) == 0)
1124 		return true;
1125 
1126 	if (call_crda(request->alpha2) == 0)
1127 		return true;
1128 
1129 	return false;
1130 }
1131 
1132 bool reg_is_valid_request(const char *alpha2)
1133 {
1134 	struct regulatory_request *lr = get_last_request();
1135 
1136 	if (!lr || lr->processed)
1137 		return false;
1138 
1139 	return alpha2_equal(lr->alpha2, alpha2);
1140 }
1141 
1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143 {
1144 	struct regulatory_request *lr = get_last_request();
1145 
1146 	/*
1147 	 * Follow the driver's regulatory domain, if present, unless a country
1148 	 * IE has been processed or a user wants to help complaince further
1149 	 */
1150 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152 	    wiphy->regd)
1153 		return get_wiphy_regdom(wiphy);
1154 
1155 	return get_cfg80211_regdom();
1156 }
1157 
1158 static unsigned int
1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160 				 const struct ieee80211_reg_rule *rule)
1161 {
1162 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163 	const struct ieee80211_freq_range *freq_range_tmp;
1164 	const struct ieee80211_reg_rule *tmp;
1165 	u32 start_freq, end_freq, idx, no;
1166 
1167 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1168 		if (rule == &rd->reg_rules[idx])
1169 			break;
1170 
1171 	if (idx == rd->n_reg_rules)
1172 		return 0;
1173 
1174 	/* get start_freq */
1175 	no = idx;
1176 
1177 	while (no) {
1178 		tmp = &rd->reg_rules[--no];
1179 		freq_range_tmp = &tmp->freq_range;
1180 
1181 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182 			break;
1183 
1184 		freq_range = freq_range_tmp;
1185 	}
1186 
1187 	start_freq = freq_range->start_freq_khz;
1188 
1189 	/* get end_freq */
1190 	freq_range = &rule->freq_range;
1191 	no = idx;
1192 
1193 	while (no < rd->n_reg_rules - 1) {
1194 		tmp = &rd->reg_rules[++no];
1195 		freq_range_tmp = &tmp->freq_range;
1196 
1197 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198 			break;
1199 
1200 		freq_range = freq_range_tmp;
1201 	}
1202 
1203 	end_freq = freq_range->end_freq_khz;
1204 
1205 	return end_freq - start_freq;
1206 }
1207 
1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209 				   const struct ieee80211_reg_rule *rule)
1210 {
1211 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212 
1213 	if (rule->flags & NL80211_RRF_NO_320MHZ)
1214 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1216 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1218 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219 
1220 	/*
1221 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222 	 * are not allowed.
1223 	 */
1224 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1226 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227 
1228 	return bw;
1229 }
1230 
1231 /* Sanity check on a regulatory rule */
1232 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233 {
1234 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235 	u32 freq_diff;
1236 
1237 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238 		return false;
1239 
1240 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241 		return false;
1242 
1243 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244 
1245 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246 	    freq_range->max_bandwidth_khz > freq_diff)
1247 		return false;
1248 
1249 	return true;
1250 }
1251 
1252 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253 {
1254 	const struct ieee80211_reg_rule *reg_rule = NULL;
1255 	unsigned int i;
1256 
1257 	if (!rd->n_reg_rules)
1258 		return false;
1259 
1260 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261 		return false;
1262 
1263 	for (i = 0; i < rd->n_reg_rules; i++) {
1264 		reg_rule = &rd->reg_rules[i];
1265 		if (!is_valid_reg_rule(reg_rule))
1266 			return false;
1267 	}
1268 
1269 	return true;
1270 }
1271 
1272 /**
1273  * freq_in_rule_band - tells us if a frequency is in a frequency band
1274  * @freq_range: frequency rule we want to query
1275  * @freq_khz: frequency we are inquiring about
1276  *
1277  * This lets us know if a specific frequency rule is or is not relevant to
1278  * a specific frequency's band. Bands are device specific and artificial
1279  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280  * however it is safe for now to assume that a frequency rule should not be
1281  * part of a frequency's band if the start freq or end freq are off by more
1282  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283  * 60 GHz band.
1284  * This resolution can be lowered and should be considered as we add
1285  * regulatory rule support for other "bands".
1286  *
1287  * Returns: whether or not the frequency is in the range
1288  */
1289 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1290 			      u32 freq_khz)
1291 {
1292 #define ONE_GHZ_IN_KHZ	1000000
1293 	/*
1294 	 * From 802.11ad: directional multi-gigabit (DMG):
1295 	 * Pertaining to operation in a frequency band containing a channel
1296 	 * with the Channel starting frequency above 45 GHz.
1297 	 */
1298 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1299 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1300 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1301 		return true;
1302 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303 		return true;
1304 	return false;
1305 #undef ONE_GHZ_IN_KHZ
1306 }
1307 
1308 /*
1309  * Later on we can perhaps use the more restrictive DFS
1310  * region but we don't have information for that yet so
1311  * for now simply disallow conflicts.
1312  */
1313 static enum nl80211_dfs_regions
1314 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1315 			 const enum nl80211_dfs_regions dfs_region2)
1316 {
1317 	if (dfs_region1 != dfs_region2)
1318 		return NL80211_DFS_UNSET;
1319 	return dfs_region1;
1320 }
1321 
1322 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1323 				    const struct ieee80211_wmm_ac *wmm_ac2,
1324 				    struct ieee80211_wmm_ac *intersect)
1325 {
1326 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1327 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1328 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1329 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1330 }
1331 
1332 /*
1333  * Helper for regdom_intersect(), this does the real
1334  * mathematical intersection fun
1335  */
1336 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1337 			       const struct ieee80211_regdomain *rd2,
1338 			       const struct ieee80211_reg_rule *rule1,
1339 			       const struct ieee80211_reg_rule *rule2,
1340 			       struct ieee80211_reg_rule *intersected_rule)
1341 {
1342 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1343 	struct ieee80211_freq_range *freq_range;
1344 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1345 	struct ieee80211_power_rule *power_rule;
1346 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1347 	struct ieee80211_wmm_rule *wmm_rule;
1348 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1349 
1350 	freq_range1 = &rule1->freq_range;
1351 	freq_range2 = &rule2->freq_range;
1352 	freq_range = &intersected_rule->freq_range;
1353 
1354 	power_rule1 = &rule1->power_rule;
1355 	power_rule2 = &rule2->power_rule;
1356 	power_rule = &intersected_rule->power_rule;
1357 
1358 	wmm_rule1 = &rule1->wmm_rule;
1359 	wmm_rule2 = &rule2->wmm_rule;
1360 	wmm_rule = &intersected_rule->wmm_rule;
1361 
1362 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1363 					 freq_range2->start_freq_khz);
1364 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1365 				       freq_range2->end_freq_khz);
1366 
1367 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1368 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1369 
1370 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1371 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1372 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1373 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1374 
1375 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1376 
1377 	intersected_rule->flags = rule1->flags | rule2->flags;
1378 
1379 	/*
1380 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1381 	 * set AUTO_BW in intersected rule also. Next we will
1382 	 * calculate BW correctly in handle_channel function.
1383 	 * In other case remove AUTO_BW flag while we calculate
1384 	 * maximum bandwidth correctly and auto calculation is
1385 	 * not required.
1386 	 */
1387 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1388 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1389 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1390 	else
1391 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1392 
1393 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1394 	if (freq_range->max_bandwidth_khz > freq_diff)
1395 		freq_range->max_bandwidth_khz = freq_diff;
1396 
1397 	power_rule->max_eirp = min(power_rule1->max_eirp,
1398 		power_rule2->max_eirp);
1399 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1400 		power_rule2->max_antenna_gain);
1401 
1402 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1403 					   rule2->dfs_cac_ms);
1404 
1405 	if (rule1->has_wmm && rule2->has_wmm) {
1406 		u8 ac;
1407 
1408 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1409 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1410 						&wmm_rule2->client[ac],
1411 						&wmm_rule->client[ac]);
1412 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1413 						&wmm_rule2->ap[ac],
1414 						&wmm_rule->ap[ac]);
1415 		}
1416 
1417 		intersected_rule->has_wmm = true;
1418 	} else if (rule1->has_wmm) {
1419 		*wmm_rule = *wmm_rule1;
1420 		intersected_rule->has_wmm = true;
1421 	} else if (rule2->has_wmm) {
1422 		*wmm_rule = *wmm_rule2;
1423 		intersected_rule->has_wmm = true;
1424 	} else {
1425 		intersected_rule->has_wmm = false;
1426 	}
1427 
1428 	if (!is_valid_reg_rule(intersected_rule))
1429 		return -EINVAL;
1430 
1431 	return 0;
1432 }
1433 
1434 /* check whether old rule contains new rule */
1435 static bool rule_contains(struct ieee80211_reg_rule *r1,
1436 			  struct ieee80211_reg_rule *r2)
1437 {
1438 	/* for simplicity, currently consider only same flags */
1439 	if (r1->flags != r2->flags)
1440 		return false;
1441 
1442 	/* verify r1 is more restrictive */
1443 	if ((r1->power_rule.max_antenna_gain >
1444 	     r2->power_rule.max_antenna_gain) ||
1445 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1446 		return false;
1447 
1448 	/* make sure r2's range is contained within r1 */
1449 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1450 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1451 		return false;
1452 
1453 	/* and finally verify that r1.max_bw >= r2.max_bw */
1454 	if (r1->freq_range.max_bandwidth_khz <
1455 	    r2->freq_range.max_bandwidth_khz)
1456 		return false;
1457 
1458 	return true;
1459 }
1460 
1461 /* add or extend current rules. do nothing if rule is already contained */
1462 static void add_rule(struct ieee80211_reg_rule *rule,
1463 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1464 {
1465 	struct ieee80211_reg_rule *tmp_rule;
1466 	int i;
1467 
1468 	for (i = 0; i < *n_rules; i++) {
1469 		tmp_rule = &reg_rules[i];
1470 		/* rule is already contained - do nothing */
1471 		if (rule_contains(tmp_rule, rule))
1472 			return;
1473 
1474 		/* extend rule if possible */
1475 		if (rule_contains(rule, tmp_rule)) {
1476 			memcpy(tmp_rule, rule, sizeof(*rule));
1477 			return;
1478 		}
1479 	}
1480 
1481 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1482 	(*n_rules)++;
1483 }
1484 
1485 /**
1486  * regdom_intersect - do the intersection between two regulatory domains
1487  * @rd1: first regulatory domain
1488  * @rd2: second regulatory domain
1489  *
1490  * Use this function to get the intersection between two regulatory domains.
1491  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1492  * as no one single alpha2 can represent this regulatory domain.
1493  *
1494  * Returns a pointer to the regulatory domain structure which will hold the
1495  * resulting intersection of rules between rd1 and rd2. We will
1496  * kzalloc() this structure for you.
1497  *
1498  * Returns: the intersected regdomain
1499  */
1500 static struct ieee80211_regdomain *
1501 regdom_intersect(const struct ieee80211_regdomain *rd1,
1502 		 const struct ieee80211_regdomain *rd2)
1503 {
1504 	int r;
1505 	unsigned int x, y;
1506 	unsigned int num_rules = 0;
1507 	const struct ieee80211_reg_rule *rule1, *rule2;
1508 	struct ieee80211_reg_rule intersected_rule;
1509 	struct ieee80211_regdomain *rd;
1510 
1511 	if (!rd1 || !rd2)
1512 		return NULL;
1513 
1514 	/*
1515 	 * First we get a count of the rules we'll need, then we actually
1516 	 * build them. This is to so we can malloc() and free() a
1517 	 * regdomain once. The reason we use reg_rules_intersect() here
1518 	 * is it will return -EINVAL if the rule computed makes no sense.
1519 	 * All rules that do check out OK are valid.
