1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains helper code to handle channel 4 * settings and keeping track of what is possible at 5 * any point in time. 6 * 7 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> 8 * Copyright 2013-2014 Intel Mobile Communications GmbH 9 * Copyright 2018-2022 Intel Corporation 10 */ 11 12 #include <linux/export.h> 13 #include <linux/bitfield.h> 14 #include <net/cfg80211.h> 15 #include "core.h" 16 #include "rdev-ops.h" 17 18 static bool cfg80211_valid_60g_freq(u32 freq) 19 { 20 return freq >= 58320 && freq <= 70200; 21 } 22 23 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef, 24 struct ieee80211_channel *chan, 25 enum nl80211_channel_type chan_type) 26 { 27 if (WARN_ON(!chan)) 28 return; 29 30 chandef->chan = chan; 31 chandef->freq1_offset = chan->freq_offset; 32 chandef->center_freq2 = 0; 33 chandef->edmg.bw_config = 0; 34 chandef->edmg.channels = 0; 35 36 switch (chan_type) { 37 case NL80211_CHAN_NO_HT: 38 chandef->width = NL80211_CHAN_WIDTH_20_NOHT; 39 chandef->center_freq1 = chan->center_freq; 40 break; 41 case NL80211_CHAN_HT20: 42 chandef->width = NL80211_CHAN_WIDTH_20; 43 chandef->center_freq1 = chan->center_freq; 44 break; 45 case NL80211_CHAN_HT40PLUS: 46 chandef->width = NL80211_CHAN_WIDTH_40; 47 chandef->center_freq1 = chan->center_freq + 10; 48 break; 49 case NL80211_CHAN_HT40MINUS: 50 chandef->width = NL80211_CHAN_WIDTH_40; 51 chandef->center_freq1 = chan->center_freq - 10; 52 break; 53 default: 54 WARN_ON(1); 55 } 56 } 57 EXPORT_SYMBOL(cfg80211_chandef_create); 58 59 static bool cfg80211_edmg_chandef_valid(const struct cfg80211_chan_def *chandef) 60 { 61 int max_contiguous = 0; 62 int num_of_enabled = 0; 63 int contiguous = 0; 64 int i; 65 66 if (!chandef->edmg.channels || !chandef->edmg.bw_config) 67 return false; 68 69 if (!cfg80211_valid_60g_freq(chandef->chan->center_freq)) 70 return false; 71 72 for (i = 0; i < 6; i++) { 73 if (chandef->edmg.channels & BIT(i)) { 74 contiguous++; 75 num_of_enabled++; 76 } else { 77 contiguous = 0; 78 } 79 80 max_contiguous = max(contiguous, max_contiguous); 81 } 82 /* basic verification of edmg configuration according to 83 * IEEE P802.11ay/D4.0 section 9.4.2.251 84 */ 85 /* check bw_config against contiguous edmg channels */ 86 switch (chandef->edmg.bw_config) { 87 case IEEE80211_EDMG_BW_CONFIG_4: 88 case IEEE80211_EDMG_BW_CONFIG_8: 89 case IEEE80211_EDMG_BW_CONFIG_12: 90 if (max_contiguous < 1) 91 return false; 92 break; 93 case IEEE80211_EDMG_BW_CONFIG_5: 94 case IEEE80211_EDMG_BW_CONFIG_9: 95 case IEEE80211_EDMG_BW_CONFIG_13: 96 if (max_contiguous < 2) 97 return false; 98 break; 99 case IEEE80211_EDMG_BW_CONFIG_6: 100 case IEEE80211_EDMG_BW_CONFIG_10: 101 case IEEE80211_EDMG_BW_CONFIG_14: 102 if (max_contiguous < 3) 103 return false; 104 break; 105 case IEEE80211_EDMG_BW_CONFIG_7: 106 case IEEE80211_EDMG_BW_CONFIG_11: 107 case IEEE80211_EDMG_BW_CONFIG_15: 108 if (max_contiguous < 4) 109 return false; 110 break; 111 112 default: 113 return false; 114 } 115 116 /* check bw_config against aggregated (non contiguous) edmg channels */ 117 switch (chandef->edmg.bw_config) { 118 case IEEE80211_EDMG_BW_CONFIG_4: 119 case IEEE80211_EDMG_BW_CONFIG_5: 120 case IEEE80211_EDMG_BW_CONFIG_6: 121 case IEEE80211_EDMG_BW_CONFIG_7: 122 break; 123 case IEEE80211_EDMG_BW_CONFIG_8: 124 case IEEE80211_EDMG_BW_CONFIG_9: 125 case IEEE80211_EDMG_BW_CONFIG_10: 126 case IEEE80211_EDMG_BW_CONFIG_11: 127 if (num_of_enabled < 2) 128 return false; 129 break; 130 case IEEE80211_EDMG_BW_CONFIG_12: 131 case IEEE80211_EDMG_BW_CONFIG_13: 132 case IEEE80211_EDMG_BW_CONFIG_14: 133 case IEEE80211_EDMG_BW_CONFIG_15: 134 if (num_of_enabled < 4 || max_contiguous < 2) 135 return false; 136 break; 137 default: 138 return false; 139 } 140 141 return true; 142 } 143 144 static int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width) 145 { 146 int mhz; 147 148 switch (chan_width) { 149 case NL80211_CHAN_WIDTH_1: 150 mhz = 1; 151 break; 152 case NL80211_CHAN_WIDTH_2: 153 mhz = 2; 154 break; 155 case NL80211_CHAN_WIDTH_4: 156 mhz = 4; 157 break; 158 case NL80211_CHAN_WIDTH_8: 159 mhz = 8; 160 break; 161 case NL80211_CHAN_WIDTH_16: 162 mhz = 16; 163 break; 164 case NL80211_CHAN_WIDTH_5: 165 mhz = 5; 166 break; 167 case NL80211_CHAN_WIDTH_10: 168 mhz = 10; 169 break; 170 case NL80211_CHAN_WIDTH_20: 171 case NL80211_CHAN_WIDTH_20_NOHT: 172 mhz = 20; 173 break; 174 case NL80211_CHAN_WIDTH_40: 175 mhz = 40; 176 break; 177 case NL80211_CHAN_WIDTH_80P80: 178 case NL80211_CHAN_WIDTH_80: 179 mhz = 80; 180 break; 181 case NL80211_CHAN_WIDTH_160: 182 mhz = 160; 183 break; 184 case NL80211_CHAN_WIDTH_320: 185 mhz = 320; 186 break; 187 default: 188 WARN_ON_ONCE(1); 189 return -1; 190 } 191 return mhz; 192 } 193 194 static int cfg80211_chandef_get_width(const struct cfg80211_chan_def *c) 195 { 196 return nl80211_chan_width_to_mhz(c->width); 197 } 198 199 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef) 200 { 201 u32 control_freq, oper_freq; 202 int oper_width, control_width; 203 204 if (!chandef->chan) 205 return false; 206 207 if (chandef->freq1_offset >= 1000) 208 return false; 209 210 control_freq = chandef->chan->center_freq; 211 212 switch (chandef->width) { 213 case NL80211_CHAN_WIDTH_5: 