xref: /linux/net/wireless/reg.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45 
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62 
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...)			\
65 	printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69 
70 /*
71  * Grace period we give before making sure all current interfaces reside on
72  * channels allowed by the current regulatory domain.
73  */
74 #define REG_ENFORCE_GRACE_MS 60000
75 
76 /**
77  * enum reg_request_treatment - regulatory request treatment
78  *
79  * @REG_REQ_OK: continue processing the regulatory request
80  * @REG_REQ_IGNORE: ignore the regulatory request
81  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82  *	be intersected with the current one.
83  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84  *	regulatory settings, and no further processing is required.
85  */
86 enum reg_request_treatment {
87 	REG_REQ_OK,
88 	REG_REQ_IGNORE,
89 	REG_REQ_INTERSECT,
90 	REG_REQ_ALREADY_SET,
91 };
92 
93 static struct regulatory_request core_request_world = {
94 	.initiator = NL80211_REGDOM_SET_BY_CORE,
95 	.alpha2[0] = '0',
96 	.alpha2[1] = '0',
97 	.intersect = false,
98 	.processed = true,
99 	.country_ie_env = ENVIRON_ANY,
100 };
101 
102 /*
103  * Receipt of information from last regulatory request,
104  * protected by RTNL (and can be accessed with RCU protection)
105  */
106 static struct regulatory_request __rcu *last_request =
107 	(void __force __rcu *)&core_request_world;
108 
109 /* To trigger userspace events */
110 static struct platform_device *reg_pdev;
111 
112 /*
113  * Central wireless core regulatory domains, we only need two,
114  * the current one and a world regulatory domain in case we have no
115  * information to give us an alpha2.
116  * (protected by RTNL, can be read under RCU)
117  */
118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119 
120 /*
121  * Number of devices that registered to the core
122  * that support cellular base station regulatory hints
123  * (protected by RTNL)
124  */
125 static int reg_num_devs_support_basehint;
126 
127 /*
128  * State variable indicating if the platform on which the devices
129  * are attached is operating in an indoor environment. The state variable
130  * is relevant for all registered devices.
131  */
132 static bool reg_is_indoor;
133 static spinlock_t reg_indoor_lock;
134 
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid;
137 
138 /* Max number of consecutive attempts to communicate with CRDA  */
139 #define REG_MAX_CRDA_TIMEOUTS 10
140 
141 static u32 reg_crda_timeouts;
142 
143 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
144 {
145 	return rtnl_dereference(cfg80211_regdomain);
146 }
147 
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 	return rtnl_dereference(wiphy->regd);
151 }
152 
153 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
154 {
155 	switch (dfs_region) {
156 	case NL80211_DFS_UNSET:
157 		return "unset";
158 	case NL80211_DFS_FCC:
159 		return "FCC";
160 	case NL80211_DFS_ETSI:
161 		return "ETSI";
162 	case NL80211_DFS_JP:
163 		return "JP";
164 	}
165 	return "Unknown";
166 }
167 
168 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
169 {
170 	const struct ieee80211_regdomain *regd = NULL;
171 	const struct ieee80211_regdomain *wiphy_regd = NULL;
172 
173 	regd = get_cfg80211_regdom();
174 	if (!wiphy)
175 		goto out;
176 
177 	wiphy_regd = get_wiphy_regdom(wiphy);
178 	if (!wiphy_regd)
179 		goto out;
180 
181 	if (wiphy_regd->dfs_region == regd->dfs_region)
182 		goto out;
183 
184 	REG_DBG_PRINT("%s: device specific dfs_region "
185 		      "(%s) disagrees with cfg80211's "
186 		      "central dfs_region (%s)\n",
187 		      dev_name(&wiphy->dev),
188 		      reg_dfs_region_str(wiphy_regd->dfs_region),
189 		      reg_dfs_region_str(regd->dfs_region));
190 
191 out:
192 	return regd->dfs_region;
193 }
194 
195 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
196 {
197 	if (!r)
198 		return;
199 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
200 }
201 
202 static struct regulatory_request *get_last_request(void)
203 {
204 	return rcu_dereference_rtnl(last_request);
205 }
206 
207 /* Used to queue up regulatory hints */
208 static LIST_HEAD(reg_requests_list);
209 static spinlock_t reg_requests_lock;
210 
211 /* Used to queue up beacon hints for review */
212 static LIST_HEAD(reg_pending_beacons);
213 static spinlock_t reg_pending_beacons_lock;
214 
215 /* Used to keep track of processed beacon hints */
216 static LIST_HEAD(reg_beacon_list);
217 
218 struct reg_beacon {
219 	struct list_head list;
220 	struct ieee80211_channel chan;
221 };
222 
223 static void reg_check_chans_work(struct work_struct *work);
224 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
225 
226 static void reg_todo(struct work_struct *work);
227 static DECLARE_WORK(reg_work, reg_todo);
228 
229 static void reg_timeout_work(struct work_struct *work);
230 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
231 
232 /* We keep a static world regulatory domain in case of the absence of CRDA */
233 static const struct ieee80211_regdomain world_regdom = {
234 	.n_reg_rules = 8,
235 	.alpha2 =  "00",
236 	.reg_rules = {
237 		/* IEEE 802.11b/g, channels 1..11 */
238 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
239 		/* IEEE 802.11b/g, channels 12..13. */
240 		REG_RULE(2467-10, 2472+10, 40, 6, 20,
241 			NL80211_RRF_NO_IR),
242 		/* IEEE 802.11 channel 14 - Only JP enables
243 		 * this and for 802.11b only */
244 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
245 			NL80211_RRF_NO_IR |
246 			NL80211_RRF_NO_OFDM),
247 		/* IEEE 802.11a, channel 36..48 */
248 		REG_RULE(5180-10, 5240+10, 160, 6, 20,
249                         NL80211_RRF_NO_IR),
250 
251 		/* IEEE 802.11a, channel 52..64 - DFS required */
252 		REG_RULE(5260-10, 5320+10, 160, 6, 20,
253 			NL80211_RRF_NO_IR |
254 			NL80211_RRF_DFS),
255 
256 		/* IEEE 802.11a, channel 100..144 - DFS required */
257 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
258 			NL80211_RRF_NO_IR |
259 			NL80211_RRF_DFS),
260 
261 		/* IEEE 802.11a, channel 149..165 */
262 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
263 			NL80211_RRF_NO_IR),
264 
265 		/* IEEE 802.11ad (60gHz), channels 1..3 */
266 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
267 	}
268 };
269 
270 /* protected by RTNL */
271 static const struct ieee80211_regdomain *cfg80211_world_regdom =
272 	&world_regdom;
273 
274 static char *ieee80211_regdom = "00";
275 static char user_alpha2[2];
276 
277 module_param(ieee80211_regdom, charp, 0444);
278 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
279 
280 static void reg_free_request(struct regulatory_request *request)
281 {
282 	if (request != get_last_request())
283 		kfree(request);
284 }
285 
286 static void reg_free_last_request(void)
287 {
288 	struct regulatory_request *lr = get_last_request();
289 
290 	if (lr != &core_request_world && lr)
291 		kfree_rcu(lr, rcu_head);
292 }
293 
294 static void reg_update_last_request(struct regulatory_request *request)
295 {
296 	struct regulatory_request *lr;
297 
298 	lr = get_last_request();
299 	if (lr == request)
300 		return;
301 
302 	reg_free_last_request();
303 	rcu_assign_pointer(last_request, request);
304 }
305 
306 static void reset_regdomains(bool full_reset,
307 			     const struct ieee80211_regdomain *new_regdom)
308 {
309 	const struct ieee80211_regdomain *r;
310 
311 	ASSERT_RTNL();
312 
313 	r = get_cfg80211_regdom();
314 
315 	/* avoid freeing static information or freeing something twice */
316 	if (r == cfg80211_world_regdom)
317 		r = NULL;
318 	if (cfg80211_world_regdom == &world_regdom)
319 		cfg80211_world_regdom = NULL;
320 	if (r == &world_regdom)
321 		r = NULL;
322 
323 	rcu_free_regdom(r);
324 	rcu_free_regdom(cfg80211_world_regdom);
325 
326 	cfg80211_world_regdom = &world_regdom;
327 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
328 
329 	if (!full_reset)
330 		return;
331 
332 	reg_update_last_request(&core_request_world);
333 }
334 
335 /*
336  * Dynamic world regulatory domain requested by the wireless
337  * core upon initialization
338  */
339 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
340 {
341 	struct regulatory_request *lr;
342 
343 	lr = get_last_request();
344 
345 	WARN_ON(!lr);
346 
347 	reset_regdomains(false, rd);
348 
349 	cfg80211_world_regdom = rd;
350 }
351 
352 bool is_world_regdom(const char *alpha2)
353 {
354 	if (!alpha2)
355 		return false;
356 	return alpha2[0] == '0' && alpha2[1] == '0';
357 }
358 
359 static bool is_alpha2_set(const char *alpha2)
360 {
361 	if (!alpha2)
362 		return false;
363 	return alpha2[0] && alpha2[1];
364 }
365 
366 static bool is_unknown_alpha2(const char *alpha2)
367 {
368 	if (!alpha2)
369 		return false;
370 	/*
371 	 * Special case where regulatory domain was built by driver
372 	 * but a specific alpha2 cannot be determined
373 	 */
374 	return alpha2[0] == '9' && alpha2[1] == '9';
375 }
376 
377 static bool is_intersected_alpha2(const char *alpha2)
378 {
379 	if (!alpha2)
380 		return false;
381 	/*
382 	 * Special case where regulatory domain is the
383 	 * result of an intersection between two regulatory domain
384 	 * structures
385 	 */
386 	return alpha2[0] == '9' && alpha2[1] == '8';
387 }
388 
389 static bool is_an_alpha2(const char *alpha2)
390 {
391 	if (!alpha2)
392 		return false;
393 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
394 }
395 
396 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
397 {
398 	if (!alpha2_x || !alpha2_y)
399 		return false;
400 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
401 }
402 
403 static bool regdom_changes(const char *alpha2)
404 {
405 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
406 
407 	if (!r)
408 		return true;
409 	return !alpha2_equal(r->alpha2, alpha2);
410 }
411 
412 /*
413  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
414  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
415  * has ever been issued.
416  */
417 static bool is_user_regdom_saved(void)
418 {
419 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
420 		return false;
421 
422 	/* This would indicate a mistake on the design */
423 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
424 		 "Unexpected user alpha2: %c%c\n",
425 		 user_alpha2[0], user_alpha2[1]))
426 		return false;
427 
428 	return true;
429 }
430 
431 static const struct ieee80211_regdomain *
432 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
433 {
434 	struct ieee80211_regdomain *regd;
435 	int size_of_regd;
436 	unsigned int i;
437 
438 	size_of_regd =
439 		sizeof(struct ieee80211_regdomain) +
440 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
441 
442 	regd = kzalloc(size_of_regd, GFP_KERNEL);
443 	if (!regd)
444 		return ERR_PTR(-ENOMEM);
445 
446 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
447 
448 	for (i = 0; i < src_regd->n_reg_rules; i++)
449 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
450 		       sizeof(struct ieee80211_reg_rule));
451 
452 	return regd;
453 }
454 
455 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
456 struct reg_regdb_search_request {
457 	char alpha2[2];
458 	struct list_head list;
459 };
460 
461 static LIST_HEAD(reg_regdb_search_list);
462 static DEFINE_MUTEX(reg_regdb_search_mutex);
463 
464 static void reg_regdb_search(struct work_struct *work)
465 {
466 	struct reg_regdb_search_request *request;
467 	const struct ieee80211_regdomain *curdom, *regdom = NULL;
468 	int i;
469 
470 	rtnl_lock();
471 
472 	mutex_lock(&reg_regdb_search_mutex);
473 	while (!list_empty(&reg_regdb_search_list)) {
474 		request = list_first_entry(&reg_regdb_search_list,
475 					   struct reg_regdb_search_request,
476 					   list);
477 		list_del(&request->list);
478 
479 		for (i = 0; i < reg_regdb_size; i++) {
480 			curdom = reg_regdb[i];
481 
482 			if (alpha2_equal(request->alpha2, curdom->alpha2)) {
483 				regdom = reg_copy_regd(curdom);
484 				break;
485 			}
486 		}
487 
488 		kfree(request);
489 	}
490 	mutex_unlock(&reg_regdb_search_mutex);
491 
492 	if (!IS_ERR_OR_NULL(regdom))
493 		set_regdom(regdom, REGD_SOURCE_INTERNAL_DB);
494 
495 	rtnl_unlock();
496 }
497 
498 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
499 
500 static void reg_regdb_query(const char *alpha2)
501 {
502 	struct reg_regdb_search_request *request;
503 
504 	if (!alpha2)
505 		return;
506 
507 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
508 	if (!request)
509 		return;
510 
511 	memcpy(request->alpha2, alpha2, 2);
512 
513 	mutex_lock(&reg_regdb_search_mutex);
514 	list_add_tail(&request->list, &reg_regdb_search_list);
515 	mutex_unlock(&reg_regdb_search_mutex);
516 
517 	schedule_work(&reg_regdb_work);
518 }
519 
520 /* Feel free to add any other sanity checks here */
521 static void reg_regdb_size_check(void)
522 {
523 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
524 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
525 }
526 #else
527 static inline void reg_regdb_size_check(void) {}
528 static inline void reg_regdb_query(const char *alpha2) {}
529 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
530 
531 /*
532  * This lets us keep regulatory code which is updated on a regulatory
533  * basis in userspace.