1520 	 */
1521 
1522 	for (x = 0; x < rd1->n_reg_rules; x++) {
1523 		rule1 = &rd1->reg_rules[x];
1524 		for (y = 0; y < rd2->n_reg_rules; y++) {
1525 			rule2 = &rd2->reg_rules[y];
1526 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1527 						 &intersected_rule))
1528 				num_rules++;
1529 		}
1530 	}
1531 
1532 	if (!num_rules)
1533 		return NULL;
1534 
1535 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1536 	if (!rd)
1537 		return NULL;
1538 
1539 	for (x = 0; x < rd1->n_reg_rules; x++) {
1540 		rule1 = &rd1->reg_rules[x];
1541 		for (y = 0; y < rd2->n_reg_rules; y++) {
1542 			rule2 = &rd2->reg_rules[y];
1543 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1544 						&intersected_rule);
1545 			/*
1546 			 * No need to memset here the intersected rule here as
1547 			 * we're not using the stack anymore
1548 			 */
1549 			if (r)
1550 				continue;
1551 
1552 			add_rule(&intersected_rule, rd->reg_rules,
1553 				 &rd->n_reg_rules);
1554 		}
1555 	}
1556 
1557 	rd->alpha2[0] = '9';
1558 	rd->alpha2[1] = '8';
1559 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1560 						  rd2->dfs_region);
1561 
1562 	return rd;
1563 }
1564 
1565 /*
1566  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1567  * want to just have the channel structure use these
1568  */
1569 static u32 map_regdom_flags(u32 rd_flags)
1570 {
1571 	u32 channel_flags = 0;
1572 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1573 		channel_flags |= IEEE80211_CHAN_NO_IR;
1574 	if (rd_flags & NL80211_RRF_DFS)
1575 		channel_flags |= IEEE80211_CHAN_RADAR;
1576 	if (rd_flags & NL80211_RRF_NO_OFDM)
1577 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1578 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1579 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1580 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1581 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1582 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1583 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1584 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1585 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1586 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1587 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1588 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1589 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1590 	if (rd_flags & NL80211_RRF_NO_HE)
1591 		channel_flags |= IEEE80211_CHAN_NO_HE;
1592 	if (rd_flags & NL80211_RRF_NO_320MHZ)
1593 		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1594 	if (rd_flags & NL80211_RRF_NO_EHT)
1595 		channel_flags |= IEEE80211_CHAN_NO_EHT;
1596 	if (rd_flags & NL80211_RRF_PSD)
1597 		channel_flags |= IEEE80211_CHAN_PSD;
1598 	return channel_flags;
1599 }
1600 
1601 static const struct ieee80211_reg_rule *
1602 freq_reg_info_regd(u32 center_freq,
1603 		   const struct ieee80211_regdomain *regd, u32 bw)
1604 {
1605 	int i;
1606 	bool band_rule_found = false;
1607 	bool bw_fits = false;
1608 
1609 	if (!regd)
1610 		return ERR_PTR(-EINVAL);
1611 
1612 	for (i = 0; i < regd->n_reg_rules; i++) {
1613 		const struct ieee80211_reg_rule *rr;
1614 		const struct ieee80211_freq_range *fr = NULL;
1615 
1616 		rr = &regd->reg_rules[i];
1617 		fr = &rr->freq_range;
1618 
1619 		/*
1620 		 * We only need to know if one frequency rule was
1621 		 * in center_freq's band, that's enough, so let's
1622 		 * not overwrite it once found
1623 		 */
1624 		if (!band_rule_found)
1625 			band_rule_found = freq_in_rule_band(fr, center_freq);
1626 
1627 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1628 
1629 		if (band_rule_found && bw_fits)
1630 			return rr;
1631 	}
1632 
1633 	if (!band_rule_found)
1634 		return ERR_PTR(-ERANGE);
1635 
1636 	return ERR_PTR(-EINVAL);
1637 }
1638 
1639 static const struct ieee80211_reg_rule *
1640 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1641 {
1642 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1643 	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1644 	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1645 	int i = ARRAY_SIZE(bws) - 1;
1646 	u32 bw;
1647 
1648 	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1649 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1650 		if (!IS_ERR(reg_rule))
1651 			return reg_rule;
1652 	}
1653 
1654 	return reg_rule;
1655 }
1656 
1657 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1658 					       u32 center_freq)
1659 {
1660 	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1661 
1662 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1663 }
1664 EXPORT_SYMBOL(freq_reg_info);
1665 
1666 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1667 {
1668 	switch (initiator) {
1669 	case NL80211_REGDOM_SET_BY_CORE:
1670 		return "core";
1671 	case NL80211_REGDOM_SET_BY_USER:
1672 		return "user";
1673 	case NL80211_REGDOM_SET_BY_DRIVER:
1674 		return "driver";
1675 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1676 		return "country element";
1677 	default:
1678 		WARN_ON(1);
1679 		return "bug";
1680 	}
1681 }
1682 EXPORT_SYMBOL(reg_initiator_name);
1683 
1684 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1685 					  const struct ieee80211_reg_rule *reg_rule,
1686 					  const struct ieee80211_channel *chan)
1687 {
1688 	const struct ieee80211_freq_range *freq_range = NULL;
1689 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1690 	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1691 
1692 	freq_range = &reg_rule->freq_range;
1693 
1694 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1695 	center_freq_khz = ieee80211_channel_to_khz(chan);
1696 	/* Check if auto calculation requested */
1697 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1698 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1699 
1700 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1701 	if (!cfg80211_does_bw_fit_range(freq_range,
1702 					center_freq_khz,
1703 					MHZ_TO_KHZ(10)))
1704 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1705 	if (!cfg80211_does_bw_fit_range(freq_range,
1706 					center_freq_khz,
1707 					MHZ_TO_KHZ(20)))
1708 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1709 
1710 	if (is_s1g) {
1711 		/* S1G is strict about non overlapping channels. We can
1712 		 * calculate which bandwidth is allowed per channel by finding
1713 		 * the largest bandwidth which cleanly divides the freq_range.
1714 		 */
1715 		int edge_offset;
1716 		int ch_bw = max_bandwidth_khz;
1717 
1718 		while (ch_bw) {
1719 			edge_offset = (center_freq_khz - ch_bw / 2) -
1720 				      freq_range->start_freq_khz;
1721 			if (edge_offset % ch_bw == 0) {
1722 				switch (KHZ_TO_MHZ(ch_bw)) {
1723 				case 1:
1724 					bw_flags |= IEEE80211_CHAN_1MHZ;
1725 					break;
1726 				case 2:
1727 					bw_flags |= IEEE80211_CHAN_2MHZ;
1728 					break;
1729 				case 4:
1730 					bw_flags |= IEEE80211_CHAN_4MHZ;
1731 					break;
1732 				case 8:
1733 					bw_flags |= IEEE80211_CHAN_8MHZ;
1734 					break;
1735 				case 16:
1736 					bw_flags |= IEEE80211_CHAN_16MHZ;
1737 					break;
1738 				default:
1739 					/* If we got here, no bandwidths fit on
1740 					 * this frequency, ie. band edge.
1741 					 */
1742 					bw_flags |= IEEE80211_CHAN_DISABLED;
1743 					break;
1744 				}
1745 				break;
1746 			}
1747 			ch_bw /= 2;
1748 		}
1749 	} else {
1750 		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1751 			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1752 		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1753 			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1754 		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1755 			bw_flags |= IEEE80211_CHAN_NO_HT40;
1756 		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1757 			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1758 		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1759 			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1760 		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1761 			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1762 	}
1763 	return bw_flags;
1764 }
1765 
1766 static void handle_channel_single_rule(struct wiphy *wiphy,
1767 				       enum nl80211_reg_initiator initiator,
1768 				       struct ieee80211_channel *chan,
1769 				       u32 flags,
1770 				       struct regulatory_request *lr,
1771 				       struct wiphy *request_wiphy,
1772 				       const struct ieee80211_reg_rule *reg_rule)
1773 {
1774 	u32 bw_flags = 0;
1775 	const struct ieee80211_power_rule *power_rule = NULL;
1776 	const struct ieee80211_regdomain *regd;
1777 
1778 	regd = reg_get_regdomain(wiphy);
1779 
1780 	power_rule = &reg_rule->power_rule;
1781 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1782 
1783 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1784 	    request_wiphy && request_wiphy == wiphy &&
1785 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1786 		/*
1787 		 * This guarantees the driver's requested regulatory domain
1788 		 * will always be used as a base for further regulatory
1789 		 * settings
1790 		 */
1791 		chan->flags = chan->orig_flags =
1792 			map_regdom_flags(reg_rule->flags) | bw_flags;
1793 		chan->max_antenna_gain = chan->orig_mag =
1794 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1795 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1796 			(int) MBM_TO_DBM(power_rule->max_eirp);
1797 
1798 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1799 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1800 			if (reg_rule->dfs_cac_ms)
1801 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1802 		}
1803 
1804 		if (chan->flags & IEEE80211_CHAN_PSD)
1805 			chan->psd = reg_rule->psd;
1806 
1807 		return;
1808 	}
1809 
1810 	chan->dfs_state = NL80211_DFS_USABLE;
1811 	chan->dfs_state_entered = jiffies;
1812 
1813 	chan->beacon_found = false;
1814 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1815 	chan->max_antenna_gain =
1816 		min_t(int, chan->orig_mag,
1817 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1818 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1819 
1820 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1821 		if (reg_rule->dfs_cac_ms)
1822 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1823 		else
1824 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1825 	}
1826 
1827 	if (chan->flags & IEEE80211_CHAN_PSD)
1828 		chan->psd = reg_rule->psd;
1829 
1830 	if (chan->orig_mpwr) {
1831 		/*
1832 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1833 		 * will always follow the passed country IE power settings.
1834 		 */
1835 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1836 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1837 			chan->max_power = chan->max_reg_power;
1838 		else
1839 			chan->max_power = min(chan->orig_mpwr,
1840 					      chan->max_reg_power);
1841 	} else
1842 		chan->max_power = chan->max_reg_power;
1843 }
1844 
1845 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1846 					  enum nl80211_reg_initiator initiator,
1847 					  struct ieee80211_channel *chan,
1848 					  u32 flags,
1849 					  struct regulatory_request *lr,
1850 					  struct wiphy *request_wiphy,
1851 					  const struct ieee80211_reg_rule *rrule1,
1852 					  const struct ieee80211_reg_rule *rrule2,
1853 					  struct ieee80211_freq_range *comb_range)
1854 {
1855 	u32 bw_flags1 = 0;
1856 	u32 bw_flags2 = 0;
1857 	const struct ieee80211_power_rule *power_rule1 = NULL;
1858 	const struct ieee80211_power_rule *power_rule2 = NULL;
1859 	const struct ieee80211_regdomain *regd;
1860 
1861 	regd = reg_get_regdomain(wiphy);
1862 
1863 	power_rule1 = &rrule1->power_rule;
1864 	power_rule2 = &rrule2->power_rule;
1865 	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1866 	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1867 
1868 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1869 	    request_wiphy && request_wiphy == wiphy &&
1870 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1871 		/* This guarantees the driver's requested regulatory domain
1872 		 * will always be used as a base for further regulatory
1873 		 * settings
1874 		 */
1875 		chan->flags =
1876 			map_regdom_flags(rrule1->flags) |
1877 			map_regdom_flags(rrule2->flags) |
1878 			bw_flags1 |
1879 			bw_flags2;
1880 		chan->orig_flags = chan->flags;
1881 		chan->max_antenna_gain =
1882 			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1883 			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1884 		chan->orig_mag = chan->max_antenna_gain;
1885 		chan->max_reg_power =
1886 			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1887 			      MBM_TO_DBM(power_rule2->max_eirp));
1888 		chan->max_power = chan->max_reg_power;
1889 		chan->orig_mpwr = chan->max_reg_power;
1890 
1891 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1892 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1893 			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1894 				chan->dfs_cac_ms = max_t(unsigned int,
1895 							 rrule1->dfs_cac_ms,
1896 							 rrule2->dfs_cac_ms);
1897 		}
1898 
1899 		if ((rrule1->flags & NL80211_RRF_PSD) &&
1900 		    (rrule2->flags & NL80211_RRF_PSD))
1901 			chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1902 		else
1903 			chan->flags &= ~NL80211_RRF_PSD;
1904 
1905 		return;
1906 	}
1907 
1908 	chan->dfs_state = NL80211_DFS_USABLE;
1909 	chan->dfs_state_entered = jiffies;
1910 
1911 	chan->beacon_found = false;
1912 	chan->flags = flags | bw_flags1 | bw_flags2 |
1913 		      map_regdom_flags(rrule1->flags) |
1914 		      map_regdom_flags(rrule2->flags);
1915 
1916 	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1917 	 * (otherwise no adj. rule case), recheck therefore
1918 	 */
1919 	if (cfg80211_does_bw_fit_range(comb_range,
1920 				       ieee80211_channel_to_khz(chan),
1921 				       MHZ_TO_KHZ(10)))
1922 		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1923 	if (cfg80211_does_bw_fit_range(comb_range,
1924 				       ieee80211_channel_to_khz(chan),
1925 				       MHZ_TO_KHZ(20)))
1926 		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1927 
1928 	chan->max_antenna_gain =
1929 		min_t(int, chan->orig_mag,
1930 		      min_t(int,
1931 			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1932 			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1933 	chan->max_reg_power = min_t(int,
1934 				    MBM_TO_DBM(power_rule1->max_eirp),
1935 				    MBM_TO_DBM(power_rule2->max_eirp));
1936 
1937 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1938 		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1939 			chan->dfs_cac_ms = max_t(unsigned int,
1940 						 rrule1->dfs_cac_ms,
1941 						 rrule2->dfs_cac_ms);
1942 		else
1943 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1944 	}
1945 
1946 	if (chan->orig_mpwr) {
1947 		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1948 		 * will always follow the passed country IE power settings.
