1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains helper code to handle channel 4 * settings and keeping track of what is possible at 5 * any point in time. 6 * 7 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> 8 * Copyright 2013-2014 Intel Mobile Communications GmbH 9 * Copyright 2018-2024 Intel Corporation 10 */ 11 12 #include <linux/export.h> 13 #include <linux/bitfield.h> 14 #include <net/cfg80211.h> 15 #include "core.h" 16 #include "rdev-ops.h" 17 18 static bool cfg80211_valid_60g_freq(u32 freq) 19 { 20 return freq >= 58320 && freq <= 70200; 21 } 22 23 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef, 24 struct ieee80211_channel *chan, 25 enum nl80211_channel_type chan_type) 26 { 27 if (WARN_ON(!chan)) 28 return; 29 30 *chandef = (struct cfg80211_chan_def) { 31 .chan = chan, 32 .freq1_offset = chan->freq_offset, 33 }; 34 35 switch (chan_type) { 36 case NL80211_CHAN_NO_HT: 37 chandef->width = NL80211_CHAN_WIDTH_20_NOHT; 38 chandef->center_freq1 = chan->center_freq; 39 break; 40 case NL80211_CHAN_HT20: 41 chandef->width = NL80211_CHAN_WIDTH_20; 42 chandef->center_freq1 = chan->center_freq; 43 break; 44 case NL80211_CHAN_HT40PLUS: 45 chandef->width = NL80211_CHAN_WIDTH_40; 46 chandef->center_freq1 = chan->center_freq + 10; 47 break; 48 case NL80211_CHAN_HT40MINUS: 49 chandef->width = NL80211_CHAN_WIDTH_40; 50 chandef->center_freq1 = chan->center_freq - 10; 51 break; 52 default: 53 WARN_ON(1); 54 } 55 } 56 EXPORT_SYMBOL(cfg80211_chandef_create); 57 58 struct cfg80211_per_bw_puncturing_values { 59 u8 len; 60 const u16 *valid_values; 61 }; 62 63 static const u16 puncturing_values_80mhz[] = { 64 0x8, 0x4, 0x2, 0x1 65 }; 66 67 static const u16 puncturing_values_160mhz[] = { 68 0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1, 0xc0, 0x30, 0xc, 0x3 69 }; 70 71 static const u16 puncturing_values_320mhz[] = { 72 0xc000, 0x3000, 0xc00, 0x300, 0xc0, 0x30, 0xc, 0x3, 0xf000, 0xf00, 73 0xf0, 0xf, 0xfc00, 0xf300, 0xf0c0, 0xf030, 0xf00c, 0xf003, 0xc00f, 74 0x300f, 0xc0f, 0x30f, 0xcf, 0x3f 75 }; 76 77 #define CFG80211_PER_BW_VALID_PUNCTURING_VALUES(_bw) \ 78 { \ 79 .len = ARRAY_SIZE(puncturing_values_ ## _bw ## mhz), \ 80 .valid_values = puncturing_values_ ## _bw ## mhz \ 81 } 82 83 static const struct cfg80211_per_bw_puncturing_values per_bw_puncturing[] = { 84 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(80), 85 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(160), 86 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(320) 87 }; 88 89 static bool valid_puncturing_bitmap(const struct cfg80211_chan_def *chandef) 90 { 91 u32 idx, i, start_freq, primary_center = chandef->chan->center_freq; 92 93 switch (chandef->width) { 94 case NL80211_CHAN_WIDTH_80: 95 idx = 0; 96 start_freq = chandef->center_freq1 - 40; 97 break; 98 case NL80211_CHAN_WIDTH_160: 99 idx = 1; 100 start_freq = chandef->center_freq1 - 80; 101 break; 102 case NL80211_CHAN_WIDTH_320: 103 idx = 2; 104 start_freq = chandef->center_freq1 - 160; 105 break; 106 default: 107 return chandef->punctured == 0; 108 } 109 110 if (!chandef->punctured) 111 return true; 112 113 /* check if primary channel is punctured */ 114 if (chandef->punctured & (u16)BIT((primary_center - start_freq) / 20)) 115 return false; 116 117 for (i = 0; i < per_bw_puncturing[idx].len; i++) { 118 if (per_bw_puncturing[idx].valid_values[i] == chandef->punctured) 119 return true; 120 } 121 122 return false; 123 } 124 125 static bool cfg80211_edmg_chandef_valid(const struct cfg80211_chan_def *chandef) 126 { 127 int max_contiguous = 0; 128 int num_of_enabled = 0; 129 int contiguous = 0; 130 int i; 131 132 if (!chandef->edmg.channels || !chandef->edmg.bw_config) 133 return false; 134 135 if (!cfg80211_valid_60g_freq(chandef->chan->center_freq)) 136 return false; 137 138 for (i = 0; i < 6; i++) { 139 if (chandef->edmg.channels & BIT(i)) { 140 contiguous++; 141 num_of_enabled++; 142 } else { 143 contiguous = 0; 144 } 145 146 max_contiguous = max(contiguous, max_contiguous); 147 } 148 /* basic verification of edmg configuration according to 149 * IEEE P802.11ay/D4.0 section 9.4.2.251 150 */ 151 /* check bw_config against contiguous edmg channels */ 152 switch (chandef->edmg.bw_config) { 153 case IEEE80211_EDMG_BW_CONFIG_4: 154 case IEEE80211_EDMG_BW_CONFIG_8: 155 case IEEE80211_EDMG_BW_CONFIG_12: 156 if (max_contiguous < 1) 157 return false; 158 break; 159 case IEEE80211_EDMG_BW_CONFIG_5: 160 case IEEE80211_EDMG_BW_CONFIG_9: 161 case IEEE80211_EDMG_BW_CONFIG_13: 162 if (max_contiguous < 2) 163 return false; 164 break; 165 case IEEE80211_EDMG_BW_CONFIG_6: 166 case IEEE80211_EDMG_BW_CONFIG_10: 167 case IEEE80211_EDMG_BW_CONFIG_14: 168 if (max_contiguous < 3) 169 return false; 170 break; 171 case IEEE80211_EDMG_BW_CONFIG_7: 172 case IEEE80211_EDMG_BW_CONFIG_11: 173 case IEEE80211_EDMG_BW_CONFIG_15: 174 if (max_contiguous < 4) 175 return false; 176 break; 177 178 default: 179 return false; 180 } 181 182 /* check bw_config against aggregated (non contiguous) edmg channels */ 183 switch (chandef->edmg.bw_config) { 184 case IEEE80211_EDMG_BW_CONFIG_4: 185 case IEEE80211_EDMG_BW_CONFIG_5: 186 case IEEE80211_EDMG_BW_CONFIG_6: 187 case IEEE80211_EDMG_BW_CONFIG_7: 188 break; 189 case IEEE80211_EDMG_BW_CONFIG_8: 190 case IEEE80211_EDMG_BW_CONFIG_9: 191 case IEEE80211_EDMG_BW_CONFIG_10: 192 case IEEE80211_EDMG_BW_CONFIG_11: 193 if (num_of_enabled < 2) 194 return false; 195 break; 196 case IEEE80211_EDMG_BW_CONFIG_12: 197 case IEEE80211_EDMG_BW_CONFIG_13: 198 case IEEE80211_EDMG_BW_CONFIG_14: 199 case IEEE80211_EDMG_BW_CONFIG_15: 200 if (num_of_enabled < 4 || max_contiguous < 2) 201 return false; 202 break; 203 default: 204 return false; 205 } 206 207 return true; 208 } 209 210 int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width) 211 { 212 int mhz; 213 214 switch (chan_width) { 215 case