1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2024 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <linux/units.h> 61 62 #include <net/cfg80211.h> 63 #include "core.h" 64 #include "reg.h" 65 #include "rdev-ops.h" 66 #include "nl80211.h" 67 68 /* 69 * Grace period we give before making sure all current interfaces reside on 70 * channels allowed by the current regulatory domain. 71 */ 72 #define REG_ENFORCE_GRACE_MS 60000 73 74 /** 75 * enum reg_request_treatment - regulatory request treatment 76 * 77 * @REG_REQ_OK: continue processing the regulatory request 78 * @REG_REQ_IGNORE: ignore the regulatory request 79 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 80 * be intersected with the current one. 81 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 82 * regulatory settings, and no further processing is required. 83 */ 84 enum reg_request_treatment { 85 REG_REQ_OK, 86 REG_REQ_IGNORE, 87 REG_REQ_INTERSECT, 88 REG_REQ_ALREADY_SET, 89 }; 90 91 static struct regulatory_request core_request_world = { 92 .initiator = NL80211_REGDOM_SET_BY_CORE, 93 .alpha2[0] = '0', 94 .alpha2[1] = '0', 95 .intersect = false, 96 .processed = true, 97 .country_ie_env = ENVIRON_ANY, 98 }; 99 100 /* 101 * Receipt of information from last regulatory request, 102 * protected by RTNL (and can be accessed with RCU protection) 103 */ 104 static struct regulatory_request __rcu *last_request = 105 (void __force __rcu *)&core_request_world; 106 107 /* To trigger userspace events and load firmware */ 108 static struct platform_device *reg_pdev; 109 110 /* 111 * Central wireless core regulatory domains, we only need two, 112 * the current one and a world regulatory domain in case we have no 113 * information to give us an alpha2. 114 * (protected by RTNL, can be read under RCU) 115 */ 116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 117 118 /* 119 * Number of devices that registered to the core 120 * that support cellular base station regulatory hints 121 * (protected by RTNL) 122 */ 123 static int reg_num_devs_support_basehint; 124 125 /* 126 * State variable indicating if the platform on which the devices 127 * are attached is operating in an indoor environment. The state variable 128 * is relevant for all registered devices. 129 */ 130 static bool reg_is_indoor; 131 static DEFINE_SPINLOCK(reg_indoor_lock); 132 133 /* Used to track the userspace process controlling the indoor setting */ 134 static u32 reg_is_indoor_portid; 135 136 static void restore_regulatory_settings(bool reset_user, bool cached); 137 static void print_regdomain(const struct ieee80211_regdomain *rd); 138 static void reg_process_hint(struct regulatory_request *reg_request); 139 140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 141 { 142 return rcu_dereference_rtnl(cfg80211_regdomain); 143 } 144 145 /* 146 * Returns the regulatory domain associated with the wiphy. 147 * 148 * Requires any of RTNL, wiphy mutex or RCU protection. 149 */ 150 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 151 { 152 return rcu_dereference_check(wiphy->regd, 153 lockdep_is_held(&wiphy->mtx) || 154 lockdep_rtnl_is_held()); 155 } 156 EXPORT_SYMBOL(get_wiphy_regdom); 157 158 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 159 { 160 switch (dfs_region) { 161 case NL80211_DFS_UNSET: 162 return "unset"; 163 case NL80211_DFS_FCC: 164 return "FCC"; 165 case NL80211_DFS_ETSI: 166 return "ETSI"; 167 case NL80211_DFS_JP: 168 return "JP"; 169 } 170 return "Unknown"; 171 } 172 173 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 174 { 175 const struct ieee80211_regdomain *regd = NULL; 176 const struct ieee80211_regdomain *wiphy_regd = NULL; 177 enum nl80211_dfs_regions dfs_region; 178 179 rcu_read_lock(); 180 regd = get_cfg80211_regdom(); 181 dfs_region = regd->dfs_region; 182 183 if (!wiphy) 184 goto out; 185 186 wiphy_regd = get_wiphy_regdom(wiphy); 187 if (!wiphy_regd) 188 goto out; 189 190 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 191 dfs_region = wiphy_regd->dfs_region; 192 goto out; 193 } 194 195 if (wiphy_regd->dfs_region == regd->dfs_region) 196 goto out; 197 198 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 199 dev_name(&wiphy->dev), 200 reg_dfs_region_str(wiphy_regd->dfs_region), 201 reg_dfs_region_str(regd->dfs_region)); 202 203 out: 204 rcu_read_unlock(); 205 206 return dfs_region; 207 } 208 209 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 210 { 211 if (!r) 212 return; 213 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 214 } 215 216 static struct regulatory_request *get_last_request(void) 217 { 218 return rcu_dereference_rtnl(last_request); 219 } 220 221 /* Used to queue up regulatory hints */ 222 static LIST_HEAD(reg_requests_list); 223 static DEFINE_SPINLOCK(reg_requests_lock); 224 225 /* Used to queue up beacon hints for review */ 226 static LIST_HEAD(reg_pending_beacons); 227 static DEFINE_SPINLOCK(reg_pending_beacons_lock); 228 229 /* Used to keep track of processed beacon hints */ 230 static LIST_HEAD(reg_beacon_list); 231 232 struct reg_beacon { 233 struct list_head list; 234 struct ieee80211_channel chan; 235 }; 236 237 static void reg_check_chans_work(struct work_struct *work); 238 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 239 240 static void reg_todo(struct work_struct *work); 241 static DECLARE_WORK(reg_work, reg_todo); 242 243 /* We keep a static world regulatory domain in case of the absence of CRDA */ 244 static const struct ieee80211_regdomain world_regdom = { 245 .n_reg_rules = 8, 246 .alpha2 = "00", 247 .reg_rules = { 248 /* IEEE 802.11b/g, channels 1..11 */ 249 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 250 /* IEEE 802.11b/g, channels 12..13. */ 251 REG_RULE(2467-10, 2472+10, 20, 6, 20, 252 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 253 /* IEEE 802.11 channel 14 - Only JP enables 254 * this and for 802.11b only */ 255 REG_RULE(2484-10, 2484+10, 20, 6, 20, 256 NL80211_RRF_NO_IR | 257 NL80211_RRF_NO_OFDM), 258 /* IEEE 802.11a, channel 36..48 */ 259 REG_RULE(5180-10, 5240+10, 80, 6, 20, 260 NL80211_RRF_NO_IR | 261 NL80211_RRF_AUTO_BW), 262 263 /* IEEE 802.11a, channel 52..64 - DFS required */ 264 REG_RULE(5260-10, 5320+10, 80, 6, 20, 265 NL80211_RRF_NO_IR | 266 NL80211_RRF_AUTO_BW | 267 NL80211_RRF_DFS), 268 269 /* IEEE 802.11a, channel 100..144 - DFS required */ 270 REG_RULE(5500-10, 5720+10, 160, 6, 20, 271 NL80211_RRF_NO_IR | 272 NL80211_RRF_DFS), 273 274 /* IEEE 802.11a, channel 149..165 */ 275 REG_RULE(5745-10, 5825+10, 80, 6, 20, 276 NL80211_RRF_NO_IR), 277 278 /* IEEE 802.11ad (60GHz), channels 1..3 */ 279 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 280 } 281 }; 282 283 /* protected by RTNL */ 284 static const struct ieee80211_regdomain *cfg80211_world_regdom = 285 &world_regdom; 286 287 static char *ieee80211_regdom = "00"; 288 static char user_alpha2[2]; 289 static const struct ieee80211_regdomain *cfg80211_user_regdom; 290 291 module_param(ieee80211_regdom, charp, 0444); 292 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 293 294 static void reg_free_request(struct regulatory_request *request) 295 { 296 if (request == &core_request_world) 297 return; 298 299 if (request != get_last_request()) 300 kfree(request); 301 } 302 303 static void reg_free_last_request(void) 304 { 305 struct regulatory_request *lr = get_last_request(); 306 307 if (lr != &core_request_world && lr) 308 kfree_rcu(lr, rcu_head); 309 } 310 311 static void reg_update_last_request(struct regulatory_request *request) 312 { 313 struct regulatory_request *lr; 314 315 lr = get_last_request(); 316 if (lr == request) 317 return; 318 319 reg_free_last_request(); 320 rcu_assign_pointer(last_request, request); 321 } 322 323 static void reset_regdomains(bool full_reset, 324 const struct ieee80211_regdomain *new_regdom) 325 { 326 const struct ieee80211_regdomain *r; 327 328 ASSERT_RTNL(); 329 330 r = get_cfg80211_regdom(); 331 332 /* avoid freeing static information or freeing something twice */ 333 if (r == cfg80211_world_regdom) 334 r = NULL; 335 if (cfg80211_world_regdom == &world_regdom) 336 cfg80211_world_regdom = NULL; 337 if (r == &world_regdom) 338 r = NULL; 339 340 rcu_free_regdom(r); 341 rcu_free_regdom(cfg80211_world_regdom); 342 343 cfg80211_world_regdom = &world_regdom; 344 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 345 346 if (!full_reset) 347 return; 348 349 reg_update_last_request(&core_request_world); 350 } 351 352 /* 353 * Dynamic world regulatory domain requested by the wireless 354 * core upon initialization 355 */ 356 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 357 { 358 struct regulatory_request *lr; 359 360 lr = get_last_request(); 361 362 WARN_ON(!lr); 363 364 reset_regdomains(false, rd); 365 366 cfg80211_world_regdom = rd; 367 } 368 369 bool is_world_regdom(const char *alpha2) 370 { 371 if (!alpha2) 372 return false; 373 return alpha2[0] == '0' && alpha2[1] == '0'; 374 } 375 376 static bool is_alpha2_set(const char *alpha2) 377 { 378 if (!alpha2) 379 return false; 380 return alpha2[0] && alpha2[1]; 381 } 382 383 static bool is_unknown_alpha2(const char *alpha2) 384 { 385 if (!alpha2) 386 return false; 387 /* 388 * Special case where regulatory domain was built by driver 389 * but a specific alpha2 cannot be determined 390 */ 391 return alpha2[0] == '9' && alpha2[1] == '9'; 392 } 393 394 static bool is_intersected_alpha2(const char *alpha2) 395 { 396 if (!alpha2) 397 return false; 398 /* 399 * Special case where regulatory domain is the 400 * result of an intersection between two regulatory domain 401 * structures 402 */ 403 return alpha2[0] == '9' && alpha2[1] == '8'; 404 } 405 406 static bool is_an_alpha2(const char *alpha2) 407 { 408 if (!alpha2) 409 return false; 410 return isascii(alpha2[0]) && isalpha(alpha2[0]) && 411 isascii(alpha2[1]) && isalpha(alpha2[1]); 412 } 413 414 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 415 { 416 if (!alpha2_x || !alpha2_y) 417 return false; 418 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 419 } 420 421 static bool regdom_changes(const char *alpha2) 422 { 423 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 424 425 if (!r) 426 return true; 427 return !alpha2_equal(r->alpha2, alpha2); 428 } 429 430 /* 431 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 432 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 433 * has ever been issued. 434 */ 435 static bool is_user_regdom_saved(void) 436 { 437 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 438 return false; 439 440 /* This would indicate a mistake on the design */ 441 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 442 "Unexpected user alpha2: %c%c\n", 443 user_alpha2[0], user_alpha2[1])) 444 return false; 445 446 return true; 447 } 448 449 static const struct ieee80211_regdomain * 450 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 451 { 452 struct ieee80211_regdomain *regd; 453 unsigned int i; 454 455 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 456 GFP_KERNEL); 457 if (!regd) 458 return ERR_PTR(-ENOMEM); 459 460 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 461 462 for (i = 0; i < src_regd->n_reg_rules; i++) 463 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 464 sizeof(struct ieee80211_reg_rule)); 465 466 return regd; 467 } 468 469 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 470 { 471 ASSERT_RTNL(); 472 473 if (!IS_ERR(cfg80211_user_regdom)) 474 kfree(cfg80211_user_regdom); 475 cfg80211_user_regdom = reg_copy_regd(rd); 476 } 477 478 struct reg_regdb_apply_request { 479 struct list_head list; 480 const struct ieee80211_regdomain *regdom; 481 }; 482 483 static LIST_HEAD(reg_regdb_apply_list); 484 static DEFINE_MUTEX(reg_regdb_apply_mutex); 485 486 static void reg_regdb_apply(struct work_struct *work) 487 { 488 struct reg_regdb_apply_request *request; 489 490 rtnl_lock(); 491 492 mutex_lock(®_regdb_apply_mutex); 493 while (!list_empty(®_regdb_apply_list)) { 494 request = list_first_entry(®_regdb_apply_list, 495 struct reg_regdb_apply_request, 496 list); 497 list_del(&request->list); 498 499 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 500 kfree(request); 501 } 502 mutex_unlock(®_regdb_apply_mutex); 503 504 rtnl_unlock(); 505 } 506 507 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 508 509 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 510 { 511 struct reg_regdb_apply_request *request; 512 513 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 514 if (!request) { 515 kfree(regdom); 516 return -ENOMEM; 517 } 518 519 request->regdom = regdom; 520 521 mutex_lock(®_regdb_apply_mutex); 522 list_add_tail(&request->list, ®_regdb_apply_list); 523 mutex_unlock(®_regdb_apply_mutex); 524 525 schedule_work(®_regdb_work); 526 return 0; 527 } 528 529 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 530 /* Max number of consecutive attempts to communicate with CRDA */ 531 #define REG_MAX_CRDA_TIMEOUTS 10 532 533 static u32 reg_crda_timeouts; 534 535 static void crda_timeout_work(struct work_struct *work); 536 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 537 538 static void crda_timeout_work(struct work_struct *work) 539 { 540 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 541 rtnl_lock(); 542 reg_crda_timeouts++; 543 restore_regulatory_settings(true, false); 544 rtnl_unlock(); 545 } 546 547 static void cancel_crda_timeout(void) 548 { 549 cancel_delayed_work(&crda_timeout); 550 } 551 552 static void cancel_crda_timeout_sync(void) 553 { 554 cancel_delayed_work_sync(&crda_timeout); 555 } 556 557 static void reset_crda_timeouts(void) 558 { 559 reg_crda_timeouts = 0; 560 } 561 562 /* 563 * This lets us keep regulatory code which is updated on a regulatory 564 * basis in userspace. 