1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains helper code to handle channel 4 * settings and keeping track of what is possible at 5 * any point in time. 6 * 7 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> 8 * Copyright 2013-2014 Intel Mobile Communications GmbH 9 * Copyright 2018-2023 Intel Corporation 10 */ 11 12 #include <linux/export.h> 13 #include <linux/bitfield.h> 14 #include <net/cfg80211.h> 15 #include "core.h" 16 #include "rdev-ops.h" 17 18 static bool cfg80211_valid_60g_freq(u32 freq) 19 { 20 return freq >= 58320 && freq <= 70200; 21 } 22 23 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef, 24 struct ieee80211_channel *chan, 25 enum nl80211_channel_type chan_type) 26 { 27 if (WARN_ON(!chan)) 28 return; 29 30 chandef->chan = chan; 31 chandef->freq1_offset = chan->freq_offset; 32 chandef->center_freq2 = 0; 33 chandef->edmg.bw_config = 0; 34 chandef->edmg.channels = 0; 35 36 switch (chan_type) { 37 case NL80211_CHAN_NO_HT: 38 chandef->width = NL80211_CHAN_WIDTH_20_NOHT; 39 chandef->center_freq1 = chan->center_freq; 40 break; 41 case NL80211_CHAN_HT20: 42 chandef->width = NL80211_CHAN_WIDTH_20; 43 chandef->center_freq1 = chan->center_freq; 44 break; 45 case NL80211_CHAN_HT40PLUS: 46 chandef->width = NL80211_CHAN_WIDTH_40; 47 chandef->center_freq1 = chan->center_freq + 10; 48 break; 49 case NL80211_CHAN_HT40MINUS: 50 chandef->width = NL80211_CHAN_WIDTH_40; 51 chandef->center_freq1 = chan->center_freq - 10; 52 break; 53 default: 54 WARN_ON(1); 55 } 56 } 57 EXPORT_SYMBOL(cfg80211_chandef_create); 58 59 static bool cfg80211_edmg_chandef_valid(const struct cfg80211_chan_def *chandef) 60 { 61 int max_contiguous = 0; 62 int num_of_enabled = 0; 63 int contiguous = 0; 64 int i; 65 66 if (!chandef->edmg.channels || !chandef->edmg.bw_config) 67 return false; 68 69 if (!cfg80211_valid_60g_freq(chandef->chan->center_freq)) 70 return false; 71 72 for (i = 0; i < 6; i++) { 73 if (chandef->edmg.channels & BIT(i)) { 74 contiguous++; 75 num_of_enabled++; 76 } else { 77 contiguous = 0; 78 } 79 80 max_contiguous = max(contiguous, max_contiguous); 81 } 82 /* basic verification of edmg configuration according to 83 * IEEE P802.11ay/D4.0 section 9.4.2.251 84 */ 85 /* check bw_config against contiguous edmg channels */ 86 switch (chandef->edmg.bw_config) { 87 case IEEE80211_EDMG_BW_CONFIG_4: 88 case IEEE80211_EDMG_BW_CONFIG_8: 89 case IEEE80211_EDMG_BW_CONFIG_12: 90 if (max_contiguous < 1) 91 return false; 92 break; 93 case IEEE80211_EDMG_BW_CONFIG_5: 94 case IEEE80211_EDMG_BW_CONFIG_9: 95 case IEEE80211_EDMG_BW_CONFIG_13: 96 if (max_contiguous < 2) 97 return false; 98 break; 99 case IEEE80211_EDMG_BW_CONFIG_6: 100 case IEEE80211_EDMG_BW_CONFIG_10: 101 case IEEE80211_EDMG_BW_CONFIG_14: 102 if (max_contiguous < 3) 103 return false; 104 break; 105 case IEEE80211_EDMG_BW_CONFIG_7: 106 case IEEE80211_EDMG_BW_CONFIG_11: 107 case IEEE80211_EDMG_BW_CONFIG_15: 108 if (max_contiguous < 4) 109 return false; 110 break; 111 112 default: 113 return false; 114 } 115 116 /* check bw_config against aggregated (non contiguous) edmg channels */ 117 switch (chandef->edmg.bw_config) { 118 case IEEE80211_EDMG_BW_CONFIG_4: 119 case IEEE80211_EDMG_BW_CONFIG_5: 120 case IEEE80211_EDMG_BW_CONFIG_6: 121 case IEEE80211_EDMG_BW_CONFIG_7: 122 break; 123 case IEEE80211_EDMG_BW_CONFIG_8: 124 case IEEE80211_EDMG_BW_CONFIG_9: 125 case IEEE80211_EDMG_BW_CONFIG_10: 126 case IEEE80211_EDMG_BW_CONFIG_11: 127 if (num_of_enabled < 2) 128 return false; 129 break; 130 case IEEE80211_EDMG_BW_CONFIG_12: 131 case IEEE80211_EDMG_BW_CONFIG_13: 132 case IEEE80211_EDMG_BW_CONFIG_14: 133 case IEEE80211_EDMG_BW_CONFIG_15: 134 if (num_of_enabled < 4 || max_contiguous < 2) 135 return false; 136 break; 137 default: 138 return false; 139 } 140 141 return true; 142 } 143 144 int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width) 145 { 146 int mhz; 147 148 switch (chan_width) { 149 case NL80211_CHAN_WIDTH_1: 150 mhz = 1; 151 break; 152 case NL80211_CHAN_WIDTH_2: 153 mhz = 2; 154 break; 155 case NL80211_CHAN_WIDTH_4: 156 mhz = 4; 157 break; 158 case NL80211_CHAN_WIDTH_8: 159 mhz = 8; 160 break; 161 case NL80211_CHAN_WIDTH_16: 162 mhz = 16; 163 break; 164 case NL80211_CHAN_WIDTH_5: 165 mhz = 5; 166 break; 167 case NL80211_CHAN_WIDTH_10: 168 mhz = 10; 169 break; 170 case NL80211_CHAN_WIDTH_20: 171 case NL80211_CHAN_WIDTH_20_NOHT: 172 mhz = 20; 173 break; 174 case NL80211_CHAN_WIDTH_40: 175 mhz = 40; 176 break; 177 case NL80211_CHAN_WIDTH_80P80: 178 case NL80211_CHAN_WIDTH_80: 179 mhz = 80; 180 break; 181 case NL80211_CHAN_WIDTH_160: 182 mhz = 160; 183 break; 184 case NL80211_CHAN_WIDTH_320: 185 mhz = 320; 186 break; 187 default: 188 WARN_ON_ONCE(1); 189 return -1; 190 } 191 return mhz; 192 } 193 EXPORT_SYMBOL(nl80211_chan_width_to_mhz); 194 195 static int cfg80211_chandef_get_width(const struct cfg80211_chan_def *c) 196 { 197 return nl80211_chan_width_to_mhz(c->width); 198 } 199 200 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef) 201 { 202 u32 control_freq, oper_freq; 203 int oper_width, control_width; 204 205 if (!chandef->chan) 206 return false; 207 208 if (chandef->freq1_offset >= 1000) 209 return false; 210 211 control_freq = chandef->chan->center_freq; 