214 case NL80211_CHAN_WIDTH_10: 215 case NL80211_CHAN_WIDTH_20: 216 case NL80211_CHAN_WIDTH_20_NOHT: 217 if (ieee80211_chandef_to_khz(chandef) != 218 ieee80211_channel_to_khz(chandef->chan)) 219 return false; 220 if (chandef->center_freq2) 221 return false; 222 break; 223 case NL80211_CHAN_WIDTH_1: 224 case NL80211_CHAN_WIDTH_2: 225 case NL80211_CHAN_WIDTH_4: 226 case NL80211_CHAN_WIDTH_8: 227 case NL80211_CHAN_WIDTH_16: 228 if (chandef->chan->band != NL80211_BAND_S1GHZ) 229 return false; 230 231 control_freq = ieee80211_channel_to_khz(chandef->chan); 232 oper_freq = ieee80211_chandef_to_khz(chandef); 233 control_width = nl80211_chan_width_to_mhz( 234 ieee80211_s1g_channel_width( 235 chandef->chan)); 236 oper_width = cfg80211_chandef_get_width(chandef); 237 238 if (oper_width < 0 || control_width < 0) 239 return false; 240 if (chandef->center_freq2) 241 return false; 242 243 if (control_freq + MHZ_TO_KHZ(control_width) / 2 > 244 oper_freq + MHZ_TO_KHZ(oper_width) / 2) 245 return false; 246 247 if (control_freq - MHZ_TO_KHZ(control_width) / 2 < 248 oper_freq - MHZ_TO_KHZ(oper_width) / 2) 249 return false; 250 break; 251 case NL80211_CHAN_WIDTH_80P80: 252 if (!chandef->center_freq2) 253 return false; 254 /* adjacent is not allowed -- that's a 160 MHz channel */ 255 if (chandef->center_freq1 - chandef->center_freq2 == 80 || 256 chandef->center_freq2 - chandef->center_freq1 == 80) 257 return false; 258 break; 259 default: 260 if (chandef->center_freq2) 261 return false; 262 break; 263 } 264 265 switch (chandef->width) { 266 case NL80211_CHAN_WIDTH_5: 267 case NL80211_CHAN_WIDTH_10: 268 case NL80211_CHAN_WIDTH_20: 269 case NL80211_CHAN_WIDTH_20_NOHT: 270 case NL80211_CHAN_WIDTH_1: 271 case NL80211_CHAN_WIDTH_2: 272 case NL80211_CHAN_WIDTH_4: 273 case NL80211_CHAN_WIDTH_8: 274 case NL80211_CHAN_WIDTH_16: 275 /* all checked above */ 276 break; 277 case NL80211_CHAN_WIDTH_320: 278 if (chandef->center_freq1 == control_freq + 150 || 279 chandef->center_freq1 == control_freq + 130 || 280 chandef->center_freq1 == control_freq + 110 || 281 chandef->center_freq1 == control_freq + 90 || 282 chandef->center_freq1 == control_freq - 90 || 283 chandef->center_freq1 == control_freq - 110 || 284 chandef->center_freq1 == control_freq - 130 || 285 chandef->center_freq1 == control_freq - 150) 286 break; 287 fallthrough; 288 case NL80211_CHAN_WIDTH_160: 289 if (chandef->center_freq1 == control_freq + 70 || 290 chandef->center_freq1 == control_freq + 50 || 291 chandef->center_freq1 == control_freq - 50 || 292 chandef->center_freq1 == control_freq - 70) 293 break; 294 fallthrough; 295 case NL80211_CHAN_WIDTH_80P80: 296 case NL80211_CHAN_WIDTH_80: 297 if (chandef->center_freq1 == control_freq + 30 || 298 chandef->center_freq1 == control_freq - 30) 299 break; 300 fallthrough; 301 case NL80211_CHAN_WIDTH_40: 302 if (chandef->center_freq1 == control_freq + 10 || 303 chandef->center_freq1 == control_freq - 10) 304 break; 305 fallthrough; 306 default: 307 return false; 308 } 309 310 /* channel 14 is only for IEEE 802.11b */ 311 if (chandef->center_freq1 == 2484 && 312 chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 313 return false; 314 315 if (cfg80211_chandef_is_edmg(chandef) && 316 !cfg80211_edmg_chandef_valid(chandef)) 317 return false; 318 319 return true; 320 } 321 EXPORT_SYMBOL(cfg80211_chandef_valid); 322 323 static void chandef_primary_freqs(const struct cfg80211_chan_def *c, 324 u32 *pri40, u32 *pri80, u32 *pri160) 325 { 326 int tmp; 327 328 switch (c->width) { 329 case NL80211_CHAN_WIDTH_40: 330 *pri40 = c->center_freq1; 331 *pri80 = 0; 332 *pri160 = 0; 333 break; 334 case NL80211_CHAN_WIDTH_80: 335 case NL80211_CHAN_WIDTH_80P80: 336 *pri160 = 0; 337 *pri80 = c->center_freq1; 338 /* n_P20 */ 339 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 340 /* n_P40 */ 341 tmp /= 2; 342 /* freq_P40 */ 343 *pri40 = c->center_freq1 - 20 + 40 * tmp; 344 break; 345 case NL80211_CHAN_WIDTH_160: 346 *pri160 = c->center_freq1; 347 /* n_P20 */ 348 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 349 /* n_P40 */ 350 tmp /= 2; 351 /* freq_P40 */ 352 *pri40 = c->center_freq1 - 60 + 40 * tmp; 353 /* n_P80 */ 354 tmp /= 2; 355 *pri80 = c->center_freq1 - 40 + 80 * tmp; 356 break; 357 case NL80211_CHAN_WIDTH_320: 358 /* n_P20 */ 359 tmp = (150 + c->chan->center_freq - c->center_freq1) / 20; 360 /* n_P40 */ 361 tmp /= 2; 362 /* freq_P40 */ 363 *pri40 = c->center_freq1 - 140 + 40 * tmp; 364 /* n_P80 */ 365 tmp /= 2; 366 *pri80 = c->center_freq1 - 120 + 80 * tmp; 367 /* n_P160 */ 368 tmp /= 2; 369 *pri160 = c->center_freq1 - 80 + 160 * tmp; 370 break; 371 default: 372 WARN_ON_ONCE(1); 373 } 374 } 375 376 const struct cfg80211_chan_def * 377 cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1, 378 const struct cfg80211_chan_def *c2) 379 { 380 u32 c1_pri40, c1_pri80, c2_pri40, c2_pri80, c1_pri160, c2_pri160; 381 382 /* If they are identical, return */ 383 if (cfg80211_chandef_identical(c1, c2)) 384 return c1; 385 386 /* otherwise, must have same control channel */ 387 if (c1->chan != c2->chan) 388 return NULL; 389 390 /* 391 * If they have the same width, but aren't identical, 392 * then they can't be compatible. 