534  */
535 static int call_crda(const char *alpha2)
536 {
537 	char country[12];
538 	char *env[] = { country, NULL };
539 
540 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
541 		 alpha2[0], alpha2[1]);
542 
543 	/* query internal regulatory database (if it exists) */
544 	reg_regdb_query(alpha2);
545 
546 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
547 		pr_info("Exceeded CRDA call max attempts. Not calling CRDA\n");
548 		return -EINVAL;
549 	}
550 
551 	if (!is_world_regdom((char *) alpha2))
552 		pr_info("Calling CRDA for country: %c%c\n",
553 			alpha2[0], alpha2[1]);
554 	else
555 		pr_info("Calling CRDA to update world regulatory domain\n");
556 
557 	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
558 }
559 
560 static enum reg_request_treatment
561 reg_call_crda(struct regulatory_request *request)
562 {
563 	if (call_crda(request->alpha2))
564 		return REG_REQ_IGNORE;
565 
566 	queue_delayed_work(system_power_efficient_wq,
567 			   &reg_timeout, msecs_to_jiffies(3142));
568 	return REG_REQ_OK;
569 }
570 
571 bool reg_is_valid_request(const char *alpha2)
572 {
573 	struct regulatory_request *lr = get_last_request();
574 
575 	if (!lr || lr->processed)
576 		return false;
577 
578 	return alpha2_equal(lr->alpha2, alpha2);
579 }
580 
581 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
582 {
583 	struct regulatory_request *lr = get_last_request();
584 
585 	/*
586 	 * Follow the driver's regulatory domain, if present, unless a country
587 	 * IE has been processed or a user wants to help complaince further
588 	 */
589 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
590 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
591 	    wiphy->regd)
592 		return get_wiphy_regdom(wiphy);
593 
594 	return get_cfg80211_regdom();
595 }
596 
597 static unsigned int
598 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
599 				 const struct ieee80211_reg_rule *rule)
600 {
601 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
602 	const struct ieee80211_freq_range *freq_range_tmp;
603 	const struct ieee80211_reg_rule *tmp;
604 	u32 start_freq, end_freq, idx, no;
605 
606 	for (idx = 0; idx < rd->n_reg_rules; idx++)
607 		if (rule == &rd->reg_rules[idx])
608 			break;
609 
610 	if (idx == rd->n_reg_rules)
611 		return 0;
612 
613 	/* get start_freq */
614 	no = idx;
615 
616 	while (no) {
617 		tmp = &rd->reg_rules[--no];
618 		freq_range_tmp = &tmp->freq_range;
619 
620 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
621 			break;
622 
623 		freq_range = freq_range_tmp;
624 	}
625 
626 	start_freq = freq_range->start_freq_khz;
627 
628 	/* get end_freq */
629 	freq_range = &rule->freq_range;
630 	no = idx;
631 
632 	while (no < rd->n_reg_rules - 1) {
633 		tmp = &rd->reg_rules[++no];
634 		freq_range_tmp = &tmp->freq_range;
635 
636 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
637 			break;
638 
639 		freq_range = freq_range_tmp;
640 	}
641 
642 	end_freq = freq_range->end_freq_khz;
643 
644 	return end_freq - start_freq;
645 }
646 
647 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
648 				   const struct ieee80211_reg_rule *rule)
649 {
650 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
651 
652 	if (rule->flags & NL80211_RRF_NO_160MHZ)
653 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
654 	if (rule->flags & NL80211_RRF_NO_80MHZ)
655 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
656 
657 	/*
658 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
659 	 * are not allowed.
660 	 */
661 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
662 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
663 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
664 
665 	return bw;
666 }
667 
668 /* Sanity check on a regulatory rule */
669 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
670 {
671 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
672 	u32 freq_diff;
673 
674 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
675 		return false;
676 
677 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
678 		return false;
679 
680 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
681 
682 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
683 	    freq_range->max_bandwidth_khz > freq_diff)
684 		return false;
685 
686 	return true;
687 }
688 
689 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
690 {
691 	const struct ieee80211_reg_rule *reg_rule = NULL;
692 	unsigned int i;
693 
694 	if (!rd->n_reg_rules)
695 		return false;
696 
697 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
698 		return false;
699 
700 	for (i = 0; i < rd->n_reg_rules; i++) {
701 		reg_rule = &rd->reg_rules[i];
702 		if (!is_valid_reg_rule(reg_rule))
703 			return false;
704 	}
705 
706 	return true;
707 }
708 
709 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
710 			    u32 center_freq_khz, u32 bw_khz)
711 {
712 	u32 start_freq_khz, end_freq_khz;
713 
714 	start_freq_khz = center_freq_khz - (bw_khz/2);
715 	end_freq_khz = center_freq_khz + (bw_khz/2);
716 
717 	if (start_freq_khz >= freq_range->start_freq_khz &&
718 	    end_freq_khz <= freq_range->end_freq_khz)
719 		return true;
720 
721 	return false;
722 }
723 
724 /**
725  * freq_in_rule_band - tells us if a frequency is in a frequency band
726  * @freq_range: frequency rule we want to query
727  * @freq_khz: frequency we are inquiring about
728  *
729  * This lets us know if a specific frequency rule is or is not relevant to
730  * a specific frequency's band. Bands are device specific and artificial
731  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
732  * however it is safe for now to assume that a frequency rule should not be
733  * part of a frequency's band if the start freq or end freq are off by more
734  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
735  * 60 GHz band.
736  * This resolution can be lowered and should be considered as we add
737  * regulatory rule support for other "bands".
738  **/
739 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
740 			      u32 freq_khz)
741 {
742 #define ONE_GHZ_IN_KHZ	1000000
743 	/*
744 	 * From 802.11ad: directional multi-gigabit (DMG):
745 	 * Pertaining to operation in a frequency band containing a channel
746 	 * with the Channel starting frequency above 45 GHz.
747 	 */
748 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
749 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
750 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
751 		return true;
752 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
753 		return true;
754 	return false;
755 #undef ONE_GHZ_IN_KHZ
756 }
757 
758 /*
759  * Later on we can perhaps use the more restrictive DFS
760  * region but we don't have information for that yet so
761  * for now simply disallow conflicts.
762  */
763 static enum nl80211_dfs_regions
764 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
765 			 const enum nl80211_dfs_regions dfs_region2)
766 {
767 	if (dfs_region1 != dfs_region2)
768 		return NL80211_DFS_UNSET;
769 	return dfs_region1;
770 }
771 
772 /*
773  * Helper for regdom_intersect(), this does the real
774  * mathematical intersection fun
775  */
776 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
777 			       const struct ieee80211_regdomain *rd2,
778 			       const struct ieee80211_reg_rule *rule1,
779 			       const struct ieee80211_reg_rule *rule2,
780 			       struct ieee80211_reg_rule *intersected_rule)
781 {
782 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
783 	struct ieee80211_freq_range *freq_range;
784 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
785 	struct ieee80211_power_rule *power_rule;
786 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
787 
788 	freq_range1 = &rule1->freq_range;
789 	freq_range2 = &rule2->freq_range;
790 	freq_range = &intersected_rule->freq_range;
791 
792 	power_rule1 = &rule1->power_rule;
793 	power_rule2 = &rule2->power_rule;
794 	power_rule = &intersected_rule->power_rule;
795 
796 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
797 					 freq_range2->start_freq_khz);
798 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
799 				       freq_range2->end_freq_khz);
800 
801 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
802 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
803 
804 	if (rule1->flags & NL80211_RRF_AUTO_BW)
805 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
806 	if (rule2->flags & NL80211_RRF_AUTO_BW)
807 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
808 
809 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
810 
811 	intersected_rule->flags = rule1->flags | rule2->flags;
812 
813 	/*
814 	 * In case NL80211_RRF_AUTO_BW requested for both rules
815 	 * set AUTO_BW in intersected rule also. Next we will
816 	 * calculate BW correctly in handle_channel function.
817 	 * In other case remove AUTO_BW flag while we calculate
818 	 * maximum bandwidth correctly and auto calculation is
819 	 * not required.
820 	 */
821 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
822 	    (rule2->flags & NL80211_RRF_AUTO_BW))
823 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
824 	else
825 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
826 
827 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
828 	if (freq_range->max_bandwidth_khz > freq_diff)
829 		freq_range->max_bandwidth_khz = freq_diff;
830 
831 	power_rule->max_eirp = min(power_rule1->max_eirp,
832 		power_rule2->max_eirp);
833 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
834 		power_rule2->max_antenna_gain);
835 
836 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
837 					   rule2->dfs_cac_ms);
838 
839 	if (!is_valid_reg_rule(intersected_rule))
840 		return -EINVAL;
841 
842 	return 0;
843 }
844 
845 /* check whether old rule contains new rule */
846 static bool rule_contains(struct ieee80211_reg_rule *r1,
847 			  struct ieee80211_reg_rule *r2)
848 {
849 	/* for simplicity, currently consider only same flags */
850 	if (r1->flags != r2->flags)
851 		return false;
852 
853 	/* verify r1 is more restrictive */
854 	if ((r1->power_rule.max_antenna_gain >
855 	     r2->power_rule.max_antenna_gain) ||
856 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
857 		return false;
858 
859 	/* make sure r2's range is contained within r1 */
860 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
861 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
862 		return false;
863 
864 	/* and finally verify that r1.max_bw >= r2.max_bw */
865 	if (r1->freq_range.max_bandwidth_khz <
866 	    r2->freq_range.max_bandwidth_khz)
867 		return false;
868 
869 	return true;
870 }
871 
872 /* add or extend current rules. do nothing if rule is already contained */
873 static void add_rule(struct ieee80211_reg_rule *rule,
874 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
875 {
876 	struct ieee80211_reg_rule *tmp_rule;
877 	int i;
878 
879 	for (i = 0; i < *n_rules; i++) {
880 		tmp_rule = &reg_rules[i];
881 		/* rule is already contained - do nothing */
882 		if (rule_contains(tmp_rule, rule))
883 			return;
884 
885 		/* extend rule if possible */
886 		if (rule_contains(rule, tmp_rule)) {
887 			memcpy(tmp_rule, rule, sizeof(*rule));
888 			return;
889 		}
890 	}
891 
892 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
893 	(*n_rules)++;
894 }
895 
896 /**
897  * regdom_intersect - do the intersection between two regulatory domains
898  * @rd1: first regulatory domain
899  * @rd2: second regulatory domain
900  *
901  * Use this function to get the intersection between two regulatory domains.