565 */ 566 static int call_crda(const char *alpha2) 567 { 568 char country[12]; 569 char *env[] = { country, NULL }; 570 int ret; 571 572 snprintf(country, sizeof(country), "COUNTRY=%c%c", 573 alpha2[0], alpha2[1]); 574 575 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 576 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 577 return -EINVAL; 578 } 579 580 if (!is_world_regdom((char *) alpha2)) 581 pr_debug("Calling CRDA for country: %c%c\n", 582 alpha2[0], alpha2[1]); 583 else 584 pr_debug("Calling CRDA to update world regulatory domain\n"); 585 586 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 587 if (ret) 588 return ret; 589 590 queue_delayed_work(system_power_efficient_wq, 591 &crda_timeout, msecs_to_jiffies(3142)); 592 return 0; 593 } 594 #else 595 static inline void cancel_crda_timeout(void) {} 596 static inline void cancel_crda_timeout_sync(void) {} 597 static inline void reset_crda_timeouts(void) {} 598 static inline int call_crda(const char *alpha2) 599 { 600 return -ENODATA; 601 } 602 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 603 604 /* code to directly load a firmware database through request_firmware */ 605 static const struct fwdb_header *regdb; 606 607 struct fwdb_country { 608 u8 alpha2[2]; 609 __be16 coll_ptr; 610 /* this struct cannot be extended */ 611 } __packed __aligned(4); 612 613 struct fwdb_collection { 614 u8 len; 615 u8 n_rules; 616 u8 dfs_region; 617 /* no optional data yet */ 618 /* aligned to 2, then followed by __be16 array of rule pointers */ 619 } __packed __aligned(4); 620 621 enum fwdb_flags { 622 FWDB_FLAG_NO_OFDM = BIT(0), 623 FWDB_FLAG_NO_OUTDOOR = BIT(1), 624 FWDB_FLAG_DFS = BIT(2), 625 FWDB_FLAG_NO_IR = BIT(3), 626 FWDB_FLAG_AUTO_BW = BIT(4), 627 }; 628 629 struct fwdb_wmm_ac { 630 u8 ecw; 631 u8 aifsn; 632 __be16 cot; 633 } __packed; 634 635 struct fwdb_wmm_rule { 636 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 637 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 638 } __packed; 639 640 struct fwdb_rule { 641 u8 len; 642 u8 flags; 643 __be16 max_eirp; 644 __be32 start, end, max_bw; 645 /* start of optional data */ 646 __be16 cac_timeout; 647 __be16 wmm_ptr; 648 } __packed __aligned(4); 649 650 #define FWDB_MAGIC 0x52474442 651 #define FWDB_VERSION 20 652 653 struct fwdb_header { 654 __be32 magic; 655 __be32 version; 656 struct fwdb_country country[]; 657 } __packed __aligned(4); 658 659 static int ecw2cw(int ecw) 660 { 661 return (1 << ecw) - 1; 662 } 663 664 static bool valid_wmm(struct fwdb_wmm_rule *rule) 665 { 666 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 667 int i; 668 669 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 670 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 671 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 672 u8 aifsn = ac[i].aifsn; 673 674 if (cw_min >= cw_max) 675 return false; 676 677 if (aifsn < 1) 678 return false; 679 } 680 681 return true; 682 } 683 684 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 685 { 686 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 687 688 if ((u8 *)rule + sizeof(rule->len) > data + size) 689 return false; 690 691 /* mandatory fields */ 692 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 693 return false; 694 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 695 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 696 struct fwdb_wmm_rule *wmm; 697 698 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 699 return false; 700 701 wmm = (void *)(data + wmm_ptr); 702 703 if (!valid_wmm(wmm)) 704 return false; 705 } 706 return true; 707 } 708 709 static bool valid_country(const u8 *data, unsigned int size, 710 const struct fwdb_country *country) 711 { 712 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 713 struct fwdb_collection *coll = (void *)(data + ptr); 714 __be16 *rules_ptr; 715 unsigned int i; 716 717 /* make sure we can read len/n_rules */ 718 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 719 return false; 720 721 /* make sure base struct and all rules fit */ 722 if ((u8 *)coll + ALIGN(coll->len, 2) + 723 (coll->n_rules * 2) > data + size) 724 return false; 725 726 /* mandatory fields must exist */ 727 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 728 return false; 729 730 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 731 732 for (i = 0; i < coll->n_rules; i++) { 733 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 734 735 if (!valid_rule(data, size, rule_ptr)) 736 return false; 737 } 738 739 return true; 740 } 741 742 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 743 #include <keys/asymmetric-type.h> 744 745 static struct key *builtin_regdb_keys; 746 747 static int __init load_builtin_regdb_keys(void) 748 { 749 builtin_regdb_keys = 750 keyring_alloc(".builtin_regdb_keys", 751 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 752 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 753 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 754 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 755 if (IS_ERR(builtin_regdb_keys)) 756 return PTR_ERR(builtin_regdb_keys); 757 758 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 759 760 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 761 x509_load_certificate_list(shipped_regdb_certs, 762 shipped_regdb_certs_len, 763 builtin_regdb_keys); 764 #endif 765 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 766 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 767 x509_load_certificate_list(extra_regdb_certs, 768 extra_regdb_certs_len, 769 builtin_regdb_keys); 770 #endif 771 772 return 0; 773 } 774 775 MODULE_FIRMWARE("regulatory.db.p7s"); 776 777 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 778 { 779 const struct firmware *sig; 780 bool result; 781 782 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 783 return false; 784 785 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 786 builtin_regdb_keys, 787 VERIFYING_UNSPECIFIED_SIGNATURE, 788 NULL, NULL) == 0; 789 790 release_firmware(sig); 791 792 return result; 793 } 794 795 static void free_regdb_keyring(void) 796 { 797 key_put(builtin_regdb_keys); 798 } 799 #else 800 static int load_builtin_regdb_keys(void) 801 { 802 return 0; 803 } 804 805 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 806 { 807 return true; 808 } 809 810 static void free_regdb_keyring(void) 811 { 812 } 813 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 814 815 static bool valid_regdb(const u8 *data, unsigned int size) 816 { 817 const struct fwdb_header *hdr = (void *)data; 818 const struct fwdb_country *country; 819 820 if (size < sizeof(*hdr)) 821 return false; 822 823 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 824 return false; 825 826 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 827 return false; 828 829 if (!regdb_has_valid_signature(data, size)) 830 return false; 831 832 country = &hdr->country[0]; 833 while ((u8 *)(country + 1) <= data + size) { 834 if (!country->coll_ptr) 835 break; 836 if (!valid_country(data, size, country)) 837 return false; 838 country++; 839 } 840 841 return true; 842 } 843 844 static void set_wmm_rule(const struct fwdb_header *db, 845 const struct fwdb_country *country, 846 const struct fwdb_rule *rule, 847 struct ieee80211_reg_rule *rrule) 848 { 849 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 850 struct fwdb_wmm_rule *wmm; 851 unsigned int i, wmm_ptr; 852 853 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 854 wmm = (void *)((u8 *)db + wmm_ptr); 855 856 if (!valid_wmm(wmm)) { 857 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 858 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 859 country->alpha2[0], country->alpha2[1]); 860 return; 861 } 862 863 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 864 wmm_rule->client[i].cw_min = 865 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 866 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 867 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 868 wmm_rule->client[i].cot = 869 1000 * be16_to_cpu(wmm->client[i].cot); 870 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 871 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 872 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 873 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 874 } 875 876 rrule->has_wmm = true; 877 } 878 879 static int __regdb_query_wmm(const struct fwdb_header *db, 880 const struct fwdb_country *country, int freq, 881 struct ieee80211_reg_rule *rrule) 882 { 883 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 884 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 885 int i; 886 887 for (i = 0; i < coll->n_rules; i++) { 888 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 889 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 890 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 891 892 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 893 continue; 894 895 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 896 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 897 set_wmm_rule(db, country, rule, rrule); 898 return 0; 899 } 900 } 901 902 return -ENODATA; 903 } 904 905 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 906 { 907 const struct fwdb_header *hdr = regdb; 908 const struct fwdb_country *country; 909 910 if (!regdb) 911 return -ENODATA; 912 913 if (IS_ERR(regdb)) 914 return PTR_ERR(regdb); 915 916 country = &hdr->country[0]; 917 while (country->coll_ptr) { 918 if (alpha2_equal(alpha2, country->alpha2)) 919 return __regdb_query_wmm(regdb, country, freq, rule); 920 921 country++; 922 } 923 924 return -ENODATA; 925 } 926 EXPORT_SYMBOL(reg_query_regdb_wmm); 927 928 static int regdb_query_country(const struct fwdb_header *db, 929 const struct fwdb_country *country) 930 { 931 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 932 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 933 struct ieee80211_regdomain *regdom; 934 unsigned int i; 935 936 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 937 GFP_KERNEL); 938 if (!regdom) 939 return -ENOMEM; 940 941 regdom->n_reg_rules = coll->n_rules; 942 regdom->alpha2[0] = country->alpha2[0]; 943 regdom->alpha2[1] = country->alpha2[1]; 944 regdom->dfs_region = coll->dfs_region; 945 946 for (i = 0; i < regdom->n_reg_rules; i++) { 947 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 948 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 949 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 950 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 951 952 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 953 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 954 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 955 956 rrule->power_rule.max_antenna_gain = 0; 957 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 958 959 rrule->flags = 0; 960 if (rule->flags & FWDB_FLAG_NO_OFDM) 961 rrule->flags |= NL80211_RRF_NO_OFDM; 962 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 963 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 964 if (rule->flags & FWDB_FLAG_DFS) 965 rrule->flags |= NL80211_RRF_DFS; 966 if (rule->flags & FWDB_FLAG_NO_IR) 967 rrule->flags |= NL80211_RRF_NO_IR; 968 if (rule->flags & FWDB_FLAG_AUTO_BW) 969 rrule->flags |= NL80211_RRF_AUTO_BW; 970 971 rrule->dfs_cac_ms = 0; 972 973 /* handle optional data */ 974 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 975 rrule->dfs_cac_ms = 976 1000 * be16_to_cpu(rule->cac_timeout); 977 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 978 set_wmm_rule(db, country, rule, rrule); 979 } 980 981 return reg_schedule_apply(regdom); 982 } 983 984 static int query_regdb(const char *alpha2) 985 { 986 const struct fwdb_header *hdr = regdb; 987 const struct fwdb_country *country; 988 989 ASSERT_RTNL(); 990 991 if (IS_ERR(regdb)) 992 return PTR_ERR(regdb); 993 994 country = &hdr->country[0]; 995 while (country->coll_ptr) { 996 if (alpha2_equal(alpha2, country->alpha2)) 997 return regdb_query_country(regdb, country); 998 country++; 999 } 1000 1001 return -ENODATA; 1002 } 1003 1004 static void regdb_fw_cb(const struct firmware *fw, void *context) 1005 { 1006 int set_error = 0; 1007 bool restore = true; 1008 void *db; 1009 1010 if (!fw) { 1011 pr_info("failed to load regulatory.db\n"); 1012 set_error = -ENODATA; 1013 } else if (!valid_regdb(fw->data, fw->size)) { 1014 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1015 set_error = -EINVAL; 1016 } 1017 1018 rtnl_lock(); 1019 if (regdb && !IS_ERR(regdb)) { 1020 /* negative case - a bug 1021 * positive case - can happen due to race in case of multiple cb's in 1022 * queue, due to usage of asynchronous callback 1023 * 1024 * Either case, just restore and free new db. 1025 */ 1026 } else if (set_error) { 1027 regdb = ERR_PTR(set_error); 1028 } else if (fw) { 1029 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1030 if (db) { 1031 regdb = db; 1032 restore = context && query_regdb(context); 1033 } else { 1034 restore = true; 1035 } 1036 } 1037 1038 if (restore) 1039 restore_regulatory_settings(true, false); 1040 1041 rtnl_unlock(); 1042 1043 kfree(context); 1044 1045 release_firmware(fw); 1046 } 1047 1048 MODULE_FIRMWARE("regulatory.db"); 1049 1050 static int query_regdb_file(const char *alpha2) 1051 { 1052 int err; 1053 1054 ASSERT_RTNL(); 1055 1056 if (regdb) 1057 return query_regdb(alpha2); 1058 1059 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1060 if (!alpha2) 1061 return -ENOMEM; 1062 1063 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1064 ®_pdev->dev, GFP_KERNEL, 1065 (void *)alpha2, regdb_fw_cb); 1066 if (err) 1067 kfree(alpha2); 1068 1069 return err; 1070 } 1071 1072 int reg_reload_regdb(void) 1073 { 1074 const struct firmware *fw; 1075 void *db; 1076 int err; 1077 const struct ieee80211_regdomain *current_regdomain; 1078 struct regulatory_request *request; 1079 1080 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1081 if (err) 1082 return err; 1083 1084 if (!valid_regdb(fw->data, fw->size)) { 1085 err = -ENODATA; 1086 goto out; 1087 } 1088 1089 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1090 if (!db) { 1091 err = -ENOMEM; 1092 goto out; 1093 } 1094 1095 rtnl_lock(); 1096 if (!IS_ERR_OR_NULL(regdb)) 1097 kfree(regdb); 1098 regdb = db; 1099 1100 /* reset regulatory domain */ 1101 current_regdomain = get_cfg80211_regdom(); 1102 1103 request = kzalloc(sizeof(*request), GFP_KERNEL); 1104 if (!request) { 1105 err = -ENOMEM; 1106 goto out_unlock; 1107 } 1108 1109 request->wiphy_idx = WIPHY_IDX_INVALID; 1110 request->alpha2[0] = current_regdomain->alpha2[0]; 1111 request->alpha2[1] = current_regdomain->alpha2[1]; 1112 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1113 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER; 1114 1115 reg_process_hint(request); 1116 1117 out_unlock: 1118 rtnl_unlock(); 1119 out: 1120 release_firmware(fw); 1121 return err; 1122 } 1123 1124 static bool reg_query_database(struct regulatory_request *request) 1125 { 1126 if (query_regdb_file(request->alpha2) == 0) 1127 return true; 1128 1129 if (call_crda(request->alpha2) == 0) 1130 return true; 1131 1132 return false; 1133 } 1134 1135 bool reg_is_valid_request(const char *alpha2) 1136 { 1137 struct regulatory_request *lr = get_last_request(); 1138 1139 if (!lr || lr->processed) 1140 return false; 1141 1142 return alpha2_equal(lr->alpha2, alpha2); 1143 } 1144 1145 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1146 { 1147 struct regulatory_request *lr = get_last_request(); 1148 1149 /* 1150 * Follow the driver's regulatory domain, if present, unless a country 1151 * IE has been processed or a user wants to help compliance further 1152 */ 1153 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1154 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1155 wiphy->regd) 1156 return get_wiphy_regdom(wiphy); 1157 1158 return get_cfg80211_regdom(); 1159 } 1160 1161 static unsigned int 1162 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1163 const struct ieee80211_reg_rule *rule) 1164 { 1165 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1166 const struct ieee80211_freq_range *freq_range_tmp; 1167 const struct ieee80211_reg_rule *tmp; 1168 u32 start_freq, end_freq, idx, no; 1169 1170 for (idx = 0; idx < rd->n_reg_rules; idx++) 1171 if (rule == &rd->reg_rules[idx]) 1172 break; 1173 1174 if (idx == rd->n_reg_rules) 1175 return 0; 1176 1177 /* get start_freq */ 1178 no = idx; 1179 1180 while (no) { 1181 tmp = &rd->reg_rules[--no]; 1182 freq_range_tmp = &tmp->freq_range; 1183 1184 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1185 break; 1186 1187 freq_range = freq_range_tmp; 1188 } 1189 1190 start_freq = freq_range->start_freq_khz; 1191 1192 /* get end_freq */ 1193 freq_range = &rule->freq_range; 1194 no = idx; 1195 1196 while (no < rd->n_reg_rules - 1) { 1197 tmp = &rd->reg_rules[++no]; 1198 freq_range_tmp = &tmp->freq_range; 1199 1200 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1201 break; 1202 1203 freq_range = freq_range_tmp; 1204 } 1205 1206 end_freq = freq_range->end_freq_khz; 1207 1208 return end_freq - start_freq; 1209 } 1210 1211 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1212 const struct ieee80211_reg_rule *rule) 1213 { 1214 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1215 1216 if (rule->flags & NL80211_RRF_NO_320MHZ) 1217 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160)); 1218 if (rule->flags & NL80211_RRF_NO_160MHZ) 1219 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1220 if (rule->flags & NL80211_RRF_NO_80MHZ) 1221 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1222 1223 /* 1224 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1225 * are not allowed. 