1949 		 */
1950 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1951 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1952 			chan->max_power = chan->max_reg_power;
1953 		else
1954 			chan->max_power = min(chan->orig_mpwr,
1955 					      chan->max_reg_power);
1956 	} else {
1957 		chan->max_power = chan->max_reg_power;
1958 	}
1959 }
1960 
1961 /* Note that right now we assume the desired channel bandwidth
1962  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1963  * per channel, the primary and the extension channel).
1964  */
1965 static void handle_channel(struct wiphy *wiphy,
1966 			   enum nl80211_reg_initiator initiator,
1967 			   struct ieee80211_channel *chan)
1968 {
1969 	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1970 	struct regulatory_request *lr = get_last_request();
1971 	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1972 	const struct ieee80211_reg_rule *rrule = NULL;
1973 	const struct ieee80211_reg_rule *rrule1 = NULL;
1974 	const struct ieee80211_reg_rule *rrule2 = NULL;
1975 
1976 	u32 flags = chan->orig_flags;
1977 
1978 	rrule = freq_reg_info(wiphy, orig_chan_freq);
1979 	if (IS_ERR(rrule)) {
1980 		/* check for adjacent match, therefore get rules for
1981 		 * chan - 20 MHz and chan + 20 MHz and test
1982 		 * if reg rules are adjacent
1983 		 */
1984 		rrule1 = freq_reg_info(wiphy,
1985 				       orig_chan_freq - MHZ_TO_KHZ(20));
1986 		rrule2 = freq_reg_info(wiphy,
1987 				       orig_chan_freq + MHZ_TO_KHZ(20));
1988 		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1989 			struct ieee80211_freq_range comb_range;
1990 
1991 			if (rrule1->freq_range.end_freq_khz !=
1992 			    rrule2->freq_range.start_freq_khz)
1993 				goto disable_chan;
1994 
1995 			comb_range.start_freq_khz =
1996 				rrule1->freq_range.start_freq_khz;
1997 			comb_range.end_freq_khz =
1998 				rrule2->freq_range.end_freq_khz;
1999 			comb_range.max_bandwidth_khz =
2000 				min_t(u32,
2001 				      rrule1->freq_range.max_bandwidth_khz,
2002 				      rrule2->freq_range.max_bandwidth_khz);
2003 
2004 			if (!cfg80211_does_bw_fit_range(&comb_range,
2005 							orig_chan_freq,
2006 							MHZ_TO_KHZ(20)))
2007 				goto disable_chan;
2008 
2009 			handle_channel_adjacent_rules(wiphy, initiator, chan,
2010 						      flags, lr, request_wiphy,
2011 						      rrule1, rrule2,
2012 						      &comb_range);
2013 			return;
2014 		}
2015 
2016 disable_chan:
2017 		/* We will disable all channels that do not match our
2018 		 * received regulatory rule unless the hint is coming
2019 		 * from a Country IE and the Country IE had no information
2020 		 * about a band. The IEEE 802.11 spec allows for an AP
2021 		 * to send only a subset of the regulatory rules allowed,
2022 		 * so an AP in the US that only supports 2.4 GHz may only send
2023 		 * a country IE with information for the 2.4 GHz band
2024 		 * while 5 GHz is still supported.
2025 		 */
2026 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2027 		    PTR_ERR(rrule) == -ERANGE)
2028 			return;
2029 
2030 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2031 		    request_wiphy && request_wiphy == wiphy &&
2032 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2033 			pr_debug("Disabling freq %d.%03d MHz for good\n",
2034 				 chan->center_freq, chan->freq_offset);
2035 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2036 			chan->flags = chan->orig_flags;
2037 		} else {
2038 			pr_debug("Disabling freq %d.%03d MHz\n",
2039 				 chan->center_freq, chan->freq_offset);
2040 			chan->flags |= IEEE80211_CHAN_DISABLED;
2041 		}
2042 		return;
2043 	}
2044 
2045 	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2046 				   request_wiphy, rrule);
2047 }
2048 
2049 static void handle_band(struct wiphy *wiphy,
2050 			enum nl80211_reg_initiator initiator,
2051 			struct ieee80211_supported_band *sband)
2052 {
2053 	unsigned int i;
2054 
2055 	if (!sband)
2056 		return;
2057 
2058 	for (i = 0; i < sband->n_channels; i++)
2059 		handle_channel(wiphy, initiator, &sband->channels[i]);
2060 }
2061 
2062 static bool reg_request_cell_base(struct regulatory_request *request)
2063 {
2064 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2065 		return false;
2066 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2067 }
2068 
2069 bool reg_last_request_cell_base(void)
2070 {
2071 	return reg_request_cell_base(get_last_request());
2072 }
2073 
2074 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2075 /* Core specific check */
2076 static enum reg_request_treatment
2077 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2078 {
2079 	struct regulatory_request *lr = get_last_request();
2080 
2081 	if (!reg_num_devs_support_basehint)
2082 		return REG_REQ_IGNORE;
2083 
2084 	if (reg_request_cell_base(lr) &&
2085 	    !regdom_changes(pending_request->alpha2))
2086 		return REG_REQ_ALREADY_SET;
2087 
2088 	return REG_REQ_OK;
2089 }
2090 
2091 /* Device specific check */
2092 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2093 {
2094 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2095 }
2096 #else
2097 static enum reg_request_treatment
2098 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2099 {
2100 	return REG_REQ_IGNORE;
2101 }
2102 
2103 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2104 {
2105 	return true;
2106 }
2107 #endif
2108 
2109 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2110 {
2111 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2112 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2113 		return true;
2114 	return false;
2115 }
2116 
2117 static bool ignore_reg_update(struct wiphy *wiphy,
2118 			      enum nl80211_reg_initiator initiator)
2119 {
2120 	struct regulatory_request *lr = get_last_request();
2121 
2122 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2123 		return true;
2124 
2125 	if (!lr) {
2126 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2127 			 reg_initiator_name(initiator));
2128 		return true;
2129 	}
2130 
2131 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2132 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2133 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2134 			 reg_initiator_name(initiator));
2135 		return true;
2136 	}
2137 
2138 	/*
2139 	 * wiphy->regd will be set once the device has its own
2140 	 * desired regulatory domain set
2141 	 */
2142 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2143 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2144 	    !is_world_regdom(lr->alpha2)) {
2145 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2146 			 reg_initiator_name(initiator));
2147 		return true;
2148 	}
2149 
2150 	if (reg_request_cell_base(lr))
2151 		return reg_dev_ignore_cell_hint(wiphy);
2152 
2153 	return false;
2154 }
2155 
2156 static bool reg_is_world_roaming(struct wiphy *wiphy)
2157 {
2158 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2159 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2160 	struct regulatory_request *lr = get_last_request();
2161 
2162 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2163 		return true;
2164 
2165 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2166 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2167 		return true;
2168 
2169 	return false;
2170 }
2171 
2172 static void reg_call_notifier(struct wiphy *wiphy,
2173 			      struct regulatory_request *request)
2174 {
2175 	if (wiphy->reg_notifier)
2176 		wiphy->reg_notifier(wiphy, request);
2177 }
2178 
2179 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2180 			      struct reg_beacon *reg_beacon)
2181 {
2182 	struct ieee80211_supported_band *sband;
2183 	struct ieee80211_channel *chan;
2184 	bool channel_changed = false;
2185 	struct ieee80211_channel chan_before;
2186 	struct regulatory_request *lr = get_last_request();
2187 
2188 	sband = wiphy->bands[reg_beacon->chan.band];
2189 	chan = &sband->channels[chan_idx];
2190 
2191 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2192 		return;
2193 
2194 	if (chan->beacon_found)
2195 		return;
2196 
2197 	chan->beacon_found = true;
2198 
2199 	if (!reg_is_world_roaming(wiphy))
2200 		return;
2201 
2202 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2203 		return;
2204 
2205 	chan_before = *chan;
2206 
2207 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2208 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2209 		channel_changed = true;
2210 	}
2211 
2212 	if (channel_changed) {
2213 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2214 		if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2215 			reg_call_notifier(wiphy, lr);
2216 	}
2217 }
2218 
2219 /*
2220  * Called when a scan on a wiphy finds a beacon on
2221  * new channel
2222  */
2223 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2224 				    struct reg_beacon *reg_beacon)
2225 {
2226 	unsigned int i;
2227 	struct ieee80211_supported_band *sband;
2228 
2229 	if (!wiphy->bands[reg_beacon->chan.band])
2230 		return;
2231 
2232 	sband = wiphy->bands[reg_beacon->chan.band];
2233 
2234 	for (i = 0; i < sband->n_channels; i++)
2235 		handle_reg_beacon(wiphy, i, reg_beacon);
2236 }
2237 
2238 /*
2239  * Called upon reg changes or a new wiphy is added
2240  */
2241 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2242 {
2243 	unsigned int i;
2244 	struct ieee80211_supported_band *sband;
2245 	struct reg_beacon *reg_beacon;
2246 
2247 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2248 		if (!wiphy->bands[reg_beacon->chan.band])
2249 			continue;
2250 		sband = wiphy->bands[reg_beacon->chan.band];
2251 		for (i = 0; i < sband->n_channels; i++)
2252 			handle_reg_beacon(wiphy, i, reg_beacon);
2253 	}
2254 }
2255 
2256 /* Reap the advantages of previously found beacons */
2257 static void reg_process_beacons(struct wiphy *wiphy)
2258 {
2259 	/*
2260 	 * Means we are just firing up cfg80211, so no beacons would
2261 	 * have been processed yet.
2262 	 */
2263 	if (!last_request)
2264 		return;
2265 	wiphy_update_beacon_reg(wiphy);
2266 }
2267 
2268 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2269 {
2270 	if (!chan)
2271 		return false;
2272 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2273 		return false;
2274 	/* This would happen when regulatory rules disallow HT40 completely */
2275 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2276 		return false;
2277 	return true;
2278 }
2279 
2280 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2281 					 struct ieee80211_channel *channel)
2282 {
2283 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2284 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2285 	const struct ieee80211_regdomain *regd;
2286 	unsigned int i;
2287 	u32 flags;
2288 
2289 	if (!is_ht40_allowed(channel)) {
2290 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2291 		return;
2292 	}
2293 
2294 	/*
2295 	 * We need to ensure the extension channels exist to
2296 	 * be able to use HT40- or HT40+, this finds them (or not)
2297 	 */
2298 	for (i = 0; i < sband->n_channels; i++) {
2299 		struct ieee80211_channel *c = &sband->channels[i];
2300 
2301 		if (c->center_freq == (channel->center_freq - 20))
2302 			channel_before = c;
2303 		if (c->center_freq == (channel->center_freq + 20))
2304 			channel_after = c;
2305 	}
2306 
2307 	flags = 0;
2308 	regd = get_wiphy_regdom(wiphy);
2309 	if (regd) {
2310 		const struct ieee80211_reg_rule *reg_rule =
2311 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2312 					   regd, MHZ_TO_KHZ(20));
2313 
2314 		if (!IS_ERR(reg_rule))
2315 			flags = reg_rule->flags;
2316 	}
2317 
2318 	/*
2319 	 * Please note that this assumes target bandwidth is 20 MHz,
2320 	 * if that ever changes we also need to change the below logic
2321 	 * to include that as well.