902  * Once completed we will mark the alpha2 for the rd as intersected, "98",
903  * as no one single alpha2 can represent this regulatory domain.
904  *
905  * Returns a pointer to the regulatory domain structure which will hold the
906  * resulting intersection of rules between rd1 and rd2. We will
907  * kzalloc() this structure for you.
908  */
909 static struct ieee80211_regdomain *
910 regdom_intersect(const struct ieee80211_regdomain *rd1,
911 		 const struct ieee80211_regdomain *rd2)
912 {
913 	int r, size_of_regd;
914 	unsigned int x, y;
915 	unsigned int num_rules = 0;
916 	const struct ieee80211_reg_rule *rule1, *rule2;
917 	struct ieee80211_reg_rule intersected_rule;
918 	struct ieee80211_regdomain *rd;
919 
920 	if (!rd1 || !rd2)
921 		return NULL;
922 
923 	/*
924 	 * First we get a count of the rules we'll need, then we actually
925 	 * build them. This is to so we can malloc() and free() a
926 	 * regdomain once. The reason we use reg_rules_intersect() here
927 	 * is it will return -EINVAL if the rule computed makes no sense.
928 	 * All rules that do check out OK are valid.
929 	 */
930 
931 	for (x = 0; x < rd1->n_reg_rules; x++) {
932 		rule1 = &rd1->reg_rules[x];
933 		for (y = 0; y < rd2->n_reg_rules; y++) {
934 			rule2 = &rd2->reg_rules[y];
935 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
936 						 &intersected_rule))
937 				num_rules++;
938 		}
939 	}
940 
941 	if (!num_rules)
942 		return NULL;
943 
944 	size_of_regd = sizeof(struct ieee80211_regdomain) +
945 		       num_rules * sizeof(struct ieee80211_reg_rule);
946 
947 	rd = kzalloc(size_of_regd, GFP_KERNEL);
948 	if (!rd)
949 		return NULL;
950 
951 	for (x = 0; x < rd1->n_reg_rules; x++) {
952 		rule1 = &rd1->reg_rules[x];
953 		for (y = 0; y < rd2->n_reg_rules; y++) {
954 			rule2 = &rd2->reg_rules[y];
955 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
956 						&intersected_rule);
957 			/*
958 			 * No need to memset here the intersected rule here as
959 			 * we're not using the stack anymore
960 			 */
961 			if (r)
962 				continue;
963 
964 			add_rule(&intersected_rule, rd->reg_rules,
965 				 &rd->n_reg_rules);
966 		}
967 	}
968 
969 	rd->alpha2[0] = '9';
970 	rd->alpha2[1] = '8';
971 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
972 						  rd2->dfs_region);
973 
974 	return rd;
975 }
976 
977 /*
978  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
979  * want to just have the channel structure use these
980  */
981 static u32 map_regdom_flags(u32 rd_flags)
982 {
983 	u32 channel_flags = 0;
984 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
985 		channel_flags |= IEEE80211_CHAN_NO_IR;
986 	if (rd_flags & NL80211_RRF_DFS)
987 		channel_flags |= IEEE80211_CHAN_RADAR;
988 	if (rd_flags & NL80211_RRF_NO_OFDM)
989 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
990 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
991 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
992 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
993 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
994 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
995 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
996 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
997 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
998 	if (rd_flags & NL80211_RRF_NO_80MHZ)
999 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1000 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1001 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1002 	return channel_flags;
1003 }
1004 
1005 static const struct ieee80211_reg_rule *
1006 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
1007 		   const struct ieee80211_regdomain *regd)
1008 {
1009 	int i;
1010 	bool band_rule_found = false;
1011 	bool bw_fits = false;
1012 
1013 	if (!regd)
1014 		return ERR_PTR(-EINVAL);
1015 
1016 	for (i = 0; i < regd->n_reg_rules; i++) {
1017 		const struct ieee80211_reg_rule *rr;
1018 		const struct ieee80211_freq_range *fr = NULL;
1019 
1020 		rr = &regd->reg_rules[i];
1021 		fr = &rr->freq_range;
1022 
1023 		/*
1024 		 * We only need to know if one frequency rule was
1025 		 * was in center_freq's band, that's enough, so lets
1026 		 * not overwrite it once found
1027 		 */
1028 		if (!band_rule_found)
1029 			band_rule_found = freq_in_rule_band(fr, center_freq);
1030 
1031 		bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
1032 
1033 		if (band_rule_found && bw_fits)
1034 			return rr;
1035 	}
1036 
1037 	if (!band_rule_found)
1038 		return ERR_PTR(-ERANGE);
1039 
1040 	return ERR_PTR(-EINVAL);
1041 }
1042 
1043 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1044 					       u32 center_freq)
1045 {
1046 	const struct ieee80211_regdomain *regd;
1047 
1048 	regd = reg_get_regdomain(wiphy);
1049 
1050 	return freq_reg_info_regd(wiphy, center_freq, regd);
1051 }
1052 EXPORT_SYMBOL(freq_reg_info);
1053 
1054 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1055 {
1056 	switch (initiator) {
1057 	case NL80211_REGDOM_SET_BY_CORE:
1058 		return "core";
1059 	case NL80211_REGDOM_SET_BY_USER:
1060 		return "user";
1061 	case NL80211_REGDOM_SET_BY_DRIVER:
1062 		return "driver";
1063 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1064 		return "country IE";
1065 	default:
1066 		WARN_ON(1);
1067 		return "bug";
1068 	}
1069 }
1070 EXPORT_SYMBOL(reg_initiator_name);
1071 
1072 #ifdef CONFIG_CFG80211_REG_DEBUG
1073 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1074 				    struct ieee80211_channel *chan,
1075 				    const struct ieee80211_reg_rule *reg_rule)
1076 {
1077 	const struct ieee80211_power_rule *power_rule;
1078 	const struct ieee80211_freq_range *freq_range;
1079 	char max_antenna_gain[32], bw[32];
1080 
1081 	power_rule = &reg_rule->power_rule;
1082 	freq_range = &reg_rule->freq_range;
1083 
1084 	if (!power_rule->max_antenna_gain)
1085 		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1086 	else
1087 		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1088 			 power_rule->max_antenna_gain);
1089 
1090 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1091 		snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1092 			 freq_range->max_bandwidth_khz,
1093 			 reg_get_max_bandwidth(regd, reg_rule));
1094 	else
1095 		snprintf(bw, sizeof(bw), "%d KHz",
1096 			 freq_range->max_bandwidth_khz);
1097 
1098 	REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1099 		      chan->center_freq);
1100 
1101 	REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1102 		      freq_range->start_freq_khz, freq_range->end_freq_khz,
1103 		      bw, max_antenna_gain,
1104 		      power_rule->max_eirp);
1105 }
1106 #else
1107 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1108 				    struct ieee80211_channel *chan,
1109 				    const struct ieee80211_reg_rule *reg_rule)
1110 {
1111 	return;
1112 }
1113 #endif
1114 
1115 /*
1116  * Note that right now we assume the desired channel bandwidth
1117  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1118  * per channel, the primary and the extension channel).
1119  */
1120 static void handle_channel(struct wiphy *wiphy,
1121 			   enum nl80211_reg_initiator initiator,
1122 			   struct ieee80211_channel *chan)
1123 {
1124 	u32 flags, bw_flags = 0;
1125 	const struct ieee80211_reg_rule *reg_rule = NULL;
1126 	const struct ieee80211_power_rule *power_rule = NULL;
1127 	const struct ieee80211_freq_range *freq_range = NULL;
1128 	struct wiphy *request_wiphy = NULL;
1129 	struct regulatory_request *lr = get_last_request();
1130 	const struct ieee80211_regdomain *regd;
1131 	u32 max_bandwidth_khz;
1132 
1133 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1134 
1135 	flags = chan->orig_flags;
1136 
1137 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1138 	if (IS_ERR(reg_rule)) {
1139 		/*
1140 		 * We will disable all channels that do not match our
1141 		 * received regulatory rule unless the hint is coming
1142 		 * from a Country IE and the Country IE had no information
1143 		 * about a band. The IEEE 802.11 spec allows for an AP
1144 		 * to send only a subset of the regulatory rules allowed,
1145 		 * so an AP in the US that only supports 2.4 GHz may only send
1146 		 * a country IE with information for the 2.4 GHz band
1147 		 * while 5 GHz is still supported.
1148 		 */
1149 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1150 		    PTR_ERR(reg_rule) == -ERANGE)
1151 			return;
1152 
1153 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1154 		    request_wiphy && request_wiphy == wiphy &&
1155 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1156 			REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1157 				      chan->center_freq);
1158 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1159 			chan->flags = chan->orig_flags;
1160 		} else {
1161 			REG_DBG_PRINT("Disabling freq %d MHz\n",
1162 				      chan->center_freq);
1163 			chan->flags |= IEEE80211_CHAN_DISABLED;
1164 		}
1165 		return;
1166 	}
1167 
1168 	regd = reg_get_regdomain(wiphy);
1169 	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1170 
1171 	power_rule = &reg_rule->power_rule;
1172 	freq_range = &reg_rule->freq_range;
1173 
1174 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1175 	/* Check if auto calculation requested */
1176 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1177 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1178 
1179 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1180 		bw_flags = IEEE80211_CHAN_NO_HT40;
1181 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1182 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1183 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1184 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1185 
1186 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1187 	    request_wiphy && request_wiphy == wiphy &&
1188 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1189 		/*
1190 		 * This guarantees the driver's requested regulatory domain
1191 		 * will always be used as a base for further regulatory
1192 		 * settings
1193 		 */
1194 		chan->flags = chan->orig_flags =
1195 			map_regdom_flags(reg_rule->flags) | bw_flags;
1196 		chan->max_antenna_gain = chan->orig_mag =
1197 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1198 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1199 			(int) MBM_TO_DBM(power_rule->max_eirp);
1200 
1201 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1202 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1203 			if (reg_rule->dfs_cac_ms)
1204 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1205 		}
1206 
1207 		return;
1208 	}
1209 
1210 	chan->dfs_state = NL80211_DFS_USABLE;
1211 	chan->dfs_state_entered = jiffies;
1212 
1213 	chan->beacon_found = false;
1214 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1215 	chan->max_antenna_gain =
1216 		min_t(int, chan->orig_mag,
1217 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1218 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1219 
1220 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1221 		if (reg_rule->dfs_cac_ms)
1222 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1223 		else
1224 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1225 	}
1226 
1227 	if (chan->orig_mpwr) {
1228 		/*
1229 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1230 		 * will always follow the passed country IE power settings.