1226 */ 1227 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1228 rule->flags & NL80211_RRF_NO_HT40PLUS) 1229 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1230 1231 return bw; 1232 } 1233 1234 /* Sanity check on a regulatory rule */ 1235 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1236 { 1237 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1238 u32 freq_diff; 1239 1240 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1241 return false; 1242 1243 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1244 return false; 1245 1246 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1247 1248 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1249 freq_range->max_bandwidth_khz > freq_diff) 1250 return false; 1251 1252 return true; 1253 } 1254 1255 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1256 { 1257 const struct ieee80211_reg_rule *reg_rule = NULL; 1258 unsigned int i; 1259 1260 if (!rd->n_reg_rules) 1261 return false; 1262 1263 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1264 return false; 1265 1266 for (i = 0; i < rd->n_reg_rules; i++) { 1267 reg_rule = &rd->reg_rules[i]; 1268 if (!is_valid_reg_rule(reg_rule)) 1269 return false; 1270 } 1271 1272 return true; 1273 } 1274 1275 /** 1276 * freq_in_rule_band - tells us if a frequency is in a frequency band 1277 * @freq_range: frequency rule we want to query 1278 * @freq_khz: frequency we are inquiring about 1279 * 1280 * This lets us know if a specific frequency rule is or is not relevant to 1281 * a specific frequency's band. Bands are device specific and artificial 1282 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1283 * however it is safe for now to assume that a frequency rule should not be 1284 * part of a frequency's band if the start freq or end freq are off by more 1285 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1286 * 60 GHz band. 1287 * This resolution can be lowered and should be considered as we add 1288 * regulatory rule support for other "bands". 1289 * 1290 * Returns: whether or not the frequency is in the range 1291 */ 1292 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1293 u32 freq_khz) 1294 { 1295 /* 1296 * From 802.11ad: directional multi-gigabit (DMG): 1297 * Pertaining to operation in a frequency band containing a channel 1298 * with the Channel starting frequency above 45 GHz. 1299 */ 1300 u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ; 1301 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1302 return true; 1303 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1304 return true; 1305 return false; 1306 } 1307 1308 /* 1309 * Later on we can perhaps use the more restrictive DFS 1310 * region but we don't have information for that yet so 1311 * for now simply disallow conflicts. 1312 */ 1313 static enum nl80211_dfs_regions 1314 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1315 const enum nl80211_dfs_regions dfs_region2) 1316 { 1317 if (dfs_region1 != dfs_region2) 1318 return NL80211_DFS_UNSET; 1319 return dfs_region1; 1320 } 1321 1322 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1323 const struct ieee80211_wmm_ac *wmm_ac2, 1324 struct ieee80211_wmm_ac *intersect) 1325 { 1326 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1327 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1328 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1329 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1330 } 1331 1332 /* 1333 * Helper for regdom_intersect(), this does the real 1334 * mathematical intersection fun 1335 */ 1336 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1337 const struct ieee80211_regdomain *rd2, 1338 const struct ieee80211_reg_rule *rule1, 1339 const struct ieee80211_reg_rule *rule2, 1340 struct ieee80211_reg_rule *intersected_rule) 1341 { 1342 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1343 struct ieee80211_freq_range *freq_range; 1344 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1345 struct ieee80211_power_rule *power_rule; 1346 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1347 struct ieee80211_wmm_rule *wmm_rule; 1348 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1349 1350 freq_range1 = &rule1->freq_range; 1351 freq_range2 = &rule2->freq_range; 1352 freq_range = &intersected_rule->freq_range; 1353 1354 power_rule1 = &rule1->power_rule; 1355 power_rule2 = &rule2->power_rule; 1356 power_rule = &intersected_rule->power_rule; 1357 1358 wmm_rule1 = &rule1->wmm_rule; 1359 wmm_rule2 = &rule2->wmm_rule; 1360 wmm_rule = &intersected_rule->wmm_rule; 1361 1362 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1363 freq_range2->start_freq_khz); 1364 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1365 freq_range2->end_freq_khz); 1366 1367 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1368 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1369 1370 if (rule1->flags & NL80211_RRF_AUTO_BW) 1371 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1372 if (rule2->flags & NL80211_RRF_AUTO_BW) 1373 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1374 1375 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1376 1377 intersected_rule->flags = rule1->flags | rule2->flags; 1378 1379 /* 1380 * In case NL80211_RRF_AUTO_BW requested for both rules 1381 * set AUTO_BW in intersected rule also. Next we will 1382 * calculate BW correctly in handle_channel function. 1383 * In other case remove AUTO_BW flag while we calculate 1384 * maximum bandwidth correctly and auto calculation is 1385 * not required. 1386 */ 1387 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1388 (rule2->flags & NL80211_RRF_AUTO_BW)) 1389 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1390 else 1391 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1392 1393 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1394 if (freq_range->max_bandwidth_khz > freq_diff) 1395 freq_range->max_bandwidth_khz = freq_diff; 1396 1397 power_rule->max_eirp = min(power_rule1->max_eirp, 1398 power_rule2->max_eirp); 1399 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1400 power_rule2->max_antenna_gain); 1401 1402 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1403 rule2->dfs_cac_ms); 1404 1405 if (rule1->has_wmm && rule2->has_wmm) { 1406 u8 ac; 1407 1408 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1409 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1410 &wmm_rule2->client[ac], 1411 &wmm_rule->client[ac]); 1412 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1413 &wmm_rule2->ap[ac], 1414 &wmm_rule->ap[ac]); 1415 } 1416 1417 intersected_rule->has_wmm = true; 1418 } else if (rule1->has_wmm) { 1419 *wmm_rule = *wmm_rule1; 1420 intersected_rule->has_wmm = true; 1421 } else if (rule2->has_wmm) { 1422 *wmm_rule = *wmm_rule2; 1423 intersected_rule->has_wmm = true; 1424 } else { 1425 intersected_rule->has_wmm = false; 1426 } 1427 1428 if (!is_valid_reg_rule(intersected_rule)) 1429 return -EINVAL; 1430 1431 return 0; 1432 } 1433 1434 /* check whether old rule contains new rule */ 1435 static bool rule_contains(struct ieee80211_reg_rule *r1, 1436 struct ieee80211_reg_rule *r2) 1437 { 1438 /* for simplicity, currently consider only same flags */ 1439 if (r1->flags != r2->flags) 1440 return false; 1441 1442 /* verify r1 is more restrictive */ 1443 if ((r1->power_rule.max_antenna_gain > 1444 r2->power_rule.max_antenna_gain) || 1445 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1446 return false; 1447 1448 /* make sure r2's range is contained within r1 */ 1449 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1450 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1451 return false; 1452 1453 /* and finally verify that r1.max_bw >= r2.max_bw */ 1454 if (r1->freq_range.max_bandwidth_khz < 1455 r2->freq_range.max_bandwidth_khz) 1456 return false; 1457 1458 return true; 1459 } 1460 1461 /* add or extend current rules. do nothing if rule is already contained */ 1462 static void add_rule(struct ieee80211_reg_rule *rule, 1463 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1464 { 1465 struct ieee80211_reg_rule *tmp_rule; 1466 int i; 1467 1468 for (i = 0; i < *n_rules; i++) { 1469 tmp_rule = ®_rules[i]; 1470 /* rule is already contained - do nothing */ 1471 if (rule_contains(tmp_rule, rule)) 1472 return; 1473 1474 /* extend rule if possible */ 1475 if (rule_contains(rule, tmp_rule)) { 1476 memcpy(tmp_rule, rule, sizeof(*rule)); 1477 return; 1478 } 1479 } 1480 1481 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1482 (*n_rules)++; 1483 } 1484 1485 /** 1486 * regdom_intersect - do the intersection between two regulatory domains 1487 * @rd1: first regulatory domain 1488 * @rd2: second regulatory domain 1489 * 1490 * Use this function to get the intersection between two regulatory domains. 1491 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1492 * as no one single alpha2 can represent this regulatory domain. 1493 * 1494 * Returns a pointer to the regulatory domain structure which will hold the 1495 * resulting intersection of rules between rd1 and rd2. We will 1496 * kzalloc() this structure for you. 1497 * 1498 * Returns: the intersected regdomain 1499 */ 1500 static struct ieee80211_regdomain * 1501 regdom_intersect(const struct ieee80211_regdomain *rd1, 1502 const struct ieee80211_regdomain *rd2) 1503 { 1504 int r; 1505 unsigned int x, y; 1506 unsigned int num_rules = 0; 1507 const struct ieee80211_reg_rule *rule1, *rule2; 1508 struct ieee80211_reg_rule intersected_rule; 1509 struct ieee80211_regdomain *rd; 1510 1511 if (!rd1 || !rd2) 1512 return NULL; 1513 1514 /* 1515 * First we get a count of the rules we'll need, then we actually 1516 * build them. This is to so we can malloc() and free() a 1517 * regdomain once. The reason we use reg_rules_intersect() here 1518 * is it will return -EINVAL if the rule computed makes no sense. 1519 * All rules that do check out OK are valid. 1520 */ 1521 1522 for (x = 0; x < rd1->n_reg_rules; x++) { 1523 rule1 = &rd1->reg_rules[x]; 1524 for (y = 0; y < rd2->n_reg_rules; y++) { 1525 rule2 = &rd2->reg_rules[y]; 1526 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1527 &intersected_rule)) 1528 num_rules++; 1529 } 1530 } 1531 1532 if (!num_rules) 1533 return NULL; 1534 1535 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1536 if (!rd) 1537 return NULL; 1538 1539 for (x = 0; x < rd1->n_reg_rules; x++) { 1540 rule1 = &rd1->reg_rules[x]; 1541 for (y = 0; y < rd2->n_reg_rules; y++) { 1542 rule2 = &rd2->reg_rules[y]; 1543 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1544 &intersected_rule); 1545 /* 1546 * No need to memset here the intersected rule here as 1547 * we're not using the stack anymore 1548 */ 1549 if (r) 1550 continue; 1551 1552 add_rule(&intersected_rule, rd->reg_rules, 1553 &rd->n_reg_rules); 1554 } 1555 } 1556 1557 rd->alpha2[0] = '9'; 1558 rd->alpha2[1] = '8'; 1559 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1560 rd2->dfs_region); 1561 1562 return rd; 1563 } 1564 1565 /* 1566 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1567 * want to just have the channel structure use these 1568 */ 1569 static u32 map_regdom_flags(u32 rd_flags) 1570 { 1571 u32 channel_flags = 0; 1572 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1573 channel_flags |= IEEE80211_CHAN_NO_IR; 1574 if (rd_flags & NL80211_RRF_DFS) 1575 channel_flags |= IEEE80211_CHAN_RADAR; 1576 if (rd_flags & NL80211_RRF_NO_OFDM) 1577 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1578 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1579 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1580 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1581 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1582 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1583 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1584 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1585 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1586 if (rd_flags & NL80211_RRF_NO_80MHZ) 1587 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1588 if (rd_flags & NL80211_RRF_NO_160MHZ) 1589 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1590 if (rd_flags & NL80211_RRF_NO_HE) 1591 channel_flags |= IEEE80211_CHAN_NO_HE; 1592 if (rd_flags & NL80211_RRF_NO_320MHZ) 1593 channel_flags |= IEEE80211_CHAN_NO_320MHZ; 1594 if (rd_flags & NL80211_RRF_NO_EHT) 1595 channel_flags |= IEEE80211_CHAN_NO_EHT; 1596 if (rd_flags & NL80211_RRF_DFS_CONCURRENT) 1597 channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT; 1598 if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT) 1599 channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT; 1600 if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT) 1601 channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT; 1602 if (rd_flags & NL80211_RRF_PSD) 1603 channel_flags |= IEEE80211_CHAN_PSD; 1604 if (rd_flags & NL80211_RRF_ALLOW_6GHZ_VLP_AP) 1605 channel_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP; 1606 return channel_flags; 1607 } 1608 1609 static const struct ieee80211_reg_rule * 1610 freq_reg_info_regd(u32 center_freq, 1611 const struct ieee80211_regdomain *regd, u32 bw) 1612 { 1613 int i; 1614 bool band_rule_found = false; 1615 bool bw_fits = false; 1616 1617 if (!regd) 1618 return ERR_PTR(-EINVAL); 1619 1620 for (i = 0; i < regd->n_reg_rules; i++) { 1621 const struct ieee80211_reg_rule *rr; 1622 const struct ieee80211_freq_range *fr = NULL; 1623 1624 rr = ®d->reg_rules[i]; 1625 fr = &rr->freq_range; 1626 1627 /* 1628 * We only need to know if one frequency rule was 1629 * in center_freq's band, that's enough, so let's 1630 * not overwrite it once found 1631 */ 1632 if (!band_rule_found) 1633 band_rule_found = freq_in_rule_band(fr, center_freq); 1634 1635 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1636 1637 if (band_rule_found && bw_fits) 1638 return rr; 1639 } 1640 1641 if (!band_rule_found) 1642 return ERR_PTR(-ERANGE); 1643 1644 return ERR_PTR(-EINVAL); 1645 } 1646 1647 static const struct ieee80211_reg_rule * 1648 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1649 { 1650 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1651 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1652 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE); 1653 int i = ARRAY_SIZE(bws) - 1; 1654 u32 bw; 1655 1656 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1657 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1658 if (!IS_ERR(reg_rule)) 1659 return reg_rule; 1660 } 1661 1662 return reg_rule; 1663 } 1664 1665 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1666 u32 center_freq) 1667 { 1668 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1669 1670 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1671 } 1672 EXPORT_SYMBOL(freq_reg_info); 1673 1674 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1675 { 1676 switch (initiator) { 1677 case NL80211_REGDOM_SET_BY_CORE: 1678 return "core"; 1679 case NL80211_REGDOM_SET_BY_USER: 1680 return "user"; 1681 case NL80211_REGDOM_SET_BY_DRIVER: 1682 return "driver"; 1683 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1684 return "country element"; 1685 default: 1686 WARN_ON(1); 1687 return "bug"; 1688 } 1689 } 1690 EXPORT_SYMBOL(reg_initiator_name); 1691 1692 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1693 const struct ieee80211_reg_rule *reg_rule, 1694 const struct ieee80211_channel *chan) 1695 { 1696 const struct ieee80211_freq_range *freq_range = NULL; 1697 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1698 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1699 1700 freq_range = ®_rule->freq_range; 1701 1702 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1703 center_freq_khz = ieee80211_channel_to_khz(chan); 1704 /* Check if auto calculation requested */ 1705 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1706 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1707 1708 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1709 if (!cfg80211_does_bw_fit_range(freq_range, 1710 center_freq_khz, 1711 MHZ_TO_KHZ(10))) 1712 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1713 if (!cfg80211_does_bw_fit_range(freq_range, 1714 center_freq_khz, 1715 MHZ_TO_KHZ(20))) 1716 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1717 1718 if (is_s1g) { 1719 /* S1G is strict about non overlapping channels. We can 1720 * calculate which bandwidth is allowed per channel by finding 1721 * the largest bandwidth which cleanly divides the freq_range. 