212 213 switch (chandef->width) { 214 case NL80211_CHAN_WIDTH_5: 215 case NL80211_CHAN_WIDTH_10: 216 case NL80211_CHAN_WIDTH_20: 217 case NL80211_CHAN_WIDTH_20_NOHT: 218 if (ieee80211_chandef_to_khz(chandef) != 219 ieee80211_channel_to_khz(chandef->chan)) 220 return false; 221 if (chandef->center_freq2) 222 return false; 223 break; 224 case NL80211_CHAN_WIDTH_1: 225 case NL80211_CHAN_WIDTH_2: 226 case NL80211_CHAN_WIDTH_4: 227 case NL80211_CHAN_WIDTH_8: 228 case NL80211_CHAN_WIDTH_16: 229 if (chandef->chan->band != NL80211_BAND_S1GHZ) 230 return false; 231 232 control_freq = ieee80211_channel_to_khz(chandef->chan); 233 oper_freq = ieee80211_chandef_to_khz(chandef); 234 control_width = nl80211_chan_width_to_mhz( 235 ieee80211_s1g_channel_width( 236 chandef->chan)); 237 oper_width = cfg80211_chandef_get_width(chandef); 238 239 if (oper_width < 0 || control_width < 0) 240 return false; 241 if (chandef->center_freq2) 242 return false; 243 244 if (control_freq + MHZ_TO_KHZ(control_width) / 2 > 245 oper_freq + MHZ_TO_KHZ(oper_width) / 2) 246 return false; 247 248 if (control_freq - MHZ_TO_KHZ(control_width) / 2 < 249 oper_freq - MHZ_TO_KHZ(oper_width) / 2) 250 return false; 251 break; 252 case NL80211_CHAN_WIDTH_80P80: 253 if (!chandef->center_freq2) 254 return false; 255 /* adjacent is not allowed -- that's a 160 MHz channel */ 256 if (chandef->center_freq1 - chandef->center_freq2 == 80 || 257 chandef->center_freq2 - chandef->center_freq1 == 80) 258 return false; 259 break; 260 default: 261 if (chandef->center_freq2) 262 return false; 263 break; 264 } 265 266 switch (chandef->width) { 267 case NL80211_CHAN_WIDTH_5: 268 case NL80211_CHAN_WIDTH_10: 269 case NL80211_CHAN_WIDTH_20: 270 case NL80211_CHAN_WIDTH_20_NOHT: 271 case NL80211_CHAN_WIDTH_1: 272 case NL80211_CHAN_WIDTH_2: 273 case NL80211_CHAN_WIDTH_4: 274 case NL80211_CHAN_WIDTH_8: 275 case NL80211_CHAN_WIDTH_16: 276 /* all checked above */ 277 break; 278 case NL80211_CHAN_WIDTH_320: 279 if (chandef->center_freq1 == control_freq + 150 || 280 chandef->center_freq1 == control_freq + 130 || 281 chandef->center_freq1 == control_freq + 110 || 282 chandef->center_freq1 == control_freq + 90 || 283 chandef->center_freq1 == control_freq - 90 || 284 chandef->center_freq1 == control_freq - 110 || 285 chandef->center_freq1 == control_freq - 130 || 286 chandef->center_freq1 == control_freq - 150) 287 break; 288 fallthrough; 289 case NL80211_CHAN_WIDTH_160: 290 if (chandef->center_freq1 == control_freq + 70 || 291 chandef->center_freq1 == control_freq + 50 || 292 chandef->center_freq1 == control_freq - 50 || 293 chandef->center_freq1 == control_freq - 70) 294 break; 295 fallthrough; 296 case NL80211_CHAN_WIDTH_80P80: 297 case NL80211_CHAN_WIDTH_80: 298 if (chandef->center_freq1 == control_freq + 30 || 299 chandef->center_freq1 == control_freq - 30) 300 break; 301 fallthrough; 302 case NL80211_CHAN_WIDTH_40: 303 if (chandef->center_freq1 == control_freq + 10 || 304 chandef->center_freq1 == control_freq - 10) 305 break; 306 fallthrough; 307 default: 308 return false; 309 } 310 311 /* channel 14 is only for IEEE 802.11b */ 312 if (chandef->center_freq1 == 2484 && 313 chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 314 return false; 315 316 if (cfg80211_chandef_is_edmg(chandef) && 317 !cfg80211_edmg_chandef_valid(chandef)) 318 return false; 319 320 return true; 321 } 322 EXPORT_SYMBOL(cfg80211_chandef_valid); 323 324 static void chandef_primary_freqs(const struct cfg80211_chan_def *c, 325 u32 *pri40, u32 *pri80, u32 *pri160) 326 { 327 int tmp; 328 329 switch (c->width) { 330 case NL80211_CHAN_WIDTH_40: 331 *pri40 = c->center_freq1; 332 *pri80 = 0; 333 *pri160 = 0; 334 break; 335 case NL80211_CHAN_WIDTH_80: 336 case NL80211_CHAN_WIDTH_80P80: 337 *pri160 = 0; 338 *pri80 = c->center_freq1; 339 /* n_P20 */ 340 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 341 /* n_P40 */ 342 tmp /= 2; 343 /* freq_P40 */ 344 *pri40 = c->center_freq1 - 20 + 40 * tmp; 345 break; 346 case NL80211_CHAN_WIDTH_160: 347 *pri160 = c->center_freq1; 348 /* n_P20 */ 349 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 350 /* n_P40 */ 351 tmp /= 2; 352 /* freq_P40 */ 353 *pri40 = c->center_freq1 - 60 + 40 * tmp; 354 /* n_P80 */ 355 tmp /= 2; 356 *pri80 = c->center_freq1 - 40 + 80 * tmp; 357 break; 358 case NL80211_CHAN_WIDTH_320: 359 /* n_P20 */ 360 tmp = (150 + c->chan->center_freq - c->center_freq1) / 20; 361 /* n_P40 */ 362 tmp /= 2; 363 /* freq_P40 */ 364 *pri40 = c->center_freq1 - 140 + 40 * tmp; 365 /* n_P80 */ 366 tmp /= 2; 367 *pri80 = c->center_freq1 - 120 + 80 * tmp; 368 /* n_P160 */ 369 tmp /= 2; 370 *pri160 = c->center_freq1 - 80 + 160 * tmp; 371 break; 372 default: 373 WARN_ON_ONCE(1); 374 } 375 } 376 377 const struct cfg80211_chan_def * 378 cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1, 379 const struct cfg80211_chan_def *c2) 380 { 381 u32 c1_pri40, c1_pri80, c2_pri40, c2_pri80, c1_pri160, c2_pri160; 382 383 /* If they are identical, return */ 384 if (cfg80211_chandef_identical(c1, c2)) 385 return c1; 386 387 /* otherwise, must have same control channel */ 388 if (c1->chan != c2->chan) 389 return NULL; 390 391 /* 392 * If they have the same width, but aren't identical, 393 * then they can't be compatible. 