1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2024 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <linux/units.h> 61 62 #include <net/cfg80211.h> 63 #include "core.h" 64 #include "reg.h" 65 #include "rdev-ops.h" 66 #include "nl80211.h" 67 68 /* 69 * Grace period we give before making sure all current interfaces reside on 70 * channels allowed by the current regulatory domain. 71 */ 72 #define REG_ENFORCE_GRACE_MS 60000 73 74 /** 75 * enum reg_request_treatment - regulatory request treatment 76 * 77 * @REG_REQ_OK: continue processing the regulatory request 78 * @REG_REQ_IGNORE: ignore the regulatory request 79 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 80 * be intersected with the current one. 81 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 82 * regulatory settings, and no further processing is required. 83 */ 84 enum reg_request_treatment { 85 REG_REQ_OK, 86 REG_REQ_IGNORE, 87 REG_REQ_INTERSECT, 88 REG_REQ_ALREADY_SET, 89 }; 90 91 static struct regulatory_request core_request_world = { 92 .initiator = NL80211_REGDOM_SET_BY_CORE, 93 .alpha2[0] = '0', 94 .alpha2[1] = '0', 95 .intersect = false, 96 .processed = true, 97 .country_ie_env = ENVIRON_ANY, 98 }; 99 100 /* 101 * Receipt of information from last regulatory request, 102 * protected by RTNL (and can be accessed with RCU protection) 103 */ 104 static struct regulatory_request __rcu *last_request = 105 (void __force __rcu *)&core_request_world; 106 107 /* To trigger userspace events and load firmware */ 108 static struct platform_device *reg_pdev; 109 110 /* 111 * Central wireless core regulatory domains, we only need two, 112 * the current one and a world regulatory domain in case we have no 113 * information to give us an alpha2. 114 * (protected by RTNL, can be read under RCU) 115 */ 116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 117 118 /* 119 * Number of devices that registered to the core 120 * that support cellular base station regulatory hints 121 * (protected by RTNL) 122 */ 123 static int reg_num_devs_support_basehint; 124 125 /* 126 * State variable indicating if the platform on which the devices 127 * are attached is operating in an indoor environment. The state variable 128 * is relevant for all registered devices. 129 */ 130 static bool reg_is_indoor; 131 static DEFINE_SPINLOCK(reg_indoor_lock); 132 133 /* Used to track the userspace process controlling the indoor setting */ 134 static u32 reg_is_indoor_portid; 135 136 static void restore_regulatory_settings(bool reset_user, bool cached); 137 static void print_regdomain(const struct ieee80211_regdomain *rd); 138 static void reg_process_hint(struct regulatory_request *reg_request); 139 140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 141 { 142 return rcu_dereference_rtnl(cfg80211_regdomain); 143 } 144 145 /* 146 * Returns the regulatory domain associated with the wiphy. 147 * 148 * Requires any of RTNL, wiphy mutex or RCU protection. 149 */ 150 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 151 { 152 return rcu_dereference_check(wiphy->regd, 153 lockdep_is_held(&wiphy->mtx) || 154 lockdep_rtnl_is_held()); 155 } 156 EXPORT_SYMBOL(get_wiphy_regdom); 157 158 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 159 { 160 switch (dfs_region) { 161 case NL80211_DFS_UNSET: 162 return "unset"; 163 case NL80211_DFS_FCC: 164 return "FCC"; 165 case NL80211_DFS_ETSI: 166 return "ETSI"; 167 case NL80211_DFS_JP: 168 return "JP"; 169 } 170 return "Unknown"; 171 } 172 173 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 174 { 175 const struct ieee80211_regdomain *regd = NULL; 176 const struct ieee80211_regdomain *wiphy_regd = NULL; 177 enum nl80211_dfs_regions dfs_region; 178 179 rcu_read_lock(); 180 regd = get_cfg80211_regdom(); 181 dfs_region = regd->dfs_region; 182 183 if (!wiphy) 184 goto out; 185 186 wiphy_regd = get_wiphy_regdom(wiphy); 187 if (!wiphy_regd) 188 goto out; 189 190 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 191 dfs_region = wiphy_regd->dfs_region; 192 goto out; 193 } 194 195 if (wiphy_regd->dfs_region == regd->dfs_region) 196 goto out; 197 198 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 199 dev_name(&wiphy->dev), 200 reg_dfs_region_str(wiphy_regd->dfs_region), 201 reg_dfs_region_str(regd->dfs_region)); 202 203 out: 204 rcu_read_unlock(); 205 206 return dfs_region; 207 } 208 209 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 210 { 211 if (!r) 212 return; 213 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 214 } 215 216 static struct regulatory_request *get_last_request(void) 217 { 218 return rcu_dereference_rtnl(last_request); 219 } 220 221 /* Used to queue up regulatory hints */ 222 static LIST_HEAD(reg_requests_list); 223 static DEFINE_SPINLOCK(reg_requests_lock); 224 225 /* Used to queue up beacon hints for review */ 226 static LIST_HEAD(reg_pending_beacons); 227 static DEFINE_SPINLOCK(reg_pending_beacons_lock); 228 229 /* Used to keep track of processed beacon hints */ 230 static LIST_HEAD(reg_beacon_list); 231 232 struct reg_beacon { 233 struct list_head list; 234 struct ieee80211_channel chan; 235 }; 236 237 static void reg_check_chans_work(struct work_struct *work); 238 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 239 240 static void reg_todo(struct work_struct *work); 241 static DECLARE_WORK(reg_work, reg_todo); 242 243 /* We keep a static world regulatory domain in case of the absence of CRDA */ 244 static const struct ieee80211_regdomain world_regdom = { 245 .n_reg_rules = 8, 246 .alpha2 = "00", 247 .reg_rules = { 248 /* IEEE 802.11b/g, channels 1..11 */ 249 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 250 /* IEEE 802.11b/g, channels 12..13. */ 251 REG_RULE(2467-10, 2472+10, 20, 6, 20, 252 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 253 /* IEEE 802.11 channel 14 - Only JP enables 254 * this and for 802.11b only */ 255 REG_RULE(2484-10, 2484+10, 20, 6, 20, 256 NL80211_RRF_NO_IR | 257 NL80211_RRF_NO_OFDM), 258 /* IEEE 802.11a, channel 36..48 */ 259 REG_RULE(5180-10, 5240+10, 80, 6, 20, 260 NL80211_RRF_NO_IR | 261 NL80211_RRF_AUTO_BW), 262 263 /* IEEE 802.11a, channel 52..64 - DFS required */ 264 REG_RULE(5260-10, 5320+10, 80, 6, 20, 265 NL80211_RRF_NO_IR | 266 NL80211_RRF_AUTO_BW | 267 NL80211_RRF_DFS), 268 269 /* IEEE 802.11a, channel 100..144 - DFS required */ 270 REG_RULE(5500-10, 5720+10, 160, 6, 20, 271 NL80211_RRF_NO_IR | 272 NL80211_RRF_DFS), 273 274 /* IEEE 802.11a, channel 149..165 */ 275 REG_RULE(5745-10, 5825+10, 80, 6, 20, 276 NL80211_RRF_NO_IR), 277 278 /* IEEE 802.11ad (60GHz), channels 1..3 */ 279 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 280 } 281 }; 282 283 /* protected by RTNL */ 284 static const struct ieee80211_regdomain *cfg80211_world_regdom = 285 &world_regdom; 286 287 static char *ieee80211_regdom = "00"; 288 static char user_alpha2[2]; 289 static const struct ieee80211_regdomain *cfg80211_user_regdom; 290 291 module_param(ieee80211_regdom, charp, 0444); 292 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 293 294 static void reg_free_request(struct regulatory_request *request) 295 { 296 if (request == &core_request_world) 297 return; 298 299 if (request != get_last_request()) 300 kfree(request); 301 } 302 303 static void reg_free_last_request(void) 304 { 305 struct regulatory_request *lr = get_last_request(); 306 307 if (lr != &core_request_world && lr) 308 kfree_rcu(lr, rcu_head); 309 } 310 311 static void reg_update_last_request(struct regulatory_request *request) 312 { 313 struct regulatory_request *lr; 314 315 lr = get_last_request(); 316 if (lr == request) 317 return; 318 319 reg_free_last_request(); 320 rcu_assign_pointer(last_request, request); 321 } 322 323 static void reset_regdomains(bool full_reset, 324 const struct ieee80211_regdomain *new_regdom) 325 { 326 const struct ieee80211_regdomain *r; 327 328 ASSERT_RTNL(); 329 330 r = get_cfg80211_regdom(); 331 332 /* avoid freeing static information or freeing something twice */ 333 if (r == cfg80211_world_regdom) 334 r = NULL; 335 if (cfg80211_world_regdom == &world_regdom) 336 cfg80211_world_regdom = NULL; 337 if (r == &world_regdom) 338 r = NULL; 339 340 rcu_free_regdom(r); 341 rcu_free_regdom(cfg80211_world_regdom); 342 343 cfg80211_world_regdom = &world_regdom; 344 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 345 346 if (!full_reset) 347 return; 348 349 reg_update_last_request(&core_request_world); 350 } 351 352 /* 353 * Dynamic world regulatory domain requested by the wireless 354 * core upon initialization 355 */ 356 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 357 { 358 struct regulatory_request *lr; 359 360 lr = get_last_request(); 361 362 WARN_ON(!lr); 363 364 reset_regdomains(false, rd); 365 366 cfg80211_world_regdom = rd; 367 } 368 369 bool is_world_regdom(const char *alpha2) 370 { 371 if (!alpha2) 372 return false; 373 return alpha2[0] == '0' && alpha2[1] == '0'; 374 } 375 376 static bool is_alpha2_set(const char *alpha2) 377 { 378 if (!alpha2) 379 return false; 380 return alpha2[0] && alpha2[1]; 381 } 382 383 static bool is_unknown_alpha2(const char *alpha2) 384 { 385 if (!alpha2) 386 return false; 387 /* 388 * Special case where regulatory domain was built by driver 389 * but a specific alpha2 cannot be determined 390 */ 391 return alpha2[0] == '9' && alpha2[1] == '9'; 392 } 393 394 static bool is_intersected_alpha2(const char *alpha2) 395 { 396 if (!alpha2) 397 return false; 398 /* 399 * Special case where regulatory domain is the 400 * result of an intersection between two regulatory domain 401 * structures 402 */ 403 return alpha2[0] == '9' && alpha2[1] == '8'; 404 } 405 406 static bool is_an_alpha2(const char *alpha2) 407 { 408 if (!alpha2) 409 return false; 410 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 411 } 412 413 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 414 { 415 if (!alpha2_x || !alpha2_y) 416 return false; 417 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 418 } 419 420 static bool regdom_changes(const char *alpha2) 421 { 422 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 423 424 if (!r) 425 return true; 426 return !alpha2_equal(r->alpha2, alpha2); 427 } 428 429 /* 430 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 431 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 432 * has ever been issued. 433 */ 434 static bool is_user_regdom_saved(void) 435 { 436 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 437 return false; 438 439 /* This would indicate a mistake on the design */ 440 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 441 "Unexpected user alpha2: %c%c\n", 442 user_alpha2[0], user_alpha2[1])) 443 return false; 444 445 return true; 446 } 447 448 static const struct ieee80211_regdomain * 449 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 450 { 451 struct ieee80211_regdomain *regd; 452 unsigned int i; 453 454 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 455 GFP_KERNEL); 456 if (!regd) 457 return ERR_PTR(-ENOMEM); 458 459 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 460 461 for (i = 0; i < src_regd->n_reg_rules; i++) 462 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 463 sizeof(struct ieee80211_reg_rule)); 464 465 return regd; 466 } 467 468 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 469 { 470 ASSERT_RTNL(); 471 472 if (!IS_ERR(cfg80211_user_regdom)) 473 kfree(cfg80211_user_regdom); 474 cfg80211_user_regdom = reg_copy_regd(rd); 475 } 476 477 struct reg_regdb_apply_request { 478 struct list_head list; 479 const struct ieee80211_regdomain *regdom; 480 }; 481 482 static LIST_HEAD(reg_regdb_apply_list); 483 static DEFINE_MUTEX(reg_regdb_apply_mutex); 484 485 static void reg_regdb_apply(struct work_struct *work) 486 { 487 struct reg_regdb_apply_request *request; 488 489 rtnl_lock(); 490 491 mutex_lock(®_regdb_apply_mutex); 492 while (!list_empty(®_regdb_apply_list)) { 493 request = list_first_entry(®_regdb_apply_list, 494 struct reg_regdb_apply_request, 495 list); 496 list_del(&request->list); 497 498 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 499 kfree(request); 500 } 501 mutex_unlock(®_regdb_apply_mutex); 502 503 rtnl_unlock(); 504 } 505 506 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 507 508 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 509 { 510 struct reg_regdb_apply_request *request; 511 512 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 513 if (!request) { 514 kfree(regdom); 515 return -ENOMEM; 516 } 517 518 request->regdom = regdom; 519 520 mutex_lock(®_regdb_apply_mutex); 521 list_add_tail(&request->list, ®_regdb_apply_list); 522 mutex_unlock(®_regdb_apply_mutex); 523 524 schedule_work(®_regdb_work); 525 return 0; 526 } 527 528 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 529 /* Max number of consecutive attempts to communicate with CRDA */ 530 #define REG_MAX_CRDA_TIMEOUTS 10 531 532 static u32 reg_crda_timeouts; 533 534 static void crda_timeout_work(struct work_struct *work); 535 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 536 537 static void crda_timeout_work(struct work_struct *work) 538 { 539 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 540 rtnl_lock(); 541 reg_crda_timeouts++; 542 restore_regulatory_settings(true, false); 543 rtnl_unlock(); 544 } 545 546 static void cancel_crda_timeout(void) 547 { 548 cancel_delayed_work(&crda_timeout); 549 } 550 551 static void cancel_crda_timeout_sync(void) 552 { 553 cancel_delayed_work_sync(&crda_timeout); 554 } 555 556 static void reset_crda_timeouts(void) 557 { 558 reg_crda_timeouts = 0; 559 } 560 561 /* 562 * This lets us keep regulatory code which is updated on a regulatory 563 * basis in userspace. 