1722 */ 1723 int edge_offset; 1724 int ch_bw = max_bandwidth_khz; 1725 1726 while (ch_bw) { 1727 edge_offset = (center_freq_khz - ch_bw / 2) - 1728 freq_range->start_freq_khz; 1729 if (edge_offset % ch_bw == 0) { 1730 switch (KHZ_TO_MHZ(ch_bw)) { 1731 case 1: 1732 bw_flags |= IEEE80211_CHAN_1MHZ; 1733 break; 1734 case 2: 1735 bw_flags |= IEEE80211_CHAN_2MHZ; 1736 break; 1737 case 4: 1738 bw_flags |= IEEE80211_CHAN_4MHZ; 1739 break; 1740 case 8: 1741 bw_flags |= IEEE80211_CHAN_8MHZ; 1742 break; 1743 case 16: 1744 bw_flags |= IEEE80211_CHAN_16MHZ; 1745 break; 1746 default: 1747 /* If we got here, no bandwidths fit on 1748 * this frequency, ie. band edge. 1749 */ 1750 bw_flags |= IEEE80211_CHAN_DISABLED; 1751 break; 1752 } 1753 break; 1754 } 1755 ch_bw /= 2; 1756 } 1757 } else { 1758 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1759 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1760 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1761 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1762 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1763 bw_flags |= IEEE80211_CHAN_NO_HT40; 1764 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1765 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1766 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1767 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1768 if (max_bandwidth_khz < MHZ_TO_KHZ(320)) 1769 bw_flags |= IEEE80211_CHAN_NO_320MHZ; 1770 } 1771 return bw_flags; 1772 } 1773 1774 static void handle_channel_single_rule(struct wiphy *wiphy, 1775 enum nl80211_reg_initiator initiator, 1776 struct ieee80211_channel *chan, 1777 u32 flags, 1778 struct regulatory_request *lr, 1779 struct wiphy *request_wiphy, 1780 const struct ieee80211_reg_rule *reg_rule) 1781 { 1782 u32 bw_flags = 0; 1783 const struct ieee80211_power_rule *power_rule = NULL; 1784 const struct ieee80211_regdomain *regd; 1785 1786 regd = reg_get_regdomain(wiphy); 1787 1788 power_rule = ®_rule->power_rule; 1789 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1790 1791 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1792 request_wiphy && request_wiphy == wiphy && 1793 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1794 /* 1795 * This guarantees the driver's requested regulatory domain 1796 * will always be used as a base for further regulatory 1797 * settings 1798 */ 1799 chan->flags = chan->orig_flags = 1800 map_regdom_flags(reg_rule->flags) | bw_flags; 1801 chan->max_antenna_gain = chan->orig_mag = 1802 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1803 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1804 (int) MBM_TO_DBM(power_rule->max_eirp); 1805 1806 if (chan->flags & IEEE80211_CHAN_RADAR) { 1807 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1808 if (reg_rule->dfs_cac_ms) 1809 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1810 } 1811 1812 if (chan->flags & IEEE80211_CHAN_PSD) 1813 chan->psd = reg_rule->psd; 1814 1815 return; 1816 } 1817 1818 chan->dfs_state = NL80211_DFS_USABLE; 1819 chan->dfs_state_entered = jiffies; 1820 1821 chan->beacon_found = false; 1822 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1823 chan->max_antenna_gain = 1824 min_t(int, chan->orig_mag, 1825 MBI_TO_DBI(power_rule->max_antenna_gain)); 1826 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1827 1828 if (chan->flags & IEEE80211_CHAN_RADAR) { 1829 if (reg_rule->dfs_cac_ms) 1830 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1831 else 1832 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1833 } 1834 1835 if (chan->flags & IEEE80211_CHAN_PSD) 1836 chan->psd = reg_rule->psd; 1837 1838 if (chan->orig_mpwr) { 1839 /* 1840 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1841 * will always follow the passed country IE power settings. 1842 */ 1843 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1844 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1845 chan->max_power = chan->max_reg_power; 1846 else 1847 chan->max_power = min(chan->orig_mpwr, 1848 chan->max_reg_power); 1849 } else 1850 chan->max_power = chan->max_reg_power; 1851 } 1852 1853 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1854 enum nl80211_reg_initiator initiator, 1855 struct ieee80211_channel *chan, 1856 u32 flags, 1857 struct regulatory_request *lr, 1858 struct wiphy *request_wiphy, 1859 const struct ieee80211_reg_rule *rrule1, 1860 const struct ieee80211_reg_rule *rrule2, 1861 struct ieee80211_freq_range *comb_range) 1862 { 1863 u32 bw_flags1 = 0; 1864 u32 bw_flags2 = 0; 1865 const struct ieee80211_power_rule *power_rule1 = NULL; 1866 const struct ieee80211_power_rule *power_rule2 = NULL; 1867 const struct ieee80211_regdomain *regd; 1868 1869 regd = reg_get_regdomain(wiphy); 1870 1871 power_rule1 = &rrule1->power_rule; 1872 power_rule2 = &rrule2->power_rule; 1873 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1874 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1875 1876 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1877 request_wiphy && request_wiphy == wiphy && 1878 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1879 /* This guarantees the driver's requested regulatory domain 1880 * will always be used as a base for further regulatory 1881 * settings 1882 */ 1883 chan->flags = 1884 map_regdom_flags(rrule1->flags) | 1885 map_regdom_flags(rrule2->flags) | 1886 bw_flags1 | 1887 bw_flags2; 1888 chan->orig_flags = chan->flags; 1889 chan->max_antenna_gain = 1890 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1891 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1892 chan->orig_mag = chan->max_antenna_gain; 1893 chan->max_reg_power = 1894 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1895 MBM_TO_DBM(power_rule2->max_eirp)); 1896 chan->max_power = chan->max_reg_power; 1897 chan->orig_mpwr = chan->max_reg_power; 1898 1899 if (chan->flags & IEEE80211_CHAN_RADAR) { 1900 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1901 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1902 chan->dfs_cac_ms = max_t(unsigned int, 1903 rrule1->dfs_cac_ms, 1904 rrule2->dfs_cac_ms); 1905 } 1906 1907 if ((rrule1->flags & NL80211_RRF_PSD) && 1908 (rrule2->flags & NL80211_RRF_PSD)) 1909 chan->psd = min_t(s8, rrule1->psd, rrule2->psd); 1910 else 1911 chan->flags &= ~NL80211_RRF_PSD; 1912 1913 return; 1914 } 1915 1916 chan->dfs_state = NL80211_DFS_USABLE; 1917 chan->dfs_state_entered = jiffies; 1918 1919 chan->beacon_found = false; 1920 chan->flags = flags | bw_flags1 | bw_flags2 | 1921 map_regdom_flags(rrule1->flags) | 1922 map_regdom_flags(rrule2->flags); 1923 1924 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1925 * (otherwise no adj. rule case), recheck therefore 1926 */ 1927 if (cfg80211_does_bw_fit_range(comb_range, 1928 ieee80211_channel_to_khz(chan), 1929 MHZ_TO_KHZ(10))) 1930 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1931 if (cfg80211_does_bw_fit_range(comb_range, 1932 ieee80211_channel_to_khz(chan), 1933 MHZ_TO_KHZ(20))) 1934 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1935 1936 chan->max_antenna_gain = 1937 min_t(int, chan->orig_mag, 1938 min_t(int, 1939 MBI_TO_DBI(power_rule1->max_antenna_gain), 1940 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1941 chan->max_reg_power = min_t(int, 1942 MBM_TO_DBM(power_rule1->max_eirp), 1943 MBM_TO_DBM(power_rule2->max_eirp)); 1944 1945 if (chan->flags & IEEE80211_CHAN_RADAR) { 1946 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1947 chan->dfs_cac_ms = max_t(unsigned int, 1948 rrule1->dfs_cac_ms, 1949 rrule2->dfs_cac_ms); 1950 else 1951 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1952 } 1953 1954 if (chan->orig_mpwr) { 1955 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1956 * will always follow the passed country IE power settings. 1957 */ 1958 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1959 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1960 chan->max_power = chan->max_reg_power; 1961 else 1962 chan->max_power = min(chan->orig_mpwr, 1963 chan->max_reg_power); 1964 } else { 1965 chan->max_power = chan->max_reg_power; 1966 } 1967 } 1968 1969 /* Note that right now we assume the desired channel bandwidth 1970 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1971 * per channel, the primary and the extension channel). 1972 */ 1973 static void handle_channel(struct wiphy *wiphy, 1974 enum nl80211_reg_initiator initiator, 1975 struct ieee80211_channel *chan) 1976 { 1977 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1978 struct regulatory_request *lr = get_last_request(); 1979 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1980 const struct ieee80211_reg_rule *rrule = NULL; 1981 const struct ieee80211_reg_rule *rrule1 = NULL; 1982 const struct ieee80211_reg_rule *rrule2 = NULL; 1983 1984 u32 flags = chan->orig_flags; 1985 1986 rrule = freq_reg_info(wiphy, orig_chan_freq); 1987 if (IS_ERR(rrule)) { 1988 /* check for adjacent match, therefore get rules for 1989 * chan - 20 MHz and chan + 20 MHz and test 1990 * if reg rules are adjacent 1991 */ 1992 rrule1 = freq_reg_info(wiphy, 1993 orig_chan_freq - MHZ_TO_KHZ(20)); 1994 rrule2 = freq_reg_info(wiphy, 1995 orig_chan_freq + MHZ_TO_KHZ(20)); 1996 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 1997 struct ieee80211_freq_range comb_range; 1998 1999 if (rrule1->freq_range.end_freq_khz != 2000 rrule2->freq_range.start_freq_khz) 2001 goto disable_chan; 2002 2003 comb_range.start_freq_khz = 2004 rrule1->freq_range.start_freq_khz; 2005 comb_range.end_freq_khz = 2006 rrule2->freq_range.end_freq_khz; 2007 comb_range.max_bandwidth_khz = 2008 min_t(u32, 2009 rrule1->freq_range.max_bandwidth_khz, 2010 rrule2->freq_range.max_bandwidth_khz); 2011 2012 if (!cfg80211_does_bw_fit_range(&comb_range, 2013 orig_chan_freq, 2014 MHZ_TO_KHZ(20))) 2015 goto disable_chan; 2016 2017 handle_channel_adjacent_rules(wiphy, initiator, chan, 2018 flags, lr, request_wiphy, 2019 rrule1, rrule2, 2020 &comb_range); 2021 return; 2022 } 2023 2024 disable_chan: 2025 /* We will disable all channels that do not match our 2026 * received regulatory rule unless the hint is coming 2027 * from a Country IE and the Country IE had no information 2028 * about a band. The IEEE 802.11 spec allows for an AP 2029 * to send only a subset of the regulatory rules allowed, 2030 * so an AP in the US that only supports 2.4 GHz may only send 2031 * a country IE with information for the 2.4 GHz band 2032 * while 5 GHz is still supported. 2033 */ 2034 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2035 PTR_ERR(rrule) == -ERANGE) 2036 return; 2037 2038 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2039 request_wiphy && request_wiphy == wiphy && 2040 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2041 pr_debug("Disabling freq %d.%03d MHz for good\n", 2042 chan->center_freq, chan->freq_offset); 2043 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2044 chan->flags = chan->orig_flags; 2045 } else { 2046 pr_debug("Disabling freq %d.%03d MHz\n", 2047 chan->center_freq, chan->freq_offset); 2048 chan->flags |= IEEE80211_CHAN_DISABLED; 2049 } 2050 return; 2051 } 2052 2053 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2054 request_wiphy, rrule); 2055 } 2056 2057 static void handle_band(struct wiphy *wiphy, 2058 enum nl80211_reg_initiator initiator, 2059 struct ieee80211_supported_band *sband) 2060 { 2061 unsigned int i; 2062 2063 if (!sband) 2064 return; 2065 2066 for (i = 0; i < sband->n_channels; i++) 2067 handle_channel(wiphy, initiator, &sband->channels[i]); 2068 } 2069 2070 static bool reg_request_cell_base(struct regulatory_request *request) 2071 { 2072 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2073 return false; 2074 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2075 } 2076 2077 bool reg_last_request_cell_base(void) 2078 { 2079 return reg_request_cell_base(get_last_request()); 2080 } 2081 2082 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2083 /* Core specific check */ 2084 static enum reg_request_treatment 2085 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2086 { 2087 struct regulatory_request *lr = get_last_request(); 2088 2089 if (!reg_num_devs_support_basehint) 2090 return REG_REQ_IGNORE; 2091 2092 if (reg_request_cell_base(lr) && 2093 !regdom_changes(pending_request->alpha2)) 2094 return REG_REQ_ALREADY_SET; 2095 2096 return REG_REQ_OK; 2097 } 2098 2099 /* Device specific check */ 2100 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2101 { 2102 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2103 } 2104 #else 2105 static enum reg_request_treatment 2106 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2107 { 2108 return REG_REQ_IGNORE; 2109 } 2110 2111 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2112 { 2113 return true; 2114 } 2115 #endif 2116 2117 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2118 { 2119 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2120 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2121 return true; 2122 return false; 2123 } 2124 2125 static bool ignore_reg_update(struct wiphy *wiphy, 2126 enum nl80211_reg_initiator initiator) 2127 { 2128 struct regulatory_request *lr = get_last_request(); 2129 2130 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2131 return true; 2132 2133 if (!lr) { 2134 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2135 reg_initiator_name(initiator)); 2136 return true; 2137 } 2138 2139 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2140 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2141 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2142 reg_initiator_name(initiator)); 2143 return true; 2144 } 2145 2146 /* 2147 * wiphy->regd will be set once the device has its own 2148 * desired regulatory domain set 2149 */ 2150 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2151 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2152 !is_world_regdom(lr->alpha2)) { 2153 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2154 reg_initiator_name(initiator)); 2155 return true; 2156 } 2157 2158 if (reg_request_cell_base(lr)) 2159 return reg_dev_ignore_cell_hint(wiphy); 2160 2161 return false; 2162 } 2163 2164 static bool reg_is_world_roaming(struct wiphy *wiphy) 2165 { 2166 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2167 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2168 struct regulatory_request *lr = get_last_request(); 2169 2170 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2171 return true; 2172 2173 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2174 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2175 return true; 2176 2177 return false; 2178 } 2179 2180 static void reg_call_notifier(struct wiphy *wiphy, 2181 struct regulatory_request *request) 2182 { 2183 if (wiphy->reg_notifier) 2184 wiphy->reg_notifier(wiphy, request); 2185 } 2186 2187 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2188 struct reg_beacon *reg_beacon) 2189 { 2190 struct ieee80211_supported_band *sband; 2191 struct ieee80211_channel *chan; 2192 bool channel_changed = false; 2193 struct ieee80211_channel chan_before; 