2322 	 */
2323 	if (!is_ht40_allowed(channel_before) ||
2324 	    flags & NL80211_RRF_NO_HT40MINUS)
2325 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2326 	else
2327 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2328 
2329 	if (!is_ht40_allowed(channel_after) ||
2330 	    flags & NL80211_RRF_NO_HT40PLUS)
2331 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2332 	else
2333 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2334 }
2335 
2336 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2337 				      struct ieee80211_supported_band *sband)
2338 {
2339 	unsigned int i;
2340 
2341 	if (!sband)
2342 		return;
2343 
2344 	for (i = 0; i < sband->n_channels; i++)
2345 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2346 }
2347 
2348 static void reg_process_ht_flags(struct wiphy *wiphy)
2349 {
2350 	enum nl80211_band band;
2351 
2352 	if (!wiphy)
2353 		return;
2354 
2355 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2356 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2357 }
2358 
2359 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2360 {
2361 	struct cfg80211_chan_def chandef = {};
2362 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2363 	enum nl80211_iftype iftype;
2364 	bool ret;
2365 	int link;
2366 
2367 	iftype = wdev->iftype;
2368 
2369 	/* make sure the interface is active */
2370 	if (!wdev->netdev || !netif_running(wdev->netdev))
2371 		return true;
2372 
2373 	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2374 		struct ieee80211_channel *chan;
2375 
2376 		if (!wdev->valid_links && link > 0)
2377 			break;
2378 		if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2379 			continue;
2380 		switch (iftype) {
2381 		case NL80211_IFTYPE_AP:
2382 		case NL80211_IFTYPE_P2P_GO:
2383 			if (!wdev->links[link].ap.beacon_interval)
2384 				continue;
2385 			chandef = wdev->links[link].ap.chandef;
2386 			break;
2387 		case NL80211_IFTYPE_MESH_POINT:
2388 			if (!wdev->u.mesh.beacon_interval)
2389 				continue;
2390 			chandef = wdev->u.mesh.chandef;
2391 			break;
2392 		case NL80211_IFTYPE_ADHOC:
2393 			if (!wdev->u.ibss.ssid_len)
2394 				continue;
2395 			chandef = wdev->u.ibss.chandef;
2396 			break;
2397 		case NL80211_IFTYPE_STATION:
2398 		case NL80211_IFTYPE_P2P_CLIENT:
2399 			/* Maybe we could consider disabling that link only? */
2400 			if (!wdev->links[link].client.current_bss)
2401 				continue;
2402 
2403 			chan = wdev->links[link].client.current_bss->pub.channel;
2404 			if (!chan)
2405 				continue;
2406 
2407 			if (!rdev->ops->get_channel ||
2408 			    rdev_get_channel(rdev, wdev, link, &chandef))
2409 				cfg80211_chandef_create(&chandef, chan,
2410 							NL80211_CHAN_NO_HT);
2411 			break;
2412 		case NL80211_IFTYPE_MONITOR:
2413 		case NL80211_IFTYPE_AP_VLAN:
2414 		case NL80211_IFTYPE_P2P_DEVICE:
2415 			/* no enforcement required */
2416 			break;
2417 		case NL80211_IFTYPE_OCB:
2418 			if (!wdev->u.ocb.chandef.chan)
2419 				continue;
2420 			chandef = wdev->u.ocb.chandef;
2421 			break;
2422 		case NL80211_IFTYPE_NAN:
2423 			/* we have no info, but NAN is also pretty universal */
2424 			continue;
2425 		default:
2426 			/* others not implemented for now */
2427 			WARN_ON_ONCE(1);
2428 			break;
2429 		}
2430 
2431 		switch (iftype) {
2432 		case NL80211_IFTYPE_AP:
2433 		case NL80211_IFTYPE_P2P_GO:
2434 		case NL80211_IFTYPE_ADHOC:
2435 		case NL80211_IFTYPE_MESH_POINT:
2436 			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2437 							    iftype);
2438 			if (!ret)
2439 				return ret;
2440 			break;
2441 		case NL80211_IFTYPE_STATION:
2442 		case NL80211_IFTYPE_P2P_CLIENT:
2443 			ret = cfg80211_chandef_usable(wiphy, &chandef,
2444 						      IEEE80211_CHAN_DISABLED);
2445 			if (!ret)
2446 				return ret;
2447 			break;
2448 		default:
2449 			break;
2450 		}
2451 	}
2452 
2453 	return true;
2454 }
2455 
2456 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2457 {
2458 	struct wireless_dev *wdev;
2459 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2460 
2461 	wiphy_lock(wiphy);
2462 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2463 		if (!reg_wdev_chan_valid(wiphy, wdev))
2464 			cfg80211_leave(rdev, wdev);
2465 	wiphy_unlock(wiphy);
2466 }
2467 
2468 static void reg_check_chans_work(struct work_struct *work)
2469 {
2470 	struct cfg80211_registered_device *rdev;
2471 
2472 	pr_debug("Verifying active interfaces after reg change\n");
2473 	rtnl_lock();
2474 
2475 	for_each_rdev(rdev)
2476 		reg_leave_invalid_chans(&rdev->wiphy);
2477 
2478 	rtnl_unlock();
2479 }
2480 
2481 static void reg_check_channels(void)
2482 {
2483 	/*
2484 	 * Give usermode a chance to do something nicer (move to another
2485 	 * channel, orderly disconnection), before forcing a disconnection.
2486 	 */
2487 	mod_delayed_work(system_power_efficient_wq,
2488 			 &reg_check_chans,
2489 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2490 }
2491 
2492 static void wiphy_update_regulatory(struct wiphy *wiphy,
2493 				    enum nl80211_reg_initiator initiator)
2494 {
2495 	enum nl80211_band band;
2496 	struct regulatory_request *lr = get_last_request();
2497 
2498 	if (ignore_reg_update(wiphy, initiator)) {
2499 		/*
2500 		 * Regulatory updates set by CORE are ignored for custom
2501 		 * regulatory cards. Let us notify the changes to the driver,
2502 		 * as some drivers used this to restore its orig_* reg domain.
2503 		 */
2504 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2505 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2506 		    !(wiphy->regulatory_flags &
2507 		      REGULATORY_WIPHY_SELF_MANAGED))
2508 			reg_call_notifier(wiphy, lr);
2509 		return;
2510 	}
2511 
2512 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2513 
2514 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2515 		handle_band(wiphy, initiator, wiphy->bands[band]);
2516 
2517 	reg_process_beacons(wiphy);
2518 	reg_process_ht_flags(wiphy);
2519 	reg_call_notifier(wiphy, lr);
2520 }
2521 
2522 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2523 {
2524 	struct cfg80211_registered_device *rdev;
2525 	struct wiphy *wiphy;
2526 
2527 	ASSERT_RTNL();
2528 
2529 	for_each_rdev(rdev) {
2530 		wiphy = &rdev->wiphy;
2531 		wiphy_update_regulatory(wiphy, initiator);
2532 	}
2533 
2534 	reg_check_channels();
2535 }
2536 
2537 static void handle_channel_custom(struct wiphy *wiphy,
2538 				  struct ieee80211_channel *chan,
2539 				  const struct ieee80211_regdomain *regd,
2540 				  u32 min_bw)
2541 {
2542 	u32 bw_flags = 0;
2543 	const struct ieee80211_reg_rule *reg_rule = NULL;
2544 	const struct ieee80211_power_rule *power_rule = NULL;
2545 	u32 bw, center_freq_khz;
2546 
2547 	center_freq_khz = ieee80211_channel_to_khz(chan);
2548 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2549 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2550 		if (!IS_ERR(reg_rule))
2551 			break;
2552 	}
2553 
2554 	if (IS_ERR_OR_NULL(reg_rule)) {
2555 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2556 			 chan->center_freq, chan->freq_offset);
2557 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2558 			chan->flags |= IEEE80211_CHAN_DISABLED;
2559 		} else {
2560 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2561 			chan->flags = chan->orig_flags;
2562 		}
2563 		return;
2564 	}
2565 
2566 	power_rule = &reg_rule->power_rule;
2567 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2568 
2569 	chan->dfs_state_entered = jiffies;
2570 	chan->dfs_state = NL80211_DFS_USABLE;
2571 
2572 	chan->beacon_found = false;
2573 
2574 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2575 		chan->flags = chan->orig_flags | bw_flags |
2576 			      map_regdom_flags(reg_rule->flags);
2577 	else
2578 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2579 
2580 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2581 	chan->max_reg_power = chan->max_power =
2582 		(int) MBM_TO_DBM(power_rule->max_eirp);
2583 
2584 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2585 		if (reg_rule->dfs_cac_ms)
2586 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2587 		else
2588 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2589 	}
2590 
2591 	if (chan->flags & IEEE80211_CHAN_PSD)
2592 		chan->psd = reg_rule->psd;
2593 
2594 	chan->max_power = chan->max_reg_power;
2595 }
2596 
2597 static void handle_band_custom(struct wiphy *wiphy,
2598 			       struct ieee80211_supported_band *sband,
2599 			       const struct ieee80211_regdomain *regd)
2600 {
2601 	unsigned int i;
2602 
2603 	if (!sband)
2604 		return;
2605 
2606 	/*
2607 	 * We currently assume that you always want at least 20 MHz,
2608 	 * otherwise channel 12 might get enabled if this rule is
2609 	 * compatible to US, which permits 2402 - 2472 MHz.
2610 	 */
2611 	for (i = 0; i < sband->n_channels; i++)
2612 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2613 				      MHZ_TO_KHZ(20));
2614 }
2615 
2616 /* Used by drivers prior to wiphy registration */
2617 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2618 				   const struct ieee80211_regdomain *regd)
2619 {
2620 	const struct ieee80211_regdomain *new_regd, *tmp;
2621 	enum nl80211_band band;
2622 	unsigned int bands_set = 0;
2623 
2624 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2625 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2626 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2627 
2628 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2629 		if (!wiphy->bands[band])
2630 			continue;
2631 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2632 		bands_set++;
2633 	}
2634 
2635 	/*
2636 	 * no point in calling this if it won't have any effect
2637 	 * on your device's supported bands.
2638 	 */
2639 	WARN_ON(!bands_set);
2640 	new_regd = reg_copy_regd(regd);
2641 	if (IS_ERR(new_regd))
2642 		return;
2643 
2644 	rtnl_lock();
2645 	wiphy_lock(wiphy);
2646 
2647 	tmp = get_wiphy_regdom(wiphy);
2648 	rcu_assign_pointer(wiphy->regd, new_regd);
2649 	rcu_free_regdom(tmp);
2650 
2651 	wiphy_unlock(wiphy);
2652 	rtnl_unlock();
2653 }
2654 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2655 
2656 static void reg_set_request_processed(void)
2657 {
2658 	bool need_more_processing = false;
2659 	struct regulatory_request *lr = get_last_request();
2660 
2661 	lr->processed = true;
2662 
2663 	spin_lock(&reg_requests_lock);
2664 	if (!list_empty(&reg_requests_list))
2665 		need_more_processing = true;
2666 	spin_unlock(&reg_requests_lock);
2667 
2668 	cancel_crda_timeout();
2669 
2670 	if (need_more_processing)
2671 		schedule_work(&reg_work);
2672 }
2673 
2674 /**
2675  * reg_process_hint_core - process core regulatory requests
2676  * @core_request: a pending core regulatory request
2677  *
2678  * The wireless subsystem can use this function to process
2679  * a regulatory request issued by the regulatory core.
2680  *
2681  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2682  *	hint was processed or ignored
2683  */
2684 static enum reg_request_treatment
2685 reg_process_hint_core(struct regulatory_request *core_request)
2686 {
2687 	if (reg_query_database(core_request)) {
2688 		core_request->intersect = false;
2689 		core_request->processed = false;
2690 		reg_update_last_request(core_request);
2691 		return REG_REQ_OK;
2692 	}
2693 
2694 	return REG_REQ_IGNORE;
2695 }
2696 
2697 static enum reg_request_treatment
2698 __reg_process_hint_user(struct regulatory_request *user_request)
2699 {
2700 	struct regulatory_request *lr = get_last_request();
2701 
2702 	if (reg_request_cell_base(user_request))
2703 		return reg_ignore_cell_hint(user_request);
2704 
2705 	if (reg_request_cell_base(lr))
2706 		return REG_REQ_IGNORE;
2707 
2708 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2709 		return REG_REQ_INTERSECT;
2710 	/*
2711 	 * If the user knows better the user should set the regdom
2712 	 * to their country before the IE is picked up
2713 	 */
2714 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2715 	    lr->intersect)
2716 		return REG_REQ_IGNORE;
2717 	/*
2718 	 * Process user requests only after previous user/driver/core
2719 	 * requests have been processed
2720 	 */
2721 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2722 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2723 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2724 	    regdom_changes(lr->alpha2))
2725 		return REG_REQ_IGNORE;
2726 
2727 	if (!regdom_changes(user_request->alpha2))
2728 		return REG_REQ_ALREADY_SET;
2729 
2730 	return REG_REQ_OK;
2731 }
2732 
2733 /**
2734  * reg_process_hint_user - process user regulatory requests
2735  * @user_request: a pending user regulatory request
2736  *
2737  * The wireless subsystem can use this function to process
2738  * a regulatory request initiated by userspace.
2739  *
2740  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2741  *	hint was processed or ignored
2742  */
2743 static enum reg_request_treatment
2744 reg_process_hint_user(struct regulatory_request *user_request)
2745 {
2746 	enum reg_request_treatment treatment;
2747 
2748 	treatment = __reg_process_hint_user(user_request);
2749 	if (treatment == REG_REQ_IGNORE ||
2750 	    treatment == REG_REQ_ALREADY_SET)
2751 		return REG_REQ_IGNORE;
2752 
2753 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2754 	user_request->processed = false;
2755 
2756 	if (reg_query_database(user_request)) {
2757 		reg_update_last_request(user_request);
2758 		user_alpha2[0] = user_request->alpha2[0];
2759 		user_alpha2[1] = user_request->alpha2[1];
2760 		return REG_REQ_OK;
2761 	}
2762 
2763 	return REG_REQ_IGNORE;
2764 }
2765 
2766 static enum reg_request_treatment
2767 __reg_process_hint_driver(struct regulatory_request *driver_request)
2768 {
2769 	struct regulatory_request *lr = get_last_request();
2770 
2771 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2772 		if (regdom_changes(driver_request->alpha2))
2773 			return REG_REQ_OK;
2774 		return REG_REQ_ALREADY_SET;
2775 	}
2776 
2777 	/*
2778 	 * This would happen if you unplug and plug your card
2779 	 * back in or if you add a new device for which the previously
2780 	 * loaded card also agrees on the regulatory domain.
