xref: /linux/net/wireless/chan.c (revision add452d09a38c7a7c44aea55c1015392cebf9fa7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains helper code to handle channel
4  * settings and keeping track of what is possible at
5  * any point in time.
6  *
7  * Copyright 2009	Johannes Berg <johannes@sipsolutions.net>
8  * Copyright 2013-2014  Intel Mobile Communications GmbH
9  * Copyright 2018-2024	Intel Corporation
10  */
11 
12 #include <linux/export.h>
13 #include <linux/bitfield.h>
14 #include <net/cfg80211.h>
15 #include "core.h"
16 #include "rdev-ops.h"
17 
18 static bool cfg80211_valid_60g_freq(u32 freq)
19 {
20 	return freq >= 58320 && freq <= 70200;
21 }
22 
23 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef,
24 			     struct ieee80211_channel *chan,
25 			     enum nl80211_channel_type chan_type)
26 {
27 	if (WARN_ON(!chan))
28 		return;
29 
30 	*chandef = (struct cfg80211_chan_def) {
31 		.chan = chan,
32 		.freq1_offset = chan->freq_offset,
33 	};
34 
35 	switch (chan_type) {
36 	case NL80211_CHAN_NO_HT:
37 		chandef->width = NL80211_CHAN_WIDTH_20_NOHT;
38 		chandef->center_freq1 = chan->center_freq;
39 		break;
40 	case NL80211_CHAN_HT20:
41 		chandef->width = NL80211_CHAN_WIDTH_20;
42 		chandef->center_freq1 = chan->center_freq;
43 		break;
44 	case NL80211_CHAN_HT40PLUS:
45 		chandef->width = NL80211_CHAN_WIDTH_40;
46 		chandef->center_freq1 = chan->center_freq + 10;
47 		break;
48 	case NL80211_CHAN_HT40MINUS:
49 		chandef->width = NL80211_CHAN_WIDTH_40;
50 		chandef->center_freq1 = chan->center_freq - 10;
51 		break;
52 	default:
53 		WARN_ON(1);
54 	}
55 }
56 EXPORT_SYMBOL(cfg80211_chandef_create);
57 
58 struct cfg80211_per_bw_puncturing_values {
59 	u8 len;
60 	const u16 *valid_values;
61 };
62 
63 static const u16 puncturing_values_80mhz[] = {
64 	0x8, 0x4, 0x2, 0x1
65 };
66 
67 static const u16 puncturing_values_160mhz[] = {
68 	 0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1, 0xc0, 0x30, 0xc, 0x3
69 };
70 
71 static const u16 puncturing_values_320mhz[] = {
72 	0xc000, 0x3000, 0xc00, 0x300, 0xc0, 0x30, 0xc, 0x3, 0xf000, 0xf00,
73 	0xf0, 0xf, 0xfc00, 0xf300, 0xf0c0, 0xf030, 0xf00c, 0xf003, 0xc00f,
74 	0x300f, 0xc0f, 0x30f, 0xcf, 0x3f
75 };
76 
77 #define CFG80211_PER_BW_VALID_PUNCTURING_VALUES(_bw) \
78 	{ \
79 		.len = ARRAY_SIZE(puncturing_values_ ## _bw ## mhz), \
80 		.valid_values = puncturing_values_ ## _bw ## mhz \
81 	}
82 
83 static const struct cfg80211_per_bw_puncturing_values per_bw_puncturing[] = {
84 	CFG80211_PER_BW_VALID_PUNCTURING_VALUES(80),
85 	CFG80211_PER_BW_VALID_PUNCTURING_VALUES(160),
86 	CFG80211_PER_BW_VALID_PUNCTURING_VALUES(320)
87 };
88 
89 static bool valid_puncturing_bitmap(const struct cfg80211_chan_def *chandef)
90 {
91 	u32 idx, i, start_freq, primary_center = chandef->chan->center_freq;
92 
93 	switch (chandef->width) {
94 	case NL80211_CHAN_WIDTH_80:
95 		idx = 0;
96 		start_freq = chandef->center_freq1 - 40;
97 		break;
98 	case NL80211_CHAN_WIDTH_160:
99 		idx = 1;
100 		start_freq = chandef->center_freq1 - 80;
101 		break;
102 	case NL80211_CHAN_WIDTH_320:
103 		idx = 2;
104 		start_freq = chandef->center_freq1 - 160;
105 		break;
106 	default:
107 		return chandef->punctured == 0;
108 	}
109 
110 	if (!chandef->punctured)
111 		return true;
112 
113 	/* check if primary channel is punctured */
114 	if (chandef->punctured & (u16)BIT((primary_center - start_freq) / 20))
115 		return false;
116 
117 	for (i = 0; i < per_bw_puncturing[idx].len; i++) {
118 		if (per_bw_puncturing[idx].valid_values[i] == chandef->punctured)
119 			return true;
120 	}
121 
122 	return false;
123 }
124 
125 static bool cfg80211_edmg_chandef_valid(const struct cfg80211_chan_def *chandef)
126 {
127 	int max_contiguous = 0;
128 	int num_of_enabled = 0;
129 	int contiguous = 0;
130 	int i;
131 
132 	if (!chandef->edmg.channels || !chandef->edmg.bw_config)
133 		return false;
134 
135 	if (!cfg80211_valid_60g_freq(chandef->chan->center_freq))
136 		return false;
137 
138 	for (i = 0; i < 6; i++) {
139 		if (chandef->edmg.channels & BIT(i)) {
140 			contiguous++;
141 			num_of_enabled++;
142 		} else {
143 			contiguous = 0;
144 		}
145 
146 		max_contiguous = max(contiguous, max_contiguous);
147 	}
148 	/* basic verification of edmg configuration according to
149 	 * IEEE P802.11ay/D4.0 section 9.4.2.251
150 	 */
151 	/* check bw_config against contiguous edmg channels */
152 	switch (chandef->edmg.bw_config) {
153 	case IEEE80211_EDMG_BW_CONFIG_4:
154 	case IEEE80211_EDMG_BW_CONFIG_8:
155 	case IEEE80211_EDMG_BW_CONFIG_12:
156 		if (max_contiguous < 1)
157 			return false;
158 		break;
159 	case IEEE80211_EDMG_BW_CONFIG_5:
160 	case IEEE80211_EDMG_BW_CONFIG_9:
161 	case IEEE80211_EDMG_BW_CONFIG_13:
162 		if (max_contiguous < 2)
163 			return false;
164 		break;
165 	case IEEE80211_EDMG_BW_CONFIG_6:
166 	case IEEE80211_EDMG_BW_CONFIG_10:
167 	case IEEE80211_EDMG_BW_CONFIG_14:
168 		if (max_contiguous < 3)
169 			return false;
170 		break;
171 	case IEEE80211_EDMG_BW_CONFIG_7:
172 	case IEEE80211_EDMG_BW_CONFIG_11:
173 	case IEEE80211_EDMG_BW_CONFIG_15:
174 		if (max_contiguous < 4)
175 			return false;
176 		break;
177 
178 	default:
179 		return false;
180 	}
181 
182 	/* check bw_config against aggregated (non contiguous) edmg channels */
183 	switch (chandef->edmg.bw_config) {
184 	case IEEE80211_EDMG_BW_CONFIG_4:
185 	case IEEE80211_EDMG_BW_CONFIG_5:
186 	case IEEE80211_EDMG_BW_CONFIG_6:
187 	case IEEE80211_EDMG_BW_CONFIG_7:
188 		break;
189 	case IEEE80211_EDMG_BW_CONFIG_8:
190 	case IEEE80211_EDMG_BW_CONFIG_9:
191 	case IEEE80211_EDMG_BW_CONFIG_10:
192 	case IEEE80211_EDMG_BW_CONFIG_11:
193 		if (num_of_enabled < 2)
194 			return false;
195 		break;
196 	case IEEE80211_EDMG_BW_CONFIG_12:
197 	case IEEE80211_EDMG_BW_CONFIG_13:
198 	case IEEE80211_EDMG_BW_CONFIG_14:
199 	case IEEE80211_EDMG_BW_CONFIG_15:
200 		if (num_of_enabled < 4 || max_contiguous < 2)
201 			return false;
202 		break;
203 	default:
204 		return false;
205 	}
206 
207 	return true;
208 }
209 
210 int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width)
211 {
212 	int mhz;
213 
214 	switch (chan_width) {
215 	case NL80211_CHAN_WIDTH_1:
216 		mhz = 1;
217 		break;
218 	case NL80211_CHAN_WIDTH_2:
219 		mhz = 2;
220 		break;
221 	case NL80211_CHAN_WIDTH_4:
222 		mhz = 4;
223 		break;
224 	case NL80211_CHAN_WIDTH_8:
225 		mhz = 8;
226 		break;
227 	case NL80211_CHAN_WIDTH_16:
228 		mhz = 16;
229 		break;
230 	case NL80211_CHAN_WIDTH_5:
231 		mhz = 5;
232 		break;
233 	case NL80211_CHAN_WIDTH_10:
234 		mhz = 10;
235 		break;
236 	case NL80211_CHAN_WIDTH_20:
237 	case NL80211_CHAN_WIDTH_20_NOHT:
238 		mhz = 20;
239 		break;
240 	case NL80211_CHAN_WIDTH_40:
241 		mhz = 40;
242 		break;
243 	case NL80211_CHAN_WIDTH_80P80:
244 	case NL80211_CHAN_WIDTH_80:
245 		mhz = 80;
246 		break;
247 	case NL80211_CHAN_WIDTH_160:
248 		mhz = 160;
249 		break;
250 	case NL80211_CHAN_WIDTH_320:
251 		mhz = 320;
252 		break;
253 	default:
254 		WARN_ON_ONCE(1);
255 		return -1;
256 	}
257 	return mhz;
258 }
259 EXPORT_SYMBOL(nl80211_chan_width_to_mhz);
260 
261 static int cfg80211_chandef_get_width(const struct cfg80211_chan_def *c)
262 {
263 	return nl80211_chan_width_to_mhz(c->width);
264 }
265 
266 static bool cfg80211_valid_center_freq(u32 center,
267 				       enum nl80211_chan_width width)
268 {
269 	int bw;
270 	int step;
271 
272 	/* We only do strict verification on 6 GHz */
273 	if (center < 5955 || center > 7115)
274 		return true;
275 
276 	bw = nl80211_chan_width_to_mhz(width);
277 	if (bw < 0)
278 		return false;
279 
280 	/* Validate that the channels bw is entirely within the 6 GHz band */
281 	if (center - bw / 2 < 5945 || center + bw / 2 > 7125)
282 		return false;
283 
284 	/* With 320 MHz the permitted channels overlap */
285 	if (bw == 320)
286 		step = 160;
287 	else
288 		step = bw;
289 
290 	/*
291 	 * Valid channels are packed from lowest frequency towards higher ones.
292 	 * So test that the lower frequency aligns with one of these steps.
293 	 */
294 	return (center - bw / 2 - 5945) % step == 0;
295 }
296 
297 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef)
298 {
299 	u32 control_freq, oper_freq;
300 	int oper_width, control_width;
301 
302 	if (!chandef->chan)
303 		return false;
304 
305 	if (chandef->freq1_offset >= 1000)
306 		return false;
307 
308 	control_freq = chandef->chan->center_freq;
309 
310 	switch (chandef->width) {
311 	case NL80211_CHAN_WIDTH_5:
312 	case NL80211_CHAN_WIDTH_10:
313 	case NL80211_CHAN_WIDTH_20:
314 	case NL80211_CHAN_WIDTH_20_NOHT:
315 		if (ieee80211_chandef_to_khz(chandef) !=
316 		    ieee80211_channel_to_khz(chandef->chan))
317 			return false;
318 		if (chandef->center_freq2)
319 			return false;
320 		break;
321 	case NL80211_CHAN_WIDTH_1:
322 	case NL80211_CHAN_WIDTH_2:
323 	case NL80211_CHAN_WIDTH_4:
324 	case NL80211_CHAN_WIDTH_8:
325 	case NL80211_CHAN_WIDTH_16:
326 		if (chandef->chan->band != NL80211_BAND_S1GHZ)
327 			return false;
328 
329 		control_freq = ieee80211_channel_to_khz(chandef->chan);
330 		oper_freq = ieee80211_chandef_to_khz(chandef);
331 		control_width = nl80211_chan_width_to_mhz(
332 					ieee80211_s1g_channel_width(
333 								chandef->chan));
334 		oper_width = cfg80211_chandef_get_width(chandef);
335 
336 		if (oper_width < 0 || control_width < 0)
337 			return false;
338 		if (chandef->center_freq2)
339 			return false;
340 
341 		if (control_freq + MHZ_TO_KHZ(control_width) / 2 >
342 		    oper_freq + MHZ_TO_KHZ(oper_width) / 2)
343 			return false;
344 
345 		if (control_freq - MHZ_TO_KHZ(control_width) / 2 <
346 		    oper_freq - MHZ_TO_KHZ(oper_width) / 2)
347 			return false;
348 		break;
349 	case NL80211_CHAN_WIDTH_80P80:
350 		if (!chandef->center_freq2)
351 			return false;
352 		/* adjacent is not allowed -- that's a 160 MHz channel */
353 		if (chandef->center_freq1 - chandef->center_freq2 == 80 ||
354 		    chandef->center_freq2 - chandef->center_freq1 == 80)
355 			return false;
356 		break;
357 	default:
358 		if (chandef->center_freq2)
359 			return false;
360 		break;
361 	}
362 
363 	switch (chandef->width) {
364 	case NL80211_CHAN_WIDTH_5:
365 	case NL80211_CHAN_WIDTH_10:
366 	case NL80211_CHAN_WIDTH_20:
367 	case NL80211_CHAN_WIDTH_20_NOHT:
368 	case NL80211_CHAN_WIDTH_1:
369 	case NL80211_CHAN_WIDTH_2:
370 	case NL80211_CHAN_WIDTH_4:
371 	case NL80211_CHAN_WIDTH_8:
372 	case NL80211_CHAN_WIDTH_16:
373 		/* all checked above */
374 		break;
375 	case NL80211_CHAN_WIDTH_320:
376 		if (chandef->center_freq1 == control_freq + 150 ||
377 		    chandef->center_freq1 == control_freq + 130 ||
378 		    chandef->center_freq1 == control_freq + 110 ||
379 		    chandef->center_freq1 == control_freq + 90 ||
380 		    chandef->center_freq1 == control_freq - 90 ||
381 		    chandef->center_freq1 == control_freq - 110 ||
382 		    chandef->center_freq1 == control_freq - 130 ||
383 		    chandef->center_freq1 == control_freq - 150)
384 			break;
385 		fallthrough;
386 	case NL80211_CHAN_WIDTH_160:
387 		if (chandef->center_freq1 == control_freq + 70 ||