2194 struct regulatory_request *lr = get_last_request(); 2195 2196 sband = wiphy->bands[reg_beacon->chan.band]; 2197 chan = &sband->channels[chan_idx]; 2198 2199 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2200 return; 2201 2202 if (chan->beacon_found) 2203 return; 2204 2205 chan->beacon_found = true; 2206 2207 if (!reg_is_world_roaming(wiphy)) 2208 return; 2209 2210 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2211 return; 2212 2213 chan_before = *chan; 2214 2215 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2216 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2217 channel_changed = true; 2218 } 2219 2220 if (channel_changed) { 2221 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2222 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON) 2223 reg_call_notifier(wiphy, lr); 2224 } 2225 } 2226 2227 /* 2228 * Called when a scan on a wiphy finds a beacon on 2229 * new channel 2230 */ 2231 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2232 struct reg_beacon *reg_beacon) 2233 { 2234 unsigned int i; 2235 struct ieee80211_supported_band *sband; 2236 2237 if (!wiphy->bands[reg_beacon->chan.band]) 2238 return; 2239 2240 sband = wiphy->bands[reg_beacon->chan.band]; 2241 2242 for (i = 0; i < sband->n_channels; i++) 2243 handle_reg_beacon(wiphy, i, reg_beacon); 2244 } 2245 2246 /* 2247 * Called upon reg changes or a new wiphy is added 2248 */ 2249 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2250 { 2251 unsigned int i; 2252 struct ieee80211_supported_band *sband; 2253 struct reg_beacon *reg_beacon; 2254 2255 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2256 if (!wiphy->bands[reg_beacon->chan.band]) 2257 continue; 2258 sband = wiphy->bands[reg_beacon->chan.band]; 2259 for (i = 0; i < sband->n_channels; i++) 2260 handle_reg_beacon(wiphy, i, reg_beacon); 2261 } 2262 } 2263 2264 /* Reap the advantages of previously found beacons */ 2265 static void reg_process_beacons(struct wiphy *wiphy) 2266 { 2267 /* 2268 * Means we are just firing up cfg80211, so no beacons would 2269 * have been processed yet. 2270 */ 2271 if (!last_request) 2272 return; 2273 wiphy_update_beacon_reg(wiphy); 2274 } 2275 2276 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2277 { 2278 if (!chan) 2279 return false; 2280 if (chan->flags & IEEE80211_CHAN_DISABLED) 2281 return false; 2282 /* This would happen when regulatory rules disallow HT40 completely */ 2283 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2284 return false; 2285 return true; 2286 } 2287 2288 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2289 struct ieee80211_channel *channel) 2290 { 2291 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2292 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2293 const struct ieee80211_regdomain *regd; 2294 unsigned int i; 2295 u32 flags; 2296 2297 if (!is_ht40_allowed(channel)) { 2298 channel->flags |= IEEE80211_CHAN_NO_HT40; 2299 return; 2300 } 2301 2302 /* 2303 * We need to ensure the extension channels exist to 2304 * be able to use HT40- or HT40+, this finds them (or not) 2305 */ 2306 for (i = 0; i < sband->n_channels; i++) { 2307 struct ieee80211_channel *c = &sband->channels[i]; 2308 2309 if (c->center_freq == (channel->center_freq - 20)) 2310 channel_before = c; 2311 if (c->center_freq == (channel->center_freq + 20)) 2312 channel_after = c; 2313 } 2314 2315 flags = 0; 2316 regd = get_wiphy_regdom(wiphy); 2317 if (regd) { 2318 const struct ieee80211_reg_rule *reg_rule = 2319 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2320 regd, MHZ_TO_KHZ(20)); 2321 2322 if (!IS_ERR(reg_rule)) 2323 flags = reg_rule->flags; 2324 } 2325 2326 /* 2327 * Please note that this assumes target bandwidth is 20 MHz, 2328 * if that ever changes we also need to change the below logic 2329 * to include that as well. 2330 */ 2331 if (!is_ht40_allowed(channel_before) || 2332 flags & NL80211_RRF_NO_HT40MINUS) 2333 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2334 else 2335 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2336 2337 if (!is_ht40_allowed(channel_after) || 2338 flags & NL80211_RRF_NO_HT40PLUS) 2339 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2340 else 2341 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2342 } 2343 2344 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2345 struct ieee80211_supported_band *sband) 2346 { 2347 unsigned int i; 2348 2349 if (!sband) 2350 return; 2351 2352 for (i = 0; i < sband->n_channels; i++) 2353 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2354 } 2355 2356 static void reg_process_ht_flags(struct wiphy *wiphy) 2357 { 2358 enum nl80211_band band; 2359 2360 if (!wiphy) 2361 return; 2362 2363 for (band = 0; band < NUM_NL80211_BANDS; band++) 2364 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2365 } 2366 2367 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2368 { 2369 struct cfg80211_chan_def chandef = {}; 2370 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2371 enum nl80211_iftype iftype; 2372 bool ret; 2373 int link; 2374 2375 iftype = wdev->iftype; 2376 2377 /* make sure the interface is active */ 2378 if (!wdev->netdev || !netif_running(wdev->netdev)) 2379 return true; 2380 2381 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) { 2382 struct ieee80211_channel *chan; 2383 2384 if (!wdev->valid_links && link > 0) 2385 break; 2386 if (wdev->valid_links && !(wdev->valid_links & BIT(link))) 2387 continue; 2388 switch (iftype) { 2389 case NL80211_IFTYPE_AP: 2390 case NL80211_IFTYPE_P2P_GO: 2391 if (!wdev->links[link].ap.beacon_interval) 2392 continue; 2393 chandef = wdev->links[link].ap.chandef; 2394 break; 2395 case NL80211_IFTYPE_MESH_POINT: 2396 if (!wdev->u.mesh.beacon_interval) 2397 continue; 2398 chandef = wdev->u.mesh.chandef; 2399 break; 2400 case NL80211_IFTYPE_ADHOC: 2401 if (!wdev->u.ibss.ssid_len) 2402 continue; 2403 chandef = wdev->u.ibss.chandef; 2404 break; 2405 case NL80211_IFTYPE_STATION: 2406 case NL80211_IFTYPE_P2P_CLIENT: 2407 /* Maybe we could consider disabling that link only? */ 2408 if (!wdev->links[link].client.current_bss) 2409 continue; 2410 2411 chan = wdev->links[link].client.current_bss->pub.channel; 2412 if (!chan) 2413 continue; 2414 2415 if (!rdev->ops->get_channel || 2416 rdev_get_channel(rdev, wdev, link, &chandef)) 2417 cfg80211_chandef_create(&chandef, chan, 2418 NL80211_CHAN_NO_HT); 2419 break; 2420 case NL80211_IFTYPE_MONITOR: 2421 case NL80211_IFTYPE_AP_VLAN: 2422 case NL80211_IFTYPE_P2P_DEVICE: 2423 /* no enforcement required */ 2424 break; 2425 case NL80211_IFTYPE_OCB: 2426 if (!wdev->u.ocb.chandef.chan) 2427 continue; 2428 chandef = wdev->u.ocb.chandef; 2429 break; 2430 case NL80211_IFTYPE_NAN: 2431 /* we have no info, but NAN is also pretty universal */ 2432 continue; 2433 default: 2434 /* others not implemented for now */ 2435 WARN_ON_ONCE(1); 2436 break; 2437 } 2438 2439 switch (iftype) { 2440 case NL80211_IFTYPE_AP: 2441 case NL80211_IFTYPE_P2P_GO: 2442 case NL80211_IFTYPE_ADHOC: 2443 case NL80211_IFTYPE_MESH_POINT: 2444 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, 2445 iftype); 2446 if (!ret) 2447 return ret; 2448 break; 2449 case NL80211_IFTYPE_STATION: 2450 case NL80211_IFTYPE_P2P_CLIENT: 2451 ret = cfg80211_chandef_usable(wiphy, &chandef, 2452 IEEE80211_CHAN_DISABLED); 2453 if (!ret) 2454 return ret; 2455 break; 2456 default: 2457 break; 2458 } 2459 } 2460 2461 return true; 2462 } 2463 2464 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2465 { 2466 struct wireless_dev *wdev; 2467 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2468 2469 guard(wiphy)(wiphy); 2470 2471 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2472 if (!reg_wdev_chan_valid(wiphy, wdev)) 2473 cfg80211_leave(rdev, wdev); 2474 } 2475 2476 static void reg_check_chans_work(struct work_struct *work) 2477 { 2478 struct cfg80211_registered_device *rdev; 2479 2480 pr_debug("Verifying active interfaces after reg change\n"); 2481 rtnl_lock(); 2482 2483 for_each_rdev(rdev) 2484 reg_leave_invalid_chans(&rdev->wiphy); 2485 2486 rtnl_unlock(); 2487 } 2488 2489 void reg_check_channels(void) 2490 { 2491 /* 2492 * Give usermode a chance to do something nicer (move to another 2493 * channel, orderly disconnection), before forcing a disconnection. 2494 */ 2495 mod_delayed_work(system_power_efficient_wq, 2496 ®_check_chans, 2497 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2498 } 2499 2500 static void wiphy_update_regulatory(struct wiphy *wiphy, 2501 enum nl80211_reg_initiator initiator) 2502 { 2503 enum nl80211_band band; 2504 struct regulatory_request *lr = get_last_request(); 2505 2506 if (ignore_reg_update(wiphy, initiator)) { 2507 /* 2508 * Regulatory updates set by CORE are ignored for custom 2509 * regulatory cards. Let us notify the changes to the driver, 2510 * as some drivers used this to restore its orig_* reg domain. 2511 */ 2512 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2513 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2514 !(wiphy->regulatory_flags & 2515 REGULATORY_WIPHY_SELF_MANAGED)) 2516 reg_call_notifier(wiphy, lr); 2517 return; 2518 } 2519 2520 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2521 2522 for (band = 0; band < NUM_NL80211_BANDS; band++) 2523 handle_band(wiphy, initiator, wiphy->bands[band]); 2524 2525 reg_process_beacons(wiphy); 2526 reg_process_ht_flags(wiphy); 2527 reg_call_notifier(wiphy, lr); 2528 } 2529 2530 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2531 { 2532 struct cfg80211_registered_device *rdev; 2533 struct wiphy *wiphy; 2534 2535 ASSERT_RTNL(); 2536 2537 for_each_rdev(rdev) { 2538 wiphy = &rdev->wiphy; 2539 wiphy_update_regulatory(wiphy, initiator); 2540 } 2541 2542 reg_check_channels(); 2543 } 2544 2545 static void handle_channel_custom(struct wiphy *wiphy, 2546 struct ieee80211_channel *chan, 2547 const struct ieee80211_regdomain *regd, 2548 u32 min_bw) 2549 { 2550 u32 bw_flags = 0; 2551 const struct ieee80211_reg_rule *reg_rule = NULL; 2552 const struct ieee80211_power_rule *power_rule = NULL; 2553 u32 bw, center_freq_khz; 2554 2555 center_freq_khz = ieee80211_channel_to_khz(chan); 2556 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2557 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2558 if (!IS_ERR(reg_rule)) 2559 break; 2560 } 2561 2562 if (IS_ERR_OR_NULL(reg_rule)) { 2563 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2564 chan->center_freq, chan->freq_offset); 2565 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2566 chan->flags |= IEEE80211_CHAN_DISABLED; 2567 } else { 2568 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2569 chan->flags = chan->orig_flags; 2570 } 2571 return; 2572 } 2573 2574 power_rule = ®_rule->power_rule; 2575 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2576 2577 chan->dfs_state_entered = jiffies; 2578 chan->dfs_state = NL80211_DFS_USABLE; 2579 2580 chan->beacon_found = false; 2581 2582 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2583 chan->flags = chan->orig_flags | bw_flags | 2584 map_regdom_flags(reg_rule->flags); 2585 else 2586 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2587 2588 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2589 chan->max_reg_power = chan->max_power = 2590 (int) MBM_TO_DBM(power_rule->max_eirp); 2591 2592 if (chan->flags & IEEE80211_CHAN_RADAR) { 2593 if (reg_rule->dfs_cac_ms) 2594 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2595 else 2596 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2597 } 2598 2599 if (chan->flags & IEEE80211_CHAN_PSD) 2600 chan->psd = reg_rule->psd; 2601 2602 chan->max_power = chan->max_reg_power; 2603 } 2604 2605 static void handle_band_custom(struct wiphy *wiphy, 2606 struct ieee80211_supported_band *sband, 2607 const struct ieee80211_regdomain *regd) 2608 { 2609 unsigned int i; 2610 2611 if (!sband) 2612 return; 2613 2614 /* 2615 * We currently assume that you always want at least 20 MHz, 2616 * otherwise channel 12 might get enabled if this rule is 2617 * compatible to US, which permits 2402 - 2472 MHz. 2618 */ 2619 for (i = 0; i < sband->n_channels; i++) 2620 handle_channel_custom(wiphy, &sband->channels[i], regd, 2621 MHZ_TO_KHZ(20)); 2622 } 2623 2624 /* Used by drivers prior to wiphy registration */ 2625 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2626 const struct ieee80211_regdomain *regd) 2627 { 2628 const struct ieee80211_regdomain *new_regd, *tmp; 2629 enum nl80211_band band; 2630 unsigned int bands_set = 0; 2631 2632 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2633 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2634 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2635 2636 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2637 if (!wiphy->bands[band]) 2638 continue; 2639 handle_band_custom(wiphy, wiphy->bands[band], regd); 2640 bands_set++; 2641 } 2642 2643 /* 2644 * no point in calling this if it won't have any effect 2645 * on your device's supported bands. 2646 */ 2647 WARN_ON(!bands_set); 2648 new_regd = reg_copy_regd(regd); 2649 if (IS_ERR(new_regd)) 2650 return; 2651 2652 rtnl_lock(); 2653 scoped_guard(wiphy, wiphy) { 2654 tmp = get_wiphy_regdom(wiphy); 2655 rcu_assign_pointer(wiphy->regd, new_regd); 2656 rcu_free_regdom(tmp); 2657 } 2658 rtnl_unlock(); 2659 } 2660 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2661 2662 static void reg_set_request_processed(void) 2663 { 2664 bool need_more_processing = false; 2665 struct regulatory_request *lr = get_last_request(); 2666 2667 lr->processed = true; 2668 2669 spin_lock(®_requests_lock); 2670 if (!list_empty(®_requests_list)) 2671 need_more_processing = true; 2672 spin_unlock(®_requests_lock); 2673 2674 cancel_crda_timeout(); 2675 2676 if (need_more_processing) 2677 schedule_work(®_work); 2678 } 2679 2680 /** 2681 * reg_process_hint_core - process core regulatory requests 2682 * @core_request: a pending core regulatory request 2683 * 2684 * The wireless subsystem can use this function to process 2685 * a regulatory request issued by the regulatory core. 2686 * 2687 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the 2688 * hint was processed or ignored 2689 */ 2690 static enum reg_request_treatment 2691 reg_process_hint_core(struct regulatory_request *core_request) 2692 { 2693 if (reg_query_database(core_request)) { 2694 core_request->intersect = false; 2695 core_request->processed = false; 2696 reg_update_last_request(core_request); 2697 return REG_REQ_OK; 2698 } 2699 2700 return REG_REQ_IGNORE; 2701 } 2702 2703 static enum reg_request_treatment 2704 __reg_process_hint_user(struct regulatory_request *user_request) 2705 { 2706 struct regulatory_request *lr = get_last_request(); 2707 2708 if (reg_request_cell_base(user_request)) 2709 return reg_ignore_cell_hint(user_request); 2710 2711 if (reg_request_cell_base(lr)) 2712 return REG_REQ_IGNORE; 2713 2714 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2715 return REG_REQ_INTERSECT; 2716 /* 2717 * If the user knows better the user should set the regdom 2718 * to their country before the IE is picked up 2719 */ 2720 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2721 lr->intersect) 2722 return REG_REQ_IGNORE; 2723 /* 2724 * Process user requests only after previous user/driver/core 2725 * requests have been processed 2726 */ 2727 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2728 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2729 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2730 regdom_changes(lr->alpha2)) 2731 return REG_REQ_IGNORE; 2732 2733 if (!regdom_changes(user_request->alpha2)) 2734 return REG_REQ_ALREADY_SET; 2735 2736 return REG_REQ_OK; 2737 } 2738 2739 /** 2740 * reg_process_hint_user - process user regulatory requests 2741 * @user_request: a pending user regulatory request 2742 * 2743 * The wireless subsystem can use this function to process 2744 * a regulatory request initiated by userspace. 