2781 	 */
2782 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2783 	    !regdom_changes(driver_request->alpha2))
2784 		return REG_REQ_ALREADY_SET;
2785 
2786 	return REG_REQ_INTERSECT;
2787 }
2788 
2789 /**
2790  * reg_process_hint_driver - process driver regulatory requests
2791  * @wiphy: the wireless device for the regulatory request
2792  * @driver_request: a pending driver regulatory request
2793  *
2794  * The wireless subsystem can use this function to process
2795  * a regulatory request issued by an 802.11 driver.
2796  *
2797  * Returns: one of the different reg request treatment values.
2798  */
2799 static enum reg_request_treatment
2800 reg_process_hint_driver(struct wiphy *wiphy,
2801 			struct regulatory_request *driver_request)
2802 {
2803 	const struct ieee80211_regdomain *regd, *tmp;
2804 	enum reg_request_treatment treatment;
2805 
2806 	treatment = __reg_process_hint_driver(driver_request);
2807 
2808 	switch (treatment) {
2809 	case REG_REQ_OK:
2810 		break;
2811 	case REG_REQ_IGNORE:
2812 		return REG_REQ_IGNORE;
2813 	case REG_REQ_INTERSECT:
2814 	case REG_REQ_ALREADY_SET:
2815 		regd = reg_copy_regd(get_cfg80211_regdom());
2816 		if (IS_ERR(regd))
2817 			return REG_REQ_IGNORE;
2818 
2819 		tmp = get_wiphy_regdom(wiphy);
2820 		ASSERT_RTNL();
2821 		wiphy_lock(wiphy);
2822 		rcu_assign_pointer(wiphy->regd, regd);
2823 		wiphy_unlock(wiphy);
2824 		rcu_free_regdom(tmp);
2825 	}
2826 
2827 
2828 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2829 	driver_request->processed = false;
2830 
2831 	/*
2832 	 * Since CRDA will not be called in this case as we already
2833 	 * have applied the requested regulatory domain before we just
2834 	 * inform userspace we have processed the request
2835 	 */
2836 	if (treatment == REG_REQ_ALREADY_SET) {
2837 		nl80211_send_reg_change_event(driver_request);
2838 		reg_update_last_request(driver_request);
2839 		reg_set_request_processed();
2840 		return REG_REQ_ALREADY_SET;
2841 	}
2842 
2843 	if (reg_query_database(driver_request)) {
2844 		reg_update_last_request(driver_request);
2845 		return REG_REQ_OK;
2846 	}
2847 
2848 	return REG_REQ_IGNORE;
2849 }
2850 
2851 static enum reg_request_treatment
2852 __reg_process_hint_country_ie(struct wiphy *wiphy,
2853 			      struct regulatory_request *country_ie_request)
2854 {
2855 	struct wiphy *last_wiphy = NULL;
2856 	struct regulatory_request *lr = get_last_request();
2857 
2858 	if (reg_request_cell_base(lr)) {
2859 		/* Trust a Cell base station over the AP's country IE */
2860 		if (regdom_changes(country_ie_request->alpha2))
2861 			return REG_REQ_IGNORE;
2862 		return REG_REQ_ALREADY_SET;
2863 	} else {
2864 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2865 			return REG_REQ_IGNORE;
2866 	}
2867 
2868 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2869 		return -EINVAL;
2870 
2871 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2872 		return REG_REQ_OK;
2873 
2874 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2875 
2876 	if (last_wiphy != wiphy) {
2877 		/*
2878 		 * Two cards with two APs claiming different
2879 		 * Country IE alpha2s. We could
2880 		 * intersect them, but that seems unlikely
2881 		 * to be correct. Reject second one for now.
2882 		 */
2883 		if (regdom_changes(country_ie_request->alpha2))
2884 			return REG_REQ_IGNORE;
2885 		return REG_REQ_ALREADY_SET;
2886 	}
2887 
2888 	if (regdom_changes(country_ie_request->alpha2))
2889 		return REG_REQ_OK;
2890 	return REG_REQ_ALREADY_SET;
2891 }
2892 
2893 /**
2894  * reg_process_hint_country_ie - process regulatory requests from country IEs
2895  * @wiphy: the wireless device for the regulatory request
2896  * @country_ie_request: a regulatory request from a country IE
2897  *
2898  * The wireless subsystem can use this function to process
2899  * a regulatory request issued by a country Information Element.
2900  *
2901  * Returns: one of the different reg request treatment values.
2902  */
2903 static enum reg_request_treatment
2904 reg_process_hint_country_ie(struct wiphy *wiphy,
2905 			    struct regulatory_request *country_ie_request)
2906 {
2907 	enum reg_request_treatment treatment;
2908 
2909 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2910 
2911 	switch (treatment) {
2912 	case REG_REQ_OK:
2913 		break;
2914 	case REG_REQ_IGNORE:
2915 		return REG_REQ_IGNORE;
2916 	case REG_REQ_ALREADY_SET:
2917 		reg_free_request(country_ie_request);
2918 		return REG_REQ_ALREADY_SET;
2919 	case REG_REQ_INTERSECT:
2920 		/*
2921 		 * This doesn't happen yet, not sure we
2922 		 * ever want to support it for this case.
2923 		 */
2924 		WARN_ONCE(1, "Unexpected intersection for country elements");
2925 		return REG_REQ_IGNORE;
2926 	}
2927 
2928 	country_ie_request->intersect = false;
2929 	country_ie_request->processed = false;
2930 
2931 	if (reg_query_database(country_ie_request)) {
2932 		reg_update_last_request(country_ie_request);
2933 		return REG_REQ_OK;
2934 	}
2935 
2936 	return REG_REQ_IGNORE;
2937 }
2938 
2939 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2940 {
2941 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2942 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2943 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2944 	bool dfs_domain_same;
2945 
2946 	rcu_read_lock();
2947 
2948 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2949 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2950 	if (!wiphy1_regd)
2951 		wiphy1_regd = cfg80211_regd;
2952 
2953 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2954 	if (!wiphy2_regd)
2955 		wiphy2_regd = cfg80211_regd;
2956 
2957 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2958 
2959 	rcu_read_unlock();
2960 
2961 	return dfs_domain_same;
2962 }
2963 
2964 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2965 				    struct ieee80211_channel *src_chan)
2966 {
2967 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2968 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2969 		return;
2970 
2971 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2972 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2973 		return;
2974 
2975 	if (src_chan->center_freq == dst_chan->center_freq &&
2976 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2977 		dst_chan->dfs_state = src_chan->dfs_state;
2978 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2979 	}
2980 }
2981 
2982 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2983 				       struct wiphy *src_wiphy)
2984 {
2985 	struct ieee80211_supported_band *src_sband, *dst_sband;
2986 	struct ieee80211_channel *src_chan, *dst_chan;
2987 	int i, j, band;
2988 
2989 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2990 		return;
2991 
2992 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2993 		dst_sband = dst_wiphy->bands[band];
2994 		src_sband = src_wiphy->bands[band];
2995 		if (!dst_sband || !src_sband)
2996 			continue;
2997 
2998 		for (i = 0; i < dst_sband->n_channels; i++) {
2999 			dst_chan = &dst_sband->channels[i];
3000 			for (j = 0; j < src_sband->n_channels; j++) {
3001 				src_chan = &src_sband->channels[j];
3002 				reg_copy_dfs_chan_state(dst_chan, src_chan);
3003 			}
3004 		}
3005 	}
3006 }
3007 
3008 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3009 {
3010 	struct cfg80211_registered_device *rdev;
3011 
3012 	ASSERT_RTNL();
3013 
3014 	for_each_rdev(rdev) {
3015 		if (wiphy == &rdev->wiphy)
3016 			continue;
3017 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3018 	}
3019 }
3020 
3021 /* This processes *all* regulatory hints */
3022 static void reg_process_hint(struct regulatory_request *reg_request)
3023 {
3024 	struct wiphy *wiphy = NULL;
3025 	enum reg_request_treatment treatment;
3026 	enum nl80211_reg_initiator initiator = reg_request->initiator;
3027 
3028 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3029 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3030 
3031 	switch (initiator) {
3032 	case NL80211_REGDOM_SET_BY_CORE:
3033 		treatment = reg_process_hint_core(reg_request);
3034 		break;
3035 	case NL80211_REGDOM_SET_BY_USER:
3036 		treatment = reg_process_hint_user(reg_request);
3037 		break;
3038 	case NL80211_REGDOM_SET_BY_DRIVER:
3039 		if (!wiphy)
3040 			goto out_free;
3041 		treatment = reg_process_hint_driver(wiphy, reg_request);
3042 		break;
3043 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3044 		if (!wiphy)
3045 			goto out_free;
3046 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3047 		break;
3048 	default:
3049 		WARN(1, "invalid initiator %d\n", initiator);
3050 		goto out_free;
3051 	}
3052 
3053 	if (treatment == REG_REQ_IGNORE)
3054 		goto out_free;
3055 
3056 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3057 	     "unexpected treatment value %d\n", treatment);
3058 
3059 	/* This is required so that the orig_* parameters are saved.
3060 	 * NOTE: treatment must be set for any case that reaches here!
3061 	 */
3062 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3063 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3064 		wiphy_update_regulatory(wiphy, initiator);
3065 		wiphy_all_share_dfs_chan_state(wiphy);
3066 		reg_check_channels();
3067 	}
3068 
3069 	return;
3070 
3071 out_free:
3072 	reg_free_request(reg_request);
3073 }
3074 
3075 static void notify_self_managed_wiphys(struct regulatory_request *request)
3076 {
3077 	struct cfg80211_registered_device *rdev;
3078 	struct wiphy *wiphy;
3079 
3080 	for_each_rdev(rdev) {
3081 		wiphy = &rdev->wiphy;
3082 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3083 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3084 			reg_call_notifier(wiphy, request);
3085 	}
3086 }
3087 
3088 /*
3089  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3090  * Regulatory hints come on a first come first serve basis and we
3091  * must process each one atomically.
3092  */
3093 static void reg_process_pending_hints(void)
3094 {
3095 	struct regulatory_request *reg_request, *lr;
3096 
3097 	lr = get_last_request();
3098 
3099 	/* When last_request->processed becomes true this will be rescheduled */
3100 	if (lr && !lr->processed) {
3101 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3102 		return;
3103 	}
3104 
3105 	spin_lock(&reg_requests_lock);
3106 
3107 	if (list_empty(&reg_requests_list)) {
3108 		spin_unlock(&reg_requests_lock);
3109 		return;
3110 	}
3111 
3112 	reg_request = list_first_entry(&reg_requests_list,
3113 				       struct regulatory_request,
3114 				       list);
3115 	list_del_init(&reg_request->list);
3116 
3117 	spin_unlock(&reg_requests_lock);
3118 
3119 	notify_self_managed_wiphys(reg_request);
3120 
3121 	reg_process_hint(reg_request);
3122 
3123 	lr = get_last_request();
3124 
3125 	spin_lock(&reg_requests_lock);
3126 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3127 		schedule_work(&reg_work);
3128 	spin_unlock(&reg_requests_lock);
3129 }
3130 
3131 /* Processes beacon hints -- this has nothing to do with country IEs */
3132 static void reg_process_pending_beacon_hints(void)
3133 {
3134 	struct cfg80211_registered_device *rdev;
3135 	struct reg_beacon *pending_beacon, *tmp;
3136 
3137 	/* This goes through the _pending_ beacon list */
3138 	spin_lock_bh(&reg_pending_beacons_lock);
3139 
3140 	list_for_each_entry_safe(pending_beacon, tmp,
3141 				 &reg_pending_beacons, list) {
3142 		list_del_init(&pending_beacon->list);
3143 
3144 		/* Applies the beacon hint to current wiphys */
3145 		for_each_rdev(rdev)
3146 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3147 
3148 		/* Remembers the beacon hint for new wiphys or reg changes */
3149 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3150 	}
3151 
3152 	spin_unlock_bh(&reg_pending_beacons_lock);
3153 }
3154 
3155 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3156 {
3157 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3158 	const struct ieee80211_regdomain *tmp;
3159 	const struct ieee80211_regdomain *regd;
3160 	enum nl80211_band band;
3161 	struct regulatory_request request = {};
3162 
3163 	ASSERT_RTNL();
3164 	lockdep_assert_wiphy(wiphy);
3165 
3166 	spin_lock(&reg_requests_lock);
3167 	regd = rdev->requested_regd;
3168 	rdev->requested_regd = NULL;
3169 	spin_unlock(&reg_requests_lock);
3170 
3171 	if (!regd)
3172 		return;
3173 
3174 	tmp = get_wiphy_regdom(wiphy);
3175 	rcu_assign_pointer(wiphy->regd, regd);
3176 	rcu_free_regdom(tmp);
3177 
3178 	for (band = 0; band < NUM_NL80211_BANDS; band++)
3179 		handle_band_custom(wiphy, wiphy->bands[band], regd);
3180 
3181 	reg_process_ht_flags(wiphy);
3182 
3183 	request.wiphy_idx = get_wiphy_idx(wiphy);
3184 	request.alpha2[0] = regd->alpha2[0];
3185 	request.alpha2[1] = regd->alpha2[1];
3186 	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3187 
3188 	if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3189 		reg_call_notifier(wiphy, &request);
3190 
3191 	nl80211_send_wiphy_reg_change_event(&request);
3192 }
3193 
3194 static void reg_process_self_managed_hints(void)
3195 {
3196 	struct cfg80211_registered_device *rdev;
3197 
3198 	ASSERT_RTNL();
3199 
3200 	for_each_rdev(rdev) {
3201 		wiphy_lock(&rdev->wiphy);
3202 		reg_process_self_managed_hint(&rdev->wiphy);
3203 		wiphy_unlock(&rdev->wiphy);
3204 	}
3205 
3206 	reg_check_channels();
3207 }
3208 
3209 static void reg_todo(struct work_struct *work)
3210 {
3211 	rtnl_lock();
3212 	reg_process_pending_hints();
3213 	reg_process_pending_beacon_hints();
3214 	reg_process_self_managed_hints();
3215 	rtnl_unlock();
3216 }
3217 
3218 static void queue_regulatory_request(struct regulatory_request *request)
3219 {
3220 	request->alpha2[0] = toupper(request->alpha2[0]);
3221 	request->alpha2[1] = toupper(request->alpha2[1]);
3222 
3223 	spin_lock(&reg_requests_lock);
3224 	list_add_tail(&request->list, &reg_requests_list);
3225 	spin_unlock(&reg_requests_lock);
3226 
3227 	schedule_work(&reg_work);
3228 }
3229 
3230 /*
3231  * Core regulatory hint -- happens during cfg80211_init()
3232  * and when we restore regulatory settings.