NL80211_CHAN_WIDTH_1: 216 mhz = 1; 217 break; 218 case NL80211_CHAN_WIDTH_2: 219 mhz = 2; 220 break; 221 case NL80211_CHAN_WIDTH_4: 222 mhz = 4; 223 break; 224 case NL80211_CHAN_WIDTH_8: 225 mhz = 8; 226 break; 227 case NL80211_CHAN_WIDTH_16: 228 mhz = 16; 229 break; 230 case NL80211_CHAN_WIDTH_5: 231 mhz = 5; 232 break; 233 case NL80211_CHAN_WIDTH_10: 234 mhz = 10; 235 break; 236 case NL80211_CHAN_WIDTH_20: 237 case NL80211_CHAN_WIDTH_20_NOHT: 238 mhz = 20; 239 break; 240 case NL80211_CHAN_WIDTH_40: 241 mhz = 40; 242 break; 243 case NL80211_CHAN_WIDTH_80P80: 244 case NL80211_CHAN_WIDTH_80: 245 mhz = 80; 246 break; 247 case NL80211_CHAN_WIDTH_160: 248 mhz = 160; 249 break; 250 case NL80211_CHAN_WIDTH_320: 251 mhz = 320; 252 break; 253 default: 254 WARN_ON_ONCE(1); 255 return -1; 256 } 257 return mhz; 258 } 259 EXPORT_SYMBOL(nl80211_chan_width_to_mhz); 260 261 static int cfg80211_chandef_get_width(const struct cfg80211_chan_def *c) 262 { 263 return nl80211_chan_width_to_mhz(c->width); 264 } 265 266 static bool cfg80211_valid_center_freq(u32 center, 267 enum nl80211_chan_width width) 268 { 269 int bw; 270 int step; 271 272 /* We only do strict verification on 6 GHz */ 273 if (center < 5955 || center > 7115) 274 return true; 275 276 bw = nl80211_chan_width_to_mhz(width); 277 if (bw < 0) 278 return false; 279 280 /* Validate that the channels bw is entirely within the 6 GHz band */ 281 if (center - bw / 2 < 5945 || center + bw / 2 > 7125) 282 return false; 283 284 /* With 320 MHz the permitted channels overlap */ 285 if (bw == 320) 286 step = 160; 287 else 288 step = bw; 289 290 /* 291 * Valid channels are packed from lowest frequency towards higher ones. 292 * So test that the lower frequency aligns with one of these steps. 293 */ 294 return (center - bw / 2 - 5945) % step == 0; 295 } 296 297 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef) 298 { 299 u32 control_freq, oper_freq; 300 int oper_width, control_width; 301 302 if (!chandef->chan) 303 return false; 304 305 if (chandef->freq1_offset >= 1000) 306 return false; 307 308 control_freq = chandef->chan->center_freq; 309 310 switch (chandef->width) { 311 case NL80211_CHAN_WIDTH_5: 312 case NL80211_CHAN_WIDTH_10: 313 case NL80211_CHAN_WIDTH_20: 314 case NL80211_CHAN_WIDTH_20_NOHT: 315 if (ieee80211_chandef_to_khz(chandef) != 316 ieee80211_channel_to_khz(chandef->chan)) 317 return false; 318 if (chandef->center_freq2) 319 return false; 320 break; 321 case NL80211_CHAN_WIDTH_1: 322 case NL80211_CHAN_WIDTH_2: 323 case NL80211_CHAN_WIDTH_4: 324 case NL80211_CHAN_WIDTH_8: 325 case NL80211_CHAN_WIDTH_16: 326 if (chandef->chan->band != NL80211_BAND_S1GHZ) 327 return false; 328 329 control_freq = ieee80211_channel_to_khz(chandef->chan); 330 oper_freq = ieee80211_chandef_to_khz(chandef); 331 control_width = nl80211_chan_width_to_mhz( 332 ieee80211_s1g_channel_width( 333 chandef->chan)); 334 oper_width = cfg80211_chandef_get_width(chandef); 335 336 if (oper_width < 0 || control_width < 0) 337 return false; 338 if (chandef->center_freq2) 339 return false; 340 341 if (control_freq + MHZ_TO_KHZ(control_width) / 2 > 342 oper_freq + MHZ_TO_KHZ(oper_width) / 2) 343 return false; 344 345 if (control_freq - MHZ_TO_KHZ(control_width) / 2 < 346 oper_freq - MHZ_TO_KHZ(oper_width) / 2) 347 return false; 348 break; 349 case NL80211_CHAN_WIDTH_80P80: 350 if (!chandef->center_freq2) 351 return false; 352 /* adjacent is not allowed -- that's a 160 MHz channel */ 353 if (chandef->center_freq1 - chandef->center_freq2 == 80 || 354 chandef->center_freq2 - chandef->center_freq1 == 80) 355 return false; 356 break; 357 default: 358 if (chandef->center_freq2) 359 return false; 360 break; 361 } 362 363 switch (chandef->width) { 364 case NL80211_CHAN_WIDTH_5: 365 case NL80211_CHAN_WIDTH_10: 366 case NL80211_CHAN_WIDTH_20: 367 case NL80211_CHAN_WIDTH_20_NOHT: 368 case NL80211_CHAN_WIDTH_1: 369 case NL80211_CHAN_WIDTH_2: 370 case NL80211_CHAN_WIDTH_4: 371 case NL80211_CHAN_WIDTH_8: 372 case NL80211_CHAN_WIDTH_16: 373 /* all checked above */ 374 break; 375 case NL80211_CHAN_WIDTH_320: 376 if (chandef->center_freq1 == control_freq + 150 || 377 chandef->center_freq1 == control_freq + 130 || 378 chandef->center_freq1 == control_freq + 110 || 379 chandef->center_freq1 == control_freq + 90 || 380 chandef->center_freq1 == control_freq - 90 || 381 chandef->center_freq1 == control_freq - 110 || 382 chandef->center_freq1 == control_freq - 130 || 383 chandef->center_freq1 == control_freq - 150) 384 break; 385 fallthrough; 386 case NL80211_CHAN_WIDTH_160: 387 if (chandef->center_freq1 == control_freq + 70 || 388 chandef->center_freq1 == control_freq + 50 || 389 chandef->center_freq1 == control_freq - 50 || 390 chandef->center_freq1 == control_freq - 70) 391 break; 392 fallthrough; 393 case NL80211_CHAN_WIDTH_80P80: 394 case NL80211_CHAN_WIDTH_80: 395 if (chandef->center_freq1 == control_freq + 30 || 396 chandef->center_freq1 == control_freq - 30) 397 break; 398 fallthrough; 399 case NL80211_CHAN_WIDTH_40: 400 if (chandef->center_freq1 == control_freq + 10 || 401 chandef->center_freq1 == control_freq - 10) 402 break; 403 fallthrough; 404 default: 405 return false; 406 } 407 408 if (!cfg80211_valid_center_freq(chandef->center_freq1, chandef->width)) 409 return false; 410 411 if (chandef->width == NL80211_CHAN_WIDTH_80P80 && 412 !cfg80211_valid_center_freq(chandef->center_freq2, chandef->width)) 413 return false; 414 415 /* channel 14 is only for IEEE 802.11b */ 416 if (chandef->center_freq1 == 2484 && 417 chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 418 return false; 419 420 if (cfg80211_chandef_is_edmg(chandef) && 421 !cfg80211_edmg_chandef_valid(chandef)) 422 return false; 423 424 return valid_puncturing_bitmap(chandef); 425 } 426 EXPORT_SYMBOL(cfg80211_chandef_valid); 427 428 int cfg80211_chandef_primary(const struct cfg80211_chan_def *c, 429 enum nl80211_chan_width primary_chan_width, 430 u16 *punctured) 431 { 432 int pri_width = nl80211_chan_width_to_mhz(primary_chan_width); 433 int width = cfg80211_chandef_get_width(c); 434 u32 control = c->chan->center_freq; 435 u32 center = c->center_freq1; 436 u16 _punct = 0; 437 438 if (WARN_ON_ONCE(pri_width < 0 || width < 0)) 439 return -1; 440 441 /* not intended to be called this way, can't determine */ 442 if (WARN_ON_ONCE(pri_width > width)) 443 return -1; 444 445 if (!punctured) 446 punctured = &_punct; 447 448 *punctured = c->punctured; 449 450 while (width > pri_width) { 451 unsigned int bits_to_drop = width / 20 / 2; 452 453 if (control > center) { 454 center += width / 4; 455 *punctured >>= bits_to_drop; 456 } else { 457 center -= width / 4; 458 *punctured &= (1 << bits_to_drop) - 1; 459 } 460 width /= 2; 461 } 462 463 return center; 464 } 465 EXPORT_SYMBOL(cfg80211_chandef_primary); 466 467 static const struct cfg80211_chan_def * 468 check_chandef_primary_compat(const struct cfg80211_chan_def *c1, 469 const struct cfg80211_chan_def *c2, 470 enum nl80211_chan_width primary_chan_width) 471 { 472 u16 punct_c1 = 0, punct_c2 = 0; 473 474 /* check primary is compatible -> error if not */ 475 if (cfg80211_chandef_primary(c1, primary_chan_width, &punct_c1) != 476 cfg80211_chandef_primary(c2, primary_chan_width, &punct_c2)) 477 return ERR_PTR(-EINVAL); 478 479 if (punct_c1 != punct_c2) 480 return ERR_PTR(-EINVAL); 481 482 /* assumes c1 is smaller width, if that was just checked -> done */ 483 if (c1->width == primary_chan_width) 484 return c2; 485 486 /* otherwise continue checking the next width */ 487 return NULL; 488 } 489 490 static const struct cfg80211_chan_def * 491 _cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1, 492 const struct cfg80211_chan_def *c2) 493 { 494 const struct cfg80211_chan_def *ret; 495 496 /* If they are identical, return */ 497 if (cfg80211_chandef_identical(c1, c2)) 498 return c2; 499 500 /* otherwise, must have same control channel */ 501 if (c1->chan != c2->chan) 502 return NULL; 503 504 /* 505 * If they have the same width, but aren't identical, 506 * then they can't be compatible. 507 */ 508 if (c1->width == c2->width) 509 return NULL; 510 511 /* 512 * can't be compatible if one of them is 5/10 MHz or S1G 513 * but they don't have the same width. 514 */ 515 #define NARROW_OR_S1G(width) ((width) == NL80211_CHAN_WIDTH_5 || \ 516 (width) == NL80211_CHAN_WIDTH_10 || \ 517 (width) == NL80211_CHAN_WIDTH_1 || \ 518 (width) == NL80211_CHAN_WIDTH_2 || \ 519 (width) == NL80211_CHAN_WIDTH_4 || \ 520 (width) == NL80211_CHAN_WIDTH_8 || \ 521 (width) == NL80211_CHAN_WIDTH_16) 522 523 if (NARROW_OR_S1G(c1->width) || NARROW_OR_S1G(c2->width)) 524 return NULL; 525 526 /* 527 * Make sure that c1 is always the narrower one, so that later 528 * we either return NULL or c2 and don't have to check both 529 * directions. 530 */ 531 if (c1->width > c2->width) 532 swap(c1, c2); 533 534 /* 535 * No further checks needed if the "narrower" one is only 20 MHz. 536 * Here "narrower" includes being a 20 MHz non-HT channel vs. a 537 * 20 MHz HT (or later) one. 538 */ 539 if (c1->width <= NL80211_CHAN_WIDTH_20) 540 return c2; 541 542 ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_40); 543 if (ret) 544 return ret; 545 546 ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_80); 547 if (ret) 548 return ret; 549 550 /* 551 * If c1 is 80+80, then c2 is 160 or higher, but that cannot 552 * match. If c2 was also 80+80 it was already either accepted 553 * or rejected above (identical or not, respectively.) 554 */ 555 if (c1->width == NL80211_CHAN_WIDTH_80P80) 556 return NULL; 557 558 ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_160); 559 if (ret) 560 return ret; 561 562 /* 563 * Getting here would mean they're both wider than 160, have the 564 * same primary 160, but are not identical - this cannot happen 565 * since they must be 320 (no wider chandefs exist, at least yet.) 566 */ 567 WARN_ON_ONCE(1); 568 569 return NULL; 570 } 571 572 const struct cfg80211_chan_def * 573 cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1, 574 const struct cfg80211_chan_def *c2) 575 { 576 const struct cfg80211_chan_def *ret; 577 578 ret = _cfg80211_chandef_compatible(c1, c2); 579 if (IS_ERR(ret)) 580 return NULL; 581 return ret; 582 } 583 EXPORT_SYMBOL(cfg80211_chandef_compatible); 584 585 static void cfg80211_set_chans_dfs_state(struct wiphy *wiphy, u32 center_freq, 586 u32 bandwidth, 587 enum nl80211_dfs_state dfs_state) 588 { 589 struct ieee80211_channel *c; 590 u32 freq; 591 592 for (freq = center_freq - bandwidth/2 + 10; 593 freq <= center_freq + bandwidth/2 - 10; 594 freq += 20) { 595 c = ieee80211_get_channel(wiphy, freq); 596 if (!c || !(c->flags & IEEE80211_CHAN_RADAR)) 597 continue; 598 599 c->dfs_state = dfs_state; 600 c->dfs_state_entered = jiffies; 601 } 602 } 603 604 void cfg80211_set_dfs_state(struct wiphy *wiphy, 605 const struct cfg80211_chan_def *chandef, 606 enum nl80211_dfs_state dfs_state) 607 { 608 int width; 609 610 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 611 return; 612 613 width = cfg80211_chandef_get_width(chandef); 614 if (width < 0) 615 return; 616 617 cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq1, 618 width, dfs_state); 619 620 if (!chandef->center_freq2) 621 return; 622 cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq2, 623 width, dfs_state); 624 } 625 626 static u32 cfg80211_get_start_freq(u32 center_freq, 627 u32 bandwidth) 628 { 629 u32 start_freq; 630 631 bandwidth = MHZ_TO_KHZ(bandwidth); 632 if (bandwidth <= MHZ_TO_KHZ(20)) 633 start_freq = center_freq; 634 else 635 start_freq = center_freq - bandwidth / 2 + MHZ_TO_KHZ(10); 636 637 return start_freq; 638 } 639 640 static u32 cfg80211_get_end_freq(u32 center_freq, 641 u32 bandwidth) 642 { 643 u32 end_freq; 