2745 * 2746 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the 2747 * hint was processed or ignored 2748 */ 2749 static enum reg_request_treatment 2750 reg_process_hint_user(struct regulatory_request *user_request) 2751 { 2752 enum reg_request_treatment treatment; 2753 2754 treatment = __reg_process_hint_user(user_request); 2755 if (treatment == REG_REQ_IGNORE || 2756 treatment == REG_REQ_ALREADY_SET) 2757 return REG_REQ_IGNORE; 2758 2759 user_request->intersect = treatment == REG_REQ_INTERSECT; 2760 user_request->processed = false; 2761 2762 if (reg_query_database(user_request)) { 2763 reg_update_last_request(user_request); 2764 user_alpha2[0] = user_request->alpha2[0]; 2765 user_alpha2[1] = user_request->alpha2[1]; 2766 return REG_REQ_OK; 2767 } 2768 2769 return REG_REQ_IGNORE; 2770 } 2771 2772 static enum reg_request_treatment 2773 __reg_process_hint_driver(struct regulatory_request *driver_request) 2774 { 2775 struct regulatory_request *lr = get_last_request(); 2776 2777 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2778 if (regdom_changes(driver_request->alpha2)) 2779 return REG_REQ_OK; 2780 return REG_REQ_ALREADY_SET; 2781 } 2782 2783 /* 2784 * This would happen if you unplug and plug your card 2785 * back in or if you add a new device for which the previously 2786 * loaded card also agrees on the regulatory domain. 2787 */ 2788 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2789 !regdom_changes(driver_request->alpha2)) 2790 return REG_REQ_ALREADY_SET; 2791 2792 return REG_REQ_INTERSECT; 2793 } 2794 2795 /** 2796 * reg_process_hint_driver - process driver regulatory requests 2797 * @wiphy: the wireless device for the regulatory request 2798 * @driver_request: a pending driver regulatory request 2799 * 2800 * The wireless subsystem can use this function to process 2801 * a regulatory request issued by an 802.11 driver. 2802 * 2803 * Returns: one of the different reg request treatment values. 2804 */ 2805 static enum reg_request_treatment 2806 reg_process_hint_driver(struct wiphy *wiphy, 2807 struct regulatory_request *driver_request) 2808 { 2809 const struct ieee80211_regdomain *regd, *tmp; 2810 enum reg_request_treatment treatment; 2811 2812 treatment = __reg_process_hint_driver(driver_request); 2813 2814 switch (treatment) { 2815 case REG_REQ_OK: 2816 break; 2817 case REG_REQ_IGNORE: 2818 return REG_REQ_IGNORE; 2819 case REG_REQ_INTERSECT: 2820 case REG_REQ_ALREADY_SET: 2821 regd = reg_copy_regd(get_cfg80211_regdom()); 2822 if (IS_ERR(regd)) 2823 return REG_REQ_IGNORE; 2824 2825 tmp = get_wiphy_regdom(wiphy); 2826 ASSERT_RTNL(); 2827 scoped_guard(wiphy, wiphy) { 2828 rcu_assign_pointer(wiphy->regd, regd); 2829 } 2830 rcu_free_regdom(tmp); 2831 } 2832 2833 2834 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2835 driver_request->processed = false; 2836 2837 /* 2838 * Since CRDA will not be called in this case as we already 2839 * have applied the requested regulatory domain before we just 2840 * inform userspace we have processed the request 2841 */ 2842 if (treatment == REG_REQ_ALREADY_SET) { 2843 nl80211_send_reg_change_event(driver_request); 2844 reg_update_last_request(driver_request); 2845 reg_set_request_processed(); 2846 return REG_REQ_ALREADY_SET; 2847 } 2848 2849 if (reg_query_database(driver_request)) { 2850 reg_update_last_request(driver_request); 2851 return REG_REQ_OK; 2852 } 2853 2854 return REG_REQ_IGNORE; 2855 } 2856 2857 static enum reg_request_treatment 2858 __reg_process_hint_country_ie(struct wiphy *wiphy, 2859 struct regulatory_request *country_ie_request) 2860 { 2861 struct wiphy *last_wiphy = NULL; 2862 struct regulatory_request *lr = get_last_request(); 2863 2864 if (reg_request_cell_base(lr)) { 2865 /* Trust a Cell base station over the AP's country IE */ 2866 if (regdom_changes(country_ie_request->alpha2)) 2867 return REG_REQ_IGNORE; 2868 return REG_REQ_ALREADY_SET; 2869 } else { 2870 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2871 return REG_REQ_IGNORE; 2872 } 2873 2874 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2875 return -EINVAL; 2876 2877 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2878 return REG_REQ_OK; 2879 2880 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2881 2882 if (last_wiphy != wiphy) { 2883 /* 2884 * Two cards with two APs claiming different 2885 * Country IE alpha2s. We could 2886 * intersect them, but that seems unlikely 2887 * to be correct. Reject second one for now. 2888 */ 2889 if (regdom_changes(country_ie_request->alpha2)) 2890 return REG_REQ_IGNORE; 2891 return REG_REQ_ALREADY_SET; 2892 } 2893 2894 if (regdom_changes(country_ie_request->alpha2)) 2895 return REG_REQ_OK; 2896 return REG_REQ_ALREADY_SET; 2897 } 2898 2899 /** 2900 * reg_process_hint_country_ie - process regulatory requests from country IEs 2901 * @wiphy: the wireless device for the regulatory request 2902 * @country_ie_request: a regulatory request from a country IE 2903 * 2904 * The wireless subsystem can use this function to process 2905 * a regulatory request issued by a country Information Element. 2906 * 2907 * Returns: one of the different reg request treatment values. 2908 */ 2909 static enum reg_request_treatment 2910 reg_process_hint_country_ie(struct wiphy *wiphy, 2911 struct regulatory_request *country_ie_request) 2912 { 2913 enum reg_request_treatment treatment; 2914 2915 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2916 2917 switch (treatment) { 2918 case REG_REQ_OK: 2919 break; 2920 case REG_REQ_IGNORE: 2921 return REG_REQ_IGNORE; 2922 case REG_REQ_ALREADY_SET: 2923 reg_free_request(country_ie_request); 2924 return REG_REQ_ALREADY_SET; 2925 case REG_REQ_INTERSECT: 2926 /* 2927 * This doesn't happen yet, not sure we 2928 * ever want to support it for this case. 2929 */ 2930 WARN_ONCE(1, "Unexpected intersection for country elements"); 2931 return REG_REQ_IGNORE; 2932 } 2933 2934 country_ie_request->intersect = false; 2935 country_ie_request->processed = false; 2936 2937 if (reg_query_database(country_ie_request)) { 2938 reg_update_last_request(country_ie_request); 2939 return REG_REQ_OK; 2940 } 2941 2942 return REG_REQ_IGNORE; 2943 } 2944 2945 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2946 { 2947 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2948 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2949 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2950 bool dfs_domain_same; 2951 2952 rcu_read_lock(); 2953 2954 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2955 wiphy1_regd = rcu_dereference(wiphy1->regd); 2956 if (!wiphy1_regd) 2957 wiphy1_regd = cfg80211_regd; 2958 2959 wiphy2_regd = rcu_dereference(wiphy2->regd); 2960 if (!wiphy2_regd) 2961 wiphy2_regd = cfg80211_regd; 2962 2963 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2964 2965 rcu_read_unlock(); 2966 2967 return dfs_domain_same; 2968 } 2969 2970 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2971 struct ieee80211_channel *src_chan) 2972 { 2973 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2974 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2975 return; 2976 2977 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2978 src_chan->flags & IEEE80211_CHAN_DISABLED) 2979 return; 2980 2981 if (src_chan->center_freq == dst_chan->center_freq && 2982 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2983 dst_chan->dfs_state = src_chan->dfs_state; 2984 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2985 } 2986 } 2987 2988 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2989 struct wiphy *src_wiphy) 2990 { 2991 struct ieee80211_supported_band *src_sband, *dst_sband; 2992 struct ieee80211_channel *src_chan, *dst_chan; 2993 int i, j, band; 2994 2995 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2996 return; 2997 2998 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2999 dst_sband = dst_wiphy->bands[band]; 3000 src_sband = src_wiphy->bands[band]; 3001 if (!dst_sband || !src_sband) 3002 continue; 3003 3004 for (i = 0; i < dst_sband->n_channels; i++) { 3005 dst_chan = &dst_sband->channels[i]; 3006 for (j = 0; j < src_sband->n_channels; j++) { 3007 src_chan = &src_sband->channels[j]; 3008 reg_copy_dfs_chan_state(dst_chan, src_chan); 3009 } 3010 } 3011 } 3012 } 3013 3014 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 3015 { 3016 struct cfg80211_registered_device *rdev; 3017 3018 ASSERT_RTNL(); 3019 3020 for_each_rdev(rdev) { 3021 if (wiphy == &rdev->wiphy) 3022 continue; 3023 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 3024 } 3025 } 3026 3027 /* This processes *all* regulatory hints */ 3028 static void reg_process_hint(struct regulatory_request *reg_request) 3029 { 3030 struct wiphy *wiphy = NULL; 3031 enum reg_request_treatment treatment; 3032 enum nl80211_reg_initiator initiator = reg_request->initiator; 3033 3034 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 3035 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 3036 3037 switch (initiator) { 3038 case NL80211_REGDOM_SET_BY_CORE: 3039 treatment = reg_process_hint_core(reg_request); 3040 break; 3041 case NL80211_REGDOM_SET_BY_USER: 3042 treatment = reg_process_hint_user(reg_request); 3043 break; 3044 case NL80211_REGDOM_SET_BY_DRIVER: 3045 if (!wiphy) 3046 goto out_free; 3047 treatment = reg_process_hint_driver(wiphy, reg_request); 3048 break; 3049 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3050 if (!wiphy) 3051 goto out_free; 3052 treatment = reg_process_hint_country_ie(wiphy, reg_request); 3053 break; 3054 default: 3055 WARN(1, "invalid initiator %d\n", initiator); 3056 goto out_free; 3057 } 3058 3059 if (treatment == REG_REQ_IGNORE) 3060 goto out_free; 3061 3062 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 3063 "unexpected treatment value %d\n", treatment); 3064 3065 /* This is required so that the orig_* parameters are saved. 3066 * NOTE: treatment must be set for any case that reaches here! 3067 */ 3068 if (treatment == REG_REQ_ALREADY_SET && wiphy && 3069 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 3070 wiphy_update_regulatory(wiphy, initiator); 3071 wiphy_all_share_dfs_chan_state(wiphy); 3072 reg_check_channels(); 3073 } 3074 3075 return; 3076 3077 out_free: 3078 reg_free_request(reg_request); 3079 } 3080 3081 static void notify_self_managed_wiphys(struct regulatory_request *request) 3082 { 3083 struct cfg80211_registered_device *rdev; 3084 struct wiphy *wiphy; 3085 3086 for_each_rdev(rdev) { 3087 wiphy = &rdev->wiphy; 3088 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 3089 request->initiator == NL80211_REGDOM_SET_BY_USER) 3090 reg_call_notifier(wiphy, request); 3091 } 3092 } 3093 3094 /* 3095 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 3096 * Regulatory hints come on a first come first serve basis and we 3097 * must process each one atomically. 3098 */ 3099 static void reg_process_pending_hints(void) 3100 { 3101 struct regulatory_request *reg_request, *lr; 3102 3103 lr = get_last_request(); 3104 3105 /* When last_request->processed becomes true this will be rescheduled */ 3106 if (lr && !lr->processed) { 3107 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3108 return; 3109 } 3110 3111 spin_lock(®_requests_lock); 3112 3113 if (list_empty(®_requests_list)) { 3114 spin_unlock(®_requests_lock); 3115 return; 3116 } 3117 3118 reg_request = list_first_entry(®_requests_list, 3119 struct regulatory_request, 3120 list); 3121 list_del_init(®_request->list); 3122 3123 spin_unlock(®_requests_lock); 3124 3125 notify_self_managed_wiphys(reg_request); 3126 3127 reg_process_hint(reg_request); 3128 3129 lr = get_last_request(); 3130 3131 spin_lock(®_requests_lock); 3132 if (!list_empty(®_requests_list) && lr && lr->processed) 3133 schedule_work(®_work); 3134 spin_unlock(®_requests_lock); 3135 } 3136 3137 /* Processes beacon hints -- this has nothing to do with country IEs */ 3138 static void reg_process_pending_beacon_hints(void) 3139 { 3140 struct cfg80211_registered_device *rdev; 3141 struct reg_beacon *pending_beacon, *tmp; 3142 3143 /* This goes through the _pending_ beacon list */ 3144 spin_lock_bh(®_pending_beacons_lock); 3145 3146 list_for_each_entry_safe(pending_beacon, tmp, 3147 ®_pending_beacons, list) { 3148 list_del_init(&pending_beacon->list); 3149 3150 /* Applies the beacon hint to current wiphys */ 3151 for_each_rdev(rdev) 3152 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3153 3154 /* Remembers the beacon hint for new wiphys or reg changes */ 3155 list_add_tail(&pending_beacon->list, ®_beacon_list); 3156 } 3157 3158 spin_unlock_bh(®_pending_beacons_lock); 3159 } 3160 3161 static void reg_process_self_managed_hint(struct wiphy *wiphy) 3162 { 3163 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3164 const struct ieee80211_regdomain *tmp; 3165 const struct ieee80211_regdomain *regd; 3166 enum nl80211_band band; 3167 struct regulatory_request request = {}; 3168 3169 ASSERT_RTNL(); 3170 lockdep_assert_wiphy(wiphy); 3171 3172 spin_lock(®_requests_lock); 3173 regd = rdev->requested_regd; 3174 rdev->requested_regd = NULL; 3175 spin_unlock(®_requests_lock); 3176 3177 if (!regd) 3178 return; 3179 3180 tmp = get_wiphy_regdom(wiphy); 3181 rcu_assign_pointer(wiphy->regd, regd); 3182 rcu_free_regdom(tmp); 3183 3184 for (band = 0; band < NUM_NL80211_BANDS; band++) 3185 handle_band_custom(wiphy, wiphy->bands[band], regd); 3186 3187 reg_process_ht_flags(wiphy); 3188 3189 request.wiphy_idx = get_wiphy_idx(wiphy); 3190 request.alpha2[0] = regd->alpha2[0]; 3191 request.alpha2[1] = regd->alpha2[1]; 3192 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3193 3194 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER) 3195 reg_call_notifier(wiphy, &request); 3196 3197 nl80211_send_wiphy_reg_change_event(&request); 3198 } 3199 3200 static void reg_process_self_managed_hints(void) 3201 { 3202 struct cfg80211_registered_device *rdev; 3203 3204 ASSERT_RTNL(); 3205 3206 for_each_rdev(rdev) { 3207 guard(wiphy)(&rdev->wiphy); 3208 3209 reg_process_self_managed_hint(&rdev->wiphy); 3210 } 3211 3212 reg_check_channels(); 3213 } 3214 3215 static void reg_todo(struct work_struct *work) 3216 { 3217 rtnl_lock(); 3218 reg_process_pending_hints(); 3219 reg_process_pending_beacon_hints(); 3220 reg_process_self_managed_hints(); 3221 rtnl_unlock(); 3222 } 3223 3224 static void queue_regulatory_request(struct regulatory_request *request) 3225 { 3226 request->alpha2[0] = toupper(request->alpha2[0]); 3227 request->alpha2[1] = toupper(request->alpha2[1]); 3228 3229 spin_lock(®_requests_lock); 3230 list_add_tail(&request->list, ®_requests_list); 3231 spin_unlock(®_requests_lock); 3232 3233 schedule_work(®_work); 3234 } 3235 3236 /* 3237 * Core regulatory hint -- happens during cfg80211_init() 3238 * and when we restore regulatory settings. 