xref: /linux/net/wireless/reg.c (revision 0a94608f0f7de9b1135ffea3546afe68eafef57f)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2021 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137 
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140 	return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142 
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 	return rcu_dereference_check(wiphy->regd,
151 				     lockdep_is_held(&wiphy->mtx) ||
152 				     lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155 
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158 	switch (dfs_region) {
159 	case NL80211_DFS_UNSET:
160 		return "unset";
161 	case NL80211_DFS_FCC:
162 		return "FCC";
163 	case NL80211_DFS_ETSI:
164 		return "ETSI";
165 	case NL80211_DFS_JP:
166 		return "JP";
167 	}
168 	return "Unknown";
169 }
170 
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173 	const struct ieee80211_regdomain *regd = NULL;
174 	const struct ieee80211_regdomain *wiphy_regd = NULL;
175 	enum nl80211_dfs_regions dfs_region;
176 
177 	rcu_read_lock();
178 	regd = get_cfg80211_regdom();
179 	dfs_region = regd->dfs_region;
180 
181 	if (!wiphy)
182 		goto out;
183 
184 	wiphy_regd = get_wiphy_regdom(wiphy);
185 	if (!wiphy_regd)
186 		goto out;
187 
188 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 		dfs_region = wiphy_regd->dfs_region;
190 		goto out;
191 	}
192 
193 	if (wiphy_regd->dfs_region == regd->dfs_region)
194 		goto out;
195 
196 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 		 dev_name(&wiphy->dev),
198 		 reg_dfs_region_str(wiphy_regd->dfs_region),
199 		 reg_dfs_region_str(regd->dfs_region));
200 
201 out:
202 	rcu_read_unlock();
203 
204 	return dfs_region;
205 }
206 
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209 	if (!r)
210 		return;
211 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213 
214 static struct regulatory_request *get_last_request(void)
215 {
216 	return rcu_dereference_rtnl(last_request);
217 }
218 
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222 
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226 
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229 
230 struct reg_beacon {
231 	struct list_head list;
232 	struct ieee80211_channel chan;
233 };
234 
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237 
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240 
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243 	.n_reg_rules = 8,
244 	.alpha2 =  "00",
245 	.reg_rules = {
246 		/* IEEE 802.11b/g, channels 1..11 */
247 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 		/* IEEE 802.11b/g, channels 12..13. */
249 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 		/* IEEE 802.11 channel 14 - Only JP enables
252 		 * this and for 802.11b only */
253 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 			NL80211_RRF_NO_IR |
255 			NL80211_RRF_NO_OFDM),
256 		/* IEEE 802.11a, channel 36..48 */
257 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260 
261 		/* IEEE 802.11a, channel 52..64 - DFS required */
262 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 			NL80211_RRF_NO_IR |
264 			NL80211_RRF_AUTO_BW |
265 			NL80211_RRF_DFS),
266 
267 		/* IEEE 802.11a, channel 100..144 - DFS required */
268 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 			NL80211_RRF_NO_IR |
270 			NL80211_RRF_DFS),
271 
272 		/* IEEE 802.11a, channel 149..165 */
273 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 			NL80211_RRF_NO_IR),
275 
276 		/* IEEE 802.11ad (60GHz), channels 1..3 */
277 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 	}
279 };
280 
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 	&world_regdom;
284 
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288 
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291 
292 static void reg_free_request(struct regulatory_request *request)
293 {
294 	if (request == &core_request_world)
295 		return;
296 
297 	if (request != get_last_request())
298 		kfree(request);
299 }
300 
301 static void reg_free_last_request(void)
302 {
303 	struct regulatory_request *lr = get_last_request();
304 
305 	if (lr != &core_request_world && lr)
306 		kfree_rcu(lr, rcu_head);
307 }
308 
309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311 	struct regulatory_request *lr;
312 
313 	lr = get_last_request();
314 	if (lr == request)
315 		return;
316 
317 	reg_free_last_request();
318 	rcu_assign_pointer(last_request, request);
319 }
320 
321 static void reset_regdomains(bool full_reset,
322 			     const struct ieee80211_regdomain *new_regdom)
323 {
324 	const struct ieee80211_regdomain *r;
325 
326 	ASSERT_RTNL();
327 
328 	r = get_cfg80211_regdom();
329 
330 	/* avoid freeing static information or freeing something twice */
331 	if (r == cfg80211_world_regdom)
332 		r = NULL;
333 	if (cfg80211_world_regdom == &world_regdom)
334 		cfg80211_world_regdom = NULL;
335 	if (r == &world_regdom)
336 		r = NULL;
337 
338 	rcu_free_regdom(r);
339 	rcu_free_regdom(cfg80211_world_regdom);
340 
341 	cfg80211_world_regdom = &world_regdom;
342 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343 
344 	if (!full_reset)
345 		return;
346 
347 	reg_update_last_request(&core_request_world);
348 }
349 
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356 	struct regulatory_request *lr;
357 
358 	lr = get_last_request();
359 
360 	WARN_ON(!lr);
361 
362 	reset_regdomains(false, rd);
363 
364 	cfg80211_world_regdom = rd;
365 }
366 
367 bool is_world_regdom(const char *alpha2)
368 {
369 	if (!alpha2)
370 		return false;
371 	return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373 
374 static bool is_alpha2_set(const char *alpha2)
375 {
376 	if (!alpha2)
377 		return false;
378 	return alpha2[0] && alpha2[1];
379 }
380 
381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383 	if (!alpha2)
384 		return false;
385 	/*
386 	 * Special case where regulatory domain was built by driver
387 	 * but a specific alpha2 cannot be determined
388 	 */
389 	return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391 
392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394 	if (!alpha2)
395 		return false;
396 	/*
397 	 * Special case where regulatory domain is the
398 	 * result of an intersection between two regulatory domain
399 	 * structures
400 	 */
401 	return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403 
404 static bool is_an_alpha2(const char *alpha2)
405 {
406 	if (!alpha2)
407 		return false;
408 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410 
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413 	if (!alpha2_x || !alpha2_y)
414 		return false;
415 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417 
418 static bool regdom_changes(const char *alpha2)
419 {
420 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421 
422 	if (!r)
423 		return true;
424 	return !alpha2_equal(r->alpha2, alpha2);
425 }
426 
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
432 static bool is_user_regdom_saved(void)
433 {
434 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 		return false;
436 
437 	/* This would indicate a mistake on the design */
438 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 		 "Unexpected user alpha2: %c%c\n",
440 		 user_alpha2[0], user_alpha2[1]))
441 		return false;
442 
443 	return true;
444 }
445 
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449 	struct ieee80211_regdomain *regd;
450 	unsigned int i;
451 
452 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 		       GFP_KERNEL);
454 	if (!regd)
455 		return ERR_PTR(-ENOMEM);
456 
457 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458 
459 	for (i = 0; i < src_regd->n_reg_rules; i++)
460 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461 		       sizeof(struct ieee80211_reg_rule));
462 
463 	return regd;
464 }
465 
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468 	ASSERT_RTNL();
469 
470 	if (!IS_ERR(cfg80211_user_regdom))
471 		kfree(cfg80211_user_regdom);
472 	cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474 
475 struct reg_regdb_apply_request {
476 	struct list_head list;
477 	const struct ieee80211_regdomain *regdom;
478 };
479 
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482 
483 static void reg_regdb_apply(struct work_struct *work)
484 {
485 	struct reg_regdb_apply_request *request;
486 
487 	rtnl_lock();
488 
489 	mutex_lock(&reg_regdb_apply_mutex);
490 	while (!list_empty(&reg_regdb_apply_list)) {
491 		request = list_first_entry(&reg_regdb_apply_list,
492 					   struct reg_regdb_apply_request,
493 					   list);
494 		list_del(&request->list);
495 
496 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 		kfree(request);
498 	}
499 	mutex_unlock(&reg_regdb_apply_mutex);
500 
501 	rtnl_unlock();
502 }
503 
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505 
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508 	struct reg_regdb_apply_request *request;
509 
510 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 	if (!request) {
512 		kfree(regdom);
513 		return -ENOMEM;
514 	}
515 
516 	request->regdom = regdom;
517 
518 	mutex_lock(&reg_regdb_apply_mutex);
519 	list_add_tail(&request->list, &reg_regdb_apply_list);
520 	mutex_unlock(&reg_regdb_apply_mutex);
521 
522 	schedule_work(&reg_regdb_work);
523 	return 0;
524 }
525 
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529 
530 static u32 reg_crda_timeouts;
531 
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534 
535 static void crda_timeout_work(struct work_struct *work)
536 {
537 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 	rtnl_lock();
539 	reg_crda_timeouts++;
540 	restore_regulatory_settings(true, false);
541 	rtnl_unlock();
542 }
543 
544 static void cancel_crda_timeout(void)
545 {
546 	cancel_delayed_work(&crda_timeout);
547 }
548 
549 static void cancel_crda_timeout_sync(void)
550 {
551 	cancel_delayed_work_sync(&crda_timeout);
552 }
553 
554 static void reset_crda_timeouts(void)
555 {
556 	reg_crda_timeouts = 0;
557 }
558 
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565 	char country[12];
566 	char *env[] = { country, NULL };
567 	int ret;
568 
569 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 		 alpha2[0], alpha2[1]);
571 
572 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 		return -EINVAL;
575 	}
576 
577 	if (!is_world_regdom((char *) alpha2))
578 		pr_debug("Calling CRDA for country: %c%c\n",
579 			 alpha2[0], alpha2[1]);
580 	else
581 		pr_debug("Calling CRDA to update world regulatory domain\n");
582 
583 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584 	if (ret)
585 		return ret;
586 
587 	queue_delayed_work(system_power_efficient_wq,
588 			   &crda_timeout, msecs_to_jiffies(3142));
589 	return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597 	return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600 
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603 
604 struct fwdb_country {
605 	u8 alpha2[2];
606 	__be16 coll_ptr;
607 	/* this struct cannot be extended */
608 } __packed __aligned(4);
609 
610 struct fwdb_collection {
611 	u8 len;
612 	u8 n_rules;
613 	u8 dfs_region;
614 	/* no optional data yet */
615 	/* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617 
618 enum fwdb_flags {
619 	FWDB_FLAG_NO_OFDM	= BIT(0),
620 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
621 	FWDB_FLAG_DFS		= BIT(2),
622 	FWDB_FLAG_NO_IR		= BIT(3),
623 	FWDB_FLAG_AUTO_BW	= BIT(4),
624 };
625 
626 struct fwdb_wmm_ac {
627 	u8 ecw;
628 	u8 aifsn;
629 	__be16 cot;
630 } __packed;
631 
632 struct fwdb_wmm_rule {
633 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636 
637 struct fwdb_rule {
638 	u8 len;
639 	u8 flags;
640 	__be16 max_eirp;
641 	__be32 start, end, max_bw;
642 	/* start of optional data */
643 	__be16 cac_timeout;
644 	__be16 wmm_ptr;
645 } __packed __aligned(4);
646 
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649 
650 struct fwdb_header {
651 	__be32 magic;
652 	__be32 version;
653 	struct fwdb_country country[];
654 } __packed __aligned(4);
655 
656 static int ecw2cw(int ecw)
657 {
658 	return (1 << ecw) - 1;
659 }
660 
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 	int i;
665 
666 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 		u8 aifsn = ac[i].aifsn;
670 
671 		if (cw_min >= cw_max)
672 			return false;
673 
674 		if (aifsn < 1)
675 			return false;
676 	}
677 
678 	return true;
679 }
680 
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684 
685 	if ((u8 *)rule + sizeof(rule->len) > data + size)
686 		return false;
687 
688 	/* mandatory fields */
689 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 		return false;
691 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 		struct fwdb_wmm_rule *wmm;
694 
695 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 			return false;
697 
698 		wmm = (void *)(data + wmm_ptr);
699 
700 		if (!valid_wmm(wmm))
701 			return false;
702 	}
703 	return true;
704 }
705 
706 static bool valid_country(const u8 *data, unsigned int size,
707 			  const struct fwdb_country *country)
708 {
709 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 	struct fwdb_collection *coll = (void *)(data + ptr);
711 	__be16 *rules_ptr;
712 	unsigned int i;
713 
714 	/* make sure we can read len/n_rules */
715 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 		return false;
717 
718 	/* make sure base struct and all rules fit */
719 	if ((u8 *)coll + ALIGN(coll->len, 2) +
720 	    (coll->n_rules * 2) > data + size)
721 		return false;
722 
723 	/* mandatory fields must exist */
724 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 		return false;
726 
727 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728 
729 	for (i = 0; i < coll->n_rules; i++) {
730 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731 
732 		if (!valid_rule(data, size, rule_ptr))
733 			return false;
734 	}
735 
736 	return true;
737 }
738 
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 static struct key *builtin_regdb_keys;
741 
742 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
743 {
744 	const u8 *end = p + buflen;
745 	size_t plen;
746 	key_ref_t key;
747 
748 	while (p < end) {
749 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
750 		 * than 256 bytes in size.