564 */ 565 static int call_crda(const char *alpha2) 566 { 567 char country[12]; 568 char *env[] = { country, NULL }; 569 int ret; 570 571 snprintf(country, sizeof(country), "COUNTRY=%c%c", 572 alpha2[0], alpha2[1]); 573 574 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 575 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 576 return -EINVAL; 577 } 578 579 if (!is_world_regdom((char *) alpha2)) 580 pr_debug("Calling CRDA for country: %c%c\n", 581 alpha2[0], alpha2[1]); 582 else 583 pr_debug("Calling CRDA to update world regulatory domain\n"); 584 585 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 586 if (ret) 587 return ret; 588 589 queue_delayed_work(system_power_efficient_wq, 590 &crda_timeout, msecs_to_jiffies(3142)); 591 return 0; 592 } 593 #else 594 static inline void cancel_crda_timeout(void) {} 595 static inline void cancel_crda_timeout_sync(void) {} 596 static inline void reset_crda_timeouts(void) {} 597 static inline int call_crda(const char *alpha2) 598 { 599 return -ENODATA; 600 } 601 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 602 603 /* code to directly load a firmware database through request_firmware */ 604 static const struct fwdb_header *regdb; 605 606 struct fwdb_country { 607 u8 alpha2[2]; 608 __be16 coll_ptr; 609 /* this struct cannot be extended */ 610 } __packed __aligned(4); 611 612 struct fwdb_collection { 613 u8 len; 614 u8 n_rules; 615 u8 dfs_region; 616 /* no optional data yet */ 617 /* aligned to 2, then followed by __be16 array of rule pointers */ 618 } __packed __aligned(4); 619 620 enum fwdb_flags { 621 FWDB_FLAG_NO_OFDM = BIT(0), 622 FWDB_FLAG_NO_OUTDOOR = BIT(1), 623 FWDB_FLAG_DFS = BIT(2), 624 FWDB_FLAG_NO_IR = BIT(3), 625 FWDB_FLAG_AUTO_BW = BIT(4), 626 }; 627 628 struct fwdb_wmm_ac { 629 u8 ecw; 630 u8 aifsn; 631 __be16 cot; 632 } __packed; 633 634 struct fwdb_wmm_rule { 635 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 636 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 637 } __packed; 638 639 struct fwdb_rule { 640 u8 len; 641 u8 flags; 642 __be16 max_eirp; 643 __be32 start, end, max_bw; 644 /* start of optional data */ 645 __be16 cac_timeout; 646 __be16 wmm_ptr; 647 } __packed __aligned(4); 648 649 #define FWDB_MAGIC 0x52474442 650 #define FWDB_VERSION 20 651 652 struct fwdb_header { 653 __be32 magic; 654 __be32 version; 655 struct fwdb_country country[]; 656 } __packed __aligned(4); 657 658 static int ecw2cw(int ecw) 659 { 660 return (1 << ecw) - 1; 661 } 662 663 static bool valid_wmm(struct fwdb_wmm_rule *rule) 664 { 665 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 666 int i; 667 668 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 669 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 670 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 671 u8 aifsn = ac[i].aifsn; 672 673 if (cw_min >= cw_max) 674 return false; 675 676 if (aifsn < 1) 677 return false; 678 } 679 680 return true; 681 } 682 683 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 684 { 685 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 686 687 if ((u8 *)rule + sizeof(rule->len) > data + size) 688 return false; 689 690 /* mandatory fields */ 691 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 692 return false; 693 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 694 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 695 struct fwdb_wmm_rule *wmm; 696 697 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 698 return false; 699 700 wmm = (void *)(data + wmm_ptr); 701 702 if (!valid_wmm(wmm)) 703 return false; 704 } 705 return true; 706 } 707 708 static bool valid_country(const u8 *data, unsigned int size, 709 const struct fwdb_country *country) 710 { 711 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 712 struct fwdb_collection *coll = (void *)(data + ptr); 713 __be16 *rules_ptr; 714 unsigned int i; 715 716 /* make sure we can read len/n_rules */ 717 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 718 return false; 719 720 /* make sure base struct and all rules fit */ 721 if ((u8 *)coll + ALIGN(coll->len, 2) + 722 (coll->n_rules * 2) > data + size) 723 return false; 724 725 /* mandatory fields must exist */ 726 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 727 return false; 728 729 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 730 731 for (i = 0; i < coll->n_rules; i++) { 732 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 733 734 if (!valid_rule(data, size, rule_ptr)) 735 return false; 736 } 737 738 return true; 739 } 740 741 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 742 #include <keys/asymmetric-type.h> 743 744 static struct key *builtin_regdb_keys; 745 746 static int __init load_builtin_regdb_keys(void) 747 { 748 builtin_regdb_keys = 749 keyring_alloc(".builtin_regdb_keys", 750 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 751 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 752 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 753 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 754 if (IS_ERR(builtin_regdb_keys)) 755 return PTR_ERR(builtin_regdb_keys); 756 757 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 758 759 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 760 x509_load_certificate_list(shipped_regdb_certs, 761 shipped_regdb_certs_len, 762 builtin_regdb_keys); 763 #endif 764 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 765 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 766 x509_load_certificate_list(extra_regdb_certs, 767 extra_regdb_certs_len, 768 builtin_regdb_keys); 769 #endif 770 771 return 0; 772 } 773 774 MODULE_FIRMWARE("regulatory.db.p7s"); 775 776 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 777 { 778 const struct firmware *sig; 779 bool result; 780 781 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 782 return false; 783 784 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 785 builtin_regdb_keys, 786 VERIFYING_UNSPECIFIED_SIGNATURE, 787 NULL, NULL) == 0; 788 789 release_firmware(sig); 790 791 return result; 792 } 793 794 static void free_regdb_keyring(void) 795 { 796 key_put(builtin_regdb_keys); 797 } 798 #else 799 static int load_builtin_regdb_keys(void) 800 { 801 return 0; 802 } 803 804 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 805 { 806 return true; 807 } 808 809 static void free_regdb_keyring(void) 810 { 811 } 812 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 813 814 static bool valid_regdb(const u8 *data, unsigned int size) 815 { 816 const struct fwdb_header *hdr = (void *)data; 817 const struct fwdb_country *country; 818 819 if (size < sizeof(*hdr)) 820 return false; 821 822 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 823 return false; 824 825 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 826 return false; 827 828 if (!regdb_has_valid_signature(data, size)) 829 return false; 830 831 country = &hdr->country[0]; 832 while ((u8 *)(country + 1) <= data + size) { 833 if (!country->coll_ptr) 834 break; 835 if (!valid_country(data, size, country)) 836 return false; 837 country++; 838 } 839 840 return true; 841 } 842 843 static void set_wmm_rule(const struct fwdb_header *db, 844 const struct fwdb_country *country, 845 const struct fwdb_rule *rule, 846 struct ieee80211_reg_rule *rrule) 847 { 848 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 849 struct fwdb_wmm_rule *wmm; 850 unsigned int i, wmm_ptr; 851 852 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 853 wmm = (void *)((u8 *)db + wmm_ptr); 854 855 if (!valid_wmm(wmm)) { 856 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 857 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 858 country->alpha2[0], country->alpha2[1]); 859 return; 860 } 861 862 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 863 wmm_rule->client[i].cw_min = 864 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 865 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 866 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 867 wmm_rule->client[i].cot = 868 1000 * be16_to_cpu(wmm->client[i].cot); 869 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 870 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 871 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 872 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 873 } 874 875 rrule->has_wmm = true; 876 } 877 878 static int __regdb_query_wmm(const struct fwdb_header *db, 879 const struct fwdb_country *country, int freq, 880 struct ieee80211_reg_rule *rrule) 881 { 882 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 883 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 884 int i; 885 886 for (i = 0; i < coll->n_rules; i++) { 887 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 888 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 889 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 890 891 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 892 continue; 893 894 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 895 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 896 set_wmm_rule(db, country, rule, rrule); 897 return 0; 898 } 899 } 900 901 return -ENODATA; 902 } 903 904 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 905 { 906 const struct fwdb_header *hdr = regdb; 907 const struct fwdb_country *country; 908 909 if (!regdb) 910 return -ENODATA; 911 912 if (IS_ERR(regdb)) 913 return PTR_ERR(regdb); 914 915 country = &hdr->country[0]; 916 while (country->coll_ptr) { 917 if (alpha2_equal(alpha2, country->alpha2)) 918 return __regdb_query_wmm(regdb, country, freq, rule); 919 920 country++; 921 } 922 923 return -ENODATA; 924 } 925 EXPORT_SYMBOL(reg_query_regdb_wmm); 926 927 static int regdb_query_country(const struct fwdb_header *db, 928 const struct fwdb_country *country) 929 { 930 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 931 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 932 struct ieee80211_regdomain *regdom; 933 unsigned int i; 934 935 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 936 GFP_KERNEL); 937 if (!regdom) 938 return -ENOMEM; 939 940 regdom->n_reg_rules = coll->n_rules; 941 regdom->alpha2[0] = country->alpha2[0]; 942 regdom->alpha2[1] = country->alpha2[1]; 943 regdom->dfs_region = coll->dfs_region; 944 945 for (i = 0; i < regdom->n_reg_rules; i++) { 946 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 947 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 948 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 949 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 950 951 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 952 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 953 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 954 955 rrule->power_rule.max_antenna_gain = 0; 956 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 957 958 rrule->flags = 0; 959 if (rule->flags & FWDB_FLAG_NO_OFDM) 960 rrule->flags |= NL80211_RRF_NO_OFDM; 961 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 962 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 963 if (rule->flags & FWDB_FLAG_DFS) 964 rrule->flags |= NL80211_RRF_DFS; 965 if (rule->flags & FWDB_FLAG_NO_IR) 966 rrule->flags |= NL80211_RRF_NO_IR; 967 if (rule->flags & FWDB_FLAG_AUTO_BW) 968 rrule->flags |= NL80211_RRF_AUTO_BW; 969 970 rrule->dfs_cac_ms = 0; 971 972 /* handle optional data */ 973 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 974 rrule->dfs_cac_ms = 975 1000 * be16_to_cpu(rule->cac_timeout); 976 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 977 set_wmm_rule(db, country, rule, rrule); 978 } 979 980 return reg_schedule_apply(regdom); 981 } 982 983 static int query_regdb(const char *alpha2) 984 { 985 const struct fwdb_header *hdr = regdb; 986 const struct fwdb_country *country; 987 988 ASSERT_RTNL(); 989 990 if (IS_ERR(regdb)) 991 return PTR_ERR(regdb); 992 993 country = &hdr->country[0]; 994 while (country->coll_ptr) { 995 if (alpha2_equal(alpha2, country->alpha2)) 996 return regdb_query_country(regdb, country); 997 country++; 998 } 999 1000 return -ENODATA; 1001 } 1002 1003 static void regdb_fw_cb(const struct firmware *fw, void *context) 1004 { 1005 int set_error = 0; 1006 bool restore = true; 1007 void *db; 1008 1009 if (!fw) { 1010 pr_info("failed to load regulatory.db\n"); 1011 set_error = -ENODATA; 1012 } else if (!valid_regdb(fw->data, fw->size)) { 1013 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1014 set_error = -EINVAL; 1015 } 1016 1017 rtnl_lock(); 1018 if (regdb && !IS_ERR(regdb)) { 1019 /* negative case - a bug 1020 * positive case - can happen due to race in case of multiple cb's in 1021 * queue, due to usage of asynchronous callback 1022 * 1023 * Either case, just restore and free new db. 1024 */ 1025 } else if (set_error) { 1026 regdb = ERR_PTR(set_error); 1027 } else if (fw) { 1028 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1029 if (db) { 1030 regdb = db; 1031 restore = context && query_regdb(context); 1032 } else { 1033 restore = true; 1034 } 1035 } 1036 1037 if (restore) 1038 restore_regulatory_settings(true, false); 1039 1040 rtnl_unlock(); 1041 1042 kfree(context); 1043 1044 release_firmware(fw); 1045 } 1046 1047 MODULE_FIRMWARE("regulatory.db"); 1048 1049 static int query_regdb_file(const char *alpha2) 1050 { 1051 int err; 1052 1053 ASSERT_RTNL(); 1054 1055 if (regdb) 1056 return query_regdb(alpha2); 1057 1058 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1059 if (!alpha2) 1060 return -ENOMEM; 1061 1062 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1063 ®_pdev->dev, GFP_KERNEL, 1064 (void *)alpha2, regdb_fw_cb); 1065 if (err) 1066 kfree(alpha2); 1067 1068 return err; 1069 } 1070 1071 int reg_reload_regdb(void) 1072 { 1073 const struct firmware *fw; 1074 void *db; 1075 int err; 1076 const struct ieee80211_regdomain *current_regdomain; 1077 struct regulatory_request *request; 1078 1079 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1080 if (err) 1081 return err; 1082 1083 if (!valid_regdb(fw->data, fw->size)) { 1084 err = -ENODATA; 1085 goto out; 1086 } 1087 1088 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1089 if (!db) { 1090 err = -ENOMEM; 1091 goto out; 1092 } 1093 1094 rtnl_lock(); 1095 if (!IS_ERR_OR_NULL(regdb)) 1096 kfree(regdb); 1097 regdb = db; 1098 1099 /* reset regulatory domain */ 1100 current_regdomain = get_cfg80211_regdom(); 1101 1102 request = kzalloc(sizeof(*request), GFP_KERNEL); 1103 if (!request) { 1104 err = -ENOMEM; 1105 goto out_unlock; 1106 } 1107 1108 request->wiphy_idx = WIPHY_IDX_INVALID; 1109 request->alpha2[0] = current_regdomain->alpha2[0]; 1110 request->alpha2[1] = current_regdomain->alpha2[1]; 1111 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1112 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER; 1113 1114 reg_process_hint(request); 1115 1116 out_unlock: 1117 rtnl_unlock(); 1118 out: 1119 release_firmware(fw); 1120 return err; 1121 } 1122 1123 static bool reg_query_database(struct regulatory_request *request) 1124 { 1125 if (query_regdb_file(request->alpha2) == 0) 1126 return true; 1127 1128 if (call_crda(request->alpha2) == 0) 1129 return true; 1130 1131 return false; 1132 } 1133 1134 bool reg_is_valid_request(const char *alpha2) 1135 { 1136 struct regulatory_request *lr = get_last_request(); 1137 1138 if (!lr || lr->processed) 1139 return false; 1140 1141 return alpha2_equal(lr->alpha2, alpha2); 1142 } 1143 1144 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1145 { 1146 struct regulatory_request *lr = get_last_request(); 1147 1148 /* 1149 * Follow the driver's regulatory domain, if present, unless a country 1150 * IE has been processed or a user wants to help compliance further 1151 */ 1152 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1153 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1154 wiphy->regd) 1155 return get_wiphy_regdom(wiphy); 1156 1157 return get_cfg80211_regdom(); 1158 } 1159 1160 static unsigned int 1161 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1162 const struct ieee80211_reg_rule *rule) 1163 { 1164 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1165 const struct ieee80211_freq_range *freq_range_tmp; 1166 const struct ieee80211_reg_rule *tmp; 1167 u32 start_freq, end_freq, idx, no; 1168 1169 for (idx = 0; idx < rd->n_reg_rules; idx++) 1170 if (rule == &rd->reg_rules[idx]) 1171 break; 1172 1173 if (idx == rd->n_reg_rules) 1174 return 0; 1175 1176 /* get start_freq */ 1177 no = idx; 1178 1179 while (no) { 1180 tmp = &rd->reg_rules[--no]; 1181 freq_range_tmp = &tmp->freq_range; 1182 1183 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1184 break; 1185 1186 freq_range = freq_range_tmp; 1187 } 1188 1189 start_freq = freq_range->start_freq_khz; 1190 1191 /* get end_freq */ 1192 freq_range = &rule->freq_range; 1193 no = idx; 1194 1195 while (no < rd->n_reg_rules - 1) { 1196 tmp = &rd->reg_rules[++no]; 1197 freq_range_tmp = &tmp->freq_range; 1198 1199 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1200 break; 1201 1202 freq_range = freq_range_tmp; 1203 } 1204 1205 end_freq = freq_range->end_freq_khz; 1206 1207 return end_freq - start_freq; 1208 } 1209 1210 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1211 const struct ieee80211_reg_rule *rule) 1212 { 1213 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1214 1215 if (rule->flags & NL80211_RRF_NO_320MHZ) 1216 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160)); 1217 if (rule->flags & NL80211_RRF_NO_160MHZ) 1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1219 if (rule->flags & NL80211_RRF_NO_80MHZ) 1220 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1221 1222 /* 1223 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1224 * are not allowed. 