394 */ 395 if (c1->width == c2->width) 396 return NULL; 397 398 /* 399 * can't be compatible if one of them is 5 or 10 MHz, 400 * but they don't have the same width. 401 */ 402 if (c1->width == NL80211_CHAN_WIDTH_5 || 403 c1->width == NL80211_CHAN_WIDTH_10 || 404 c2->width == NL80211_CHAN_WIDTH_5 || 405 c2->width == NL80211_CHAN_WIDTH_10) 406 return NULL; 407 408 if (c1->width == NL80211_CHAN_WIDTH_20_NOHT || 409 c1->width == NL80211_CHAN_WIDTH_20) 410 return c2; 411 412 if (c2->width == NL80211_CHAN_WIDTH_20_NOHT || 413 c2->width == NL80211_CHAN_WIDTH_20) 414 return c1; 415 416 chandef_primary_freqs(c1, &c1_pri40, &c1_pri80, &c1_pri160); 417 chandef_primary_freqs(c2, &c2_pri40, &c2_pri80, &c2_pri160); 418 419 if (c1_pri40 != c2_pri40) 420 return NULL; 421 422 if (c1->width == NL80211_CHAN_WIDTH_40) 423 return c2; 424 425 if (c2->width == NL80211_CHAN_WIDTH_40) 426 return c1; 427 428 if (c1_pri80 != c2_pri80) 429 return NULL; 430 431 if (c1->width == NL80211_CHAN_WIDTH_80 && 432 c2->width > NL80211_CHAN_WIDTH_80) 433 return c2; 434 435 if (c2->width == NL80211_CHAN_WIDTH_80 && 436 c1->width > NL80211_CHAN_WIDTH_80) 437 return c1; 438 439 WARN_ON(!c1_pri160 && !c2_pri160); 440 if (c1_pri160 && c2_pri160 && c1_pri160 != c2_pri160) 441 return NULL; 442 443 if (c1->width > c2->width) 444 return c1; 445 return c2; 446 } 447 EXPORT_SYMBOL(cfg80211_chandef_compatible); 448 449 static void cfg80211_set_chans_dfs_state(struct wiphy *wiphy, u32 center_freq, 450 u32 bandwidth, 451 enum nl80211_dfs_state dfs_state) 452 { 453 struct ieee80211_channel *c; 454 u32 freq; 455 456 for (freq = center_freq - bandwidth/2 + 10; 457 freq <= center_freq + bandwidth/2 - 10; 458 freq += 20) { 459 c = ieee80211_get_channel(wiphy, freq); 460 if (!c || !(c->flags & IEEE80211_CHAN_RADAR)) 461 continue; 462 463 c->dfs_state = dfs_state; 464 c->dfs_state_entered = jiffies; 465 } 466 } 467 468 void cfg80211_set_dfs_state(struct wiphy *wiphy, 469 const struct cfg80211_chan_def *chandef, 470 enum nl80211_dfs_state dfs_state) 471 { 472 int width; 473 474 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 475 return; 476 477 width = cfg80211_chandef_get_width(chandef); 478 if (width < 0) 479 return; 480 481 cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq1, 482 width, dfs_state); 483 484 if (!chandef->center_freq2) 485 return; 486 cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq2, 487 width, dfs_state); 488 } 489 490 static u32 cfg80211_get_start_freq(u32 center_freq, 491 u32 bandwidth) 492 { 493 u32 start_freq; 494 495 bandwidth = MHZ_TO_KHZ(bandwidth); 496 if (bandwidth <= MHZ_TO_KHZ(20)) 497 start_freq = center_freq; 498 else 499 start_freq = center_freq - bandwidth / 2 + MHZ_TO_KHZ(10); 500 501 return start_freq; 502 } 503 504 static u32 cfg80211_get_end_freq(u32 center_freq, 505 u32 bandwidth) 506 { 507 u32 end_freq; 508 509 bandwidth = MHZ_TO_KHZ(bandwidth); 510 if (bandwidth <= MHZ_TO_KHZ(20)) 511 end_freq = center_freq; 512 else 513 end_freq = center_freq + bandwidth / 2 - MHZ_TO_KHZ(10); 514 515 return end_freq; 516 } 517 518 static int cfg80211_get_chans_dfs_required(struct wiphy *wiphy, 519 u32 center_freq, 520 u32 bandwidth) 521 { 522 struct ieee80211_channel *c; 523 u32 freq, start_freq, end_freq; 524 525 start_freq = cfg80211_get_start_freq(center_freq, bandwidth); 526 end_freq = cfg80211_get_end_freq(center_freq, bandwidth); 527 528 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { 529 c = ieee80211_get_channel_khz(wiphy, freq); 530 if (!c) 531 return -EINVAL; 532 533 if (c->flags & IEEE80211_CHAN_RADAR) 534 return 1; 535 } 536 return 0; 537 } 538 539 540 int cfg80211_chandef_dfs_required(struct wiphy *wiphy, 541 const struct cfg80211_chan_def *chandef, 542 enum nl80211_iftype iftype) 543 { 544 int width; 545 int ret; 546 547 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 548 return -EINVAL; 549 550 switch (iftype) { 551 case NL80211_IFTYPE_ADHOC: 552 case NL80211_IFTYPE_AP: 553 case NL80211_IFTYPE_P2P_GO: 554 case NL80211_IFTYPE_MESH_POINT: 555 width = cfg80211_chandef_get_width(chandef); 556 if (width < 0) 557 return -EINVAL; 558 559 ret = cfg80211_get_chans_dfs_required(wiphy, 560 ieee80211_chandef_to_khz(chandef), 561 width); 562 if (ret < 0) 563 return ret; 564 else if (ret > 0) 565 return BIT(chandef->width); 566 567 if (!chandef->center_freq2) 568 return 0; 569 570 ret = cfg80211_get_chans_dfs_required(wiphy, 571 MHZ_TO_KHZ(chandef->center_freq2), 572 width); 573 if (ret < 0) 574 return ret; 575 else if (ret > 0) 576 return BIT(chandef->width); 577 578 break; 579 case NL80211_IFTYPE_STATION: 580 case NL80211_IFTYPE_OCB: 581 case NL80211_IFTYPE_P2P_CLIENT: 582 case NL80211_IFTYPE_MONITOR: 583 case NL80211_IFTYPE_AP_VLAN: 584 case NL80211_IFTYPE_P2P_DEVICE: 585 case NL80211_IFTYPE_NAN: 586 break; 587 case NL80211_IFTYPE_WDS: 588 case NL80211_IFTYPE_UNSPECIFIED: 589 case NUM_NL80211_IFTYPES: 590 WARN_ON(1); 591 } 592 593 return 0; 594 } 595 EXPORT_SYMBOL(cfg80211_chandef_dfs_required); 596 597 static int cfg80211_get_chans_dfs_usable(struct wiphy *wiphy, 598 u32 center_freq, 599 u32 bandwidth) 600 { 601 struct ieee80211_channel *c; 602 u32 freq, start_freq, end_freq; 603 int count = 0; 604 605 start_freq = cfg80211_get_start_freq(center_freq, bandwidth); 606 end_freq = cfg80211_get_end_freq(center_freq, bandwidth); 607 608 /* 609 * Check entire range of channels for the bandwidth. 