xref: /linux/net/wireless/chan.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains helper code to handle channel
4  * settings and keeping track of what is possible at
5  * any point in time.
6  *
7  * Copyright 2009	Johannes Berg <johannes@sipsolutions.net>
8  * Copyright 2013-2014  Intel Mobile Communications GmbH
9  * Copyright 2018-2024	Intel Corporation
10  */
11 
12 #include <linux/export.h>
13 #include <linux/bitfield.h>
14 #include <net/cfg80211.h>
15 #include "core.h"
16 #include "rdev-ops.h"
17 
18 static bool cfg80211_valid_60g_freq(u32 freq)
19 {
20 	return freq >= 58320 && freq <= 70200;
21 }
22 
23 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef,
24 			     struct ieee80211_channel *chan,
25 			     enum nl80211_channel_type chan_type)
26 {
27 	if (WARN_ON(!chan))
28 		return;
29 
30 	*chandef = (struct cfg80211_chan_def) {
31 		.chan = chan,
32 		.freq1_offset = chan->freq_offset,
33 	};
34 
35 	switch (chan_type) {
36 	case NL80211_CHAN_NO_HT:
37 		chandef->width = NL80211_CHAN_WIDTH_20_NOHT;
38 		chandef->center_freq1 = chan->center_freq;
39 		break;
40 	case NL80211_CHAN_HT20:
41 		chandef->width = NL80211_CHAN_WIDTH_20;
42 		chandef->center_freq1 = chan->center_freq;
43 		break;
44 	case NL80211_CHAN_HT40PLUS:
45 		chandef->width = NL80211_CHAN_WIDTH_40;
46 		chandef->center_freq1 = chan->center_freq + 10;
47 		break;
48 	case NL80211_CHAN_HT40MINUS:
49 		chandef->width = NL80211_CHAN_WIDTH_40;
50 		chandef->center_freq1 = chan->center_freq - 10;
51 		break;
52 	default:
53 		WARN_ON(1);
54 	}
55 }
56 EXPORT_SYMBOL(cfg80211_chandef_create);
57 
58 struct cfg80211_per_bw_puncturing_values {
59 	u8 len;
60 	const u16 *valid_values;
61 };
62 
63 static const u16 puncturing_values_80mhz[] = {
64 	0x8, 0x4, 0x2, 0x1
65 };
66 
67 static const u16 puncturing_values_160mhz[] = {
68 	 0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1, 0xc0, 0x30, 0xc, 0x3
69 };
70 
71 static const u16 puncturing_values_320mhz[] = {
72 	0xc000, 0x3000, 0xc00, 0x300, 0xc0, 0x30, 0xc, 0x3, 0xf000, 0xf00,
73 	0xf0, 0xf, 0xfc00, 0xf300, 0xf0c0, 0xf030, 0xf00c, 0xf003, 0xc00f,
74 	0x300f, 0xc0f, 0x30f, 0xcf, 0x3f
75 };
76 
77 #define CFG80211_PER_BW_VALID_PUNCTURING_VALUES(_bw) \
78 	{ \
79 		.len = ARRAY_SIZE(puncturing_values_ ## _bw ## mhz), \
80 		.valid_values = puncturing_values_ ## _bw ## mhz \
81 	}
82 
83 static const struct cfg80211_per_bw_puncturing_values per_bw_puncturing[] = {
84 	CFG80211_PER_BW_VALID_PUNCTURING_VALUES(80),
85 	CFG80211_PER_BW_VALID_PUNCTURING_VALUES(160),
86 	CFG80211_PER_BW_VALID_PUNCTURING_VALUES(320)
87 };
88 
89 static bool valid_puncturing_bitmap(const struct cfg80211_chan_def *chandef)
90 {
91 	u32 idx, i, start_freq, primary_center = chandef->chan->center_freq;
92 
93 	switch (chandef->width) {
94 	case NL80211_CHAN_WIDTH_80:
95 		idx = 0;
96 		start_freq = chandef->center_freq1 - 40;
97 		break;
98 	case NL80211_CHAN_WIDTH_160:
99 		idx = 1;
100 		start_freq = chandef->center_freq1 - 80;
101 		break;
102 	case NL80211_CHAN_WIDTH_320:
103 		idx = 2;
104 		start_freq = chandef->center_freq1 - 160;
105 		break;
106 	default:
107 		return chandef->punctured == 0;
108 	}
109 
110 	if (!chandef->punctured)
111 		return true;
112 
113 	/* check if primary channel is punctured */
114 	if (chandef->punctured & (u16)BIT((primary_center - start_freq) / 20))
115 		return false;
116 
117 	for (i = 0; i < per_bw_puncturing[idx].len; i++) {
118 		if (per_bw_puncturing[idx].valid_values[i] == chandef->punctured)
119 			return true;
120 	}
121 
122 	return false;
123 }
124 
125 static bool cfg80211_edmg_chandef_valid(const struct cfg80211_chan_def *chandef)
126 {
127 	int max_contiguous = 0;
128 	int num_of_enabled = 0;
129 	int contiguous = 0;
130 	int i;
131 
132 	if (!chandef->edmg.channels || !chandef->edmg.bw_config)
133 		return false;
134 
135 	if (!cfg80211_valid_60g_freq(chandef->chan->center_freq))
136 		return false;
137 
138 	for (i = 0; i < 6; i++) {
139 		if (chandef->edmg.channels & BIT(i)) {
140 			contiguous++;
141 			num_of_enabled++;
142 		} else {
143 			contiguous = 0;
144 		}
145 
146 		max_contiguous = max(contiguous, max_contiguous);
147 	}
148 	/* basic verification of edmg configuration according to
149 	 * IEEE P802.11ay/D4.0 section 9.4.2.251
150 	 */
151 	/* check bw_config against contiguous edmg channels */
152 	switch (chandef->edmg.bw_config) {
153 	case IEEE80211_EDMG_BW_CONFIG_4:
154 	case IEEE80211_EDMG_BW_CONFIG_8:
155 	case IEEE80211_EDMG_BW_CONFIG_12:
156 		if (max_contiguous < 1)
157 			return false;
158 		break;
159 	case IEEE80211_EDMG_BW_CONFIG_5:
160 	case IEEE80211_EDMG_BW_CONFIG_9:
161 	case IEEE80211_EDMG_BW_CONFIG_13:
162 		if (max_contiguous < 2)
163 			return false;
164 		break;
165 	case IEEE80211_EDMG_BW_CONFIG_6:
166 	case IEEE80211_EDMG_BW_CONFIG_10:
167 	case IEEE80211_EDMG_BW_CONFIG_14:
168 		if (max_contiguous < 3)
169 			return false;
170 		break;
171 	case IEEE80211_EDMG_BW_CONFIG_7:
172 	case IEEE80211_EDMG_BW_CONFIG_11:
173 	case IEEE80211_EDMG_BW_CONFIG_15:
174 		if (max_contiguous < 4)
175 			return false;
176 		break;
177 
178 	default:
179 		return false;
180 	}
181 
182 	/* check bw_config against aggregated (non contiguous) edmg channels */
183 	switch (chandef->edmg.bw_config) {
184 	case IEEE80211_EDMG_BW_CONFIG_4:
185 	case IEEE80211_EDMG_BW_CONFIG_5:
186 	case IEEE80211_EDMG_BW_CONFIG_6:
187 	case IEEE80211_EDMG_BW_CONFIG_7:
188 		break;
189 	case IEEE80211_EDMG_BW_CONFIG_8:
190 	case IEEE80211_EDMG_BW_CONFIG_9:
191 	case IEEE80211_EDMG_BW_CONFIG_10:
192 	case IEEE80211_EDMG_BW_CONFIG_11:
193 		if (num_of_enabled < 2)
194 			return false;
195 		break;
196 	case IEEE80211_EDMG_BW_CONFIG_12:
197 	case IEEE80211_EDMG_BW_CONFIG_13:
198 	case IEEE80211_EDMG_BW_CONFIG_14:
199 	case IEEE80211_EDMG_BW_CONFIG_15:
200 		if (num_of_enabled < 4 || max_contiguous < 2)
201 			return false;
202 		break;
203 	default:
204 		return false;
205 	}
206 
207 	return true;
208 }
209 