751 		 */
752 		if (end - p < 4)
753 			goto dodgy_cert;
754 		if (p[0] != 0x30 &&
755 		    p[1] != 0x82)
756 			goto dodgy_cert;
757 		plen = (p[2] << 8) | p[3];
758 		plen += 4;
759 		if (plen > end - p)
760 			goto dodgy_cert;
761 
762 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
763 					   "asymmetric", NULL, p, plen,
764 					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 					    KEY_USR_VIEW | KEY_USR_READ),
766 					   KEY_ALLOC_NOT_IN_QUOTA |
767 					   KEY_ALLOC_BUILT_IN |
768 					   KEY_ALLOC_BYPASS_RESTRICTION);
769 		if (IS_ERR(key)) {
770 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
771 			       PTR_ERR(key));
772 		} else {
773 			pr_notice("Loaded X.509 cert '%s'\n",
774 				  key_ref_to_ptr(key)->description);
775 			key_ref_put(key);
776 		}
777 		p += plen;
778 	}
779 
780 	return;
781 
782 dodgy_cert:
783 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
784 }
785 
786 static int __init load_builtin_regdb_keys(void)
787 {
788 	builtin_regdb_keys =
789 		keyring_alloc(".builtin_regdb_keys",
790 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
791 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
792 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
793 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
794 	if (IS_ERR(builtin_regdb_keys))
795 		return PTR_ERR(builtin_regdb_keys);
796 
797 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
798 
799 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
800 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
801 #endif
802 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
803 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
804 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
805 #endif
806 
807 	return 0;
808 }
809 
810 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
811 {
812 	const struct firmware *sig;
813 	bool result;
814 
815 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
816 		return false;
817 
818 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
819 					builtin_regdb_keys,
820 					VERIFYING_UNSPECIFIED_SIGNATURE,
821 					NULL, NULL) == 0;
822 
823 	release_firmware(sig);
824 
825 	return result;
826 }
827 
828 static void free_regdb_keyring(void)
829 {
830 	key_put(builtin_regdb_keys);
831 }
832 #else
833 static int load_builtin_regdb_keys(void)
834 {
835 	return 0;
836 }
837 
838 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
839 {
840 	return true;
841 }
842 
843 static void free_regdb_keyring(void)
844 {
845 }
846 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
847 
848 static bool valid_regdb(const u8 *data, unsigned int size)
849 {
850 	const struct fwdb_header *hdr = (void *)data;
851 	const struct fwdb_country *country;
852 
853 	if (size < sizeof(*hdr))
854 		return false;
855 
856 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
857 		return false;
858 
859 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
860 		return false;
861 
862 	if (!regdb_has_valid_signature(data, size))
863 		return false;
864 
865 	country = &hdr->country[0];
866 	while ((u8 *)(country + 1) <= data + size) {
867 		if (!country->coll_ptr)
868 			break;
869 		if (!valid_country(data, size, country))
870 			return false;
871 		country++;
872 	}
873 
874 	return true;
875 }
876 
877 static void set_wmm_rule(const struct fwdb_header *db,
878 			 const struct fwdb_country *country,
879 			 const struct fwdb_rule *rule,
880 			 struct ieee80211_reg_rule *rrule)
881 {
882 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
883 	struct fwdb_wmm_rule *wmm;
884 	unsigned int i, wmm_ptr;
885 
886 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
887 	wmm = (void *)((u8 *)db + wmm_ptr);
888 
889 	if (!valid_wmm(wmm)) {
890 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
891 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
892 		       country->alpha2[0], country->alpha2[1]);
893 		return;
894 	}
895 
896 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
897 		wmm_rule->client[i].cw_min =
898 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
899 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
900 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
901 		wmm_rule->client[i].cot =
902 			1000 * be16_to_cpu(wmm->client[i].cot);
903 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
904 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
905 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
906 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
907 	}
908 
909 	rrule->has_wmm = true;
910 }
911 
912 static int __regdb_query_wmm(const struct fwdb_header *db,
913 			     const struct fwdb_country *country, int freq,
914 			     struct ieee80211_reg_rule *rrule)
915 {
916 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
917 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
918 	int i;
919 
920 	for (i = 0; i < coll->n_rules; i++) {
921 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
922 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
923 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
924 
925 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
926 			continue;
927 
928 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
929 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
930 			set_wmm_rule(db, country, rule, rrule);
931 			return 0;
932 		}
933 	}
934 
935 	return -ENODATA;
936 }
937 
938 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
939 {
940 	const struct fwdb_header *hdr = regdb;
941 	const struct fwdb_country *country;
942 
943 	if (!regdb)
944 		return -ENODATA;
945 
946 	if (IS_ERR(regdb))
947 		return PTR_ERR(regdb);
948 
949 	country = &hdr->country[0];
950 	while (country->coll_ptr) {
951 		if (alpha2_equal(alpha2, country->alpha2))
952 			return __regdb_query_wmm(regdb, country, freq, rule);
953 
954 		country++;
955 	}
956 
957 	return -ENODATA;
958 }
959 EXPORT_SYMBOL(reg_query_regdb_wmm);
960 
961 static int regdb_query_country(const struct fwdb_header *db,
962 			       const struct fwdb_country *country)
963 {
964 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
965 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
966 	struct ieee80211_regdomain *regdom;
967 	unsigned int i;
968 
969 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
970 			 GFP_KERNEL);
971 	if (!regdom)
972 		return -ENOMEM;
973 
974 	regdom->n_reg_rules = coll->n_rules;
975 	regdom->alpha2[0] = country->alpha2[0];
976 	regdom->alpha2[1] = country->alpha2[1];
977 	regdom->dfs_region = coll->dfs_region;
978 
979 	for (i = 0; i < regdom->n_reg_rules; i++) {
980 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
981 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
982 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
983 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
984 
985 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
986 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
987 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
988 
989 		rrule->power_rule.max_antenna_gain = 0;
990 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
991 
992 		rrule->flags = 0;
993 		if (rule->flags & FWDB_FLAG_NO_OFDM)
994 			rrule->flags |= NL80211_RRF_NO_OFDM;
995 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
996 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
997 		if (rule->flags & FWDB_FLAG_DFS)
998 			rrule->flags |= NL80211_RRF_DFS;
999 		if (rule->flags & FWDB_FLAG_NO_IR)
1000 			rrule->flags |= NL80211_RRF_NO_IR;
1001 		if (rule->flags & FWDB_FLAG_AUTO_BW)
1002 			rrule->flags |= NL80211_RRF_AUTO_BW;
1003 
1004 		rrule->dfs_cac_ms = 0;
1005 
1006 		/* handle optional data */
1007 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1008 			rrule->dfs_cac_ms =
1009 				1000 * be16_to_cpu(rule->cac_timeout);
1010 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1011 			set_wmm_rule(db, country, rule, rrule);
1012 	}
1013 
1014 	return reg_schedule_apply(regdom);
1015 }
1016 
1017 static int query_regdb(const char *alpha2)
1018 {
1019 	const struct fwdb_header *hdr = regdb;
1020 	const struct fwdb_country *country;
1021 
1022 	ASSERT_RTNL();
1023 
1024 	if (IS_ERR(regdb))
1025 		return PTR_ERR(regdb);
1026 
1027 	country = &hdr->country[0];
1028 	while (country->coll_ptr) {
1029 		if (alpha2_equal(alpha2, country->alpha2))
1030 			return regdb_query_country(regdb, country);
1031 		country++;
1032 	}
1033 
1034 	return -ENODATA;
1035 }
1036 
1037 static void regdb_fw_cb(const struct firmware *fw, void *context)
1038 {
1039 	int set_error = 0;
1040 	bool restore = true;
1041 	void *db;
1042 
1043 	if (!fw) {
1044 		pr_info("failed to load regulatory.db\n");
1045 		set_error = -ENODATA;
1046 	} else if (!valid_regdb(fw->data, fw->size)) {
1047 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1048 		set_error = -EINVAL;
1049 	}
1050 
1051 	rtnl_lock();
1052 	if (regdb && !IS_ERR(regdb)) {
1053 		/* negative case - a bug
1054 		 * positive case - can happen due to race in case of multiple cb's in
1055 		 * queue, due to usage of asynchronous callback
1056 		 *
1057 		 * Either case, just restore and free new db.
1058 		 */
1059 	} else if (set_error) {
1060 		regdb = ERR_PTR(set_error);
1061 	} else if (fw) {
1062 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1063 		if (db) {
1064 			regdb = db;
1065 			restore = context && query_regdb(context);
1066 		} else {
1067 			restore = true;
1068 		}
1069 	}
1070 
1071 	if (restore)
1072 		restore_regulatory_settings(true, false);
1073 
1074 	rtnl_unlock();
1075 
1076 	kfree(context);
1077 
1078 	release_firmware(fw);
1079 }
1080 
1081 static int query_regdb_file(const char *alpha2)
1082 {
1083 	ASSERT_RTNL();
1084 
1085 	if (regdb)
1086 		return query_regdb(alpha2);
1087 
1088 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1089 	if (!alpha2)
1090 		return -ENOMEM;
1091 
1092 	return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1093 				       &reg_pdev->dev, GFP_KERNEL,
1094 				       (void *)alpha2, regdb_fw_cb);
1095 }
1096 
1097 int reg_reload_regdb(void)
1098 {
1099 	const struct firmware *fw;
1100 	void *db;
1101 	int err;
1102 	const struct ieee80211_regdomain *current_regdomain;
1103 	struct regulatory_request *request;
1104 
1105 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1106 	if (err)
1107 		return err;
1108 
1109 	if (!valid_regdb(fw->data, fw->size)) {
1110 		err = -ENODATA;
1111 		goto out;
1112 	}
1113 
1114 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1115 	if (!db) {
1116 		err = -ENOMEM;
1117 		goto out;
1118 	}
1119 
1120 	rtnl_lock();
1121 	if (!IS_ERR_OR_NULL(regdb))
1122 		kfree(regdb);
1123 	regdb = db;
1124 
1125 	/* reset regulatory domain */
1126 	current_regdomain = get_cfg80211_regdom();
1127 
1128 	request = kzalloc(sizeof(*request), GFP_KERNEL);
1129 	if (!request) {
1130 		err = -ENOMEM;
1131 		goto out_unlock;
1132 	}
1133 
1134 	request->wiphy_idx = WIPHY_IDX_INVALID;
1135 	request->alpha2[0] = current_regdomain->alpha2[0];
1136 	request->alpha2[1] = current_regdomain->alpha2[1];
1137 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1138 	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1139 
1140 	reg_process_hint(request);
1141 
1142 out_unlock:
1143 	rtnl_unlock();
1144  out:
1145 	release_firmware(fw);
1146 	return err;
1147 }
1148 
1149 static bool reg_query_database(struct regulatory_request *request)
1150 {
1151 	if (query_regdb_file(request->alpha2) == 0)
1152 		return true;
1153 
1154 	if (call_crda(request->alpha2) == 0)
1155 		return true;
1156 
1157 	return false;
1158 }
1159 
1160 bool reg_is_valid_request(const char *alpha2)
1161 {
1162 	struct regulatory_request *lr = get_last_request();
1163 
1164 	if (!lr || lr->processed)
1165 		return false;
1166 
1167 	return alpha2_equal(lr->alpha2, alpha2);
1168 }
1169 
1170 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1171 {
1172 	struct regulatory_request *lr = get_last_request();
1173 
1174 	/*
1175 	 * Follow the driver's regulatory domain, if present, unless a country
1176 	 * IE has been processed or a user wants to help complaince further
1177 	 */
1178 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1179 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1180 	    wiphy->regd)
1181 		return get_wiphy_regdom(wiphy);
1182 
1183 	return get_cfg80211_regdom();
1184 }
1185 
1186 static unsigned int
1187 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1188 				 const struct ieee80211_reg_rule *rule)
1189 {
1190 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1191 	const struct ieee80211_freq_range *freq_range_tmp;
1192 	const struct ieee80211_reg_rule *tmp;
1193 	u32 start_freq, end_freq, idx, no;
1194 
1195 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1196 		if (rule == &rd->reg_rules[idx])
1197 			break;
1198 
1199 	if (idx == rd->n_reg_rules)
1200 		return 0;
1201 
1202 	/* get start_freq */
1203 	no = idx;
1204 
1205 	while (no) {
1206 		tmp = &rd->reg_rules[--no];
1207 		freq_range_tmp = &tmp->freq_range;
1208 
1209 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1210 			break;
1211 
1212 		freq_range = freq_range_tmp;
1213 	}
1214 
1215 	start_freq = freq_range->start_freq_khz;
1216 
1217 	/* get end_freq */
1218 	freq_range = &rule->freq_range;
1219 	no = idx;
1220 
1221 	while (no < rd->n_reg_rules - 1) {
1222 		tmp = &rd->reg_rules[++no];
1223 		freq_range_tmp = &tmp->freq_range;
1224 
1225 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1226 			break;
1227 
1228 		freq_range = freq_range_tmp;
1229 	}
1230 
1231 	end_freq = freq_range->end_freq_khz;
1232 
1233 	return end_freq - start_freq;
1234 }
1235 
1236 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1237 				   const struct ieee80211_reg_rule *rule)
1238 {
1239 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1240 
1241 	if (rule->flags & NL80211_RRF_NO_320MHZ)
1242 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1243 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1244 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1245 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1246 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1247 
1248 	/*
1249 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1250 	 * are not allowed.
1251 	 */
1252 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1253 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1254 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1255 
1256 	return bw;
1257 }
1258 
1259 /* Sanity check on a regulatory rule */
1260 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1261 {
1262 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1263 	u32 freq_diff;
1264 
1265 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1266 		return false;
1267 
1268 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1269 		return false;
1270 
1271 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1272 
1273 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1274 	    freq_range->max_bandwidth_khz > freq_diff)
1275 		return false;
1276 
1277 	return true;
1278 }
1279 
1280 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1281 {
1282 	const struct ieee80211_reg_rule *reg_rule = NULL;
1283 	unsigned int i;
1284 
1285 	if (!rd->n_reg_rules)
1286 		return false;
1287 
1288 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1289 		return false;
1290 
1291 	for (i = 0; i < rd->n_reg_rules; i++) {
1292 		reg_rule = &rd->reg_rules[i];
1293 		if (!is_valid_reg_rule(reg_rule))
1294 			return false;
1295 	}
1296 
1297 	return true;
1298 }
1299 
1300 /**
1301  * freq_in_rule_band - tells us if a frequency is in a frequency band
1302  * @freq_range: frequency rule we want to query
1303  * @freq_khz: frequency we are inquiring about
1304  *
1305  * This lets us know if a specific frequency rule is or is not relevant to
1306  * a specific frequency's band. Bands are device specific and artificial
1307  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1308  * however it is safe for now to assume that a frequency rule should not be
1309  * part of a frequency's band if the start freq or end freq are off by more
1310  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1311  * 60 GHz band.
1312  * This resolution can be lowered and should be considered as we add
1313  * regulatory rule support for other "bands".
1314  **/
1315 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1316 			      u32 freq_khz)
1317 {
1318 #define ONE_GHZ_IN_KHZ	1000000
1319 	/*
1320 	 * From 802.11ad: directional multi-gigabit (DMG):
1321 	 * Pertaining to operation in a frequency band containing a channel
1322 	 * with the Channel starting frequency above 45 GHz.
1323 	 */
1324 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1325 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1326 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1327 		return true;
1328 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1329 		return true;
1330 	return false;
1331 #undef ONE_GHZ_IN_KHZ
1332 }
1333 
1334 /*
1335  * Later on we can perhaps use the more restrictive DFS
1336  * region but we don't have information for that yet so
1337  * for now simply disallow conflicts.
1338  */
1339 static enum nl80211_dfs_regions
1340 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1341 			 const enum nl80211_dfs_regions dfs_region2)
1342 {
1343 	if (dfs_region1 != dfs_region2)
1344 		return NL80211_DFS_UNSET;
1345 	return dfs_region1;
1346 }
1347 
1348 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1349 				    const struct ieee80211_wmm_ac *wmm_ac2,
1350 				    struct ieee80211_wmm_ac *intersect)
1351 {
1352 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1353 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1354 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1355 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1356 }
1357 
1358 /*
1359  * Helper for regdom_intersect(), this does the real
1360  * mathematical intersection fun
1361  */
1362 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1363 			       const struct ieee80211_regdomain *rd2,
1364 			       const struct ieee80211_reg_rule *rule1,
1365 			       const struct ieee80211_reg_rule *rule2,
1366 			       struct ieee80211_reg_rule *intersected_rule)
1367 {
1368 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1369 	struct ieee80211_freq_range *freq_range;
1370 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1371 	struct ieee80211_power_rule *power_rule;
1372 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1373 	struct ieee80211_wmm_rule *wmm_rule;
1374 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1375 
1376 	freq_range1 = &rule1->freq_range;
1377 	freq_range2 = &rule2->freq_range;
1378 	freq_range = &intersected_rule->freq_range;
1379 
1380 	power_rule1 = &rule1->power_rule;
1381 	power_rule2 = &rule2->power_rule;
1382 	power_rule = &intersected_rule->power_rule;
1383 
1384 	wmm_rule1 = &rule1->wmm_rule;
1385 	wmm_rule2 = &rule2->wmm_rule;
1386 	wmm_rule = &intersected_rule->wmm_rule;
1387 
1388 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1389 					 freq_range2->start_freq_khz);
1390 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1391 				       freq_range2->end_freq_khz);
1392 
1393 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1394 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1395 
1396 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1397 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1398 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1399 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1400 
1401 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1402 
1403 	intersected_rule->flags = rule1->flags | rule2->flags;
1404 
1405 	/*
1406 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1407 	 * set AUTO_BW in intersected rule also. Next we will
1408 	 * calculate BW correctly in handle_channel function.
1409 	 * In other case remove AUTO_BW flag while we calculate
1410 	 * maximum bandwidth correctly and auto calculation is
1411 	 * not required.