610 * Check all channels are DFS channels (DFS_USABLE or 611 * DFS_AVAILABLE). Return number of usable channels 612 * (require CAC). Allow DFS and non-DFS channel mix. 613 */ 614 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { 615 c = ieee80211_get_channel_khz(wiphy, freq); 616 if (!c) 617 return -EINVAL; 618 619 if (c->flags & IEEE80211_CHAN_DISABLED) 620 return -EINVAL; 621 622 if (c->flags & IEEE80211_CHAN_RADAR) { 623 if (c->dfs_state == NL80211_DFS_UNAVAILABLE) 624 return -EINVAL; 625 626 if (c->dfs_state == NL80211_DFS_USABLE) 627 count++; 628 } 629 } 630 631 return count; 632 } 633 634 bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy, 635 const struct cfg80211_chan_def *chandef) 636 { 637 int width; 638 int r1, r2 = 0; 639 640 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 641 return false; 642 643 width = cfg80211_chandef_get_width(chandef); 644 if (width < 0) 645 return false; 646 647 r1 = cfg80211_get_chans_dfs_usable(wiphy, 648 MHZ_TO_KHZ(chandef->center_freq1), 649 width); 650 651 if (r1 < 0) 652 return false; 653 654 switch (chandef->width) { 655 case NL80211_CHAN_WIDTH_80P80: 656 WARN_ON(!chandef->center_freq2); 657 r2 = cfg80211_get_chans_dfs_usable(wiphy, 658 MHZ_TO_KHZ(chandef->center_freq2), 659 width); 660 if (r2 < 0) 661 return false; 662 break; 663 default: 664 WARN_ON(chandef->center_freq2); 665 break; 666 } 667 668 return (r1 + r2 > 0); 669 } 670 EXPORT_SYMBOL(cfg80211_chandef_dfs_usable); 671 672 /* 673 * Checks if center frequency of chan falls with in the bandwidth 674 * range of chandef. 675 */ 676 bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef, 677 struct ieee80211_channel *chan, 678 bool primary_only) 679 { 680 int width; 681 u32 freq; 682 683 if (!chandef->chan) 684 return false; 685 686 if (chandef->chan->center_freq == chan->center_freq) 687 return true; 688 689 if (primary_only) 690 return false; 691 692 width = cfg80211_chandef_get_width(chandef); 693 if (width <= 20) 694 return false; 695 696 for (freq = chandef->center_freq1 - width / 2 + 10; 697 freq <= chandef->center_freq1 + width / 2 - 10; freq += 20) { 698 if (chan->center_freq == freq) 699 return true; 700 } 701 702 if (!chandef->center_freq2) 703 return false; 704 705 for (freq = chandef->center_freq2 - width / 2 + 10; 706 freq <= chandef->center_freq2 + width / 2 - 10; freq += 20) { 707 if (chan->center_freq == freq) 708 return true; 709 } 710 711 return false; 712 } 713 714 bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev) 715 { 716 unsigned int link; 717 718 lockdep_assert_wiphy(wdev->wiphy); 719 720 switch (wdev->iftype) { 721 case NL80211_IFTYPE_AP: 722 case NL80211_IFTYPE_P2P_GO: 723 for_each_valid_link(wdev, link) { 724 if (wdev->links[link].ap.beacon_interval) 725 return true; 726 } 727 break; 728 case NL80211_IFTYPE_ADHOC: 729 if (wdev->u.ibss.ssid_len) 730 return true; 731 break; 732 case NL80211_IFTYPE_MESH_POINT: 733 if (wdev->u.mesh.id_len) 734 return true; 735 break; 736 case NL80211_IFTYPE_STATION: 737 case NL80211_IFTYPE_OCB: 738 case NL80211_IFTYPE_P2P_CLIENT: 739 case NL80211_IFTYPE_MONITOR: 740 case NL80211_IFTYPE_AP_VLAN: 741 case NL80211_IFTYPE_P2P_DEVICE: 742 /* Can NAN type be considered as beaconing interface? */ 743 case NL80211_IFTYPE_NAN: 744 break; 745 case NL80211_IFTYPE_UNSPECIFIED: 746 case NL80211_IFTYPE_WDS: 747 case NUM_NL80211_IFTYPES: 748 WARN_ON(1); 749 } 750 751 return false; 752 } 753 754 bool cfg80211_wdev_on_sub_chan(struct wireless_dev *wdev, 755 struct ieee80211_channel *chan, 756 bool primary_only) 757 { 758 unsigned int link; 759 760 switch (wdev->iftype) { 761 case NL80211_IFTYPE_AP: 762 case NL80211_IFTYPE_P2P_GO: 763 for_each_valid_link(wdev, link) { 764 if (cfg80211_is_sub_chan(&wdev->links[link].ap.chandef, 765 chan, primary_only)) 766 return true; 767 } 768 break; 769 case NL80211_IFTYPE_ADHOC: 770 return cfg80211_is_sub_chan(&wdev->u.ibss.chandef, chan, 771 primary_only); 772 case NL80211_IFTYPE_MESH_POINT: 773 return cfg80211_is_sub_chan(&wdev->u.mesh.chandef, chan, 774 primary_only); 775 default: 776 break; 777 } 778 779 return false; 780 } 781 782 static bool cfg80211_is_wiphy_oper_chan(struct wiphy *wiphy, 783 struct ieee80211_channel *chan) 784 { 785 struct wireless_dev *wdev; 786 787 lockdep_assert_wiphy(wiphy); 788 789 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 790 if (!cfg80211_beaconing_iface_active(wdev)) 791 continue; 792 793 if (cfg80211_wdev_on_sub_chan(wdev, chan, false)) 794 return true; 795 } 796 797 return false; 798 } 799 800 static bool 801 cfg80211_offchan_chain_is_active(struct cfg80211_registered_device *rdev, 802 struct ieee80211_channel *channel) 803 { 804 if (!rdev->background_radar_wdev) 805 return false; 806 807 if (!cfg80211_chandef_valid(&rdev->background_radar_chandef)) 808 return false; 809 810 return cfg80211_is_sub_chan(&rdev->background_radar_chandef, channel, 811 false); 812 } 813 814 bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy, 815 struct ieee80211_channel *chan) 816 { 817 struct cfg80211_registered_device *rdev; 818 819 ASSERT_RTNL(); 820 821 if (!