210 int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width)
211 {
212 	int mhz;
213 
214 	switch (chan_width) {
215 	case NL80211_CHAN_WIDTH_1:
216 		mhz = 1;
217 		break;
218 	case NL80211_CHAN_WIDTH_2:
219 		mhz = 2;
220 		break;
221 	case NL80211_CHAN_WIDTH_4:
222 		mhz = 4;
223 		break;
224 	case NL80211_CHAN_WIDTH_8:
225 		mhz = 8;
226 		break;
227 	case NL80211_CHAN_WIDTH_16:
228 		mhz = 16;
229 		break;
230 	case NL80211_CHAN_WIDTH_5:
231 		mhz = 5;
232 		break;
233 	case NL80211_CHAN_WIDTH_10:
234 		mhz = 10;
235 		break;
236 	case NL80211_CHAN_WIDTH_20:
237 	case NL80211_CHAN_WIDTH_20_NOHT:
238 		mhz = 20;
239 		break;
240 	case NL80211_CHAN_WIDTH_40:
241 		mhz = 40;
242 		break;
243 	case NL80211_CHAN_WIDTH_80P80:
244 	case NL80211_CHAN_WIDTH_80:
245 		mhz = 80;
246 		break;
247 	case NL80211_CHAN_WIDTH_160:
248 		mhz = 160;
249 		break;
250 	case NL80211_CHAN_WIDTH_320:
251 		mhz = 320;
252 		break;
253 	default:
254 		WARN_ON_ONCE(1);
255 		return -1;
256 	}
257 	return mhz;
258 }
259 EXPORT_SYMBOL(nl80211_chan_width_to_mhz);
260 
261 static int cfg80211_chandef_get_width(const struct cfg80211_chan_def *c)
262 {
263 	return nl80211_chan_width_to_mhz(c->width);
264 }
265 
266 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef)
267 {
268 	u32 control_freq, oper_freq;
269 	int oper_width, control_width;
270 
271 	if (!chandef->chan)
272 		return false;
273 
274 	if (chandef->freq1_offset >= 1000)
275 		return false;
276 
277 	control_freq = chandef->chan->center_freq;
278 
279 	switch (chandef->width) {
280 	case NL80211_CHAN_WIDTH_5:
281 	case NL80211_CHAN_WIDTH_10:
282 	case NL80211_CHAN_WIDTH_20:
283 	case NL80211_CHAN_WIDTH_20_NOHT:
284 		if (ieee80211_chandef_to_khz(chandef) !=
285 		    ieee80211_channel_to_khz(chandef->chan))
286 			return false;
287 		if (chandef->center_freq2)
288 			return false;
289 		break;
290 	case NL80211_CHAN_WIDTH_1:
291 	case NL80211_CHAN_WIDTH_2:
292 	case NL80211_CHAN_WIDTH_4:
293 	case NL80211_CHAN_WIDTH_8:
294 	case NL80211_CHAN_WIDTH_16:
295 		if (chandef->chan->band != NL80211_BAND_S1GHZ)
296 			return false;
297 
298 		control_freq = ieee80211_channel_to_khz(chandef->chan);
299 		oper_freq = ieee80211_chandef_to_khz(chandef);
300 		control_width = nl80211_chan_width_to_mhz(
301 					ieee80211_s1g_channel_width(
302 								chandef->chan));
303 		oper_width = cfg80211_chandef_get_width(chandef);
304 
305 		if (oper_width < 0 || control_width < 0)
306 			return false;
307 		if (chandef->center_freq2)
308 			return false;
309 
310 		if (control_freq + MHZ_TO_KHZ(control_width) / 2 >
311 		    oper_freq + MHZ_TO_KHZ(oper_width) / 2)
312 			return false;
313 
314 		if (control_freq - MHZ_TO_KHZ(control_width) / 2 <
315 		    oper_freq - MHZ_TO_KHZ(oper_width) / 2)
316 			return false;
317 		break;
318 	case NL80211_CHAN_WIDTH_80P80:
319 		if (!chandef->center_freq2)
320 			return false;
321 		/* adjacent is not allowed -- that's a 160 MHz channel */
322 		if (chandef->center_freq1 - chandef->center_freq2 == 80 ||
323 		    chandef->center_freq2 - chandef->center_freq1 == 80)
324 			return false;
325 		break;
326 	default:
327 		if (chandef->center_freq2)
328 			return false;
329 		break;
330 	}
331 
332 	switch (chandef->width) {
333 	case NL80211_CHAN_WIDTH_5:
334 	case NL80211_CHAN_WIDTH_10:
335 	case NL80211_CHAN_WIDTH_20:
336 	case NL80211_CHAN_WIDTH_20_NOHT:
337 	case NL80211_CHAN_WIDTH_1:
338 	case NL80211_CHAN_WIDTH_2:
339 	case NL80211_CHAN_WIDTH_4:
340 	case NL80211_CHAN_WIDTH_8:
341 	case NL80211_CHAN_WIDTH_16:
342 		/* all checked above */
343 		break;
344 	case NL80211_CHAN_WIDTH_320:
345 		if (chandef->center_freq1 == control_freq + 150 ||
346 		    chandef->center_freq1 == control_freq + 130 ||
347 		    chandef->center_freq1 == control_freq + 110 ||
348 		    chandef->center_freq1 == control_freq + 90 ||
349 		    chandef->center_freq1 == control_freq - 90 ||
350 		    chandef->center_freq1 == control_freq - 110 ||
351 		    chandef->center_freq1 == control_freq - 130 ||
352 		    chandef->center_freq1 == control_freq - 150)
353 			break;
354 		fallthrough;
355 	case NL80211_CHAN_WIDTH_160:
356 		if (chandef->center_freq1 == control_freq + 70 ||
357 		    chandef->center_freq1 == control_freq + 50 ||
358 		    chandef->center_freq1 == control_freq - 50 ||
359 		    chandef->center_freq1 == control_freq - 70)
360 			break;
361 		fallthrough;
362 	case NL80211_CHAN_WIDTH_80P80:
363 	case NL80211_CHAN_WIDTH_80:
364 		if (chandef->center_freq1 == control_freq + 30 ||
365 		    chandef->center_freq1 == control_freq - 30)
366 			break;
367 		fallthrough;
368 	case NL80211_CHAN_WIDTH_40:
369 		if (chandef->center_freq1 == control_freq + 10 ||
370 		    chandef->center_freq1 == control_freq - 10)
371 			break;
372 		fallthrough;
373 	default:
374 		return false;
375 	}
376 
377 	/* channel 14 is only for IEEE 802.11b */
378 	if (chandef->center_freq1 == 2484 &&
379 	    chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
380 		return false;
381 
382 	if (cfg80211_chandef_is_edmg(chandef) &&
383 	    !cfg80211_edmg_chandef_valid(chandef))
384 		return false;
385 
386 	return valid_puncturing_bitmap(chandef);
387 }
388 EXPORT_SYMBOL(cfg80211_chandef_valid);
389 
390 int cfg80211_chandef_primary(const struct cfg80211_chan_def *c,
391 			     enum nl80211_chan_width primary_chan_width,
392 			     u16 *punctured)
393 {
394 	int pri_width = nl80211_chan_width_to_mhz(primary_chan_width);
395 	int width = cfg80211_chandef_get_width(c);
396 	u32 control = c->chan->center_freq;
397 	u32 center = c->center_freq1;
398 	u16 _punct = 0;
399 
400 	if (WARN_ON_ONCE(pri_width < 0 || width < 0))
401 		return -1;
402 
403 	/* not intended to be called this way, can't determine */
404 	if (WARN_ON_ONCE(pri_width > width))
405 		return -1;
406 
407 	if (!punctured)
408 		punctured = &_punct;
409 
410 	*punctured = c->punctured;
411 
412 	while (width > pri_width) {
413 		unsigned int bits_to_drop = width / 20 / 2;
414 
415 		if (control > center) {
416 			center += width / 4;