1225 */ 1226 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1227 rule->flags & NL80211_RRF_NO_HT40PLUS) 1228 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1229 1230 return bw; 1231 } 1232 1233 /* Sanity check on a regulatory rule */ 1234 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1235 { 1236 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1237 u32 freq_diff; 1238 1239 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1240 return false; 1241 1242 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1243 return false; 1244 1245 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1246 1247 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1248 freq_range->max_bandwidth_khz > freq_diff) 1249 return false; 1250 1251 return true; 1252 } 1253 1254 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1255 { 1256 const struct ieee80211_reg_rule *reg_rule = NULL; 1257 unsigned int i; 1258 1259 if (!rd->n_reg_rules) 1260 return false; 1261 1262 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1263 return false; 1264 1265 for (i = 0; i < rd->n_reg_rules; i++) { 1266 reg_rule = &rd->reg_rules[i]; 1267 if (!is_valid_reg_rule(reg_rule)) 1268 return false; 1269 } 1270 1271 return true; 1272 } 1273 1274 /** 1275 * freq_in_rule_band - tells us if a frequency is in a frequency band 1276 * @freq_range: frequency rule we want to query 1277 * @freq_khz: frequency we are inquiring about 1278 * 1279 * This lets us know if a specific frequency rule is or is not relevant to 1280 * a specific frequency's band. Bands are device specific and artificial 1281 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1282 * however it is safe for now to assume that a frequency rule should not be 1283 * part of a frequency's band if the start freq or end freq are off by more 1284 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1285 * 60 GHz band. 1286 * This resolution can be lowered and should be considered as we add 1287 * regulatory rule support for other "bands". 1288 * 1289 * Returns: whether or not the frequency is in the range 1290 */ 1291 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1292 u32 freq_khz) 1293 { 1294 /* 1295 * From 802.11ad: directional multi-gigabit (DMG): 1296 * Pertaining to operation in a frequency band containing a channel 1297 * with the Channel starting frequency above 45 GHz. 1298 */ 1299 u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ; 1300 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1301 return true; 1302 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1303 return true; 1304 return false; 1305 } 1306 1307 /* 1308 * Later on we can perhaps use the more restrictive DFS 1309 * region but we don't have information for that yet so 1310 * for now simply disallow conflicts. 1311 */ 1312 static enum nl80211_dfs_regions 1313 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1314 const enum nl80211_dfs_regions dfs_region2) 1315 { 1316 if (dfs_region1 != dfs_region2) 1317 return NL80211_DFS_UNSET; 1318 return dfs_region1; 1319 } 1320 1321 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1322 const struct ieee80211_wmm_ac *wmm_ac2, 1323 struct ieee80211_wmm_ac *intersect) 1324 { 1325 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1326 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1327 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1328 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1329 } 1330 1331 /* 1332 * Helper for regdom_intersect(), this does the real 1333 * mathematical intersection fun 1334 */ 1335 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1336 const struct ieee80211_regdomain *rd2, 1337 const struct ieee80211_reg_rule *rule1, 1338 const struct ieee80211_reg_rule *rule2, 1339 struct ieee80211_reg_rule *intersected_rule) 1340 { 1341 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1342 struct ieee80211_freq_range *freq_range; 1343 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1344 struct ieee80211_power_rule *power_rule; 1345 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1346 struct ieee80211_wmm_rule *wmm_rule; 1347 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1348 1349 freq_range1 = &rule1->freq_range; 1350 freq_range2 = &rule2->freq_range; 1351 freq_range = &intersected_rule->freq_range; 1352 1353 power_rule1 = &rule1->power_rule; 1354 power_rule2 = &rule2->power_rule; 1355 power_rule = &intersected_rule->power_rule; 1356 1357 wmm_rule1 = &rule1->wmm_rule; 1358 wmm_rule2 = &rule2->wmm_rule; 1359 wmm_rule = &intersected_rule->wmm_rule; 1360 1361 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1362 freq_range2->start_freq_khz); 1363 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1364 freq_range2->end_freq_khz); 1365 1366 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1367 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1368 1369 if (rule1->flags & NL80211_RRF_AUTO_BW) 1370 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1371 if (rule2->flags & NL80211_RRF_AUTO_BW) 1372 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1373 1374 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1375 1376 intersected_rule->flags = rule1->flags | rule2->flags; 1377 1378 /* 1379 * In case NL80211_RRF_AUTO_BW requested for both rules 1380 * set AUTO_BW in intersected rule also. Next we will 1381 * calculate BW correctly in handle_channel function. 1382 * In other case remove AUTO_BW flag while we calculate 1383 * maximum bandwidth correctly and auto calculation is 1384 * not required. 1385 */ 1386 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1387 (rule2->flags & NL80211_RRF_AUTO_BW)) 1388 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1389 else 1390 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1391 1392 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1393 if (freq_range->max_bandwidth_khz > freq_diff) 1394 freq_range->max_bandwidth_khz = freq_diff; 1395 1396 power_rule->max_eirp = min(power_rule1->max_eirp, 1397 power_rule2->max_eirp); 1398 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1399 power_rule2->max_antenna_gain); 1400 1401 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1402 rule2->dfs_cac_ms); 1403 1404 if (rule1->has_wmm && rule2->has_wmm) { 1405 u8 ac; 1406 1407 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1408 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1409 &wmm_rule2->client[ac], 1410 &wmm_rule->client[ac]); 1411 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1412 &wmm_rule2->ap[ac], 1413 &wmm_rule->ap[ac]); 1414 } 1415 1416 intersected_rule->has_wmm = true; 1417 } else if (rule1->has_wmm) { 1418 *wmm_rule = *wmm_rule1; 1419 intersected_rule->has_wmm = true; 1420 } else if (rule2->has_wmm) { 1421 *wmm_rule = *wmm_rule2; 1422 intersected_rule->has_wmm = true; 1423 } else { 1424 intersected_rule->has_wmm = false; 1425 } 1426 1427 if (!is_valid_reg_rule(intersected_rule)) 1428 return -EINVAL; 1429 1430 return 0; 1431 } 1432 1433 /* check whether old rule contains new rule */ 1434 static bool rule_contains(struct ieee80211_reg_rule *r1, 1435 struct ieee80211_reg_rule *r2) 1436 { 1437 /* for simplicity, currently consider only same flags */ 1438 if (r1->flags != r2->flags) 1439 return false; 1440 1441 /* verify r1 is more restrictive */ 1442 if ((r1->power_rule.max_antenna_gain > 1443 r2->power_rule.max_antenna_gain) || 1444 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1445 return false; 1446 1447 /* make sure r2's range is contained within r1 */ 1448 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1449 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1450 return false; 1451 1452 /* and finally verify that r1.max_bw >= r2.max_bw */ 1453 if (r1->freq_range.max_bandwidth_khz < 1454 r2->freq_range.max_bandwidth_khz) 1455 return false; 1456 1457 return true; 1458 } 1459 1460 /* add or extend current rules. do nothing if rule is already contained */ 1461 static void add_rule(struct ieee80211_reg_rule *rule, 1462 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1463 { 1464 struct ieee80211_reg_rule *tmp_rule; 1465 int i; 1466 1467 for (i = 0; i < *n_rules; i++) { 1468 tmp_rule = ®_rules[i]; 1469 /* rule is already contained - do nothing */ 1470 if (rule_contains(tmp_rule, rule)) 1471 return; 1472 1473 /* extend rule if possible */ 1474 if (rule_contains(rule, tmp_rule)) { 1475 memcpy(tmp_rule, rule, sizeof(*rule)); 1476 return; 1477 } 1478 } 1479 1480 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1481 (*n_rules)++; 1482 } 1483 1484 /** 1485 * regdom_intersect - do the intersection between two regulatory domains 1486 * @rd1: first regulatory domain 1487 * @rd2: second regulatory domain 1488 * 1489 * Use this function to get the intersection between two regulatory domains. 1490 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1491 * as no one single alpha2 can represent this regulatory domain. 1492 * 1493 * Returns a pointer to the regulatory domain structure which will hold the 1494 * resulting intersection of rules between rd1 and rd2. We will 1495 * kzalloc() this structure for you. 1496 * 1497 * Returns: the intersected regdomain 1498 */ 1499 static struct ieee80211_regdomain * 1500 regdom_intersect(const struct ieee80211_regdomain *rd1, 1501 const struct ieee80211_regdomain *rd2) 1502 { 1503 int r; 1504 unsigned int x, y; 1505 unsigned int num_rules = 0; 1506 const struct ieee80211_reg_rule *rule1, *rule2; 1507 struct ieee80211_reg_rule intersected_rule; 1508 struct ieee80211_regdomain *rd; 1509 1510 if (!rd1 || !rd2) 1511 return NULL; 1512 1513 /* 1514 * First we get a count of the rules we'll need, then we actually 1515 * build them. This is to so we can malloc() and free() a 1516 * regdomain once. The reason we use reg_rules_intersect() here 1517 * is it will return -EINVAL if the rule computed makes no sense. 1518 * All rules that do check out OK are valid. 1519 */ 1520 1521 for (x = 0; x < rd1->n_reg_rules; x++) { 1522 rule1 = &rd1->reg_rules[x]; 1523 for (y = 0; y < rd2->n_reg_rules; y++) { 1524 rule2 = &rd2->reg_rules[y]; 1525 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1526 &intersected_rule)) 1527 num_rules++; 1528 } 1529 } 1530 1531 if (!num_rules) 1532 return NULL; 1533 1534 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1535 if (!rd) 1536 return NULL; 1537 1538 for (x = 0; x < rd1->n_reg_rules; x++) { 1539 rule1 = &rd1->reg_rules[x]; 1540 for (y = 0; y < rd2->n_reg_rules; y++) { 1541 rule2 = &rd2->reg_rules[y]; 1542 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1543 &intersected_rule); 1544 /* 1545 * No need to memset here the intersected rule here as 1546 * we're not using the stack anymore 1547 */ 1548 if (r) 1549 continue; 1550 1551 add_rule(&intersected_rule, rd->reg_rules, 1552 &rd->n_reg_rules); 1553 } 1554 } 1555 1556 rd->alpha2[0] = '9'; 1557 rd->alpha2[1] = '8'; 1558 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1559 rd2->dfs_region); 1560 1561 return rd; 1562 } 1563 1564 /* 1565 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1566 * want to just have the channel structure use these 1567 */ 1568 static u32 map_regdom_flags(u32 rd_flags) 1569 { 1570 u32 channel_flags = 0; 1571 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1572 channel_flags |= IEEE80211_CHAN_NO_IR; 1573 if (rd_flags & NL80211_RRF_DFS) 1574 channel_flags |= IEEE80211_CHAN_RADAR; 1575 if (rd_flags & NL80211_RRF_NO_OFDM) 1576 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1577 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1578 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1579 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1580 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1581 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1582 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1583 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1584 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1585 if (rd_flags & NL80211_RRF_NO_80MHZ) 1586 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1587 if (rd_flags & NL80211_RRF_NO_160MHZ) 1588 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1589 if (rd_flags & NL80211_RRF_NO_HE) 1590 channel_flags |= IEEE80211_CHAN_NO_HE; 1591 if (rd_flags & NL80211_RRF_NO_320MHZ) 1592 channel_flags |= IEEE80211_CHAN_NO_320MHZ; 1593 if (rd_flags & NL80211_RRF_NO_EHT) 1594 channel_flags |= IEEE80211_CHAN_NO_EHT; 1595 if (rd_flags & NL80211_RRF_DFS_CONCURRENT) 1596 channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT; 1597 if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT) 1598 channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT; 1599 if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT) 1600 channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT; 1601 if (rd_flags & NL80211_RRF_PSD) 1602 channel_flags |= IEEE80211_CHAN_PSD; 1603 if (rd_flags & NL80211_RRF_ALLOW_6GHZ_VLP_AP) 1604 channel_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP; 1605 return channel_flags; 1606 } 1607 1608 static const struct ieee80211_reg_rule * 1609 freq_reg_info_regd(u32 center_freq, 1610 const struct ieee80211_regdomain *regd, u32 bw) 1611 { 1612 int i; 1613 bool band_rule_found = false; 1614 bool bw_fits = false; 1615 1616 if (!regd) 1617 return ERR_PTR(-EINVAL); 1618 1619 for (i = 0; i < regd->n_reg_rules; i++) { 1620 const struct ieee80211_reg_rule *rr; 1621 const struct ieee80211_freq_range *fr = NULL; 1622 1623 rr = ®d->reg_rules[i]; 1624 fr = &rr->freq_range; 1625 1626 /* 1627 * We only need to know if one frequency rule was 1628 * in center_freq's band, that's enough, so let's 1629 * not overwrite it once found 1630 */ 1631 if (!band_rule_found) 1632 band_rule_found = freq_in_rule_band(fr, center_freq); 1633 1634 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1635 1636 if (band_rule_found && bw_fits) 1637 return rr; 1638 } 1639 1640 if (!band_rule_found) 1641 return ERR_PTR(-ERANGE); 1642 1643 return ERR_PTR(-EINVAL); 1644 } 1645 1646 static const struct ieee80211_reg_rule * 1647 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1648 { 1649 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1650 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1651 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE); 1652 int i = ARRAY_SIZE(bws) - 1; 1653 u32 bw; 1654 1655 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1656 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1657 if (!IS_ERR(reg_rule)) 1658 return reg_rule; 1659 } 1660 1661 return reg_rule; 1662 } 1663 1664 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1665 u32 center_freq) 1666 { 1667 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1668 1669 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1670 } 1671 EXPORT_SYMBOL(freq_reg_info); 1672 1673 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1674 { 1675 switch (initiator) { 1676 case NL80211_REGDOM_SET_BY_CORE: 1677 return "core"; 1678 case NL80211_REGDOM_SET_BY_USER: 1679 return "user"; 1680 case NL80211_REGDOM_SET_BY_DRIVER: 1681 return "driver"; 1682 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1683 return "country element"; 1684 default: 1685 WARN_ON(1); 1686 return "bug"; 1687 } 1688 } 1689 EXPORT_SYMBOL(reg_initiator_name); 1690 1691 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1692 const struct ieee80211_reg_rule *reg_rule, 1693 const struct ieee80211_channel *chan) 1694 { 1695 const struct ieee80211_freq_range *freq_range = NULL; 1696 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1697 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1698 1699 freq_range = ®_rule->freq_range; 1700 1701 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1702 center_freq_khz = ieee80211_channel_to_khz(chan); 1703 /* Check if auto calculation requested */ 1704 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1705 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1706 1707 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1708 if (!cfg80211_does_bw_fit_range(freq_range, 1709 center_freq_khz, 1710 MHZ_TO_KHZ(10))) 1711 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1712 if (!cfg80211_does_bw_fit_range(freq_range, 1713 center_freq_khz, 1714 MHZ_TO_KHZ(20))) 1715 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1716 1717 if (is_s1g) { 1718 /* S1G is strict about non overlapping channels. We can 1719 * calculate which bandwidth is allowed per channel by finding 1720 * the largest bandwidth which cleanly divides the freq_range. 