(chan->flags & IEEE80211_CHAN_RADAR)) 822 return false; 823 824 for_each_rdev(rdev) { 825 bool found; 826 827 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 828 continue; 829 830 wiphy_lock(&rdev->wiphy); 831 found = cfg80211_is_wiphy_oper_chan(&rdev->wiphy, chan) || 832 cfg80211_offchan_chain_is_active(rdev, chan); 833 wiphy_unlock(&rdev->wiphy); 834 835 if (found) 836 return true; 837 } 838 839 return false; 840 } 841 842 static bool cfg80211_get_chans_dfs_available(struct wiphy *wiphy, 843 u32 center_freq, 844 u32 bandwidth) 845 { 846 struct ieee80211_channel *c; 847 u32 freq, start_freq, end_freq; 848 bool dfs_offload; 849 850 dfs_offload = wiphy_ext_feature_isset(wiphy, 851 NL80211_EXT_FEATURE_DFS_OFFLOAD); 852 853 start_freq = cfg80211_get_start_freq(center_freq, bandwidth); 854 end_freq = cfg80211_get_end_freq(center_freq, bandwidth); 855 856 /* 857 * Check entire range of channels for the bandwidth. 858 * If any channel in between is disabled or has not 859 * had gone through CAC return false 860 */ 861 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { 862 c = ieee80211_get_channel_khz(wiphy, freq); 863 if (!c) 864 return false; 865 866 if (c->flags & IEEE80211_CHAN_DISABLED) 867 return false; 868 869 if ((c->flags & IEEE80211_CHAN_RADAR) && 870 (c->dfs_state != NL80211_DFS_AVAILABLE) && 871 !(c->dfs_state == NL80211_DFS_USABLE && dfs_offload)) 872 return false; 873 } 874 875 return true; 876 } 877 878 static bool cfg80211_chandef_dfs_available(struct wiphy *wiphy, 879 const struct cfg80211_chan_def *chandef) 880 { 881 int width; 882 int r; 883 884 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 885 return false; 886 887 width = cfg80211_chandef_get_width(chandef); 888 if (width < 0) 889 return false; 890 891 r = cfg80211_get_chans_dfs_available(wiphy, 892 MHZ_TO_KHZ(chandef->center_freq1), 893 width); 894 895 /* If any of channels unavailable for cf1 just return */ 896 if (!r) 897 return r; 898 899 switch (chandef->width) { 900 case NL80211_CHAN_WIDTH_80P80: 901 WARN_ON(!chandef->center_freq2); 902 r = cfg80211_get_chans_dfs_available(wiphy, 903 MHZ_TO_KHZ(chandef->center_freq2), 904 width); 905 break; 906 default: 907 WARN_ON(chandef->center_freq2); 908 break; 909 } 910 911 return r; 912 } 913 914 static unsigned int cfg80211_get_chans_dfs_cac_time(struct wiphy *wiphy, 915 u32 center_freq, 916 u32 bandwidth) 917 { 918 struct ieee80211_channel *c; 919 u32 start_freq, end_freq, freq; 920 unsigned int dfs_cac_ms = 0; 921 922 start_freq = cfg80211_get_start_freq(center_freq, bandwidth); 923 end_freq = cfg80211_get_end_freq(center_freq, bandwidth); 924 925 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { 926 c = ieee80211_get_channel_khz(wiphy, freq); 927 if (!c) 928 return 0; 929 930 if (c->flags & IEEE80211_CHAN_DISABLED) 931 return 0; 932 933 if (!(c->flags & IEEE80211_CHAN_RADAR)) 934 continue; 935 936 if (c->dfs_cac_ms > dfs_cac_ms) 937 dfs_cac_ms = c->dfs_cac_ms; 938 } 939 940 return dfs_cac_ms; 941 } 942 943 unsigned int 944 cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy, 945 const struct cfg80211_chan_def *chandef) 946 { 947 int width; 948 unsigned int t1 = 0, t2 = 0; 949 950 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 951 return 0; 952 953 width = cfg80211_chandef_get_width(chandef); 954 if (width < 0) 955 return 0; 956 957 t1 = cfg80211_get_chans_dfs_cac_time(wiphy, 958 MHZ_TO_KHZ(chandef->center_freq1), 959 width); 960 961 if (!chandef->center_freq2) 962 return t1; 963 964 t2 = cfg80211_get_chans_dfs_cac_time(wiphy, 965 MHZ_TO_KHZ(chandef->center_freq2), 966 width); 967 968 return max(t1, t2); 969 } 970 EXPORT_SYMBOL(cfg80211_chandef_dfs_cac_time); 971 972 static bool cfg80211_secondary_chans_ok(struct wiphy *wiphy, 973 u32 center_freq, u32 bandwidth, 974 u32 prohibited_flags) 975 { 976 struct ieee80211_channel *c; 977 u32 freq, start_freq, end_freq; 978 979 start_freq = cfg80211_get_start_freq(center_freq, bandwidth); 980 end_freq = cfg80211_get_end_freq(center_freq, bandwidth); 981 982 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { 983 c = ieee80211_get_channel_khz(wiphy, freq); 984 if (!c || c->flags & prohibited_flags) 985 return false; 986 } 987 988 return true; 989 } 990 991 /* check if the operating channels are valid and supported */ 992 static bool cfg80211_edmg_usable(struct wiphy *wiphy, u8 edmg_channels, 993 enum ieee80211_edmg_bw_config edmg_bw_config, 994 int primary_channel, 995 struct ieee80211_edmg *edmg_cap) 996 { 997 struct ieee80211_channel *chan; 998 int i, freq; 999 int channels_counter = 0; 1000 1001 if (!edmg_channels && !edmg_bw_config) 1002 return true; 1003 1004 if ((!edmg_channels && edmg_bw_config) || 1005 (edmg_channels && !edmg_bw_config)) 1006 return false; 1007 1008 if (!(edmg_channels & BIT(primary_channel - 1))) 1009 return false; 1010 1011 /* 60GHz channels 1..6 */ 1012 for (i = 0; i < 6; i++) { 1013 if (!(edmg_channels & BIT(i))) 1014 continue; 1015 1016 if (!