417 			*punctured >>= bits_to_drop;
418 		} else {
419 			center -= width / 4;
420 			*punctured &= (1 << bits_to_drop) - 1;
421 		}
422 		width /= 2;
423 	}
424 
425 	return center;
426 }
427 EXPORT_SYMBOL(cfg80211_chandef_primary);
428 
429 static const struct cfg80211_chan_def *
430 check_chandef_primary_compat(const struct cfg80211_chan_def *c1,
431 			     const struct cfg80211_chan_def *c2,
432 			     enum nl80211_chan_width primary_chan_width)
433 {
434 	u16 punct_c1 = 0, punct_c2 = 0;
435 
436 	/* check primary is compatible -> error if not */
437 	if (cfg80211_chandef_primary(c1, primary_chan_width, &punct_c1) !=
438 	    cfg80211_chandef_primary(c2, primary_chan_width, &punct_c2))
439 		return ERR_PTR(-EINVAL);
440 
441 	if (punct_c1 != punct_c2)
442 		return ERR_PTR(-EINVAL);
443 
444 	/* assumes c1 is smaller width, if that was just checked -> done */
445 	if (c1->width == primary_chan_width)
446 		return c2;
447 
448 	/* otherwise continue checking the next width */
449 	return NULL;
450 }
451 
452 static const struct cfg80211_chan_def *
453 _cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1,
454 			     const struct cfg80211_chan_def *c2)
455 {
456 	const struct cfg80211_chan_def *ret;
457 
458 	/* If they are identical, return */
459 	if (cfg80211_chandef_identical(c1, c2))
460 		return c2;
461 
462 	/* otherwise, must have same control channel */
463 	if (c1->chan != c2->chan)
464 		return NULL;
465 
466 	/*
467 	 * If they have the same width, but aren't identical,
468 	 * then they can't be compatible.
469 	 */
470 	if (c1->width == c2->width)
471 		return NULL;
472 
473 	/*
474 	 * can't be compatible if one of them is 5/10 MHz or S1G
475 	 * but they don't have the same width.
476 	 */
477 #define NARROW_OR_S1G(width)	((width) == NL80211_CHAN_WIDTH_5 || \
478 				 (width) == NL80211_CHAN_WIDTH_10 || \
479 				 (width) == NL80211_CHAN_WIDTH_1 || \
480 				 (width) == NL80211_CHAN_WIDTH_2 || \
481 				 (width) == NL80211_CHAN_WIDTH_4 || \
482 				 (width) == NL80211_CHAN_WIDTH_8 || \
483 				 (width) == NL80211_CHAN_WIDTH_16)
484 
485 	if (NARROW_OR_S1G(c1->width) || NARROW_OR_S1G(c2->width))
486 		return NULL;
487 
488 	/*
489 	 * Make sure that c1 is always the narrower one, so that later
490 	 * we either return NULL or c2 and don't have to check both
491 	 * directions.
492 	 */
493 	if (c1->width > c2->width)
494 		swap(c1, c2);
495 
496 	/*
497 	 * No further checks needed if the "narrower" one is only 20 MHz.
498 	 * Here "narrower" includes being a 20 MHz non-HT channel vs. a
499 	 * 20 MHz HT (or later) one.
500 	 */
501 	if (c1->width <= NL80211_CHAN_WIDTH_20)
502 		return c2;
503 
504 	ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_40);
505 	if (ret)
506 		return ret;
507 
508 	ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_80);
509 	if (ret)
510 		return ret;
511 
512 	/*
513 	 * If c1 is 80+80, then c2 is 160 or higher, but that cannot
514 	 * match. If c2 was also 80+80 it was already either accepted
515 	 * or rejected above (identical or not, respectively.)
516 	 */
517 	if (c1->width == NL80211_CHAN_WIDTH_80P80)
518 		return NULL;
519 
520 	ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_160);
521 	if (ret)
522 		return ret;
523 
524 	/*
525 	 * Getting here would mean they're both wider than 160, have the
526 	 * same primary 160, but are not identical - this cannot happen
527 	 * since they must be 320 (no wider chandefs exist, at least yet.)
528 	 */
529 	WARN_ON_ONCE(1);
530 
531 	return NULL;
532 }
533 
534 const struct cfg80211_chan_def *
535 cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1,
536 			    const struct cfg80211_chan_def *c2)
537 {
538 	const struct cfg80211_chan_def *ret;
539 
540 	ret = _cfg80211_chandef_compatible(c1, c2);
541 	if (IS_ERR(ret))
542 		return NULL;
543 	return ret;
544 }
545 EXPORT_SYMBOL(cfg80211_chandef_compatible);
546 
547 static void cfg80211_set_chans_dfs_state(struct wiphy *wiphy, u32 center_freq,
548 					 u32 bandwidth,
549 					 enum nl80211_dfs_state dfs_state)
550 {
551 	struct ieee80211_channel *c;
552 	u32 freq;
553 
554 	for (freq = center_freq - bandwidth/2 + 10;
555 	     freq <= center_freq + bandwidth/2 - 10;
556 	     freq += 20) {
557 		c = ieee80211_get_channel(wiphy, freq);
558 		if (!c || !(c->flags & IEEE80211_CHAN_RADAR))
559 			continue;
560 
561 		c->dfs_state = dfs_state;
562 		c->dfs_state_entered = jiffies;
563 	}
564 }
565 
566 void cfg80211_set_dfs_state(struct wiphy *wiphy,
567 			    const struct cfg80211_chan_def *chandef,
568 			    enum nl80211_dfs_state dfs_state)
569 {
570 	int width;
571 
572 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
573 		return;
574 
575 	width = cfg80211_chandef_get_width(chandef);
576 	if (width < 0)
577 		return;
578 
579 	cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq1,
580 				     width, dfs_state);
581 
582 	if (!chandef->center_freq2)
583 		return;
584 	cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq2,
585 				     width, dfs_state);
586 }
587 
588 static u32 cfg80211_get_start_freq(u32 center_freq,
589 				   u32 bandwidth)
590 {
591 	u32 start_freq;
592 
593 	bandwidth = MHZ_TO_KHZ(bandwidth);
594 	if (bandwidth <= MHZ_TO_KHZ(20))
595 		start_freq = center_freq;
596 	else
597 		start_freq = center_freq - bandwidth / 2 + MHZ_TO_KHZ(10);
598 
599 	return start_freq;
600 }
601 
602 static u32 cfg80211_get_end_freq(u32 center_freq,
603 				 u32 bandwidth)
604 {
605 	u32 end_freq;
606 
607 	bandwidth = MHZ_TO_KHZ(bandwidth);
608 	if (bandwidth <= MHZ_TO_KHZ(20))
609 		end_freq = center_freq;
610 	else
611 		end_freq = center_freq + bandwidth / 2 - MHZ_TO_KHZ(10);
612 
613 	return end_freq;
614 }
615 
616 static bool
617 cfg80211_dfs_permissive_check_wdev(struct cfg80211_registered_device *rdev,
618 				   enum nl80211_iftype iftype,
619 				   struct wireless_dev *wdev,
620 				   struct ieee80211_channel *chan)
621 {
622 	unsigned int link_id;
623 
624 	for_each_valid_link(wdev, link_id) {