1231 		 */
1232 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1233 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1234 			chan->max_power = chan->max_reg_power;
1235 		else
1236 			chan->max_power = min(chan->orig_mpwr,
1237 					      chan->max_reg_power);
1238 	} else
1239 		chan->max_power = chan->max_reg_power;
1240 }
1241 
1242 static void handle_band(struct wiphy *wiphy,
1243 			enum nl80211_reg_initiator initiator,
1244 			struct ieee80211_supported_band *sband)
1245 {
1246 	unsigned int i;
1247 
1248 	if (!sband)
1249 		return;
1250 
1251 	for (i = 0; i < sband->n_channels; i++)
1252 		handle_channel(wiphy, initiator, &sband->channels[i]);
1253 }
1254 
1255 static bool reg_request_cell_base(struct regulatory_request *request)
1256 {
1257 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1258 		return false;
1259 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1260 }
1261 
1262 bool reg_last_request_cell_base(void)
1263 {
1264 	return reg_request_cell_base(get_last_request());
1265 }
1266 
1267 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1268 /* Core specific check */
1269 static enum reg_request_treatment
1270 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1271 {
1272 	struct regulatory_request *lr = get_last_request();
1273 
1274 	if (!reg_num_devs_support_basehint)
1275 		return REG_REQ_IGNORE;
1276 
1277 	if (reg_request_cell_base(lr) &&
1278 	    !regdom_changes(pending_request->alpha2))
1279 		return REG_REQ_ALREADY_SET;
1280 
1281 	return REG_REQ_OK;
1282 }
1283 
1284 /* Device specific check */
1285 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1286 {
1287 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1288 }
1289 #else
1290 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1291 {
1292 	return REG_REQ_IGNORE;
1293 }
1294 
1295 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1296 {
1297 	return true;
1298 }
1299 #endif
1300 
1301 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1302 {
1303 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1304 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1305 		return true;
1306 	return false;
1307 }
1308 
1309 static bool ignore_reg_update(struct wiphy *wiphy,
1310 			      enum nl80211_reg_initiator initiator)
1311 {
1312 	struct regulatory_request *lr = get_last_request();
1313 
1314 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1315 		return true;
1316 
1317 	if (!lr) {
1318 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1319 			      "since last_request is not set\n",
1320 			      reg_initiator_name(initiator));
1321 		return true;
1322 	}
1323 
1324 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1325 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1326 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1327 			      "since the driver uses its own custom "
1328 			      "regulatory domain\n",
1329 			      reg_initiator_name(initiator));
1330 		return true;
1331 	}
1332 
1333 	/*
1334 	 * wiphy->regd will be set once the device has its own
1335 	 * desired regulatory domain set
1336 	 */
1337 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1338 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1339 	    !is_world_regdom(lr->alpha2)) {
1340 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1341 			      "since the driver requires its own regulatory "
1342 			      "domain to be set first\n",
1343 			      reg_initiator_name(initiator));
1344 		return true;
1345 	}
1346 
1347 	if (reg_request_cell_base(lr))
1348 		return reg_dev_ignore_cell_hint(wiphy);
1349 
1350 	return false;
1351 }
1352 
1353 static bool reg_is_world_roaming(struct wiphy *wiphy)
1354 {
1355 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1356 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1357 	struct regulatory_request *lr = get_last_request();
1358 
1359 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1360 		return true;
1361 
1362 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1363 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1364 		return true;
1365 
1366 	return false;
1367 }
1368 
1369 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1370 			      struct reg_beacon *reg_beacon)
1371 {
1372 	struct ieee80211_supported_band *sband;
1373 	struct ieee80211_channel *chan;
1374 	bool channel_changed = false;
1375 	struct ieee80211_channel chan_before;
1376 
1377 	sband = wiphy->bands[reg_beacon->chan.band];
1378 	chan = &sband->channels[chan_idx];
1379 
1380 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1381 		return;
1382 
1383 	if (chan->beacon_found)
1384 		return;
1385 
1386 	chan->beacon_found = true;
1387 
1388 	if (!reg_is_world_roaming(wiphy))
1389 		return;
1390 
1391 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1392 		return;
1393 
1394 	chan_before.center_freq = chan->center_freq;
1395 	chan_before.flags = chan->flags;
1396 
1397 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1398 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1399 		channel_changed = true;
1400 	}
1401 
1402 	if (channel_changed)
1403 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1404 }
1405 
1406 /*
1407  * Called when a scan on a wiphy finds a beacon on
1408  * new channel
1409  */
1410 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1411 				    struct reg_beacon *reg_beacon)
1412 {
1413 	unsigned int i;
1414 	struct ieee80211_supported_band *sband;
1415 
1416 	if (!wiphy->bands[reg_beacon->chan.band])
1417 		return;
1418 
1419 	sband = wiphy->bands[reg_beacon->chan.band];
1420 
1421 	for (i = 0; i < sband->n_channels; i++)
1422 		handle_reg_beacon(wiphy, i, reg_beacon);
1423 }
1424 
1425 /*
1426  * Called upon reg changes or a new wiphy is added
1427  */
1428 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1429 {
1430 	unsigned int i;
1431 	struct ieee80211_supported_band *sband;
1432 	struct reg_beacon *reg_beacon;
1433 
1434 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1435 		if (!wiphy->bands[reg_beacon->chan.band])
1436 			continue;
1437 		sband = wiphy->bands[reg_beacon->chan.band];
1438 		for (i = 0; i < sband->n_channels; i++)
1439 			handle_reg_beacon(wiphy, i, reg_beacon);
1440 	}
1441 }
1442 
1443 /* Reap the advantages of previously found beacons */
1444 static void reg_process_beacons(struct wiphy *wiphy)
1445 {
1446 	/*
1447 	 * Means we are just firing up cfg80211, so no beacons would
1448 	 * have been processed yet.
1449 	 */
1450 	if (!last_request)
1451 		return;
1452 	wiphy_update_beacon_reg(wiphy);
1453 }
1454 
1455 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1456 {
1457 	if (!chan)
1458 		return false;
1459 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1460 		return false;
1461 	/* This would happen when regulatory rules disallow HT40 completely */
1462 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1463 		return false;
1464 	return true;
1465 }
1466 
1467 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1468 					 struct ieee80211_channel *channel)
1469 {
1470 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1471 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1472 	unsigned int i;
1473 
1474 	if (!is_ht40_allowed(channel)) {
1475 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1476 		return;
1477 	}
1478 
1479 	/*
1480 	 * We need to ensure the extension channels exist to
1481 	 * be able to use HT40- or HT40+, this finds them (or not)
1482 	 */
1483 	for (i = 0; i < sband->n_channels; i++) {
1484 		struct ieee80211_channel *c = &sband->channels[i];
1485 
1486 		if (c->center_freq == (channel->center_freq - 20))
1487 			channel_before = c;
1488 		if (c->center_freq == (channel->center_freq + 20))
1489 			channel_after = c;
1490 	}
1491 
1492 	/*
1493 	 * Please note that this assumes target bandwidth is 20 MHz,
1494 	 * if that ever changes we also need to change the below logic
1495 	 * to include that as well.
1496 	 */
1497 	if (!is_ht40_allowed(channel_before))
1498 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1499 	else
1500 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1501 
1502 	if (!is_ht40_allowed(channel_after))
1503 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1504 	else
1505 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1506 }
1507 
1508 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1509 				      struct ieee80211_supported_band *sband)
1510 {
1511 	unsigned int i;
1512 
1513 	if (!sband)
1514 		return;
1515 
1516 	for (i = 0; i < sband->n_channels; i++)
1517 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1518 }
1519 
1520 static void reg_process_ht_flags(struct wiphy *wiphy)
1521 {
1522 	enum ieee80211_band band;
1523 
1524 	if (!wiphy)
1525 		return;
1526 
1527 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1528 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1529 }
1530 
1531 static void reg_call_notifier(struct wiphy *wiphy,
1532 			      struct regulatory_request *request)
1533 {
1534 	if (wiphy->reg_notifier)
1535 		wiphy->reg_notifier(wiphy, request);
1536 }
1537 
1538 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1539 {
1540 	struct cfg80211_chan_def chandef;
1541 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1542 	enum nl80211_iftype iftype;
1543 
1544 	wdev_lock(wdev);
1545 	iftype = wdev->iftype;
1546 
1547 	/* make sure the interface is active */
1548 	if (!wdev->netdev || !netif_running(wdev->netdev))
1549 		goto wdev_inactive_unlock;
1550 
1551 	switch (iftype) {
1552 	case NL80211_IFTYPE_AP:
1553 	case NL80211_IFTYPE_P2P_GO:
1554 		if (!wdev->beacon_interval)
1555 			goto wdev_inactive_unlock;
1556 		chandef = wdev->chandef;
1557 		break;
1558 	case NL80211_IFTYPE_ADHOC:
1559 		if (!wdev->ssid_len)
1560 			goto wdev_inactive_unlock;
1561 		chandef = wdev->chandef;
1562 		break;
1563 	case NL80211_IFTYPE_STATION:
1564 	case NL80211_IFTYPE_P2P_CLIENT:
1565 		if (!wdev->current_bss ||
1566 		    !wdev->current_bss->pub.channel)
1567 			goto wdev_inactive_unlock;
1568 
1569 		if (!rdev->ops->get_channel ||
1570 		    rdev_get_channel(rdev, wdev, &chandef))
1571 			cfg80211_chandef_create(&chandef,
1572 						wdev->current_bss->pub.channel,
1573 						NL80211_CHAN_NO_HT);
1574 		break;
1575 	case NL80211_IFTYPE_MONITOR:
1576 	case NL80211_IFTYPE_AP_VLAN:
1577 	case NL80211_IFTYPE_P2P_DEVICE:
1578 		/* no enforcement required */
1579 		break;
1580 	default:
1581 		/* others not implemented for now */
1582 		WARN_ON(1);
1583 		break;
1584 	}
1585 
1586 	wdev_unlock(wdev);
1587 
1588 	switch (iftype) {
1589 	case NL80211_IFTYPE_AP:
1590 	case NL80211_IFTYPE_P2P_GO:
1591 	case NL80211_IFTYPE_ADHOC:
1592 		return cfg80211_reg_can_beacon(wiphy, &chandef, iftype);
1593 	case NL80211_IFTYPE_STATION:
1594 	case NL80211_IFTYPE_P2P_CLIENT:
1595 		return cfg80211_chandef_usable(wiphy, &chandef,
1596 					       IEEE80211_CHAN_DISABLED);
1597 	default:
1598 		break;
1599 	}
1600 
1601 	return true;
1602 
1603 wdev_inactive_unlock:
1604 	wdev_unlock(wdev);
1605 	return true;
1606 }
1607 
1608 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1609 {
1610 	struct wireless_dev *wdev;
1611 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1612 
1613 	ASSERT_RTNL();
1614 
1615 	list_for_each_entry(wdev, &rdev->wdev_list, list)
1616 		if (!reg_wdev_chan_valid(wiphy, wdev))
1617 			cfg80211_leave(rdev, wdev);
1618 }
1619 
1620 static void reg_check_chans_work(struct work_struct *work)
1621 {
1622 	struct cfg80211_registered_device *rdev;
1623 
1624 	REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1625 	rtnl_lock();
1626 
1627 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1628 		if (!(rdev->wiphy.regulatory_flags &
1629 		      REGULATORY_IGNORE_STALE_KICKOFF))
1630 			reg_leave_invalid_chans(&rdev->wiphy);
1631 
1632 	rtnl_unlock();
1633 }
1634 
1635 static void reg_check_channels(void)
1636 {
1637 	/*
1638 	 * Give usermode a chance to do something nicer (move to another
1639 	 * channel, orderly disconnection), before forcing a disconnection.
1640 	 */
1641 	mod_delayed_work(system_power_efficient_wq,
1642 			 &reg_check_chans,
1643 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1644 }
1645 
1646 static void wiphy_update_regulatory(struct wiphy *wiphy,
1647 				    enum nl80211_reg_initiator initiator)
1648 {
1649 	enum ieee80211_band band;
1650 	struct regulatory_request *lr = get_last_request();
1651 
1652 	if (ignore_reg_update(wiphy, initiator)) {
1653 		/*
1654 		 * Regulatory updates set by CORE are ignored for custom
1655 		 * regulatory cards. Let us notify the changes to the driver,
1656 		 * as some drivers used this to restore its orig_* reg domain.