644 645 bandwidth = MHZ_TO_KHZ(bandwidth); 646 if (bandwidth <= MHZ_TO_KHZ(20)) 647 end_freq = center_freq; 648 else 649 end_freq = center_freq + bandwidth / 2 - MHZ_TO_KHZ(10); 650 651 return end_freq; 652 } 653 654 static bool 655 cfg80211_dfs_permissive_check_wdev(struct cfg80211_registered_device *rdev, 656 enum nl80211_iftype iftype, 657 struct wireless_dev *wdev, 658 struct ieee80211_channel *chan) 659 { 660 unsigned int link_id; 661 662 for_each_valid_link(wdev, link_id) { 663 struct ieee80211_channel *other_chan = NULL; 664 struct cfg80211_chan_def chandef = {}; 665 int ret; 666 667 /* In order to avoid daisy chaining only allow BSS STA */ 668 if (wdev->iftype != NL80211_IFTYPE_STATION || 669 !wdev->links[link_id].client.current_bss) 670 continue; 671 672 other_chan = 673 wdev->links[link_id].client.current_bss->pub.channel; 674 675 if (!other_chan) 676 continue; 677 678 if (chan == other_chan) 679 return true; 680 681 /* continue if we can't get the channel */ 682 ret = rdev_get_channel(rdev, wdev, link_id, &chandef); 683 if (ret) 684 continue; 685 686 if (cfg80211_is_sub_chan(&chandef, chan, false)) 687 return true; 688 } 689 690 return false; 691 } 692 693 /* 694 * Check if P2P GO is allowed to operate on a DFS channel 695 */ 696 static bool cfg80211_dfs_permissive_chan(struct wiphy *wiphy, 697 enum nl80211_iftype iftype, 698 struct ieee80211_channel *chan) 699 { 700 struct wireless_dev *wdev; 701 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 702 703 lockdep_assert_held(&rdev->wiphy.mtx); 704 705 if (!wiphy_ext_feature_isset(&rdev->wiphy, 706 NL80211_EXT_FEATURE_DFS_CONCURRENT) || 707 !(chan->flags & IEEE80211_CHAN_DFS_CONCURRENT)) 708 return false; 709 710 /* only valid for P2P GO */ 711 if (iftype != NL80211_IFTYPE_P2P_GO) 712 return false; 713 714 /* 715 * Allow only if there's a concurrent BSS 716 */ 717 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 718 bool ret = cfg80211_dfs_permissive_check_wdev(rdev, iftype, 719 wdev, chan); 720 if (ret) 721 return ret; 722 } 723 724 return false; 725 } 726 727 static int cfg80211_get_chans_dfs_required(struct wiphy *wiphy, 728 u32 center_freq, 729 u32 bandwidth, 730 enum nl80211_iftype iftype) 731 { 732 struct ieee80211_channel *c; 733 u32 freq, start_freq, end_freq; 734 735 start_freq = cfg80211_get_start_freq(center_freq, bandwidth); 736 end_freq = cfg80211_get_end_freq(center_freq, bandwidth); 737 738 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { 739 c = ieee80211_get_channel_khz(wiphy, freq); 740 if (!c) 741 return -EINVAL; 742 743 if (c->flags & IEEE80211_CHAN_RADAR && 744 !cfg80211_dfs_permissive_chan(wiphy, iftype, c)) 745 return 1; 746 } 747 748 return 0; 749 } 750 751 752 int cfg80211_chandef_dfs_required(struct wiphy *wiphy, 753 const struct cfg80211_chan_def *chandef, 754 enum nl80211_iftype iftype) 755 { 756 int width; 757 int ret; 758 759 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 760 return -EINVAL; 761 762 switch (iftype) { 763 case NL80211_IFTYPE_ADHOC: 764 case NL80211_IFTYPE_AP: 765 case NL80211_IFTYPE_P2P_GO: 766 case NL80211_IFTYPE_MESH_POINT: 767 width = cfg80211_chandef_get_width(chandef); 768 if (width < 0) 769 return -EINVAL; 770 771 ret = cfg80211_get_chans_dfs_required(wiphy, 772 ieee80211_chandef_to_khz(chandef), 773 width, iftype); 774 if (ret < 0) 775 return ret; 776 else if (ret > 0) 777 return BIT(chandef->width); 778 779 if (!chandef->center_freq2) 780 return 0; 781 782 ret = cfg80211_get_chans_dfs_required(wiphy, 783 MHZ_TO_KHZ(chandef->center_freq2), 784 width, iftype); 785 if (ret < 0) 786 return ret; 787 else if (ret > 0) 788 return BIT(chandef->width); 789 790 break; 791 case NL80211_IFTYPE_STATION: 792 case NL80211_IFTYPE_OCB: 793 case NL80211_IFTYPE_P2P_CLIENT: 794 case NL80211_IFTYPE_MONITOR: 795 case NL80211_IFTYPE_AP_VLAN: 796 case NL80211_IFTYPE_P2P_DEVICE: 797 case NL80211_IFTYPE_NAN: 798 break; 799 case NL80211_IFTYPE_WDS: 800 case NL80211_IFTYPE_UNSPECIFIED: 801 case NUM_NL80211_IFTYPES: 802 WARN_ON(1); 803 } 804 805 return 0; 806 } 807 EXPORT_SYMBOL(cfg80211_chandef_dfs_required); 808 809 static int cfg80211_get_chans_dfs_usable(struct wiphy *wiphy, 810 u32 center_freq, 811 u32 bandwidth) 812 { 813 struct ieee80211_channel *c; 814 u32 freq, start_freq, end_freq; 815 int count = 0; 816 817 start_freq = cfg80211_get_start_freq(center_freq, bandwidth); 818 end_freq = cfg80211_get_end_freq(center_freq, bandwidth); 819 820 /* 821 * Check entire range of channels for the bandwidth. 822 * Check all channels are DFS channels (DFS_USABLE or 823 * DFS_AVAILABLE). Return number of usable channels 824 * (require CAC). Allow DFS and non-DFS channel mix. 825 */ 826 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { 827 c = ieee80211_get_channel_khz(wiphy, freq); 828 if (!c) 829 return -EINVAL; 830 831 if (c->flags & IEEE80211_CHAN_DISABLED) 832 return -EINVAL; 833 834 if (c->flags & IEEE80211_CHAN_RADAR) { 835 if (c->dfs_state == NL80211_DFS_UNAVAILABLE) 836 return -EINVAL; 837 838 if (c->dfs_state == NL80211_DFS_USABLE) 839 count++; 840 } 841 } 842 843 return count; 844 } 845 846 bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy, 847 const struct cfg80211_chan_def *chandef) 848 { 849 int width; 850 int r1, r2 = 0; 851 852 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 853 return false; 854 855 width = cfg80211_chandef_get_width(chandef); 856 if (width < 0) 857 return false; 858 859 r1 = cfg80211_get_chans_dfs_usable(wiphy, 860 MHZ_TO_KHZ(chandef->center_freq1), 861 width); 862 863 if (r1 < 0) 864 return false; 865 866 switch (chandef->width) { 867 case NL80211_CHAN_WIDTH_80P80: 868 WARN_ON(!chandef->center_freq2); 869 r2 = cfg80211_get_chans_dfs_usable(wiphy, 870 MHZ_TO_KHZ(chandef->center_freq2), 871 width); 872 if (r2 < 0) 873 return false; 874 break; 875 default: 876 WARN_ON(chandef->center_freq2); 877 break; 878 } 879 880 return (r1 + r2 > 0); 881 } 882 EXPORT_SYMBOL(cfg80211_chandef_dfs_usable); 883 884 /* 885 * Checks if center frequency of chan falls with in the bandwidth 886 * range of chandef. 