625 		struct ieee80211_channel *other_chan = NULL;
626 		struct cfg80211_chan_def chandef = {};
627 		int ret;
628 
629 		/* In order to avoid daisy chaining only allow BSS STA */
630 		if (wdev->iftype != NL80211_IFTYPE_STATION ||
631 		    !wdev->links[link_id].client.current_bss)
632 			continue;
633 
634 		other_chan =
635 			wdev->links[link_id].client.current_bss->pub.channel;
636 
637 		if (!other_chan)
638 			continue;
639 
640 		if (chan == other_chan)
641 			return true;
642 
643 		/* continue if we can't get the channel */
644 		ret = rdev_get_channel(rdev, wdev, link_id, &chandef);
645 		if (ret)
646 			continue;
647 
648 		if (cfg80211_is_sub_chan(&chandef, chan, false))
649 			return true;
650 	}
651 
652 	return false;
653 }
654 
655 /*
656  * Check if P2P GO is allowed to operate on a DFS channel
657  */
658 static bool cfg80211_dfs_permissive_chan(struct wiphy *wiphy,
659 					 enum nl80211_iftype iftype,
660 					 struct ieee80211_channel *chan)
661 {
662 	struct wireless_dev *wdev;
663 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
664 
665 	lockdep_assert_held(&rdev->wiphy.mtx);
666 
667 	if (!wiphy_ext_feature_isset(&rdev->wiphy,
668 				     NL80211_EXT_FEATURE_DFS_CONCURRENT) ||
669 	    !(chan->flags & IEEE80211_CHAN_DFS_CONCURRENT))
670 		return false;
671 
672 	/* only valid for P2P GO */
673 	if (iftype != NL80211_IFTYPE_P2P_GO)
674 		return false;
675 
676 	/*
677 	 * Allow only if there's a concurrent BSS
678 	 */
679 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
680 		bool ret = cfg80211_dfs_permissive_check_wdev(rdev, iftype,
681 							      wdev, chan);
682 		if (ret)
683 			return ret;
684 	}
685 
686 	return false;
687 }
688 
689 static int cfg80211_get_chans_dfs_required(struct wiphy *wiphy,
690 					    u32 center_freq,
691 					    u32 bandwidth,
692 					    enum nl80211_iftype iftype)
693 {
694 	struct ieee80211_channel *c;
695 	u32 freq, start_freq, end_freq;
696 
697 	start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
698 	end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
699 
700 	for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
701 		c = ieee80211_get_channel_khz(wiphy, freq);
702 		if (!c)
703 			return -EINVAL;
704 
705 		if (c->flags & IEEE80211_CHAN_RADAR &&
706 		    !cfg80211_dfs_permissive_chan(wiphy, iftype, c))
707 			return 1;
708 	}
709 
710 	return 0;
711 }
712 
713 
714 int cfg80211_chandef_dfs_required(struct wiphy *wiphy,
715 				  const struct cfg80211_chan_def *chandef,
716 				  enum nl80211_iftype iftype)
717 {
718 	int width;
719 	int ret;
720 
721 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
722 		return -EINVAL;
723 
724 	switch (iftype) {
725 	case NL80211_IFTYPE_ADHOC:
726 	case NL80211_IFTYPE_AP:
727 	case NL80211_IFTYPE_P2P_GO:
728 	case NL80211_IFTYPE_MESH_POINT:
729 		width = cfg80211_chandef_get_width(chandef);
730 		if (width < 0)
731 			return -EINVAL;
732 
733 		ret = cfg80211_get_chans_dfs_required(wiphy,
734 					ieee80211_chandef_to_khz(chandef),
735 					width, iftype);
736 		if (ret < 0)
737 			return ret;
738 		else if (ret > 0)
739 			return BIT(chandef->width);
740 
741 		if (!chandef->center_freq2)
742 			return 0;
743 
744 		ret = cfg80211_get_chans_dfs_required(wiphy,
745 					MHZ_TO_KHZ(chandef->center_freq2),
746 					width, iftype);
747 		if (ret < 0)
748 			return ret;
749 		else if (ret > 0)
750 			return BIT(chandef->width);
751 
752 		break;
753 	case NL80211_IFTYPE_STATION:
754 	case NL80211_IFTYPE_OCB:
755 	case NL80211_IFTYPE_P2P_CLIENT:
756 	case NL80211_IFTYPE_MONITOR:
757 	case NL80211_IFTYPE_AP_VLAN:
758 	case NL80211_IFTYPE_P2P_DEVICE:
759 	case NL80211_IFTYPE_NAN:
760 		break;
761 	case NL80211_IFTYPE_WDS:
762 	case NL80211_IFTYPE_UNSPECIFIED:
763 	case NUM_NL80211_IFTYPES:
764 		WARN_ON(1);
765 	}
766 
767 	return 0;
768 }
769 EXPORT_SYMBOL(cfg80211_chandef_dfs_required);
770 
771 static int cfg80211_get_chans_dfs_usable(struct wiphy *wiphy,
772 					 u32 center_freq,
773 					 u32 bandwidth)
774 {
775 	struct ieee80211_channel *c;
776 	u32 freq, start_freq, end_freq;
777 	int count = 0;
778 
779 	start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
780 	end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
781 
782 	/*
783 	 * Check entire range of channels for the bandwidth.
784 	 * Check all channels are DFS channels (DFS_USABLE or
785 	 * DFS_AVAILABLE). Return number of usable channels
786 	 * (require CAC). Allow DFS and non-DFS channel mix.
787 	 */
788 	for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
789 		c = ieee80211_get_channel_khz(wiphy, freq);
790 		if (!c)
791 			return -EINVAL;
792 
793 		if (c->flags & IEEE80211_CHAN_DISABLED)
794 			return -EINVAL;
795 
796 		if (c->flags & IEEE80211_CHAN_RADAR) {
797 			if (c->dfs_state == NL80211_DFS_UNAVAILABLE)
798 				return -EINVAL;
799 
800 			if (c->dfs_state == NL80211_DFS_USABLE)
801 				count++;
802 		}
803 	}
804 
805 	return count;
806 }
807 
808 bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy,
809 				 const struct cfg80211_chan_def *chandef)
810 {
811 	int width;
812 	int r1, r2 = 0;
813 
814 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
815 		return false;
816 
817 	width = cfg80211_chandef_get_width(chandef);
818 	if (width < 0)
819 		return false;
820 
821 	r1 = cfg80211_get_chans_dfs_usable(wiphy,
822 					   MHZ_TO_KHZ(chandef->center_freq1),
823 					   width);
824 
825 	if (r1 < 0)
826 		return false;
827 
828 	switch (chandef->width) {
829 	case NL80211_CHAN_WIDTH_80P80:
830 		WARN_ON(!chandef->center_freq2);
831 		r2 = cfg80211_get_chans_dfs_usable(wiphy,
832 					MHZ_TO_KHZ(chandef->center_freq2),
833 					width);
834 		if (r2 < 0)
835 			return false;
836 		break;
837 	default:
838 		WARN_ON(chandef->center_freq2);
839 		break;
840 	}
841 
842 	return (r1 + r2 > 0);
843 }
844 EXPORT_SYMBOL(cfg80211_chandef_dfs_usable);
845 
846 /*
847  * Checks if center frequency of chan falls with in the bandwidth
848  * range of chandef.