1412 	 */
1413 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1414 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1415 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1416 	else
1417 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1418 
1419 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1420 	if (freq_range->max_bandwidth_khz > freq_diff)
1421 		freq_range->max_bandwidth_khz = freq_diff;
1422 
1423 	power_rule->max_eirp = min(power_rule1->max_eirp,
1424 		power_rule2->max_eirp);
1425 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1426 		power_rule2->max_antenna_gain);
1427 
1428 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1429 					   rule2->dfs_cac_ms);
1430 
1431 	if (rule1->has_wmm && rule2->has_wmm) {
1432 		u8 ac;
1433 
1434 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1435 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1436 						&wmm_rule2->client[ac],
1437 						&wmm_rule->client[ac]);
1438 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1439 						&wmm_rule2->ap[ac],
1440 						&wmm_rule->ap[ac]);
1441 		}
1442 
1443 		intersected_rule->has_wmm = true;
1444 	} else if (rule1->has_wmm) {
1445 		*wmm_rule = *wmm_rule1;
1446 		intersected_rule->has_wmm = true;
1447 	} else if (rule2->has_wmm) {
1448 		*wmm_rule = *wmm_rule2;
1449 		intersected_rule->has_wmm = true;
1450 	} else {
1451 		intersected_rule->has_wmm = false;
1452 	}
1453 
1454 	if (!is_valid_reg_rule(intersected_rule))
1455 		return -EINVAL;
1456 
1457 	return 0;
1458 }
1459 
1460 /* check whether old rule contains new rule */
1461 static bool rule_contains(struct ieee80211_reg_rule *r1,
1462 			  struct ieee80211_reg_rule *r2)
1463 {
1464 	/* for simplicity, currently consider only same flags */
1465 	if (r1->flags != r2->flags)
1466 		return false;
1467 
1468 	/* verify r1 is more restrictive */
1469 	if ((r1->power_rule.max_antenna_gain >
1470 	     r2->power_rule.max_antenna_gain) ||
1471 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1472 		return false;
1473 
1474 	/* make sure r2's range is contained within r1 */
1475 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1476 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1477 		return false;
1478 
1479 	/* and finally verify that r1.max_bw >= r2.max_bw */
1480 	if (r1->freq_range.max_bandwidth_khz <
1481 	    r2->freq_range.max_bandwidth_khz)
1482 		return false;
1483 
1484 	return true;
1485 }
1486 
1487 /* add or extend current rules. do nothing if rule is already contained */
1488 static void add_rule(struct ieee80211_reg_rule *rule,
1489 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1490 {
1491 	struct ieee80211_reg_rule *tmp_rule;
1492 	int i;
1493 
1494 	for (i = 0; i < *n_rules; i++) {
1495 		tmp_rule = &reg_rules[i];
1496 		/* rule is already contained - do nothing */
1497 		if (rule_contains(tmp_rule, rule))
1498 			return;
1499 
1500 		/* extend rule if possible */
1501 		if (rule_contains(rule, tmp_rule)) {
1502 			memcpy(tmp_rule, rule, sizeof(*rule));
1503 			return;
1504 		}
1505 	}
1506 
1507 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1508 	(*n_rules)++;
1509 }
1510 
1511 /**
1512  * regdom_intersect - do the intersection between two regulatory domains
1513  * @rd1: first regulatory domain
1514  * @rd2: second regulatory domain
1515  *
1516  * Use this function to get the intersection between two regulatory domains.
1517  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1518  * as no one single alpha2 can represent this regulatory domain.
1519  *
1520  * Returns a pointer to the regulatory domain structure which will hold the
1521  * resulting intersection of rules between rd1 and rd2. We will
1522  * kzalloc() this structure for you.
1523  */
1524 static struct ieee80211_regdomain *
1525 regdom_intersect(const struct ieee80211_regdomain *rd1,
1526 		 const struct ieee80211_regdomain *rd2)
1527 {
1528 	int r;
1529 	unsigned int x, y;
1530 	unsigned int num_rules = 0;
1531 	const struct ieee80211_reg_rule *rule1, *rule2;
1532 	struct ieee80211_reg_rule intersected_rule;
1533 	struct ieee80211_regdomain *rd;
1534 
1535 	if (!rd1 || !rd2)
1536 		return NULL;
1537 
1538 	/*
1539 	 * First we get a count of the rules we'll need, then we actually
1540 	 * build them. This is to so we can malloc() and free() a
1541 	 * regdomain once. The reason we use reg_rules_intersect() here
1542 	 * is it will return -EINVAL if the rule computed makes no sense.
1543 	 * All rules that do check out OK are valid.
1544 	 */
1545 
1546 	for (x = 0; x < rd1->n_reg_rules; x++) {
1547 		rule1 = &rd1->reg_rules[x];
1548 		for (y = 0; y < rd2->n_reg_rules; y++) {
1549 			rule2 = &rd2->reg_rules[y];
1550 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1551 						 &intersected_rule))
1552 				num_rules++;
1553 		}
1554 	}
1555 
1556 	if (!num_rules)
1557 		return NULL;
1558 
1559 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1560 	if (!rd)
1561 		return NULL;
1562 
1563 	for (x = 0; x < rd1->n_reg_rules; x++) {
1564 		rule1 = &rd1->reg_rules[x];
1565 		for (y = 0; y < rd2->n_reg_rules; y++) {
1566 			rule2 = &rd2->reg_rules[y];
1567 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1568 						&intersected_rule);
1569 			/*
1570 			 * No need to memset here the intersected rule here as
1571 			 * we're not using the stack anymore
1572 			 */
1573 			if (r)
1574 				continue;
1575 
1576 			add_rule(&intersected_rule, rd->reg_rules,
1577 				 &rd->n_reg_rules);
1578 		}
1579 	}
1580 
1581 	rd->alpha2[0] = '9';
1582 	rd->alpha2[1] = '8';
1583 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1584 						  rd2->dfs_region);
1585 
1586 	return rd;
1587 }
1588 
1589 /*
1590  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1591  * want to just have the channel structure use these
1592  */
1593 static u32 map_regdom_flags(u32 rd_flags)
1594 {
1595 	u32 channel_flags = 0;
1596 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1597 		channel_flags |= IEEE80211_CHAN_NO_IR;
1598 	if (rd_flags & NL80211_RRF_DFS)
1599 		channel_flags |= IEEE80211_CHAN_RADAR;
1600 	if (rd_flags & NL80211_RRF_NO_OFDM)
1601 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1602 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1603 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1604 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1605 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1606 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1607 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1608 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1609 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1610 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1611 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1612 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1613 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1614 	if (rd_flags & NL80211_RRF_NO_HE)
1615 		channel_flags |= IEEE80211_CHAN_NO_HE;
1616 	if (rd_flags & NL80211_RRF_NO_320MHZ)
1617 		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1618 	return channel_flags;
1619 }
1620 
1621 static const struct ieee80211_reg_rule *
1622 freq_reg_info_regd(u32 center_freq,
1623 		   const struct ieee80211_regdomain *regd, u32 bw)
1624 {
1625 	int i;
1626 	bool band_rule_found = false;
1627 	bool bw_fits = false;
1628 
1629 	if (!regd)
1630 		return ERR_PTR(-EINVAL);
1631 
1632 	for (i = 0; i < regd->n_reg_rules; i++) {
1633 		const struct ieee80211_reg_rule *rr;
1634 		const struct ieee80211_freq_range *fr = NULL;
1635 
1636 		rr = &regd->reg_rules[i];
1637 		fr = &rr->freq_range;
1638 
1639 		/*
1640 		 * We only need to know if one frequency rule was
1641 		 * in center_freq's band, that's enough, so let's
1642 		 * not overwrite it once found
1643 		 */
1644 		if (!band_rule_found)
1645 			band_rule_found = freq_in_rule_band(fr, center_freq);
1646 
1647 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1648 
1649 		if (band_rule_found && bw_fits)
1650 			return rr;
1651 	}
1652 
1653 	if (!band_rule_found)
1654 		return ERR_PTR(-ERANGE);
1655 
1656 	return ERR_PTR(-EINVAL);
1657 }
1658 
1659 static const struct ieee80211_reg_rule *
1660 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1661 {
1662 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1663 	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1664 	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1665 	int i = ARRAY_SIZE(bws) - 1;
1666 	u32 bw;
1667 
1668 	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1669 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1670 		if (!IS_ERR(reg_rule))
1671 			return reg_rule;
1672 	}
1673 
1674 	return reg_rule;
1675 }
1676 
1677 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1678 					       u32 center_freq)
1679 {
1680 	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1681 
1682 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1683 }
1684 EXPORT_SYMBOL(freq_reg_info);
1685 
1686 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1687 {
1688 	switch (initiator) {
1689 	case NL80211_REGDOM_SET_BY_CORE:
1690 		return "core";
1691 	case NL80211_REGDOM_SET_BY_USER:
1692 		return "user";
1693 	case NL80211_REGDOM_SET_BY_DRIVER:
1694 		return "driver";
1695 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1696 		return "country element";
1697 	default:
1698 		WARN_ON(1);
1699 		return "bug";
1700 	}
1701 }
1702 EXPORT_SYMBOL(reg_initiator_name);
1703 
1704 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1705 					  const struct ieee80211_reg_rule *reg_rule,
1706 					  const struct ieee80211_channel *chan)
1707 {
1708 	const struct ieee80211_freq_range *freq_range = NULL;
1709 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1710 	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1711 
1712 	freq_range = &reg_rule->freq_range;
1713 
1714 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1715 	center_freq_khz = ieee80211_channel_to_khz(chan);
1716 	/* Check if auto calculation requested */
1717 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1718 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1719 
1720 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1721 	if (!cfg80211_does_bw_fit_range(freq_range,
1722 					center_freq_khz,
1723 					MHZ_TO_KHZ(10)))
1724 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1725 	if (!cfg80211_does_bw_fit_range(freq_range,
1726 					center_freq_khz,
1727 					MHZ_TO_KHZ(20)))
1728 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1729 
1730 	if (is_s1g) {
1731 		/* S1G is strict about non overlapping channels. We can
1732 		 * calculate which bandwidth is allowed per channel by finding
1733 		 * the largest bandwidth which cleanly divides the freq_range.
1734 		 */
1735 		int edge_offset;
1736 		int ch_bw = max_bandwidth_khz;
1737 
1738 		while (ch_bw) {
1739 			edge_offset = (center_freq_khz - ch_bw / 2) -
1740 				      freq_range->start_freq_khz;
1741 			if (edge_offset % ch_bw == 0) {
1742 				switch (KHZ_TO_MHZ(ch_bw)) {
1743 				case 1:
1744 					bw_flags |= IEEE80211_CHAN_1MHZ;
1745 					break;
1746 				case 2:
1747 					bw_flags |= IEEE80211_CHAN_2MHZ;
1748 					break;
1749 				case 4:
1750 					bw_flags |= IEEE80211_CHAN_4MHZ;
1751 					break;
1752 				case 8:
1753 					bw_flags |= IEEE80211_CHAN_8MHZ;
1754 					break;
1755 				case 16:
1756 					bw_flags |= IEEE80211_CHAN_16MHZ;
1757 					break;
1758 				default:
1759 					/* If we got here, no bandwidths fit on
1760 					 * this frequency, ie. band edge.
1761 					 */
1762 					bw_flags |= IEEE80211_CHAN_DISABLED;
1763 					break;
1764 				}
1765 				break;
1766 			}
1767 			ch_bw /= 2;
1768 		}
1769 	} else {
1770 		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1771 			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1772 		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1773 			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1774 		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1775 			bw_flags |= IEEE80211_CHAN_NO_HT40;
1776 		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1777 			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1778 		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1779 			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1780 		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1781 			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1782 	}
1783 	return bw_flags;
1784 }
1785 
1786 static void handle_channel_single_rule(struct wiphy *wiphy,
1787 				       enum nl80211_reg_initiator initiator,
1788 				       struct ieee80211_channel *chan,
1789 				       u32 flags,
1790 				       struct regulatory_request *lr,
1791 				       struct wiphy *request_wiphy,
1792 				       const struct ieee80211_reg_rule *reg_rule)
1793 {
1794 	u32 bw_flags = 0;
1795 	const struct ieee80211_power_rule *power_rule = NULL;
1796 	const struct ieee80211_regdomain *regd;
1797 
1798 	regd = reg_get_regdomain(wiphy);
1799 
1800 	power_rule = &reg_rule->power_rule;
1801 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1802 
1803 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1804 	    request_wiphy && request_wiphy == wiphy &&
1805 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1806 		/*
1807 		 * This guarantees the driver's requested regulatory domain
1808 		 * will always be used as a base for further regulatory
1809 		 * settings
1810 		 */
1811 		chan->flags = chan->orig_flags =
1812 			map_regdom_flags(reg_rule->flags) | bw_flags;
1813 		chan->max_antenna_gain = chan->orig_mag =
1814 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1815 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1816 			(int) MBM_TO_DBM(power_rule->max_eirp);
1817 
1818 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1819 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1820 			if (reg_rule->dfs_cac_ms)
1821 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1822 		}
1823 
1824 		return;
1825 	}
1826 
1827 	chan->dfs_state = NL80211_DFS_USABLE;
1828 	chan->dfs_state_entered = jiffies;
1829 
1830 	chan->beacon_found = false;
1831 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1832 	chan->max_antenna_gain =
1833 		min_t(int, chan->orig_mag,
1834 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1835 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1836 
1837 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1838 		if (reg_rule->dfs_cac_ms)
1839 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1840 		else
1841 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1842 	}
1843 
1844 	if (chan->orig_mpwr) {
1845 		/*
1846 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1847 		 * will always follow the passed country IE power settings.