3233  */
3234 static int regulatory_hint_core(const char *alpha2)
3235 {
3236 	struct regulatory_request *request;
3237 
3238 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3239 	if (!request)
3240 		return -ENOMEM;
3241 
3242 	request->alpha2[0] = alpha2[0];
3243 	request->alpha2[1] = alpha2[1];
3244 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3245 	request->wiphy_idx = WIPHY_IDX_INVALID;
3246 
3247 	queue_regulatory_request(request);
3248 
3249 	return 0;
3250 }
3251 
3252 /* User hints */
3253 int regulatory_hint_user(const char *alpha2,
3254 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3255 {
3256 	struct regulatory_request *request;
3257 
3258 	if (WARN_ON(!alpha2))
3259 		return -EINVAL;
3260 
3261 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3262 		return -EINVAL;
3263 
3264 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3265 	if (!request)
3266 		return -ENOMEM;
3267 
3268 	request->wiphy_idx = WIPHY_IDX_INVALID;
3269 	request->alpha2[0] = alpha2[0];
3270 	request->alpha2[1] = alpha2[1];
3271 	request->initiator = NL80211_REGDOM_SET_BY_USER;
3272 	request->user_reg_hint_type = user_reg_hint_type;
3273 
3274 	/* Allow calling CRDA again */
3275 	reset_crda_timeouts();
3276 
3277 	queue_regulatory_request(request);
3278 
3279 	return 0;
3280 }
3281 
3282 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3283 {
3284 	spin_lock(&reg_indoor_lock);
3285 
3286 	/* It is possible that more than one user space process is trying to
3287 	 * configure the indoor setting. To handle such cases, clear the indoor
3288 	 * setting in case that some process does not think that the device
3289 	 * is operating in an indoor environment. In addition, if a user space
3290 	 * process indicates that it is controlling the indoor setting, save its
3291 	 * portid, i.e., make it the owner.
3292 	 */
3293 	reg_is_indoor = is_indoor;
3294 	if (reg_is_indoor) {
3295 		if (!reg_is_indoor_portid)
3296 			reg_is_indoor_portid = portid;
3297 	} else {
3298 		reg_is_indoor_portid = 0;
3299 	}
3300 
3301 	spin_unlock(&reg_indoor_lock);
3302 
3303 	if (!is_indoor)
3304 		reg_check_channels();
3305 
3306 	return 0;
3307 }
3308 
3309 void regulatory_netlink_notify(u32 portid)
3310 {
3311 	spin_lock(&reg_indoor_lock);
3312 
3313 	if (reg_is_indoor_portid != portid) {
3314 		spin_unlock(&reg_indoor_lock);
3315 		return;
3316 	}
3317 
3318 	reg_is_indoor = false;
3319 	reg_is_indoor_portid = 0;
3320 
3321 	spin_unlock(&reg_indoor_lock);
3322 
3323 	reg_check_channels();
3324 }
3325 
3326 /* Driver hints */
3327 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3328 {
3329 	struct regulatory_request *request;
3330 
3331 	if (WARN_ON(!alpha2 || !wiphy))
3332 		return -EINVAL;
3333 
3334 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3335 
3336 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3337 	if (!request)
3338 		return -ENOMEM;
3339 
3340 	request->wiphy_idx = get_wiphy_idx(wiphy);
3341 
3342 	request->alpha2[0] = alpha2[0];
3343 	request->alpha2[1] = alpha2[1];
3344 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3345 
3346 	/* Allow calling CRDA again */
3347 	reset_crda_timeouts();
3348 
3349 	queue_regulatory_request(request);
3350 
3351 	return 0;
3352 }
3353 EXPORT_SYMBOL(regulatory_hint);
3354 
3355 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3356 				const u8 *country_ie, u8 country_ie_len)
3357 {
3358 	char alpha2[2];
3359 	enum environment_cap env = ENVIRON_ANY;
3360 	struct regulatory_request *request = NULL, *lr;
3361 
3362 	/* IE len must be evenly divisible by 2 */
3363 	if (country_ie_len & 0x01)
3364 		return;
3365 
3366 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3367 		return;
3368 
3369 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3370 	if (!request)
3371 		return;
3372 
3373 	alpha2[0] = country_ie[0];
3374 	alpha2[1] = country_ie[1];
3375 
3376 	if (country_ie[2] == 'I')
3377 		env = ENVIRON_INDOOR;
3378 	else if (country_ie[2] == 'O')
3379 		env = ENVIRON_OUTDOOR;
3380 
3381 	rcu_read_lock();
3382 	lr = get_last_request();
3383 
3384 	if (unlikely(!lr))
3385 		goto out;
3386 
3387 	/*
3388 	 * We will run this only upon a successful connection on cfg80211.
3389 	 * We leave conflict resolution to the workqueue, where can hold
3390 	 * the RTNL.
3391 	 */
3392 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3393 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3394 		goto out;
3395 
3396 	request->wiphy_idx = get_wiphy_idx(wiphy);
3397 	request->alpha2[0] = alpha2[0];
3398 	request->alpha2[1] = alpha2[1];
3399 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3400 	request->country_ie_env = env;
3401 
3402 	/* Allow calling CRDA again */
3403 	reset_crda_timeouts();
3404 
3405 	queue_regulatory_request(request);
3406 	request = NULL;
3407 out:
3408 	kfree(request);
3409 	rcu_read_unlock();
3410 }
3411 
3412 static void restore_alpha2(char *alpha2, bool reset_user)
3413 {
3414 	/* indicates there is no alpha2 to consider for restoration */
3415 	alpha2[0] = '9';
3416 	alpha2[1] = '7';
3417 
3418 	/* The user setting has precedence over the module parameter */
3419 	if (is_user_regdom_saved()) {
3420 		/* Unless we're asked to ignore it and reset it */
3421 		if (reset_user) {
3422 			pr_debug("Restoring regulatory settings including user preference\n");
3423 			user_alpha2[0] = '9';
3424 			user_alpha2[1] = '7';
3425 
3426 			/*
3427 			 * If we're ignoring user settings, we still need to
3428 			 * check the module parameter to ensure we put things
3429 			 * back as they were for a full restore.
3430 			 */
3431 			if (!is_world_regdom(ieee80211_regdom)) {
3432 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3433 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3434 				alpha2[0] = ieee80211_regdom[0];
3435 				alpha2[1] = ieee80211_regdom[1];
3436 			}
3437 		} else {
3438 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3439 				 user_alpha2[0], user_alpha2[1]);
3440 			alpha2[0] = user_alpha2[0];
3441 			alpha2[1] = user_alpha2[1];
3442 		}
3443 	} else if (!is_world_regdom(ieee80211_regdom)) {
3444 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3445 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3446 		alpha2[0] = ieee80211_regdom[0];
3447 		alpha2[1] = ieee80211_regdom[1];
3448 	} else
3449 		pr_debug("Restoring regulatory settings\n");
3450 }
3451 
3452 static void restore_custom_reg_settings(struct wiphy *wiphy)
3453 {
3454 	struct ieee80211_supported_band *sband;
3455 	enum nl80211_band band;
3456 	struct ieee80211_channel *chan;
3457 	int i;
3458 
3459 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3460 		sband = wiphy->bands[band];
3461 		if (!sband)
3462 			continue;
3463 		for (i = 0; i < sband->n_channels; i++) {
3464 			chan = &sband->channels[i];
3465 			chan->flags = chan->orig_flags;
3466 			chan->max_antenna_gain = chan->orig_mag;
3467 			chan->max_power = chan->orig_mpwr;
3468 			chan->beacon_found = false;
3469 		}
3470 	}
3471 }
3472 
3473 /*
3474  * Restoring regulatory settings involves ignoring any
3475  * possibly stale country IE information and user regulatory
3476  * settings if so desired, this includes any beacon hints
3477  * learned as we could have traveled outside to another country
3478  * after disconnection. To restore regulatory settings we do
3479  * exactly what we did at bootup:
3480  *
3481  *   - send a core regulatory hint
3482  *   - send a user regulatory hint if applicable
3483  *
3484  * Device drivers that send a regulatory hint for a specific country
3485  * keep their own regulatory domain on wiphy->regd so that does
3486  * not need to be remembered.
3487  */
3488 static void restore_regulatory_settings(bool reset_user, bool cached)
3489 {
3490 	char alpha2[2];
3491 	char world_alpha2[2];
3492 	struct reg_beacon *reg_beacon, *btmp;
3493 	LIST_HEAD(tmp_reg_req_list);
3494 	struct cfg80211_registered_device *rdev;
3495 
3496 	ASSERT_RTNL();
3497 
3498 	/*
3499 	 * Clear the indoor setting in case that it is not controlled by user
3500 	 * space, as otherwise there is no guarantee that the device is still
3501 	 * operating in an indoor environment.
3502 	 */
3503 	spin_lock(&reg_indoor_lock);
3504 	if (reg_is_indoor && !reg_is_indoor_portid) {
3505 		reg_is_indoor = false;
3506 		reg_check_channels();
3507 	}
3508 	spin_unlock(&reg_indoor_lock);
3509 
3510 	reset_regdomains(true, &world_regdom);
3511 	restore_alpha2(alpha2, reset_user);
3512 
3513 	/*
3514 	 * If there's any pending requests we simply
3515 	 * stash them to a temporary pending queue and
3516 	 * add then after we've restored regulatory
3517 	 * settings.
3518 	 */
3519 	spin_lock(&reg_requests_lock);
3520 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3521 	spin_unlock(&reg_requests_lock);
3522 
3523 	/* Clear beacon hints */
3524 	spin_lock_bh(&reg_pending_beacons_lock);
3525 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3526 		list_del(&reg_beacon->list);
3527 		kfree(reg_beacon);
3528 	}
3529 	spin_unlock_bh(&reg_pending_beacons_lock);
3530 
3531 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3532 		list_del(&reg_beacon->list);
3533 		kfree(reg_beacon);
3534 	}
3535 
3536 	/* First restore to the basic regulatory settings */
3537 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3538 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3539 
3540 	for_each_rdev(rdev) {
3541 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3542 			continue;
3543 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3544 			restore_custom_reg_settings(&rdev->wiphy);
3545 	}
3546 
3547 	if (cached && (!is_an_alpha2(alpha2) ||
3548 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3549 		reset_regdomains(false, cfg80211_world_regdom);
3550 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3551 		print_regdomain(get_cfg80211_regdom());
3552 		nl80211_send_reg_change_event(&core_request_world);
3553 		reg_set_request_processed();
3554 
3555 		if (is_an_alpha2(alpha2) &&
3556 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3557 			struct regulatory_request *ureq;
3558 
3559 			spin_lock(&reg_requests_lock);
3560 			ureq = list_last_entry(&reg_requests_list,
3561 					       struct regulatory_request,
3562 					       list);
3563 			list_del(&ureq->list);
3564 			spin_unlock(&reg_requests_lock);
3565 
3566 			notify_self_managed_wiphys(ureq);
3567 			reg_update_last_request(ureq);
3568 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3569 				   REGD_SOURCE_CACHED);
3570 		}
3571 	} else {
3572 		regulatory_hint_core(world_alpha2);
3573 
3574 		/*
3575 		 * This restores the ieee80211_regdom module parameter
3576 		 * preference or the last user requested regulatory
3577 		 * settings, user regulatory settings takes precedence.