849  */
850 bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef,
851 			  struct ieee80211_channel *chan,
852 			  bool primary_only)
853 {
854 	int width;
855 	u32 freq;
856 
857 	if (!chandef->chan)
858 		return false;
859 
860 	if (chandef->chan->center_freq == chan->center_freq)
861 		return true;
862 
863 	if (primary_only)
864 		return false;
865 
866 	width = cfg80211_chandef_get_width(chandef);
867 	if (width <= 20)
868 		return false;
869 
870 	for (freq = chandef->center_freq1 - width / 2 + 10;
871 	     freq <= chandef->center_freq1 + width / 2 - 10; freq += 20) {
872 		if (chan->center_freq == freq)
873 			return true;
874 	}
875 
876 	if (!chandef->center_freq2)
877 		return false;
878 
879 	for (freq = chandef->center_freq2 - width / 2 + 10;
880 	     freq <= chandef->center_freq2 + width / 2 - 10; freq += 20) {
881 		if (chan->center_freq == freq)
882 			return true;
883 	}
884 
885 	return false;
886 }
887 
888 bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev)
889 {
890 	unsigned int link;
891 
892 	lockdep_assert_wiphy(wdev->wiphy);
893 
894 	switch (wdev->iftype) {
895 	case NL80211_IFTYPE_AP:
896 	case NL80211_IFTYPE_P2P_GO:
897 		for_each_valid_link(wdev, link) {
898 			if (wdev->links[link].ap.beacon_interval)
899 				return true;
900 		}
901 		break;
902 	case NL80211_IFTYPE_ADHOC:
903 		if (wdev->u.ibss.ssid_len)
904 			return true;
905 		break;
906 	case NL80211_IFTYPE_MESH_POINT:
907 		if (wdev->u.mesh.id_len)
908 			return true;
909 		break;
910 	case NL80211_IFTYPE_STATION:
911 	case NL80211_IFTYPE_OCB:
912 	case NL80211_IFTYPE_P2P_CLIENT:
913 	case NL80211_IFTYPE_MONITOR:
914 	case NL80211_IFTYPE_AP_VLAN:
915 	case NL80211_IFTYPE_P2P_DEVICE:
916 	/* Can NAN type be considered as beaconing interface? */
917 	case NL80211_IFTYPE_NAN:
918 		break;
919 	case NL80211_IFTYPE_UNSPECIFIED:
920 	case NL80211_IFTYPE_WDS:
921 	case NUM_NL80211_IFTYPES:
922 		WARN_ON(1);
923 	}
924 
925 	return false;
926 }
927 
928 bool cfg80211_wdev_on_sub_chan(struct wireless_dev *wdev,
929 			       struct ieee80211_channel *chan,
930 			       bool primary_only)
931 {
932 	unsigned int link;
933 
934 	switch (wdev->iftype) {
935 	case NL80211_IFTYPE_AP:
936 	case NL80211_IFTYPE_P2P_GO:
937 		for_each_valid_link(wdev, link) {
938 			if (cfg80211_is_sub_chan(&wdev->links[link].ap.chandef,
939 						 chan, primary_only))
940 				return true;
941 		}
942 		break;
943 	case NL80211_IFTYPE_ADHOC:
944 		return cfg80211_is_sub_chan(&wdev->u.ibss.chandef, chan,
945 					    primary_only);
946 	case NL80211_IFTYPE_MESH_POINT:
947 		return cfg80211_is_sub_chan(&wdev->u.mesh.chandef, chan,
948 					    primary_only);
949 	default:
950 		break;
951 	}
952 
953 	return false;
954 }
955 
956 static bool cfg80211_is_wiphy_oper_chan(struct wiphy *wiphy,
957 					struct ieee80211_channel *chan)
958 {
959 	struct wireless_dev *wdev;
960 
961 	lockdep_assert_wiphy(wiphy);
962 
963 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
964 		if (!cfg80211_beaconing_iface_active(wdev))
965 			continue;
966 
967 		if (cfg80211_wdev_on_sub_chan(wdev, chan, false))
968 			return true;
969 	}
970 
971 	return false;
972 }
973 
974 static bool
975 cfg80211_offchan_chain_is_active(struct cfg80211_registered_device *rdev,
976 				 struct ieee80211_channel *channel)
977 {
978 	if (!rdev->background_radar_wdev)
979 		return false;
980 
981 	if (!cfg80211_chandef_valid(&rdev->background_radar_chandef))
982 		return false;
983 
984 	return cfg80211_is_sub_chan(&rdev->background_radar_chandef, channel,
985 				    false);
986 }
987 
988 bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy,
989 				  struct ieee80211_channel *chan)
990 {
991 	struct cfg80211_registered_device *rdev;
992 
993 	ASSERT_RTNL();
994 
995 	if (!(chan->flags & IEEE80211_CHAN_RADAR))
996 		return false;
997 
998 	for_each_rdev(rdev) {
999 		bool found;
1000 
1001 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
1002 			continue;
1003 
1004 		wiphy_lock(&rdev->wiphy);
1005 		found = cfg80211_is_wiphy_oper_chan(&rdev->wiphy, chan) ||
1006 			cfg80211_offchan_chain_is_active(rdev, chan);
1007 		wiphy_unlock(&rdev->wiphy);
1008 
1009 		if (found)
1010 			return true;
1011 	}
1012 
1013 	return false;
1014 }
1015 
1016 static bool cfg80211_get_chans_dfs_available(struct wiphy *wiphy,
1017 					     u32 center_freq,
1018 					     u32 bandwidth)
1019 {
1020 	struct ieee80211_channel *c;
1021 	u32 freq, start_freq, end_freq;
1022 	bool dfs_offload;
1023 
1024 	dfs_offload = wiphy_ext_feature_isset(wiphy,
1025 					      NL80211_EXT_FEATURE_DFS_OFFLOAD);
1026 
1027 	start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
1028 	end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
1029 
1030 	/*
1031 	 * Check entire range of channels for the bandwidth.