1721 */ 1722 int edge_offset; 1723 int ch_bw = max_bandwidth_khz; 1724 1725 while (ch_bw) { 1726 edge_offset = (center_freq_khz - ch_bw / 2) - 1727 freq_range->start_freq_khz; 1728 if (edge_offset % ch_bw == 0) { 1729 switch (KHZ_TO_MHZ(ch_bw)) { 1730 case 1: 1731 bw_flags |= IEEE80211_CHAN_1MHZ; 1732 break; 1733 case 2: 1734 bw_flags |= IEEE80211_CHAN_2MHZ; 1735 break; 1736 case 4: 1737 bw_flags |= IEEE80211_CHAN_4MHZ; 1738 break; 1739 case 8: 1740 bw_flags |= IEEE80211_CHAN_8MHZ; 1741 break; 1742 case 16: 1743 bw_flags |= IEEE80211_CHAN_16MHZ; 1744 break; 1745 default: 1746 /* If we got here, no bandwidths fit on 1747 * this frequency, ie. band edge. 1748 */ 1749 bw_flags |= IEEE80211_CHAN_DISABLED; 1750 break; 1751 } 1752 break; 1753 } 1754 ch_bw /= 2; 1755 } 1756 } else { 1757 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1758 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1759 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1760 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1761 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1762 bw_flags |= IEEE80211_CHAN_NO_HT40; 1763 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1764 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1765 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1766 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1767 if (max_bandwidth_khz < MHZ_TO_KHZ(320)) 1768 bw_flags |= IEEE80211_CHAN_NO_320MHZ; 1769 } 1770 return bw_flags; 1771 } 1772 1773 static void handle_channel_single_rule(struct wiphy *wiphy, 1774 enum nl80211_reg_initiator initiator, 1775 struct ieee80211_channel *chan, 1776 u32 flags, 1777 struct regulatory_request *lr, 1778 struct wiphy *request_wiphy, 1779 const struct ieee80211_reg_rule *reg_rule) 1780 { 1781 u32 bw_flags = 0; 1782 const struct ieee80211_power_rule *power_rule = NULL; 1783 const struct ieee80211_regdomain *regd; 1784 1785 regd = reg_get_regdomain(wiphy); 1786 1787 power_rule = ®_rule->power_rule; 1788 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1789 1790 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1791 request_wiphy && request_wiphy == wiphy && 1792 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1793 /* 1794 * This guarantees the driver's requested regulatory domain 1795 * will always be used as a base for further regulatory 1796 * settings 1797 */ 1798 chan->flags = chan->orig_flags = 1799 map_regdom_flags(reg_rule->flags) | bw_flags; 1800 chan->max_antenna_gain = chan->orig_mag = 1801 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1802 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1803 (int) MBM_TO_DBM(power_rule->max_eirp); 1804 1805 if (chan->flags & IEEE80211_CHAN_RADAR) { 1806 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1807 if (reg_rule->dfs_cac_ms) 1808 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1809 } 1810 1811 if (chan->flags & IEEE80211_CHAN_PSD) 1812 chan->psd = reg_rule->psd; 1813 1814 return; 1815 } 1816 1817 chan->dfs_state = NL80211_DFS_USABLE; 1818 chan->dfs_state_entered = jiffies; 1819 1820 chan->beacon_found = false; 1821 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1822 chan->max_antenna_gain = 1823 min_t(int, chan->orig_mag, 1824 MBI_TO_DBI(power_rule->max_antenna_gain)); 1825 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1826 1827 if (chan->flags & IEEE80211_CHAN_RADAR) { 1828 if (reg_rule->dfs_cac_ms) 1829 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1830 else 1831 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1832 } 1833 1834 if (chan->flags & IEEE80211_CHAN_PSD) 1835 chan->psd = reg_rule->psd; 1836 1837 if (chan->orig_mpwr) { 1838 /* 1839 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1840 * will always follow the passed country IE power settings. 1841 */ 1842 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1843 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1844 chan->max_power = chan->max_reg_power; 1845 else 1846 chan->max_power = min(chan->orig_mpwr, 1847 chan->max_reg_power); 1848 } else 1849 chan->max_power = chan->max_reg_power; 1850 } 1851 1852 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1853 enum nl80211_reg_initiator initiator, 1854 struct ieee80211_channel *chan, 1855 u32 flags, 1856 struct regulatory_request *lr, 1857 struct wiphy *request_wiphy, 1858 const struct ieee80211_reg_rule *rrule1, 1859 const struct ieee80211_reg_rule *rrule2, 1860 struct ieee80211_freq_range *comb_range) 1861 { 1862 u32 bw_flags1 = 0; 1863 u32 bw_flags2 = 0; 1864 const struct ieee80211_power_rule *power_rule1 = NULL; 1865 const struct ieee80211_power_rule *power_rule2 = NULL; 1866 const struct ieee80211_regdomain *regd; 1867 1868 regd = reg_get_regdomain(wiphy); 1869 1870 power_rule1 = &rrule1->power_rule; 1871 power_rule2 = &rrule2->power_rule; 1872 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1873 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1874 1875 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1876 request_wiphy && request_wiphy == wiphy && 1877 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1878 /* This guarantees the driver's requested regulatory domain 1879 * will always be used as a base for further regulatory 1880 * settings 1881 */ 1882 chan->flags = 1883 map_regdom_flags(rrule1->flags) | 1884 map_regdom_flags(rrule2->flags) | 1885 bw_flags1 | 1886 bw_flags2; 1887 chan->orig_flags = chan->flags; 1888 chan->max_antenna_gain = 1889 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1890 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1891 chan->orig_mag = chan->max_antenna_gain; 1892 chan->max_reg_power = 1893 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1894 MBM_TO_DBM(power_rule2->max_eirp)); 1895 chan->max_power = chan->max_reg_power; 1896 chan->orig_mpwr = chan->max_reg_power; 1897 1898 if (chan->flags & IEEE80211_CHAN_RADAR) { 1899 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1900 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1901 chan->dfs_cac_ms = max_t(unsigned int, 1902 rrule1->dfs_cac_ms, 1903 rrule2->dfs_cac_ms); 1904 } 1905 1906 if ((rrule1->flags & NL80211_RRF_PSD) && 1907 (rrule2->flags & NL80211_RRF_PSD)) 1908 chan->psd = min_t(s8, rrule1->psd, rrule2->psd); 1909 else 1910 chan->flags &= ~NL80211_RRF_PSD; 1911 1912 return; 1913 } 1914 1915 chan->dfs_state = NL80211_DFS_USABLE; 1916 chan->dfs_state_entered = jiffies; 1917 1918 chan->beacon_found = false; 1919 chan->flags = flags | bw_flags1 | bw_flags2 | 1920 map_regdom_flags(rrule1->flags) | 1921 map_regdom_flags(rrule2->flags); 1922 1923 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1924 * (otherwise no adj. rule case), recheck therefore 1925 */ 1926 if (cfg80211_does_bw_fit_range(comb_range, 1927 ieee80211_channel_to_khz(chan), 1928 MHZ_TO_KHZ(10))) 1929 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1930 if (cfg80211_does_bw_fit_range(comb_range, 1931 ieee80211_channel_to_khz(chan), 1932 MHZ_TO_KHZ(20))) 1933 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1934 1935 chan->max_antenna_gain = 1936 min_t(int, chan->orig_mag, 1937 min_t(int, 1938 MBI_TO_DBI(power_rule1->max_antenna_gain), 1939 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1940 chan->max_reg_power = min_t(int, 1941 MBM_TO_DBM(power_rule1->max_eirp), 1942 MBM_TO_DBM(power_rule2->max_eirp)); 1943 1944 if (chan->flags & IEEE80211_CHAN_RADAR) { 1945 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1946 chan->dfs_cac_ms = max_t(unsigned int, 1947 rrule1->dfs_cac_ms, 1948 rrule2->dfs_cac_ms); 1949 else 1950 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1951 } 1952 1953 if (chan->orig_mpwr) { 1954 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1955 * will always follow the passed country IE power settings. 1956 */ 1957 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1958 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1959 chan->max_power = chan->max_reg_power; 1960 else 1961 chan->max_power = min(chan->orig_mpwr, 1962 chan->max_reg_power); 1963 } else { 1964 chan->max_power = chan->max_reg_power; 1965 } 1966 } 1967 1968 /* Note that right now we assume the desired channel bandwidth 1969 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1970 * per channel, the primary and the extension channel). 1971 */ 1972 static void handle_channel(struct wiphy *wiphy, 1973 enum nl80211_reg_initiator initiator, 1974 struct ieee80211_channel *chan) 1975 { 1976 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1977 struct regulatory_request *lr = get_last_request(); 1978 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1979 const struct ieee80211_reg_rule *rrule = NULL; 1980 const struct ieee80211_reg_rule *rrule1 = NULL; 1981 const struct ieee80211_reg_rule *rrule2 = NULL; 1982 1983 u32 flags = chan->orig_flags; 1984 1985 rrule = freq_reg_info(wiphy, orig_chan_freq); 1986 if (IS_ERR(rrule)) { 1987 /* check for adjacent match, therefore get rules for 1988 * chan - 20 MHz and chan + 20 MHz and test 1989 * if reg rules are adjacent 1990 */ 1991 rrule1 = freq_reg_info(wiphy, 1992 orig_chan_freq - MHZ_TO_KHZ(20)); 1993 rrule2 = freq_reg_info(wiphy, 1994 orig_chan_freq + MHZ_TO_KHZ(20)); 1995 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 1996 struct ieee80211_freq_range comb_range; 1997 1998 if (rrule1->freq_range.end_freq_khz != 1999 rrule2->freq_range.start_freq_khz) 2000 goto disable_chan; 2001 2002 comb_range.start_freq_khz = 2003 rrule1->freq_range.start_freq_khz; 2004 comb_range.end_freq_khz = 2005 rrule2->freq_range.end_freq_khz; 2006 comb_range.max_bandwidth_khz = 2007 min_t(u32, 2008 rrule1->freq_range.max_bandwidth_khz, 2009 rrule2->freq_range.max_bandwidth_khz); 2010 2011 if (!cfg80211_does_bw_fit_range(&comb_range, 2012 orig_chan_freq, 2013 MHZ_TO_KHZ(20))) 2014 goto disable_chan; 2015 2016 handle_channel_adjacent_rules(wiphy, initiator, chan, 2017 flags, lr, request_wiphy, 2018 rrule1, rrule2, 2019 &comb_range); 2020 return; 2021 } 2022 2023 disable_chan: 2024 /* We will disable all channels that do not match our 2025 * received regulatory rule unless the hint is coming 2026 * from a Country IE and the Country IE had no information 2027 * about a band. The IEEE 802.11 spec allows for an AP 2028 * to send only a subset of the regulatory rules allowed, 2029 * so an AP in the US that only supports 2.4 GHz may only send 2030 * a country IE with information for the 2.4 GHz band 2031 * while 5 GHz is still supported. 2032 */ 2033 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2034 PTR_ERR(rrule) == -ERANGE) 2035 return; 2036 2037 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2038 request_wiphy && request_wiphy == wiphy && 2039 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2040 pr_debug("Disabling freq %d.%03d MHz for good\n", 2041 chan->center_freq, chan->freq_offset); 2042 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2043 chan->flags = chan->orig_flags; 2044 } else { 2045 pr_debug("Disabling freq %d.%03d MHz\n", 2046 chan->center_freq, chan->freq_offset); 2047 chan->flags |= IEEE80211_CHAN_DISABLED; 2048 } 2049 return; 2050 } 2051 2052 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2053 request_wiphy, rrule); 2054 } 2055 2056 static void handle_band(struct wiphy *wiphy, 2057 enum nl80211_reg_initiator initiator, 2058 struct ieee80211_supported_band *sband) 2059 { 2060 unsigned int i; 2061 2062 if (!sband) 2063 return; 2064 2065 for (i = 0; i < sband->n_channels; i++) 2066 handle_channel(wiphy, initiator, &sband->channels[i]); 2067 } 2068 2069 static bool reg_request_cell_base(struct regulatory_request *request) 2070 { 2071 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2072 return false; 2073 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2074 } 2075 2076 bool reg_last_request_cell_base(void) 2077 { 2078 return reg_request_cell_base(get_last_request()); 2079 } 2080 2081 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2082 /* Core specific check */ 2083 static enum reg_request_treatment 2084 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2085 { 2086 struct regulatory_request *lr = get_last_request(); 2087 2088 if (!reg_num_devs_support_basehint) 2089 return REG_REQ_IGNORE; 2090 2091 if (reg_request_cell_base(lr) && 2092 !regdom_changes(pending_request->alpha2)) 2093 return REG_REQ_ALREADY_SET; 2094 2095 return REG_REQ_OK; 2096 } 2097 2098 /* Device specific check */ 2099 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2100 { 2101 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2102 } 2103 #else 2104 static enum reg_request_treatment 2105 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2106 { 2107 return REG_REQ_IGNORE; 2108 } 2109 2110 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2111 { 2112 return true; 2113 } 2114 #endif 2115 2116 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2117 { 2118 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2119 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2120 return true; 2121 return false; 2122 } 2123 2124 static bool ignore_reg_update(struct wiphy *wiphy, 2125 enum nl80211_reg_initiator initiator) 2126 { 2127 struct regulatory_request *lr = get_last_request(); 2128 2129 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2130 return true; 2131 2132 if (!lr) { 2133 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2134 reg_initiator_name(initiator)); 2135 return true; 2136 } 2137 2138 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2139 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2140 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2141 reg_initiator_name(initiator)); 2142 return true; 2143 } 2144 2145 /* 2146 * wiphy->regd will be set once the device has its own 2147 * desired regulatory domain set 2148 */ 2149 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2150 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2151 !is_world_regdom(lr->alpha2)) { 2152 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2153 reg_initiator_name(initiator)); 2154 return true; 2155 } 2156 2157 if (reg_request_cell_base(lr)) 2158 return reg_dev_ignore_cell_hint(wiphy); 2159 2160 return false; 2161 } 2162 2163 static bool reg_is_world_roaming(struct wiphy *wiphy) 2164 { 2165 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2166 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2167 struct regulatory_request *lr = get_last_request(); 2168 2169 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2170 return true; 2171 2172 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2173 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2174 return true; 2175 2176 return false; 2177 } 2178 2179 static void reg_call_notifier(struct wiphy *wiphy, 2180 struct regulatory_request *request) 2181 { 2182 if (wiphy->reg_notifier) 2183 wiphy->reg_notifier(wiphy, request); 2184 } 2185 2186 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2187 struct reg_beacon *reg_beacon) 2188 { 2189 struct ieee80211_supported_band *sband; 2190 struct ieee80211_channel *chan; 2191 bool channel_changed = false; 2192 struct ieee80211_channel chan_before; 2193 struct regulatory_request *lr = get_last_request(); 2194 2195 sband = wiphy->bands[reg_beacon->chan.band]; 2196 chan = &sband->channels[chan_idx]; 2197 2198 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2199 return; 2200 2201 if (chan->beacon_found) 2202 return; 2203 2204 chan->beacon_found = true; 2205 2206 if (!reg_is_world_roaming(wiphy)) 2207 return; 2208 2209 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2210 return; 2211 2212 chan_before = *chan; 2213 2214 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2215 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2216 channel_changed = true; 2217 } 2218 2219 if (channel_changed) { 2220 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2221 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON) 2222 reg_call_notifier(wiphy, lr); 2223 } 2224 } 2225 2226 /* 2227 * Called when a scan on a wiphy finds a beacon on 2228 * new channel 2229 */ 2230 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2231 struct reg_beacon *reg_beacon) 2232 { 2233 unsigned int i; 2234 struct ieee80211_supported_band *sband; 2235 2236 if (!wiphy->bands[reg_beacon->chan.band]) 2237 return; 2238 2239 sband = wiphy->bands[reg_beacon->chan.band]; 2240 2241 for (i = 0; i < sband->n_channels; i++) 2242 handle_reg_beacon(wiphy, i, reg_beacon); 2243 } 2244 2245 /* 2246 * Called upon reg changes or a new wiphy is added 2247 */ 2248 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2249 { 2250 unsigned int i; 2251 struct ieee80211_supported_band *sband; 2252 struct reg_beacon *reg_beacon; 2253 2254 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2255 if (!wiphy->bands[reg_beacon->chan.band]) 2256 continue; 2257 sband = wiphy->bands[reg_beacon->chan.band]; 2258 for (i = 0; i < sband->n_channels; i++) 2259 handle_reg_beacon(wiphy, i, reg_beacon); 2260 } 2261 } 2262 2263 /* Reap the advantages of previously found beacons */ 2264 static void reg_process_beacons(struct wiphy *wiphy) 2265 { 2266 /* 2267 * Means we are just firing up cfg80211, so no beacons would 2268 * have been processed yet. 2269 */ 2270 if (!last_request) 2271 return; 2272 wiphy_update_beacon_reg(wiphy); 2273 } 2274 2275 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2276 { 2277 if (!chan) 2278 return false; 2279 if (chan->flags & IEEE80211_CHAN_DISABLED) 2280 return false; 2281 /* This would happen when regulatory rules disallow HT40 completely */ 2282 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2283 return false; 2284 return true; 2285 } 2286 2287 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2288 struct ieee80211_channel *channel) 2289 { 2290 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2291 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2292 const struct ieee80211_regdomain *regd; 2293 unsigned int i; 2294 u32 flags; 2295 2296 if (!is_ht40_allowed(channel)) { 2297 channel->flags |= IEEE80211_CHAN_NO_HT40; 2298 return; 2299 } 2300 2301 /* 2302 * We need to ensure the extension channels exist to 2303 * be able to use HT40- or HT40+, this finds them (or not) 2304 */ 2305 for (i = 0; i < sband->n_channels; i++) { 2306 struct ieee80211_channel *c = &sband->channels[i]; 2307 2308 if (c->center_freq == (channel->center_freq - 20)) 2309 channel_before = c; 2310 if (c->center_freq == (channel->center_freq + 20)) 2311 channel_after = c; 2312 } 2313 2314 flags = 0; 2315 regd = get_wiphy_regdom(wiphy); 2316 if (regd) { 2317 const struct ieee80211_reg_rule *reg_rule = 2318 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2319 regd, MHZ_TO_KHZ(20)); 2320 2321 if (!IS_ERR(reg_rule)) 2322 flags = reg_rule->flags; 2323 } 2324 2325 /* 2326 * Please note that this assumes target bandwidth is 20 MHz, 2327 * if that ever changes we also need to change the below logic 2328 * to include that as well. 2329 */ 2330 if (!is_ht40_allowed(channel_before) || 2331 flags & NL80211_RRF_NO_HT40MINUS) 2332 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2333 else 2334 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2335 2336 if (!is_ht40_allowed(channel_after) || 2337 flags & NL80211_RRF_NO_HT40PLUS) 2338 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2339 else 2340 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2341 } 2342 2343 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2344 struct ieee80211_supported_band *sband) 2345 { 2346 unsigned int i; 2347 2348 if (!sband) 2349 return; 2350 2351 for (i = 0; i < sband->n_channels; i++) 2352 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2353 } 2354 2355 static void reg_process_ht_flags(struct wiphy *wiphy) 2356 { 2357 enum nl80211_band band; 2358 2359 if (!wiphy) 2360 return; 2361 2362 for (band = 0; band < NUM_NL80211_BANDS; band++) 2363 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2364 } 2365 2366 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2367 { 2368 struct cfg80211_chan_def chandef = {}; 2369 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2370 enum nl80211_iftype iftype; 2371 bool ret; 2372 int link; 2373 2374 iftype = wdev->iftype; 2375 2376 /* make sure the interface is active */ 2377 if (!wdev->netdev || !netif_running(wdev->netdev)) 2378 return true; 2379 2380 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) { 2381 struct ieee80211_channel *chan; 2382 2383 if (!wdev->valid_links && link > 0) 2384 break; 2385 if (wdev->valid_links && !(wdev->valid_links & BIT(link))) 2386 continue; 2387 switch (iftype) { 2388 case NL80211_IFTYPE_AP: 2389 case NL80211_IFTYPE_P2P_GO: 2390 if (!wdev->links[link].ap.beacon_interval) 2391 continue; 2392 chandef = wdev->links[link].ap.chandef; 2393 break; 2394 case NL80211_IFTYPE_MESH_POINT: 2395 if (!wdev->u.mesh.beacon_interval) 2396 continue; 2397 chandef = wdev->u.mesh.chandef; 2398 break; 2399 case NL80211_IFTYPE_ADHOC: 2400 if (!wdev->u.ibss.ssid_len) 2401 continue; 2402 chandef = wdev->u.ibss.chandef; 2403 break; 2404 case NL80211_IFTYPE_STATION: 2405 case NL80211_IFTYPE_P2P_CLIENT: 2406 /* Maybe we could consider disabling that link only? */ 2407 if (!wdev->links[link].client.current_bss) 2408 continue; 2409 2410 chan = wdev->links[link].client.current_bss->pub.channel; 2411 if (!chan) 2412 continue; 2413 2414 if (!rdev->ops->get_channel || 2415 rdev_get_channel(rdev, wdev, link, &chandef)) 2416 cfg80211_chandef_create(&chandef, chan, 2417 NL80211_CHAN_NO_HT); 2418 break; 2419 case NL80211_IFTYPE_MONITOR: 2420 case NL80211_IFTYPE_AP_VLAN: 2421 case NL80211_IFTYPE_P2P_DEVICE: 2422 /* no enforcement required */ 2423 break; 2424 case NL80211_IFTYPE_OCB: 2425 if (!wdev->u.ocb.chandef.chan) 2426 continue; 2427 chandef = wdev->u.ocb.chandef; 2428 break; 2429 case NL80211_IFTYPE_NAN: 2430 /* we have no info, but NAN is also pretty universal */ 2431 continue; 2432 default: 2433 /* others not implemented for now */ 2434 WARN_ON_ONCE(1); 2435 break; 2436 } 2437 2438 switch (iftype) { 2439 case NL80211_IFTYPE_AP: 2440 case NL80211_IFTYPE_P2P_GO: 2441 case NL80211_IFTYPE_ADHOC: 2442 case NL80211_IFTYPE_MESH_POINT: 2443 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, 2444 iftype); 2445 if (!ret) 2446 return ret; 2447 break; 2448 case NL80211_IFTYPE_STATION: 2449 case NL80211_IFTYPE_P2P_CLIENT: 2450 ret = cfg80211_chandef_usable(wiphy, &chandef, 2451 IEEE80211_CHAN_DISABLED); 2452 if (!ret) 2453 return ret; 2454 break; 2455 default: 2456 break; 2457 } 2458 } 2459 2460 return true; 2461 } 2462 2463 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2464 { 2465 struct wireless_dev *wdev; 2466 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2467 2468 guard(wiphy)(wiphy); 2469 2470 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2471 if (!reg_wdev_chan_valid(wiphy, wdev)) 2472 cfg80211_leave(rdev, wdev); 2473 } 2474 2475 static void reg_check_chans_work(struct work_struct *work) 2476 { 2477 struct cfg80211_registered_device *rdev; 2478 2479 pr_debug("Verifying active interfaces after reg change\n"); 2480 rtnl_lock(); 2481 2482 for_each_rdev(rdev) 2483 reg_leave_invalid_chans(&rdev->wiphy); 2484 2485 rtnl_unlock(); 2486 } 2487 2488 void reg_check_channels(void) 2489 { 2490 /* 2491 * Give usermode a chance to do something nicer (move to another 2492 * channel, orderly disconnection), before forcing a disconnection. 2493 */ 2494 mod_delayed_work(system_power_efficient_wq, 2495 ®_check_chans, 2496 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2497 } 2498 2499 static void wiphy_update_regulatory(struct wiphy *wiphy, 2500 enum nl80211_reg_initiator initiator) 2501 { 2502 enum nl80211_band band; 2503 struct regulatory_request *lr = get_last_request(); 2504 2505 if (ignore_reg_update(wiphy, initiator)) { 2506 /* 2507 * Regulatory updates set by CORE are ignored for custom 2508 * regulatory cards. Let us notify the changes to the driver, 2509 * as some drivers used this to restore its orig_* reg domain. 2510 */ 2511 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2512 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2513 !(wiphy->regulatory_flags & 2514 REGULATORY_WIPHY_SELF_MANAGED)) 2515 reg_call_notifier(wiphy, lr); 2516 return; 2517 } 2518 2519 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2520 2521 for (band = 0; band < NUM_NL80211_BANDS; band++) 2522 handle_band(wiphy, initiator, wiphy->bands[band]); 2523 2524 reg_process_beacons(wiphy); 2525 reg_process_ht_flags(wiphy); 2526 reg_call_notifier(wiphy, lr); 2527 } 2528 2529 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2530 { 2531 struct cfg80211_registered_device *rdev; 2532 struct wiphy *wiphy; 2533 2534 ASSERT_RTNL(); 2535 2536 for_each_rdev(rdev) { 2537 wiphy = &rdev->wiphy; 2538 wiphy_update_regulatory(wiphy, initiator); 2539 } 2540 2541 reg_check_channels(); 2542 } 2543 2544 static void handle_channel_custom(struct wiphy *wiphy, 2545 struct ieee80211_channel *chan, 2546 const struct ieee80211_regdomain *regd, 2547 u32 min_bw) 2548 { 2549 u32 bw_flags = 0; 2550 const struct ieee80211_reg_rule *reg_rule = NULL; 2551 const struct ieee80211_power_rule *power_rule = NULL; 2552 u32 bw, center_freq_khz; 2553 2554 center_freq_khz = ieee80211_channel_to_khz(chan); 2555 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2556 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2557 if (!IS_ERR(reg_rule)) 2558 break; 2559 } 2560 2561 if (IS_ERR_OR_NULL(reg_rule)) { 2562 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2563 chan->center_freq, chan->freq_offset); 2564 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2565 chan->flags |= IEEE80211_CHAN_DISABLED; 2566 } else { 2567 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2568 chan->flags = chan->orig_flags; 2569 } 2570 return; 2571 } 2572 2573 power_rule = ®_rule->power_rule; 2574 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2575 2576 chan->dfs_state_entered = jiffies; 2577 chan->dfs_state = NL80211_DFS_USABLE; 2578 2579 chan->beacon_found = false; 2580 2581 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2582 chan->flags = chan->orig_flags | bw_flags | 2583 map_regdom_flags(reg_rule->flags); 2584 else 2585 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2586 2587 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2588 chan->max_reg_power = chan->max_power = 2589 (int) MBM_TO_DBM(power_rule->max_eirp); 2590 2591 if (chan->flags & IEEE80211_CHAN_RADAR) { 2592 if (reg_rule->dfs_cac_ms) 2593 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2594 else 2595 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2596 } 2597 2598 if (chan->flags & IEEE80211_CHAN_PSD) 2599 chan->psd = reg_rule->psd; 2600 2601 chan->max_power = chan->max_reg_power; 2602 } 2603 2604 static void handle_band_custom(struct wiphy *wiphy, 2605 struct ieee80211_supported_band *sband, 2606 const struct ieee80211_regdomain *regd) 2607 { 2608 unsigned int i; 2609 2610 if (!sband) 2611 return; 2612 2613 /* 2614 * We currently assume that you always want at least 20 MHz, 2615 * otherwise channel 12 might get enabled if this rule is 2616 * compatible to US, which permits 2402 - 2472 MHz. 2617 */ 2618 for (i = 0; i < sband->n_channels; i++) 2619 handle_channel_custom(wiphy, &sband->channels[i], regd, 2620 MHZ_TO_KHZ(20)); 2621 } 2622 2623 /* Used by drivers prior to wiphy registration */ 2624 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2625 const struct ieee80211_regdomain *regd) 2626 { 2627 const struct ieee80211_regdomain *new_regd, *tmp; 2628 enum nl80211_band band; 2629 unsigned int bands_set = 0; 2630 2631 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2632 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2633 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2634 2635 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2636 if (!wiphy->bands[band]) 2637 continue; 2638 handle_band_custom(wiphy, wiphy->bands[band], regd); 2639 bands_set++; 2640 } 2641 2642 /* 2643 * no point in calling this if it won't have any effect 2644 * on your device's supported bands. 2645 */ 2646 WARN_ON(!bands_set); 2647 new_regd = reg_copy_regd(regd); 2648 if (IS_ERR(new_regd)) 2649 return; 2650 2651 rtnl_lock(); 2652 scoped_guard(wiphy, wiphy) { 2653 tmp = get_wiphy_regdom(wiphy); 2654 rcu_assign_pointer(wiphy->regd, new_regd); 2655 rcu_free_regdom(tmp); 2656 } 2657 rtnl_unlock(); 2658 } 2659 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2660 2661 static void reg_set_request_processed(void) 2662 { 2663 bool need_more_processing = false; 2664 struct regulatory_request *lr = get_last_request(); 2665 2666 lr->processed = true; 2667 2668 spin_lock(®_requests_lock); 2669 if (!list_empty(®_requests_list)) 2670 need_more_processing = true; 2671 spin_unlock(®_requests_lock); 2672 2673 cancel_crda_timeout(); 2674 2675 if (need_more_processing) 2676 schedule_work(®_work); 2677 } 2678 2679 /** 2680 * reg_process_hint_core - process core regulatory requests 2681 * @core_request: a pending core regulatory request 2682 * 2683 * The wireless subsystem can use this function to process 2684 * a regulatory request issued by the regulatory core. 2685 * 2686 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the 2687 * hint was processed or ignored 2688 */ 2689 static enum reg_request_treatment 2690 reg_process_hint_core(struct regulatory_request *core_request) 2691 { 2692 if (reg_query_database(core_request)) { 2693 core_request->intersect = false; 2694 core_request->processed = false; 2695 reg_update_last_request(core_request); 2696 return REG_REQ_OK; 2697 } 2698 2699 return REG_REQ_IGNORE; 2700 } 2701 2702 static enum reg_request_treatment 2703 __reg_process_hint_user(struct regulatory_request *user_request) 2704 { 2705 struct regulatory_request *lr = get_last_request(); 2706 2707 if (reg_request_cell_base(user_request)) 2708 return reg_ignore_cell_hint(user_request); 2709 2710 if (reg_request_cell_base(lr)) 2711 return REG_REQ_IGNORE; 2712 2713 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2714 return REG_REQ_INTERSECT; 2715 /* 2716 * If the user knows better the user should set the regdom 2717 * to their country before the IE is picked up 2718 */ 2719 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2720 lr->intersect) 2721 return REG_REQ_IGNORE; 2722 /* 2723 * Process user requests only after previous user/driver/core 2724 * requests have been processed 2725 */ 2726 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2727 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2728 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2729 regdom_changes(lr->alpha2)) 2730 return REG_REQ_IGNORE; 2731 2732 if (!regdom_changes(user_request->alpha2)) 2733 return REG_REQ_ALREADY_SET; 2734 2735 return REG_REQ_OK; 2736 } 2737 2738 /** 2739 * reg_process_hint_user - process user regulatory requests 2740 * @user_request: a pending user regulatory request 2741 * 2742 * The wireless subsystem can use this function to process 2743 * a regulatory request initiated by userspace. 