3578 		 */
3579 		if (is_an_alpha2(alpha2))
3580 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3581 	}
3582 
3583 	spin_lock(&reg_requests_lock);
3584 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3585 	spin_unlock(&reg_requests_lock);
3586 
3587 	pr_debug("Kicking the queue\n");
3588 
3589 	schedule_work(&reg_work);
3590 }
3591 
3592 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3593 {
3594 	struct cfg80211_registered_device *rdev;
3595 	struct wireless_dev *wdev;
3596 
3597 	for_each_rdev(rdev) {
3598 		wiphy_lock(&rdev->wiphy);
3599 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3600 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3601 				wiphy_unlock(&rdev->wiphy);
3602 				return false;
3603 			}
3604 		}
3605 		wiphy_unlock(&rdev->wiphy);
3606 	}
3607 
3608 	return true;
3609 }
3610 
3611 void regulatory_hint_disconnect(void)
3612 {
3613 	/* Restore of regulatory settings is not required when wiphy(s)
3614 	 * ignore IE from connected access point but clearance of beacon hints
3615 	 * is required when wiphy(s) supports beacon hints.
3616 	 */
3617 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3618 		struct reg_beacon *reg_beacon, *btmp;
3619 
3620 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3621 			return;
3622 
3623 		spin_lock_bh(&reg_pending_beacons_lock);
3624 		list_for_each_entry_safe(reg_beacon, btmp,
3625 					 &reg_pending_beacons, list) {
3626 			list_del(&reg_beacon->list);
3627 			kfree(reg_beacon);
3628 		}
3629 		spin_unlock_bh(&reg_pending_beacons_lock);
3630 
3631 		list_for_each_entry_safe(reg_beacon, btmp,
3632 					 &reg_beacon_list, list) {
3633 			list_del(&reg_beacon->list);
3634 			kfree(reg_beacon);
3635 		}
3636 
3637 		return;
3638 	}
3639 
3640 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3641 	restore_regulatory_settings(false, true);
3642 }
3643 
3644 static bool freq_is_chan_12_13_14(u32 freq)
3645 {
3646 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3647 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3648 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3649 		return true;
3650 	return false;
3651 }
3652 
3653 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3654 {
3655 	struct reg_beacon *pending_beacon;
3656 
3657 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3658 		if (ieee80211_channel_equal(beacon_chan,
3659 					    &pending_beacon->chan))
3660 			return true;
3661 	return false;
3662 }
3663 
3664 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3665 				 struct ieee80211_channel *beacon_chan,
3666 				 gfp_t gfp)
3667 {
3668 	struct reg_beacon *reg_beacon;
3669 	bool processing;
3670 
3671 	if (beacon_chan->beacon_found ||
3672 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3673 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3674 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3675 		return 0;
3676 
3677 	spin_lock_bh(&reg_pending_beacons_lock);
3678 	processing = pending_reg_beacon(beacon_chan);
3679 	spin_unlock_bh(&reg_pending_beacons_lock);
3680 
3681 	if (processing)
3682 		return 0;
3683 
3684 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3685 	if (!reg_beacon)
3686 		return -ENOMEM;
3687 
3688 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3689 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3690 		 ieee80211_freq_khz_to_channel(
3691 			 ieee80211_channel_to_khz(beacon_chan)),
3692 		 wiphy_name(wiphy));
3693 
3694 	memcpy(&reg_beacon->chan, beacon_chan,
3695 	       sizeof(struct ieee80211_channel));
3696 
3697 	/*
3698 	 * Since we can be called from BH or and non-BH context
3699 	 * we must use spin_lock_bh()
3700 	 */
3701 	spin_lock_bh(&reg_pending_beacons_lock);
3702 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3703 	spin_unlock_bh(&reg_pending_beacons_lock);
3704 
3705 	schedule_work(&reg_work);
3706 
3707 	return 0;
3708 }
3709 
3710 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3711 {
3712 	unsigned int i;
3713 	const struct ieee80211_reg_rule *reg_rule = NULL;
3714 	const struct ieee80211_freq_range *freq_range = NULL;
3715 	const struct ieee80211_power_rule *power_rule = NULL;
3716 	char bw[32], cac_time[32];
3717 
3718 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3719 
3720 	for (i = 0; i < rd->n_reg_rules; i++) {
3721 		reg_rule = &rd->reg_rules[i];
3722 		freq_range = &reg_rule->freq_range;
3723 		power_rule = &reg_rule->power_rule;
3724 
3725 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3726 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3727 				 freq_range->max_bandwidth_khz,
3728 				 reg_get_max_bandwidth(rd, reg_rule));
3729 		else
3730 			snprintf(bw, sizeof(bw), "%d KHz",
3731 				 freq_range->max_bandwidth_khz);
3732 
3733 		if (reg_rule->flags & NL80211_RRF_DFS)
3734 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3735 				  reg_rule->dfs_cac_ms/1000);
3736 		else
3737 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3738 
3739 
3740 		/*
3741 		 * There may not be documentation for max antenna gain
3742 		 * in certain regions
3743 		 */
3744 		if (power_rule->max_antenna_gain)
3745 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3746 				freq_range->start_freq_khz,
3747 				freq_range->end_freq_khz,
3748 				bw,
3749 				power_rule->max_antenna_gain,
3750 				power_rule->max_eirp,
3751 				cac_time);
3752 		else
3753 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3754 				freq_range->start_freq_khz,
3755 				freq_range->end_freq_khz,
3756 				bw,
3757 				power_rule->max_eirp,
3758 				cac_time);
3759 	}
3760 }
3761 
3762 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3763 {
3764 	switch (dfs_region) {
3765 	case NL80211_DFS_UNSET:
3766 	case NL80211_DFS_FCC:
3767 	case NL80211_DFS_ETSI:
3768 	case NL80211_DFS_JP:
3769 		return true;
3770 	default:
3771 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3772 		return false;
3773 	}
3774 }
3775 
3776 static void print_regdomain(const struct ieee80211_regdomain *rd)
3777 {
3778 	struct regulatory_request *lr = get_last_request();
3779 
3780 	if (is_intersected_alpha2(rd->alpha2)) {
3781 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3782 			struct cfg80211_registered_device *rdev;
3783 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3784 			if (rdev) {
3785 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3786 					rdev->country_ie_alpha2[0],
3787 					rdev->country_ie_alpha2[1]);
3788 			} else
3789 				pr_debug("Current regulatory domain intersected:\n");
3790 		} else
3791 			pr_debug("Current regulatory domain intersected:\n");
3792 	} else if (is_world_regdom(rd->alpha2)) {
3793 		pr_debug("World regulatory domain updated:\n");
3794 	} else {
3795 		if (is_unknown_alpha2(rd->alpha2))
3796 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3797 		else {
3798 			if (reg_request_cell_base(lr))
3799 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3800 					rd->alpha2[0], rd->alpha2[1]);
3801 			else
3802 				pr_debug("Regulatory domain changed to country: %c%c\n",
3803 					rd->alpha2[0], rd->alpha2[1]);
3804 		}
3805 	}
3806 
3807 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3808 	print_rd_rules(rd);
3809 }
3810 
3811 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3812 {
3813 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3814 	print_rd_rules(rd);
3815 }
3816 
3817 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3818 {
3819 	if (!is_world_regdom(rd->alpha2))
3820 		return -EINVAL;
3821 	update_world_regdomain(rd);
3822 	return 0;
3823 }
3824 
3825 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3826 			   struct regulatory_request *user_request)
3827 {
3828 	const struct ieee80211_regdomain *intersected_rd = NULL;
3829 
3830 	if (!regdom_changes(rd->alpha2))
3831 		return -EALREADY;
3832 
3833 	if (!is_valid_rd(rd)) {
3834 		pr_err("Invalid regulatory domain detected: %c%c\n",
3835 		       rd->alpha2[0], rd->alpha2[1]);
3836 		print_regdomain_info(rd);
3837 		return -EINVAL;
3838 	}
3839 
3840 	if (!user_request->intersect) {
3841 		reset_regdomains(false, rd);
3842 		return 0;
3843 	}
3844 
3845 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3846 	if (!intersected_rd)
3847 		return -EINVAL;
3848 
3849 	kfree(rd);
3850 	rd = NULL;
3851 	reset_regdomains(false, intersected_rd);
3852 
3853 	return 0;
3854 }
3855 
3856 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3857 			     struct regulatory_request *driver_request)
3858 {
3859 	const struct ieee80211_regdomain *regd;
3860 	const struct ieee80211_regdomain *intersected_rd = NULL;
3861 	const struct ieee80211_regdomain *tmp = NULL;
3862 	struct wiphy *request_wiphy;
3863 
3864 	if (is_world_regdom(rd->alpha2))
3865 		return -EINVAL;
3866 
3867 	if (!regdom_changes(rd->alpha2))
3868 		return -EALREADY;
3869 
3870 	if (!is_valid_rd(rd)) {
3871 		pr_err("Invalid regulatory domain detected: %c%c\n",
3872 		       rd->alpha2[0], rd->alpha2[1]);
3873 		print_regdomain_info(rd);
3874 		return -EINVAL;
3875 	}
3876 
3877 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3878 	if (!request_wiphy)
3879 		return -ENODEV;
3880 
3881 	if (!driver_request->intersect) {
3882 		ASSERT_RTNL();
3883 		wiphy_lock(request_wiphy);
3884 		if (request_wiphy->regd)
3885 			tmp = get_wiphy_regdom(request_wiphy);
3886 
3887 		regd = reg_copy_regd(rd);
3888 		if (IS_ERR(regd)) {
3889 			wiphy_unlock(request_wiphy);
3890 			return PTR_ERR(regd);
3891 		}
3892 
3893 		rcu_assign_pointer(request_wiphy->regd, regd);
3894 		rcu_free_regdom(tmp);
3895 		wiphy_unlock(request_wiphy);
3896 		reset_regdomains(false, rd);
3897 		return 0;
3898 	}
3899 
3900 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3901 	if (!intersected_rd)
3902 		return -EINVAL;
3903 
3904 	/*
3905 	 * We can trash what CRDA provided now.
3906 	 * However if a driver requested this specific regulatory
3907 	 * domain we keep it for its private use
3908 	 */
3909 	tmp = get_wiphy_regdom(request_wiphy);
3910 	rcu_assign_pointer(request_wiphy->regd, rd);
3911 	rcu_free_regdom(tmp);
3912 
3913 	rd = NULL;
3914 
3915 	reset_regdomains(false, intersected_rd);
3916 
3917 	return 0;
3918 }
3919 
3920 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3921 				 struct regulatory_request *country_ie_request)
3922 {
3923 	struct wiphy *request_wiphy;
3924 
3925 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3926 	    !is_unknown_alpha2(rd->alpha2))
3927 		return -EINVAL;
3928 
3929 	/*
3930 	 * Lets only bother proceeding on the same alpha2 if the current
3931 	 * rd is non static (it means CRDA was present and was used last)
3932 	 * and the pending request came in from a country IE
3933 	 */
3934 
3935 	if (!is_valid_rd(rd)) {
3936 		pr_err("Invalid regulatory domain detected: %c%c\n",
3937 		       rd->alpha2[0], rd->alpha2[1]);
3938 		print_regdomain_info(rd);
3939 		return -EINVAL;
3940 	}
3941 
3942 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3943 	if (!request_wiphy)
3944 		return -ENODEV;
3945 
3946 	if (country_ie_request->intersect)
3947 		return -EINVAL;
3948 
3949 	reset_regdomains(false, rd);
3950 	return 0;
3951 }
3952 
3953 /*
3954  * Use this call to set the current regulatory domain. Conflicts with
3955  * multiple drivers can be ironed out later. Caller must've already
3956  * kmalloc'd the rd structure.