393 */ 394 if (c1->width == c2->width) 395 return NULL; 396 397 /* 398 * can't be compatible if one of them is 5 or 10 MHz, 399 * but they don't have the same width. 400 */ 401 if (c1->width == NL80211_CHAN_WIDTH_5 || 402 c1->width == NL80211_CHAN_WIDTH_10 || 403 c2->width == NL80211_CHAN_WIDTH_5 || 404 c2->width == NL80211_CHAN_WIDTH_10) 405 return NULL; 406 407 if (c1->width == NL80211_CHAN_WIDTH_20_NOHT || 408 c1->width == NL80211_CHAN_WIDTH_20) 409 return c2; 410 411 if (c2->width == NL80211_CHAN_WIDTH_20_NOHT || 412 c2->width == NL80211_CHAN_WIDTH_20) 413 return c1; 414 415 chandef_primary_freqs(c1, &c1_pri40, &c1_pri80, &c1_pri160); 416 chandef_primary_freqs(c2, &c2_pri40, &c2_pri80, &c2_pri160); 417 418 if (c1_pri40 != c2_pri40) 419 return NULL; 420 421 if (c1->width == NL80211_CHAN_WIDTH_40) 422 return c2; 423 424 if (c2->width == NL80211_CHAN_WIDTH_40) 425 return c1; 426 427 if (c1_pri80 != c2_pri80) 428 return NULL; 429 430 if (c1->width == NL80211_CHAN_WIDTH_80 && 431 c2->width > NL80211_CHAN_WIDTH_80) 432 return c2; 433 434 if (c2->width == NL80211_CHAN_WIDTH_80 && 435 c1->width > NL80211_CHAN_WIDTH_80) 436 return c1; 437 438 WARN_ON(!c1_pri160 && !c2_pri160); 439 if (c1_pri160 && c2_pri160 && c1_pri160 != c2_pri160) 440 return NULL; 441 442 if (c1->width > c2->width) 443 return c1; 444 return c2; 445 } 446 EXPORT_SYMBOL(cfg80211_chandef_compatible); 447 448 static void cfg80211_set_chans_dfs_state(struct wiphy *wiphy, u32 center_freq, 449 u32 bandwidth, 450 enum nl80211_dfs_state dfs_state) 451 { 452 struct ieee80211_channel *c; 453 u32 freq; 454 455 for (freq = center_freq - bandwidth/2 + 10; 456 freq <= center_freq + bandwidth/2 - 10; 457 freq += 20) { 458 c = ieee80211_get_channel(wiphy, freq); 459 if (!c || !(c->flags & IEEE80211_CHAN_RADAR)) 460 continue; 461 462 c->dfs_state = dfs_state; 463 c->dfs_state_entered = jiffies; 464 } 465 } 466 467 void cfg80211_set_dfs_state(struct wiphy *wiphy, 468 const struct cfg80211_chan_def *chandef, 469 enum nl80211_dfs_state dfs_state) 470 { 471 int width; 472 473 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 474 return; 475 476 width = cfg80211_chandef_get_width(chandef); 477 if (width < 0) 478 return; 479 480 cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq1, 481 width, dfs_state); 482 483 if (!chandef->center_freq2) 484 return; 485 cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq2, 486 width, dfs_state); 487 } 488 489 static u32 cfg80211_get_start_freq(u32 center_freq, 490 u32 bandwidth) 491 { 492 u32 start_freq; 493 494 bandwidth = MHZ_TO_KHZ(bandwidth); 495 if (bandwidth <= MHZ_TO_KHZ(20)) 496 start_freq = center_freq; 497 else 498 start_freq = center_freq - bandwidth / 2 + MHZ_TO_KHZ(10); 499 500 return start_freq; 501 } 502 503 static u32 cfg80211_get_end_freq(u32 center_freq, 504 u32 bandwidth) 505 { 506 u32 end_freq; 507 508 bandwidth = MHZ_TO_KHZ(bandwidth); 509 if (bandwidth <= MHZ_TO_KHZ(20)) 510 end_freq = center_freq; 511 else 512 end_freq = center_freq + bandwidth / 2 - MHZ_TO_KHZ(10); 513 514 return end_freq; 515 } 516 517 static int cfg80211_get_chans_dfs_required(struct wiphy *wiphy, 518 u32 center_freq, 519 u32 bandwidth) 520 { 521 struct ieee80211_channel *c; 522 u32 freq, start_freq, end_freq; 523 524 start_freq = cfg80211_get_start_freq(center_freq, bandwidth); 525 end_freq = cfg80211_get_end_freq(center_freq, bandwidth); 526 527 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { 528 c = ieee80211_get_channel_khz(wiphy, freq); 529 if (!c) 530 return -EINVAL; 531 532 if (c->flags & IEEE80211_CHAN_RADAR) 533 return 1; 534 } 535 return 0; 536 } 537 538 539 int cfg80211_chandef_dfs_required(struct wiphy *wiphy, 540 const struct cfg80211_chan_def *chandef, 541 enum nl80211_iftype iftype) 542 { 543 int width; 544 int ret; 545 546 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 547 return -EINVAL; 548 549 switch (iftype) { 550 case NL80211_IFTYPE_ADHOC: 551 case NL80211_IFTYPE_AP: 552 case NL80211_IFTYPE_P2P_GO: 553 case NL80211_IFTYPE_MESH_POINT: 554 width = cfg80211_chandef_get_width(chandef); 555 if (width < 0) 556 return -EINVAL; 557 558 ret = cfg80211_get_chans_dfs_required(wiphy, 559 ieee80211_chandef_to_khz(chandef), 560 width); 561 if (ret < 0) 562 return ret; 563 else if (ret > 0) 564 return BIT(chandef->width); 565 566 if (!chandef->center_freq2) 567 return 0; 568 569 ret = cfg80211_get_chans_dfs_required(wiphy, 570 MHZ_TO_KHZ(chandef->center_freq2), 571 width); 572 if (ret < 0) 573 return ret; 574 else if (ret > 0) 575 return BIT(chandef->width); 576 577 break; 578 case NL80211_IFTYPE_STATION: 579 case NL80211_IFTYPE_OCB: 580 case NL80211_IFTYPE_P2P_CLIENT: 581 case NL80211_IFTYPE_MONITOR: 582 case NL80211_IFTYPE_AP_VLAN: 583 case NL80211_IFTYPE_P2P_DEVICE: 584 case NL80211_IFTYPE_NAN: 585 break; 586 case NL80211_IFTYPE_WDS: 587 case NL80211_IFTYPE_UNSPECIFIED: 588 case NUM_NL80211_IFTYPES: 589 WARN_ON(1); 590 } 591 592 return 0; 593 } 594 EXPORT_SYMBOL(cfg80211_chandef_dfs_required); 595 596 static int cfg80211_get_chans_dfs_usable(struct wiphy *wiphy, 597 u32 center_freq, 598 u32 bandwidth) 599 { 600 struct ieee80211_channel *c; 601 u32 freq, start_freq, end_freq; 602 int count = 0; 603 604 start_freq = cfg80211_get_start_freq(center_freq, bandwidth); 605 end_freq = cfg80211_get_end_freq(center_freq, bandwidth); 606 607 /* 608 * Check entire range of channels for the bandwidth. 