388 		    chandef->center_freq1 == control_freq + 50 ||
389 		    chandef->center_freq1 == control_freq - 50 ||
390 		    chandef->center_freq1 == control_freq - 70)
391 			break;
392 		fallthrough;
393 	case NL80211_CHAN_WIDTH_80P80:
394 	case NL80211_CHAN_WIDTH_80:
395 		if (chandef->center_freq1 == control_freq + 30 ||
396 		    chandef->center_freq1 == control_freq - 30)
397 			break;
398 		fallthrough;
399 	case NL80211_CHAN_WIDTH_40:
400 		if (chandef->center_freq1 == control_freq + 10 ||
401 		    chandef->center_freq1 == control_freq - 10)
402 			break;
403 		fallthrough;
404 	default:
405 		return false;
406 	}
407 
408 	if (!cfg80211_valid_center_freq(chandef->center_freq1, chandef->width))
409 		return false;
410 
411 	if (chandef->width == NL80211_CHAN_WIDTH_80P80 &&
412 	    !cfg80211_valid_center_freq(chandef->center_freq2, chandef->width))
413 		return false;
414 
415 	/* channel 14 is only for IEEE 802.11b */
416 	if (chandef->center_freq1 == 2484 &&
417 	    chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
418 		return false;
419 
420 	if (cfg80211_chandef_is_edmg(chandef) &&
421 	    !cfg80211_edmg_chandef_valid(chandef))
422 		return false;
423 
424 	return valid_puncturing_bitmap(chandef);
425 }
426 EXPORT_SYMBOL(cfg80211_chandef_valid);
427 
428 int cfg80211_chandef_primary(const struct cfg80211_chan_def *c,
429 			     enum nl80211_chan_width primary_chan_width,
430 			     u16 *punctured)
431 {
432 	int pri_width = nl80211_chan_width_to_mhz(primary_chan_width);
433 	int width = cfg80211_chandef_get_width(c);
434 	u32 control = c->chan->center_freq;
435 	u32 center = c->center_freq1;
436 	u16 _punct = 0;
437 
438 	if (WARN_ON_ONCE(pri_width < 0 || width < 0))
439 		return -1;
440 
441 	/* not intended to be called this way, can't determine */
442 	if (WARN_ON_ONCE(pri_width > width))
443 		return -1;
444 
445 	if (!punctured)
446 		punctured = &_punct;
447 
448 	*punctured = c->punctured;
449 
450 	while (width > pri_width) {
451 		unsigned int bits_to_drop = width / 20 / 2;
452 
453 		if (control > center) {
454 			center += width / 4;
455 			*punctured >>= bits_to_drop;
456 		} else {
457 			center -= width / 4;
458 			*punctured &= (1 << bits_to_drop) - 1;
459 		}
460 		width /= 2;
461 	}
462 
463 	return center;
464 }
465 EXPORT_SYMBOL(cfg80211_chandef_primary);
466 
467 static const struct cfg80211_chan_def *
468 check_chandef_primary_compat(const struct cfg80211_chan_def *c1,
469 			     const struct cfg80211_chan_def *c2,
470 			     enum nl80211_chan_width primary_chan_width)
471 {
472 	u16 punct_c1 = 0, punct_c2 = 0;
473 
474 	/* check primary is compatible -> error if not */
475 	if (cfg80211_chandef_primary(c1, primary_chan_width, &punct_c1) !=
476 	    cfg80211_chandef_primary(c2, primary_chan_width, &punct_c2))
477 		return ERR_PTR(-EINVAL);
478 
479 	if (punct_c1 != punct_c2)
480 		return ERR_PTR(-EINVAL);
481 
482 	/* assumes c1 is smaller width, if that was just checked -> done */
483 	if (c1->width == primary_chan_width)
484 		return c2;
485 
486 	/* otherwise continue checking the next width */
487 	return NULL;
488 }
489 
490 static const struct cfg80211_chan_def *
491 _cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1,
492 			     const struct cfg80211_chan_def *c2)
493 {
494 	const struct cfg80211_chan_def *ret;
495 
496 	/* If they are identical, return */
497 	if (cfg80211_chandef_identical(c1, c2))
498 		return c2;
499 
500 	/* otherwise, must have same control channel */
501 	if (c1->chan != c2->chan)
502 		return NULL;
503 
504 	/*
505 	 * If they have the same width, but aren't identical,
506 	 * then they can't be compatible.
507 	 */
508 	if (c1->width == c2->width)
509 		return NULL;
510 
511 	/*
512 	 * can't be compatible if one of them is 5/10 MHz or S1G
513 	 * but they don't have the same width.
514 	 */
515 #define NARROW_OR_S1G(width)	((width) == NL80211_CHAN_WIDTH_5 || \
516 				 (width) == NL80211_CHAN_WIDTH_10 || \
517 				 (width) == NL80211_CHAN_WIDTH_1 || \
518 				 (width) == NL80211_CHAN_WIDTH_2 || \
519 				 (width) == NL80211_CHAN_WIDTH_4 || \
520 				 (width) == NL80211_CHAN_WIDTH_8 || \
521 				 (width) == NL80211_CHAN_WIDTH_16)
522 
523 	if (NARROW_OR_S1G(c1->width) || NARROW_OR_S1G(c2->width))
524 		return NULL;
525 
526 	/*
527 	 * Make sure that c1 is always the narrower one, so that later
528 	 * we either return NULL or c2 and don't have to check both
529 	 * directions.
530 	 */
531 	if (c1->width > c2->width)
532 		swap(c1, c2);
533 
534 	/*
535 	 * No further checks needed if the "narrower" one is only 20 MHz.
536 	 * Here "narrower" includes being a 20 MHz non-HT channel vs. a
537 	 * 20 MHz HT (or later) one.
538 	 */
539 	if (c1->width <= NL80211_CHAN_WIDTH_20)
540 		return c2;
541 
542 	ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_40);
543 	if (ret)
544 		return ret;
545 
546 	ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_80);
547 	if (ret)
548 		return ret;
549 
550 	/*
551 	 * If c1 is 80+80, then c2 is 160 or higher, but that cannot
552 	 * match. If c2 was also 80+80 it was already either accepted
553 	 * or rejected above (identical or not, respectively.)
554 	 */
555 	if (c1->width == NL80211_CHAN_WIDTH_80P80)
556 		return NULL;
557 
558 	ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_160);
559 	if (ret)
560 		return ret;
561 
562 	/*
563 	 * Getting here would mean they're both wider than 160, have the
564 	 * same primary 160, but are not identical - this cannot happen
565 	 * since they must be 320 (no wider chandefs exist, at least yet.)