2744 * 2745 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the 2746 * hint was processed or ignored 2747 */ 2748 static enum reg_request_treatment 2749 reg_process_hint_user(struct regulatory_request *user_request) 2750 { 2751 enum reg_request_treatment treatment; 2752 2753 treatment = __reg_process_hint_user(user_request); 2754 if (treatment == REG_REQ_IGNORE || 2755 treatment == REG_REQ_ALREADY_SET) 2756 return REG_REQ_IGNORE; 2757 2758 user_request->intersect = treatment == REG_REQ_INTERSECT; 2759 user_request->processed = false; 2760 2761 if (reg_query_database(user_request)) { 2762 reg_update_last_request(user_request); 2763 user_alpha2[0] = user_request->alpha2[0]; 2764 user_alpha2[1] = user_request->alpha2[1]; 2765 return REG_REQ_OK; 2766 } 2767 2768 return REG_REQ_IGNORE; 2769 } 2770 2771 static enum reg_request_treatment 2772 __reg_process_hint_driver(struct regulatory_request *driver_request) 2773 { 2774 struct regulatory_request *lr = get_last_request(); 2775 2776 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2777 if (regdom_changes(driver_request->alpha2)) 2778 return REG_REQ_OK; 2779 return REG_REQ_ALREADY_SET; 2780 } 2781 2782 /* 2783 * This would happen if you unplug and plug your card 2784 * back in or if you add a new device for which the previously 2785 * loaded card also agrees on the regulatory domain. 2786 */ 2787 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2788 !regdom_changes(driver_request->alpha2)) 2789 return REG_REQ_ALREADY_SET; 2790 2791 return REG_REQ_INTERSECT; 2792 } 2793 2794 /** 2795 * reg_process_hint_driver - process driver regulatory requests 2796 * @wiphy: the wireless device for the regulatory request 2797 * @driver_request: a pending driver regulatory request 2798 * 2799 * The wireless subsystem can use this function to process 2800 * a regulatory request issued by an 802.11 driver. 2801 * 2802 * Returns: one of the different reg request treatment values. 2803 */ 2804 static enum reg_request_treatment 2805 reg_process_hint_driver(struct wiphy *wiphy, 2806 struct regulatory_request *driver_request) 2807 { 2808 const struct ieee80211_regdomain *regd, *tmp; 2809 enum reg_request_treatment treatment; 2810 2811 treatment = __reg_process_hint_driver(driver_request); 2812 2813 switch (treatment) { 2814 case REG_REQ_OK: 2815 break; 2816 case REG_REQ_IGNORE: 2817 return REG_REQ_IGNORE; 2818 case REG_REQ_INTERSECT: 2819 case REG_REQ_ALREADY_SET: 2820 regd = reg_copy_regd(get_cfg80211_regdom()); 2821 if (IS_ERR(regd)) 2822 return REG_REQ_IGNORE; 2823 2824 tmp = get_wiphy_regdom(wiphy); 2825 ASSERT_RTNL(); 2826 scoped_guard(wiphy, wiphy) { 2827 rcu_assign_pointer(wiphy->regd, regd); 2828 } 2829 rcu_free_regdom(tmp); 2830 } 2831 2832 2833 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2834 driver_request->processed = false; 2835 2836 /* 2837 * Since CRDA will not be called in this case as we already 2838 * have applied the requested regulatory domain before we just 2839 * inform userspace we have processed the request 2840 */ 2841 if (treatment == REG_REQ_ALREADY_SET) { 2842 nl80211_send_reg_change_event(driver_request); 2843 reg_update_last_request(driver_request); 2844 reg_set_request_processed(); 2845 return REG_REQ_ALREADY_SET; 2846 } 2847 2848 if (reg_query_database(driver_request)) { 2849 reg_update_last_request(driver_request); 2850 return REG_REQ_OK; 2851 } 2852 2853 return REG_REQ_IGNORE; 2854 } 2855 2856 static enum reg_request_treatment 2857 __reg_process_hint_country_ie(struct wiphy *wiphy, 2858 struct regulatory_request *country_ie_request) 2859 { 2860 struct wiphy *last_wiphy = NULL; 2861 struct regulatory_request *lr = get_last_request(); 2862 2863 if (reg_request_cell_base(lr)) { 2864 /* Trust a Cell base station over the AP's country IE */ 2865 if (regdom_changes(country_ie_request->alpha2)) 2866 return REG_REQ_IGNORE; 2867 return REG_REQ_ALREADY_SET; 2868 } else { 2869 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2870 return REG_REQ_IGNORE; 2871 } 2872 2873 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2874 return -EINVAL; 2875 2876 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2877 return REG_REQ_OK; 2878 2879 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2880 2881 if (last_wiphy != wiphy) { 2882 /* 2883 * Two cards with two APs claiming different 2884 * Country IE alpha2s. We could 2885 * intersect them, but that seems unlikely 2886 * to be correct. Reject second one for now. 2887 */ 2888 if (regdom_changes(country_ie_request->alpha2)) 2889 return REG_REQ_IGNORE; 2890 return REG_REQ_ALREADY_SET; 2891 } 2892 2893 if (regdom_changes(country_ie_request->alpha2)) 2894 return REG_REQ_OK; 2895 return REG_REQ_ALREADY_SET; 2896 } 2897 2898 /** 2899 * reg_process_hint_country_ie - process regulatory requests from country IEs 2900 * @wiphy: the wireless device for the regulatory request 2901 * @country_ie_request: a regulatory request from a country IE 2902 * 2903 * The wireless subsystem can use this function to process 2904 * a regulatory request issued by a country Information Element. 2905 * 2906 * Returns: one of the different reg request treatment values. 2907 */ 2908 static enum reg_request_treatment 2909 reg_process_hint_country_ie(struct wiphy *wiphy, 2910 struct regulatory_request *country_ie_request) 2911 { 2912 enum reg_request_treatment treatment; 2913 2914 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2915 2916 switch (treatment) { 2917 case REG_REQ_OK: 2918 break; 2919 case REG_REQ_IGNORE: 2920 return REG_REQ_IGNORE; 2921 case REG_REQ_ALREADY_SET: 2922 reg_free_request(country_ie_request); 2923 return REG_REQ_ALREADY_SET; 2924 case REG_REQ_INTERSECT: 2925 /* 2926 * This doesn't happen yet, not sure we 2927 * ever want to support it for this case. 2928 */ 2929 WARN_ONCE(1, "Unexpected intersection for country elements"); 2930 return REG_REQ_IGNORE; 2931 } 2932 2933 country_ie_request->intersect = false; 2934 country_ie_request->processed = false; 2935 2936 if (reg_query_database(country_ie_request)) { 2937 reg_update_last_request(country_ie_request); 2938 return REG_REQ_OK; 2939 } 2940 2941 return REG_REQ_IGNORE; 2942 } 2943 2944 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2945 { 2946 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2947 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2948 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2949 bool dfs_domain_same; 2950 2951 rcu_read_lock(); 2952 2953 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2954 wiphy1_regd = rcu_dereference(wiphy1->regd); 2955 if (!wiphy1_regd) 2956 wiphy1_regd = cfg80211_regd; 2957 2958 wiphy2_regd = rcu_dereference(wiphy2->regd); 2959 if (!wiphy2_regd) 2960 wiphy2_regd = cfg80211_regd; 2961 2962 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2963 2964 rcu_read_unlock(); 2965 2966 return dfs_domain_same; 2967 } 2968 2969 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2970 struct ieee80211_channel *src_chan) 2971 { 2972 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2973 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2974 return; 2975 2976 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2977 src_chan->flags & IEEE80211_CHAN_DISABLED) 2978 return; 2979 2980 if (src_chan->center_freq == dst_chan->center_freq && 2981 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2982 dst_chan->dfs_state = src_chan->dfs_state; 2983 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2984 } 2985 } 2986 2987 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2988 struct wiphy *src_wiphy) 2989 { 2990 struct ieee80211_supported_band *src_sband, *dst_sband; 2991 struct ieee80211_channel *src_chan, *dst_chan; 2992 int i, j, band; 2993 2994 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2995 return; 2996 2997 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2998 dst_sband = dst_wiphy->bands[band]; 2999 src_sband = src_wiphy->bands[band]; 3000 if (!dst_sband || !src_sband) 3001 continue; 3002 3003 for (i = 0; i < dst_sband->n_channels; i++) { 3004 dst_chan = &dst_sband->channels[i]; 3005 for (j = 0; j < src_sband->n_channels; j++) { 3006 src_chan = &src_sband->channels[j]; 3007 reg_copy_dfs_chan_state(dst_chan, src_chan); 3008 } 3009 } 3010 } 3011 } 3012 3013 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 3014 { 3015 struct cfg80211_registered_device *rdev; 3016 3017 ASSERT_RTNL(); 3018 3019 for_each_rdev(rdev) { 3020 if (wiphy == &rdev->wiphy) 3021 continue; 3022 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 3023 } 3024 } 3025 3026 /* This processes *all* regulatory hints */ 3027 static void reg_process_hint(struct regulatory_request *reg_request) 3028 { 3029 struct wiphy *wiphy = NULL; 3030 enum reg_request_treatment treatment; 3031 enum nl80211_reg_initiator initiator = reg_request->initiator; 3032 3033 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 3034 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 3035 3036 switch (initiator) { 3037 case NL80211_REGDOM_SET_BY_CORE: 3038 treatment = reg_process_hint_core(reg_request); 3039 break; 3040 case NL80211_REGDOM_SET_BY_USER: 3041 treatment = reg_process_hint_user(reg_request); 3042 break; 3043 case NL80211_REGDOM_SET_BY_DRIVER: 3044 if (!wiphy) 3045 goto out_free; 3046 treatment = reg_process_hint_driver(wiphy, reg_request); 3047 break; 3048 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3049 if (!wiphy) 3050 goto out_free; 3051 treatment = reg_process_hint_country_ie(wiphy, reg_request); 3052 break; 3053 default: 3054 WARN(1, "invalid initiator %d\n", initiator); 3055 goto out_free; 3056 } 3057 3058 if (treatment == REG_REQ_IGNORE) 3059 goto out_free; 3060 3061 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 3062 "unexpected treatment value %d\n", treatment); 3063 3064 /* This is required so that the orig_* parameters are saved. 3065 * NOTE: treatment must be set for any case that reaches here! 3066 */ 3067 if (treatment == REG_REQ_ALREADY_SET && wiphy && 3068 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 3069 wiphy_update_regulatory(wiphy, initiator); 3070 wiphy_all_share_dfs_chan_state(wiphy); 3071 reg_check_channels(); 3072 } 3073 3074 return; 3075 3076 out_free: 3077 reg_free_request(reg_request); 3078 } 3079 3080 static void notify_self_managed_wiphys(struct regulatory_request *request) 3081 { 3082 struct cfg80211_registered_device *rdev; 3083 struct wiphy *wiphy; 3084 3085 for_each_rdev(rdev) { 3086 wiphy = &rdev->wiphy; 3087 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 3088 request->initiator == NL80211_REGDOM_SET_BY_USER) 3089 reg_call_notifier(wiphy, request); 3090 } 3091 } 3092 3093 /* 3094 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 3095 * Regulatory hints come on a first come first serve basis and we 3096 * must process each one atomically. 3097 */ 3098 static void reg_process_pending_hints(void) 3099 { 3100 struct regulatory_request *reg_request, *lr; 3101 3102 lr = get_last_request(); 3103 3104 /* When last_request->processed becomes true this will be rescheduled */ 3105 if (lr && !lr->processed) { 3106 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3107 return; 3108 } 3109 3110 spin_lock(®_requests_lock); 3111 3112 if (list_empty(®_requests_list)) { 3113 spin_unlock(®_requests_lock); 3114 return; 3115 } 3116 3117 reg_request = list_first_entry(®_requests_list, 3118 struct regulatory_request, 3119 list); 3120 list_del_init(®_request->list); 3121 3122 spin_unlock(®_requests_lock); 3123 3124 notify_self_managed_wiphys(reg_request); 3125 3126 reg_process_hint(reg_request); 3127 3128 lr = get_last_request(); 3129 3130 spin_lock(®_requests_lock); 3131 if (!list_empty(®_requests_list) && lr && lr->processed) 3132 schedule_work(®_work); 3133 spin_unlock(®_requests_lock); 3134 } 3135 3136 /* Processes beacon hints -- this has nothing to do with country IEs */ 3137 static void reg_process_pending_beacon_hints(void) 3138 { 3139 struct cfg80211_registered_device *rdev; 3140 struct reg_beacon *pending_beacon, *tmp; 3141 3142 /* This goes through the _pending_ beacon list */ 3143 spin_lock_bh(®_pending_beacons_lock); 3144 3145 list_for_each_entry_safe(pending_beacon, tmp, 3146 ®_pending_beacons, list) { 3147 list_del_init(&pending_beacon->list); 3148 3149 /* Applies the beacon hint to current wiphys */ 3150 for_each_rdev(rdev) 3151 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3152 3153 /* Remembers the beacon hint for new wiphys or reg changes */ 3154 list_add_tail(&pending_beacon->list, ®_beacon_list); 3155 } 3156 3157 spin_unlock_bh(®_pending_beacons_lock); 3158 } 3159 3160 static void reg_process_self_managed_hint(struct wiphy *wiphy) 3161 { 3162 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3163 const struct ieee80211_regdomain *tmp; 3164 const struct ieee80211_regdomain *regd; 3165 enum nl80211_band band; 3166 struct regulatory_request request = {}; 3167 3168 ASSERT_RTNL(); 3169 lockdep_assert_wiphy(wiphy); 3170 3171 spin_lock(®_requests_lock); 3172 regd = rdev->requested_regd; 3173 rdev->requested_regd = NULL; 3174 spin_unlock(®_requests_lock); 3175 3176 if (!regd) 3177 return; 3178 3179 tmp = get_wiphy_regdom(wiphy); 3180 rcu_assign_pointer(wiphy->regd, regd); 3181 rcu_free_regdom(tmp); 3182 3183 for (band = 0; band < NUM_NL80211_BANDS; band++) 3184 handle_band_custom(wiphy, wiphy->bands[band], regd); 3185 3186 reg_process_ht_flags(wiphy); 3187 3188 request.wiphy_idx = get_wiphy_idx(wiphy); 3189 request.alpha2[0] = regd->alpha2[0]; 3190 request.alpha2[1] = regd->alpha2[1]; 3191 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3192 3193 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER) 3194 reg_call_notifier(wiphy, &request); 3195 3196 nl80211_send_wiphy_reg_change_event(&request); 3197 } 3198 3199 static void reg_process_self_managed_hints(void) 3200 { 3201 struct cfg80211_registered_device *rdev; 3202 3203 ASSERT_RTNL(); 3204 3205 for_each_rdev(rdev) { 3206 guard(wiphy)(&rdev->wiphy); 3207 3208 reg_process_self_managed_hint(&rdev->wiphy); 3209 } 3210 3211 reg_check_channels(); 3212 } 3213 3214 static void reg_todo(struct work_struct *work) 3215 { 3216 rtnl_lock(); 3217 reg_process_pending_hints(); 3218 reg_process_pending_beacon_hints(); 3219 reg_process_self_managed_hints(); 3220 rtnl_unlock(); 3221 } 3222 3223 static void queue_regulatory_request(struct regulatory_request *request) 3224 { 3225 request->alpha2[0] = toupper(request->alpha2[0]); 3226 request->alpha2[1] = toupper(request->alpha2[1]); 3227 3228 spin_lock(®_requests_lock); 3229 list_add_tail(&request->list, ®_requests_list); 3230 spin_unlock(®_requests_lock); 3231 3232 schedule_work(®_work); 3233 } 3234 3235 /* 3236 * Core regulatory hint -- happens during cfg80211_init() 3237 * and when we restore regulatory settings. 