609 * Check all channels are DFS channels (DFS_USABLE or 610 * DFS_AVAILABLE). Return number of usable channels 611 * (require CAC). Allow DFS and non-DFS channel mix. 612 */ 613 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { 614 c = ieee80211_get_channel_khz(wiphy, freq); 615 if (!c) 616 return -EINVAL; 617 618 if (c->flags & IEEE80211_CHAN_DISABLED) 619 return -EINVAL; 620 621 if (c->flags & IEEE80211_CHAN_RADAR) { 622 if (c->dfs_state == NL80211_DFS_UNAVAILABLE) 623 return -EINVAL; 624 625 if (c->dfs_state == NL80211_DFS_USABLE) 626 count++; 627 } 628 } 629 630 return count; 631 } 632 633 bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy, 634 const struct cfg80211_chan_def *chandef) 635 { 636 int width; 637 int r1, r2 = 0; 638 639 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 640 return false; 641 642 width = cfg80211_chandef_get_width(chandef); 643 if (width < 0) 644 return false; 645 646 r1 = cfg80211_get_chans_dfs_usable(wiphy, 647 MHZ_TO_KHZ(chandef->center_freq1), 648 width); 649 650 if (r1 < 0) 651 return false; 652 653 switch (chandef->width) { 654 case NL80211_CHAN_WIDTH_80P80: 655 WARN_ON(!chandef->center_freq2); 656 r2 = cfg80211_get_chans_dfs_usable(wiphy, 657 MHZ_TO_KHZ(chandef->center_freq2), 658 width); 659 if (r2 < 0) 660 return false; 661 break; 662 default: 663 WARN_ON(chandef->center_freq2); 664 break; 665 } 666 667 return (r1 + r2 > 0); 668 } 669 670 /* 671 * Checks if center frequency of chan falls with in the bandwidth 672 * range of chandef. 673 */ 674 bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef, 675 struct ieee80211_channel *chan, 676 bool primary_only) 677 { 678 int width; 679 u32 freq; 680 681 if (!chandef->chan) 682 return false; 683 684 if (chandef->chan->center_freq == chan->center_freq) 685 return true; 686 687 if (primary_only) 688 return false; 689 690 width = cfg80211_chandef_get_width(chandef); 691 if (width <= 20) 692 return false; 693 694 for (freq = chandef->center_freq1 - width / 2 + 10; 695 freq <= chandef->center_freq1 + width / 2 - 10; freq += 20) { 696 if (chan->center_freq == freq) 697 return true; 698 } 699 700 if (!chandef->center_freq2) 701 return false; 702 703 for (freq = chandef->center_freq2 - width / 2 + 10; 704 freq <= chandef->center_freq2 + width / 2 - 10; freq += 20) { 705 if (chan->center_freq == freq) 706 return true; 707 } 708 709 return false; 710 } 711 712 bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev) 713 { 714 unsigned int link; 715 716 ASSERT_WDEV_LOCK(wdev); 717 718 switch (wdev->iftype) { 719 case NL80211_IFTYPE_AP: 720 case NL80211_IFTYPE_P2P_GO: 721 for_each_valid_link(wdev, link) { 722 if (wdev->links[link].ap.beacon_interval) 723 return true; 724 } 725 break; 726 case NL80211_IFTYPE_ADHOC: 727 if (wdev->u.ibss.ssid_len) 728 return true; 729 break; 730 case NL80211_IFTYPE_MESH_POINT: 731 if (wdev->u.mesh.id_len) 732 return true; 733 break; 734 case NL80211_IFTYPE_STATION: 735 case NL80211_IFTYPE_OCB: 736 case NL80211_IFTYPE_P2P_CLIENT: 737 case NL80211_IFTYPE_MONITOR: 738 case NL80211_IFTYPE_AP_VLAN: 739 case NL80211_IFTYPE_P2P_DEVICE: 740 /* Can NAN type be considered as beaconing interface? */ 741 case NL80211_IFTYPE_NAN: 742 break; 743 case NL80211_IFTYPE_UNSPECIFIED: 744 case NL80211_IFTYPE_WDS: 745 case NUM_NL80211_IFTYPES: 746 WARN_ON(1); 747 } 748 749 return false; 750 } 751 752 bool cfg80211_wdev_on_sub_chan(struct wireless_dev *wdev, 753 struct ieee80211_channel *chan, 754 bool primary_only) 755 { 756 unsigned int link; 757 758 switch (wdev->iftype) { 759 case NL80211_IFTYPE_AP: 760 case NL80211_IFTYPE_P2P_GO: 761 for_each_valid_link(wdev, link) { 762 if (cfg80211_is_sub_chan(&wdev->links[link].ap.chandef, 763 chan, primary_only)) 764 return true; 765 } 766 break; 767 case NL80211_IFTYPE_ADHOC: 768 return cfg80211_is_sub_chan(&wdev->u.ibss.chandef, chan, 769 primary_only); 770 case NL80211_IFTYPE_MESH_POINT: 771 return cfg80211_is_sub_chan(&wdev->u.mesh.chandef, chan, 772 primary_only); 773 default: 774 break; 775 } 776 777 return false; 778 } 779 780 static bool cfg80211_is_wiphy_oper_chan(struct wiphy *wiphy, 781 struct ieee80211_channel *chan) 782 { 783 struct wireless_dev *wdev; 784 785 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 786 wdev_lock(wdev); 787 if (!cfg80211_beaconing_iface_active(wdev)) { 788 wdev_unlock(wdev); 789 continue; 790 } 791 792 if (cfg80211_wdev_on_sub_chan(wdev, chan, false)) { 793 wdev_unlock(wdev); 794 return true; 795 } 796 wdev_unlock(wdev); 797 } 798 799 return false; 800 } 801 802 static bool 803 cfg80211_offchan_chain_is_active(struct cfg80211_registered_device *rdev, 804 struct ieee80211_channel *channel) 805 { 806 if (!rdev->background_radar_wdev) 807 return false; 808 809 if (!cfg80211_chandef_valid(&rdev->background_radar_chandef)) 810 return false; 811 812 return cfg80211_is_sub_chan(&rdev->background_radar_chandef, channel, 813 false); 814 } 815 816 bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy, 817 struct ieee80211_channel *chan) 818 { 819 struct cfg80211_registered_device *rdev; 820 821 ASSERT_RTNL(); 822 823 if (!