887 */ 888 bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef, 889 struct ieee80211_channel *chan, 890 bool primary_only) 891 { 892 int width; 893 u32 freq; 894 895 if (!chandef->chan) 896 return false; 897 898 if (chandef->chan->center_freq == chan->center_freq) 899 return true; 900 901 if (primary_only) 902 return false; 903 904 width = cfg80211_chandef_get_width(chandef); 905 if (width <= 20) 906 return false; 907 908 for (freq = chandef->center_freq1 - width / 2 + 10; 909 freq <= chandef->center_freq1 + width / 2 - 10; freq += 20) { 910 if (chan->center_freq == freq) 911 return true; 912 } 913 914 if (!chandef->center_freq2) 915 return false; 916 917 for (freq = chandef->center_freq2 - width / 2 + 10; 918 freq <= chandef->center_freq2 + width / 2 - 10; freq += 20) { 919 if (chan->center_freq == freq) 920 return true; 921 } 922 923 return false; 924 } 925 926 bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev) 927 { 928 unsigned int link; 929 930 lockdep_assert_wiphy(wdev->wiphy); 931 932 switch (wdev->iftype) { 933 case NL80211_IFTYPE_AP: 934 case NL80211_IFTYPE_P2P_GO: 935 for_each_valid_link(wdev, link) { 936 if (wdev->links[link].ap.beacon_interval) 937 return true; 938 } 939 break; 940 case NL80211_IFTYPE_ADHOC: 941 if (wdev->u.ibss.ssid_len) 942 return true; 943 break; 944 case NL80211_IFTYPE_MESH_POINT: 945 if (wdev->u.mesh.id_len) 946 return true; 947 break; 948 case NL80211_IFTYPE_STATION: 949 case NL80211_IFTYPE_OCB: 950 case NL80211_IFTYPE_P2P_CLIENT: 951 case NL80211_IFTYPE_MONITOR: 952 case NL80211_IFTYPE_AP_VLAN: 953 case NL80211_IFTYPE_P2P_DEVICE: 954 /* Can NAN type be considered as beaconing interface? */ 955 case NL80211_IFTYPE_NAN: 956 break; 957 case NL80211_IFTYPE_UNSPECIFIED: 958 case NL80211_IFTYPE_WDS: 959 case NUM_NL80211_IFTYPES: 960 WARN_ON(1); 961 } 962 963 return false; 964 } 965 966 bool cfg80211_wdev_on_sub_chan(struct wireless_dev *wdev, 967 struct ieee80211_channel *chan, 968 bool primary_only) 969 { 970 unsigned int link; 971 972 switch (wdev->iftype) { 973 case NL80211_IFTYPE_AP: 974 case NL80211_IFTYPE_P2P_GO: 975 for_each_valid_link(wdev, link) { 976 if (cfg80211_is_sub_chan(&wdev->links[link].ap.chandef, 977 chan, primary_only)) 978 return true; 979 } 980 break; 981 case NL80211_IFTYPE_ADHOC: 982 return cfg80211_is_sub_chan(&wdev->u.ibss.chandef, chan, 983 primary_only); 984 case NL80211_IFTYPE_MESH_POINT: 985 return cfg80211_is_sub_chan(&wdev->u.mesh.chandef, chan, 986 primary_only); 987 default: 988 break; 989 } 990 991 return false; 992 } 993 994 static bool cfg80211_is_wiphy_oper_chan(struct wiphy *wiphy, 995 struct ieee80211_channel *chan) 996 { 997 struct wireless_dev *wdev; 998 999 lockdep_assert_wiphy(wiphy); 1000 1001 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1002 if (!cfg80211_beaconing_iface_active(wdev)) 1003 continue; 1004 1005 if (cfg80211_wdev_on_sub_chan(wdev, chan, false)) 1006 return true; 1007 } 1008 1009 return false; 1010 } 1011 1012 static bool 1013 cfg80211_offchan_chain_is_active(struct cfg80211_registered_device *rdev, 1014 struct ieee80211_channel *channel) 1015 { 1016 if (!rdev->background_radar_wdev) 1017 return false; 1018 1019 if (!cfg80211_chandef_valid(&rdev->background_radar_chandef)) 1020 return false; 1021 1022 return cfg80211_is_sub_chan(&rdev->background_radar_chandef, channel, 1023 false); 1024 } 1025 1026 bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy, 1027 struct ieee80211_channel *chan) 1028 { 1029 struct cfg80211_registered_device *rdev; 1030 1031 ASSERT_RTNL(); 1032 1033 if (!(chan->flags & IEEE80211_CHAN_RADAR)) 1034 return false; 1035 1036 for_each_rdev(rdev) { 1037 bool found; 1038 1039 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 1040 continue; 1041 1042 wiphy_lock(&rdev->wiphy); 1043 found = cfg80211_is_wiphy_oper_chan(&rdev->wiphy, chan) || 1044 cfg80211_offchan_chain_is_active(rdev, chan); 1045 wiphy_unlock(&rdev->wiphy); 1046 1047 if (found) 1048 return true; 1049 } 1050 1051 return false; 1052 } 1053 1054 static bool cfg80211_get_chans_dfs_available(struct wiphy *wiphy, 1055 u32 center_freq, 1056 u32 bandwidth) 1057 { 1058 struct ieee80211_channel *c; 1059 u32 freq, start_freq, end_freq; 1060 bool dfs_offload; 1061 1062 dfs_offload = wiphy_ext_feature_isset(wiphy, 1063 NL80211_EXT_FEATURE_DFS_OFFLOAD); 1064 1065 start_freq = cfg80211_get_start_freq(center_freq, bandwidth); 1066 end_freq = cfg80211_get_end_freq(center_freq, bandwidth); 1067 1068 /* 1069 * Check entire range of channels for the bandwidth. 1070 * If any channel in between is disabled or has not 1071 * had gone through CAC return false 1072 */ 1073 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { 1074 c = ieee80211_get_channel_khz(wiphy, freq); 1075 if (!c) 1076 return false; 1077 1078 if (c->flags & IEEE80211_CHAN_DISABLED) 1079 return false; 1080 1081 if ((c->flags & IEEE80211_CHAN_RADAR) && 1082 (c->dfs_state != NL80211_DFS_AVAILABLE) && 1083 !