566 	 */
567 	WARN_ON_ONCE(1);
568 
569 	return NULL;
570 }
571 
572 const struct cfg80211_chan_def *
573 cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1,
574 			    const struct cfg80211_chan_def *c2)
575 {
576 	const struct cfg80211_chan_def *ret;
577 
578 	ret = _cfg80211_chandef_compatible(c1, c2);
579 	if (IS_ERR(ret))
580 		return NULL;
581 	return ret;
582 }
583 EXPORT_SYMBOL(cfg80211_chandef_compatible);
584 
585 static void cfg80211_set_chans_dfs_state(struct wiphy *wiphy, u32 center_freq,
586 					 u32 bandwidth,
587 					 enum nl80211_dfs_state dfs_state)
588 {
589 	struct ieee80211_channel *c;
590 	u32 freq;
591 
592 	for (freq = center_freq - bandwidth/2 + 10;
593 	     freq <= center_freq + bandwidth/2 - 10;
594 	     freq += 20) {
595 		c = ieee80211_get_channel(wiphy, freq);
596 		if (!c || !(c->flags & IEEE80211_CHAN_RADAR))
597 			continue;
598 
599 		c->dfs_state = dfs_state;
600 		c->dfs_state_entered = jiffies;
601 	}
602 }
603 
604 void cfg80211_set_dfs_state(struct wiphy *wiphy,
605 			    const struct cfg80211_chan_def *chandef,
606 			    enum nl80211_dfs_state dfs_state)
607 {
608 	int width;
609 
610 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
611 		return;
612 
613 	width = cfg80211_chandef_get_width(chandef);
614 	if (width < 0)
615 		return;
616 
617 	cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq1,
618 				     width, dfs_state);
619 
620 	if (!chandef->center_freq2)
621 		return;
622 	cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq2,
623 				     width, dfs_state);
624 }
625 
626 static u32 cfg80211_get_start_freq(u32 center_freq,
627 				   u32 bandwidth)
628 {
629 	u32 start_freq;
630 
631 	bandwidth = MHZ_TO_KHZ(bandwidth);
632 	if (bandwidth <= MHZ_TO_KHZ(20))
633 		start_freq = center_freq;
634 	else
635 		start_freq = center_freq - bandwidth / 2 + MHZ_TO_KHZ(10);
636 
637 	return start_freq;
638 }
639 
640 static u32 cfg80211_get_end_freq(u32 center_freq,
641 				 u32 bandwidth)
642 {
643 	u32 end_freq;
644 
645 	bandwidth = MHZ_TO_KHZ(bandwidth);
646 	if (bandwidth <= MHZ_TO_KHZ(20))
647 		end_freq = center_freq;
648 	else
649 		end_freq = center_freq + bandwidth / 2 - MHZ_TO_KHZ(10);
650 
651 	return end_freq;
652 }
653 
654 static bool
655 cfg80211_dfs_permissive_check_wdev(struct cfg80211_registered_device *rdev,
656 				   enum nl80211_iftype iftype,
657 				   struct wireless_dev *wdev,
658 				   struct ieee80211_channel *chan)
659 {
660 	unsigned int link_id;
661 
662 	for_each_valid_link(wdev, link_id) {
663 		struct ieee80211_channel *other_chan = NULL;
664 		struct cfg80211_chan_def chandef = {};
665 		int ret;
666 
667 		/* In order to avoid daisy chaining only allow BSS STA */
668 		if (wdev->iftype != NL80211_IFTYPE_STATION ||
669 		    !wdev->links[link_id].client.current_bss)
670 			continue;
671 
672 		other_chan =
673 			wdev->links[link_id].client.current_bss->pub.channel;
674 
675 		if (!other_chan)
676 			continue;
677 
678 		if (chan == other_chan)
679 			return true;
680 
681 		/* continue if we can't get the channel */
682 		ret = rdev_get_channel(rdev, wdev, link_id, &chandef);
683 		if (ret)
684 			continue;
685 
686 		if (cfg80211_is_sub_chan(&chandef, chan, false))
687 			return true;
688 	}
689 
690 	return false;
691 }
692 
693 /*
694  * Check if P2P GO is allowed to operate on a DFS channel
695  */
696 static bool cfg80211_dfs_permissive_chan(struct wiphy *wiphy,
697 					 enum nl80211_iftype iftype,
698 					 struct ieee80211_channel *chan)
699 {
700 	struct wireless_dev *wdev;
701 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
702 
703 	lockdep_assert_held(&rdev->wiphy.mtx);
704 
705 	if (!wiphy_ext_feature_isset(&rdev->wiphy,
706 				     NL80211_EXT_FEATURE_DFS_CONCURRENT) ||
707 	    !(chan->flags & IEEE80211_CHAN_DFS_CONCURRENT))
708 		return false;
709 
710 	/* only valid for P2P GO */
711 	if (iftype != NL80211_IFTYPE_P2P_GO)
712 		return false;
713 
714 	/*
715 	 * Allow only if there's a concurrent BSS
716 	 */
717 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
718 		bool ret = cfg80211_dfs_permissive_check_wdev(rdev, iftype,
719 							      wdev, chan);
720 		if (ret)
721 			return ret;
722 	}
723 
724 	return false;
725 }
726 
727 static int cfg80211_get_chans_dfs_required(struct wiphy *wiphy,
728 					    u32 center_freq,
729 					    u32 bandwidth,
730 					    enum nl80211_iftype iftype)
731 {
732 	struct ieee80211_channel *c;
733 	u32 freq, start_freq, end_freq;
734 
735 	start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
736 	end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
737 
738 	for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
739 		c = ieee80211_get_channel_khz(wiphy, freq);
740 		if (!c)
741 			return -EINVAL;
742 
743 		if (c->flags & IEEE80211_CHAN_RADAR &&
744 		    !cfg80211_dfs_permissive_chan(wiphy, iftype, c))
745 			return 1;
746 	}
747 
748 	return 0;
749 }
750 
751 
752 int cfg80211_chandef_dfs_required(struct wiphy *wiphy,
753 				  const struct cfg80211_chan_def *chandef,
754 				  enum nl80211_iftype iftype)
755 {
756 	int width;
757 	int ret;
758 
759 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
760 		return -EINVAL;
761 
762 	switch (iftype) {
763 	case NL80211_IFTYPE_ADHOC:
764 	case NL80211_IFTYPE_AP:
765 	case NL80211_IFTYPE_P2P_GO:
766 	case NL80211_IFTYPE_MESH_POINT:
767 		width = cfg80211_chandef_get_width(chandef);
768 		if (width < 0)
769 			return -EINVAL;
770 
771 		ret = cfg80211_get_chans_dfs_required(wiphy,
772 					ieee80211_chandef_to_khz(chandef),
773 					width, iftype);
774 		if (ret < 0)
775 			return ret;
776 		else if (ret > 0)
777 			return BIT(chandef->width);
778 
779 		if (!chandef->center_freq2)
780 			return 0;
781 
782 		ret = cfg80211_get_chans_dfs_required(wiphy,
783 					MHZ_TO_KHZ(chandef->center_freq2),
784 					width, iftype);
785 		if (ret < 0)
786 			return ret;
787 		else if (ret > 0)
788 			return BIT(chandef->width);
789 
790 		break;
791 	case NL80211_IFTYPE_STATION:
792 	case NL80211_IFTYPE_OCB:
793 	case NL80211_IFTYPE_P2P_CLIENT:
794 	case NL80211_IFTYPE_MONITOR:
795 	case NL80211_IFTYPE_AP_VLAN:
796 	case NL80211_IFTYPE_P2P_DEVICE:
797 	case NL80211_IFTYPE_NAN:
798 		break;
799 	case NL80211_IFTYPE_WDS:
800 	case NL80211_IFTYPE_UNSPECIFIED:
801 	case NUM_NL80211_IFTYPES:
802 		WARN_ON(1);
803 	}
804 
805 	return 0;
806 }
807 EXPORT_SYMBOL(cfg80211_chandef_dfs_required);
808 
809 static int cfg80211_get_chans_dfs_usable(struct wiphy *wiphy,
810 					 u32 center_freq,
811 					 u32 bandwidth)
812 {
813 	struct ieee80211_channel *c;
814 	u32 freq, start_freq, end_freq;
815 	int count = 0;
816 
817 	start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
818 	end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
819 
820 	/*
821 	 * Check entire range of channels for the bandwidth.
822 	 * Check all channels are DFS channels (DFS_USABLE or
823 	 * DFS_AVAILABLE). Return number of usable channels
824 	 * (require CAC). Allow DFS and non-DFS channel mix.
825 	 */
826 	for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
827 		c = ieee80211_get_channel_khz(wiphy, freq);
828 		if (!c)
829 			return -EINVAL;
830 
831 		if (c->flags & IEEE80211_CHAN_DISABLED)
832 			return -EINVAL;
833 
834 		if (c->flags & IEEE80211_CHAN_RADAR) {
835 			if (c->dfs_state == NL80211_DFS_UNAVAILABLE)
836 				return -EINVAL;
837 
838 			if (c->dfs_state == NL80211_DFS_USABLE)
839 				count++;
840 		}
841 	}
842 
843 	return count;
844 }
845 
846 bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy,
847 				 const struct cfg80211_chan_def *chandef)
848 {
849 	int width;
850 	int r1, r2 = 0;
851 
852 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
853 		return false;
854 
855 	width = cfg80211_chandef_get_width(chandef);
856 	if (width < 0)
857 		return false;
858 
859 	r1 = cfg80211_get_chans_dfs_usable(wiphy,
860 					   MHZ_TO_KHZ(chandef->center_freq1),
861 					   width);
862 
863 	if (r1 < 0)
864 		return false;
865 
866 	switch (chandef->width) {
867 	case NL80211_CHAN_WIDTH_80P80:
868 		WARN_ON(!chandef->center_freq2);
869 		r2 = cfg80211_get_chans_dfs_usable(wiphy,
870 					MHZ_TO_KHZ(chandef->center_freq2),
871 					width);
872 		if (r2 < 0)
873 			return false;
874 		break;
875 	default:
876 		WARN_ON(chandef->center_freq2);
877 		break;
878 	}
879 
880 	return (r1 + r2 > 0);
881 }
882 EXPORT_SYMBOL(cfg80211_chandef_dfs_usable);
883 
884 /*
885  * Checks if center frequency of chan falls with in the bandwidth
886  * range of chandef.