(edmg_cap->channels & BIT(i))) 1017 return false; 1018 1019 channels_counter++; 1020 1021 freq = ieee80211_channel_to_frequency(i + 1, 1022 NL80211_BAND_60GHZ); 1023 chan = ieee80211_get_channel(wiphy, freq); 1024 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 1025 return false; 1026 } 1027 1028 /* IEEE802.11 allows max 4 channels */ 1029 if (channels_counter > 4) 1030 return false; 1031 1032 /* check bw_config is a subset of what driver supports 1033 * (see IEEE P802.11ay/D4.0 section 9.4.2.251, Table 13) 1034 */ 1035 if ((edmg_bw_config % 4) > (edmg_cap->bw_config % 4)) 1036 return false; 1037 1038 if (edmg_bw_config > edmg_cap->bw_config) 1039 return false; 1040 1041 return true; 1042 } 1043 1044 bool cfg80211_chandef_usable(struct wiphy *wiphy, 1045 const struct cfg80211_chan_def *chandef, 1046 u32 prohibited_flags) 1047 { 1048 struct ieee80211_sta_ht_cap *ht_cap; 1049 struct ieee80211_sta_vht_cap *vht_cap; 1050 struct ieee80211_edmg *edmg_cap; 1051 u32 width, control_freq, cap; 1052 bool ext_nss_cap, support_80_80 = false, support_320 = false; 1053 const struct ieee80211_sband_iftype_data *iftd; 1054 struct ieee80211_supported_band *sband; 1055 int i; 1056 1057 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 1058 return false; 1059 1060 ht_cap = &wiphy->bands[chandef->chan->band]->ht_cap; 1061 vht_cap = &wiphy->bands[chandef->chan->band]->vht_cap; 1062 edmg_cap = &wiphy->bands[chandef->chan->band]->edmg_cap; 1063 ext_nss_cap = __le16_to_cpu(vht_cap->vht_mcs.tx_highest) & 1064 IEEE80211_VHT_EXT_NSS_BW_CAPABLE; 1065 1066 if (edmg_cap->channels && 1067 !cfg80211_edmg_usable(wiphy, 1068 chandef->edmg.channels, 1069 chandef->edmg.bw_config, 1070 chandef->chan->hw_value, 1071 edmg_cap)) 1072 return false; 1073 1074 control_freq = chandef->chan->center_freq; 1075 1076 switch (chandef->width) { 1077 case NL80211_CHAN_WIDTH_1: 1078 width = 1; 1079 break; 1080 case NL80211_CHAN_WIDTH_2: 1081 width = 2; 1082 break; 1083 case NL80211_CHAN_WIDTH_4: 1084 width = 4; 1085 break; 1086 case NL80211_CHAN_WIDTH_8: 1087 width = 8; 1088 break; 1089 case NL80211_CHAN_WIDTH_16: 1090 width = 16; 1091 break; 1092 case NL80211_CHAN_WIDTH_5: 1093 width = 5; 1094 break; 1095 case NL80211_CHAN_WIDTH_10: 1096 prohibited_flags |= IEEE80211_CHAN_NO_10MHZ; 1097 width = 10; 1098 break; 1099 case NL80211_CHAN_WIDTH_20: 1100 if (!ht_cap->ht_supported && 1101 chandef->chan->band != NL80211_BAND_6GHZ) 1102 return false; 1103 fallthrough; 1104 case NL80211_CHAN_WIDTH_20_NOHT: 1105 prohibited_flags |= IEEE80211_CHAN_NO_20MHZ; 1106 width = 20; 1107 break; 1108 case NL80211_CHAN_WIDTH_40: 1109 width = 40; 1110 if (chandef->chan->band == NL80211_BAND_6GHZ) 1111 break; 1112 if (!ht_cap->ht_supported) 1113 return false; 1114 if (!(ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) || 1115 ht_cap->cap & IEEE80211_HT_CAP_40MHZ_INTOLERANT) 1116 return false; 1117 if (chandef->center_freq1 < control_freq && 1118 chandef->chan->flags & IEEE80211_CHAN_NO_HT40MINUS) 1119 return false; 1120 if (chandef->center_freq1 > control_freq && 1121 chandef->chan->flags & IEEE80211_CHAN_NO_HT40PLUS) 1122 return false; 1123 break; 1124 case NL80211_CHAN_WIDTH_80P80: 1125 cap = vht_cap->cap; 1126 support_80_80 = 1127 (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 1128 (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 1129 cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 1130 (ext_nss_cap && 1131 u32_get_bits(cap, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) > 1); 1132 if (chandef->chan->band != NL80211_BAND_6GHZ && !support_80_80) 1133 return false; 1134 fallthrough; 1135 case NL80211_CHAN_WIDTH_80: 1136 prohibited_flags |= IEEE80211_CHAN_NO_80MHZ; 1137 width = 80; 1138 if (chandef->chan->band == NL80211_BAND_6GHZ) 1139 break; 1140 if (!vht_cap->vht_supported) 1141 return false; 1142 break; 1143 case NL80211_CHAN_WIDTH_160: 1144 prohibited_flags |= IEEE80211_CHAN_NO_160MHZ; 1145 width = 160; 1146 if (chandef->chan->band == NL80211_BAND_6GHZ) 1147 break; 1148 if (!vht_cap->vht_supported) 1149 return false; 1150 cap = vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK; 1151 if (cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 1152 cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ && 1153 !(ext_nss_cap && 1154 (vht_cap->cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK))) 1155 return false; 1156 break; 1157 case NL80211_CHAN_WIDTH_320: 1158 prohibited_flags |= IEEE80211_CHAN_NO_320MHZ; 1159 width = 320; 1160 1161 if (chandef->chan->band != NL80211_BAND_6GHZ) 1162 return false; 1163 1164 sband = wiphy->bands[NL80211_BAND_6GHZ]; 1165 if (!sband) 1166 return false; 1167 1168 for_each_sband_iftype_data(sband, i, iftd) { 1169 if (!iftd->eht_cap.has_eht) 1170 continue; 1171 1172 if (iftd->eht_cap.eht_cap_elem.phy_cap_info[0] & 1173 IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) { 1174 support_320 = true; 1175 break; 1176 } 1177 } 1178 1179 if (!support_320) 1180 return false; 1181 break; 1182 default: 1183 WARN_ON_ONCE(1); 1184 return false; 1185 } 1186 1187 /* 1188 * TODO: What if there are only certain 80/160/80+80 MHz channels 1189 * allowed by the driver, or only certain combinations? 1190 * For 40 MHz the driver can set the NO_HT40 flags, but for 1191 * 80/160 MHz and in particular 80+80 MHz this isn't really 1192 * feasible and we only have NO_80MHZ/NO_160MHZ so far but 1193 * no way to cover 80+80 MHz or more complex restrictions. 