1657 		 */
1658 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1659 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1660 			reg_call_notifier(wiphy, lr);
1661 		return;
1662 	}
1663 
1664 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1665 
1666 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1667 		handle_band(wiphy, initiator, wiphy->bands[band]);
1668 
1669 	reg_process_beacons(wiphy);
1670 	reg_process_ht_flags(wiphy);
1671 	reg_call_notifier(wiphy, lr);
1672 }
1673 
1674 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1675 {
1676 	struct cfg80211_registered_device *rdev;
1677 	struct wiphy *wiphy;
1678 
1679 	ASSERT_RTNL();
1680 
1681 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1682 		wiphy = &rdev->wiphy;
1683 		wiphy_update_regulatory(wiphy, initiator);
1684 	}
1685 
1686 	reg_check_channels();
1687 }
1688 
1689 static void handle_channel_custom(struct wiphy *wiphy,
1690 				  struct ieee80211_channel *chan,
1691 				  const struct ieee80211_regdomain *regd)
1692 {
1693 	u32 bw_flags = 0;
1694 	const struct ieee80211_reg_rule *reg_rule = NULL;
1695 	const struct ieee80211_power_rule *power_rule = NULL;
1696 	const struct ieee80211_freq_range *freq_range = NULL;
1697 	u32 max_bandwidth_khz;
1698 
1699 	reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1700 				      regd);
1701 
1702 	if (IS_ERR(reg_rule)) {
1703 		REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1704 			      chan->center_freq);
1705 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1706 			chan->flags |= IEEE80211_CHAN_DISABLED;
1707 		} else {
1708 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1709 			chan->flags = chan->orig_flags;
1710 		}
1711 		return;
1712 	}
1713 
1714 	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1715 
1716 	power_rule = &reg_rule->power_rule;
1717 	freq_range = &reg_rule->freq_range;
1718 
1719 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1720 	/* Check if auto calculation requested */
1721 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1722 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1723 
1724 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1725 		bw_flags = IEEE80211_CHAN_NO_HT40;
1726 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1727 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1728 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1729 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1730 
1731 	chan->dfs_state_entered = jiffies;
1732 	chan->dfs_state = NL80211_DFS_USABLE;
1733 
1734 	chan->beacon_found = false;
1735 
1736 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1737 		chan->flags = chan->orig_flags | bw_flags |
1738 			      map_regdom_flags(reg_rule->flags);
1739 	else
1740 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1741 
1742 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1743 	chan->max_reg_power = chan->max_power =
1744 		(int) MBM_TO_DBM(power_rule->max_eirp);
1745 
1746 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1747 		if (reg_rule->dfs_cac_ms)
1748 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1749 		else
1750 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1751 	}
1752 
1753 	chan->max_power = chan->max_reg_power;
1754 }
1755 
1756 static void handle_band_custom(struct wiphy *wiphy,
1757 			       struct ieee80211_supported_band *sband,
1758 			       const struct ieee80211_regdomain *regd)
1759 {
1760 	unsigned int i;
1761 
1762 	if (!sband)
1763 		return;
1764 
1765 	for (i = 0; i < sband->n_channels; i++)
1766 		handle_channel_custom(wiphy, &sband->channels[i], regd);
1767 }
1768 
1769 /* Used by drivers prior to wiphy registration */
1770 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1771 				   const struct ieee80211_regdomain *regd)
1772 {
1773 	enum ieee80211_band band;
1774 	unsigned int bands_set = 0;
1775 
1776 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1777 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
1778 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1779 
1780 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1781 		if (!wiphy->bands[band])
1782 			continue;
1783 		handle_band_custom(wiphy, wiphy->bands[band], regd);
1784 		bands_set++;
1785 	}
1786 
1787 	/*
1788 	 * no point in calling this if it won't have any effect
1789 	 * on your device's supported bands.
1790 	 */
1791 	WARN_ON(!bands_set);
1792 }
1793 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1794 
1795 static void reg_set_request_processed(void)
1796 {
1797 	bool need_more_processing = false;
1798 	struct regulatory_request *lr = get_last_request();
1799 
1800 	lr->processed = true;
1801 
1802 	spin_lock(&reg_requests_lock);
1803 	if (!list_empty(&reg_requests_list))
1804 		need_more_processing = true;
1805 	spin_unlock(&reg_requests_lock);
1806 
1807 	cancel_delayed_work(&reg_timeout);
1808 
1809 	if (need_more_processing)
1810 		schedule_work(&reg_work);
1811 }
1812 
1813 /**
1814  * reg_process_hint_core - process core regulatory requests
1815  * @pending_request: a pending core regulatory request
1816  *
1817  * The wireless subsystem can use this function to process
1818  * a regulatory request issued by the regulatory core.
1819  *
1820  * Returns one of the different reg request treatment values.
1821  */
1822 static enum reg_request_treatment
1823 reg_process_hint_core(struct regulatory_request *core_request)
1824 {
1825 
1826 	core_request->intersect = false;
1827 	core_request->processed = false;
1828 
1829 	reg_update_last_request(core_request);
1830 
1831 	return reg_call_crda(core_request);
1832 }
1833 
1834 static enum reg_request_treatment
1835 __reg_process_hint_user(struct regulatory_request *user_request)
1836 {
1837 	struct regulatory_request *lr = get_last_request();
1838 
1839 	if (reg_request_cell_base(user_request))
1840 		return reg_ignore_cell_hint(user_request);
1841 
1842 	if (reg_request_cell_base(lr))
1843 		return REG_REQ_IGNORE;
1844 
1845 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1846 		return REG_REQ_INTERSECT;
1847 	/*
1848 	 * If the user knows better the user should set the regdom
1849 	 * to their country before the IE is picked up
1850 	 */
1851 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1852 	    lr->intersect)
1853 		return REG_REQ_IGNORE;
1854 	/*
1855 	 * Process user requests only after previous user/driver/core
1856 	 * requests have been processed
1857 	 */
1858 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1859 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1860 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1861 	    regdom_changes(lr->alpha2))
1862 		return REG_REQ_IGNORE;
1863 
1864 	if (!regdom_changes(user_request->alpha2))
1865 		return REG_REQ_ALREADY_SET;
1866 
1867 	return REG_REQ_OK;
1868 }
1869 
1870 /**
1871  * reg_process_hint_user - process user regulatory requests
1872  * @user_request: a pending user regulatory request
1873  *
1874  * The wireless subsystem can use this function to process
1875  * a regulatory request initiated by userspace.
1876  *
1877  * Returns one of the different reg request treatment values.
1878  */
1879 static enum reg_request_treatment
1880 reg_process_hint_user(struct regulatory_request *user_request)
1881 {
1882 	enum reg_request_treatment treatment;
1883 
1884 	treatment = __reg_process_hint_user(user_request);
1885 	if (treatment == REG_REQ_IGNORE ||
1886 	    treatment == REG_REQ_ALREADY_SET) {
1887 		reg_free_request(user_request);
1888 		return treatment;
1889 	}
1890 
1891 	user_request->intersect = treatment == REG_REQ_INTERSECT;
1892 	user_request->processed = false;
1893 
1894 	reg_update_last_request(user_request);
1895 
1896 	user_alpha2[0] = user_request->alpha2[0];
1897 	user_alpha2[1] = user_request->alpha2[1];
1898 
1899 	return reg_call_crda(user_request);
1900 }
1901 
1902 static enum reg_request_treatment
1903 __reg_process_hint_driver(struct regulatory_request *driver_request)
1904 {
1905 	struct regulatory_request *lr = get_last_request();
1906 
1907 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1908 		if (regdom_changes(driver_request->alpha2))
1909 			return REG_REQ_OK;
1910 		return REG_REQ_ALREADY_SET;
1911 	}
1912 
1913 	/*
1914 	 * This would happen if you unplug and plug your card
1915 	 * back in or if you add a new device for which the previously
1916 	 * loaded card also agrees on the regulatory domain.
1917 	 */
1918 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1919 	    !regdom_changes(driver_request->alpha2))
1920 		return REG_REQ_ALREADY_SET;
1921 
1922 	return REG_REQ_INTERSECT;
1923 }
1924 
1925 /**
1926  * reg_process_hint_driver - process driver regulatory requests
1927  * @driver_request: a pending driver regulatory request
1928  *
1929  * The wireless subsystem can use this function to process
1930  * a regulatory request issued by an 802.11 driver.
1931  *
1932  * Returns one of the different reg request treatment values.
1933  */
1934 static enum reg_request_treatment
1935 reg_process_hint_driver(struct wiphy *wiphy,
1936 			struct regulatory_request *driver_request)
1937 {
1938 	const struct ieee80211_regdomain *regd, *tmp;
1939 	enum reg_request_treatment treatment;
1940 
1941 	treatment = __reg_process_hint_driver(driver_request);
1942 
1943 	switch (treatment) {
1944 	case REG_REQ_OK:
1945 		break;
1946 	case REG_REQ_IGNORE:
1947 		reg_free_request(driver_request);
1948 		return treatment;
1949 	case REG_REQ_INTERSECT:
1950 		/* fall through */
1951 	case REG_REQ_ALREADY_SET:
1952 		regd = reg_copy_regd(get_cfg80211_regdom());
1953 		if (IS_ERR(regd)) {
1954 			reg_free_request(driver_request);
1955 			return REG_REQ_IGNORE;
1956 		}
1957 
1958 		tmp = get_wiphy_regdom(wiphy);
1959 		rcu_assign_pointer(wiphy->regd, regd);
1960 		rcu_free_regdom(tmp);
1961 	}
1962 
1963 
1964 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
1965 	driver_request->processed = false;
1966 
1967 	reg_update_last_request(driver_request);
1968 
1969 	/*
1970 	 * Since CRDA will not be called in this case as we already
1971 	 * have applied the requested regulatory domain before we just
1972 	 * inform userspace we have processed the request
1973 	 */
1974 	if (treatment == REG_REQ_ALREADY_SET) {
1975 		nl80211_send_reg_change_event(driver_request);
1976 		reg_set_request_processed();
1977 		return treatment;
1978 	}
1979 
1980 	return reg_call_crda(driver_request);
1981 }
1982 
1983 static enum reg_request_treatment
1984 __reg_process_hint_country_ie(struct wiphy *wiphy,
1985 			      struct regulatory_request *country_ie_request)
1986 {
1987 	struct wiphy *last_wiphy = NULL;
1988 	struct regulatory_request *lr = get_last_request();
1989 
1990 	if (reg_request_cell_base(lr)) {
1991 		/* Trust a Cell base station over the AP's country IE */
1992 		if (regdom_changes(country_ie_request->alpha2))
1993 			return REG_REQ_IGNORE;
1994 		return REG_REQ_ALREADY_SET;
1995 	} else {
1996 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1997 			return REG_REQ_IGNORE;
1998 	}
1999 
2000 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2001 		return -EINVAL;
2002 
2003 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2004 		return REG_REQ_OK;
2005 
2006 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2007 
2008 	if (last_wiphy != wiphy) {
2009 		/*
2010 		 * Two cards with two APs claiming different
2011 		 * Country IE alpha2s. We could
2012 		 * intersect them, but that seems unlikely
2013 		 * to be correct. Reject second one for now.
2014 		 */
2015 		if (regdom_changes(country_ie_request->alpha2))
2016 			return REG_REQ_IGNORE;
2017 		return REG_REQ_ALREADY_SET;
2018 	}
2019 
2020 	if (regdom_changes(country_ie_request->alpha2))
2021 		return REG_REQ_OK;
2022 	return REG_REQ_ALREADY_SET;
2023 }
2024 
2025 /**
2026  * reg_process_hint_country_ie - process regulatory requests from country IEs
2027  * @country_ie_request: a regulatory request from a country IE
2028  *
2029  * The wireless subsystem can use this function to process
2030  * a regulatory request issued by a country Information Element.
2031  *
2032  * Returns one of the different reg request treatment values.
2033  */
2034 static enum reg_request_treatment
2035 reg_process_hint_country_ie(struct wiphy *wiphy,
2036 			    struct regulatory_request *country_ie_request)
2037 {
2038 	enum reg_request_treatment treatment;
2039 
2040 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2041 
2042 	switch (treatment) {
2043 	case REG_REQ_OK:
2044 		break;
2045 	case REG_REQ_IGNORE:
2046 		/* fall through */
2047 	case REG_REQ_ALREADY_SET:
2048 		reg_free_request(country_ie_request);
2049 		return treatment;
2050 	case REG_REQ_INTERSECT:
2051 		reg_free_request(country_ie_request);
2052 		/*
2053 		 * This doesn't happen yet, not sure we
2054 		 * ever want to support it for this case.