887  */
888 bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef,
889 			  struct ieee80211_channel *chan,
890 			  bool primary_only)
891 {
892 	int width;
893 	u32 freq;
894 
895 	if (!chandef->chan)
896 		return false;
897 
898 	if (chandef->chan->center_freq == chan->center_freq)
899 		return true;
900 
901 	if (primary_only)
902 		return false;
903 
904 	width = cfg80211_chandef_get_width(chandef);
905 	if (width <= 20)
906 		return false;
907 
908 	for (freq = chandef->center_freq1 - width / 2 + 10;
909 	     freq <= chandef->center_freq1 + width / 2 - 10; freq += 20) {
910 		if (chan->center_freq == freq)
911 			return true;
912 	}
913 
914 	if (!chandef->center_freq2)
915 		return false;
916 
917 	for (freq = chandef->center_freq2 - width / 2 + 10;
918 	     freq <= chandef->center_freq2 + width / 2 - 10; freq += 20) {
919 		if (chan->center_freq == freq)
920 			return true;
921 	}
922 
923 	return false;
924 }
925 
926 bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev)
927 {
928 	unsigned int link;
929 
930 	lockdep_assert_wiphy(wdev->wiphy);
931 
932 	switch (wdev->iftype) {
933 	case NL80211_IFTYPE_AP:
934 	case NL80211_IFTYPE_P2P_GO:
935 		for_each_valid_link(wdev, link) {
936 			if (wdev->links[link].ap.beacon_interval)
937 				return true;
938 		}
939 		break;
940 	case NL80211_IFTYPE_ADHOC:
941 		if (wdev->u.ibss.ssid_len)
942 			return true;
943 		break;
944 	case NL80211_IFTYPE_MESH_POINT:
945 		if (wdev->u.mesh.id_len)
946 			return true;
947 		break;
948 	case NL80211_IFTYPE_STATION:
949 	case NL80211_IFTYPE_OCB:
950 	case NL80211_IFTYPE_P2P_CLIENT:
951 	case NL80211_IFTYPE_MONITOR:
952 	case NL80211_IFTYPE_AP_VLAN:
953 	case NL80211_IFTYPE_P2P_DEVICE:
954 	/* Can NAN type be considered as beaconing interface? */
955 	case NL80211_IFTYPE_NAN:
956 		break;
957 	case NL80211_IFTYPE_UNSPECIFIED:
958 	case NL80211_IFTYPE_WDS:
959 	case NUM_NL80211_IFTYPES:
960 		WARN_ON(1);
961 	}
962 
963 	return false;
964 }
965 
966 bool cfg80211_wdev_on_sub_chan(struct wireless_dev *wdev,
967 			       struct ieee80211_channel *chan,
968 			       bool primary_only)
969 {
970 	unsigned int link;
971 
972 	switch (wdev->iftype) {
973 	case NL80211_IFTYPE_AP:
974 	case NL80211_IFTYPE_P2P_GO:
975 		for_each_valid_link(wdev, link) {
976 			if (cfg80211_is_sub_chan(&wdev->links[link].ap.chandef,
977 						 chan, primary_only))
978 				return true;
979 		}
980 		break;
981 	case NL80211_IFTYPE_ADHOC:
982 		return cfg80211_is_sub_chan(&wdev->u.ibss.chandef, chan,
983 					    primary_only);
984 	case NL80211_IFTYPE_MESH_POINT:
985 		return cfg80211_is_sub_chan(&wdev->u.mesh.chandef, chan,
986 					    primary_only);
987 	default:
988 		break;
989 	}
990 
991 	return false;
992 }
993 
994 static bool cfg80211_is_wiphy_oper_chan(struct wiphy *wiphy,
995 					struct ieee80211_channel *chan)
996 {
997 	struct wireless_dev *wdev;
998 
999 	lockdep_assert_wiphy(wiphy);
1000 
1001 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1002 		if (!cfg80211_beaconing_iface_active(wdev))
1003 			continue;
1004 
1005 		if (cfg80211_wdev_on_sub_chan(wdev, chan, false))
1006 			return true;
1007 	}
1008 
1009 	return false;
1010 }
1011 
1012 static bool
1013 cfg80211_offchan_chain_is_active(struct cfg80211_registered_device *rdev,
1014 				 struct ieee80211_channel *channel)
1015 {
1016 	if (!rdev->background_radar_wdev)
1017 		return false;
1018 
1019 	if (!cfg80211_chandef_valid(&rdev->background_radar_chandef))
1020 		return false;
1021 
1022 	return cfg80211_is_sub_chan(&rdev->background_radar_chandef, channel,
1023 				    false);
1024 }
1025 
1026 bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy,
1027 				  struct ieee80211_channel *chan)
1028 {
1029 	struct cfg80211_registered_device *rdev;
1030 
1031 	ASSERT_RTNL();
1032 
1033 	if (!(chan->flags & IEEE80211_CHAN_RADAR))
1034 		return false;
1035 
1036 	for_each_rdev(rdev) {
1037 		bool found;
1038 
1039 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
1040 			continue;
1041 
1042 		wiphy_lock(&rdev->wiphy);
1043 		found = cfg80211_is_wiphy_oper_chan(&rdev->wiphy, chan) ||
1044 			cfg80211_offchan_chain_is_active(rdev, chan);
1045 		wiphy_unlock(&rdev->wiphy);
1046 
1047 		if (found)
1048 			return true;
1049 	}
1050 
1051 	return false;
1052 }
1053 
1054 static bool cfg80211_get_chans_dfs_available(struct wiphy *wiphy,
1055 					     u32 center_freq,
1056 					     u32 bandwidth)
1057 {
1058 	struct ieee80211_channel *c;
1059 	u32 freq, start_freq, end_freq;
1060 	bool dfs_offload;
1061 
1062 	dfs_offload = wiphy_ext_feature_isset(wiphy,
1063 					      NL80211_EXT_FEATURE_DFS_OFFLOAD);
1064 
1065 	start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
1066 	end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
1067 
1068 	/*
1069 	 * Check entire range of channels for the bandwidth.