1032 	 * If any channel in between is disabled or has not
1033 	 * had gone through CAC return false
1034 	 */
1035 	for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
1036 		c = ieee80211_get_channel_khz(wiphy, freq);
1037 		if (!c)
1038 			return false;
1039 
1040 		if (c->flags & IEEE80211_CHAN_DISABLED)
1041 			return false;
1042 
1043 		if ((c->flags & IEEE80211_CHAN_RADAR) &&
1044 		    (c->dfs_state != NL80211_DFS_AVAILABLE) &&
1045 		    !(c->dfs_state == NL80211_DFS_USABLE && dfs_offload))
1046 			return false;
1047 	}
1048 
1049 	return true;
1050 }
1051 
1052 static bool cfg80211_chandef_dfs_available(struct wiphy *wiphy,
1053 				const struct cfg80211_chan_def *chandef)
1054 {
1055 	int width;
1056 	int r;
1057 
1058 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1059 		return false;
1060 
1061 	width = cfg80211_chandef_get_width(chandef);
1062 	if (width < 0)
1063 		return false;
1064 
1065 	r = cfg80211_get_chans_dfs_available(wiphy,
1066 					     MHZ_TO_KHZ(chandef->center_freq1),
1067 					     width);
1068 
1069 	/* If any of channels unavailable for cf1 just return */
1070 	if (!r)
1071 		return r;
1072 
1073 	switch (chandef->width) {
1074 	case NL80211_CHAN_WIDTH_80P80:
1075 		WARN_ON(!chandef->center_freq2);
1076 		r = cfg80211_get_chans_dfs_available(wiphy,
1077 					MHZ_TO_KHZ(chandef->center_freq2),
1078 					width);
1079 		break;
1080 	default:
1081 		WARN_ON(chandef->center_freq2);
1082 		break;
1083 	}
1084 
1085 	return r;
1086 }
1087 
1088 static unsigned int cfg80211_get_chans_dfs_cac_time(struct wiphy *wiphy,
1089 						    u32 center_freq,
1090 						    u32 bandwidth)
1091 {
1092 	struct ieee80211_channel *c;
1093 	u32 start_freq, end_freq, freq;
1094 	unsigned int dfs_cac_ms = 0;
1095 
1096 	start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
1097 	end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
1098 
1099 	for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
1100 		c = ieee80211_get_channel_khz(wiphy, freq);
1101 		if (!c)
1102 			return 0;
1103 
1104 		if (c->flags & IEEE80211_CHAN_DISABLED)
1105 			return 0;
1106 
1107 		if (!(c->flags & IEEE80211_CHAN_RADAR))
1108 			continue;
1109 
1110 		if (c->dfs_cac_ms > dfs_cac_ms)
1111 			dfs_cac_ms = c->dfs_cac_ms;
1112 	}
1113 
1114 	return dfs_cac_ms;
1115 }
1116 
1117 unsigned int
1118 cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy,
1119 			      const struct cfg80211_chan_def *chandef)
1120 {
1121 	int width;
1122 	unsigned int t1 = 0, t2 = 0;
1123 
1124 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1125 		return 0;
1126 
1127 	width = cfg80211_chandef_get_width(chandef);
1128 	if (width < 0)
1129 		return 0;
1130 
1131 	t1 = cfg80211_get_chans_dfs_cac_time(wiphy,
1132 					     MHZ_TO_KHZ(chandef->center_freq1),
1133 					     width);
1134 
1135 	if (!chandef->center_freq2)
1136 		return t1;
1137 
1138 	t2 = cfg80211_get_chans_dfs_cac_time(wiphy,
1139 					     MHZ_TO_KHZ(chandef->center_freq2),
1140 					     width);
1141 
1142 	return max(t1, t2);
1143 }
1144 EXPORT_SYMBOL(cfg80211_chandef_dfs_cac_time);
1145 
1146 static bool cfg80211_secondary_chans_ok(struct wiphy *wiphy,
1147 					u32 center_freq, u32 bandwidth,
1148 					u32 prohibited_flags, bool monitor)
1149 {
1150 	struct ieee80211_channel *c;
1151 	u32 freq, start_freq, end_freq;
1152 
1153 	start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
1154 	end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
1155 
1156 	for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
1157 		c = ieee80211_get_channel_khz(wiphy, freq);
1158 		if (!c)
1159 			return false;
1160 		if (monitor && c->flags & IEEE80211_CHAN_CAN_MONITOR)
1161 			continue;
1162 		if (c->flags & prohibited_flags)
1163 			return false;
1164 	}
1165 
1166 	return true;
1167 }
1168 
1169 /* check if the operating channels are valid and supported */
1170 static bool cfg80211_edmg_usable(struct wiphy *wiphy, u8 edmg_channels,
1171 				 enum ieee80211_edmg_bw_config edmg_bw_config,
1172 				 int primary_channel,
1173 				 struct ieee80211_edmg *edmg_cap)
1174 {
1175 	struct ieee80211_channel *chan;
1176 	int i, freq;
1177 	int channels_counter = 0;
1178 
1179 	if (!edmg_channels && !edmg_bw_config)
1180 		return true;
1181 
1182 	if ((!edmg_channels && edmg_bw_config) ||
1183 	    (edmg_channels && !edmg_bw_config))
1184 		return false;
1185 
1186 	if (!(edmg_channels & BIT(primary_channel - 1)))
1187 		return false;
1188 
1189 	/* 60GHz channels 1..6 */
1190 	for (i = 0; i < 6; i++) {
1191 		if (!(edmg_channels & BIT(i)))
1192 			continue;
1193 
1194 		if (!(edmg_cap->channels & BIT(i)))
1195 			return false;
1196 
1197 		channels_counter++;
1198 
1199 		freq = ieee80211_channel_to_frequency(i + 1,
1200 						      NL80211_BAND_60GHZ);
1201 		chan = ieee80211_get_channel(wiphy, freq);
1202 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
1203 			return false;
1204 	}
1205 
1206 	/* IEEE802.11 allows max 4 channels */
1207 	if (channels_counter > 4)
1208 		return false;
1209 
1210 	/* check bw_config is a subset of what driver supports
1211 	 * (see IEEE P802.11ay/D4.0 section 9.4.2.251, Table 13)
1212 	 */
1213 	if ((edmg_bw_config % 4) > (edmg_cap->bw_config % 4))
1214 		return false;
1215 
1216 	if (edmg_bw_config > edmg_cap->bw_config)
1217 		return false;
1218 
1219 	return true;
1220 }
1221 
1222 bool _cfg80211_chandef_usable(struct wiphy *wiphy,
1223 			      const struct cfg80211_chan_def *chandef,
1224 			      u32 prohibited_flags, bool monitor)
1225 {
1226 	struct ieee80211_sta_ht_cap *ht_cap;
1227 	struct ieee80211_sta_vht_cap *vht_cap;
1228 	struct ieee80211_edmg *edmg_cap;
1229 	u32 width, control_freq, cap;
1230 	bool ext_nss_cap, support_80_80 = false, support_320 = false;
1231 	const struct ieee80211_sband_iftype_data *iftd;
1232 	struct ieee80211_supported_band *sband;
1233 	int i;
1234 
1235 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1236 		return false;
1237 
1238 	ht_cap = &wiphy->bands[chandef->chan->band]->ht_cap;
1239 	vht_cap = &wiphy->bands[chandef->chan->band]->vht_cap;
1240 	edmg_cap = &wiphy->bands[chandef->chan->band]->edmg_cap;
1241 	ext_nss_cap = __le16_to_cpu(vht_cap->vht_mcs.tx_highest) &
1242 			IEEE80211_VHT_EXT_NSS_BW_CAPABLE;
1243 
1244 	if (edmg_cap->channels &&
1245 	    !cfg80211_edmg_usable(wiphy,
1246 				  chandef->edmg.channels,
1247 				  chandef->edmg.bw_config,
1248 				  chandef->chan->hw_value,
1249 				  edmg_cap))
1250 		return false;
1251 
1252 	control_freq = chandef->chan->center_freq;
1253 
1254 	switch (chandef->width) {
1255 	case NL80211_CHAN_WIDTH_1:
1256 		width = 1;
1257 		break;
1258 	case NL80211_CHAN_WIDTH_2:
1259 		width = 2;
1260 		break;
1261 	case NL80211_CHAN_WIDTH_4:
1262 		width = 4;
1263 		break;
1264 	case NL80211_CHAN_WIDTH_8:
1265 		width = 8;