1848 		 */
1849 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1850 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1851 			chan->max_power = chan->max_reg_power;
1852 		else
1853 			chan->max_power = min(chan->orig_mpwr,
1854 					      chan->max_reg_power);
1855 	} else
1856 		chan->max_power = chan->max_reg_power;
1857 }
1858 
1859 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1860 					  enum nl80211_reg_initiator initiator,
1861 					  struct ieee80211_channel *chan,
1862 					  u32 flags,
1863 					  struct regulatory_request *lr,
1864 					  struct wiphy *request_wiphy,
1865 					  const struct ieee80211_reg_rule *rrule1,
1866 					  const struct ieee80211_reg_rule *rrule2,
1867 					  struct ieee80211_freq_range *comb_range)
1868 {
1869 	u32 bw_flags1 = 0;
1870 	u32 bw_flags2 = 0;
1871 	const struct ieee80211_power_rule *power_rule1 = NULL;
1872 	const struct ieee80211_power_rule *power_rule2 = NULL;
1873 	const struct ieee80211_regdomain *regd;
1874 
1875 	regd = reg_get_regdomain(wiphy);
1876 
1877 	power_rule1 = &rrule1->power_rule;
1878 	power_rule2 = &rrule2->power_rule;
1879 	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1880 	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1881 
1882 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1883 	    request_wiphy && request_wiphy == wiphy &&
1884 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1885 		/* This guarantees the driver's requested regulatory domain
1886 		 * will always be used as a base for further regulatory
1887 		 * settings
1888 		 */
1889 		chan->flags =
1890 			map_regdom_flags(rrule1->flags) |
1891 			map_regdom_flags(rrule2->flags) |
1892 			bw_flags1 |
1893 			bw_flags2;
1894 		chan->orig_flags = chan->flags;
1895 		chan->max_antenna_gain =
1896 			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1897 			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1898 		chan->orig_mag = chan->max_antenna_gain;
1899 		chan->max_reg_power =
1900 			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1901 			      MBM_TO_DBM(power_rule2->max_eirp));
1902 		chan->max_power = chan->max_reg_power;
1903 		chan->orig_mpwr = chan->max_reg_power;
1904 
1905 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1906 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1907 			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1908 				chan->dfs_cac_ms = max_t(unsigned int,
1909 							 rrule1->dfs_cac_ms,
1910 							 rrule2->dfs_cac_ms);
1911 		}
1912 
1913 		return;
1914 	}
1915 
1916 	chan->dfs_state = NL80211_DFS_USABLE;
1917 	chan->dfs_state_entered = jiffies;
1918 
1919 	chan->beacon_found = false;
1920 	chan->flags = flags | bw_flags1 | bw_flags2 |
1921 		      map_regdom_flags(rrule1->flags) |
1922 		      map_regdom_flags(rrule2->flags);
1923 
1924 	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1925 	 * (otherwise no adj. rule case), recheck therefore
1926 	 */
1927 	if (cfg80211_does_bw_fit_range(comb_range,
1928 				       ieee80211_channel_to_khz(chan),
1929 				       MHZ_TO_KHZ(10)))
1930 		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1931 	if (cfg80211_does_bw_fit_range(comb_range,
1932 				       ieee80211_channel_to_khz(chan),
1933 				       MHZ_TO_KHZ(20)))
1934 		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1935 
1936 	chan->max_antenna_gain =
1937 		min_t(int, chan->orig_mag,
1938 		      min_t(int,
1939 			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1940 			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1941 	chan->max_reg_power = min_t(int,
1942 				    MBM_TO_DBM(power_rule1->max_eirp),
1943 				    MBM_TO_DBM(power_rule2->max_eirp));
1944 
1945 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1946 		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1947 			chan->dfs_cac_ms = max_t(unsigned int,
1948 						 rrule1->dfs_cac_ms,
1949 						 rrule2->dfs_cac_ms);
1950 		else
1951 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1952 	}
1953 
1954 	if (chan->orig_mpwr) {
1955 		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1956 		 * will always follow the passed country IE power settings.
1957 		 */
1958 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1959 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1960 			chan->max_power = chan->max_reg_power;
1961 		else
1962 			chan->max_power = min(chan->orig_mpwr,
1963 					      chan->max_reg_power);
1964 	} else {
1965 		chan->max_power = chan->max_reg_power;
1966 	}
1967 }
1968 
1969 /* Note that right now we assume the desired channel bandwidth
1970  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1971  * per channel, the primary and the extension channel).
1972  */
1973 static void handle_channel(struct wiphy *wiphy,
1974 			   enum nl80211_reg_initiator initiator,
1975 			   struct ieee80211_channel *chan)
1976 {
1977 	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1978 	struct regulatory_request *lr = get_last_request();
1979 	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1980 	const struct ieee80211_reg_rule *rrule = NULL;
1981 	const struct ieee80211_reg_rule *rrule1 = NULL;
1982 	const struct ieee80211_reg_rule *rrule2 = NULL;
1983 
1984 	u32 flags = chan->orig_flags;
1985 
1986 	rrule = freq_reg_info(wiphy, orig_chan_freq);
1987 	if (IS_ERR(rrule)) {
1988 		/* check for adjacent match, therefore get rules for
1989 		 * chan - 20 MHz and chan + 20 MHz and test
1990 		 * if reg rules are adjacent
1991 		 */
1992 		rrule1 = freq_reg_info(wiphy,
1993 				       orig_chan_freq - MHZ_TO_KHZ(20));
1994 		rrule2 = freq_reg_info(wiphy,
1995 				       orig_chan_freq + MHZ_TO_KHZ(20));
1996 		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1997 			struct ieee80211_freq_range comb_range;
1998 
1999 			if (rrule1->freq_range.end_freq_khz !=
2000 			    rrule2->freq_range.start_freq_khz)
2001 				goto disable_chan;
2002 
2003 			comb_range.start_freq_khz =
2004 				rrule1->freq_range.start_freq_khz;
2005 			comb_range.end_freq_khz =
2006 				rrule2->freq_range.end_freq_khz;
2007 			comb_range.max_bandwidth_khz =
2008 				min_t(u32,
2009 				      rrule1->freq_range.max_bandwidth_khz,
2010 				      rrule2->freq_range.max_bandwidth_khz);
2011 
2012 			if (!cfg80211_does_bw_fit_range(&comb_range,
2013 							orig_chan_freq,
2014 							MHZ_TO_KHZ(20)))
2015 				goto disable_chan;
2016 
2017 			handle_channel_adjacent_rules(wiphy, initiator, chan,
2018 						      flags, lr, request_wiphy,
2019 						      rrule1, rrule2,
2020 						      &comb_range);
2021 			return;
2022 		}
2023 
2024 disable_chan:
2025 		/* We will disable all channels that do not match our
2026 		 * received regulatory rule unless the hint is coming
2027 		 * from a Country IE and the Country IE had no information
2028 		 * about a band. The IEEE 802.11 spec allows for an AP
2029 		 * to send only a subset of the regulatory rules allowed,
2030 		 * so an AP in the US that only supports 2.4 GHz may only send
2031 		 * a country IE with information for the 2.4 GHz band
2032 		 * while 5 GHz is still supported.
2033 		 */
2034 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2035 		    PTR_ERR(rrule) == -ERANGE)
2036 			return;
2037 
2038 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2039 		    request_wiphy && request_wiphy == wiphy &&
2040 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2041 			pr_debug("Disabling freq %d.%03d MHz for good\n",
2042 				 chan->center_freq, chan->freq_offset);
2043 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2044 			chan->flags = chan->orig_flags;
2045 		} else {
2046 			pr_debug("Disabling freq %d.%03d MHz\n",
2047 				 chan->center_freq, chan->freq_offset);
2048 			chan->flags |= IEEE80211_CHAN_DISABLED;
2049 		}
2050 		return;
2051 	}
2052 
2053 	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2054 				   request_wiphy, rrule);
2055 }
2056 
2057 static void handle_band(struct wiphy *wiphy,
2058 			enum nl80211_reg_initiator initiator,
2059 			struct ieee80211_supported_band *sband)
2060 {
2061 	unsigned int i;
2062 
2063 	if (!sband)
2064 		return;
2065 
2066 	for (i = 0; i < sband->n_channels; i++)
2067 		handle_channel(wiphy, initiator, &sband->channels[i]);
2068 }
2069 
2070 static bool reg_request_cell_base(struct regulatory_request *request)
2071 {
2072 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2073 		return false;
2074 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2075 }
2076 
2077 bool reg_last_request_cell_base(void)
2078 {
2079 	return reg_request_cell_base(get_last_request());
2080 }
2081 
2082 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2083 /* Core specific check */
2084 static enum reg_request_treatment
2085 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2086 {
2087 	struct regulatory_request *lr = get_last_request();
2088 
2089 	if (!reg_num_devs_support_basehint)
2090 		return REG_REQ_IGNORE;
2091 
2092 	if (reg_request_cell_base(lr) &&
2093 	    !regdom_changes(pending_request->alpha2))
2094 		return REG_REQ_ALREADY_SET;
2095 
2096 	return REG_REQ_OK;
2097 }
2098 
2099 /* Device specific check */
2100 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2101 {
2102 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2103 }
2104 #else
2105 static enum reg_request_treatment
2106 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2107 {
2108 	return REG_REQ_IGNORE;
2109 }
2110 
2111 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2112 {
2113 	return true;
2114 }
2115 #endif
2116 
2117 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2118 {
2119 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2120 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2121 		return true;
2122 	return false;
2123 }
2124 
2125 static bool ignore_reg_update(struct wiphy *wiphy,
2126 			      enum nl80211_reg_initiator initiator)
2127 {
2128 	struct regulatory_request *lr = get_last_request();
2129 
2130 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2131 		return true;
2132 
2133 	if (!lr) {
2134 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2135 			 reg_initiator_name(initiator));
2136 		return true;
2137 	}
2138 
2139 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2140 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2141 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2142 			 reg_initiator_name(initiator));
2143 		return true;
2144 	}
2145 
2146 	/*
2147 	 * wiphy->regd will be set once the device has its own
2148 	 * desired regulatory domain set
2149 	 */
2150 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2151 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2152 	    !is_world_regdom(lr->alpha2)) {
2153 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2154 			 reg_initiator_name(initiator));
2155 		return true;
2156 	}
2157 
2158 	if (reg_request_cell_base(lr))
2159 		return reg_dev_ignore_cell_hint(wiphy);
2160 
2161 	return false;
2162 }
2163 
2164 static bool reg_is_world_roaming(struct wiphy *wiphy)
2165 {
2166 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2167 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2168 	struct regulatory_request *lr = get_last_request();
2169 
2170 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2171 		return true;
2172 
2173 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2174 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2175 		return true;
2176 
2177 	return false;
2178 }
2179 
2180 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2181 			      struct reg_beacon *reg_beacon)
2182 {
2183 	struct ieee80211_supported_band *sband;
2184 	struct ieee80211_channel *chan;
2185 	bool channel_changed = false;
2186 	struct ieee80211_channel chan_before;
2187 
2188 	sband = wiphy->bands[reg_beacon->chan.band];
2189 	chan = &sband->channels[chan_idx];
2190 
2191 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2192 		return;
2193 
2194 	if (chan->beacon_found)
2195 		return;
2196 
2197 	chan->beacon_found = true;
2198 
2199 	if (!reg_is_world_roaming(wiphy))
2200 		return;
2201 
2202 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2203 		return;
2204 
2205 	chan_before = *chan;
2206 
2207 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2208 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2209 		channel_changed = true;
2210 	}
2211 
2212 	if (channel_changed)
2213 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2214 }
2215 
2216 /*
2217  * Called when a scan on a wiphy finds a beacon on
2218  * new channel
2219  */
2220 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2221 				    struct reg_beacon *reg_beacon)
2222 {
2223 	unsigned int i;
2224 	struct ieee80211_supported_band *sband;
2225 
2226 	if (!wiphy->bands[reg_beacon->chan.band])
2227 		return;
2228 
2229 	sband = wiphy->bands[reg_beacon->chan.band];
2230 
2231 	for (i = 0; i < sband->n_channels; i++)
2232 		handle_reg_beacon(wiphy, i, reg_beacon);
2233 }
2234 
2235 /*
2236  * Called upon reg changes or a new wiphy is added
2237  */
2238 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2239 {
2240 	unsigned int i;
2241 	struct ieee80211_supported_band *sband;
2242 	struct reg_beacon *reg_beacon;
2243 
2244 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2245 		if (!wiphy->bands[reg_beacon->chan.band])
2246 			continue;
2247 		sband = wiphy->bands[reg_beacon->chan.band];
2248 		for (i = 0; i < sband->n_channels; i++)
2249 			handle_reg_beacon(wiphy, i, reg_beacon);
2250 	}
2251 }
2252 
2253 /* Reap the advantages of previously found beacons */
2254 static void reg_process_beacons(struct wiphy *wiphy)
2255 {
2256 	/*
2257 	 * Means we are just firing up cfg80211, so no beacons would
2258 	 * have been processed yet.
2259 	 */
2260 	if (!last_request)
2261 		return;
2262 	wiphy_update_beacon_reg(wiphy);
2263 }
2264 
2265 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2266 {
2267 	if (!chan)
2268 		return false;
2269 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2270 		return false;
2271 	/* This would happen when regulatory rules disallow HT40 completely */
2272 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2273 		return false;
2274 	return true;
2275 }
2276 
2277 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2278 					 struct ieee80211_channel *channel)
2279 {
2280 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2281 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2282 	const struct ieee80211_regdomain *regd;
2283 	unsigned int i;
2284 	u32 flags;
2285 
2286 	if (!is_ht40_allowed(channel)) {
2287 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2288 		return;
2289 	}
2290 
2291 	/*
2292 	 * We need to ensure the extension channels exist to
2293 	 * be able to use HT40- or HT40+, this finds them (or not)
2294 	 */
2295 	for (i = 0; i < sband->n_channels; i++) {
2296 		struct ieee80211_channel *c = &sband->channels[i];
2297 
2298 		if (c->center_freq == (channel->center_freq - 20))
2299 			channel_before = c;
2300 		if (c->center_freq == (channel->center_freq + 20))
2301 			channel_after = c;
2302 	}
2303 
2304 	flags = 0;
2305 	regd = get_wiphy_regdom(wiphy);
2306 	if (regd) {
2307 		const struct ieee80211_reg_rule *reg_rule =
2308 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2309 					   regd, MHZ_TO_KHZ(20));
2310 
2311 		if (!IS_ERR(reg_rule))
2312 			flags = reg_rule->flags;
2313 	}
2314 
2315 	/*
2316 	 * Please note that this assumes target bandwidth is 20 MHz,
2317 	 * if that ever changes we also need to change the below logic
2318 	 * to include that as well.