1070 	 * If any channel in between is disabled or has not
1071 	 * had gone through CAC return false
1072 	 */
1073 	for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
1074 		c = ieee80211_get_channel_khz(wiphy, freq);
1075 		if (!c)
1076 			return false;
1077 
1078 		if (c->flags & IEEE80211_CHAN_DISABLED)
1079 			return false;
1080 
1081 		if ((c->flags & IEEE80211_CHAN_RADAR) &&
1082 		    (c->dfs_state != NL80211_DFS_AVAILABLE) &&
1083 		    !(c->dfs_state == NL80211_DFS_USABLE && dfs_offload))
1084 			return false;
1085 	}
1086 
1087 	return true;
1088 }
1089 
1090 static bool cfg80211_chandef_dfs_available(struct wiphy *wiphy,
1091 				const struct cfg80211_chan_def *chandef)
1092 {
1093 	int width;
1094 	int r;
1095 
1096 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1097 		return false;
1098 
1099 	width = cfg80211_chandef_get_width(chandef);
1100 	if (width < 0)
1101 		return false;
1102 
1103 	r = cfg80211_get_chans_dfs_available(wiphy,
1104 					     MHZ_TO_KHZ(chandef->center_freq1),
1105 					     width);
1106 
1107 	/* If any of channels unavailable for cf1 just return */
1108 	if (!r)
1109 		return r;
1110 
1111 	switch (chandef->width) {
1112 	case NL80211_CHAN_WIDTH_80P80:
1113 		WARN_ON(!chandef->center_freq2);
1114 		r = cfg80211_get_chans_dfs_available(wiphy,
1115 					MHZ_TO_KHZ(chandef->center_freq2),
1116 					width);
1117 		break;
1118 	default:
1119 		WARN_ON(chandef->center_freq2);
1120 		break;
1121 	}
1122 
1123 	return r;
1124 }
1125 
1126 static unsigned int cfg80211_get_chans_dfs_cac_time(struct wiphy *wiphy,
1127 						    u32 center_freq,
1128 						    u32 bandwidth)
1129 {
1130 	struct ieee80211_channel *c;
1131 	u32 start_freq, end_freq, freq;
1132 	unsigned int dfs_cac_ms = 0;
1133 
1134 	start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
1135 	end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
1136 
1137 	for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
1138 		c = ieee80211_get_channel_khz(wiphy, freq);
1139 		if (!c)
1140 			return 0;
1141 
1142 		if (c->flags & IEEE80211_CHAN_DISABLED)
1143 			return 0;
1144 
1145 		if (!(c->flags & IEEE80211_CHAN_RADAR))
1146 			continue;
1147 
1148 		if (c->dfs_cac_ms > dfs_cac_ms)
1149 			dfs_cac_ms = c->dfs_cac_ms;
1150 	}
1151 
1152 	return dfs_cac_ms;
1153 }
1154 
1155 unsigned int
1156 cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy,
1157 			      const struct cfg80211_chan_def *chandef)
1158 {
1159 	int width;
1160 	unsigned int t1 = 0, t2 = 0;
1161 
1162 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1163 		return 0;
1164 
1165 	width = cfg80211_chandef_get_width(chandef);
1166 	if (width < 0)
1167 		return 0;
1168 
1169 	t1 = cfg80211_get_chans_dfs_cac_time(wiphy,
1170 					     MHZ_TO_KHZ(chandef->center_freq1),
1171 					     width);
1172 
1173 	if (!chandef->center_freq2)
1174 		return t1;
1175 
1176 	t2 = cfg80211_get_chans_dfs_cac_time(wiphy,
1177 					     MHZ_TO_KHZ(chandef->center_freq2),
1178 					     width);
1179 
1180 	return max(t1, t2);
1181 }
1182 EXPORT_SYMBOL(cfg80211_chandef_dfs_cac_time);
1183 
1184 static bool cfg80211_secondary_chans_ok(struct wiphy *wiphy,
1185 					u32 center_freq, u32 bandwidth,
1186 					u32 prohibited_flags,
1187 					u32 permitting_flags)
1188 {
1189 	struct ieee80211_channel *c;
1190 	u32 freq, start_freq, end_freq;
1191 
1192 	start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
1193 	end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
1194 
1195 	for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
1196 		c = ieee80211_get_channel_khz(wiphy, freq);
1197 		if (!c)
1198 			return false;
1199 		if (c->flags & permitting_flags)
1200 			continue;
1201 		if (c->flags & prohibited_flags)
1202 			return false;
1203 	}
1204 
1205 	return true;
1206 }
1207 
1208 /* check if the operating channels are valid and supported */
1209 static bool cfg80211_edmg_usable(struct wiphy *wiphy, u8 edmg_channels,
1210 				 enum ieee80211_edmg_bw_config edmg_bw_config,
1211 				 int primary_channel,
1212 				 struct ieee80211_edmg *edmg_cap)
1213 {
1214 	struct ieee80211_channel *chan;
1215 	int i, freq;
1216 	int channels_counter = 0;
1217 
1218 	if (!edmg_channels && !edmg_bw_config)
1219 		return true;
1220 
1221 	if ((!edmg_channels && edmg_bw_config) ||
1222 	    (edmg_channels && !edmg_bw_config))
1223 		return false;
1224 
1225 	if (!(edmg_channels & BIT(primary_channel - 1)))
1226 		return false;
1227 
1228 	/* 60GHz channels 1..6 */
1229 	for (i = 0; i < 6; i++) {
1230 		if (!(edmg_channels & BIT(i)))
1231 			continue;
1232 
1233 		if (!(edmg_cap->channels & BIT(i)))
1234 			return false;
1235 
1236 		channels_counter++;
1237 
1238 		freq = ieee80211_channel_to_frequency(i + 1,
1239 						      NL80211_BAND_60GHZ);
1240 		chan = ieee80211_get_channel(wiphy, freq);
1241 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
1242 			return false;
1243 	}
1244 
1245 	/* IEEE802.11 allows max 4 channels */
1246 	if (channels_counter > 4)
1247 		return false;
1248 
1249 	/* check bw_config is a subset of what driver supports
1250 	 * (see IEEE P802.11ay/D4.0 section 9.4.2.251, Table 13)
1251 	 */
1252 	if ((edmg_bw_config % 4) > (edmg_cap->bw_config % 4))
1253 		return false;
1254 
1255 	if (edmg_bw_config > edmg_cap->bw_config)
1256 		return false;
1257 
1258 	return true;
1259 }
1260 
1261 bool _cfg80211_chandef_usable(struct wiphy *wiphy,
1262 			      const struct cfg80211_chan_def *chandef,
1263 			      u32 prohibited_flags,
1264 			      u32 permitting_flags)
1265 {
1266 	struct ieee80211_sta_ht_cap *ht_cap;
1267 	struct ieee80211_sta_vht_cap *vht_cap;
1268 	struct ieee80211_edmg *edmg_cap;
1269 	u32 width, control_freq, cap;
1270 	bool ext_nss_cap, support_80_80 = false, support_320 = false;
1271 	const struct ieee80211_sband_iftype_data *iftd;
1272 	struct ieee80211_supported_band *sband;
1273 	int i;
1274 
1275 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1276 		return false;
1277 
1278 	ht_cap = &wiphy->bands[chandef->chan->band]->ht_cap;
1279 	vht_cap = &wiphy->bands[chandef->chan->band]->vht_cap;
1280 	edmg_cap = &wiphy->bands[chandef->chan->band]->edmg_cap;
1281 	ext_nss_cap = __le16_to_cpu(vht_cap->vht_mcs.tx_highest) &
1282 			IEEE80211_VHT_EXT_NSS_BW_CAPABLE;
1283 
1284 	if (edmg_cap->channels &&
1285 	    !cfg80211_edmg_usable(wiphy,
1286 				  chandef->edmg.channels,
1287 				  chandef->edmg.bw_config,
1288 				  chandef->chan->hw_value,
1289 				  edmg_cap))
1290 		return false;
1291 
1292 	control_freq = chandef->chan->center_freq;
1293 
1294 	switch (chandef->width) {
1295 	case NL80211_CHAN_WIDTH_1:
1296 		width = 1;
1297 		break;
1298 	case NL80211_CHAN_WIDTH_2:
1299 		width = 2;
1300 		break;
1301 	case NL80211_CHAN_WIDTH_4:
1302 		width = 4;
1303 		break;
1304 	case NL80211_CHAN_WIDTH_8:
1305 		width = 8;