(chan->flags & IEEE80211_CHAN_RADAR)) 824 return false; 825 826 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 827 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 828 continue; 829 830 if (cfg80211_is_wiphy_oper_chan(&rdev->wiphy, chan)) 831 return true; 832 833 if (cfg80211_offchan_chain_is_active(rdev, chan)) 834 return true; 835 } 836 837 return false; 838 } 839 840 static bool cfg80211_get_chans_dfs_available(struct wiphy *wiphy, 841 u32 center_freq, 842 u32 bandwidth) 843 { 844 struct ieee80211_channel *c; 845 u32 freq, start_freq, end_freq; 846 bool dfs_offload; 847 848 dfs_offload = wiphy_ext_feature_isset(wiphy, 849 NL80211_EXT_FEATURE_DFS_OFFLOAD); 850 851 start_freq = cfg80211_get_start_freq(center_freq, bandwidth); 852 end_freq = cfg80211_get_end_freq(center_freq, bandwidth); 853 854 /* 855 * Check entire range of channels for the bandwidth. 856 * If any channel in between is disabled or has not 857 * had gone through CAC return false 858 */ 859 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { 860 c = ieee80211_get_channel_khz(wiphy, freq); 861 if (!c) 862 return false; 863 864 if (c->flags & IEEE80211_CHAN_DISABLED) 865 return false; 866 867 if ((c->flags & IEEE80211_CHAN_RADAR) && 868 (c->dfs_state != NL80211_DFS_AVAILABLE) && 869 !(c->dfs_state == NL80211_DFS_USABLE && dfs_offload)) 870 return false; 871 } 872 873 return true; 874 } 875 876 static bool cfg80211_chandef_dfs_available(struct wiphy *wiphy, 877 const struct cfg80211_chan_def *chandef) 878 { 879 int width; 880 int r; 881 882 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 883 return false; 884 885 width = cfg80211_chandef_get_width(chandef); 886 if (width < 0) 887 return false; 888 889 r = cfg80211_get_chans_dfs_available(wiphy, 890 MHZ_TO_KHZ(chandef->center_freq1), 891 width); 892 893 /* If any of channels unavailable for cf1 just return */ 894 if (!r) 895 return r; 896 897 switch (chandef->width) { 898 case NL80211_CHAN_WIDTH_80P80: 899 WARN_ON(!chandef->center_freq2); 900 r = cfg80211_get_chans_dfs_available(wiphy, 901 MHZ_TO_KHZ(chandef->center_freq2), 902 width); 903 break; 904 default: 905 WARN_ON(chandef->center_freq2); 906 break; 907 } 908 909 return r; 910 } 911 912 static unsigned int cfg80211_get_chans_dfs_cac_time(struct wiphy *wiphy, 913 u32 center_freq, 914 u32 bandwidth) 915 { 916 struct ieee80211_channel *c; 917 u32 start_freq, end_freq, freq; 918 unsigned int dfs_cac_ms = 0; 919 920 start_freq = cfg80211_get_start_freq(center_freq, bandwidth); 921 end_freq = cfg80211_get_end_freq(center_freq, bandwidth); 922 923 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { 924 c = ieee80211_get_channel_khz(wiphy, freq); 925 if (!c) 926 return 0; 927 928 if (c->flags & IEEE80211_CHAN_DISABLED) 929 return 0; 930 931 if (!(c->flags & IEEE80211_CHAN_RADAR)) 932 continue; 933 934 if (c->dfs_cac_ms > dfs_cac_ms) 935 dfs_cac_ms = c->dfs_cac_ms; 936 } 937 938 return dfs_cac_ms; 939 } 940 941 unsigned int 942 cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy, 943 const struct cfg80211_chan_def *chandef) 944 { 945 int width; 946 unsigned int t1 = 0, t2 = 0; 947 948 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 949 return 0; 950 951 width = cfg80211_chandef_get_width(chandef); 952 if (width < 0) 953 return 0; 954 955 t1 = cfg80211_get_chans_dfs_cac_time(wiphy, 956 MHZ_TO_KHZ(chandef->center_freq1), 957 width); 958 959 if (!chandef->center_freq2) 960 return t1; 961 962 t2 = cfg80211_get_chans_dfs_cac_time(wiphy, 963 MHZ_TO_KHZ(chandef->center_freq2), 964 width); 965 966 return max(t1, t2); 967 } 968 969 static bool cfg80211_secondary_chans_ok(struct wiphy *wiphy, 970 u32 center_freq, u32 bandwidth, 971 u32 prohibited_flags) 972 { 973 struct ieee80211_channel *c; 974 u32 freq, start_freq, end_freq; 975 976 start_freq = cfg80211_get_start_freq(center_freq, bandwidth); 977 end_freq = cfg80211_get_end_freq(center_freq, bandwidth); 978 979 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { 980 c = ieee80211_get_channel_khz(wiphy, freq); 981 if (!c || c->flags & prohibited_flags) 982 return false; 983 } 984 985 return true; 986 } 987 988 /* check if the operating channels are valid and supported */ 989 static bool cfg80211_edmg_usable(struct wiphy *wiphy, u8 edmg_channels, 990 enum ieee80211_edmg_bw_config edmg_bw_config, 991 int primary_channel, 992 struct ieee80211_edmg *edmg_cap) 993 { 994 struct ieee80211_channel *chan; 995 int i, freq; 996 int channels_counter = 0; 997 998 if (!edmg_channels && !edmg_bw_config) 999 return true; 1000 1001 if ((!edmg_channels && edmg_bw_config) || 1002 (edmg_channels && !edmg_bw_config)) 1003 return false; 1004 1005 if (!(edmg_channels & BIT(primary_channel - 1))) 1006 return false; 1007 1008 /* 60GHz channels 1..6 */ 1009 for (i = 0; i < 6; i++) { 1010 if (!(edmg_channels & BIT(i))) 1011 continue; 1012 1013 if (!