2319 	 */
2320 	if (!is_ht40_allowed(channel_before) ||
2321 	    flags & NL80211_RRF_NO_HT40MINUS)
2322 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2323 	else
2324 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2325 
2326 	if (!is_ht40_allowed(channel_after) ||
2327 	    flags & NL80211_RRF_NO_HT40PLUS)
2328 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2329 	else
2330 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2331 }
2332 
2333 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2334 				      struct ieee80211_supported_band *sband)
2335 {
2336 	unsigned int i;
2337 
2338 	if (!sband)
2339 		return;
2340 
2341 	for (i = 0; i < sband->n_channels; i++)
2342 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2343 }
2344 
2345 static void reg_process_ht_flags(struct wiphy *wiphy)
2346 {
2347 	enum nl80211_band band;
2348 
2349 	if (!wiphy)
2350 		return;
2351 
2352 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2353 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2354 }
2355 
2356 static void reg_call_notifier(struct wiphy *wiphy,
2357 			      struct regulatory_request *request)
2358 {
2359 	if (wiphy->reg_notifier)
2360 		wiphy->reg_notifier(wiphy, request);
2361 }
2362 
2363 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2364 {
2365 	struct cfg80211_chan_def chandef = {};
2366 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2367 	enum nl80211_iftype iftype;
2368 	bool ret;
2369 
2370 	wdev_lock(wdev);
2371 	iftype = wdev->iftype;
2372 
2373 	/* make sure the interface is active */
2374 	if (!wdev->netdev || !netif_running(wdev->netdev))
2375 		goto wdev_inactive_unlock;
2376 
2377 	switch (iftype) {
2378 	case NL80211_IFTYPE_AP:
2379 	case NL80211_IFTYPE_P2P_GO:
2380 	case NL80211_IFTYPE_MESH_POINT:
2381 		if (!wdev->beacon_interval)
2382 			goto wdev_inactive_unlock;
2383 		chandef = wdev->chandef;
2384 		break;
2385 	case NL80211_IFTYPE_ADHOC:
2386 		if (!wdev->ssid_len)
2387 			goto wdev_inactive_unlock;
2388 		chandef = wdev->chandef;
2389 		break;
2390 	case NL80211_IFTYPE_STATION:
2391 	case NL80211_IFTYPE_P2P_CLIENT:
2392 		if (!wdev->current_bss ||
2393 		    !wdev->current_bss->pub.channel)
2394 			goto wdev_inactive_unlock;
2395 
2396 		if (!rdev->ops->get_channel ||
2397 		    rdev_get_channel(rdev, wdev, &chandef))
2398 			cfg80211_chandef_create(&chandef,
2399 						wdev->current_bss->pub.channel,
2400 						NL80211_CHAN_NO_HT);
2401 		break;
2402 	case NL80211_IFTYPE_MONITOR:
2403 	case NL80211_IFTYPE_AP_VLAN:
2404 	case NL80211_IFTYPE_P2P_DEVICE:
2405 		/* no enforcement required */
2406 		break;
2407 	default:
2408 		/* others not implemented for now */
2409 		WARN_ON(1);
2410 		break;
2411 	}
2412 
2413 	wdev_unlock(wdev);
2414 
2415 	switch (iftype) {
2416 	case NL80211_IFTYPE_AP:
2417 	case NL80211_IFTYPE_P2P_GO:
2418 	case NL80211_IFTYPE_ADHOC:
2419 	case NL80211_IFTYPE_MESH_POINT:
2420 		wiphy_lock(wiphy);
2421 		ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2422 		wiphy_unlock(wiphy);
2423 
2424 		return ret;
2425 	case NL80211_IFTYPE_STATION:
2426 	case NL80211_IFTYPE_P2P_CLIENT:
2427 		return cfg80211_chandef_usable(wiphy, &chandef,
2428 					       IEEE80211_CHAN_DISABLED);
2429 	default:
2430 		break;
2431 	}
2432 
2433 	return true;
2434 
2435 wdev_inactive_unlock:
2436 	wdev_unlock(wdev);
2437 	return true;
2438 }
2439 
2440 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2441 {
2442 	struct wireless_dev *wdev;
2443 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2444 
2445 	ASSERT_RTNL();
2446 
2447 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2448 		if (!reg_wdev_chan_valid(wiphy, wdev))
2449 			cfg80211_leave(rdev, wdev);
2450 }
2451 
2452 static void reg_check_chans_work(struct work_struct *work)
2453 {
2454 	struct cfg80211_registered_device *rdev;
2455 
2456 	pr_debug("Verifying active interfaces after reg change\n");
2457 	rtnl_lock();
2458 
2459 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2460 		if (!(rdev->wiphy.regulatory_flags &
2461 		      REGULATORY_IGNORE_STALE_KICKOFF))
2462 			reg_leave_invalid_chans(&rdev->wiphy);
2463 
2464 	rtnl_unlock();
2465 }
2466 
2467 static void reg_check_channels(void)
2468 {
2469 	/*
2470 	 * Give usermode a chance to do something nicer (move to another
2471 	 * channel, orderly disconnection), before forcing a disconnection.
2472 	 */
2473 	mod_delayed_work(system_power_efficient_wq,
2474 			 &reg_check_chans,
2475 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2476 }
2477 
2478 static void wiphy_update_regulatory(struct wiphy *wiphy,
2479 				    enum nl80211_reg_initiator initiator)
2480 {
2481 	enum nl80211_band band;
2482 	struct regulatory_request *lr = get_last_request();
2483 
2484 	if (ignore_reg_update(wiphy, initiator)) {
2485 		/*
2486 		 * Regulatory updates set by CORE are ignored for custom
2487 		 * regulatory cards. Let us notify the changes to the driver,
2488 		 * as some drivers used this to restore its orig_* reg domain.
2489 		 */
2490 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2491 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2492 		    !(wiphy->regulatory_flags &
2493 		      REGULATORY_WIPHY_SELF_MANAGED))
2494 			reg_call_notifier(wiphy, lr);
2495 		return;
2496 	}
2497 
2498 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2499 
2500 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2501 		handle_band(wiphy, initiator, wiphy->bands[band]);
2502 
2503 	reg_process_beacons(wiphy);
2504 	reg_process_ht_flags(wiphy);
2505 	reg_call_notifier(wiphy, lr);
2506 }
2507 
2508 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2509 {
2510 	struct cfg80211_registered_device *rdev;
2511 	struct wiphy *wiphy;
2512 
2513 	ASSERT_RTNL();
2514 
2515 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2516 		wiphy = &rdev->wiphy;
2517 		wiphy_update_regulatory(wiphy, initiator);
2518 	}
2519 
2520 	reg_check_channels();
2521 }
2522 
2523 static void handle_channel_custom(struct wiphy *wiphy,
2524 				  struct ieee80211_channel *chan,
2525 				  const struct ieee80211_regdomain *regd,
2526 				  u32 min_bw)
2527 {
2528 	u32 bw_flags = 0;
2529 	const struct ieee80211_reg_rule *reg_rule = NULL;
2530 	const struct ieee80211_power_rule *power_rule = NULL;
2531 	u32 bw, center_freq_khz;
2532 
2533 	center_freq_khz = ieee80211_channel_to_khz(chan);
2534 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2535 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2536 		if (!IS_ERR(reg_rule))
2537 			break;
2538 	}
2539 
2540 	if (IS_ERR_OR_NULL(reg_rule)) {
2541 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2542 			 chan->center_freq, chan->freq_offset);
2543 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2544 			chan->flags |= IEEE80211_CHAN_DISABLED;
2545 		} else {
2546 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2547 			chan->flags = chan->orig_flags;
2548 		}
2549 		return;
2550 	}
2551 
2552 	power_rule = &reg_rule->power_rule;
2553 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2554 
2555 	chan->dfs_state_entered = jiffies;
2556 	chan->dfs_state = NL80211_DFS_USABLE;
2557 
2558 	chan->beacon_found = false;
2559 
2560 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2561 		chan->flags = chan->orig_flags | bw_flags |
2562 			      map_regdom_flags(reg_rule->flags);
2563 	else
2564 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2565 
2566 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2567 	chan->max_reg_power = chan->max_power =
2568 		(int) MBM_TO_DBM(power_rule->max_eirp);
2569 
2570 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2571 		if (reg_rule->dfs_cac_ms)
2572 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2573 		else
2574 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2575 	}
2576 
2577 	chan->max_power = chan->max_reg_power;
2578 }
2579 
2580 static void handle_band_custom(struct wiphy *wiphy,
2581 			       struct ieee80211_supported_band *sband,
2582 			       const struct ieee80211_regdomain *regd)
2583 {
2584 	unsigned int i;
2585 
2586 	if (!sband)
2587 		return;
2588 
2589 	/*
2590 	 * We currently assume that you always want at least 20 MHz,
2591 	 * otherwise channel 12 might get enabled if this rule is
2592 	 * compatible to US, which permits 2402 - 2472 MHz.
2593 	 */
2594 	for (i = 0; i < sband->n_channels; i++)
2595 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2596 				      MHZ_TO_KHZ(20));
2597 }
2598 
2599 /* Used by drivers prior to wiphy registration */
2600 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2601 				   const struct ieee80211_regdomain *regd)
2602 {
2603 	const struct ieee80211_regdomain *new_regd, *tmp;
2604 	enum nl80211_band band;
2605 	unsigned int bands_set = 0;
2606 
2607 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2608 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2609 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2610 
2611 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2612 		if (!wiphy->bands[band])
2613 			continue;
2614 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2615 		bands_set++;
2616 	}
2617 
2618 	/*
2619 	 * no point in calling this if it won't have any effect
2620 	 * on your device's supported bands.
2621 	 */
2622 	WARN_ON(!bands_set);
2623 	new_regd = reg_copy_regd(regd);
2624 	if (IS_ERR(new_regd))
2625 		return;
2626 
2627 	rtnl_lock();
2628 	wiphy_lock(wiphy);
2629 
2630 	tmp = get_wiphy_regdom(wiphy);
2631 	rcu_assign_pointer(wiphy->regd, new_regd);
2632 	rcu_free_regdom(tmp);
2633 
2634 	wiphy_unlock(wiphy);
2635 	rtnl_unlock();
2636 }
2637 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2638 
2639 static void reg_set_request_processed(void)
2640 {
2641 	bool need_more_processing = false;
2642 	struct regulatory_request *lr = get_last_request();
2643 
2644 	lr->processed = true;
2645 
2646 	spin_lock(&reg_requests_lock);
2647 	if (!list_empty(&reg_requests_list))
2648 		need_more_processing = true;
2649 	spin_unlock(&reg_requests_lock);
2650 
2651 	cancel_crda_timeout();
2652 
2653 	if (need_more_processing)
2654 		schedule_work(&reg_work);
2655 }
2656 
2657 /**
2658  * reg_process_hint_core - process core regulatory requests
2659  * @core_request: a pending core regulatory request
2660  *
2661  * The wireless subsystem can use this function to process
2662  * a regulatory request issued by the regulatory core.
2663  */
2664 static enum reg_request_treatment
2665 reg_process_hint_core(struct regulatory_request *core_request)
2666 {
2667 	if (reg_query_database(core_request)) {
2668 		core_request->intersect = false;
2669 		core_request->processed = false;
2670 		reg_update_last_request(core_request);
2671 		return REG_REQ_OK;
2672 	}
2673 
2674 	return REG_REQ_IGNORE;
2675 }
2676 
2677 static enum reg_request_treatment
2678 __reg_process_hint_user(struct regulatory_request *user_request)
2679 {
2680 	struct regulatory_request *lr = get_last_request();
2681 
2682 	if (reg_request_cell_base(user_request))
2683 		return reg_ignore_cell_hint(user_request);
2684 
2685 	if (reg_request_cell_base(lr))
2686 		return REG_REQ_IGNORE;
2687 
2688 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2689 		return REG_REQ_INTERSECT;
2690 	/*
2691 	 * If the user knows better the user should set the regdom
2692 	 * to their country before the IE is picked up
2693 	 */
2694 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2695 	    lr->intersect)
2696 		return REG_REQ_IGNORE;
2697 	/*
2698 	 * Process user requests only after previous user/driver/core
2699 	 * requests have been processed
2700 	 */
2701 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2702 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2703 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2704 	    regdom_changes(lr->alpha2))
2705 		return REG_REQ_IGNORE;
2706 
2707 	if (!regdom_changes(user_request->alpha2))
2708 		return REG_REQ_ALREADY_SET;
2709 
2710 	return REG_REQ_OK;
2711 }
2712 
2713 /**
2714  * reg_process_hint_user - process user regulatory requests
2715  * @user_request: a pending user regulatory request
2716  *
2717  * The wireless subsystem can use this function to process
2718  * a regulatory request initiated by userspace.
2719  */
2720 static enum reg_request_treatment
2721 reg_process_hint_user(struct regulatory_request *user_request)
2722 {
2723 	enum reg_request_treatment treatment;
2724 
2725 	treatment = __reg_process_hint_user(user_request);
2726 	if (treatment == REG_REQ_IGNORE ||
2727 	    treatment == REG_REQ_ALREADY_SET)
2728 		return REG_REQ_IGNORE;
2729 
2730 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2731 	user_request->processed = false;
2732 
2733 	if (reg_query_database(user_request)) {
2734 		reg_update_last_request(user_request);
2735 		user_alpha2[0] = user_request->alpha2[0];
2736 		user_alpha2[1] = user_request->alpha2[1];
2737 		return REG_REQ_OK;
2738 	}
2739 
2740 	return REG_REQ_IGNORE;
2741 }
2742 
2743 static enum reg_request_treatment
2744 __reg_process_hint_driver(struct regulatory_request *driver_request)
2745 {
2746 	struct regulatory_request *lr = get_last_request();
2747 
2748 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2749 		if (regdom_changes(driver_request->alpha2))
2750 			return REG_REQ_OK;
2751 		return REG_REQ_ALREADY_SET;
2752 	}
2753 
2754 	/*
2755 	 * This would happen if you unplug and plug your card
2756 	 * back in or if you add a new device for which the previously
2757 	 * loaded card also agrees on the regulatory domain.
2758 	 */
2759 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2760 	    !regdom_changes(driver_request->alpha2))
2761 		return REG_REQ_ALREADY_SET;
2762 
2763 	return REG_REQ_INTERSECT;
2764 }
2765 
2766 /**
2767  * reg_process_hint_driver - process driver regulatory requests
2768  * @wiphy: the wireless device for the regulatory request
2769  * @driver_request: a pending driver regulatory request
2770  *
2771  * The wireless subsystem can use this function to process
2772  * a regulatory request issued by an 802.11 driver.
2773  *
2774  * Returns one of the different reg request treatment values.
2775  */
2776 static enum reg_request_treatment
2777 reg_process_hint_driver(struct wiphy *wiphy,
2778 			struct regulatory_request *driver_request)
2779 {
2780 	const struct ieee80211_regdomain *regd, *tmp;
2781 	enum reg_request_treatment treatment;
2782 
2783 	treatment = __reg_process_hint_driver(driver_request);
2784 
2785 	switch (treatment) {
2786 	case REG_REQ_OK:
2787 		break;
2788 	case REG_REQ_IGNORE:
2789 		return REG_REQ_IGNORE;
2790 	case REG_REQ_INTERSECT:
2791 	case REG_REQ_ALREADY_SET:
2792 		regd = reg_copy_regd(get_cfg80211_regdom());
2793 		if (IS_ERR(regd))
2794 			return REG_REQ_IGNORE;
2795 
2796 		tmp = get_wiphy_regdom(wiphy);
2797 		ASSERT_RTNL();
2798 		wiphy_lock(wiphy);
2799 		rcu_assign_pointer(wiphy->regd, regd);
2800 		wiphy_unlock(wiphy);
2801 		rcu_free_regdom(tmp);
2802 	}
2803 
2804 
2805 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2806 	driver_request->processed = false;
2807 
2808 	/*
2809 	 * Since CRDA will not be called in this case as we already
2810 	 * have applied the requested regulatory domain before we just
2811 	 * inform userspace we have processed the request
2812 	 */
2813 	if (treatment == REG_REQ_ALREADY_SET) {
2814 		nl80211_send_reg_change_event(driver_request);
2815 		reg_update_last_request(driver_request);
2816 		reg_set_request_processed();
2817 		return REG_REQ_ALREADY_SET;
2818 	}
2819 
2820 	if (reg_query_database(driver_request)) {
2821 		reg_update_last_request(driver_request);
2822 		return REG_REQ_OK;
2823 	}
2824 
2825 	return REG_REQ_IGNORE;
2826 }
2827 
2828 static enum reg_request_treatment
2829 __reg_process_hint_country_ie(struct wiphy *wiphy,
2830 			      struct regulatory_request *country_ie_request)
2831 {
2832 	struct wiphy *last_wiphy = NULL;
2833 	struct regulatory_request *lr = get_last_request();
2834 
2835 	if (reg_request_cell_base(lr)) {
2836 		/* Trust a Cell base station over the AP's country IE */
2837 		if (regdom_changes(country_ie_request->alpha2))
2838 			return REG_REQ_IGNORE;
2839 		return REG_REQ_ALREADY_SET;
2840 	} else {
2841 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2842 			return REG_REQ_IGNORE;
2843 	}
2844 
2845 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2846 		return -EINVAL;
2847 
2848 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2849 		return REG_REQ_OK;
2850 
2851 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2852 
2853 	if (last_wiphy != wiphy) {
2854 		/*
2855 		 * Two cards with two APs claiming different
2856 		 * Country IE alpha2s. We could
2857 		 * intersect them, but that seems unlikely
2858 		 * to be correct. Reject second one for now.