3957  */
3958 int set_regdom(const struct ieee80211_regdomain *rd,
3959 	       enum ieee80211_regd_source regd_src)
3960 {
3961 	struct regulatory_request *lr;
3962 	bool user_reset = false;
3963 	int r;
3964 
3965 	if (IS_ERR_OR_NULL(rd))
3966 		return -ENODATA;
3967 
3968 	if (!reg_is_valid_request(rd->alpha2)) {
3969 		kfree(rd);
3970 		return -EINVAL;
3971 	}
3972 
3973 	if (regd_src == REGD_SOURCE_CRDA)
3974 		reset_crda_timeouts();
3975 
3976 	lr = get_last_request();
3977 
3978 	/* Note that this doesn't update the wiphys, this is done below */
3979 	switch (lr->initiator) {
3980 	case NL80211_REGDOM_SET_BY_CORE:
3981 		r = reg_set_rd_core(rd);
3982 		break;
3983 	case NL80211_REGDOM_SET_BY_USER:
3984 		cfg80211_save_user_regdom(rd);
3985 		r = reg_set_rd_user(rd, lr);
3986 		user_reset = true;
3987 		break;
3988 	case NL80211_REGDOM_SET_BY_DRIVER:
3989 		r = reg_set_rd_driver(rd, lr);
3990 		break;
3991 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3992 		r = reg_set_rd_country_ie(rd, lr);
3993 		break;
3994 	default:
3995 		WARN(1, "invalid initiator %d\n", lr->initiator);
3996 		kfree(rd);
3997 		return -EINVAL;
3998 	}
3999 
4000 	if (r) {
4001 		switch (r) {
4002 		case -EALREADY:
4003 			reg_set_request_processed();
4004 			break;
4005 		default:
4006 			/* Back to world regulatory in case of errors */
4007 			restore_regulatory_settings(user_reset, false);
4008 		}
4009 
4010 		kfree(rd);
4011 		return r;
4012 	}
4013 
4014 	/* This would make this whole thing pointless */
4015 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4016 		return -EINVAL;
4017 
4018 	/* update all wiphys now with the new established regulatory domain */
4019 	update_all_wiphy_regulatory(lr->initiator);
4020 
4021 	print_regdomain(get_cfg80211_regdom());
4022 
4023 	nl80211_send_reg_change_event(lr);
4024 
4025 	reg_set_request_processed();
4026 
4027 	return 0;
4028 }
4029 
4030 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4031 				       struct ieee80211_regdomain *rd)
4032 {
4033 	const struct ieee80211_regdomain *regd;
4034 	const struct ieee80211_regdomain *prev_regd;
4035 	struct cfg80211_registered_device *rdev;
4036 
4037 	if (WARN_ON(!wiphy || !rd))
4038 		return -EINVAL;
4039 
4040 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4041 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4042 		return -EPERM;
4043 
4044 	if (WARN(!is_valid_rd(rd),
4045 		 "Invalid regulatory domain detected: %c%c\n",
4046 		 rd->alpha2[0], rd->alpha2[1])) {
4047 		print_regdomain_info(rd);
4048 		return -EINVAL;
4049 	}
4050 
4051 	regd = reg_copy_regd(rd);
4052 	if (IS_ERR(regd))
4053 		return PTR_ERR(regd);
4054 
4055 	rdev = wiphy_to_rdev(wiphy);
4056 
4057 	spin_lock(&reg_requests_lock);
4058 	prev_regd = rdev->requested_regd;
4059 	rdev->requested_regd = regd;
4060 	spin_unlock(&reg_requests_lock);
4061 
4062 	kfree(prev_regd);
4063 	return 0;
4064 }
4065 
4066 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4067 			      struct ieee80211_regdomain *rd)
4068 {
4069 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4070 
4071 	if (ret)
4072 		return ret;
4073 
4074 	schedule_work(&reg_work);
4075 	return 0;
4076 }
4077 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4078 
4079 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4080 				   struct ieee80211_regdomain *rd)
4081 {
4082 	int ret;
4083 
4084 	ASSERT_RTNL();
4085 
4086 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4087 	if (ret)
4088 		return ret;
4089 
4090 	/* process the request immediately */
4091 	reg_process_self_managed_hint(wiphy);
4092 	reg_check_channels();
4093 	return 0;
4094 }
4095 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4096 
4097 void wiphy_regulatory_register(struct wiphy *wiphy)
4098 {
4099 	struct regulatory_request *lr = get_last_request();
4100 
4101 	/* self-managed devices ignore beacon hints and country IE */
4102 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4103 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4104 					   REGULATORY_COUNTRY_IE_IGNORE;
4105 
4106 		/*
4107 		 * The last request may have been received before this
4108 		 * registration call. Call the driver notifier if
4109 		 * initiator is USER.
4110 		 */
4111 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4112 			reg_call_notifier(wiphy, lr);
4113 	}
4114 
4115 	if (!reg_dev_ignore_cell_hint(wiphy))
4116 		reg_num_devs_support_basehint++;
4117 
4118 	wiphy_update_regulatory(wiphy, lr->initiator);
4119 	wiphy_all_share_dfs_chan_state(wiphy);
4120 	reg_process_self_managed_hints();
4121 }
4122 
4123 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4124 {
4125 	struct wiphy *request_wiphy = NULL;
4126 	struct regulatory_request *lr;
4127 
4128 	lr = get_last_request();
4129 
4130 	if (!reg_dev_ignore_cell_hint(wiphy))
4131 		reg_num_devs_support_basehint--;
4132 
4133 	rcu_free_regdom(get_wiphy_regdom(wiphy));
4134 	RCU_INIT_POINTER(wiphy->regd, NULL);
4135 
4136 	if (lr)
4137 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4138 
4139 	if (!request_wiphy || request_wiphy != wiphy)
4140 		return;
4141 
4142 	lr->wiphy_idx = WIPHY_IDX_INVALID;
4143 	lr->country_ie_env = ENVIRON_ANY;
4144 }
4145 
4146 /*
4147  * See FCC notices for UNII band definitions
4148  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4149  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4150  */
4151 int cfg80211_get_unii(int freq)
4152 {
4153 	/* UNII-1 */
4154 	if (freq >= 5150 && freq <= 5250)
4155 		return 0;
4156 
4157 	/* UNII-2A */
4158 	if (freq > 5250 && freq <= 5350)
4159 		return 1;
4160 
4161 	/* UNII-2B */
4162 	if (freq > 5350 && freq <= 5470)
4163 		return 2;
4164 
4165 	/* UNII-2C */
4166 	if (freq > 5470 && freq <= 5725)
4167 		return 3;
4168 
4169 	/* UNII-3 */
4170 	if (freq > 5725 && freq <= 5825)
4171 		return 4;
4172 
4173 	/* UNII-5 */
4174 	if (freq > 5925 && freq <= 6425)
4175 		return 5;
4176 
4177 	/* UNII-6 */
4178 	if (freq > 6425 && freq <= 6525)
4179 		return 6;
4180 
4181 	/* UNII-7 */
4182 	if (freq > 6525 && freq <= 6875)
4183 		return 7;
4184 
4185 	/* UNII-8 */
4186 	if (freq > 6875 && freq <= 7125)
4187 		return 8;
4188 
4189 	return -EINVAL;
4190 }
4191 
4192 bool regulatory_indoor_allowed(void)
4193 {
4194 	return reg_is_indoor;
4195 }
4196 
4197 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4198 {
4199 	const struct ieee80211_regdomain *regd = NULL;
4200 	const struct ieee80211_regdomain *wiphy_regd = NULL;
4201 	bool pre_cac_allowed = false;
4202 
4203 	rcu_read_lock();
4204 
4205 	regd = rcu_dereference(cfg80211_regdomain);
4206 	wiphy_regd = rcu_dereference(wiphy->regd);
4207 	if (!wiphy_regd) {
4208 		if (regd->dfs_region == NL80211_DFS_ETSI)
4209 			pre_cac_allowed = true;
4210 
4211 		rcu_read_unlock();
4212 
4213 		return pre_cac_allowed;
4214 	}
4215 
4216 	if (regd->dfs_region == wiphy_regd->dfs_region &&
4217 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4218 		pre_cac_allowed = true;
4219 
4220 	rcu_read_unlock();
4221 
4222 	return pre_cac_allowed;
4223 }
4224 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4225 
4226 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4227 {
4228 	struct wireless_dev *wdev;
4229 	/* If we finished CAC or received radar, we should end any
4230 	 * CAC running on the same channels.
4231 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4232 	 * either all channels are available - those the CAC_FINISHED
4233 	 * event has effected another wdev state, or there is a channel
4234 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4235 	 * event has effected another wdev state.
4236 	 * In both cases we should end the CAC on the wdev.
4237 	 */
4238 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4239 		struct cfg80211_chan_def *chandef;
4240 
4241 		if (!wdev->cac_started)
4242 			continue;
4243 
4244 		/* FIXME: radar detection is tied to link 0 for now */
4245 		chandef = wdev_chandef(wdev, 0);
4246 		if (!chandef)
4247 			continue;
4248 
4249 		if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4250 			rdev_end_cac(rdev, wdev->netdev);
4251 	}
4252 }
4253 
4254 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4255 				    struct cfg80211_chan_def *chandef,
4256 				    enum nl80211_dfs_state dfs_state,
4257 				    enum nl80211_radar_event event)
4258 {
4259 	struct cfg80211_registered_device *rdev;
4260 
4261 	ASSERT_RTNL();
4262 
4263 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4264 		return;
4265 
4266 	for_each_rdev(rdev) {
4267 		if (wiphy == &rdev->wiphy)
4268 			continue;
4269 
4270 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4271 			continue;
4272 
4273 		if (!ieee80211_get_channel(&rdev->wiphy,
4274 					   chandef->chan->center_freq))
4275 			continue;
4276 
4277 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4278 
4279 		if (event == NL80211_RADAR_DETECTED ||
4280 		    event == NL80211_RADAR_CAC_FINISHED) {
4281 			cfg80211_sched_dfs_chan_update(rdev);
4282 			cfg80211_check_and_end_cac(rdev);
4283 		}
4284 
4285 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4286 	}
4287 }
4288 
4289 static int __init regulatory_init_db(void)
4290 {
4291 	int err;
4292 
4293 	/*
4294 	 * It's possible that - due to other bugs/issues - cfg80211
4295 	 * never called regulatory_init() below, or that it failed;
4296 	 * in that case, don't try to do any further work here as
4297 	 * it's doomed to lead to crashes.
4298 	 */
4299 	if (IS_ERR_OR_NULL(reg_pdev))
4300 		return -EINVAL;
4301 
4302 	err = load_builtin_regdb_keys();
4303 	if (err) {
4304 		platform_device_unregister(reg_pdev);
4305 		return err;
4306 	}
4307 
4308 	/* We always try to get an update for the static regdomain */
4309 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4310 	if (err) {
4311 		if (err == -ENOMEM) {
4312 			platform_device_unregister(reg_pdev);
4313 			return err;
4314 		}
4315 		/*
4316 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4317 		 * memory which is handled and propagated appropriately above
4318 		 * but it can also fail during a netlink_broadcast() or during
4319 		 * early boot for call_usermodehelper(). For now treat these
4320 		 * errors as non-fatal.
4321 		 */
4322 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4323 	}
4324 
4325 	/*
4326 	 * Finally, if the user set the module parameter treat it
4327 	 * as a user hint.
4328 	 */
4329 	if (!is_world_regdom(ieee80211_regdom))
4330 		regulatory_hint_user(ieee80211_regdom,
4331 				     NL80211_USER_REG_HINT_USER);
4332 
4333 	return 0;
4334 }
4335 #ifndef MODULE
4336 late_initcall(regulatory_init_db);
4337 #endif
4338 
4339 int __init regulatory_init(void)
4340 {
4341 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4342 	if (IS_ERR(reg_pdev))
4343 		return PTR_ERR(reg_pdev);
4344 
4345 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4346 
4347 	user_alpha2[0] = '9';
4348 	user_alpha2[1] = '7';
4349 
4350 #ifdef MODULE
4351 	return regulatory_init_db();
4352 #else
4353 	return 0;
4354 #endif
4355 }
4356 
4357 void regulatory_exit(void)
4358 {
4359 	struct regulatory_request *reg_request, *tmp;
4360 	struct reg_beacon *reg_beacon, *btmp;
4361 
4362 	cancel_work_sync(&reg_work);
4363 	cancel_crda_timeout_sync();
4364 	cancel_delayed_work_sync(&reg_check_chans);
4365 
4366 	/* Lock to suppress warnings */
4367 	rtnl_lock();
4368 	reset_regdomains(true, NULL);
4369 	rtnl_unlock();
4370 
4371 	dev_set_uevent_suppress(&reg_pdev->dev, true);
4372 
4373 	platform_device_unregister(reg_pdev);
4374 
4375 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4376 		list_del(&reg_beacon->list);
4377 		kfree(reg_beacon);
4378 	}
4379 
4380 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4381 		list_del(&reg_beacon->list);
4382 		kfree(reg_beacon);
4383 	}
4384 
4385 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4386 		list_del(&reg_request->list);
4387 		kfree(reg_request);
4388 	}
4389 
4390 	if (!IS_ERR_OR_NULL(regdb))
4391 		kfree(regdb);
4392 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4393 		kfree(cfg80211_user_regdom);
4394 
4395 	free_regdb_keyring();
4396 }
4397