1306 		break;
1307 	case NL80211_CHAN_WIDTH_16:
1308 		width = 16;
1309 		break;
1310 	case NL80211_CHAN_WIDTH_5:
1311 		width = 5;
1312 		break;
1313 	case NL80211_CHAN_WIDTH_10:
1314 		prohibited_flags |= IEEE80211_CHAN_NO_10MHZ;
1315 		width = 10;
1316 		break;
1317 	case NL80211_CHAN_WIDTH_20:
1318 		if (!ht_cap->ht_supported &&
1319 		    chandef->chan->band != NL80211_BAND_6GHZ)
1320 			return false;
1321 		fallthrough;
1322 	case NL80211_CHAN_WIDTH_20_NOHT:
1323 		prohibited_flags |= IEEE80211_CHAN_NO_20MHZ;
1324 		width = 20;
1325 		break;
1326 	case NL80211_CHAN_WIDTH_40:
1327 		width = 40;
1328 		if (chandef->chan->band == NL80211_BAND_6GHZ)
1329 			break;
1330 		if (!ht_cap->ht_supported)
1331 			return false;
1332 		if (!(ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) ||
1333 		    ht_cap->cap & IEEE80211_HT_CAP_40MHZ_INTOLERANT)
1334 			return false;
1335 		if (chandef->center_freq1 < control_freq &&
1336 		    chandef->chan->flags & IEEE80211_CHAN_NO_HT40MINUS)
1337 			return false;
1338 		if (chandef->center_freq1 > control_freq &&
1339 		    chandef->chan->flags & IEEE80211_CHAN_NO_HT40PLUS)
1340 			return false;
1341 		break;
1342 	case NL80211_CHAN_WIDTH_80P80:
1343 		cap = vht_cap->cap;
1344 		support_80_80 =
1345 			(cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) ||
1346 			(cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
1347 			 cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) ||
1348 			(ext_nss_cap &&
1349 			 u32_get_bits(cap, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) > 1);
1350 		if (chandef->chan->band != NL80211_BAND_6GHZ && !support_80_80)
1351 			return false;
1352 		fallthrough;
1353 	case NL80211_CHAN_WIDTH_80:
1354 		prohibited_flags |= IEEE80211_CHAN_NO_80MHZ;
1355 		width = 80;
1356 		if (chandef->chan->band == NL80211_BAND_6GHZ)
1357 			break;
1358 		if (!vht_cap->vht_supported)
1359 			return false;
1360 		break;
1361 	case NL80211_CHAN_WIDTH_160:
1362 		prohibited_flags |= IEEE80211_CHAN_NO_160MHZ;
1363 		width = 160;
1364 		if (chandef->chan->band == NL80211_BAND_6GHZ)
1365 			break;
1366 		if (!vht_cap->vht_supported)
1367 			return false;
1368 		cap = vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK;
1369 		if (cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
1370 		    cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ &&
1371 		    !(ext_nss_cap &&
1372 		      (vht_cap->cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)))
1373 			return false;
1374 		break;
1375 	case NL80211_CHAN_WIDTH_320:
1376 		prohibited_flags |= IEEE80211_CHAN_NO_320MHZ;
1377 		width = 320;
1378 
1379 		if (chandef->chan->band != NL80211_BAND_6GHZ)
1380 			return false;
1381 
1382 		sband = wiphy->bands[NL80211_BAND_6GHZ];
1383 		if (!sband)
1384 			return false;
1385 
1386 		for_each_sband_iftype_data(sband, i, iftd) {
1387 			if (!iftd->eht_cap.has_eht)
1388 				continue;
1389 
1390 			if (iftd->eht_cap.eht_cap_elem.phy_cap_info[0] &
1391 			    IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) {
1392 				support_320 = true;
1393 				break;
1394 			}
1395 		}
1396 
1397 		if (!support_320)
1398 			return false;
1399 		break;
1400 	default:
1401 		WARN_ON_ONCE(1);
1402 		return false;
1403 	}
1404 
1405 	/*
1406 	 * TODO: What if there are only certain 80/160/80+80 MHz channels
1407 	 *	 allowed by the driver, or only certain combinations?
1408 	 *	 For 40 MHz the driver can set the NO_HT40 flags, but for
1409 	 *	 80/160 MHz and in particular 80+80 MHz this isn't really
1410 	 *	 feasible and we only have NO_80MHZ/NO_160MHZ so far but
1411 	 *	 no way to cover 80+80 MHz or more complex restrictions.
1412 	 *	 Note that such restrictions also need to be advertised to
1413 	 *	 userspace, for example for P2P channel selection.
1414 	 */
1415 
1416 	if (width > 20)
1417 		prohibited_flags |= IEEE80211_CHAN_NO_OFDM;
1418 
1419 	/* 5 and 10 MHz are only defined for the OFDM PHY */
1420 	if (width < 20)
1421 		prohibited_flags |= IEEE80211_CHAN_NO_OFDM;
1422 
1423 
1424 	if (!cfg80211_secondary_chans_ok(wiphy,
1425 					 ieee80211_chandef_to_khz(chandef),
1426 					 width, prohibited_flags,
1427 					 permitting_flags))
1428 		return false;
1429 
1430 	if (!chandef->center_freq2)
1431 		return true;
1432 	return cfg80211_secondary_chans_ok(wiphy,
1433 					   MHZ_TO_KHZ(chandef->center_freq2),
1434 					   width, prohibited_flags,
1435 					   permitting_flags);
1436 }
1437 
1438 bool cfg80211_chandef_usable(struct wiphy *wiphy,
1439 			     const struct cfg80211_chan_def *chandef,
1440 			     u32 prohibited_flags)
1441 {
1442 	return _cfg80211_chandef_usable(wiphy, chandef, prohibited_flags, 0);
1443 }
1444 EXPORT_SYMBOL(cfg80211_chandef_usable);
1445 
1446 static bool cfg80211_ir_permissive_check_wdev(enum nl80211_iftype iftype,
1447 					      struct wireless_dev *wdev,
1448 					      struct ieee80211_channel *chan)
1449 {
1450 	struct ieee80211_channel *other_chan = NULL;
1451 	unsigned int link_id;
1452 	int r1, r2;
1453 
1454 	for_each_valid_link(wdev, link_id) {
1455 		if (wdev->iftype == NL80211_IFTYPE_STATION &&
1456 		    wdev->links[link_id].client.current_bss)
1457 			other_chan = wdev->links[link_id].client.current_bss->pub.channel;
1458 
1459 		/*
1460 		 * If a GO already operates on the same GO_CONCURRENT channel,
1461 		 * this one (maybe the same one) can beacon as well. We allow
1462 		 * the operation even if the station we relied on with
1463 		 * GO_CONCURRENT is disconnected now. But then we must make sure
1464 		 * we're not outdoor on an indoor-only channel.
1465 		 */
1466 		if (iftype == NL80211_IFTYPE_P2P_GO &&
1467 		    wdev->iftype == NL80211_IFTYPE_P2P_GO &&
1468 		    wdev->links[link_id].ap.beacon_interval &&
1469 		    !(chan->flags & IEEE80211_CHAN_INDOOR_ONLY))
1470 			other_chan = wdev->links[link_id].ap.chandef.chan;
1471 
1472 		if (!other_chan)
1473 			continue;
1474 
1475 		if (chan == other_chan)
1476 			return true;
1477 
1478 		if (chan->band != NL80211_BAND_5GHZ &&
1479 		    chan->band != NL80211_BAND_6GHZ)
1480 			continue;
1481 
1482 		r1 = cfg80211_get_unii(chan->center_freq);
1483 		r2 = cfg80211_get_unii(other_chan->center_freq);
1484 
1485 		if (r1 != -EINVAL && r1 == r2) {
1486 			/*
1487 			 * At some locations channels 149-165 are considered a
1488 			 * bundle, but at other locations, e.g., Indonesia,
1489 			 * channels 149-161 are considered a bundle while
1490 			 * channel 165 is left out and considered to be in a
1491 			 * different bundle. Thus, in case that there is a
1492 			 * station interface connected to an AP on channel 165,
1493 			 * it is assumed that channels 149-161 are allowed for
1494 			 * GO operations. However, having a station interface
1495 			 * connected to an AP on channels 149-161, does not
1496 			 * allow GO operation on channel 165.