2055 		 */
2056 		WARN_ONCE(1, "Unexpected intersection for country IEs");
2057 		return REG_REQ_IGNORE;
2058 	}
2059 
2060 	country_ie_request->intersect = false;
2061 	country_ie_request->processed = false;
2062 
2063 	reg_update_last_request(country_ie_request);
2064 
2065 	return reg_call_crda(country_ie_request);
2066 }
2067 
2068 /* This processes *all* regulatory hints */
2069 static void reg_process_hint(struct regulatory_request *reg_request)
2070 {
2071 	struct wiphy *wiphy = NULL;
2072 	enum reg_request_treatment treatment;
2073 
2074 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2075 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2076 
2077 	switch (reg_request->initiator) {
2078 	case NL80211_REGDOM_SET_BY_CORE:
2079 		reg_process_hint_core(reg_request);
2080 		return;
2081 	case NL80211_REGDOM_SET_BY_USER:
2082 		treatment = reg_process_hint_user(reg_request);
2083 		if (treatment == REG_REQ_IGNORE ||
2084 		    treatment == REG_REQ_ALREADY_SET)
2085 			return;
2086 		return;
2087 	case NL80211_REGDOM_SET_BY_DRIVER:
2088 		if (!wiphy)
2089 			goto out_free;
2090 		treatment = reg_process_hint_driver(wiphy, reg_request);
2091 		break;
2092 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2093 		if (!wiphy)
2094 			goto out_free;
2095 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2096 		break;
2097 	default:
2098 		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2099 		goto out_free;
2100 	}
2101 
2102 	/* This is required so that the orig_* parameters are saved */
2103 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2104 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2105 		wiphy_update_regulatory(wiphy, reg_request->initiator);
2106 		reg_check_channels();
2107 	}
2108 
2109 	return;
2110 
2111 out_free:
2112 	reg_free_request(reg_request);
2113 }
2114 
2115 static bool reg_only_self_managed_wiphys(void)
2116 {
2117 	struct cfg80211_registered_device *rdev;
2118 	struct wiphy *wiphy;
2119 	bool self_managed_found = false;
2120 
2121 	ASSERT_RTNL();
2122 
2123 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2124 		wiphy = &rdev->wiphy;
2125 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2126 			self_managed_found = true;
2127 		else
2128 			return false;
2129 	}
2130 
2131 	/* make sure at least one self-managed wiphy exists */
2132 	return self_managed_found;
2133 }
2134 
2135 /*
2136  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2137  * Regulatory hints come on a first come first serve basis and we
2138  * must process each one atomically.
2139  */
2140 static void reg_process_pending_hints(void)
2141 {
2142 	struct regulatory_request *reg_request, *lr;
2143 
2144 	lr = get_last_request();
2145 
2146 	/* When last_request->processed becomes true this will be rescheduled */
2147 	if (lr && !lr->processed) {
2148 		reg_process_hint(lr);
2149 		return;
2150 	}
2151 
2152 	spin_lock(&reg_requests_lock);
2153 
2154 	if (list_empty(&reg_requests_list)) {
2155 		spin_unlock(&reg_requests_lock);
2156 		return;
2157 	}
2158 
2159 	reg_request = list_first_entry(&reg_requests_list,
2160 				       struct regulatory_request,
2161 				       list);
2162 	list_del_init(&reg_request->list);
2163 
2164 	spin_unlock(&reg_requests_lock);
2165 
2166 	if (reg_only_self_managed_wiphys()) {
2167 		reg_free_request(reg_request);
2168 		return;
2169 	}
2170 
2171 	reg_process_hint(reg_request);
2172 
2173 	lr = get_last_request();
2174 
2175 	spin_lock(&reg_requests_lock);
2176 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2177 		schedule_work(&reg_work);
2178 	spin_unlock(&reg_requests_lock);
2179 }
2180 
2181 /* Processes beacon hints -- this has nothing to do with country IEs */
2182 static void reg_process_pending_beacon_hints(void)
2183 {
2184 	struct cfg80211_registered_device *rdev;
2185 	struct reg_beacon *pending_beacon, *tmp;
2186 
2187 	/* This goes through the _pending_ beacon list */
2188 	spin_lock_bh(&reg_pending_beacons_lock);
2189 
2190 	list_for_each_entry_safe(pending_beacon, tmp,
2191 				 &reg_pending_beacons, list) {
2192 		list_del_init(&pending_beacon->list);
2193 
2194 		/* Applies the beacon hint to current wiphys */
2195 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2196 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2197 
2198 		/* Remembers the beacon hint for new wiphys or reg changes */
2199 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2200 	}
2201 
2202 	spin_unlock_bh(&reg_pending_beacons_lock);
2203 }
2204 
2205 static void reg_process_self_managed_hints(void)
2206 {
2207 	struct cfg80211_registered_device *rdev;
2208 	struct wiphy *wiphy;
2209 	const struct ieee80211_regdomain *tmp;
2210 	const struct ieee80211_regdomain *regd;
2211 	enum ieee80211_band band;
2212 	struct regulatory_request request = {};
2213 
2214 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2215 		wiphy = &rdev->wiphy;
2216 
2217 		spin_lock(&reg_requests_lock);
2218 		regd = rdev->requested_regd;
2219 		rdev->requested_regd = NULL;
2220 		spin_unlock(&reg_requests_lock);
2221 
2222 		if (regd == NULL)
2223 			continue;
2224 
2225 		tmp = get_wiphy_regdom(wiphy);
2226 		rcu_assign_pointer(wiphy->regd, regd);
2227 		rcu_free_regdom(tmp);
2228 
2229 		for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2230 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2231 
2232 		reg_process_ht_flags(wiphy);
2233 
2234 		request.wiphy_idx = get_wiphy_idx(wiphy);
2235 		request.alpha2[0] = regd->alpha2[0];
2236 		request.alpha2[1] = regd->alpha2[1];
2237 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2238 
2239 		nl80211_send_wiphy_reg_change_event(&request);
2240 	}
2241 
2242 	reg_check_channels();
2243 }
2244 
2245 static void reg_todo(struct work_struct *work)
2246 {
2247 	rtnl_lock();
2248 	reg_process_pending_hints();
2249 	reg_process_pending_beacon_hints();
2250 	reg_process_self_managed_hints();
2251 	rtnl_unlock();
2252 }
2253 
2254 static void queue_regulatory_request(struct regulatory_request *request)
2255 {
2256 	request->alpha2[0] = toupper(request->alpha2[0]);
2257 	request->alpha2[1] = toupper(request->alpha2[1]);
2258 
2259 	spin_lock(&reg_requests_lock);
2260 	list_add_tail(&request->list, &reg_requests_list);
2261 	spin_unlock(&reg_requests_lock);
2262 
2263 	schedule_work(&reg_work);
2264 }
2265 
2266 /*
2267  * Core regulatory hint -- happens during cfg80211_init()
2268  * and when we restore regulatory settings.
2269  */
2270 static int regulatory_hint_core(const char *alpha2)
2271 {
2272 	struct regulatory_request *request;
2273 
2274 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2275 	if (!request)
2276 		return -ENOMEM;
2277 
2278 	request->alpha2[0] = alpha2[0];
2279 	request->alpha2[1] = alpha2[1];
2280 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2281 
2282 	queue_regulatory_request(request);
2283 
2284 	return 0;
2285 }
2286 
2287 /* User hints */
2288 int regulatory_hint_user(const char *alpha2,
2289 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2290 {
2291 	struct regulatory_request *request;
2292 
2293 	if (WARN_ON(!alpha2))
2294 		return -EINVAL;
2295 
2296 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2297 	if (!request)
2298 		return -ENOMEM;
2299 
2300 	request->wiphy_idx = WIPHY_IDX_INVALID;
2301 	request->alpha2[0] = alpha2[0];
2302 	request->alpha2[1] = alpha2[1];
2303 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2304 	request->user_reg_hint_type = user_reg_hint_type;
2305 
2306 	/* Allow calling CRDA again */
2307 	reg_crda_timeouts = 0;
2308 
2309 	queue_regulatory_request(request);
2310 
2311 	return 0;
2312 }
2313 
2314 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2315 {
2316 	spin_lock(&reg_indoor_lock);
2317 
2318 	/* It is possible that more than one user space process is trying to
2319 	 * configure the indoor setting. To handle such cases, clear the indoor
2320 	 * setting in case that some process does not think that the device
2321 	 * is operating in an indoor environment. In addition, if a user space
2322 	 * process indicates that it is controlling the indoor setting, save its
2323 	 * portid, i.e., make it the owner.
2324 	 */
2325 	reg_is_indoor = is_indoor;
2326 	if (reg_is_indoor) {
2327 		if (!reg_is_indoor_portid)
2328 			reg_is_indoor_portid = portid;
2329 	} else {
2330 		reg_is_indoor_portid = 0;
2331 	}
2332 
2333 	spin_unlock(&reg_indoor_lock);
2334 
2335 	if (!is_indoor)
2336 		reg_check_channels();
2337 
2338 	return 0;
2339 }
2340 
2341 void regulatory_netlink_notify(u32 portid)
2342 {
2343 	spin_lock(&reg_indoor_lock);
2344 
2345 	if (reg_is_indoor_portid != portid) {
2346 		spin_unlock(&reg_indoor_lock);
2347 		return;
2348 	}
2349 
2350 	reg_is_indoor = false;
2351 	reg_is_indoor_portid = 0;
2352 
2353 	spin_unlock(&reg_indoor_lock);
2354 
2355 	reg_check_channels();
2356 }
2357 
2358 /* Driver hints */
2359 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2360 {
2361 	struct regulatory_request *request;
2362 
2363 	if (WARN_ON(!alpha2 || !wiphy))
2364 		return -EINVAL;
2365 
2366 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2367 
2368 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2369 	if (!request)
2370 		return -ENOMEM;
2371 
2372 	request->wiphy_idx = get_wiphy_idx(wiphy);
2373 
2374 	request->alpha2[0] = alpha2[0];
2375 	request->alpha2[1] = alpha2[1];
2376 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2377 
2378 	/* Allow calling CRDA again */
2379 	reg_crda_timeouts = 0;
2380 
2381 	queue_regulatory_request(request);
2382 
2383 	return 0;
2384 }
2385 EXPORT_SYMBOL(regulatory_hint);
2386 
2387 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2388 				const u8 *country_ie, u8 country_ie_len)
2389 {
2390 	char alpha2[2];
2391 	enum environment_cap env = ENVIRON_ANY;
2392 	struct regulatory_request *request = NULL, *lr;
2393 
2394 	/* IE len must be evenly divisible by 2 */
2395 	if (country_ie_len & 0x01)
2396 		return;
2397 
2398 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2399 		return;
2400 
2401 	request = kzalloc(sizeof(*request), GFP_KERNEL);
2402 	if (!request)
2403 		return;
2404 
2405 	alpha2[0] = country_ie[0];
2406 	alpha2[1] = country_ie[1];
2407 
2408 	if (country_ie[2] == 'I')
2409 		env = ENVIRON_INDOOR;
2410 	else if (country_ie[2] == 'O')
2411 		env = ENVIRON_OUTDOOR;
2412 
2413 	rcu_read_lock();
2414 	lr = get_last_request();
2415 
2416 	if (unlikely(!lr))
2417 		goto out;
2418 
2419 	/*
2420 	 * We will run this only upon a successful connection on cfg80211.
2421 	 * We leave conflict resolution to the workqueue, where can hold
2422 	 * the RTNL.