1266 		break;
1267 	case NL80211_CHAN_WIDTH_16:
1268 		width = 16;
1269 		break;
1270 	case NL80211_CHAN_WIDTH_5:
1271 		width = 5;
1272 		break;
1273 	case NL80211_CHAN_WIDTH_10:
1274 		prohibited_flags |= IEEE80211_CHAN_NO_10MHZ;
1275 		width = 10;
1276 		break;
1277 	case NL80211_CHAN_WIDTH_20:
1278 		if (!ht_cap->ht_supported &&
1279 		    chandef->chan->band != NL80211_BAND_6GHZ)
1280 			return false;
1281 		fallthrough;
1282 	case NL80211_CHAN_WIDTH_20_NOHT:
1283 		prohibited_flags |= IEEE80211_CHAN_NO_20MHZ;
1284 		width = 20;
1285 		break;
1286 	case NL80211_CHAN_WIDTH_40:
1287 		width = 40;
1288 		if (chandef->chan->band == NL80211_BAND_6GHZ)
1289 			break;
1290 		if (!ht_cap->ht_supported)
1291 			return false;
1292 		if (!(ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) ||
1293 		    ht_cap->cap & IEEE80211_HT_CAP_40MHZ_INTOLERANT)
1294 			return false;
1295 		if (chandef->center_freq1 < control_freq &&
1296 		    chandef->chan->flags & IEEE80211_CHAN_NO_HT40MINUS)
1297 			return false;
1298 		if (chandef->center_freq1 > control_freq &&
1299 		    chandef->chan->flags & IEEE80211_CHAN_NO_HT40PLUS)
1300 			return false;
1301 		break;
1302 	case NL80211_CHAN_WIDTH_80P80:
1303 		cap = vht_cap->cap;
1304 		support_80_80 =
1305 			(cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) ||
1306 			(cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
1307 			 cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) ||
1308 			(ext_nss_cap &&
1309 			 u32_get_bits(cap, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) > 1);
1310 		if (chandef->chan->band != NL80211_BAND_6GHZ && !support_80_80)
1311 			return false;
1312 		fallthrough;
1313 	case NL80211_CHAN_WIDTH_80:
1314 		prohibited_flags |= IEEE80211_CHAN_NO_80MHZ;
1315 		width = 80;
1316 		if (chandef->chan->band == NL80211_BAND_6GHZ)
1317 			break;
1318 		if (!vht_cap->vht_supported)
1319 			return false;
1320 		break;
1321 	case NL80211_CHAN_WIDTH_160:
1322 		prohibited_flags |= IEEE80211_CHAN_NO_160MHZ;
1323 		width = 160;
1324 		if (chandef->chan->band == NL80211_BAND_6GHZ)
1325 			break;
1326 		if (!vht_cap->vht_supported)
1327 			return false;
1328 		cap = vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK;
1329 		if (cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
1330 		    cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ &&
1331 		    !(ext_nss_cap &&
1332 		      (vht_cap->cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)))
1333 			return false;
1334 		break;
1335 	case NL80211_CHAN_WIDTH_320:
1336 		prohibited_flags |= IEEE80211_CHAN_NO_320MHZ;
1337 		width = 320;
1338 
1339 		if (chandef->chan->band != NL80211_BAND_6GHZ)
1340 			return false;
1341 
1342 		sband = wiphy->bands[NL80211_BAND_6GHZ];
1343 		if (!sband)
1344 			return false;
1345 
1346 		for_each_sband_iftype_data(sband, i, iftd) {
1347 			if (!iftd->eht_cap.has_eht)
1348 				continue;
1349 
1350 			if (iftd->eht_cap.eht_cap_elem.phy_cap_info[0] &
1351 			    IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) {
1352 				support_320 = true;
1353 				break;
1354 			}
1355 		}
1356 
1357 		if (!support_320)
1358 			return false;
1359 		break;
1360 	default:
1361 		WARN_ON_ONCE(1);
1362 		return false;
1363 	}
1364 
1365 	/*
1366 	 * TODO: What if there are only certain 80/160/80+80 MHz channels
1367 	 *	 allowed by the driver, or only certain combinations?
1368 	 *	 For 40 MHz the driver can set the NO_HT40 flags, but for
1369 	 *	 80/160 MHz and in particular 80+80 MHz this isn't really
1370 	 *	 feasible and we only have NO_80MHZ/NO_160MHZ so far but
1371 	 *	 no way to cover 80+80 MHz or more complex restrictions.
1372 	 *	 Note that such restrictions also need to be advertised to
1373 	 *	 userspace, for example for P2P channel selection.
1374 	 */
1375 
1376 	if (width > 20)
1377 		prohibited_flags |= IEEE80211_CHAN_NO_OFDM;
1378 
1379 	/* 5 and 10 MHz are only defined for the OFDM PHY */
1380 	if (width < 20)
1381 		prohibited_flags |= IEEE80211_CHAN_NO_OFDM;
1382 
1383 
1384 	if (!cfg80211_secondary_chans_ok(wiphy,
1385 					 ieee80211_chandef_to_khz(chandef),
1386 					 width, prohibited_flags, monitor))
1387 		return false;
1388 
1389 	if (!chandef->center_freq2)
1390 		return true;
1391 	return cfg80211_secondary_chans_ok(wiphy,
1392 					   MHZ_TO_KHZ(chandef->center_freq2),
1393 					   width, prohibited_flags, monitor);
1394 }
1395 
1396 bool cfg80211_chandef_usable(struct wiphy *wiphy,
1397 			     const struct cfg80211_chan_def *chandef,
1398 			     u32 prohibited_flags)
1399 {
1400 	return _cfg80211_chandef_usable(wiphy, chandef, prohibited_flags,
1401 					false);
1402 }
1403 EXPORT_SYMBOL(cfg80211_chandef_usable);
1404 
1405 static bool cfg80211_ir_permissive_check_wdev(enum nl80211_iftype iftype,
1406 					      struct wireless_dev *wdev,
1407 					      struct ieee80211_channel *chan)
1408 {
1409 	struct ieee80211_channel *other_chan = NULL;
1410 	unsigned int link_id;
1411 	int r1, r2;
1412 
1413 	for_each_valid_link(wdev, link_id) {
1414 		if (wdev->iftype == NL80211_IFTYPE_STATION &&
1415 		    wdev->links[link_id].client.current_bss)
1416 			other_chan = wdev->links[link_id].client.current_bss->pub.channel;
1417 
1418 		/*
1419 		 * If a GO already operates on the same GO_CONCURRENT channel,
1420 		 * this one (maybe the same one) can beacon as well. We allow
1421 		 * the operation even if the station we relied on with
1422 		 * GO_CONCURRENT is disconnected now. But then we must make sure
1423 		 * we're not outdoor on an indoor-only channel.
1424 		 */
1425 		if (iftype == NL80211_IFTYPE_P2P_GO &&
1426 		    wdev->iftype == NL80211_IFTYPE_P2P_GO &&
1427 		    wdev->links[link_id].ap.beacon_interval &&
1428 		    !(chan->flags & IEEE80211_CHAN_INDOOR_ONLY))
1429 			other_chan = wdev->links[link_id].ap.chandef.chan;
1430 
1431 		if (!other_chan)
1432 			continue;
1433 
1434 		if (chan == other_chan)
1435 			return true;
1436 
1437 		if (chan->band != NL80211_BAND_5GHZ &&
1438 		    chan->band != NL80211_BAND_6GHZ)
1439 			continue;
1440 
1441 		r1 = cfg80211_get_unii(chan->center_freq);
1442 		r2 = cfg80211_get_unii(other_chan->center_freq);
1443 
1444 		if (r1 != -EINVAL && r1 == r2) {
1445 			/*
1446 			 * At some locations channels 149-165 are considered a
1447 			 * bundle, but at other locations, e.g., Indonesia,
1448 			 * channels 149-161 are considered a bundle while
1449 			 * channel 165 is left out and considered to be in a
1450 			 * different bundle. Thus, in case that there is a
1451 			 * station interface connected to an AP on channel 165,
1452 			 * it is assumed that channels 149-161 are allowed for
1453 			 * GO operations. However, having a station interface
1454 			 * connected to an AP on channels 149-161, does not
1455 			 * allow GO operation on channel 165.