(c->dfs_state == NL80211_DFS_USABLE && dfs_offload)) 1084 return false; 1085 } 1086 1087 return true; 1088 } 1089 1090 static bool cfg80211_chandef_dfs_available(struct wiphy *wiphy, 1091 const struct cfg80211_chan_def *chandef) 1092 { 1093 int width; 1094 int r; 1095 1096 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 1097 return false; 1098 1099 width = cfg80211_chandef_get_width(chandef); 1100 if (width < 0) 1101 return false; 1102 1103 r = cfg80211_get_chans_dfs_available(wiphy, 1104 MHZ_TO_KHZ(chandef->center_freq1), 1105 width); 1106 1107 /* If any of channels unavailable for cf1 just return */ 1108 if (!r) 1109 return r; 1110 1111 switch (chandef->width) { 1112 case NL80211_CHAN_WIDTH_80P80: 1113 WARN_ON(!chandef->center_freq2); 1114 r = cfg80211_get_chans_dfs_available(wiphy, 1115 MHZ_TO_KHZ(chandef->center_freq2), 1116 width); 1117 break; 1118 default: 1119 WARN_ON(chandef->center_freq2); 1120 break; 1121 } 1122 1123 return r; 1124 } 1125 1126 static unsigned int cfg80211_get_chans_dfs_cac_time(struct wiphy *wiphy, 1127 u32 center_freq, 1128 u32 bandwidth) 1129 { 1130 struct ieee80211_channel *c; 1131 u32 start_freq, end_freq, freq; 1132 unsigned int dfs_cac_ms = 0; 1133 1134 start_freq = cfg80211_get_start_freq(center_freq, bandwidth); 1135 end_freq = cfg80211_get_end_freq(center_freq, bandwidth); 1136 1137 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { 1138 c = ieee80211_get_channel_khz(wiphy, freq); 1139 if (!c) 1140 return 0; 1141 1142 if (c->flags & IEEE80211_CHAN_DISABLED) 1143 return 0; 1144 1145 if (!(c->flags & IEEE80211_CHAN_RADAR)) 1146 continue; 1147 1148 if (c->dfs_cac_ms > dfs_cac_ms) 1149 dfs_cac_ms = c->dfs_cac_ms; 1150 } 1151 1152 return dfs_cac_ms; 1153 } 1154 1155 unsigned int 1156 cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy, 1157 const struct cfg80211_chan_def *chandef) 1158 { 1159 int width; 1160 unsigned int t1 = 0, t2 = 0; 1161 1162 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 1163 return 0; 1164 1165 width = cfg80211_chandef_get_width(chandef); 1166 if (width < 0) 1167 return 0; 1168 1169 t1 = cfg80211_get_chans_dfs_cac_time(wiphy, 1170 MHZ_TO_KHZ(chandef->center_freq1), 1171 width); 1172 1173 if (!chandef->center_freq2) 1174 return t1; 1175 1176 t2 = cfg80211_get_chans_dfs_cac_time(wiphy, 1177 MHZ_TO_KHZ(chandef->center_freq2), 1178 width); 1179 1180 return max(t1, t2); 1181 } 1182 EXPORT_SYMBOL(cfg80211_chandef_dfs_cac_time); 1183 1184 static bool cfg80211_secondary_chans_ok(struct wiphy *wiphy, 1185 u32 center_freq, u32 bandwidth, 1186 u32 prohibited_flags, 1187 u32 permitting_flags) 1188 { 1189 struct ieee80211_channel *c; 1190 u32 freq, start_freq, end_freq; 1191 1192 start_freq = cfg80211_get_start_freq(center_freq, bandwidth); 1193 end_freq = cfg80211_get_end_freq(center_freq, bandwidth); 1194 1195 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { 1196 c = ieee80211_get_channel_khz(wiphy, freq); 1197 if (!c) 1198 return false; 1199 if (c->flags & permitting_flags) 1200 continue; 1201 if (c->flags & prohibited_flags) 1202 return false; 1203 } 1204 1205 return true; 1206 } 1207 1208 /* check if the operating channels are valid and supported */ 1209 static bool cfg80211_edmg_usable(struct wiphy *wiphy, u8 edmg_channels, 1210 enum ieee80211_edmg_bw_config edmg_bw_config, 1211 int primary_channel, 1212 struct ieee80211_edmg *edmg_cap) 1213 { 1214 struct ieee80211_channel *chan; 1215 int i, freq; 1216 int channels_counter = 0; 1217 1218 if (!edmg_channels && !edmg_bw_config) 1219 return true; 1220 1221 if ((!edmg_channels && edmg_bw_config) || 1222 (edmg_channels && !edmg_bw_config)) 1223 return false; 1224 1225 if (!(edmg_channels & BIT(primary_channel - 1))) 1226 return false; 1227 1228 /* 60GHz channels 1..6 */ 1229 for (i = 0; i < 6; i++) { 1230 if (!(edmg_channels & BIT(i))) 1231 continue; 1232 1233 if (!(edmg_cap->channels & BIT(i))) 1234 return false; 1235 1236 channels_counter++; 1237 1238 freq = ieee80211_channel_to_frequency(i + 1, 1239 NL80211_BAND_60GHZ); 1240 chan = ieee80211_get_channel(wiphy, freq); 1241 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 1242 return false; 1243 } 1244 1245 /* IEEE802.11 allows max 4 channels */ 1246 if (channels_counter > 4) 1247 return false; 1248 1249 /* check bw_config is a subset of what driver supports 1250 * (see IEEE P802.11ay/D4.0 section 9.4.2.251, Table 13) 1251 */ 1252 if ((edmg_bw_config % 4) > (edmg_cap->bw_config % 4)) 1253 return false; 1254 1255 if (edmg_bw_config > edmg_cap->bw_config) 1256 return false; 1257 1258 return true; 1259 } 1260 1261 bool _cfg80211_chandef_usable(struct wiphy *wiphy, 1262 const struct cfg80211_chan_def *chandef, 1263 u32 prohibited_flags, 1264 u32 permitting_flags) 1265 { 1266 struct ieee80211_sta_ht_cap *ht_cap; 1267 struct ieee80211_sta_vht_cap *vht_cap; 1268 struct ieee80211_edmg *edmg_cap; 1269 u32 width, control_freq, cap; 1270 bool ext_nss_cap, support_80_80 = false, support_320 = false; 1271 const struct ieee80211_sband_iftype_data *iftd; 1272 struct ieee80211_supported_band *sband; 1273 int i; 1274 1275 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 1276 return false; 1277 1278 ht_cap = &wiphy->bands[chandef->chan->band]->ht_cap; 1279 vht_cap = &wiphy->bands[chandef->chan->band]->vht_cap; 1280 edmg_cap = &wiphy->bands[chandef->chan->band]->edmg_cap; 1281 ext_nss_cap = __le16_to_cpu(vht_cap->vht_mcs.tx_highest) & 1282 IEEE80211_VHT_EXT_NSS_BW_CAPABLE; 1283 1284 if (edmg_cap->channels && 1285 !cfg80211_edmg_usable(wiphy, 1286 chandef->edmg.channels, 1287 chandef->edmg.bw_config, 1288 chandef->chan->hw_value, 1289 edmg_cap)) 1290 return false; 1291 1292 control_freq = chandef->chan->center_freq; 1293 1294 switch (chandef->width) { 1295 case NL80211_CHAN_WIDTH_1: 1296 width = 1; 1297 break; 1298 case NL80211_CHAN_WIDTH_2: 1299 width = 2; 1300 break; 1301 case NL80211_CHAN_WIDTH_4: 1302 width = 4; 1303 break; 1304 case NL80211_CHAN_WIDTH_8: 1305 width = 8; 1306 break; 1307 case NL80211_CHAN_WIDTH_16: 1308 width = 16; 1309 break; 1310 case NL80211_CHAN_WIDTH_5: 1311 width = 5; 1312 break; 1313 case NL80211_CHAN_WIDTH_10: 1314 prohibited_flags |= IEEE80211_CHAN_NO_10MHZ; 1315 width = 10; 1316 break; 1317 case NL80211_CHAN_WIDTH_20: 1318 if (!ht_cap->ht_supported && 1319 chandef->chan->band != NL80211_BAND_6GHZ) 1320 return false; 1321 fallthrough; 1322 case NL80211_CHAN_WIDTH_20_NOHT: 1323 prohibited_flags |= IEEE80211_CHAN_NO_20MHZ; 1324 width = 20; 1325 break; 1326 case NL80211_CHAN_WIDTH_40: 1327 width = 40; 1328 if (chandef->chan->band == NL80211_BAND_6GHZ) 1329 break; 1330 if (!ht_cap->ht_supported) 1331 return false; 1332 if (!(ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) || 1333 ht_cap->cap & IEEE80211_HT_CAP_40MHZ_INTOLERANT) 1334 return false; 1335 if (chandef->center_freq1 < control_freq && 1336 chandef->chan->flags & IEEE80211_CHAN_NO_HT40MINUS) 1337 return false; 1338 if (chandef->center_freq1 > control_freq && 1339 chandef->chan->flags & IEEE80211_CHAN_NO_HT40PLUS) 1340 return false; 1341 break; 1342 case NL80211_CHAN_WIDTH_80P80: 1343 cap = vht_cap->cap; 1344 support_80_80 = 1345 (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 1346 (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 1347 cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 1348 (ext_nss_cap && 1349 u32_get_bits(cap, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) > 1); 1350 if (chandef->chan->band != NL80211_BAND_6GHZ && !support_80_80) 1351 return false; 1352 fallthrough; 1353 case NL80211_CHAN_WIDTH_80: 1354 prohibited_flags |= IEEE80211_CHAN_NO_80MHZ; 1355 width = 80; 1356 if (chandef->chan->band == NL80211_BAND_6GHZ) 1357 break; 1358 if (!vht_cap->vht_supported) 1359 return false; 1360 break; 1361 case NL80211_CHAN_WIDTH_160: 1362 prohibited_flags |= IEEE80211_CHAN_NO_160MHZ; 1363 width = 160; 1364 if (chandef->chan->band == NL80211_BAND_6GHZ) 1365 break; 1366 if (!vht_cap->vht_supported) 1367 return false; 1368 cap = vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK; 1369 if (cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 1370 cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ && 1371 !(ext_nss_cap && 1372 (vht_cap->cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK))) 1373 return false; 1374 break; 1375 case NL80211_CHAN_WIDTH_320: 1376 prohibited_flags |= IEEE80211_CHAN_NO_320MHZ; 1377 width = 320; 1378 1379 if (chandef->chan->band != NL80211_BAND_6GHZ) 1380 return false; 1381 1382 sband = wiphy->bands[NL80211_BAND_6GHZ]; 1383 if (!sband) 1384 return false; 1385 1386 for_each_sband_iftype_data(sband, i, iftd) { 1387 if (!iftd->eht_cap.has_eht) 1388 continue; 1389 1390 if (iftd->eht_cap.eht_cap_elem.phy_cap_info[0] & 1391 IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) { 1392 support_320 = true; 1393 break; 1394 } 1395 } 1396 1397 if (!support_320) 1398 return false; 1399 break; 1400 default: 1401 WARN_ON_ONCE(1); 1402 return false; 1403 } 1404 1405 /* 1406 * TODO: What if there are only certain 80/160/80+80 MHz channels 1407 * allowed by the driver, or only certain combinations? 1408 * For 40 MHz the driver can set the NO_HT40 flags, but for 1409 * 80/160 MHz and in particular 80+80 MHz this isn't really 1410 * feasible and we only have NO_80MHZ/NO_160MHZ so far but 1411 * no way to cover 80+80 MHz or more complex restrictions. 1412 * Note that such restrictions also need to be advertised to 1413 * userspace, for example for P2P channel selection. 1414 */ 1415 1416 if (width > 20) 1417 prohibited_flags |= IEEE80211_CHAN_NO_OFDM; 1418 1419 /* 5 and 10 MHz are only defined for the OFDM PHY */ 1420 if (width < 20) 1421 prohibited_flags |= IEEE80211_CHAN_NO_OFDM; 1422 1423 1424 if (!cfg80211_secondary_chans_ok(wiphy, 1425 ieee80211_chandef_to_khz(chandef), 1426 width, prohibited_flags, 1427 permitting_flags)) 1428 return false; 1429 1430 if (!chandef->center_freq2) 1431 return true; 1432 return cfg80211_secondary_chans_ok(wiphy, 1433 MHZ_TO_KHZ(chandef->center_freq2), 1434 width, prohibited_flags, 1435 permitting_flags); 1436 } 1437 1438 bool cfg80211_chandef_usable(struct wiphy *wiphy, 1439 const struct cfg80211_chan_def *chandef, 1440 u32 prohibited_flags) 1441 { 1442 return _cfg80211_chandef_usable(wiphy, chandef, prohibited_flags, 0); 1443 } 1444 EXPORT_SYMBOL(cfg80211_chandef_usable); 1445 1446 static bool cfg80211_ir_permissive_check_wdev(enum nl80211_iftype iftype, 1447 struct wireless_dev *wdev, 1448 struct ieee80211_channel *chan) 1449 { 1450 struct ieee80211_channel *other_chan = NULL; 1451 unsigned int link_id; 1452 int r1, r2; 1453 1454 for_each_valid_link(wdev, link_id) { 1455 if (wdev->iftype == NL80211_IFTYPE_STATION && 1456 wdev->links[link_id].client.current_bss) 1457 other_chan = wdev->links[link_id].client.current_bss->pub.channel; 1458 1459 /* 1460 * If a GO already operates on the same GO_CONCURRENT channel, 1461 * this one (maybe the same one) can beacon as well. We allow 1462 * the operation even if the station we relied on with 1463 * GO_CONCURRENT is disconnected now. But then we must make sure 1464 * we're not outdoor on an indoor-only channel. 1465 */ 1466 if (iftype == NL80211_IFTYPE_P2P_GO && 1467 wdev->iftype == NL80211_IFTYPE_P2P_GO && 1468 wdev->links[link_id].ap.beacon_interval && 1469 !(chan->flags & IEEE80211_CHAN_INDOOR_ONLY)) 1470 other_chan = wdev->links[link_id].ap.chandef.chan; 1471 1472 if (!other_chan) 1473 continue; 1474 1475 if (chan == other_chan) 1476 return true; 1477 1478 if (chan->band != NL80211_BAND_5GHZ && 1479 chan->band != NL80211_BAND_6GHZ) 1480 continue; 1481 1482 r1 = cfg80211_get_unii(chan->center_freq); 1483 r2 = cfg80211_get_unii(other_chan->center_freq); 1484 1485 if (r1 != -EINVAL && r1 == r2) { 1486 /* 1487 * At some locations channels 149-165 are considered a 1488 * bundle, but at other locations, e.g., Indonesia, 1489 * channels 149-161 are considered a bundle while 1490 * channel 165 is left out and considered to be in a 1491 * different bundle. Thus, in case that there is a 1492 * station interface connected to an AP on channel 165, 1493 * it is assumed that channels 149-161 are allowed for 1494 * GO operations. However, having a station interface 1495 * connected to an AP on channels 149-161, does not 1496 * allow GO operation on channel 165. 