(edmg_cap->channels & BIT(i))) 1014 return false; 1015 1016 channels_counter++; 1017 1018 freq = ieee80211_channel_to_frequency(i + 1, 1019 NL80211_BAND_60GHZ); 1020 chan = ieee80211_get_channel(wiphy, freq); 1021 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 1022 return false; 1023 } 1024 1025 /* IEEE802.11 allows max 4 channels */ 1026 if (channels_counter > 4) 1027 return false; 1028 1029 /* check bw_config is a subset of what driver supports 1030 * (see IEEE P802.11ay/D4.0 section 9.4.2.251, Table 13) 1031 */ 1032 if ((edmg_bw_config % 4) > (edmg_cap->bw_config % 4)) 1033 return false; 1034 1035 if (edmg_bw_config > edmg_cap->bw_config) 1036 return false; 1037 1038 return true; 1039 } 1040 1041 bool cfg80211_chandef_usable(struct wiphy *wiphy, 1042 const struct cfg80211_chan_def *chandef, 1043 u32 prohibited_flags) 1044 { 1045 struct ieee80211_sta_ht_cap *ht_cap; 1046 struct ieee80211_sta_vht_cap *vht_cap; 1047 struct ieee80211_edmg *edmg_cap; 1048 u32 width, control_freq, cap; 1049 bool ext_nss_cap, support_80_80 = false, support_320 = false; 1050 const struct ieee80211_sband_iftype_data *iftd; 1051 struct ieee80211_supported_band *sband; 1052 int i; 1053 1054 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 1055 return false; 1056 1057 ht_cap = &wiphy->bands[chandef->chan->band]->ht_cap; 1058 vht_cap = &wiphy->bands[chandef->chan->band]->vht_cap; 1059 edmg_cap = &wiphy->bands[chandef->chan->band]->edmg_cap; 1060 ext_nss_cap = __le16_to_cpu(vht_cap->vht_mcs.tx_highest) & 1061 IEEE80211_VHT_EXT_NSS_BW_CAPABLE; 1062 1063 if (edmg_cap->channels && 1064 !cfg80211_edmg_usable(wiphy, 1065 chandef->edmg.channels, 1066 chandef->edmg.bw_config, 1067 chandef->chan->hw_value, 1068 edmg_cap)) 1069 return false; 1070 1071 control_freq = chandef->chan->center_freq; 1072 1073 switch (chandef->width) { 1074 case NL80211_CHAN_WIDTH_1: 1075 width = 1; 1076 break; 1077 case NL80211_CHAN_WIDTH_2: 1078 width = 2; 1079 break; 1080 case NL80211_CHAN_WIDTH_4: 1081 width = 4; 1082 break; 1083 case NL80211_CHAN_WIDTH_8: 1084 width = 8; 1085 break; 1086 case NL80211_CHAN_WIDTH_16: 1087 width = 16; 1088 break; 1089 case NL80211_CHAN_WIDTH_5: 1090 width = 5; 1091 break; 1092 case NL80211_CHAN_WIDTH_10: 1093 prohibited_flags |= IEEE80211_CHAN_NO_10MHZ; 1094 width = 10; 1095 break; 1096 case NL80211_CHAN_WIDTH_20: 1097 if (!ht_cap->ht_supported && 1098 chandef->chan->band != NL80211_BAND_6GHZ) 1099 return false; 1100 fallthrough; 1101 case NL80211_CHAN_WIDTH_20_NOHT: 1102 prohibited_flags |= IEEE80211_CHAN_NO_20MHZ; 1103 width = 20; 1104 break; 1105 case NL80211_CHAN_WIDTH_40: 1106 width = 40; 1107 if (chandef->chan->band == NL80211_BAND_6GHZ) 1108 break; 1109 if (!ht_cap->ht_supported) 1110 return false; 1111 if (!(ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) || 1112 ht_cap->cap & IEEE80211_HT_CAP_40MHZ_INTOLERANT) 1113 return false; 1114 if (chandef->center_freq1 < control_freq && 1115 chandef->chan->flags & IEEE80211_CHAN_NO_HT40MINUS) 1116 return false; 1117 if (chandef->center_freq1 > control_freq && 1118 chandef->chan->flags & IEEE80211_CHAN_NO_HT40PLUS) 1119 return false; 1120 break; 1121 case NL80211_CHAN_WIDTH_80P80: 1122 cap = vht_cap->cap; 1123 support_80_80 = 1124 (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 1125 (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 1126 cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 1127 (ext_nss_cap && 1128 u32_get_bits(cap, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) > 1); 1129 if (chandef->chan->band != NL80211_BAND_6GHZ && !support_80_80) 1130 return false; 1131 fallthrough; 1132 case NL80211_CHAN_WIDTH_80: 1133 prohibited_flags |= IEEE80211_CHAN_NO_80MHZ; 1134 width = 80; 1135 if (chandef->chan->band == NL80211_BAND_6GHZ) 1136 break; 1137 if (!vht_cap->vht_supported) 1138 return false; 1139 break; 1140 case NL80211_CHAN_WIDTH_160: 1141 prohibited_flags |= IEEE80211_CHAN_NO_160MHZ; 1142 width = 160; 1143 if (chandef->chan->band == NL80211_BAND_6GHZ) 1144 break; 1145 if (!vht_cap->vht_supported) 1146 return false; 1147 cap = vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK; 1148 if (cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 1149 cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ && 1150 !(ext_nss_cap && 1151 (vht_cap->cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK))) 1152 return false; 1153 break; 1154 case NL80211_CHAN_WIDTH_320: 1155 prohibited_flags |= IEEE80211_CHAN_NO_320MHZ; 1156 width = 320; 1157 1158 if (chandef->chan->band != NL80211_BAND_6GHZ) 1159 return false; 1160 1161 sband = wiphy->bands[NL80211_BAND_6GHZ]; 1162 if (!sband) 1163 return false; 1164 1165 for (i = 0; i < sband->n_iftype_data; i++) { 1166 iftd = &sband->iftype_data[i]; 1167 if (!iftd->eht_cap.has_eht) 1168 continue; 1169 1170 if (iftd->eht_cap.eht_cap_elem.phy_cap_info[0] & 1171 IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) { 1172 support_320 = true; 1173 break; 1174 } 1175 } 1176 1177 if (!support_320) 1178 return false; 1179 break; 1180 default: 1181 WARN_ON_ONCE(1); 1182 return false; 1183 } 1184 1185 /* 1186 * TODO: What if there are only certain 80/160/80+80 MHz channels 1187 * allowed by the driver, or only certain combinations? 1188 * For 40 MHz the driver can set the NO_HT40 flags, but for 1189 * 80/160 MHz and in particular 80+80 MHz this isn't really 1190 * feasible and we only have NO_80MHZ/NO_160MHZ so far but 1191 * no way to cover 80+80 MHz or more complex restrictions. 1192 * Note that such restrictions also need to be advertised to 1193 * userspace, for example for P2P channel selection. 