3238 */ 3239 static int regulatory_hint_core(const char *alpha2) 3240 { 3241 struct regulatory_request *request; 3242 3243 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3244 if (!request) 3245 return -ENOMEM; 3246 3247 request->alpha2[0] = alpha2[0]; 3248 request->alpha2[1] = alpha2[1]; 3249 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3250 request->wiphy_idx = WIPHY_IDX_INVALID; 3251 3252 queue_regulatory_request(request); 3253 3254 return 0; 3255 } 3256 3257 /* User hints */ 3258 int regulatory_hint_user(const char *alpha2, 3259 enum nl80211_user_reg_hint_type user_reg_hint_type) 3260 { 3261 struct regulatory_request *request; 3262 3263 if (WARN_ON(!alpha2)) 3264 return -EINVAL; 3265 3266 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3267 return -EINVAL; 3268 3269 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3270 if (!request) 3271 return -ENOMEM; 3272 3273 request->wiphy_idx = WIPHY_IDX_INVALID; 3274 request->alpha2[0] = alpha2[0]; 3275 request->alpha2[1] = alpha2[1]; 3276 request->initiator = NL80211_REGDOM_SET_BY_USER; 3277 request->user_reg_hint_type = user_reg_hint_type; 3278 3279 /* Allow calling CRDA again */ 3280 reset_crda_timeouts(); 3281 3282 queue_regulatory_request(request); 3283 3284 return 0; 3285 } 3286 3287 void regulatory_hint_indoor(bool is_indoor, u32 portid) 3288 { 3289 spin_lock(®_indoor_lock); 3290 3291 /* It is possible that more than one user space process is trying to 3292 * configure the indoor setting. To handle such cases, clear the indoor 3293 * setting in case that some process does not think that the device 3294 * is operating in an indoor environment. In addition, if a user space 3295 * process indicates that it is controlling the indoor setting, save its 3296 * portid, i.e., make it the owner. 3297 */ 3298 reg_is_indoor = is_indoor; 3299 if (reg_is_indoor) { 3300 if (!reg_is_indoor_portid) 3301 reg_is_indoor_portid = portid; 3302 } else { 3303 reg_is_indoor_portid = 0; 3304 } 3305 3306 spin_unlock(®_indoor_lock); 3307 3308 if (!is_indoor) 3309 reg_check_channels(); 3310 } 3311 3312 void regulatory_netlink_notify(u32 portid) 3313 { 3314 spin_lock(®_indoor_lock); 3315 3316 if (reg_is_indoor_portid != portid) { 3317 spin_unlock(®_indoor_lock); 3318 return; 3319 } 3320 3321 reg_is_indoor = false; 3322 reg_is_indoor_portid = 0; 3323 3324 spin_unlock(®_indoor_lock); 3325 3326 reg_check_channels(); 3327 } 3328 3329 /* Driver hints */ 3330 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3331 { 3332 struct regulatory_request *request; 3333 3334 if (WARN_ON(!alpha2 || !wiphy)) 3335 return -EINVAL; 3336 3337 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3338 3339 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3340 if (!request) 3341 return -ENOMEM; 3342 3343 request->wiphy_idx = get_wiphy_idx(wiphy); 3344 3345 request->alpha2[0] = alpha2[0]; 3346 request->alpha2[1] = alpha2[1]; 3347 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3348 3349 /* Allow calling CRDA again */ 3350 reset_crda_timeouts(); 3351 3352 queue_regulatory_request(request); 3353 3354 return 0; 3355 } 3356 EXPORT_SYMBOL(regulatory_hint); 3357 3358 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3359 const u8 *country_ie, u8 country_ie_len) 3360 { 3361 char alpha2[2]; 3362 enum environment_cap env = ENVIRON_ANY; 3363 struct regulatory_request *request = NULL, *lr; 3364 3365 /* IE len must be evenly divisible by 2 */ 3366 if (country_ie_len & 0x01) 3367 return; 3368 3369 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3370 return; 3371 3372 request = kzalloc(sizeof(*request), GFP_KERNEL); 3373 if (!request) 3374 return; 3375 3376 alpha2[0] = country_ie[0]; 3377 alpha2[1] = country_ie[1]; 3378 3379 if (country_ie[2] == 'I') 3380 env = ENVIRON_INDOOR; 3381 else if (country_ie[2] == 'O') 3382 env = ENVIRON_OUTDOOR; 3383 3384 rcu_read_lock(); 3385 lr = get_last_request(); 3386 3387 if (unlikely(!lr)) 3388 goto out; 3389 3390 /* 3391 * We will run this only upon a successful connection on cfg80211. 3392 * We leave conflict resolution to the workqueue, where can hold 3393 * the RTNL. 3394 */ 3395 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3396 lr->wiphy_idx != WIPHY_IDX_INVALID) 3397 goto out; 3398 3399 request->wiphy_idx = get_wiphy_idx(wiphy); 3400 request->alpha2[0] = alpha2[0]; 3401 request->alpha2[1] = alpha2[1]; 3402 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3403 request->country_ie_env = env; 3404 3405 /* Allow calling CRDA again */ 3406 reset_crda_timeouts(); 3407 3408 queue_regulatory_request(request); 3409 request = NULL; 3410 out: 3411 kfree(request); 3412 rcu_read_unlock(); 3413 } 3414 3415 static void restore_alpha2(char *alpha2, bool reset_user) 3416 { 3417 /* indicates there is no alpha2 to consider for restoration */ 3418 alpha2[0] = '9'; 3419 alpha2[1] = '7'; 3420 3421 /* The user setting has precedence over the module parameter */ 3422 if (is_user_regdom_saved()) { 3423 /* Unless we're asked to ignore it and reset it */ 3424 if (reset_user) { 3425 pr_debug("Restoring regulatory settings including user preference\n"); 3426 user_alpha2[0] = '9'; 3427 user_alpha2[1] = '7'; 3428 3429 /* 3430 * If we're ignoring user settings, we still need to 3431 * check the module parameter to ensure we put things 3432 * back as they were for a full restore. 3433 */ 3434 if (!is_world_regdom(ieee80211_regdom)) { 3435 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3436 ieee80211_regdom[0], ieee80211_regdom[1]); 3437 alpha2[0] = ieee80211_regdom[0]; 3438 alpha2[1] = ieee80211_regdom[1]; 3439 } 3440 } else { 3441 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3442 user_alpha2[0], user_alpha2[1]); 3443 alpha2[0] = user_alpha2[0]; 3444 alpha2[1] = user_alpha2[1]; 3445 } 3446 } else if (!is_world_regdom(ieee80211_regdom)) { 3447 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3448 ieee80211_regdom[0], ieee80211_regdom[1]); 3449 alpha2[0] = ieee80211_regdom[0]; 3450 alpha2[1] = ieee80211_regdom[1]; 3451 } else 3452 pr_debug("Restoring regulatory settings\n"); 3453 } 3454 3455 static void restore_custom_reg_settings(struct wiphy *wiphy) 3456 { 3457 struct ieee80211_supported_band *sband; 3458 enum nl80211_band band; 3459 struct ieee80211_channel *chan; 3460 int i; 3461 3462 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3463 sband = wiphy->bands[band]; 3464 if (!sband) 3465 continue; 3466 for (i = 0; i < sband->n_channels; i++) { 3467 chan = &sband->channels[i]; 3468 chan->flags = chan->orig_flags; 3469 chan->max_antenna_gain = chan->orig_mag; 3470 chan->max_power = chan->orig_mpwr; 3471 chan->beacon_found = false; 3472 } 3473 } 3474 } 3475 3476 /* 3477 * Restoring regulatory settings involves ignoring any 3478 * possibly stale country IE information and user regulatory 3479 * settings if so desired, this includes any beacon hints 3480 * learned as we could have traveled outside to another country 3481 * after disconnection. To restore regulatory settings we do 3482 * exactly what we did at bootup: 3483 * 3484 * - send a core regulatory hint 3485 * - send a user regulatory hint if applicable 3486 * 3487 * Device drivers that send a regulatory hint for a specific country 3488 * keep their own regulatory domain on wiphy->regd so that does 3489 * not need to be remembered. 3490 */ 3491 static void restore_regulatory_settings(bool reset_user, bool cached) 3492 { 3493 char alpha2[2]; 3494 char world_alpha2[2]; 3495 struct reg_beacon *reg_beacon, *btmp; 3496 LIST_HEAD(tmp_reg_req_list); 3497 struct cfg80211_registered_device *rdev; 3498 3499 ASSERT_RTNL(); 3500 3501 /* 3502 * Clear the indoor setting in case that it is not controlled by user 3503 * space, as otherwise there is no guarantee that the device is still 3504 * operating in an indoor environment. 3505 */ 3506 spin_lock(®_indoor_lock); 3507 if (reg_is_indoor && !reg_is_indoor_portid) { 3508 reg_is_indoor = false; 3509 reg_check_channels(); 3510 } 3511 spin_unlock(®_indoor_lock); 3512 3513 reset_regdomains(true, &world_regdom); 3514 restore_alpha2(alpha2, reset_user); 3515 3516 /* 3517 * If there's any pending requests we simply 3518 * stash them to a temporary pending queue and 3519 * add then after we've restored regulatory 3520 * settings. 3521 */ 3522 spin_lock(®_requests_lock); 3523 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3524 spin_unlock(®_requests_lock); 3525 3526 /* Clear beacon hints */ 3527 spin_lock_bh(®_pending_beacons_lock); 3528 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3529 list_del(®_beacon->list); 3530 kfree(reg_beacon); 3531 } 3532 spin_unlock_bh(®_pending_beacons_lock); 3533 3534 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3535 list_del(®_beacon->list); 3536 kfree(reg_beacon); 3537 } 3538 3539 /* First restore to the basic regulatory settings */ 3540 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3541 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3542 3543 for_each_rdev(rdev) { 3544 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3545 continue; 3546 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3547 restore_custom_reg_settings(&rdev->wiphy); 3548 } 3549 3550 if (cached && (!is_an_alpha2(alpha2) || 3551 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3552 reset_regdomains(false, cfg80211_world_regdom); 3553 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3554 print_regdomain(get_cfg80211_regdom()); 3555 nl80211_send_reg_change_event(&core_request_world); 3556 reg_set_request_processed(); 3557 3558 if (is_an_alpha2(alpha2) && 3559 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3560 struct regulatory_request *ureq; 3561 3562 spin_lock(®_requests_lock); 3563 ureq = list_last_entry(®_requests_list, 3564 struct regulatory_request, 3565 list); 3566 list_del(&ureq->list); 3567 spin_unlock(®_requests_lock); 3568 3569 notify_self_managed_wiphys(ureq); 3570 reg_update_last_request(ureq); 3571 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3572 REGD_SOURCE_CACHED); 3573 } 3574 } else { 3575 regulatory_hint_core(world_alpha2); 3576 3577 /* 3578 * This restores the ieee80211_regdom module parameter 3579 * preference or the last user requested regulatory 3580 * settings, user regulatory settings takes precedence. 3581 */ 3582 if (is_an_alpha2(alpha2)) 3583 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3584 } 3585 3586 spin_lock(®_requests_lock); 3587 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3588 spin_unlock(®_requests_lock); 3589 3590 pr_debug("Kicking the queue\n"); 3591 3592 schedule_work(®_work); 3593 } 3594 3595 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3596 { 3597 struct cfg80211_registered_device *rdev; 3598 struct wireless_dev *wdev; 3599 3600 for_each_rdev(rdev) { 3601 guard(wiphy)(&rdev->wiphy); 3602 3603 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3604 if (!(wdev->wiphy->regulatory_flags & flag)) 3605 return false; 3606 } 3607 } 3608 3609 return true; 3610 } 3611 3612 void regulatory_hint_disconnect(void) 3613 { 3614 /* Restore of regulatory settings is not required when wiphy(s) 3615 * ignore IE from connected access point but clearance of beacon hints 3616 * is required when wiphy(s) supports beacon hints. 3617 */ 3618 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3619 struct reg_beacon *reg_beacon, *btmp; 3620 3621 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3622 return; 3623 3624 spin_lock_bh(®_pending_beacons_lock); 3625 list_for_each_entry_safe(reg_beacon, btmp, 3626 ®_pending_beacons, list) { 3627 list_del(®_beacon->list); 3628 kfree(reg_beacon); 3629 } 3630 spin_unlock_bh(®_pending_beacons_lock); 3631 3632 list_for_each_entry_safe(reg_beacon, btmp, 3633 ®_beacon_list, list) { 3634 list_del(®_beacon->list); 3635 kfree(reg_beacon); 3636 } 3637 3638 return; 3639 } 3640 3641 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3642 restore_regulatory_settings(false, true); 3643 } 3644 3645 static bool freq_is_chan_12_13_14(u32 freq) 3646 { 3647 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3648 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3649 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3650 return true; 3651 return false; 3652 } 3653 3654 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3655 { 3656 struct reg_beacon *pending_beacon; 3657 3658 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3659 if (ieee80211_channel_equal(beacon_chan, 3660 &pending_beacon->chan)) 3661 return true; 3662 return false; 3663 } 3664 3665 void regulatory_hint_found_beacon(struct wiphy *wiphy, 3666 struct ieee80211_channel *beacon_chan, 3667 gfp_t gfp) 3668 { 3669 struct reg_beacon *reg_beacon; 3670 bool processing; 3671 3672 if (beacon_chan->beacon_found || 3673 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3674 (beacon_chan->band == NL80211_BAND_2GHZ && 3675 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3676 return; 3677 3678 spin_lock_bh(®_pending_beacons_lock); 3679 processing = pending_reg_beacon(beacon_chan); 3680 spin_unlock_bh(®_pending_beacons_lock); 3681 3682 if (processing) 3683 return; 3684 3685 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3686 if (!reg_beacon) 3687 return; 3688 3689 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3690 beacon_chan->center_freq, beacon_chan->freq_offset, 3691 ieee80211_freq_khz_to_channel( 3692 ieee80211_channel_to_khz(beacon_chan)), 3693 wiphy_name(wiphy)); 3694 3695 memcpy(®_beacon->chan, beacon_chan, 3696 sizeof(struct ieee80211_channel)); 3697 3698 /* 3699 * Since we can be called from BH or and non-BH context 3700 * we must use spin_lock_bh() 3701 */ 3702 spin_lock_bh(®_pending_beacons_lock); 3703 list_add_tail(®_beacon->list, ®_pending_beacons); 3704 spin_unlock_bh(®_pending_beacons_lock); 3705 3706 schedule_work(®_work); 3707 } 3708 3709 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3710 { 3711 unsigned int i; 3712 const struct ieee80211_reg_rule *reg_rule = NULL; 3713 const struct ieee80211_freq_range *freq_range = NULL; 3714 const struct ieee80211_power_rule *power_rule = NULL; 3715 char bw[32], cac_time[32]; 3716 3717 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3718 3719 for (i = 0; i < rd->n_reg_rules; i++) { 3720 reg_rule = &rd->reg_rules[i]; 3721 freq_range = ®_rule->freq_range; 3722 power_rule = ®_rule->power_rule; 3723 3724 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3725 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", 3726 freq_range->max_bandwidth_khz, 3727 reg_get_max_bandwidth(rd, reg_rule)); 3728 else 3729 snprintf(bw, sizeof(bw), "%d KHz", 3730 freq_range->max_bandwidth_khz); 3731 3732 if (reg_rule->flags & NL80211_RRF_DFS) 3733 scnprintf(cac_time, sizeof(cac_time), "%u s", 3734 reg_rule->dfs_cac_ms/1000); 3735 else 3736 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3737 3738 3739 /* 3740 * There may not be documentation for max antenna gain 3741 * in certain regions 3742 */ 3743 if (power_rule->max_antenna_gain) 3744 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3745 freq_range->start_freq_khz, 3746 freq_range->end_freq_khz, 3747 bw, 3748 power_rule->max_antenna_gain, 3749 power_rule->max_eirp, 3750 cac_time); 3751 else 3752 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3753 freq_range->start_freq_khz, 3754 freq_range->end_freq_khz, 3755 bw, 3756 power_rule->max_eirp, 3757 cac_time); 3758 } 3759 } 3760 3761 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3762 { 3763 switch (dfs_region) { 3764 case NL80211_DFS_UNSET: 3765 case NL80211_DFS_FCC: 3766 case NL80211_DFS_ETSI: 3767 case NL80211_DFS_JP: 3768 return true; 3769 default: 3770 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3771 return false; 3772 } 3773 } 3774 3775 static void print_regdomain(const struct ieee80211_regdomain *rd) 3776 { 3777 struct regulatory_request *lr = get_last_request(); 3778 3779 if (is_intersected_alpha2(rd->alpha2)) { 3780 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3781 struct cfg80211_registered_device *rdev; 3782 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3783 if (rdev) { 3784 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3785 rdev->country_ie_alpha2[0], 3786 rdev->country_ie_alpha2[1]); 3787 } else 3788 pr_debug("Current regulatory domain intersected:\n"); 3789 } else 3790 pr_debug("Current regulatory domain intersected:\n"); 3791 } else if (is_world_regdom(rd->alpha2)) { 3792 pr_debug("World regulatory domain updated:\n"); 3793 } else { 3794 if (is_unknown_alpha2(rd->alpha2)) 3795 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3796 else { 3797 if (reg_request_cell_base(lr)) 3798 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3799 