2859 		 */
2860 		if (regdom_changes(country_ie_request->alpha2))
2861 			return REG_REQ_IGNORE;
2862 		return REG_REQ_ALREADY_SET;
2863 	}
2864 
2865 	if (regdom_changes(country_ie_request->alpha2))
2866 		return REG_REQ_OK;
2867 	return REG_REQ_ALREADY_SET;
2868 }
2869 
2870 /**
2871  * reg_process_hint_country_ie - process regulatory requests from country IEs
2872  * @wiphy: the wireless device for the regulatory request
2873  * @country_ie_request: a regulatory request from a country IE
2874  *
2875  * The wireless subsystem can use this function to process
2876  * a regulatory request issued by a country Information Element.
2877  *
2878  * Returns one of the different reg request treatment values.
2879  */
2880 static enum reg_request_treatment
2881 reg_process_hint_country_ie(struct wiphy *wiphy,
2882 			    struct regulatory_request *country_ie_request)
2883 {
2884 	enum reg_request_treatment treatment;
2885 
2886 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2887 
2888 	switch (treatment) {
2889 	case REG_REQ_OK:
2890 		break;
2891 	case REG_REQ_IGNORE:
2892 		return REG_REQ_IGNORE;
2893 	case REG_REQ_ALREADY_SET:
2894 		reg_free_request(country_ie_request);
2895 		return REG_REQ_ALREADY_SET;
2896 	case REG_REQ_INTERSECT:
2897 		/*
2898 		 * This doesn't happen yet, not sure we
2899 		 * ever want to support it for this case.
2900 		 */
2901 		WARN_ONCE(1, "Unexpected intersection for country elements");
2902 		return REG_REQ_IGNORE;
2903 	}
2904 
2905 	country_ie_request->intersect = false;
2906 	country_ie_request->processed = false;
2907 
2908 	if (reg_query_database(country_ie_request)) {
2909 		reg_update_last_request(country_ie_request);
2910 		return REG_REQ_OK;
2911 	}
2912 
2913 	return REG_REQ_IGNORE;
2914 }
2915 
2916 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2917 {
2918 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2919 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2920 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2921 	bool dfs_domain_same;
2922 
2923 	rcu_read_lock();
2924 
2925 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2926 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2927 	if (!wiphy1_regd)
2928 		wiphy1_regd = cfg80211_regd;
2929 
2930 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2931 	if (!wiphy2_regd)
2932 		wiphy2_regd = cfg80211_regd;
2933 
2934 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2935 
2936 	rcu_read_unlock();
2937 
2938 	return dfs_domain_same;
2939 }
2940 
2941 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2942 				    struct ieee80211_channel *src_chan)
2943 {
2944 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2945 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2946 		return;
2947 
2948 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2949 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2950 		return;
2951 
2952 	if (src_chan->center_freq == dst_chan->center_freq &&
2953 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2954 		dst_chan->dfs_state = src_chan->dfs_state;
2955 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2956 	}
2957 }
2958 
2959 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2960 				       struct wiphy *src_wiphy)
2961 {
2962 	struct ieee80211_supported_band *src_sband, *dst_sband;
2963 	struct ieee80211_channel *src_chan, *dst_chan;
2964 	int i, j, band;
2965 
2966 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2967 		return;
2968 
2969 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2970 		dst_sband = dst_wiphy->bands[band];
2971 		src_sband = src_wiphy->bands[band];
2972 		if (!dst_sband || !src_sband)
2973 			continue;
2974 
2975 		for (i = 0; i < dst_sband->n_channels; i++) {
2976 			dst_chan = &dst_sband->channels[i];
2977 			for (j = 0; j < src_sband->n_channels; j++) {
2978 				src_chan = &src_sband->channels[j];
2979 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2980 			}
2981 		}
2982 	}
2983 }
2984 
2985 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2986 {
2987 	struct cfg80211_registered_device *rdev;
2988 
2989 	ASSERT_RTNL();
2990 
2991 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2992 		if (wiphy == &rdev->wiphy)
2993 			continue;
2994 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2995 	}
2996 }
2997 
2998 /* This processes *all* regulatory hints */
2999 static void reg_process_hint(struct regulatory_request *reg_request)
3000 {
3001 	struct wiphy *wiphy = NULL;
3002 	enum reg_request_treatment treatment;
3003 	enum nl80211_reg_initiator initiator = reg_request->initiator;
3004 
3005 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3006 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3007 
3008 	switch (initiator) {
3009 	case NL80211_REGDOM_SET_BY_CORE:
3010 		treatment = reg_process_hint_core(reg_request);
3011 		break;
3012 	case NL80211_REGDOM_SET_BY_USER:
3013 		treatment = reg_process_hint_user(reg_request);
3014 		break;
3015 	case NL80211_REGDOM_SET_BY_DRIVER:
3016 		if (!wiphy)
3017 			goto out_free;
3018 		treatment = reg_process_hint_driver(wiphy, reg_request);
3019 		break;
3020 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3021 		if (!wiphy)
3022 			goto out_free;
3023 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3024 		break;
3025 	default:
3026 		WARN(1, "invalid initiator %d\n", initiator);
3027 		goto out_free;
3028 	}
3029 
3030 	if (treatment == REG_REQ_IGNORE)
3031 		goto out_free;
3032 
3033 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3034 	     "unexpected treatment value %d\n", treatment);
3035 
3036 	/* This is required so that the orig_* parameters are saved.
3037 	 * NOTE: treatment must be set for any case that reaches here!
3038 	 */
3039 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3040 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3041 		wiphy_update_regulatory(wiphy, initiator);
3042 		wiphy_all_share_dfs_chan_state(wiphy);
3043 		reg_check_channels();
3044 	}
3045 
3046 	return;
3047 
3048 out_free:
3049 	reg_free_request(reg_request);
3050 }
3051 
3052 static void notify_self_managed_wiphys(struct regulatory_request *request)
3053 {
3054 	struct cfg80211_registered_device *rdev;
3055 	struct wiphy *wiphy;
3056 
3057 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3058 		wiphy = &rdev->wiphy;
3059 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3060 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3061 			reg_call_notifier(wiphy, request);
3062 	}
3063 }
3064 
3065 /*
3066  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3067  * Regulatory hints come on a first come first serve basis and we
3068  * must process each one atomically.
3069  */
3070 static void reg_process_pending_hints(void)
3071 {
3072 	struct regulatory_request *reg_request, *lr;
3073 
3074 	lr = get_last_request();
3075 
3076 	/* When last_request->processed becomes true this will be rescheduled */
3077 	if (lr && !lr->processed) {
3078 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3079 		return;
3080 	}
3081 
3082 	spin_lock(&reg_requests_lock);
3083 
3084 	if (list_empty(&reg_requests_list)) {
3085 		spin_unlock(&reg_requests_lock);
3086 		return;
3087 	}
3088 
3089 	reg_request = list_first_entry(&reg_requests_list,
3090 				       struct regulatory_request,
3091 				       list);
3092 	list_del_init(&reg_request->list);
3093 
3094 	spin_unlock(&reg_requests_lock);
3095 
3096 	notify_self_managed_wiphys(reg_request);
3097 
3098 	reg_process_hint(reg_request);
3099 
3100 	lr = get_last_request();
3101 
3102 	spin_lock(&reg_requests_lock);
3103 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3104 		schedule_work(&reg_work);
3105 	spin_unlock(&reg_requests_lock);
3106 }
3107 
3108 /* Processes beacon hints -- this has nothing to do with country IEs */
3109 static void reg_process_pending_beacon_hints(void)
3110 {
3111 	struct cfg80211_registered_device *rdev;
3112 	struct reg_beacon *pending_beacon, *tmp;
3113 
3114 	/* This goes through the _pending_ beacon list */
3115 	spin_lock_bh(&reg_pending_beacons_lock);
3116 
3117 	list_for_each_entry_safe(pending_beacon, tmp,
3118 				 &reg_pending_beacons, list) {
3119 		list_del_init(&pending_beacon->list);
3120 
3121 		/* Applies the beacon hint to current wiphys */
3122 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3123 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3124 
3125 		/* Remembers the beacon hint for new wiphys or reg changes */
3126 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3127 	}
3128 
3129 	spin_unlock_bh(&reg_pending_beacons_lock);
3130 }
3131 
3132 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3133 {
3134 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3135 	const struct ieee80211_regdomain *tmp;
3136 	const struct ieee80211_regdomain *regd;
3137 	enum nl80211_band band;
3138 	struct regulatory_request request = {};
3139 
3140 	ASSERT_RTNL();
3141 	lockdep_assert_wiphy(wiphy);
3142 
3143 	spin_lock(&reg_requests_lock);
3144 	regd = rdev->requested_regd;
3145 	rdev->requested_regd = NULL;
3146 	spin_unlock(&reg_requests_lock);
3147 
3148 	if (!regd)
3149 		return;
3150 
3151 	tmp = get_wiphy_regdom(wiphy);
3152 	rcu_assign_pointer(wiphy->regd, regd);
3153 	rcu_free_regdom(tmp);
3154 
3155 	for (band = 0; band < NUM_NL80211_BANDS; band++)
3156 		handle_band_custom(wiphy, wiphy->bands[band], regd);
3157 
3158 	reg_process_ht_flags(wiphy);
3159 
3160 	request.wiphy_idx = get_wiphy_idx(wiphy);
3161 	request.alpha2[0] = regd->alpha2[0];
3162 	request.alpha2[1] = regd->alpha2[1];
3163 	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3164 
3165 	nl80211_send_wiphy_reg_change_event(&request);
3166 }
3167 
3168 static void reg_process_self_managed_hints(void)
3169 {
3170 	struct cfg80211_registered_device *rdev;
3171 
3172 	ASSERT_RTNL();
3173 
3174 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3175 		wiphy_lock(&rdev->wiphy);
3176 		reg_process_self_managed_hint(&rdev->wiphy);
3177 		wiphy_unlock(&rdev->wiphy);
3178 	}
3179 
3180 	reg_check_channels();
3181 }
3182 
3183 static void reg_todo(struct work_struct *work)
3184 {
3185 	rtnl_lock();
3186 	reg_process_pending_hints();
3187 	reg_process_pending_beacon_hints();
3188 	reg_process_self_managed_hints();
3189 	rtnl_unlock();
3190 }
3191 
3192 static void queue_regulatory_request(struct regulatory_request *request)
3193 {
3194 	request->alpha2[0] = toupper(request->alpha2[0]);
3195 	request->alpha2[1] = toupper(request->alpha2[1]);
3196 
3197 	spin_lock(&reg_requests_lock);
3198 	list_add_tail(&request->list, &reg_requests_list);
3199 	spin_unlock(&reg_requests_lock);
3200 
3201 	schedule_work(&reg_work);
3202 }
3203 
3204 /*
3205  * Core regulatory hint -- happens during cfg80211_init()
3206  * and when we restore regulatory settings.
3207  */
3208 static int regulatory_hint_core(const char *alpha2)
3209 {
3210 	struct regulatory_request *request;
3211 
3212 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3213 	if (!request)
3214 		return -ENOMEM;
3215 
3216 	request->alpha2[0] = alpha2[0];
3217 	request->alpha2[1] = alpha2[1];
3218 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3219 	request->wiphy_idx = WIPHY_IDX_INVALID;
3220 
3221 	queue_regulatory_request(request);
3222 
3223 	return 0;
3224 }
3225 
3226 /* User hints */
3227 int regulatory_hint_user(const char *alpha2,
3228 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3229 {
3230 	struct regulatory_request *request;
3231 
3232 	if (WARN_ON(!alpha2))
3233 		return -EINVAL;
3234 
3235 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3236 		return -EINVAL;
3237 
3238 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3239 	if (!request)
3240 		return -ENOMEM;
3241 
3242 	request->wiphy_idx = WIPHY_IDX_INVALID;
3243 	request->alpha2[0] = alpha2[0];
3244 	request->alpha2[1] = alpha2[1];
3245 	request->initiator = NL80211_REGDOM_SET_BY_USER;
3246 	request->user_reg_hint_type = user_reg_hint_type;
3247 
3248 	/* Allow calling CRDA again */
3249 	reset_crda_timeouts();
3250 
3251 	queue_regulatory_request(request);
3252 
3253 	return 0;
3254 }
3255 
3256 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3257 {
3258 	spin_lock(&reg_indoor_lock);
3259 
3260 	/* It is possible that more than one user space process is trying to
3261 	 * configure the indoor setting. To handle such cases, clear the indoor
3262 	 * setting in case that some process does not think that the device
3263 	 * is operating in an indoor environment. In addition, if a user space
3264 	 * process indicates that it is controlling the indoor setting, save its
3265 	 * portid, i.e., make it the owner.
3266 	 */
3267 	reg_is_indoor = is_indoor;
3268 	if (reg_is_indoor) {
3269 		if (!reg_is_indoor_portid)
3270 			reg_is_indoor_portid = portid;
3271 	} else {
3272 		reg_is_indoor_portid = 0;
3273 	}
3274 
3275 	spin_unlock(&reg_indoor_lock);
3276 
3277 	if (!is_indoor)
3278 		reg_check_channels();
3279 
3280 	return 0;
3281 }
3282 
3283 void regulatory_netlink_notify(u32 portid)
3284 {
3285 	spin_lock(&reg_indoor_lock);
3286 
3287 	if (reg_is_indoor_portid != portid) {
3288 		spin_unlock(&reg_indoor_lock);
3289 		return;
3290 	}
3291 
3292 	reg_is_indoor = false;
3293 	reg_is_indoor_portid = 0;
3294 
3295 	spin_unlock(&reg_indoor_lock);
3296 
3297 	reg_check_channels();
3298 }
3299 
3300 /* Driver hints */
3301 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3302 {
3303 	struct regulatory_request *request;
3304 
3305 	if (WARN_ON(!alpha2 || !wiphy))
3306 		return -EINVAL;
3307 
3308 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3309 
3310 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3311 	if (!request)
3312 		return -ENOMEM;
3313 
3314 	request->wiphy_idx = get_wiphy_idx(wiphy);
3315 
3316 	request->alpha2[0] = alpha2[0];
3317 	request->alpha2[1] = alpha2[1];
3318 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3319 
3320 	/* Allow calling CRDA again */
3321 	reset_crda_timeouts();
3322 
3323 	queue_regulatory_request(request);
3324 
3325 	return 0;
3326 }
3327 EXPORT_SYMBOL(regulatory_hint);
3328 
3329 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3330 				const u8 *country_ie, u8 country_ie_len)
3331 {
3332 	char alpha2[2];
3333 	enum environment_cap env = ENVIRON_ANY;
3334 	struct regulatory_request *request = NULL, *lr;
3335 
3336 	/* IE len must be evenly divisible by 2 */
3337 	if (country_ie_len & 0x01)
3338 		return;
3339 
3340 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3341 		return;
3342 
3343 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3344 	if (!request)
3345 		return;
3346 
3347 	alpha2[0] = country_ie[0];
3348 	alpha2[1] = country_ie[1];
3349 
3350 	if (country_ie[2] == 'I')
3351 		env = ENVIRON_INDOOR;
3352 	else if (country_ie[2] == 'O')
3353 		env = ENVIRON_OUTDOOR;
3354 
3355 	rcu_read_lock();
3356 	lr = get_last_request();
3357 
3358 	if (unlikely(!lr))
3359 		goto out;
3360 
3361 	/*
3362 	 * We will run this only upon a successful connection on cfg80211.
3363 	 * We leave conflict resolution to the workqueue, where can hold
3364 	 * the RTNL.