2423 	 */
2424 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2425 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
2426 		goto out;
2427 
2428 	request->wiphy_idx = get_wiphy_idx(wiphy);
2429 	request->alpha2[0] = alpha2[0];
2430 	request->alpha2[1] = alpha2[1];
2431 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2432 	request->country_ie_env = env;
2433 
2434 	/* Allow calling CRDA again */
2435 	reg_crda_timeouts = 0;
2436 
2437 	queue_regulatory_request(request);
2438 	request = NULL;
2439 out:
2440 	kfree(request);
2441 	rcu_read_unlock();
2442 }
2443 
2444 static void restore_alpha2(char *alpha2, bool reset_user)
2445 {
2446 	/* indicates there is no alpha2 to consider for restoration */
2447 	alpha2[0] = '9';
2448 	alpha2[1] = '7';
2449 
2450 	/* The user setting has precedence over the module parameter */
2451 	if (is_user_regdom_saved()) {
2452 		/* Unless we're asked to ignore it and reset it */
2453 		if (reset_user) {
2454 			REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2455 			user_alpha2[0] = '9';
2456 			user_alpha2[1] = '7';
2457 
2458 			/*
2459 			 * If we're ignoring user settings, we still need to
2460 			 * check the module parameter to ensure we put things
2461 			 * back as they were for a full restore.
2462 			 */
2463 			if (!is_world_regdom(ieee80211_regdom)) {
2464 				REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2465 					      ieee80211_regdom[0], ieee80211_regdom[1]);
2466 				alpha2[0] = ieee80211_regdom[0];
2467 				alpha2[1] = ieee80211_regdom[1];
2468 			}
2469 		} else {
2470 			REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2471 				      user_alpha2[0], user_alpha2[1]);
2472 			alpha2[0] = user_alpha2[0];
2473 			alpha2[1] = user_alpha2[1];
2474 		}
2475 	} else if (!is_world_regdom(ieee80211_regdom)) {
2476 		REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2477 			      ieee80211_regdom[0], ieee80211_regdom[1]);
2478 		alpha2[0] = ieee80211_regdom[0];
2479 		alpha2[1] = ieee80211_regdom[1];
2480 	} else
2481 		REG_DBG_PRINT("Restoring regulatory settings\n");
2482 }
2483 
2484 static void restore_custom_reg_settings(struct wiphy *wiphy)
2485 {
2486 	struct ieee80211_supported_band *sband;
2487 	enum ieee80211_band band;
2488 	struct ieee80211_channel *chan;
2489 	int i;
2490 
2491 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2492 		sband = wiphy->bands[band];
2493 		if (!sband)
2494 			continue;
2495 		for (i = 0; i < sband->n_channels; i++) {
2496 			chan = &sband->channels[i];
2497 			chan->flags = chan->orig_flags;
2498 			chan->max_antenna_gain = chan->orig_mag;
2499 			chan->max_power = chan->orig_mpwr;
2500 			chan->beacon_found = false;
2501 		}
2502 	}
2503 }
2504 
2505 /*
2506  * Restoring regulatory settings involves ingoring any
2507  * possibly stale country IE information and user regulatory
2508  * settings if so desired, this includes any beacon hints
2509  * learned as we could have traveled outside to another country
2510  * after disconnection. To restore regulatory settings we do
2511  * exactly what we did at bootup:
2512  *
2513  *   - send a core regulatory hint
2514  *   - send a user regulatory hint if applicable
2515  *
2516  * Device drivers that send a regulatory hint for a specific country
2517  * keep their own regulatory domain on wiphy->regd so that does does
2518  * not need to be remembered.
2519  */
2520 static void restore_regulatory_settings(bool reset_user)
2521 {
2522 	char alpha2[2];
2523 	char world_alpha2[2];
2524 	struct reg_beacon *reg_beacon, *btmp;
2525 	LIST_HEAD(tmp_reg_req_list);
2526 	struct cfg80211_registered_device *rdev;
2527 
2528 	ASSERT_RTNL();
2529 
2530 	/*
2531 	 * Clear the indoor setting in case that it is not controlled by user
2532 	 * space, as otherwise there is no guarantee that the device is still
2533 	 * operating in an indoor environment.
2534 	 */
2535 	spin_lock(&reg_indoor_lock);
2536 	if (reg_is_indoor && !reg_is_indoor_portid) {
2537 		reg_is_indoor = false;
2538 		reg_check_channels();
2539 	}
2540 	spin_unlock(&reg_indoor_lock);
2541 
2542 	reset_regdomains(true, &world_regdom);
2543 	restore_alpha2(alpha2, reset_user);
2544 
2545 	/*
2546 	 * If there's any pending requests we simply
2547 	 * stash them to a temporary pending queue and
2548 	 * add then after we've restored regulatory
2549 	 * settings.
2550 	 */
2551 	spin_lock(&reg_requests_lock);
2552 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2553 	spin_unlock(&reg_requests_lock);
2554 
2555 	/* Clear beacon hints */
2556 	spin_lock_bh(&reg_pending_beacons_lock);
2557 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2558 		list_del(&reg_beacon->list);
2559 		kfree(reg_beacon);
2560 	}
2561 	spin_unlock_bh(&reg_pending_beacons_lock);
2562 
2563 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2564 		list_del(&reg_beacon->list);
2565 		kfree(reg_beacon);
2566 	}
2567 
2568 	/* First restore to the basic regulatory settings */
2569 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2570 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2571 
2572 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2573 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2574 			continue;
2575 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2576 			restore_custom_reg_settings(&rdev->wiphy);
2577 	}
2578 
2579 	regulatory_hint_core(world_alpha2);
2580 
2581 	/*
2582 	 * This restores the ieee80211_regdom module parameter
2583 	 * preference or the last user requested regulatory
2584 	 * settings, user regulatory settings takes precedence.
2585 	 */
2586 	if (is_an_alpha2(alpha2))
2587 		regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2588 
2589 	spin_lock(&reg_requests_lock);
2590 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2591 	spin_unlock(&reg_requests_lock);
2592 
2593 	REG_DBG_PRINT("Kicking the queue\n");
2594 
2595 	schedule_work(&reg_work);
2596 }
2597 
2598 void regulatory_hint_disconnect(void)
2599 {
2600 	REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2601 	restore_regulatory_settings(false);
2602 }
2603 
2604 static bool freq_is_chan_12_13_14(u16 freq)
2605 {
2606 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2607 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2608 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2609 		return true;
2610 	return false;
2611 }
2612 
2613 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2614 {
2615 	struct reg_beacon *pending_beacon;
2616 
2617 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2618 		if (beacon_chan->center_freq ==
2619 		    pending_beacon->chan.center_freq)
2620 			return true;
2621 	return false;
2622 }
2623 
2624 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2625 				 struct ieee80211_channel *beacon_chan,
2626 				 gfp_t gfp)
2627 {
2628 	struct reg_beacon *reg_beacon;
2629 	bool processing;
2630 
2631 	if (beacon_chan->beacon_found ||
2632 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2633 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2634 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2635 		return 0;
2636 
2637 	spin_lock_bh(&reg_pending_beacons_lock);
2638 	processing = pending_reg_beacon(beacon_chan);
2639 	spin_unlock_bh(&reg_pending_beacons_lock);
2640 
2641 	if (processing)
2642 		return 0;
2643 
2644 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2645 	if (!reg_beacon)
2646 		return -ENOMEM;
2647 
2648 	REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2649 		      beacon_chan->center_freq,
2650 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
2651 		      wiphy_name(wiphy));
2652 
2653 	memcpy(&reg_beacon->chan, beacon_chan,
2654 	       sizeof(struct ieee80211_channel));
2655 
2656 	/*
2657 	 * Since we can be called from BH or and non-BH context
2658 	 * we must use spin_lock_bh()
2659 	 */
2660 	spin_lock_bh(&reg_pending_beacons_lock);
2661 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2662 	spin_unlock_bh(&reg_pending_beacons_lock);
2663 
2664 	schedule_work(&reg_work);
2665 
2666 	return 0;
2667 }
2668 
2669 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2670 {
2671 	unsigned int i;
2672 	const struct ieee80211_reg_rule *reg_rule = NULL;
2673 	const struct ieee80211_freq_range *freq_range = NULL;
2674 	const struct ieee80211_power_rule *power_rule = NULL;
2675 	char bw[32], cac_time[32];
2676 
2677 	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2678 
2679 	for (i = 0; i < rd->n_reg_rules; i++) {
2680 		reg_rule = &rd->reg_rules[i];
2681 		freq_range = &reg_rule->freq_range;
2682 		power_rule = &reg_rule->power_rule;
2683 
2684 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2685 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2686 				 freq_range->max_bandwidth_khz,
2687 				 reg_get_max_bandwidth(rd, reg_rule));
2688 		else
2689 			snprintf(bw, sizeof(bw), "%d KHz",
2690 				 freq_range->max_bandwidth_khz);
2691 
2692 		if (reg_rule->flags & NL80211_RRF_DFS)
2693 			scnprintf(cac_time, sizeof(cac_time), "%u s",
2694 				  reg_rule->dfs_cac_ms/1000);
2695 		else
2696 			scnprintf(cac_time, sizeof(cac_time), "N/A");
2697 
2698 
2699 		/*
2700 		 * There may not be documentation for max antenna gain
2701 		 * in certain regions
2702 		 */
2703 		if (power_rule->max_antenna_gain)
2704 			pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2705 				freq_range->start_freq_khz,
2706 				freq_range->end_freq_khz,
2707 				bw,
2708 				power_rule->max_antenna_gain,
2709 				power_rule->max_eirp,
2710 				cac_time);
2711 		else
2712 			pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2713 				freq_range->start_freq_khz,
2714 				freq_range->end_freq_khz,
2715 				bw,
2716 				power_rule->max_eirp,
2717 				cac_time);
2718 	}
2719 }
2720 
2721 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2722 {
2723 	switch (dfs_region) {
2724 	case NL80211_DFS_UNSET:
2725 	case NL80211_DFS_FCC:
2726 	case NL80211_DFS_ETSI:
2727 	case NL80211_DFS_JP:
2728 		return true;
2729 	default:
2730 		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2731 			      dfs_region);
2732 		return false;
2733 	}
2734 }
2735 
2736 static void print_regdomain(const struct ieee80211_regdomain *rd)
2737 {
2738 	struct regulatory_request *lr = get_last_request();
2739 
2740 	if (is_intersected_alpha2(rd->alpha2)) {
2741 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2742 			struct cfg80211_registered_device *rdev;
2743 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2744 			if (rdev) {
2745 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2746 					rdev->country_ie_alpha2[0],
2747 					rdev->country_ie_alpha2[1]);
2748 			} else
2749 				pr_info("Current regulatory domain intersected:\n");
2750 		} else
2751 			pr_info("Current regulatory domain intersected:\n");
2752 	} else if (is_world_regdom(rd->alpha2)) {
2753 		pr_info("World regulatory domain updated:\n");
2754 	} else {
2755 		if (is_unknown_alpha2(rd->alpha2))
2756 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2757 		else {
2758 			if (reg_request_cell_base(lr))
2759 				pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2760 					rd->alpha2[0], rd->alpha2[1]);
2761 			else
2762 				pr_info("Regulatory domain changed to country: %c%c\n",
2763 					rd->alpha2[0], rd->alpha2[1]);
2764 		}
2765 	}
2766 
2767 	pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2768 	print_rd_rules(rd);
2769 }
2770 
2771 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2772 {
2773 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2774 	print_rd_rules(rd);
2775 }
2776 
2777 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2778 {
2779 	if (!is_world_regdom(rd->alpha2))
2780 		return -EINVAL;
2781 	update_world_regdomain(rd);
2782 	return 0;
2783 }
2784 
2785 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2786 			   struct regulatory_request *user_request)
2787 {
2788 	const struct ieee80211_regdomain *intersected_rd = NULL;
2789 
2790 	if (!regdom_changes(rd->alpha2))
2791 		return -EALREADY;
2792 
2793 	if (!is_valid_rd(rd)) {
2794 		pr_err("Invalid regulatory domain detected:\n");
2795 		print_regdomain_info(rd);
2796 		return -EINVAL;
2797 	}
2798 
2799 	if (!user_request->intersect) {
2800 		reset_regdomains(false, rd);
2801 		return 0;
2802 	}
2803 
2804 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2805 	if (!intersected_rd)
2806 		return -EINVAL;
2807 
2808 	kfree(rd);
2809 	rd = NULL;
2810 	reset_regdomains(false, intersected_rd);
2811 
2812 	return 0;
2813 }
2814 
2815 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2816 			     struct regulatory_request *driver_request)
2817 {
2818 	const struct ieee80211_regdomain *regd;
2819 	const struct ieee80211_regdomain *intersected_rd = NULL;
2820 	const struct ieee80211_regdomain *tmp;
2821 	struct wiphy *request_wiphy;
2822 
2823 	if (is_world_regdom(rd->alpha2))
2824 		return -EINVAL;
2825 
2826 	if (!regdom_changes(rd->alpha2))
2827 		return -EALREADY;
2828 
2829 	if (!is_valid_rd(rd)) {
2830 		pr_err("Invalid regulatory domain detected:\n");
2831 		print_regdomain_info(rd);
2832 		return -EINVAL;
2833 	}
2834 
2835 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2836 	if (!request_wiphy) {
2837 		queue_delayed_work(system_power_efficient_wq,
2838 				   &reg_timeout, 0);
2839 		return -ENODEV;
2840 	}
2841 
2842 	if (!driver_request->intersect) {
2843 		if (request_wiphy->regd)
2844 			return -EALREADY;
2845 
2846 		regd = reg_copy_regd(rd);
2847 		if (IS_ERR(regd))
2848 			return PTR_ERR(regd);
2849 
2850 		rcu_assign_pointer(request_wiphy->regd, regd);
2851 		reset_regdomains(false, rd);
2852 		return 0;
2853 	}
2854 
2855 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2856 	if (!intersected_rd)
2857 		return -EINVAL;
2858 
2859 	/*
2860 	 * We can trash what CRDA provided now.