rd->alpha2[0], rd->alpha2[1]); 3800 else 3801 pr_debug("Regulatory domain changed to country: %c%c\n", 3802 rd->alpha2[0], rd->alpha2[1]); 3803 } 3804 } 3805 3806 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3807 print_rd_rules(rd); 3808 } 3809 3810 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3811 { 3812 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3813 print_rd_rules(rd); 3814 } 3815 3816 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3817 { 3818 if (!is_world_regdom(rd->alpha2)) 3819 return -EINVAL; 3820 update_world_regdomain(rd); 3821 return 0; 3822 } 3823 3824 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3825 struct regulatory_request *user_request) 3826 { 3827 const struct ieee80211_regdomain *intersected_rd = NULL; 3828 3829 if (!regdom_changes(rd->alpha2)) 3830 return -EALREADY; 3831 3832 if (!is_valid_rd(rd)) { 3833 pr_err("Invalid regulatory domain detected: %c%c\n", 3834 rd->alpha2[0], rd->alpha2[1]); 3835 print_regdomain_info(rd); 3836 return -EINVAL; 3837 } 3838 3839 if (!user_request->intersect) { 3840 reset_regdomains(false, rd); 3841 return 0; 3842 } 3843 3844 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3845 if (!intersected_rd) 3846 return -EINVAL; 3847 3848 kfree(rd); 3849 rd = NULL; 3850 reset_regdomains(false, intersected_rd); 3851 3852 return 0; 3853 } 3854 3855 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3856 struct regulatory_request *driver_request) 3857 { 3858 const struct ieee80211_regdomain *regd; 3859 const struct ieee80211_regdomain *intersected_rd = NULL; 3860 const struct ieee80211_regdomain *tmp = NULL; 3861 struct wiphy *request_wiphy; 3862 3863 if (is_world_regdom(rd->alpha2)) 3864 return -EINVAL; 3865 3866 if (!regdom_changes(rd->alpha2)) 3867 return -EALREADY; 3868 3869 if (!is_valid_rd(rd)) { 3870 pr_err("Invalid regulatory domain detected: %c%c\n", 3871 rd->alpha2[0], rd->alpha2[1]); 3872 print_regdomain_info(rd); 3873 return -EINVAL; 3874 } 3875 3876 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3877 if (!request_wiphy) 3878 return -ENODEV; 3879 3880 if (!driver_request->intersect) { 3881 ASSERT_RTNL(); 3882 scoped_guard(wiphy, request_wiphy) { 3883 if (request_wiphy->regd) 3884 tmp = get_wiphy_regdom(request_wiphy); 3885 3886 regd = reg_copy_regd(rd); 3887 if (IS_ERR(regd)) 3888 return PTR_ERR(regd); 3889 3890 rcu_assign_pointer(request_wiphy->regd, regd); 3891 rcu_free_regdom(tmp); 3892 } 3893 3894 reset_regdomains(false, rd); 3895 return 0; 3896 } 3897 3898 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3899 if (!intersected_rd) 3900 return -EINVAL; 3901 3902 /* 3903 * We can trash what CRDA provided now. 3904 * However if a driver requested this specific regulatory 3905 * domain we keep it for its private use 3906 */ 3907 tmp = get_wiphy_regdom(request_wiphy); 3908 rcu_assign_pointer(request_wiphy->regd, rd); 3909 rcu_free_regdom(tmp); 3910 3911 rd = NULL; 3912 3913 reset_regdomains(false, intersected_rd); 3914 3915 return 0; 3916 } 3917 3918 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3919 struct regulatory_request *country_ie_request) 3920 { 3921 struct wiphy *request_wiphy; 3922 3923 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3924 !is_unknown_alpha2(rd->alpha2)) 3925 return -EINVAL; 3926 3927 /* 3928 * Lets only bother proceeding on the same alpha2 if the current 3929 * rd is non static (it means CRDA was present and was used last) 3930 * and the pending request came in from a country IE 3931 */ 3932 3933 if (!is_valid_rd(rd)) { 3934 pr_err("Invalid regulatory domain detected: %c%c\n", 3935 rd->alpha2[0], rd->alpha2[1]); 3936 print_regdomain_info(rd); 3937 return -EINVAL; 3938 } 3939 3940 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3941 if (!request_wiphy) 3942 return -ENODEV; 3943 3944 if (country_ie_request->intersect) 3945 return -EINVAL; 3946 3947 reset_regdomains(false, rd); 3948 return 0; 3949 } 3950 3951 /* 3952 * Use this call to set the current regulatory domain. Conflicts with 3953 * multiple drivers can be ironed out later. Caller must've already 3954 * kmalloc'd the rd structure. 3955 */ 3956 int set_regdom(const struct ieee80211_regdomain *rd, 3957 enum ieee80211_regd_source regd_src) 3958 { 3959 struct regulatory_request *lr; 3960 bool user_reset = false; 3961 int r; 3962 3963 if (IS_ERR_OR_NULL(rd)) 3964 return -ENODATA; 3965 3966 if (!reg_is_valid_request(rd->alpha2)) { 3967 kfree(rd); 3968 return -EINVAL; 3969 } 3970 3971 if (regd_src == REGD_SOURCE_CRDA) 3972 reset_crda_timeouts(); 3973 3974 lr = get_last_request(); 3975 3976 /* Note that this doesn't update the wiphys, this is done below */ 3977 switch (lr->initiator) { 3978 case NL80211_REGDOM_SET_BY_CORE: 3979 r = reg_set_rd_core(rd); 3980 break; 3981 case NL80211_REGDOM_SET_BY_USER: 3982 cfg80211_save_user_regdom(rd); 3983 r = reg_set_rd_user(rd, lr); 3984 user_reset = true; 3985 break; 3986 case NL80211_REGDOM_SET_BY_DRIVER: 3987 r = reg_set_rd_driver(rd, lr); 3988 break; 3989 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3990 r = reg_set_rd_country_ie(rd, lr); 3991 break; 3992 default: 3993 WARN(1, "invalid initiator %d\n", lr->initiator); 3994 kfree(rd); 3995 return -EINVAL; 3996 } 3997 3998 if (r) { 3999 switch (r) { 4000 case -EALREADY: 4001 reg_set_request_processed(); 4002 break; 4003 default: 4004 /* Back to world regulatory in case of errors */ 4005 restore_regulatory_settings(user_reset, false); 4006 } 4007 4008 kfree(rd); 4009 return r; 4010 } 4011 4012 /* This would make this whole thing pointless */ 4013 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 4014 return -EINVAL; 4015 4016 /* update all wiphys now with the new established regulatory domain */ 4017 update_all_wiphy_regulatory(lr->initiator); 4018 4019 print_regdomain(get_cfg80211_regdom()); 4020 4021 nl80211_send_reg_change_event(lr); 4022 4023 reg_set_request_processed(); 4024 4025 return 0; 4026 } 4027 4028 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 4029 struct ieee80211_regdomain *rd) 4030 { 4031 const struct ieee80211_regdomain *regd; 4032 const struct ieee80211_regdomain *prev_regd; 4033 struct cfg80211_registered_device *rdev; 4034 4035 if (WARN_ON(!wiphy || !rd)) 4036 return -EINVAL; 4037 4038 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 4039 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 4040 return -EPERM; 4041 4042 if (WARN(!is_valid_rd(rd), 4043 "Invalid regulatory domain detected: %c%c\n", 4044 rd->alpha2[0], rd->alpha2[1])) { 4045 print_regdomain_info(rd); 4046 return -EINVAL; 4047 } 4048 4049 regd = reg_copy_regd(rd); 4050 if (IS_ERR(regd)) 4051 return PTR_ERR(regd); 4052 4053 rdev = wiphy_to_rdev(wiphy); 4054 4055 spin_lock(®_requests_lock); 4056 prev_regd = rdev->requested_regd; 4057 rdev->requested_regd = regd; 4058 spin_unlock(®_requests_lock); 4059 4060 kfree(prev_regd); 4061 return 0; 4062 } 4063 4064 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 4065 struct ieee80211_regdomain *rd) 4066 { 4067 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 4068 4069 if (ret) 4070 return ret; 4071 4072 schedule_work(®_work); 4073 return 0; 4074 } 4075 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 4076 4077 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 4078 struct ieee80211_regdomain *rd) 4079 { 4080 int ret; 4081 4082 ASSERT_RTNL(); 4083 4084 ret = __regulatory_set_wiphy_regd(wiphy, rd); 4085 if (ret) 4086 return ret; 4087 4088 /* process the request immediately */ 4089 reg_process_self_managed_hint(wiphy); 4090 reg_check_channels(); 4091 return 0; 4092 } 4093 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync); 4094 4095 void wiphy_regulatory_register(struct wiphy *wiphy) 4096 { 4097 struct regulatory_request *lr = get_last_request(); 4098 4099 /* self-managed devices ignore beacon hints and country IE */ 4100 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 4101 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 4102 REGULATORY_COUNTRY_IE_IGNORE; 4103 4104 /* 4105 * The last request may have been received before this 4106 * registration call. Call the driver notifier if 4107 * initiator is USER. 4108 */ 4109 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 4110 reg_call_notifier(wiphy, lr); 4111 } 4112 4113 if (!reg_dev_ignore_cell_hint(wiphy)) 4114 reg_num_devs_support_basehint++; 4115 4116 wiphy_update_regulatory(wiphy, lr->initiator); 4117 wiphy_all_share_dfs_chan_state(wiphy); 4118 reg_process_self_managed_hints(); 4119 } 4120 4121 void wiphy_regulatory_deregister(struct wiphy *wiphy) 4122 { 4123 struct wiphy *request_wiphy = NULL; 4124 struct regulatory_request *lr; 4125 4126 lr = get_last_request(); 4127 4128 if (!reg_dev_ignore_cell_hint(wiphy)) 4129 reg_num_devs_support_basehint--; 4130 4131 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4132 RCU_INIT_POINTER(wiphy->regd, NULL); 4133 4134 if (lr) 4135 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4136 4137 if (!request_wiphy || request_wiphy != wiphy) 4138 return; 4139 4140 lr->wiphy_idx = WIPHY_IDX_INVALID; 4141 lr->country_ie_env = ENVIRON_ANY; 4142 } 4143 4144 /* 4145 * See FCC notices for UNII band definitions 4146 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4147 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4148 */ 4149 int cfg80211_get_unii(int freq) 4150 { 4151 /* UNII-1 */ 4152 if (freq >= 5150 && freq <= 5250) 4153 return 0; 4154 4155 /* UNII-2A */ 4156 if (freq > 5250 && freq <= 5350) 4157 return 1; 4158 4159 /* UNII-2B */ 4160 if (freq > 5350 && freq <= 5470) 4161 return 2; 4162 4163 /* UNII-2C */ 4164 if (freq > 5470 && freq <= 5725) 4165 return 3; 4166 4167 /* UNII-3 */ 4168 if (freq > 5725 && freq <= 5825) 4169 return 4; 4170 4171 /* UNII-5 */ 4172 if (freq > 5925 && freq <= 6425) 4173 return 5; 4174 4175 /* UNII-6 */ 4176 if (freq > 6425 && freq <= 6525) 4177 return 6; 4178 4179 /* UNII-7 */ 4180 if (freq > 6525 && freq <= 6875) 4181 return 7; 4182 4183 /* UNII-8 */ 4184 if (freq > 6875 && freq <= 7125) 4185 return 8; 4186 4187 return -EINVAL; 4188 } 4189 4190 bool regulatory_indoor_allowed(void) 4191 { 4192 return reg_is_indoor; 4193 } 4194 4195 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4196 { 4197 const struct ieee80211_regdomain *regd = NULL; 4198 const struct ieee80211_regdomain *wiphy_regd = NULL; 4199 bool pre_cac_allowed = false; 4200 4201 rcu_read_lock(); 4202 4203 regd = rcu_dereference(cfg80211_regdomain); 4204 wiphy_regd = rcu_dereference(wiphy->regd); 4205 if (!wiphy_regd) { 4206 if (regd->dfs_region == NL80211_DFS_ETSI) 4207 pre_cac_allowed = true; 4208 4209 rcu_read_unlock(); 4210 4211 return pre_cac_allowed; 4212 } 4213 4214 if (regd->dfs_region == wiphy_regd->dfs_region && 4215 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4216 pre_cac_allowed = true; 4217 4218 rcu_read_unlock(); 4219 4220 return pre_cac_allowed; 4221 } 4222 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4223 4224 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4225 { 4226 struct wireless_dev *wdev; 4227 unsigned int link_id; 4228 4229 /* If we finished CAC or received radar, we should end any 4230 * CAC running on the same channels. 4231 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4232 * either all channels are available - those the CAC_FINISHED 4233 * event has effected another wdev state, or there is a channel 4234 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4235 * event has effected another wdev state. 4236 * In both cases we should end the CAC on the wdev. 4237 */ 4238 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4239 struct cfg80211_chan_def *chandef; 4240 4241 for_each_valid_link(wdev, link_id) { 4242 if (!wdev->links[link_id].cac_started) 4243 continue; 4244 4245 chandef = wdev_chandef(wdev, link_id); 4246 if (!chandef) 4247 continue; 4248 4249 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef)) 4250 rdev_end_cac(rdev, wdev->netdev, link_id); 4251 } 4252 } 4253 } 4254 4255 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4256 struct cfg80211_chan_def *chandef, 4257 enum nl80211_dfs_state dfs_state, 4258 enum nl80211_radar_event event) 4259 { 4260 struct cfg80211_registered_device *rdev; 4261 4262 ASSERT_RTNL(); 4263 4264 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4265 return; 4266 4267 for_each_rdev(rdev) { 4268 if (wiphy == &rdev->wiphy) 4269 continue; 4270 4271 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4272 continue; 4273 4274 if (!ieee80211_get_channel(&rdev->wiphy, 4275 chandef->chan->center_freq)) 4276 continue; 4277 4278 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4279 4280 if (event == NL80211_RADAR_DETECTED || 4281 event == NL80211_RADAR_CAC_FINISHED) { 4282 cfg80211_sched_dfs_chan_update(rdev); 4283 cfg80211_check_and_end_cac(rdev); 4284 } 4285 4286 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4287 } 4288 } 4289 4290 static int __init regulatory_init_db(void) 4291 { 4292 int err; 4293 4294 /* 4295 * It's possible that - due to other bugs/issues - cfg80211 4296 * never called regulatory_init() below, or that it failed; 4297 * in that case, don't try to do any further work here as 4298 * it's doomed to lead to crashes. 4299 */ 4300 if (IS_ERR_OR_NULL(reg_pdev)) 4301 return -EINVAL; 4302 4303 err = load_builtin_regdb_keys(); 4304 if (err) { 4305 platform_device_unregister(reg_pdev); 4306 return err; 4307 } 4308 4309 /* We always try to get an update for the static regdomain */ 4310 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4311 if (err) { 4312 if (err == -ENOMEM) { 4313 platform_device_unregister(reg_pdev); 4314 return err; 4315 } 4316 /* 4317 * N.B. kobject_uevent_env() can fail mainly for when we're out 4318 * memory which is handled and propagated appropriately above 4319 * but it can also fail during a netlink_broadcast() or during 4320 * early boot for call_usermodehelper(). For now treat these 4321 * errors as non-fatal. 4322 */ 4323 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4324 } 4325 4326 /* 4327 * Finally, if the user set the module parameter treat it 4328 * as a user hint. 4329 */ 4330 if (!is_world_regdom(ieee80211_regdom)) 4331 regulatory_hint_user(ieee80211_regdom, 4332 NL80211_USER_REG_HINT_USER); 4333 4334 return 0; 4335 } 4336 #ifndef MODULE 4337 late_initcall(regulatory_init_db); 4338 #endif 4339 4340 int __init regulatory_init(void) 4341 { 4342 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4343 if (IS_ERR(reg_pdev)) 4344 return PTR_ERR(reg_pdev); 4345 4346 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4347 4348 user_alpha2[0] = '9'; 4349 user_alpha2[1] = '7'; 4350 4351 #ifdef MODULE 4352 return regulatory_init_db(); 4353 #else 4354 return 0; 4355 #endif 4356 } 4357 4358 void regulatory_exit(void) 4359 { 4360 struct regulatory_request *reg_request, *tmp; 4361 struct reg_beacon *reg_beacon, *btmp; 4362 4363 cancel_work_sync(®_work); 4364 cancel_crda_timeout_sync(); 4365 cancel_delayed_work_sync(®_check_chans); 4366 4367 /* Lock to suppress warnings */ 4368 rtnl_lock(); 4369 reset_regdomains(true, NULL); 4370 rtnl_unlock(); 4371 4372 dev_set_uevent_suppress(®_pdev->dev, true); 4373 4374 platform_device_unregister(reg_pdev); 4375 4376 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4377 list_del(®_beacon->list); 4378 kfree(reg_beacon); 4379 } 4380 4381 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4382 list_del(®_beacon->list); 4383 kfree(reg_beacon); 4384 } 4385 4386 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4387 list_del(®_request->list); 4388 kfree(reg_request); 4389 } 4390 4391 if (!IS_ERR_OR_NULL(regdb)) 4392 kfree(regdb); 4393 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4394 kfree(cfg80211_user_regdom); 4395 4396 free_regdb_keyring(); 4397 } 4398