3365 	 */
3366 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3367 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3368 		goto out;
3369 
3370 	request->wiphy_idx = get_wiphy_idx(wiphy);
3371 	request->alpha2[0] = alpha2[0];
3372 	request->alpha2[1] = alpha2[1];
3373 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3374 	request->country_ie_env = env;
3375 
3376 	/* Allow calling CRDA again */
3377 	reset_crda_timeouts();
3378 
3379 	queue_regulatory_request(request);
3380 	request = NULL;
3381 out:
3382 	kfree(request);
3383 	rcu_read_unlock();
3384 }
3385 
3386 static void restore_alpha2(char *alpha2, bool reset_user)
3387 {
3388 	/* indicates there is no alpha2 to consider for restoration */
3389 	alpha2[0] = '9';
3390 	alpha2[1] = '7';
3391 
3392 	/* The user setting has precedence over the module parameter */
3393 	if (is_user_regdom_saved()) {
3394 		/* Unless we're asked to ignore it and reset it */
3395 		if (reset_user) {
3396 			pr_debug("Restoring regulatory settings including user preference\n");
3397 			user_alpha2[0] = '9';
3398 			user_alpha2[1] = '7';
3399 
3400 			/*
3401 			 * If we're ignoring user settings, we still need to
3402 			 * check the module parameter to ensure we put things
3403 			 * back as they were for a full restore.
3404 			 */
3405 			if (!is_world_regdom(ieee80211_regdom)) {
3406 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3407 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3408 				alpha2[0] = ieee80211_regdom[0];
3409 				alpha2[1] = ieee80211_regdom[1];
3410 			}
3411 		} else {
3412 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3413 				 user_alpha2[0], user_alpha2[1]);
3414 			alpha2[0] = user_alpha2[0];
3415 			alpha2[1] = user_alpha2[1];
3416 		}
3417 	} else if (!is_world_regdom(ieee80211_regdom)) {
3418 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3419 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3420 		alpha2[0] = ieee80211_regdom[0];
3421 		alpha2[1] = ieee80211_regdom[1];
3422 	} else
3423 		pr_debug("Restoring regulatory settings\n");
3424 }
3425 
3426 static void restore_custom_reg_settings(struct wiphy *wiphy)
3427 {
3428 	struct ieee80211_supported_band *sband;
3429 	enum nl80211_band band;
3430 	struct ieee80211_channel *chan;
3431 	int i;
3432 
3433 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3434 		sband = wiphy->bands[band];
3435 		if (!sband)
3436 			continue;
3437 		for (i = 0; i < sband->n_channels; i++) {
3438 			chan = &sband->channels[i];
3439 			chan->flags = chan->orig_flags;
3440 			chan->max_antenna_gain = chan->orig_mag;
3441 			chan->max_power = chan->orig_mpwr;
3442 			chan->beacon_found = false;
3443 		}
3444 	}
3445 }
3446 
3447 /*
3448  * Restoring regulatory settings involves ignoring any
3449  * possibly stale country IE information and user regulatory
3450  * settings if so desired, this includes any beacon hints
3451  * learned as we could have traveled outside to another country
3452  * after disconnection. To restore regulatory settings we do
3453  * exactly what we did at bootup:
3454  *
3455  *   - send a core regulatory hint
3456  *   - send a user regulatory hint if applicable
3457  *
3458  * Device drivers that send a regulatory hint for a specific country
3459  * keep their own regulatory domain on wiphy->regd so that does
3460  * not need to be remembered.
3461  */
3462 static void restore_regulatory_settings(bool reset_user, bool cached)
3463 {
3464 	char alpha2[2];
3465 	char world_alpha2[2];
3466 	struct reg_beacon *reg_beacon, *btmp;
3467 	LIST_HEAD(tmp_reg_req_list);
3468 	struct cfg80211_registered_device *rdev;
3469 
3470 	ASSERT_RTNL();
3471 
3472 	/*
3473 	 * Clear the indoor setting in case that it is not controlled by user
3474 	 * space, as otherwise there is no guarantee that the device is still
3475 	 * operating in an indoor environment.
3476 	 */
3477 	spin_lock(&reg_indoor_lock);
3478 	if (reg_is_indoor && !reg_is_indoor_portid) {
3479 		reg_is_indoor = false;
3480 		reg_check_channels();
3481 	}
3482 	spin_unlock(&reg_indoor_lock);
3483 
3484 	reset_regdomains(true, &world_regdom);
3485 	restore_alpha2(alpha2, reset_user);
3486 
3487 	/*
3488 	 * If there's any pending requests we simply
3489 	 * stash them to a temporary pending queue and
3490 	 * add then after we've restored regulatory
3491 	 * settings.
3492 	 */
3493 	spin_lock(&reg_requests_lock);
3494 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3495 	spin_unlock(&reg_requests_lock);
3496 
3497 	/* Clear beacon hints */
3498 	spin_lock_bh(&reg_pending_beacons_lock);
3499 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3500 		list_del(&reg_beacon->list);
3501 		kfree(reg_beacon);
3502 	}
3503 	spin_unlock_bh(&reg_pending_beacons_lock);
3504 
3505 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3506 		list_del(&reg_beacon->list);
3507 		kfree(reg_beacon);
3508 	}
3509 
3510 	/* First restore to the basic regulatory settings */
3511 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3512 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3513 
3514 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3515 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3516 			continue;
3517 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3518 			restore_custom_reg_settings(&rdev->wiphy);
3519 	}
3520 
3521 	if (cached && (!is_an_alpha2(alpha2) ||
3522 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3523 		reset_regdomains(false, cfg80211_world_regdom);
3524 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3525 		print_regdomain(get_cfg80211_regdom());
3526 		nl80211_send_reg_change_event(&core_request_world);
3527 		reg_set_request_processed();
3528 
3529 		if (is_an_alpha2(alpha2) &&
3530 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3531 			struct regulatory_request *ureq;
3532 
3533 			spin_lock(&reg_requests_lock);
3534 			ureq = list_last_entry(&reg_requests_list,
3535 					       struct regulatory_request,
3536 					       list);
3537 			list_del(&ureq->list);
3538 			spin_unlock(&reg_requests_lock);
3539 
3540 			notify_self_managed_wiphys(ureq);
3541 			reg_update_last_request(ureq);
3542 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3543 				   REGD_SOURCE_CACHED);
3544 		}
3545 	} else {
3546 		regulatory_hint_core(world_alpha2);
3547 
3548 		/*
3549 		 * This restores the ieee80211_regdom module parameter
3550 		 * preference or the last user requested regulatory
3551 		 * settings, user regulatory settings takes precedence.
3552 		 */
3553 		if (is_an_alpha2(alpha2))
3554 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3555 	}
3556 
3557 	spin_lock(&reg_requests_lock);
3558 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3559 	spin_unlock(&reg_requests_lock);
3560 
3561 	pr_debug("Kicking the queue\n");
3562 
3563 	schedule_work(&reg_work);
3564 }
3565 
3566 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3567 {
3568 	struct cfg80211_registered_device *rdev;
3569 	struct wireless_dev *wdev;
3570 
3571 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3572 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3573 			wdev_lock(wdev);
3574 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3575 				wdev_unlock(wdev);
3576 				return false;
3577 			}
3578 			wdev_unlock(wdev);
3579 		}
3580 	}
3581 
3582 	return true;
3583 }
3584 
3585 void regulatory_hint_disconnect(void)
3586 {
3587 	/* Restore of regulatory settings is not required when wiphy(s)
3588 	 * ignore IE from connected access point but clearance of beacon hints
3589 	 * is required when wiphy(s) supports beacon hints.
3590 	 */
3591 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3592 		struct reg_beacon *reg_beacon, *btmp;
3593 
3594 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3595 			return;
3596 
3597 		spin_lock_bh(&reg_pending_beacons_lock);
3598 		list_for_each_entry_safe(reg_beacon, btmp,
3599 					 &reg_pending_beacons, list) {
3600 			list_del(&reg_beacon->list);
3601 			kfree(reg_beacon);
3602 		}
3603 		spin_unlock_bh(&reg_pending_beacons_lock);
3604 
3605 		list_for_each_entry_safe(reg_beacon, btmp,
3606 					 &reg_beacon_list, list) {
3607 			list_del(&reg_beacon->list);
3608 			kfree(reg_beacon);
3609 		}
3610 
3611 		return;
3612 	}
3613 
3614 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3615 	restore_regulatory_settings(false, true);
3616 }
3617 
3618 static bool freq_is_chan_12_13_14(u32 freq)
3619 {
3620 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3621 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3622 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3623 		return true;
3624 	return false;
3625 }
3626 
3627 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3628 {
3629 	struct reg_beacon *pending_beacon;
3630 
3631 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3632 		if (ieee80211_channel_equal(beacon_chan,
3633 					    &pending_beacon->chan))
3634 			return true;
3635 	return false;
3636 }
3637 
3638 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3639 				 struct ieee80211_channel *beacon_chan,
3640 				 gfp_t gfp)
3641 {
3642 	struct reg_beacon *reg_beacon;
3643 	bool processing;
3644 
3645 	if (beacon_chan->beacon_found ||
3646 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3647 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3648 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3649 		return 0;
3650 
3651 	spin_lock_bh(&reg_pending_beacons_lock);
3652 	processing = pending_reg_beacon(beacon_chan);
3653 	spin_unlock_bh(&reg_pending_beacons_lock);
3654 
3655 	if (processing)
3656 		return 0;
3657 
3658 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3659 	if (!reg_beacon)
3660 		return -ENOMEM;
3661 
3662 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3663 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3664 		 ieee80211_freq_khz_to_channel(
3665 			 ieee80211_channel_to_khz(beacon_chan)),
3666 		 wiphy_name(wiphy));
3667 
3668 	memcpy(&reg_beacon->chan, beacon_chan,
3669 	       sizeof(struct ieee80211_channel));
3670 
3671 	/*
3672 	 * Since we can be called from BH or and non-BH context
3673 	 * we must use spin_lock_bh()
3674 	 */
3675 	spin_lock_bh(&reg_pending_beacons_lock);
3676 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3677 	spin_unlock_bh(&reg_pending_beacons_lock);
3678 
3679 	schedule_work(&reg_work);
3680 
3681 	return 0;
3682 }
3683 
3684 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3685 {
3686 	unsigned int i;
3687 	const struct ieee80211_reg_rule *reg_rule = NULL;
3688 	const struct ieee80211_freq_range *freq_range = NULL;
3689 	const struct ieee80211_power_rule *power_rule = NULL;
3690 	char bw[32], cac_time[32];
3691 
3692 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3693 
3694 	for (i = 0; i < rd->n_reg_rules; i++) {
3695 		reg_rule = &rd->reg_rules[i];
3696 		freq_range = &reg_rule->freq_range;
3697 		power_rule = &reg_rule->power_rule;
3698 
3699 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3700 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3701 				 freq_range->max_bandwidth_khz,
3702 				 reg_get_max_bandwidth(rd, reg_rule));
3703 		else
3704 			snprintf(bw, sizeof(bw), "%d KHz",
3705 				 freq_range->max_bandwidth_khz);
3706 
3707 		if (reg_rule->flags & NL80211_RRF_DFS)
3708 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3709 				  reg_rule->dfs_cac_ms/1000);
3710 		else
3711 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3712 
3713 
3714 		/*
3715 		 * There may not be documentation for max antenna gain
3716 		 * in certain regions
3717 		 */
3718 		if (power_rule->max_antenna_gain)
3719 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3720 				freq_range->start_freq_khz,
3721 				freq_range->end_freq_khz,
3722 				bw,
3723 				power_rule->max_antenna_gain,
3724 				power_rule->max_eirp,
3725 				cac_time);
3726 		else
3727 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3728 				freq_range->start_freq_khz,
3729 				freq_range->end_freq_khz,
3730 				bw,
3731 				power_rule->max_eirp,
3732 				cac_time);
3733 	}
3734 }
3735 
3736 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3737 {
3738 	switch (dfs_region) {
3739 	case NL80211_DFS_UNSET:
3740 	case NL80211_DFS_FCC:
3741 	case NL80211_DFS_ETSI:
3742 	case NL80211_DFS_JP:
3743 		return true;
3744 	default:
3745 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3746 		return false;
3747 	}
3748 }
3749 
3750 static void print_regdomain(const struct ieee80211_regdomain *rd)
3751 {
3752 	struct regulatory_request *lr = get_last_request();
3753 
3754 	if (is_intersected_alpha2(rd->alpha2)) {
3755 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3756 			struct cfg80211_registered_device *rdev;
3757 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3758 			if (rdev) {
3759 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3760 					rdev->country_ie_alpha2[0],
3761 					rdev->country_ie_alpha2[1]);
3762 			} else
3763 				pr_debug("Current regulatory domain intersected:\n");
3764 		} else
3765 			pr_debug("Current regulatory domain intersected:\n");
3766 	} else if (is_world_regdom(rd->alpha2)) {
3767 		pr_debug("World regulatory domain updated:\n");
3768 	} else {
3769 		if (is_unknown_alpha2(rd->alpha2))
3770 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3771 		else {
3772 			if (reg_request_cell_base(lr))
3773 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3774 					rd->alpha2[0], rd->alpha2[1]);
3775 			else
3776 				pr_debug("Regulatory domain changed to country: %c%c\n",
3777 					rd->alpha2[0], rd->alpha2[1]);
3778 		}
3779 	}
3780 
3781 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3782 	print_rd_rules(rd);
3783 }
3784 
3785 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3786 {
3787 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3788 	print_rd_rules(rd);
3789 }
3790 
3791 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3792 {
3793 	if (!is_world_regdom(rd->alpha2))
3794 		return -EINVAL;
3795 	update_world_regdomain(rd);
3796 	return 0;
3797 }
3798 
3799 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3800 			   struct regulatory_request *user_request)
3801 {
3802 	const struct ieee80211_regdomain *intersected_rd = NULL;
3803 
3804 	if (!regdom_changes(rd->alpha2))
3805 		return -EALREADY;
3806 
3807 	if (!is_valid_rd(rd)) {
3808 		pr_err("Invalid regulatory domain detected: %c%c\n",
3809 		       rd->alpha2[0], rd->alpha2[1]);
3810 		print_regdomain_info(rd);
3811 		return -EINVAL;
3812 	}
3813 
3814 	if (!user_request->intersect) {
3815 		reset_regdomains(false, rd);
3816 		return 0;
3817 	}
3818 
3819 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3820 	if (!intersected_rd)
3821 		return -EINVAL;
3822 
3823 	kfree(rd);
3824 	rd = NULL;
3825 	reset_regdomains(false, intersected_rd);
3826 
3827 	return 0;
3828 }
3829 
3830 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3831 			     struct regulatory_request *driver_request)
3832 {
3833 	const struct ieee80211_regdomain *regd;
3834 	const struct ieee80211_regdomain *intersected_rd = NULL;
3835 	const struct ieee80211_regdomain *tmp;
3836 	struct wiphy *request_wiphy;
3837 
3838 	if (is_world_regdom(rd->alpha2))
3839 		return -EINVAL;
3840 
3841 	if (!regdom_changes(rd->alpha2))
3842 		return -EALREADY;
3843 
3844 	if (!is_valid_rd(rd)) {
3845 		pr_err("Invalid regulatory domain detected: %c%c\n",
3846 		       rd->alpha2[0], rd->alpha2[1]);
3847 		print_regdomain_info(rd);
3848 		return -EINVAL;
3849 	}
3850 
3851 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3852 	if (!request_wiphy)
3853 		return -ENODEV;
3854 
3855 	if (!driver_request->intersect) {
3856 		ASSERT_RTNL();
3857 		wiphy_lock(request_wiphy);
3858 		if (request_wiphy->regd) {
3859 			wiphy_unlock(request_wiphy);
3860 			return -EALREADY;
3861 		}
3862 
3863 		regd = reg_copy_regd(rd);
3864 		if (IS_ERR(regd)) {
3865 			wiphy_unlock(request_wiphy);
3866 			return PTR_ERR(regd);
3867 		}
3868 
3869 		rcu_assign_pointer(request_wiphy->regd, regd);
3870 		wiphy_unlock(request_wiphy);
3871 		reset_regdomains(false, rd);
3872 		return 0;
3873 	}
3874 
3875 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3876 	if (!intersected_rd)
3877 		return -EINVAL;
3878 
3879 	/*
3880 	 * We can trash what CRDA provided now.