1456 			 */
1457 			if (chan->center_freq == 5825 &&
1458 			    other_chan->center_freq != 5825)
1459 				continue;
1460 			return true;
1461 		}
1462 	}
1463 
1464 	return false;
1465 }
1466 
1467 /*
1468  * Check if the channel can be used under permissive conditions mandated by
1469  * some regulatory bodies, i.e., the channel is marked with
1470  * IEEE80211_CHAN_IR_CONCURRENT and there is an additional station interface
1471  * associated to an AP on the same channel or on the same UNII band
1472  * (assuming that the AP is an authorized master).
1473  * In addition allow operation on a channel on which indoor operation is
1474  * allowed, iff we are currently operating in an indoor environment.
1475  */
1476 static bool cfg80211_ir_permissive_chan(struct wiphy *wiphy,
1477 					enum nl80211_iftype iftype,
1478 					struct ieee80211_channel *chan)
1479 {
1480 	struct wireless_dev *wdev;
1481 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1482 
1483 	lockdep_assert_held(&rdev->wiphy.mtx);
1484 
1485 	if (!IS_ENABLED(CONFIG_CFG80211_REG_RELAX_NO_IR) ||
1486 	    !(wiphy->regulatory_flags & REGULATORY_ENABLE_RELAX_NO_IR))
1487 		return false;
1488 
1489 	/* only valid for GO and TDLS off-channel (station/p2p-CL) */
1490 	if (iftype != NL80211_IFTYPE_P2P_GO &&
1491 	    iftype != NL80211_IFTYPE_STATION &&
1492 	    iftype != NL80211_IFTYPE_P2P_CLIENT)
1493 		return false;
1494 
1495 	if (regulatory_indoor_allowed() &&
1496 	    (chan->flags & IEEE80211_CHAN_INDOOR_ONLY))
1497 		return true;
1498 
1499 	if (!(chan->flags & IEEE80211_CHAN_IR_CONCURRENT))
1500 		return false;
1501 
1502 	/*
1503 	 * Generally, it is possible to rely on another device/driver to allow
1504 	 * the IR concurrent relaxation, however, since the device can further
1505 	 * enforce the relaxation (by doing a similar verifications as this),
1506 	 * and thus fail the GO instantiation, consider only the interfaces of
1507 	 * the current registered device.
1508 	 */
1509 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
1510 		bool ret;
1511 
1512 		ret = cfg80211_ir_permissive_check_wdev(iftype, wdev, chan);
1513 		if (ret)
1514 			return ret;
1515 	}
1516 
1517 	return false;
1518 }
1519 
1520 static bool _cfg80211_reg_can_beacon(struct wiphy *wiphy,
1521 				     struct cfg80211_chan_def *chandef,
1522 				     enum nl80211_iftype iftype,
1523 				     bool check_no_ir)
1524 {
1525 	bool res;
1526 	u32 prohibited_flags = IEEE80211_CHAN_DISABLED;
1527 	int dfs_required;
1528 
1529 	trace_cfg80211_reg_can_beacon(wiphy, chandef, iftype, check_no_ir);
1530 
1531 	if (check_no_ir)
1532 		prohibited_flags |= IEEE80211_CHAN_NO_IR;
1533 
1534 	dfs_required = cfg80211_chandef_dfs_required(wiphy, chandef, iftype);
1535 	if (dfs_required != 0)
1536 		prohibited_flags |= IEEE80211_CHAN_RADAR;
1537 
1538 	if (dfs_required > 0 &&
1539 	    cfg80211_chandef_dfs_available(wiphy, chandef)) {
1540 		/* We can skip IEEE80211_CHAN_NO_IR if chandef dfs available */
1541 		prohibited_flags = IEEE80211_CHAN_DISABLED;
1542 	}
1543 
1544 	res = cfg80211_chandef_usable(wiphy, chandef, prohibited_flags);
1545 
1546 	trace_cfg80211_return_bool(res);
1547 	return res;
1548 }
1549 
1550 bool cfg80211_reg_can_beacon(struct wiphy *wiphy,
1551 			     struct cfg80211_chan_def *chandef,
1552 			     enum nl80211_iftype iftype)
1553 {
1554 	return _cfg80211_reg_can_beacon(wiphy, chandef, iftype, true);
1555 }
1556 EXPORT_SYMBOL(cfg80211_reg_can_beacon);
1557 
1558 bool cfg80211_reg_can_beacon_relax(struct wiphy *wiphy,
1559 				   struct cfg80211_chan_def *chandef,
1560 				   enum nl80211_iftype iftype)
1561 {
1562 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1563 	bool check_no_ir;
1564 
1565 	lockdep_assert_held(&rdev->wiphy.mtx);
1566 
1567 	/*
1568 	 * Under certain conditions suggested by some regulatory bodies a
1569 	 * GO/STA can IR on channels marked with IEEE80211_NO_IR. Set this flag
1570 	 * only if such relaxations are not enabled and the conditions are not
1571 	 * met.
1572 	 */
1573 	check_no_ir = !cfg80211_ir_permissive_chan(wiphy, iftype,
1574 						   chandef->chan);
1575 
1576 	return _cfg80211_reg_can_beacon(wiphy, chandef, iftype, check_no_ir);
1577 }
1578 EXPORT_SYMBOL(cfg80211_reg_can_beacon_relax);
1579 
1580 int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev,
1581 				 struct cfg80211_chan_def *chandef)
1582 {
1583 	if (!rdev->ops->set_monitor_channel)
1584 		return -EOPNOTSUPP;
1585 	if (!cfg80211_has_monitors_only(rdev))
1586 		return -EBUSY;
1587 
1588 	return rdev_set_monitor_channel(rdev, chandef);
1589 }
1590 
1591 bool cfg80211_any_usable_channels(struct wiphy *wiphy,
1592 				  unsigned long sband_mask,
1593 				  u32 prohibited_flags)
1594 {
1595 	int idx;
1596 
1597 	prohibited_flags |= IEEE80211_CHAN_DISABLED;
1598 
1599 	for_each_set_bit(idx, &sband_mask, NUM_NL80211_BANDS) {
1600 		struct ieee80211_supported_band *sband = wiphy->bands[idx];
1601 		int chanidx;
1602 
1603 		if (!sband)
1604 			continue;
1605 
1606 		for (chanidx = 0; chanidx < sband->n_channels; chanidx++) {
1607 			struct ieee80211_channel *chan;
1608 
1609 			chan = &sband->channels[chanidx];
1610 
1611 			if (chan->flags & prohibited_flags)
1612 				continue;
1613 
1614 			return true;
1615 		}
1616 	}
1617 
1618 	return false;
1619 }
1620 EXPORT_SYMBOL(cfg80211_any_usable_channels);
1621 
1622 struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev,
1623 				       unsigned int link_id)
1624 {
1625 	lockdep_assert_wiphy(wdev->wiphy);
1626 
1627 	WARN_ON(wdev->valid_links && !(wdev->valid_links & BIT(link_id)));
1628 	WARN_ON(!wdev->valid_links && link_id > 0);
1629 
1630 	switch (wdev->iftype) {
1631 	case NL80211_IFTYPE_MESH_POINT:
1632 		return &wdev->u.mesh.chandef;
1633 	case NL80211_IFTYPE_ADHOC:
1634 		return &wdev->u.ibss.chandef;
1635 	case NL80211_IFTYPE_OCB:
1636 		return &wdev->u.ocb.chandef;
1637 	case NL80211_IFTYPE_AP:
1638 	case NL80211_IFTYPE_P2P_GO:
1639 		return &wdev->links[link_id].ap.chandef;
1640 	default:
1641 		return NULL;
1642 	}
1643 }
1644 EXPORT_SYMBOL(wdev_chandef);
1645