1497 */ 1498 if (chan->center_freq == 5825 && 1499 other_chan->center_freq != 5825) 1500 continue; 1501 return true; 1502 } 1503 } 1504 1505 return false; 1506 } 1507 1508 /* 1509 * Check if the channel can be used under permissive conditions mandated by 1510 * some regulatory bodies, i.e., the channel is marked with 1511 * IEEE80211_CHAN_IR_CONCURRENT and there is an additional station interface 1512 * associated to an AP on the same channel or on the same UNII band 1513 * (assuming that the AP is an authorized master). 1514 * In addition allow operation on a channel on which indoor operation is 1515 * allowed, iff we are currently operating in an indoor environment. 1516 */ 1517 static bool cfg80211_ir_permissive_chan(struct wiphy *wiphy, 1518 enum nl80211_iftype iftype, 1519 struct ieee80211_channel *chan) 1520 { 1521 struct wireless_dev *wdev; 1522 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1523 1524 lockdep_assert_held(&rdev->wiphy.mtx); 1525 1526 if (!IS_ENABLED(CONFIG_CFG80211_REG_RELAX_NO_IR) || 1527 !(wiphy->regulatory_flags & REGULATORY_ENABLE_RELAX_NO_IR)) 1528 return false; 1529 1530 /* only valid for GO and TDLS off-channel (station/p2p-CL) */ 1531 if (iftype != NL80211_IFTYPE_P2P_GO && 1532 iftype != NL80211_IFTYPE_STATION && 1533 iftype != NL80211_IFTYPE_P2P_CLIENT) 1534 return false; 1535 1536 if (regulatory_indoor_allowed() && 1537 (chan->flags & IEEE80211_CHAN_INDOOR_ONLY)) 1538 return true; 1539 1540 if (!(chan->flags & IEEE80211_CHAN_IR_CONCURRENT)) 1541 return false; 1542 1543 /* 1544 * Generally, it is possible to rely on another device/driver to allow 1545 * the IR concurrent relaxation, however, since the device can further 1546 * enforce the relaxation (by doing a similar verifications as this), 1547 * and thus fail the GO instantiation, consider only the interfaces of 1548 * the current registered device. 1549 */ 1550 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 1551 bool ret; 1552 1553 ret = cfg80211_ir_permissive_check_wdev(iftype, wdev, chan); 1554 if (ret) 1555 return ret; 1556 } 1557 1558 return false; 1559 } 1560 1561 static bool _cfg80211_reg_can_beacon(struct wiphy *wiphy, 1562 struct cfg80211_chan_def *chandef, 1563 enum nl80211_iftype iftype, 1564 u32 prohibited_flags, 1565 u32 permitting_flags) 1566 { 1567 bool res, check_radar; 1568 int dfs_required; 1569 1570 trace_cfg80211_reg_can_beacon(wiphy, chandef, iftype, 1571 prohibited_flags, 1572 permitting_flags); 1573 1574 if (!_cfg80211_chandef_usable(wiphy, chandef, 1575 IEEE80211_CHAN_DISABLED, 0)) 1576 return false; 1577 1578 dfs_required = cfg80211_chandef_dfs_required(wiphy, chandef, iftype); 1579 check_radar = dfs_required != 0; 1580 1581 if (dfs_required > 0 && 1582 cfg80211_chandef_dfs_available(wiphy, chandef)) { 1583 /* We can skip IEEE80211_CHAN_NO_IR if chandef dfs available */ 1584 prohibited_flags &= ~IEEE80211_CHAN_NO_IR; 1585 check_radar = false; 1586 } 1587 1588 if (check_radar && 1589 !_cfg80211_chandef_usable(wiphy, chandef, 1590 IEEE80211_CHAN_RADAR, 0)) 1591 return false; 1592 1593 res = _cfg80211_chandef_usable(wiphy, chandef, 1594 prohibited_flags, 1595 permitting_flags); 1596 1597 trace_cfg80211_return_bool(res); 1598 return res; 1599 } 1600 1601 bool cfg80211_reg_check_beaconing(struct wiphy *wiphy, 1602 struct cfg80211_chan_def *chandef, 1603 struct cfg80211_beaconing_check_config *cfg) 1604 { 1605 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1606 u32 permitting_flags = 0; 1607 bool check_no_ir = true; 1608 1609 /* 1610 * Under certain conditions suggested by some regulatory bodies a 1611 * GO/STA can IR on channels marked with IEEE80211_NO_IR. Set this flag 1612 * only if such relaxations are not enabled and the conditions are not 1613 * met. 1614 */ 1615 if (cfg->relax) { 1616 lockdep_assert_held(&rdev->wiphy.mtx); 1617 check_no_ir = !cfg80211_ir_permissive_chan(wiphy, cfg->iftype, 1618 chandef->chan); 1619 } 1620 1621 if (cfg->reg_power == IEEE80211_REG_VLP_AP) 1622 permitting_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP; 1623 1624 return _cfg80211_reg_can_beacon(wiphy, chandef, cfg->iftype, 1625 check_no_ir ? IEEE80211_CHAN_NO_IR : 0, 1626 permitting_flags); 1627 } 1628 EXPORT_SYMBOL(cfg80211_reg_check_beaconing); 1629 1630 int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev, 1631 struct net_device *dev, 1632 struct cfg80211_chan_def *chandef) 1633 { 1634 if (!rdev->ops->set_monitor_channel) 1635 return -EOPNOTSUPP; 1636 if (!cfg80211_has_monitors_only(rdev)) 1637 return -EBUSY; 1638 1639 return rdev_set_monitor_channel(rdev, dev, chandef); 1640 } 1641 1642 bool cfg80211_any_usable_channels(struct wiphy *wiphy, 1643 unsigned long sband_mask, 1644 u32 prohibited_flags) 1645 { 1646 int idx; 1647 1648 prohibited_flags |= IEEE80211_CHAN_DISABLED; 1649 1650 for_each_set_bit(idx, &sband_mask, NUM_NL80211_BANDS) { 1651 struct ieee80211_supported_band *sband = wiphy->bands[idx]; 1652 int chanidx; 1653 1654 if (!sband) 1655 continue; 1656 1657 for (chanidx = 0; chanidx < sband->n_channels; chanidx++) { 1658 struct ieee80211_channel *chan; 1659 1660 chan = &sband->channels[chanidx]; 1661 1662 if (chan->flags & prohibited_flags) 1663 continue; 1664 1665 return true; 1666 } 1667 } 1668 1669 return false; 1670 } 1671 EXPORT_SYMBOL(cfg80211_any_usable_channels); 1672 1673 struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev, 1674 unsigned int link_id) 1675 { 1676 lockdep_assert_wiphy(wdev->wiphy); 1677 1678 WARN_ON(wdev->valid_links && !(wdev->valid_links & BIT(link_id))); 1679 WARN_ON(!wdev->valid_links && link_id > 0); 1680 1681 switch (wdev->iftype) { 1682 case NL80211_IFTYPE_MESH_POINT: 1683 return &wdev->u.mesh.chandef; 1684 case NL80211_IFTYPE_ADHOC: 1685 return &wdev->u.ibss.chandef; 1686 case NL80211_IFTYPE_OCB: 1687 return &wdev->u.ocb.chandef; 1688 case NL80211_IFTYPE_AP: 1689 case NL80211_IFTYPE_P2P_GO: 1690 return &wdev->links[link_id].ap.chandef; 1691 default: 1692 return NULL; 1693 } 1694 } 1695 EXPORT_SYMBOL(wdev_chandef); 1696