1194 */ 1195 1196 if (width > 20) 1197 prohibited_flags |= IEEE80211_CHAN_NO_OFDM; 1198 1199 /* 5 and 10 MHz are only defined for the OFDM PHY */ 1200 if (width < 20) 1201 prohibited_flags |= IEEE80211_CHAN_NO_OFDM; 1202 1203 1204 if (!cfg80211_secondary_chans_ok(wiphy, 1205 ieee80211_chandef_to_khz(chandef), 1206 width, prohibited_flags)) 1207 return false; 1208 1209 if (!chandef->center_freq2) 1210 return true; 1211 return cfg80211_secondary_chans_ok(wiphy, 1212 MHZ_TO_KHZ(chandef->center_freq2), 1213 width, prohibited_flags); 1214 } 1215 EXPORT_SYMBOL(cfg80211_chandef_usable); 1216 1217 static bool cfg80211_ir_permissive_check_wdev(enum nl80211_iftype iftype, 1218 struct wireless_dev *wdev, 1219 struct ieee80211_channel *chan) 1220 { 1221 struct ieee80211_channel *other_chan = NULL; 1222 unsigned int link_id; 1223 int r1, r2; 1224 1225 for_each_valid_link(wdev, link_id) { 1226 if (wdev->iftype == NL80211_IFTYPE_STATION && 1227 wdev->links[link_id].client.current_bss) 1228 other_chan = wdev->links[link_id].client.current_bss->pub.channel; 1229 1230 /* 1231 * If a GO already operates on the same GO_CONCURRENT channel, 1232 * this one (maybe the same one) can beacon as well. We allow 1233 * the operation even if the station we relied on with 1234 * GO_CONCURRENT is disconnected now. But then we must make sure 1235 * we're not outdoor on an indoor-only channel. 1236 */ 1237 if (iftype == NL80211_IFTYPE_P2P_GO && 1238 wdev->iftype == NL80211_IFTYPE_P2P_GO && 1239 wdev->links[link_id].ap.beacon_interval && 1240 !(chan->flags & IEEE80211_CHAN_INDOOR_ONLY)) 1241 other_chan = wdev->links[link_id].ap.chandef.chan; 1242 1243 if (!other_chan) 1244 continue; 1245 1246 if (chan == other_chan) 1247 return true; 1248 1249 if (chan->band != NL80211_BAND_5GHZ && 1250 chan->band != NL80211_BAND_6GHZ) 1251 continue; 1252 1253 r1 = cfg80211_get_unii(chan->center_freq); 1254 r2 = cfg80211_get_unii(other_chan->center_freq); 1255 1256 if (r1 != -EINVAL && r1 == r2) { 1257 /* 1258 * At some locations channels 149-165 are considered a 1259 * bundle, but at other locations, e.g., Indonesia, 1260 * channels 149-161 are considered a bundle while 1261 * channel 165 is left out and considered to be in a 1262 * different bundle. Thus, in case that there is a 1263 * station interface connected to an AP on channel 165, 1264 * it is assumed that channels 149-161 are allowed for 1265 * GO operations. However, having a station interface 1266 * connected to an AP on channels 149-161, does not 1267 * allow GO operation on channel 165. 1268 */ 1269 if (chan->center_freq == 5825 && 1270 other_chan->center_freq != 5825) 1271 continue; 1272 return true; 1273 } 1274 } 1275 1276 return false; 1277 } 1278 1279 /* 1280 * Check if the channel can be used under permissive conditions mandated by 1281 * some regulatory bodies, i.e., the channel is marked with 1282 * IEEE80211_CHAN_IR_CONCURRENT and there is an additional station interface 1283 * associated to an AP on the same channel or on the same UNII band 1284 * (assuming that the AP is an authorized master). 1285 * In addition allow operation on a channel on which indoor operation is 1286 * allowed, iff we are currently operating in an indoor environment. 1287 */ 1288 static bool cfg80211_ir_permissive_chan(struct wiphy *wiphy, 1289 enum nl80211_iftype iftype, 1290 struct ieee80211_channel *chan) 1291 { 1292 struct wireless_dev *wdev; 1293 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1294 1295 lockdep_assert_held(&rdev->wiphy.mtx); 1296 1297 if (!IS_ENABLED(CONFIG_CFG80211_REG_RELAX_NO_IR) || 1298 !(wiphy->regulatory_flags & REGULATORY_ENABLE_RELAX_NO_IR)) 1299 return false; 1300 1301 /* only valid for GO and TDLS off-channel (station/p2p-CL) */ 1302 if (iftype != NL80211_IFTYPE_P2P_GO && 1303 iftype != NL80211_IFTYPE_STATION && 1304 iftype != NL80211_IFTYPE_P2P_CLIENT) 1305 return false; 1306 1307 if (regulatory_indoor_allowed() && 1308 (chan->flags & IEEE80211_CHAN_INDOOR_ONLY)) 1309 return true; 1310 1311 if (!(chan->flags & IEEE80211_CHAN_IR_CONCURRENT)) 1312 return false; 1313 1314 /* 1315 * Generally, it is possible to rely on another device/driver to allow 1316 * the IR concurrent relaxation, however, since the device can further 1317 * enforce the relaxation (by doing a similar verifications as this), 1318 * and thus fail the GO instantiation, consider only the interfaces of 1319 * the current registered device. 1320 */ 1321 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 1322 bool ret; 1323 1324 wdev_lock(wdev); 1325 ret = cfg80211_ir_permissive_check_wdev(iftype, wdev, chan); 1326 wdev_unlock(wdev); 1327 1328 if (ret) 1329 return ret; 1330 } 1331 1332 return false; 1333 } 1334 1335 static bool _cfg80211_reg_can_beacon(struct wiphy *wiphy, 1336 struct cfg80211_chan_def *chandef, 1337 enum nl80211_iftype iftype, 1338 bool check_no_ir) 1339 { 1340 bool res; 1341 u32 prohibited_flags = IEEE80211_CHAN_DISABLED | 1342 IEEE80211_CHAN_RADAR; 1343 1344 trace_cfg80211_reg_can_beacon(wiphy, chandef, iftype, check_no_ir); 1345 1346 if (check_no_ir) 1347 prohibited_flags |= IEEE80211_CHAN_NO_IR; 1348 1349 if (cfg80211_chandef_dfs_required(wiphy, chandef, iftype) > 0 && 1350 cfg80211_chandef_dfs_available(wiphy, chandef)) { 1351 /* We can skip IEEE80211_CHAN_NO_IR if chandef dfs available */ 1352 