3239 */ 3240 static int regulatory_hint_core(const char *alpha2) 3241 { 3242 struct regulatory_request *request; 3243 3244 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3245 if (!request) 3246 return -ENOMEM; 3247 3248 request->alpha2[0] = alpha2[0]; 3249 request->alpha2[1] = alpha2[1]; 3250 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3251 request->wiphy_idx = WIPHY_IDX_INVALID; 3252 3253 queue_regulatory_request(request); 3254 3255 return 0; 3256 } 3257 3258 /* User hints */ 3259 int regulatory_hint_user(const char *alpha2, 3260 enum nl80211_user_reg_hint_type user_reg_hint_type) 3261 { 3262 struct regulatory_request *request; 3263 3264 if (WARN_ON(!alpha2)) 3265 return -EINVAL; 3266 3267 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3268 return -EINVAL; 3269 3270 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3271 if (!request) 3272 return -ENOMEM; 3273 3274 request->wiphy_idx = WIPHY_IDX_INVALID; 3275 request->alpha2[0] = alpha2[0]; 3276 request->alpha2[1] = alpha2[1]; 3277 request->initiator = NL80211_REGDOM_SET_BY_USER; 3278 request->user_reg_hint_type = user_reg_hint_type; 3279 3280 /* Allow calling CRDA again */ 3281 reset_crda_timeouts(); 3282 3283 queue_regulatory_request(request); 3284 3285 return 0; 3286 } 3287 3288 void regulatory_hint_indoor(bool is_indoor, u32 portid) 3289 { 3290 spin_lock(®_indoor_lock); 3291 3292 /* It is possible that more than one user space process is trying to 3293 * configure the indoor setting. To handle such cases, clear the indoor 3294 * setting in case that some process does not think that the device 3295 * is operating in an indoor environment. In addition, if a user space 3296 * process indicates that it is controlling the indoor setting, save its 3297 * portid, i.e., make it the owner. 3298 */ 3299 reg_is_indoor = is_indoor; 3300 if (reg_is_indoor) { 3301 if (!reg_is_indoor_portid) 3302 reg_is_indoor_portid = portid; 3303 } else { 3304 reg_is_indoor_portid = 0; 3305 } 3306 3307 spin_unlock(®_indoor_lock); 3308 3309 if (!is_indoor) 3310 reg_check_channels(); 3311 } 3312 3313 void regulatory_netlink_notify(u32 portid) 3314 { 3315 spin_lock(®_indoor_lock); 3316 3317 if (reg_is_indoor_portid != portid) { 3318 spin_unlock(®_indoor_lock); 3319 return; 3320 } 3321 3322 reg_is_indoor = false; 3323 reg_is_indoor_portid = 0; 3324 3325 spin_unlock(®_indoor_lock); 3326 3327 reg_check_channels(); 3328 } 3329 3330 /* Driver hints */ 3331 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3332 { 3333 struct regulatory_request *request; 3334 3335 if (WARN_ON(!alpha2 || !wiphy)) 3336 return -EINVAL; 3337 3338 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3339 3340 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3341 if (!request) 3342 return -ENOMEM; 3343 3344 request->wiphy_idx = get_wiphy_idx(wiphy); 3345 3346 request->alpha2[0] = alpha2[0]; 3347 request->alpha2[1] = alpha2[1]; 3348 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3349 3350 /* Allow calling CRDA again */ 3351 reset_crda_timeouts(); 3352 3353 queue_regulatory_request(request); 3354 3355 return 0; 3356 } 3357 EXPORT_SYMBOL(regulatory_hint); 3358 3359 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3360 const u8 *country_ie, u8 country_ie_len) 3361 { 3362 char alpha2[2]; 3363 enum environment_cap env = ENVIRON_ANY; 3364 struct regulatory_request *request = NULL, *lr; 3365 3366 /* IE len must be evenly divisible by 2 */ 3367 if (country_ie_len & 0x01) 3368 return; 3369 3370 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3371 return; 3372 3373 request = kzalloc(sizeof(*request), GFP_KERNEL); 3374 if (!request) 3375 return; 3376 3377 alpha2[0] = country_ie[0]; 3378 alpha2[1] = country_ie[1]; 3379 3380 if (country_ie[2] == 'I') 3381 env = ENVIRON_INDOOR; 3382 else if (country_ie[2] == 'O') 3383 env = ENVIRON_OUTDOOR; 3384 3385 rcu_read_lock(); 3386 lr = get_last_request(); 3387 3388 if (unlikely(!lr)) 3389 goto out; 3390 3391 /* 3392 * We will run this only upon a successful connection on cfg80211. 3393 * We leave conflict resolution to the workqueue, where can hold 3394 * the RTNL. 3395 */ 3396 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3397 lr->wiphy_idx != WIPHY_IDX_INVALID) 3398 goto out; 3399 3400 request->wiphy_idx = get_wiphy_idx(wiphy); 3401 request->alpha2[0] = alpha2[0]; 3402 request->alpha2[1] = alpha2[1]; 3403 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3404 request->country_ie_env = env; 3405 3406 /* Allow calling CRDA again */ 3407 reset_crda_timeouts(); 3408 3409 queue_regulatory_request(request); 3410 request = NULL; 3411 out: 3412 kfree(request); 3413 rcu_read_unlock(); 3414 } 3415 3416 static void restore_alpha2(char *alpha2, bool reset_user) 3417 { 3418 /* indicates there is no alpha2 to consider for restoration */ 3419 alpha2[0] = '9'; 3420 alpha2[1] = '7'; 3421 3422 /* The user setting has precedence over the module parameter */ 3423 if (is_user_regdom_saved()) { 3424 /* Unless we're asked to ignore it and reset it */ 3425 if (reset_user) { 3426 pr_debug("Restoring regulatory settings including user preference\n"); 3427 user_alpha2[0] = '9'; 3428 user_alpha2[1] = '7'; 3429 3430 /* 3431 * If we're ignoring user settings, we still need to 3432 * check the module parameter to ensure we put things 3433 * back as they were for a full restore. 3434 */ 3435 if (!is_world_regdom(ieee80211_regdom)) { 3436 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3437 ieee80211_regdom[0], ieee80211_regdom[1]); 3438 alpha2[0] = ieee80211_regdom[0]; 3439 alpha2[1] = ieee80211_regdom[1]; 3440 } 3441 } else { 3442 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3443 user_alpha2[0], user_alpha2[1]); 3444 alpha2[0] = user_alpha2[0]; 3445 alpha2[1] = user_alpha2[1]; 3446 } 3447 } else if (!is_world_regdom(ieee80211_regdom)) { 3448 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3449 ieee80211_regdom[0], ieee80211_regdom[1]); 3450 alpha2[0] = ieee80211_regdom[0]; 3451 alpha2[1] = ieee80211_regdom[1]; 3452 } else 3453 pr_debug("Restoring regulatory settings\n"); 3454 } 3455 3456 static void restore_custom_reg_settings(struct wiphy *wiphy) 3457 { 3458 struct ieee80211_supported_band *sband; 3459 enum nl80211_band band; 3460 struct ieee80211_channel *chan; 3461 int i; 3462 3463 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3464 sband = wiphy->bands[band]; 3465 if (!sband) 3466 continue; 3467 for (i = 0; i < sband->n_channels; i++) { 3468 chan = &sband->channels[i]; 3469 chan->flags = chan->orig_flags; 3470 chan->max_antenna_gain = chan->orig_mag; 3471 chan->max_power = chan->orig_mpwr; 3472 chan->beacon_found = false; 3473 } 3474 } 3475 } 3476 3477 /* 3478 * Restoring regulatory settings involves ignoring any 3479 * possibly stale country IE information and user regulatory 3480 * settings if so desired, this includes any beacon hints 3481 * learned as we could have traveled outside to another country 3482 * after disconnection. To restore regulatory settings we do 3483 * exactly what we did at bootup: 3484 * 3485 * - send a core regulatory hint 3486 * - send a user regulatory hint if applicable 3487 * 3488 * Device drivers that send a regulatory hint for a specific country 3489 * keep their own regulatory domain on wiphy->regd so that does 3490 * not need to be remembered. 3491 */ 3492 static void restore_regulatory_settings(bool reset_user, bool cached) 3493 { 3494 char alpha2[2]; 3495 char world_alpha2[2]; 3496 struct reg_beacon *reg_beacon, *btmp; 3497 LIST_HEAD(tmp_reg_req_list); 3498 struct cfg80211_registered_device *rdev; 3499 3500 ASSERT_RTNL(); 3501 3502 /* 3503 * Clear the indoor setting in case that it is not controlled by user 3504 * space, as otherwise there is no guarantee that the device is still 3505 * operating in an indoor environment. 3506 */ 3507 spin_lock(®_indoor_lock); 3508 if (reg_is_indoor && !reg_is_indoor_portid) { 3509 reg_is_indoor = false; 3510 reg_check_channels(); 3511 } 3512 spin_unlock(®_indoor_lock); 3513 3514 reset_regdomains(true, &world_regdom); 3515 restore_alpha2(alpha2, reset_user); 3516 3517 /* 3518 * If there's any pending requests we simply 3519 * stash them to a temporary pending queue and 3520 * add then after we've restored regulatory 3521 * settings. 3522 */ 3523 spin_lock(®_requests_lock); 3524 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3525 spin_unlock(®_requests_lock); 3526 3527 /* Clear beacon hints */ 3528 spin_lock_bh(®_pending_beacons_lock); 3529 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3530 list_del(®_beacon->list); 3531 kfree(reg_beacon); 3532 } 3533 spin_unlock_bh(®_pending_beacons_lock); 3534 3535 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3536 list_del(®_beacon->list); 3537 kfree(reg_beacon); 3538 } 3539 3540 /* First restore to the basic regulatory settings */ 3541 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3542 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3543 3544 for_each_rdev(rdev) { 3545 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3546 continue; 3547 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3548 restore_custom_reg_settings(&rdev->wiphy); 3549 } 3550 3551 if (cached && (!is_an_alpha2(alpha2) || 3552 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3553 reset_regdomains(false, cfg80211_world_regdom); 3554 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3555 print_regdomain(get_cfg80211_regdom()); 3556 nl80211_send_reg_change_event(&core_request_world); 3557 reg_set_request_processed(); 3558 3559 if (is_an_alpha2(alpha2) && 3560 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3561 struct regulatory_request *ureq; 3562 3563 spin_lock(®_requests_lock); 3564 ureq = list_last_entry(®_requests_list, 3565 struct regulatory_request, 3566 list); 3567 list_del(&ureq->list); 3568 spin_unlock(®_requests_lock); 3569 3570 notify_self_managed_wiphys(ureq); 3571 reg_update_last_request(ureq); 3572 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3573 REGD_SOURCE_CACHED); 3574 } 3575 } else { 3576 regulatory_hint_core(world_alpha2); 3577 3578 /* 3579 * This restores the ieee80211_regdom module parameter 3580 * preference or the last user requested regulatory 3581 * settings, user regulatory settings takes precedence. 3582 */ 3583 if (is_an_alpha2(alpha2)) 3584 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3585 } 3586 3587 spin_lock(®_requests_lock); 3588 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3589 spin_unlock(®_requests_lock); 3590 3591 pr_debug("Kicking the queue\n"); 3592 3593 schedule_work(®_work); 3594 } 3595 3596 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3597 { 3598 struct cfg80211_registered_device *rdev; 3599 struct wireless_dev *wdev; 3600 3601 for_each_rdev(rdev) { 3602 guard(wiphy)(&rdev->wiphy); 3603 3604 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3605 if (!(wdev->wiphy->regulatory_flags & flag)) 3606 return false; 3607 } 3608 } 3609 3610 return true; 3611 } 3612 3613 void regulatory_hint_disconnect(void) 3614 { 3615 /* Restore of regulatory settings is not required when wiphy(s) 3616 * ignore IE from connected access point but clearance of beacon hints 3617 * is required when wiphy(s) supports beacon hints. 3618 */ 3619 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3620 struct reg_beacon *reg_beacon, *btmp; 3621 3622 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3623 return; 3624 3625 spin_lock_bh(®_pending_beacons_lock); 3626 list_for_each_entry_safe(reg_beacon, btmp, 3627 ®_pending_beacons, list) { 3628 list_del(®_beacon->list); 3629 kfree(reg_beacon); 3630 } 3631 spin_unlock_bh(®_pending_beacons_lock); 3632 3633 list_for_each_entry_safe(reg_beacon, btmp, 3634 ®_beacon_list, list) { 3635 list_del(®_beacon->list); 3636 kfree(reg_beacon); 3637 } 3638 3639 return; 3640 } 3641 3642 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3643 restore_regulatory_settings(false, true); 3644 } 3645 3646 static bool freq_is_chan_12_13_14(u32 freq) 3647 { 3648 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3649 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3650 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3651 return true; 3652 return false; 3653 } 3654 3655 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3656 { 3657 struct reg_beacon *pending_beacon; 3658 3659 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3660 if (ieee80211_channel_equal(beacon_chan, 3661 &pending_beacon->chan)) 3662 return true; 3663 return false; 3664 } 3665 3666 void regulatory_hint_found_beacon(struct wiphy *wiphy, 3667 struct ieee80211_channel *beacon_chan, 3668 gfp_t gfp) 3669 { 3670 struct reg_beacon *reg_beacon; 3671 bool processing; 3672 3673 if (beacon_chan->beacon_found || 3674 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3675 (beacon_chan->band == NL80211_BAND_2GHZ && 3676 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3677 return; 3678 3679 spin_lock_bh(®_pending_beacons_lock); 3680 processing = pending_reg_beacon(beacon_chan); 3681 spin_unlock_bh(®_pending_beacons_lock); 3682 3683 if (processing) 3684 return; 3685 3686 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3687 if (!reg_beacon) 3688 return; 3689 3690 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3691 beacon_chan->center_freq, beacon_chan->freq_offset, 3692 ieee80211_freq_khz_to_channel( 3693 ieee80211_channel_to_khz(beacon_chan)), 3694 wiphy_name(wiphy)); 3695 3696 memcpy(®_beacon->chan, beacon_chan, 3697 sizeof(struct ieee80211_channel)); 3698 3699 /* 3700 * Since we can be called from BH or and non-BH context 3701 * we must use spin_lock_bh() 3702 */ 3703 spin_lock_bh(®_pending_beacons_lock); 3704 list_add_tail(®_beacon->list, ®_pending_beacons); 3705 spin_unlock_bh(®_pending_beacons_lock); 3706 3707 schedule_work(®_work); 3708 } 3709 3710 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3711 { 3712 unsigned int i; 3713 const struct ieee80211_reg_rule *reg_rule = NULL; 3714 const struct ieee80211_freq_range *freq_range = NULL; 3715 const struct ieee80211_power_rule *power_rule = NULL; 3716 char bw[32], cac_time[32]; 3717 3718 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3719 3720 for (i = 0; i < rd->n_reg_rules; i++) { 3721 reg_rule = &rd->reg_rules[i]; 3722 freq_range = ®_rule->freq_range; 3723 power_rule = ®_rule->power_rule; 3724 3725 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3726 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", 3727 freq_range->max_bandwidth_khz, 3728 reg_get_max_bandwidth(rd, reg_rule)); 3729 else 3730 snprintf(bw, sizeof(bw), "%d KHz", 3731 freq_range->max_bandwidth_khz); 3732 3733 if (reg_rule->flags & NL80211_RRF_DFS) 3734 scnprintf(cac_time, sizeof(cac_time), "%u s", 3735 reg_rule->dfs_cac_ms/1000); 3736 else 3737 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3738 3739 3740 /* 3741 * There may not be documentation for max antenna gain 3742 * in certain regions 3743 */ 3744 if (power_rule->max_antenna_gain) 3745 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3746 freq_range->start_freq_khz, 3747 freq_range->end_freq_khz, 3748 bw, 3749 power_rule->max_antenna_gain, 3750 power_rule->max_eirp, 3751 cac_time); 3752 else 3753 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3754 freq_range->start_freq_khz, 3755 freq_range->end_freq_khz, 3756 bw, 3757 power_rule->max_eirp, 3758 cac_time); 3759 } 3760 } 3761 3762 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3763 { 3764 switch (dfs_region) { 3765 case NL80211_DFS_UNSET: 3766 case NL80211_DFS_FCC: 3767 case NL80211_DFS_ETSI: 3768 case NL80211_DFS_JP: 3769 return true; 3770 default: 3771 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3772 return false; 3773 } 3774 } 3775 3776 static void print_regdomain(const struct ieee80211_regdomain *rd) 3777 { 3778 struct regulatory_request *lr = get_last_request(); 3779 3780 if (is_intersected_alpha2(rd->alpha2)) { 3781 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3782 struct cfg80211_registered_device *rdev; 3783 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3784 if (rdev) { 3785 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3786 rdev->country_ie_alpha2[0], 3787 rdev->country_ie_alpha2[1]); 3788 } else 3789 pr_debug("Current regulatory domain intersected:\n"); 3790 } else 3791 pr_debug("Current regulatory domain intersected:\n"); 3792 } else if (is_world_regdom(rd->alpha2)) { 3793 pr_debug("World regulatory domain updated:\n"); 3794 } else { 3795 if (is_unknown_alpha2(rd->alpha2)) 3796 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3797 else { 3798 if (reg_request_cell_base(lr)) 3799 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3800 