2861 	 * However if a driver requested this specific regulatory
2862 	 * domain we keep it for its private use
2863 	 */
2864 	tmp = get_wiphy_regdom(request_wiphy);
2865 	rcu_assign_pointer(request_wiphy->regd, rd);
2866 	rcu_free_regdom(tmp);
2867 
2868 	rd = NULL;
2869 
2870 	reset_regdomains(false, intersected_rd);
2871 
2872 	return 0;
2873 }
2874 
2875 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2876 				 struct regulatory_request *country_ie_request)
2877 {
2878 	struct wiphy *request_wiphy;
2879 
2880 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2881 	    !is_unknown_alpha2(rd->alpha2))
2882 		return -EINVAL;
2883 
2884 	/*
2885 	 * Lets only bother proceeding on the same alpha2 if the current
2886 	 * rd is non static (it means CRDA was present and was used last)
2887 	 * and the pending request came in from a country IE
2888 	 */
2889 
2890 	if (!is_valid_rd(rd)) {
2891 		pr_err("Invalid regulatory domain detected:\n");
2892 		print_regdomain_info(rd);
2893 		return -EINVAL;
2894 	}
2895 
2896 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2897 	if (!request_wiphy) {
2898 		queue_delayed_work(system_power_efficient_wq,
2899 				   &reg_timeout, 0);
2900 		return -ENODEV;
2901 	}
2902 
2903 	if (country_ie_request->intersect)
2904 		return -EINVAL;
2905 
2906 	reset_regdomains(false, rd);
2907 	return 0;
2908 }
2909 
2910 /*
2911  * Use this call to set the current regulatory domain. Conflicts with
2912  * multiple drivers can be ironed out later. Caller must've already
2913  * kmalloc'd the rd structure.
2914  */
2915 int set_regdom(const struct ieee80211_regdomain *rd,
2916 	       enum ieee80211_regd_source regd_src)
2917 {
2918 	struct regulatory_request *lr;
2919 	bool user_reset = false;
2920 	int r;
2921 
2922 	if (!reg_is_valid_request(rd->alpha2)) {
2923 		kfree(rd);
2924 		return -EINVAL;
2925 	}
2926 
2927 	if (regd_src == REGD_SOURCE_CRDA)
2928 		reg_crda_timeouts = 0;
2929 
2930 	lr = get_last_request();
2931 
2932 	/* Note that this doesn't update the wiphys, this is done below */
2933 	switch (lr->initiator) {
2934 	case NL80211_REGDOM_SET_BY_CORE:
2935 		r = reg_set_rd_core(rd);
2936 		break;
2937 	case NL80211_REGDOM_SET_BY_USER:
2938 		r = reg_set_rd_user(rd, lr);
2939 		user_reset = true;
2940 		break;
2941 	case NL80211_REGDOM_SET_BY_DRIVER:
2942 		r = reg_set_rd_driver(rd, lr);
2943 		break;
2944 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2945 		r = reg_set_rd_country_ie(rd, lr);
2946 		break;
2947 	default:
2948 		WARN(1, "invalid initiator %d\n", lr->initiator);
2949 		return -EINVAL;
2950 	}
2951 
2952 	if (r) {
2953 		switch (r) {
2954 		case -EALREADY:
2955 			reg_set_request_processed();
2956 			break;
2957 		default:
2958 			/* Back to world regulatory in case of errors */
2959 			restore_regulatory_settings(user_reset);
2960 		}
2961 
2962 		kfree(rd);
2963 		return r;
2964 	}
2965 
2966 	/* This would make this whole thing pointless */
2967 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2968 		return -EINVAL;
2969 
2970 	/* update all wiphys now with the new established regulatory domain */
2971 	update_all_wiphy_regulatory(lr->initiator);
2972 
2973 	print_regdomain(get_cfg80211_regdom());
2974 
2975 	nl80211_send_reg_change_event(lr);
2976 
2977 	reg_set_request_processed();
2978 
2979 	return 0;
2980 }
2981 
2982 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
2983 				       struct ieee80211_regdomain *rd)
2984 {
2985 	const struct ieee80211_regdomain *regd;
2986 	const struct ieee80211_regdomain *prev_regd;
2987 	struct cfg80211_registered_device *rdev;
2988 
2989 	if (WARN_ON(!wiphy || !rd))
2990 		return -EINVAL;
2991 
2992 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
2993 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
2994 		return -EPERM;
2995 
2996 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
2997 		print_regdomain_info(rd);
2998 		return -EINVAL;
2999 	}
3000 
3001 	regd = reg_copy_regd(rd);
3002 	if (IS_ERR(regd))
3003 		return PTR_ERR(regd);
3004 
3005 	rdev = wiphy_to_rdev(wiphy);
3006 
3007 	spin_lock(&reg_requests_lock);
3008 	prev_regd = rdev->requested_regd;
3009 	rdev->requested_regd = regd;
3010 	spin_unlock(&reg_requests_lock);
3011 
3012 	kfree(prev_regd);
3013 	return 0;
3014 }
3015 
3016 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3017 			      struct ieee80211_regdomain *rd)
3018 {
3019 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3020 
3021 	if (ret)
3022 		return ret;
3023 
3024 	schedule_work(&reg_work);
3025 	return 0;
3026 }
3027 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3028 
3029 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3030 					struct ieee80211_regdomain *rd)
3031 {
3032 	int ret;
3033 
3034 	ASSERT_RTNL();
3035 
3036 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3037 	if (ret)
3038 		return ret;
3039 
3040 	/* process the request immediately */
3041 	reg_process_self_managed_hints();
3042 	return 0;
3043 }
3044 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3045 
3046 void wiphy_regulatory_register(struct wiphy *wiphy)
3047 {
3048 	struct regulatory_request *lr;
3049 
3050 	/* self-managed devices ignore external hints */
3051 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3052 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3053 					   REGULATORY_COUNTRY_IE_IGNORE;
3054 
3055 	if (!reg_dev_ignore_cell_hint(wiphy))
3056 		reg_num_devs_support_basehint++;
3057 
3058 	lr = get_last_request();
3059 	wiphy_update_regulatory(wiphy, lr->initiator);
3060 }
3061 
3062 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3063 {
3064 	struct wiphy *request_wiphy = NULL;
3065 	struct regulatory_request *lr;
3066 
3067 	lr = get_last_request();
3068 
3069 	if (!reg_dev_ignore_cell_hint(wiphy))
3070 		reg_num_devs_support_basehint--;
3071 
3072 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3073 	RCU_INIT_POINTER(wiphy->regd, NULL);
3074 
3075 	if (lr)
3076 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3077 
3078 	if (!request_wiphy || request_wiphy != wiphy)
3079 		return;
3080 
3081 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3082 	lr->country_ie_env = ENVIRON_ANY;
3083 }
3084 
3085 static void reg_timeout_work(struct work_struct *work)
3086 {
3087 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
3088 	rtnl_lock();
3089 	reg_crda_timeouts++;
3090 	restore_regulatory_settings(true);
3091 	rtnl_unlock();
3092 }
3093 
3094 /*
3095  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3096  * UNII band definitions
3097  */
3098 int cfg80211_get_unii(int freq)
3099 {
3100 	/* UNII-1 */
3101 	if (freq >= 5150 && freq <= 5250)
3102 		return 0;
3103 
3104 	/* UNII-2A */
3105 	if (freq > 5250 && freq <= 5350)
3106 		return 1;
3107 
3108 	/* UNII-2B */
3109 	if (freq > 5350 && freq <= 5470)
3110 		return 2;
3111 
3112 	/* UNII-2C */
3113 	if (freq > 5470 && freq <= 5725)
3114 		return 3;
3115 
3116 	/* UNII-3 */
3117 	if (freq > 5725 && freq <= 5825)
3118 		return 4;
3119 
3120 	return -EINVAL;
3121 }
3122 
3123 bool regulatory_indoor_allowed(void)
3124 {
3125 	return reg_is_indoor;
3126 }
3127 
3128 int __init regulatory_init(void)
3129 {
3130 	int err = 0;
3131 
3132 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3133 	if (IS_ERR(reg_pdev))
3134 		return PTR_ERR(reg_pdev);
3135 
3136 	spin_lock_init(&reg_requests_lock);
3137 	spin_lock_init(&reg_pending_beacons_lock);
3138 	spin_lock_init(&reg_indoor_lock);
3139 
3140 	reg_regdb_size_check();
3141 
3142 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3143 
3144 	user_alpha2[0] = '9';
3145 	user_alpha2[1] = '7';
3146 
3147 	/* We always try to get an update for the static regdomain */
3148 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3149 	if (err) {
3150 		if (err == -ENOMEM)
3151 			return err;
3152 		/*
3153 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3154 		 * memory which is handled and propagated appropriately above
3155 		 * but it can also fail during a netlink_broadcast() or during
3156 		 * early boot for call_usermodehelper(). For now treat these
3157 		 * errors as non-fatal.
3158 		 */
3159 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3160 	}
3161 
3162 	/*
3163 	 * Finally, if the user set the module parameter treat it
3164 	 * as a user hint.
3165 	 */
3166 	if (!is_world_regdom(ieee80211_regdom))
3167 		regulatory_hint_user(ieee80211_regdom,
3168 				     NL80211_USER_REG_HINT_USER);
3169 
3170 	return 0;
3171 }
3172 
3173 void regulatory_exit(void)
3174 {
3175 	struct regulatory_request *reg_request, *tmp;
3176 	struct reg_beacon *reg_beacon, *btmp;
3177 
3178 	cancel_work_sync(&reg_work);
3179 	cancel_delayed_work_sync(&reg_timeout);
3180 	cancel_delayed_work_sync(&reg_check_chans);
3181 
3182 	/* Lock to suppress warnings */
3183 	rtnl_lock();
3184 	reset_regdomains(true, NULL);
3185 	rtnl_unlock();
3186 
3187 	dev_set_uevent_suppress(&reg_pdev->dev, true);
3188 
3189 	platform_device_unregister(reg_pdev);
3190 
3191 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3192 		list_del(&reg_beacon->list);
3193 		kfree(reg_beacon);
3194 	}
3195 
3196 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3197 		list_del(&reg_beacon->list);
3198 		kfree(reg_beacon);
3199 	}
3200 
3201 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3202 		list_del(&reg_request->list);
3203 		kfree(reg_request);
3204 	}
3205 }
3206