3881 	 * However if a driver requested this specific regulatory
3882 	 * domain we keep it for its private use
3883 	 */
3884 	tmp = get_wiphy_regdom(request_wiphy);
3885 	rcu_assign_pointer(request_wiphy->regd, rd);
3886 	rcu_free_regdom(tmp);
3887 
3888 	rd = NULL;
3889 
3890 	reset_regdomains(false, intersected_rd);
3891 
3892 	return 0;
3893 }
3894 
3895 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3896 				 struct regulatory_request *country_ie_request)
3897 {
3898 	struct wiphy *request_wiphy;
3899 
3900 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3901 	    !is_unknown_alpha2(rd->alpha2))
3902 		return -EINVAL;
3903 
3904 	/*
3905 	 * Lets only bother proceeding on the same alpha2 if the current
3906 	 * rd is non static (it means CRDA was present and was used last)
3907 	 * and the pending request came in from a country IE
3908 	 */
3909 
3910 	if (!is_valid_rd(rd)) {
3911 		pr_err("Invalid regulatory domain detected: %c%c\n",
3912 		       rd->alpha2[0], rd->alpha2[1]);
3913 		print_regdomain_info(rd);
3914 		return -EINVAL;
3915 	}
3916 
3917 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3918 	if (!request_wiphy)
3919 		return -ENODEV;
3920 
3921 	if (country_ie_request->intersect)
3922 		return -EINVAL;
3923 
3924 	reset_regdomains(false, rd);
3925 	return 0;
3926 }
3927 
3928 /*
3929  * Use this call to set the current regulatory domain. Conflicts with
3930  * multiple drivers can be ironed out later. Caller must've already
3931  * kmalloc'd the rd structure.
3932  */
3933 int set_regdom(const struct ieee80211_regdomain *rd,
3934 	       enum ieee80211_regd_source regd_src)
3935 {
3936 	struct regulatory_request *lr;
3937 	bool user_reset = false;
3938 	int r;
3939 
3940 	if (IS_ERR_OR_NULL(rd))
3941 		return -ENODATA;
3942 
3943 	if (!reg_is_valid_request(rd->alpha2)) {
3944 		kfree(rd);
3945 		return -EINVAL;
3946 	}
3947 
3948 	if (regd_src == REGD_SOURCE_CRDA)
3949 		reset_crda_timeouts();
3950 
3951 	lr = get_last_request();
3952 
3953 	/* Note that this doesn't update the wiphys, this is done below */
3954 	switch (lr->initiator) {
3955 	case NL80211_REGDOM_SET_BY_CORE:
3956 		r = reg_set_rd_core(rd);
3957 		break;
3958 	case NL80211_REGDOM_SET_BY_USER:
3959 		cfg80211_save_user_regdom(rd);
3960 		r = reg_set_rd_user(rd, lr);
3961 		user_reset = true;
3962 		break;
3963 	case NL80211_REGDOM_SET_BY_DRIVER:
3964 		r = reg_set_rd_driver(rd, lr);
3965 		break;
3966 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3967 		r = reg_set_rd_country_ie(rd, lr);
3968 		break;
3969 	default:
3970 		WARN(1, "invalid initiator %d\n", lr->initiator);
3971 		kfree(rd);
3972 		return -EINVAL;
3973 	}
3974 
3975 	if (r) {
3976 		switch (r) {
3977 		case -EALREADY:
3978 			reg_set_request_processed();
3979 			break;
3980 		default:
3981 			/* Back to world regulatory in case of errors */
3982 			restore_regulatory_settings(user_reset, false);
3983 		}
3984 
3985 		kfree(rd);
3986 		return r;
3987 	}
3988 
3989 	/* This would make this whole thing pointless */
3990 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3991 		return -EINVAL;
3992 
3993 	/* update all wiphys now with the new established regulatory domain */
3994 	update_all_wiphy_regulatory(lr->initiator);
3995 
3996 	print_regdomain(get_cfg80211_regdom());
3997 
3998 	nl80211_send_reg_change_event(lr);
3999 
4000 	reg_set_request_processed();
4001 
4002 	return 0;
4003 }
4004 
4005 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4006 				       struct ieee80211_regdomain *rd)
4007 {
4008 	const struct ieee80211_regdomain *regd;
4009 	const struct ieee80211_regdomain *prev_regd;
4010 	struct cfg80211_registered_device *rdev;
4011 
4012 	if (WARN_ON(!wiphy || !rd))
4013 		return -EINVAL;
4014 
4015 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4016 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4017 		return -EPERM;
4018 
4019 	if (WARN(!is_valid_rd(rd),
4020 		 "Invalid regulatory domain detected: %c%c\n",
4021 		 rd->alpha2[0], rd->alpha2[1])) {
4022 		print_regdomain_info(rd);
4023 		return -EINVAL;
4024 	}
4025 
4026 	regd = reg_copy_regd(rd);
4027 	if (IS_ERR(regd))
4028 		return PTR_ERR(regd);
4029 
4030 	rdev = wiphy_to_rdev(wiphy);
4031 
4032 	spin_lock(&reg_requests_lock);
4033 	prev_regd = rdev->requested_regd;
4034 	rdev->requested_regd = regd;
4035 	spin_unlock(&reg_requests_lock);
4036 
4037 	kfree(prev_regd);
4038 	return 0;
4039 }
4040 
4041 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4042 			      struct ieee80211_regdomain *rd)
4043 {
4044 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4045 
4046 	if (ret)
4047 		return ret;
4048 
4049 	schedule_work(&reg_work);
4050 	return 0;
4051 }
4052 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4053 
4054 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4055 				   struct ieee80211_regdomain *rd)
4056 {
4057 	int ret;
4058 
4059 	ASSERT_RTNL();
4060 
4061 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4062 	if (ret)
4063 		return ret;
4064 
4065 	/* process the request immediately */
4066 	reg_process_self_managed_hint(wiphy);
4067 	reg_check_channels();
4068 	return 0;
4069 }
4070 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4071 
4072 void wiphy_regulatory_register(struct wiphy *wiphy)
4073 {
4074 	struct regulatory_request *lr = get_last_request();
4075 
4076 	/* self-managed devices ignore beacon hints and country IE */
4077 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4078 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4079 					   REGULATORY_COUNTRY_IE_IGNORE;
4080 
4081 		/*
4082 		 * The last request may have been received before this
4083 		 * registration call. Call the driver notifier if
4084 		 * initiator is USER.
4085 		 */
4086 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4087 			reg_call_notifier(wiphy, lr);
4088 	}
4089 
4090 	if (!reg_dev_ignore_cell_hint(wiphy))
4091 		reg_num_devs_support_basehint++;
4092 
4093 	wiphy_update_regulatory(wiphy, lr->initiator);
4094 	wiphy_all_share_dfs_chan_state(wiphy);
4095 	reg_process_self_managed_hints();
4096 }
4097 
4098 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4099 {
4100 	struct wiphy *request_wiphy = NULL;
4101 	struct regulatory_request *lr;
4102 
4103 	lr = get_last_request();
4104 
4105 	if (!reg_dev_ignore_cell_hint(wiphy))
4106 		reg_num_devs_support_basehint--;
4107 
4108 	rcu_free_regdom(get_wiphy_regdom(wiphy));
4109 	RCU_INIT_POINTER(wiphy->regd, NULL);
4110 
4111 	if (lr)
4112 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4113 
4114 	if (!request_wiphy || request_wiphy != wiphy)
4115 		return;
4116 
4117 	lr->wiphy_idx = WIPHY_IDX_INVALID;
4118 	lr->country_ie_env = ENVIRON_ANY;
4119 }
4120 
4121 /*
4122  * See FCC notices for UNII band definitions
4123  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4124  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4125  */
4126 int cfg80211_get_unii(int freq)
4127 {
4128 	/* UNII-1 */
4129 	if (freq >= 5150 && freq <= 5250)
4130 		return 0;
4131 
4132 	/* UNII-2A */
4133 	if (freq > 5250 && freq <= 5350)
4134 		return 1;
4135 
4136 	/* UNII-2B */
4137 	if (freq > 5350 && freq <= 5470)
4138 		return 2;
4139 
4140 	/* UNII-2C */
4141 	if (freq > 5470 && freq <= 5725)
4142 		return 3;
4143 
4144 	/* UNII-3 */
4145 	if (freq > 5725 && freq <= 5825)
4146 		return 4;
4147 
4148 	/* UNII-5 */
4149 	if (freq > 5925 && freq <= 6425)
4150 		return 5;
4151 
4152 	/* UNII-6 */
4153 	if (freq > 6425 && freq <= 6525)
4154 		return 6;
4155 
4156 	/* UNII-7 */
4157 	if (freq > 6525 && freq <= 6875)
4158 		return 7;
4159 
4160 	/* UNII-8 */
4161 	if (freq > 6875 && freq <= 7125)
4162 		return 8;
4163 
4164 	return -EINVAL;
4165 }
4166 
4167 bool regulatory_indoor_allowed(void)
4168 {
4169 	return reg_is_indoor;
4170 }
4171 
4172 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4173 {
4174 	const struct ieee80211_regdomain *regd = NULL;
4175 	const struct ieee80211_regdomain *wiphy_regd = NULL;
4176 	bool pre_cac_allowed = false;
4177 
4178 	rcu_read_lock();
4179 
4180 	regd = rcu_dereference(cfg80211_regdomain);
4181 	wiphy_regd = rcu_dereference(wiphy->regd);
4182 	if (!wiphy_regd) {
4183 		if (regd->dfs_region == NL80211_DFS_ETSI)
4184 			pre_cac_allowed = true;
4185 
4186 		rcu_read_unlock();
4187 
4188 		return pre_cac_allowed;
4189 	}
4190 
4191 	if (regd->dfs_region == wiphy_regd->dfs_region &&
4192 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4193 		pre_cac_allowed = true;
4194 
4195 	rcu_read_unlock();
4196 
4197 	return pre_cac_allowed;
4198 }
4199 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4200 
4201 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4202 {
4203 	struct wireless_dev *wdev;
4204 	/* If we finished CAC or received radar, we should end any
4205 	 * CAC running on the same channels.
4206 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4207 	 * either all channels are available - those the CAC_FINISHED
4208 	 * event has effected another wdev state, or there is a channel
4209 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4210 	 * event has effected another wdev state.
4211 	 * In both cases we should end the CAC on the wdev.
4212 	 */
4213 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4214 		if (wdev->cac_started &&
4215 		    !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4216 			rdev_end_cac(rdev, wdev->netdev);
4217 	}
4218 }
4219 
4220 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4221 				    struct cfg80211_chan_def *chandef,
4222 				    enum nl80211_dfs_state dfs_state,
4223 				    enum nl80211_radar_event event)
4224 {
4225 	struct cfg80211_registered_device *rdev;
4226 
4227 	ASSERT_RTNL();
4228 
4229 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4230 		return;
4231 
4232 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4233 		if (wiphy == &rdev->wiphy)
4234 			continue;
4235 
4236 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4237 			continue;
4238 
4239 		if (!ieee80211_get_channel(&rdev->wiphy,
4240 					   chandef->chan->center_freq))
4241 			continue;
4242 
4243 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4244 
4245 		if (event == NL80211_RADAR_DETECTED ||
4246 		    event == NL80211_RADAR_CAC_FINISHED) {
4247 			cfg80211_sched_dfs_chan_update(rdev);
4248 			cfg80211_check_and_end_cac(rdev);
4249 		}
4250 
4251 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4252 	}
4253 }
4254 
4255 static int __init regulatory_init_db(void)
4256 {
4257 	int err;
4258 
4259 	/*
4260 	 * It's possible that - due to other bugs/issues - cfg80211
4261 	 * never called regulatory_init() below, or that it failed;
4262 	 * in that case, don't try to do any further work here as
4263 	 * it's doomed to lead to crashes.
4264 	 */
4265 	if (IS_ERR_OR_NULL(reg_pdev))
4266 		return -EINVAL;
4267 
4268 	err = load_builtin_regdb_keys();
4269 	if (err)
4270 		return err;
4271 
4272 	/* We always try to get an update for the static regdomain */
4273 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4274 	if (err) {
4275 		if (err == -ENOMEM) {
4276 			platform_device_unregister(reg_pdev);
4277 			return err;
4278 		}
4279 		/*
4280 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4281 		 * memory which is handled and propagated appropriately above
4282 		 * but it can also fail during a netlink_broadcast() or during
4283 		 * early boot for call_usermodehelper(). For now treat these
4284 		 * errors as non-fatal.
4285 		 */
4286 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4287 	}
4288 
4289 	/*
4290 	 * Finally, if the user set the module parameter treat it
4291 	 * as a user hint.
4292 	 */
4293 	if (!is_world_regdom(ieee80211_regdom))
4294 		regulatory_hint_user(ieee80211_regdom,
4295 				     NL80211_USER_REG_HINT_USER);
4296 
4297 	return 0;
4298 }
4299 #ifndef MODULE
4300 late_initcall(regulatory_init_db);
4301 #endif
4302 
4303 int __init regulatory_init(void)
4304 {
4305 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4306 	if (IS_ERR(reg_pdev))
4307 		return PTR_ERR(reg_pdev);
4308 
4309 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4310 
4311 	user_alpha2[0] = '9';
4312 	user_alpha2[1] = '7';
4313 
4314 #ifdef MODULE
4315 	return regulatory_init_db();
4316 #else
4317 	return 0;
4318 #endif
4319 }
4320 
4321 void regulatory_exit(void)
4322 {
4323 	struct regulatory_request *reg_request, *tmp;
4324 	struct reg_beacon *reg_beacon, *btmp;
4325 
4326 	cancel_work_sync(&reg_work);
4327 	cancel_crda_timeout_sync();
4328 	cancel_delayed_work_sync(&reg_check_chans);
4329 
4330 	/* Lock to suppress warnings */
4331 	rtnl_lock();
4332 	reset_regdomains(true, NULL);
4333 	rtnl_unlock();
4334 
4335 	dev_set_uevent_suppress(&reg_pdev->dev, true);
4336 
4337 	platform_device_unregister(reg_pdev);
4338 
4339 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4340 		list_del(&reg_beacon->list);
4341 		kfree(reg_beacon);
4342 	}
4343 
4344 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4345 		list_del(&reg_beacon->list);
4346 		kfree(reg_beacon);
4347 	}
4348 
4349 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4350 		list_del(&reg_request->list);
4351 		kfree(reg_request);
4352 	}
4353 
4354 	if (!IS_ERR_OR_NULL(regdb))
4355 		kfree(regdb);
4356 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4357 		kfree(cfg80211_user_regdom);
4358 
4359 	free_regdb_keyring();
4360 }
4361