rd->alpha2[0], rd->alpha2[1]); 3801 else 3802 pr_debug("Regulatory domain changed to country: %c%c\n", 3803 rd->alpha2[0], rd->alpha2[1]); 3804 } 3805 } 3806 3807 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3808 print_rd_rules(rd); 3809 } 3810 3811 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3812 { 3813 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3814 print_rd_rules(rd); 3815 } 3816 3817 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3818 { 3819 if (!is_world_regdom(rd->alpha2)) 3820 return -EINVAL; 3821 update_world_regdomain(rd); 3822 return 0; 3823 } 3824 3825 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3826 struct regulatory_request *user_request) 3827 { 3828 const struct ieee80211_regdomain *intersected_rd = NULL; 3829 3830 if (!regdom_changes(rd->alpha2)) 3831 return -EALREADY; 3832 3833 if (!is_valid_rd(rd)) { 3834 pr_err("Invalid regulatory domain detected: %c%c\n", 3835 rd->alpha2[0], rd->alpha2[1]); 3836 print_regdomain_info(rd); 3837 return -EINVAL; 3838 } 3839 3840 if (!user_request->intersect) { 3841 reset_regdomains(false, rd); 3842 return 0; 3843 } 3844 3845 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3846 if (!intersected_rd) 3847 return -EINVAL; 3848 3849 kfree(rd); 3850 rd = NULL; 3851 reset_regdomains(false, intersected_rd); 3852 3853 return 0; 3854 } 3855 3856 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3857 struct regulatory_request *driver_request) 3858 { 3859 const struct ieee80211_regdomain *regd; 3860 const struct ieee80211_regdomain *intersected_rd = NULL; 3861 const struct ieee80211_regdomain *tmp = NULL; 3862 struct wiphy *request_wiphy; 3863 3864 if (is_world_regdom(rd->alpha2)) 3865 return -EINVAL; 3866 3867 if (!regdom_changes(rd->alpha2)) 3868 return -EALREADY; 3869 3870 if (!is_valid_rd(rd)) { 3871 pr_err("Invalid regulatory domain detected: %c%c\n", 3872 rd->alpha2[0], rd->alpha2[1]); 3873 print_regdomain_info(rd); 3874 return -EINVAL; 3875 } 3876 3877 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3878 if (!request_wiphy) 3879 return -ENODEV; 3880 3881 if (!driver_request->intersect) { 3882 ASSERT_RTNL(); 3883 scoped_guard(wiphy, request_wiphy) { 3884 if (request_wiphy->regd) 3885 tmp = get_wiphy_regdom(request_wiphy); 3886 3887 regd = reg_copy_regd(rd); 3888 if (IS_ERR(regd)) 3889 return PTR_ERR(regd); 3890 3891 rcu_assign_pointer(request_wiphy->regd, regd); 3892 rcu_free_regdom(tmp); 3893 } 3894 3895 reset_regdomains(false, rd); 3896 return 0; 3897 } 3898 3899 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3900 if (!intersected_rd) 3901 return -EINVAL; 3902 3903 /* 3904 * We can trash what CRDA provided now. 3905 * However if a driver requested this specific regulatory 3906 * domain we keep it for its private use 3907 */ 3908 tmp = get_wiphy_regdom(request_wiphy); 3909 rcu_assign_pointer(request_wiphy->regd, rd); 3910 rcu_free_regdom(tmp); 3911 3912 rd = NULL; 3913 3914 reset_regdomains(false, intersected_rd); 3915 3916 return 0; 3917 } 3918 3919 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3920 struct regulatory_request *country_ie_request) 3921 { 3922 struct wiphy *request_wiphy; 3923 3924 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3925 !is_unknown_alpha2(rd->alpha2)) 3926 return -EINVAL; 3927 3928 /* 3929 * Lets only bother proceeding on the same alpha2 if the current 3930 * rd is non static (it means CRDA was present and was used last) 3931 * and the pending request came in from a country IE 3932 */ 3933 3934 if (!is_valid_rd(rd)) { 3935 pr_err("Invalid regulatory domain detected: %c%c\n", 3936 rd->alpha2[0], rd->alpha2[1]); 3937 print_regdomain_info(rd); 3938 return -EINVAL; 3939 } 3940 3941 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3942 if (!request_wiphy) 3943 return -ENODEV; 3944 3945 if (country_ie_request->intersect) 3946 return -EINVAL; 3947 3948 reset_regdomains(false, rd); 3949 return 0; 3950 } 3951 3952 /* 3953 * Use this call to set the current regulatory domain. Conflicts with 3954 * multiple drivers can be ironed out later. Caller must've already 3955 * kmalloc'd the rd structure. 3956 */ 3957 int set_regdom(const struct ieee80211_regdomain *rd, 3958 enum ieee80211_regd_source regd_src) 3959 { 3960 struct regulatory_request *lr; 3961 bool user_reset = false; 3962 int r; 3963 3964 if (IS_ERR_OR_NULL(rd)) 3965 return -ENODATA; 3966 3967 if (!reg_is_valid_request(rd->alpha2)) { 3968 kfree(rd); 3969 return -EINVAL; 3970 } 3971 3972 if (regd_src == REGD_SOURCE_CRDA) 3973 reset_crda_timeouts(); 3974 3975 lr = get_last_request(); 3976 3977 /* Note that this doesn't update the wiphys, this is done below */ 3978 switch (lr->initiator) { 3979 case NL80211_REGDOM_SET_BY_CORE: 3980 r = reg_set_rd_core(rd); 3981 break; 3982 case NL80211_REGDOM_SET_BY_USER: 3983 cfg80211_save_user_regdom(rd); 3984 r = reg_set_rd_user(rd, lr); 3985 user_reset = true; 3986 break; 3987 case NL80211_REGDOM_SET_BY_DRIVER: 3988 r = reg_set_rd_driver(rd, lr); 3989 break; 3990 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3991 r = reg_set_rd_country_ie(rd, lr); 3992 break; 3993 default: 3994 WARN(1, "invalid initiator %d\n", lr->initiator); 3995 kfree(rd); 3996 return -EINVAL; 3997 } 3998 3999 if (r) { 4000 switch (r) { 4001 case -EALREADY: 4002 reg_set_request_processed(); 4003 break; 4004 default: 4005 /* Back to world regulatory in case of errors */ 4006 restore_regulatory_settings(user_reset, false); 4007 } 4008 4009 kfree(rd); 4010 return r; 4011 } 4012 4013 /* This would make this whole thing pointless */ 4014 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 4015 return -EINVAL; 4016 4017 /* update all wiphys now with the new established regulatory domain */ 4018 update_all_wiphy_regulatory(lr->initiator); 4019 4020 print_regdomain(get_cfg80211_regdom()); 4021 4022 nl80211_send_reg_change_event(lr); 4023 4024 reg_set_request_processed(); 4025 4026 return 0; 4027 } 4028 4029 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 4030 struct ieee80211_regdomain *rd) 4031 { 4032 const struct ieee80211_regdomain *regd; 4033 const struct ieee80211_regdomain *prev_regd; 4034 struct cfg80211_registered_device *rdev; 4035 4036 if (WARN_ON(!wiphy || !rd)) 4037 return -EINVAL; 4038 4039 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 4040 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 4041 return -EPERM; 4042 4043 if (WARN(!is_valid_rd(rd), 4044 "Invalid regulatory domain detected: %c%c\n", 4045 rd->alpha2[0], rd->alpha2[1])) { 4046 print_regdomain_info(rd); 4047 return -EINVAL; 4048 } 4049 4050 regd = reg_copy_regd(rd); 4051 if (IS_ERR(regd)) 4052 return PTR_ERR(regd); 4053 4054 rdev = wiphy_to_rdev(wiphy); 4055 4056 spin_lock(®_requests_lock); 4057 prev_regd = rdev->requested_regd; 4058 rdev->requested_regd = regd; 4059 spin_unlock(®_requests_lock); 4060 4061 kfree(prev_regd); 4062 return 0; 4063 } 4064 4065 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 4066 struct ieee80211_regdomain *rd) 4067 { 4068 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 4069 4070 if (ret) 4071 return ret; 4072 4073 schedule_work(®_work); 4074 return 0; 4075 } 4076 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 4077 4078 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 4079 struct ieee80211_regdomain *rd) 4080 { 4081 int ret; 4082 4083 ASSERT_RTNL(); 4084 4085 ret = __regulatory_set_wiphy_regd(wiphy, rd); 4086 if (ret) 4087 return ret; 4088 4089 /* process the request immediately */ 4090 reg_process_self_managed_hint(wiphy); 4091 reg_check_channels(); 4092 return 0; 4093 } 4094 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync); 4095 4096 void wiphy_regulatory_register(struct wiphy *wiphy) 4097 { 4098 struct regulatory_request *lr = get_last_request(); 4099 4100 /* self-managed devices ignore beacon hints and country IE */ 4101 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 4102 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 4103 REGULATORY_COUNTRY_IE_IGNORE; 4104 4105 /* 4106 * The last request may have been received before this 4107 * registration call. Call the driver notifier if 4108 * initiator is USER. 4109 */ 4110 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 4111 reg_call_notifier(wiphy, lr); 4112 } 4113 4114 if (!reg_dev_ignore_cell_hint(wiphy)) 4115 reg_num_devs_support_basehint++; 4116 4117 wiphy_update_regulatory(wiphy, lr->initiator); 4118 wiphy_all_share_dfs_chan_state(wiphy); 4119 reg_process_self_managed_hints(); 4120 } 4121 4122 void wiphy_regulatory_deregister(struct wiphy *wiphy) 4123 { 4124 struct wiphy *request_wiphy = NULL; 4125 struct regulatory_request *lr; 4126 4127 lr = get_last_request(); 4128 4129 if (!reg_dev_ignore_cell_hint(wiphy)) 4130 reg_num_devs_support_basehint--; 4131 4132 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4133 RCU_INIT_POINTER(wiphy->regd, NULL); 4134 4135 if (lr) 4136 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4137 4138 if (!request_wiphy || request_wiphy != wiphy) 4139 return; 4140 4141 lr->wiphy_idx = WIPHY_IDX_INVALID; 4142 lr->country_ie_env = ENVIRON_ANY; 4143 } 4144 4145 /* 4146 * See FCC notices for UNII band definitions 4147 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4148 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4149 */ 4150 int cfg80211_get_unii(int freq) 4151 { 4152 /* UNII-1 */ 4153 if (freq >= 5150 && freq <= 5250) 4154 return 0; 4155 4156 /* UNII-2A */ 4157 if (freq > 5250 && freq <= 5350) 4158 return 1; 4159 4160 /* UNII-2B */ 4161 if (freq > 5350 && freq <= 5470) 4162 return 2; 4163 4164 /* UNII-2C */ 4165 if (freq > 5470 && freq <= 5725) 4166 return 3; 4167 4168 /* UNII-3 */ 4169 if (freq > 5725 && freq <= 5825) 4170 return 4; 4171 4172 /* UNII-5 */ 4173 if (freq > 5925 && freq <= 6425) 4174 return 5; 4175 4176 /* UNII-6 */ 4177 if (freq > 6425 && freq <= 6525) 4178 return 6; 4179 4180 /* UNII-7 */ 4181 if (freq > 6525 && freq <= 6875) 4182 return 7; 4183 4184 /* UNII-8 */ 4185 if (freq > 6875 && freq <= 7125) 4186 return 8; 4187 4188 return -EINVAL; 4189 } 4190 4191 bool regulatory_indoor_allowed(void) 4192 { 4193 return reg_is_indoor; 4194 } 4195 4196 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4197 { 4198 const struct ieee80211_regdomain *regd = NULL; 4199 const struct ieee80211_regdomain *wiphy_regd = NULL; 4200 bool pre_cac_allowed = false; 4201 4202 rcu_read_lock(); 4203 4204 regd = rcu_dereference(cfg80211_regdomain); 4205 wiphy_regd = rcu_dereference(wiphy->regd); 4206 if (!wiphy_regd) { 4207 if (regd->dfs_region == NL80211_DFS_ETSI) 4208 pre_cac_allowed = true; 4209 4210 rcu_read_unlock(); 4211 4212 return pre_cac_allowed; 4213 } 4214 4215 if (regd->dfs_region == wiphy_regd->dfs_region && 4216 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4217 pre_cac_allowed = true; 4218 4219 rcu_read_unlock(); 4220 4221 return pre_cac_allowed; 4222 } 4223 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4224 4225 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4226 { 4227 struct wireless_dev *wdev; 4228 unsigned int link_id; 4229 4230 /* If we finished CAC or received radar, we should end any 4231 * CAC running on the same channels. 4232 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4233 * either all channels are available - those the CAC_FINISHED 4234 * event has effected another wdev state, or there is a channel 4235 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4236 * event has effected another wdev state. 4237 * In both cases we should end the CAC on the wdev. 4238 */ 4239 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4240 struct cfg80211_chan_def *chandef; 4241 4242 for_each_valid_link(wdev, link_id) { 4243 if (!wdev->links[link_id].cac_started) 4244 continue; 4245 4246 chandef = wdev_chandef(wdev, link_id); 4247 if (!chandef) 4248 continue; 4249 4250 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef)) 4251 rdev_end_cac(rdev, wdev->netdev, link_id); 4252 } 4253 } 4254 } 4255 4256 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4257 struct cfg80211_chan_def *chandef, 4258 enum nl80211_dfs_state dfs_state, 4259 enum nl80211_radar_event event) 4260 { 4261 struct cfg80211_registered_device *rdev; 4262 4263 ASSERT_RTNL(); 4264 4265 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4266 return; 4267 4268 for_each_rdev(rdev) { 4269 if (wiphy == &rdev->wiphy) 4270 continue; 4271 4272 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4273 continue; 4274 4275 if (!ieee80211_get_channel(&rdev->wiphy, 4276 chandef->chan->center_freq)) 4277 continue; 4278 4279 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4280 4281 if (event == NL80211_RADAR_DETECTED || 4282 event == NL80211_RADAR_CAC_FINISHED) { 4283 cfg80211_sched_dfs_chan_update(rdev); 4284 cfg80211_check_and_end_cac(rdev); 4285 } 4286 4287 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4288 } 4289 } 4290 4291 static int __init regulatory_init_db(void) 4292 { 4293 int err; 4294 4295 /* 4296 * It's possible that - due to other bugs/issues - cfg80211 4297 * never called regulatory_init() below, or that it failed; 4298 * in that case, don't try to do any further work here as 4299 * it's doomed to lead to crashes. 4300 */ 4301 if (IS_ERR_OR_NULL(reg_pdev)) 4302 return -EINVAL; 4303 4304 err = load_builtin_regdb_keys(); 4305 if (err) { 4306 platform_device_unregister(reg_pdev); 4307 return err; 4308 } 4309 4310 /* We always try to get an update for the static regdomain */ 4311 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4312 if (err) { 4313 if (err == -ENOMEM) { 4314 platform_device_unregister(reg_pdev); 4315 return err; 4316 } 4317 /* 4318 * N.B. kobject_uevent_env() can fail mainly for when we're out 4319 * memory which is handled and propagated appropriately above 4320 * but it can also fail during a netlink_broadcast() or during 4321 * early boot for call_usermodehelper(). For now treat these 4322 * errors as non-fatal. 4323 */ 4324 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4325 } 4326 4327 /* 4328 * Finally, if the user set the module parameter treat it 4329 * as a user hint. 4330 */ 4331 if (!is_world_regdom(ieee80211_regdom)) 4332 regulatory_hint_user(ieee80211_regdom, 4333 NL80211_USER_REG_HINT_USER); 4334 4335 return 0; 4336 } 4337 #ifndef MODULE 4338 late_initcall(regulatory_init_db); 4339 #endif 4340 4341 int __init regulatory_init(void) 4342 { 4343 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4344 if (IS_ERR(reg_pdev)) 4345 return PTR_ERR(reg_pdev); 4346 4347 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4348 4349 user_alpha2[0] = '9'; 4350 user_alpha2[1] = '7'; 4351 4352 #ifdef MODULE 4353 return regulatory_init_db(); 4354 #else 4355 return 0; 4356 #endif 4357 } 4358 4359 void regulatory_exit(void) 4360 { 4361 struct regulatory_request *reg_request, *tmp; 4362 struct reg_beacon *reg_beacon, *btmp; 4363 4364 cancel_work_sync(®_work); 4365 cancel_crda_timeout_sync(); 4366 cancel_delayed_work_sync(®_check_chans); 4367 4368 /* Lock to suppress warnings */ 4369 rtnl_lock(); 4370 reset_regdomains(true, NULL); 4371 rtnl_unlock(); 4372 4373 dev_set_uevent_suppress(®_pdev->dev, true); 4374 4375 platform_device_unregister(reg_pdev); 4376 4377 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4378 list_del(®_beacon->list); 4379 kfree(reg_beacon); 4380 } 4381 4382 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4383 list_del(®_beacon->list); 4384 kfree(reg_beacon); 4385 } 4386 4387 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4388 list_del(®_request->list); 4389 kfree(reg_request); 4390 } 4391 4392 if (!IS_ERR_OR_NULL(regdb)) 4393 kfree(regdb); 4394 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4395 kfree(cfg80211_user_regdom); 4396 4397 free_regdb_keyring(); 4398 } 4399