1497 			 */
1498 			if (chan->center_freq == 5825 &&
1499 			    other_chan->center_freq != 5825)
1500 				continue;
1501 			return true;
1502 		}
1503 	}
1504 
1505 	return false;
1506 }
1507 
1508 /*
1509  * Check if the channel can be used under permissive conditions mandated by
1510  * some regulatory bodies, i.e., the channel is marked with
1511  * IEEE80211_CHAN_IR_CONCURRENT and there is an additional station interface
1512  * associated to an AP on the same channel or on the same UNII band
1513  * (assuming that the AP is an authorized master).
1514  * In addition allow operation on a channel on which indoor operation is
1515  * allowed, iff we are currently operating in an indoor environment.
1516  */
1517 static bool cfg80211_ir_permissive_chan(struct wiphy *wiphy,
1518 					enum nl80211_iftype iftype,
1519 					struct ieee80211_channel *chan)
1520 {
1521 	struct wireless_dev *wdev;
1522 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1523 
1524 	lockdep_assert_held(&rdev->wiphy.mtx);
1525 
1526 	if (!IS_ENABLED(CONFIG_CFG80211_REG_RELAX_NO_IR) ||
1527 	    !(wiphy->regulatory_flags & REGULATORY_ENABLE_RELAX_NO_IR))
1528 		return false;
1529 
1530 	/* only valid for GO and TDLS off-channel (station/p2p-CL) */
1531 	if (iftype != NL80211_IFTYPE_P2P_GO &&
1532 	    iftype != NL80211_IFTYPE_STATION &&
1533 	    iftype != NL80211_IFTYPE_P2P_CLIENT)
1534 		return false;
1535 
1536 	if (regulatory_indoor_allowed() &&
1537 	    (chan->flags & IEEE80211_CHAN_INDOOR_ONLY))
1538 		return true;
1539 
1540 	if (!(chan->flags & IEEE80211_CHAN_IR_CONCURRENT))
1541 		return false;
1542 
1543 	/*
1544 	 * Generally, it is possible to rely on another device/driver to allow
1545 	 * the IR concurrent relaxation, however, since the device can further
1546 	 * enforce the relaxation (by doing a similar verifications as this),
1547 	 * and thus fail the GO instantiation, consider only the interfaces of
1548 	 * the current registered device.
1549 	 */
1550 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
1551 		bool ret;
1552 
1553 		ret = cfg80211_ir_permissive_check_wdev(iftype, wdev, chan);
1554 		if (ret)
1555 			return ret;
1556 	}
1557 
1558 	return false;
1559 }
1560 
1561 static bool _cfg80211_reg_can_beacon(struct wiphy *wiphy,
1562 				     struct cfg80211_chan_def *chandef,
1563 				     enum nl80211_iftype iftype,
1564 				     u32 prohibited_flags,
1565 				     u32 permitting_flags)
1566 {
1567 	bool res, check_radar;
1568 	int dfs_required;
1569 
1570 	trace_cfg80211_reg_can_beacon(wiphy, chandef, iftype,
1571 				      prohibited_flags,
1572 				      permitting_flags);
1573 
1574 	if (!_cfg80211_chandef_usable(wiphy, chandef,
1575 				      IEEE80211_CHAN_DISABLED, 0))
1576 		return false;
1577 
1578 	dfs_required = cfg80211_chandef_dfs_required(wiphy, chandef, iftype);
1579 	check_radar = dfs_required != 0;
1580 
1581 	if (dfs_required > 0 &&
1582 	    cfg80211_chandef_dfs_available(wiphy, chandef)) {
1583 		/* We can skip IEEE80211_CHAN_NO_IR if chandef dfs available */
1584 		prohibited_flags &= ~IEEE80211_CHAN_NO_IR;
1585 		check_radar = false;
1586 	}
1587 
1588 	if (check_radar &&
1589 	    !_cfg80211_chandef_usable(wiphy, chandef,
1590 				      IEEE80211_CHAN_RADAR, 0))
1591 		return false;
1592 
1593 	res = _cfg80211_chandef_usable(wiphy, chandef,
1594 				       prohibited_flags,
1595 				       permitting_flags);
1596 
1597 	trace_cfg80211_return_bool(res);
1598 	return res;
1599 }
1600 
1601 bool cfg80211_reg_check_beaconing(struct wiphy *wiphy,
1602 				  struct cfg80211_chan_def *chandef,
1603 				  struct cfg80211_beaconing_check_config *cfg)
1604 {
1605 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1606 	u32 permitting_flags = 0;
1607 	bool check_no_ir = true;
1608 
1609 	/*
1610 	 * Under certain conditions suggested by some regulatory bodies a
1611 	 * GO/STA can IR on channels marked with IEEE80211_NO_IR. Set this flag
1612 	 * only if such relaxations are not enabled and the conditions are not
1613 	 * met.
1614 	 */
1615 	if (cfg->relax) {
1616 		lockdep_assert_held(&rdev->wiphy.mtx);
1617 		check_no_ir = !cfg80211_ir_permissive_chan(wiphy, cfg->iftype,
1618 							   chandef->chan);
1619 	}
1620 
1621 	if (cfg->reg_power == IEEE80211_REG_VLP_AP)
1622 		permitting_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
1623 
1624 	return _cfg80211_reg_can_beacon(wiphy, chandef, cfg->iftype,
1625 					check_no_ir ? IEEE80211_CHAN_NO_IR : 0,
1626 					permitting_flags);
1627 }
1628 EXPORT_SYMBOL(cfg80211_reg_check_beaconing);
1629 
1630 int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev,
1631 				 struct cfg80211_chan_def *chandef)
1632 {
1633 	if (!rdev->ops->set_monitor_channel)
1634 		return -EOPNOTSUPP;
1635 	if (!cfg80211_has_monitors_only(rdev))
1636 		return -EBUSY;
1637 
1638 	return rdev_set_monitor_channel(rdev, chandef);
1639 }
1640 
1641 bool cfg80211_any_usable_channels(struct wiphy *wiphy,
1642 				  unsigned long sband_mask,
1643 				  u32 prohibited_flags)
1644 {
1645 	int idx;
1646 
1647 	prohibited_flags |= IEEE80211_CHAN_DISABLED;
1648 
1649 	for_each_set_bit(idx, &sband_mask, NUM_NL80211_BANDS) {
1650 		struct ieee80211_supported_band *sband = wiphy->bands[idx];
1651 		int chanidx;
1652 
1653 		if (!sband)
1654 			continue;
1655 
1656 		for (chanidx = 0; chanidx < sband->n_channels; chanidx++) {
1657 			struct ieee80211_channel *chan;
1658 
1659 			chan = &sband->channels[chanidx];
1660 
1661 			if (chan->flags & prohibited_flags)
1662 				continue;
1663 
1664 			return true;
1665 		}
1666 	}
1667 
1668 	return false;
1669 }
1670 EXPORT_SYMBOL(cfg80211_any_usable_channels);
1671 
1672 struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev,
1673 				       unsigned int link_id)
1674 {
1675 	lockdep_assert_wiphy(wdev->wiphy);
1676 
1677 	WARN_ON(wdev->valid_links && !(wdev->valid_links & BIT(link_id)));
1678 	WARN_ON(!wdev->valid_links && link_id > 0);
1679 
1680 	switch (wdev->iftype) {
1681 	case NL80211_IFTYPE_MESH_POINT:
1682 		return &wdev->u.mesh.chandef;
1683 	case NL80211_IFTYPE_ADHOC:
1684 		return &wdev->u.ibss.chandef;
1685 	case NL80211_IFTYPE_OCB:
1686 		return &wdev->u.ocb.chandef;
1687 	case NL80211_IFTYPE_AP:
1688 	case NL80211_IFTYPE_P2P_GO:
1689 		return &wdev->links[link_id].ap.chandef;
1690 	default:
1691 		return NULL;
1692 	}
1693 }
1694 EXPORT_SYMBOL(wdev_chandef);
1695