1194 * Note that such restrictions also need to be advertised to 1195 * userspace, for example for P2P channel selection. 1196 */ 1197 1198 if (width > 20) 1199 prohibited_flags |= IEEE80211_CHAN_NO_OFDM; 1200 1201 /* 5 and 10 MHz are only defined for the OFDM PHY */ 1202 if (width < 20) 1203 prohibited_flags |= IEEE80211_CHAN_NO_OFDM; 1204 1205 1206 if (!cfg80211_secondary_chans_ok(wiphy, 1207 ieee80211_chandef_to_khz(chandef), 1208 width, prohibited_flags)) 1209 return false; 1210 1211 if (!chandef->center_freq2) 1212 return true; 1213 return cfg80211_secondary_chans_ok(wiphy, 1214 MHZ_TO_KHZ(chandef->center_freq2), 1215 width, prohibited_flags); 1216 } 1217 EXPORT_SYMBOL(cfg80211_chandef_usable); 1218 1219 static bool cfg80211_ir_permissive_check_wdev(enum nl80211_iftype iftype, 1220 struct wireless_dev *wdev, 1221 struct ieee80211_channel *chan) 1222 { 1223 struct ieee80211_channel *other_chan = NULL; 1224 unsigned int link_id; 1225 int r1, r2; 1226 1227 for_each_valid_link(wdev, link_id) { 1228 if (wdev->iftype == NL80211_IFTYPE_STATION && 1229 wdev->links[link_id].client.current_bss) 1230 other_chan = wdev->links[link_id].client.current_bss->pub.channel; 1231 1232 /* 1233 * If a GO already operates on the same GO_CONCURRENT channel, 1234 * this one (maybe the same one) can beacon as well. We allow 1235 * the operation even if the station we relied on with 1236 * GO_CONCURRENT is disconnected now. But then we must make sure 1237 * we're not outdoor on an indoor-only channel. 1238 */ 1239 if (iftype == NL80211_IFTYPE_P2P_GO && 1240 wdev->iftype == NL80211_IFTYPE_P2P_GO && 1241 wdev->links[link_id].ap.beacon_interval && 1242 !(chan->flags & IEEE80211_CHAN_INDOOR_ONLY)) 1243 other_chan = wdev->links[link_id].ap.chandef.chan; 1244 1245 if (!other_chan) 1246 continue; 1247 1248 if (chan == other_chan) 1249 return true; 1250 1251 if (chan->band != NL80211_BAND_5GHZ && 1252 chan->band != NL80211_BAND_6GHZ) 1253 continue; 1254 1255 r1 = cfg80211_get_unii(chan->center_freq); 1256 r2 = cfg80211_get_unii(other_chan->center_freq); 1257 1258 if (r1 != -EINVAL && r1 == r2) { 1259 /* 1260 * At some locations channels 149-165 are considered a 1261 * bundle, but at other locations, e.g., Indonesia, 1262 * channels 149-161 are considered a bundle while 1263 * channel 165 is left out and considered to be in a 1264 * different bundle. Thus, in case that there is a 1265 * station interface connected to an AP on channel 165, 1266 * it is assumed that channels 149-161 are allowed for 1267 * GO operations. However, having a station interface 1268 * connected to an AP on channels 149-161, does not 1269 * allow GO operation on channel 165. 1270 */ 1271 if (chan->center_freq == 5825 && 1272 other_chan->center_freq != 5825) 1273 continue; 1274 return true; 1275 } 1276 } 1277 1278 return false; 1279 } 1280 1281 /* 1282 * Check if the channel can be used under permissive conditions mandated by 1283 * some regulatory bodies, i.e., the channel is marked with 1284 * IEEE80211_CHAN_IR_CONCURRENT and there is an additional station interface 1285 * associated to an AP on the same channel or on the same UNII band 1286 * (assuming that the AP is an authorized master). 1287 * In addition allow operation on a channel on which indoor operation is 1288 * allowed, iff we are currently operating in an indoor environment. 1289 */ 1290 static bool cfg80211_ir_permissive_chan(struct wiphy *wiphy, 1291 enum nl80211_iftype iftype, 1292 struct ieee80211_channel *chan) 1293 { 1294 struct wireless_dev *wdev; 1295 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1296 1297 lockdep_assert_held(&rdev->wiphy.mtx); 1298 1299 if (!IS_ENABLED(CONFIG_CFG80211_REG_RELAX_NO_IR) || 1300 !(wiphy->regulatory_flags & REGULATORY_ENABLE_RELAX_NO_IR)) 1301 return false; 1302 1303 /* only valid for GO and TDLS off-channel (station/p2p-CL) */ 1304 if (iftype != NL80211_IFTYPE_P2P_GO && 1305 iftype != NL80211_IFTYPE_STATION && 1306 iftype != NL80211_IFTYPE_P2P_CLIENT) 1307 return false; 1308 1309 if (regulatory_indoor_allowed() && 1310 (chan->flags & IEEE80211_CHAN_INDOOR_ONLY)) 1311 return true; 1312 1313 if (!(chan->flags & IEEE80211_CHAN_IR_CONCURRENT)) 1314 return false; 1315 1316 /* 1317 * Generally, it is possible to rely on another device/driver to allow 1318 * the IR concurrent relaxation, however, since the device can further 1319 * enforce the relaxation (by doing a similar verifications as this), 1320 * and thus fail the GO instantiation, consider only the interfaces of 1321 * the current registered device. 