prohibited_flags = IEEE80211_CHAN_DISABLED; 1353 } 1354 1355 res = cfg80211_chandef_usable(wiphy, chandef, prohibited_flags); 1356 1357 trace_cfg80211_return_bool(res); 1358 return res; 1359 } 1360 1361 bool cfg80211_reg_can_beacon(struct wiphy *wiphy, 1362 struct cfg80211_chan_def *chandef, 1363 enum nl80211_iftype iftype) 1364 { 1365 return _cfg80211_reg_can_beacon(wiphy, chandef, iftype, true); 1366 } 1367 EXPORT_SYMBOL(cfg80211_reg_can_beacon); 1368 1369 bool cfg80211_reg_can_beacon_relax(struct wiphy *wiphy, 1370 struct cfg80211_chan_def *chandef, 1371 enum nl80211_iftype iftype) 1372 { 1373 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1374 bool check_no_ir; 1375 1376 lockdep_assert_held(&rdev->wiphy.mtx); 1377 1378 /* 1379 * Under certain conditions suggested by some regulatory bodies a 1380 * GO/STA can IR on channels marked with IEEE80211_NO_IR. Set this flag 1381 * only if such relaxations are not enabled and the conditions are not 1382 * met. 1383 */ 1384 check_no_ir = !cfg80211_ir_permissive_chan(wiphy, iftype, 1385 chandef->chan); 1386 1387 return _cfg80211_reg_can_beacon(wiphy, chandef, iftype, check_no_ir); 1388 } 1389 EXPORT_SYMBOL(cfg80211_reg_can_beacon_relax); 1390 1391 int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev, 1392 struct cfg80211_chan_def *chandef) 1393 { 1394 if (!rdev->ops->set_monitor_channel) 1395 return -EOPNOTSUPP; 1396 if (!cfg80211_has_monitors_only(rdev)) 1397 return -EBUSY; 1398 1399 return rdev_set_monitor_channel(rdev, chandef); 1400 } 1401 1402 bool cfg80211_any_usable_channels(struct wiphy *wiphy, 1403 unsigned long sband_mask, 1404 u32 prohibited_flags) 1405 { 1406 int idx; 1407 1408 prohibited_flags |= IEEE80211_CHAN_DISABLED; 1409 1410 for_each_set_bit(idx, &sband_mask, NUM_NL80211_BANDS) { 1411 struct ieee80211_supported_band *sband = wiphy->bands[idx]; 1412 int chanidx; 1413 1414 if (!sband) 1415 continue; 1416 1417 for (chanidx = 0; chanidx < sband->n_channels; chanidx++) { 1418 struct ieee80211_channel *chan; 1419 1420 chan = &sband->channels[chanidx]; 1421 1422 if (chan->flags & prohibited_flags) 1423 continue; 1424 1425 return true; 1426 } 1427 } 1428 1429 return false; 1430 } 1431 EXPORT_SYMBOL(cfg80211_any_usable_channels); 1432 1433 struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev, 1434 unsigned int link_id) 1435 { 1436 /* 1437 * We need to sort out the locking here - in some cases 1438 * where we get here we really just don't care (yet) 1439 * about the valid links, but in others we do. But we 1440 * get here with various driver cases, so we cannot 1441 * easily require the wdev mutex. 1442 */ 1443 if (link_id || wdev->valid_links & BIT(0)) { 1444 ASSERT_WDEV_LOCK(wdev); 1445 WARN_ON(!(wdev->valid_links & BIT(link_id))); 1446 } 1447 1448 switch (wdev->iftype) { 1449 case NL80211_IFTYPE_MESH_POINT: 1450 return &wdev->u.mesh.chandef; 1451 case NL80211_IFTYPE_ADHOC: 1452 return &wdev->u.ibss.chandef; 1453 case NL80211_IFTYPE_OCB: 1454 return &wdev->u.ocb.chandef; 1455 case NL80211_IFTYPE_AP: 1456 case NL80211_IFTYPE_P2P_GO: 1457 return &wdev->links[link_id].ap.chandef; 1458 default: 1459 return NULL; 1460 } 1461 } 1462 EXPORT_SYMBOL(wdev_chandef); 1463 1464 struct cfg80211_per_bw_puncturing_values { 1465 u8 len; 1466 const u16 *valid_values; 1467 }; 1468 1469 static const u16 puncturing_values_80mhz[] = { 1470 0x8, 0x4, 0x2, 0x1 1471 }; 1472 1473 static const u16 puncturing_values_160mhz[] = { 1474 0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1, 0xc0, 0x30, 0xc, 0x3 1475 }; 1476 1477 static const u16 puncturing_values_320mhz[] = { 1478 0xc000, 0x3000, 0xc00, 0x300, 0xc0, 0x30, 0xc, 0x3, 0xf000, 0xf00, 1479 0xf0, 0xf, 0xfc00, 0xf300, 0xf0c0, 0xf030, 0xf00c, 0xf003, 0xc00f, 1480 0x300f, 0xc0f, 0x30f, 0xcf, 0x3f 1481 }; 1482 1483 #define CFG80211_PER_BW_VALID_PUNCTURING_VALUES(_bw) \ 1484 { \ 1485 .len = ARRAY_SIZE(puncturing_values_ ## _bw ## mhz), \ 1486 .valid_values = puncturing_values_ ## _bw ## mhz \ 1487 } 1488 1489 static const struct cfg80211_per_bw_puncturing_values per_bw_puncturing[] = { 1490 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(80), 1491 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(160), 1492 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(320) 1493 }; 1494 1495 bool cfg80211_valid_disable_subchannel_bitmap(u16 *bitmap, 1496 const struct cfg80211_chan_def *chandef) 1497 { 1498 u32 idx, i, start_freq; 1499 1500 switch (chandef->width) { 1501 case NL80211_CHAN_WIDTH_80: 1502 idx = 0; 1503 start_freq = chandef->center_freq1 - 40; 1504 break; 1505 case NL80211_CHAN_WIDTH_160: 1506 idx = 1; 1507 start_freq = chandef->center_freq1 - 80; 1508 break; 1509 case NL80211_CHAN_WIDTH_320: 1510 idx = 2; 1511 start_freq = chandef->center_freq1 - 160; 1512 break; 1513 default: 1514 *bitmap = 0; 1515 break; 1516 } 1517 1518 if (!*bitmap) 1519 return true; 1520 1521 /* check if primary channel is punctured */ 1522 if (*bitmap & (u16)BIT((chandef->chan->center_freq - start_freq) / 20)) 1523 return false; 1524 1525 for (i = 0; i < per_bw_puncturing[idx].len; i++) 1526 if (per_bw_puncturing[idx].valid_values[i] == *bitmap) 1527 return true; 1528 1529 return false; 1530 } 1531 EXPORT_SYMBOL(cfg80211_valid_disable_subchannel_bitmap); 1532