1322 */ 1323 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 1324 bool ret; 1325 1326 ret = cfg80211_ir_permissive_check_wdev(iftype, wdev, chan); 1327 if (ret) 1328 return ret; 1329 } 1330 1331 return false; 1332 } 1333 1334 static bool _cfg80211_reg_can_beacon(struct wiphy *wiphy, 1335 struct cfg80211_chan_def *chandef, 1336 enum nl80211_iftype iftype, 1337 bool check_no_ir) 1338 { 1339 bool res; 1340 u32 prohibited_flags = IEEE80211_CHAN_DISABLED | 1341 IEEE80211_CHAN_RADAR; 1342 1343 trace_cfg80211_reg_can_beacon(wiphy, chandef, iftype, check_no_ir); 1344 1345 if (check_no_ir) 1346 prohibited_flags |= IEEE80211_CHAN_NO_IR; 1347 1348 if (cfg80211_chandef_dfs_required(wiphy, chandef, iftype) > 0 && 1349 cfg80211_chandef_dfs_available(wiphy, chandef)) { 1350 /* We can skip IEEE80211_CHAN_NO_IR if chandef dfs available */ 1351 prohibited_flags = IEEE80211_CHAN_DISABLED; 1352 } 1353 1354 res = cfg80211_chandef_usable(wiphy, chandef, prohibited_flags); 1355 1356 trace_cfg80211_return_bool(res); 1357 return res; 1358 } 1359 1360 bool cfg80211_reg_can_beacon(struct wiphy *wiphy, 1361 struct cfg80211_chan_def *chandef, 1362 enum nl80211_iftype iftype) 1363 { 1364 return _cfg80211_reg_can_beacon(wiphy, chandef, iftype, true); 1365 } 1366 EXPORT_SYMBOL(cfg80211_reg_can_beacon); 1367 1368 bool cfg80211_reg_can_beacon_relax(struct wiphy *wiphy, 1369 struct cfg80211_chan_def *chandef, 1370 enum nl80211_iftype iftype) 1371 { 1372 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1373 bool check_no_ir; 1374 1375 lockdep_assert_held(&rdev->wiphy.mtx); 1376 1377 /* 1378 * Under certain conditions suggested by some regulatory bodies a 1379 * GO/STA can IR on channels marked with IEEE80211_NO_IR. Set this flag 1380 * only if such relaxations are not enabled and the conditions are not 1381 * met. 1382 */ 1383 check_no_ir = !cfg80211_ir_permissive_chan(wiphy, iftype, 1384 chandef->chan); 1385 1386 return _cfg80211_reg_can_beacon(wiphy, chandef, iftype, check_no_ir); 1387 } 1388 EXPORT_SYMBOL(cfg80211_reg_can_beacon_relax); 1389 1390 int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev, 1391 struct cfg80211_chan_def *chandef) 1392 { 1393 if (!rdev->ops->set_monitor_channel) 1394 return -EOPNOTSUPP; 1395 if (!cfg80211_has_monitors_only(rdev)) 1396 return -EBUSY; 1397 1398 return rdev_set_monitor_channel(rdev, chandef); 1399 } 1400 1401 bool cfg80211_any_usable_channels(struct wiphy *wiphy, 1402 unsigned long sband_mask, 1403 u32 prohibited_flags) 1404 { 1405 int idx; 1406 1407 prohibited_flags |= IEEE80211_CHAN_DISABLED; 1408 1409 for_each_set_bit(idx, &sband_mask, NUM_NL80211_BANDS) { 1410 struct ieee80211_supported_band *sband = wiphy->bands[idx]; 1411 int chanidx; 1412 1413 if (!sband) 1414 continue; 1415 1416 for (chanidx = 0; chanidx < sband->n_channels; chanidx++) { 1417 struct ieee80211_channel *chan; 1418 1419 chan = &sband->channels[chanidx]; 1420 1421 if (chan->flags & prohibited_flags) 1422 continue; 1423 1424 return true; 1425 } 1426 } 1427 1428 return false; 1429 } 1430 EXPORT_SYMBOL(cfg80211_any_usable_channels); 1431 1432 struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev, 1433 unsigned int link_id) 1434 { 1435 lockdep_assert_wiphy(wdev->wiphy); 1436 1437 WARN_ON(wdev->valid_links && !(wdev->valid_links & BIT(link_id))); 1438 WARN_ON(!wdev->valid_links && link_id > 0); 1439 1440 switch (wdev->iftype) { 1441 case NL80211_IFTYPE_MESH_POINT: 1442 return &wdev->u.mesh.chandef; 1443 case NL80211_IFTYPE_ADHOC: 1444 return &wdev->u.ibss.chandef; 1445 case NL80211_IFTYPE_OCB: 1446 return &wdev->u.ocb.chandef; 1447 case NL80211_IFTYPE_AP: 1448 case NL80211_IFTYPE_P2P_GO: 1449 return &wdev->links[link_id].ap.chandef; 1450 default: 1451 return NULL; 1452 } 1453 } 1454 EXPORT_SYMBOL(wdev_chandef); 1455 1456 struct cfg80211_per_bw_puncturing_values { 1457 u8 len; 1458 const u16 *valid_values; 1459 }; 1460 1461 static const u16 puncturing_values_80mhz[] = { 1462 0x8, 0x4, 0x2, 0x1 1463 }; 1464 1465 static const u16 puncturing_values_160mhz[] = { 1466 0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1, 0xc0, 0x30, 0xc, 0x3 1467 }; 1468 1469 static const u16 puncturing_values_320mhz[] = { 1470 0xc000, 0x3000, 0xc00, 0x300, 0xc0, 0x30, 0xc, 0x3, 0xf000, 0xf00, 1471 0xf0, 0xf, 0xfc00, 0xf300, 0xf0c0, 0xf030, 0xf00c, 0xf003, 0xc00f, 1472 0x300f, 0xc0f, 0x30f, 0xcf, 0x3f 1473 }; 1474 1475 #define CFG80211_PER_BW_VALID_PUNCTURING_VALUES(_bw) \ 1476 { \ 1477 .len = ARRAY_SIZE(puncturing_values_ ## _bw ## mhz), \ 1478 .valid_values = puncturing_values_ ## _bw ## mhz \ 1479 } 1480 1481 static const struct cfg80211_per_bw_puncturing_values per_bw_puncturing[] = { 1482 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(80), 1483 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(160), 1484 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(320) 1485 }; 1486 1487 bool cfg80211_valid_disable_subchannel_bitmap(u16 *bitmap, 1488 const struct cfg80211_chan_def *chandef) 1489 { 1490 u32 idx, i, start_freq; 1491 1492 switch (chandef->width) { 1493 case NL80211_CHAN_WIDTH_80: 1494 idx = 0; 1495 start_freq = chandef->center_freq1 - 40; 1496 break; 1497 case NL80211_CHAN_WIDTH_160: 1498 idx = 1; 1499 start_freq = chandef->center_freq1 - 80; 1500 break; 1501 case NL80211_CHAN_WIDTH_320: 1502 idx = 2; 1503 start_freq = chandef->center_freq1 - 160; 1504 break; 1505 default: 1506 *bitmap = 0; 1507 break; 1508 } 1509 1510 if (!*bitmap) 1511 return true; 1512 1513 /* check if primary channel is punctured */ 1514 if (*bitmap & (u16)BIT((chandef->chan->center_freq - start_freq) / 20)) 1515 return false; 1516 1517 for (i = 0; i < per_bw_puncturing[idx].len; i++) 1518 if (per_bw_puncturing[idx].valid_values[i] == *bitmap) 1519 return true; 1520 1521 return false; 1522 } 1523 EXPORT_SYMBOL(cfg80211_valid_disable_subchannel_bitmap); 1524