1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains helper code to handle channel
4 * settings and keeping track of what is possible at
5 * any point in time.
6 *
7 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
8 * Copyright 2013-2014 Intel Mobile Communications GmbH
9 * Copyright 2018-2024 Intel Corporation
10 */
11
12 #include <linux/export.h>
13 #include <linux/bitfield.h>
14 #include <net/cfg80211.h>
15 #include "core.h"
16 #include "rdev-ops.h"
17
cfg80211_valid_60g_freq(u32 freq)18 static bool cfg80211_valid_60g_freq(u32 freq)
19 {
20 return freq >= 58320 && freq <= 70200;
21 }
22
cfg80211_chandef_create(struct cfg80211_chan_def * chandef,struct ieee80211_channel * chan,enum nl80211_channel_type chan_type)23 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef,
24 struct ieee80211_channel *chan,
25 enum nl80211_channel_type chan_type)
26 {
27 if (WARN_ON(!chan))
28 return;
29
30 *chandef = (struct cfg80211_chan_def) {
31 .chan = chan,
32 .freq1_offset = chan->freq_offset,
33 };
34
35 switch (chan_type) {
36 case NL80211_CHAN_NO_HT:
37 chandef->width = NL80211_CHAN_WIDTH_20_NOHT;
38 chandef->center_freq1 = chan->center_freq;
39 break;
40 case NL80211_CHAN_HT20:
41 chandef->width = NL80211_CHAN_WIDTH_20;
42 chandef->center_freq1 = chan->center_freq;
43 break;
44 case NL80211_CHAN_HT40PLUS:
45 chandef->width = NL80211_CHAN_WIDTH_40;
46 chandef->center_freq1 = chan->center_freq + 10;
47 break;
48 case NL80211_CHAN_HT40MINUS:
49 chandef->width = NL80211_CHAN_WIDTH_40;
50 chandef->center_freq1 = chan->center_freq - 10;
51 break;
52 default:
53 WARN_ON(1);
54 }
55 }
56 EXPORT_SYMBOL(cfg80211_chandef_create);
57
58 struct cfg80211_per_bw_puncturing_values {
59 u8 len;
60 const u16 *valid_values;
61 };
62
63 static const u16 puncturing_values_80mhz[] = {
64 0x8, 0x4, 0x2, 0x1
65 };
66
67 static const u16 puncturing_values_160mhz[] = {
68 0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1, 0xc0, 0x30, 0xc, 0x3
69 };
70
71 static const u16 puncturing_values_320mhz[] = {
72 0xc000, 0x3000, 0xc00, 0x300, 0xc0, 0x30, 0xc, 0x3, 0xf000, 0xf00,
73 0xf0, 0xf, 0xfc00, 0xf300, 0xf0c0, 0xf030, 0xf00c, 0xf003, 0xc00f,
74 0x300f, 0xc0f, 0x30f, 0xcf, 0x3f
75 };
76
77 #define CFG80211_PER_BW_VALID_PUNCTURING_VALUES(_bw) \
78 { \
79 .len = ARRAY_SIZE(puncturing_values_ ## _bw ## mhz), \
80 .valid_values = puncturing_values_ ## _bw ## mhz \
81 }
82
83 static const struct cfg80211_per_bw_puncturing_values per_bw_puncturing[] = {
84 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(80),
85 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(160),
86 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(320)
87 };
88
valid_puncturing_bitmap(const struct cfg80211_chan_def * chandef)89 static bool valid_puncturing_bitmap(const struct cfg80211_chan_def *chandef)
90 {
91 u32 idx, i, start_freq, primary_center = chandef->chan->center_freq;
92
93 switch (chandef->width) {
94 case NL80211_CHAN_WIDTH_80:
95 idx = 0;
96 start_freq = chandef->center_freq1 - 40;
97 break;
98 case NL80211_CHAN_WIDTH_160:
99 idx = 1;
100 start_freq = chandef->center_freq1 - 80;
101 break;
102 case NL80211_CHAN_WIDTH_320:
103 idx = 2;
104 start_freq = chandef->center_freq1 - 160;
105 break;
106 default:
107 return chandef->punctured == 0;
108 }
109
110 if (!chandef->punctured)
111 return true;
112
113 /* check if primary channel is punctured */
114 if (chandef->punctured & (u16)BIT((primary_center - start_freq) / 20))
115 return false;
116
117 for (i = 0; i < per_bw_puncturing[idx].len; i++) {
118 if (per_bw_puncturing[idx].valid_values[i] == chandef->punctured)
119 return true;
120 }
121
122 return false;
123 }
124
cfg80211_edmg_chandef_valid(const struct cfg80211_chan_def * chandef)125 static bool cfg80211_edmg_chandef_valid(const struct cfg80211_chan_def *chandef)
126 {
127 int max_contiguous = 0;
128 int num_of_enabled = 0;
129 int contiguous = 0;
130 int i;
131
132 if (!chandef->edmg.channels || !chandef->edmg.bw_config)
133 return false;
134
135 if (!cfg80211_valid_60g_freq(chandef->chan->center_freq))
136 return false;
137
138 for (i = 0; i < 6; i++) {
139 if (chandef->edmg.channels & BIT(i)) {
140 contiguous++;
141 num_of_enabled++;
142 } else {
143 contiguous = 0;
144 }
145
146 max_contiguous = max(contiguous, max_contiguous);
147 }
148 /* basic verification of edmg configuration according to
149 * IEEE P802.11ay/D4.0 section 9.4.2.251
150 */
151 /* check bw_config against contiguous edmg channels */
152 switch (chandef->edmg.bw_config) {
153 case IEEE80211_EDMG_BW_CONFIG_4:
154 case IEEE80211_EDMG_BW_CONFIG_8:
155 case IEEE80211_EDMG_BW_CONFIG_12:
156 if (max_contiguous < 1)
157 return false;
158 break;
159 case IEEE80211_EDMG_BW_CONFIG_5:
160 case IEEE80211_EDMG_BW_CONFIG_9:
161 case IEEE80211_EDMG_BW_CONFIG_13:
162 if (max_contiguous < 2)
163 return false;
164 break;
165 case IEEE80211_EDMG_BW_CONFIG_6:
166 case IEEE80211_EDMG_BW_CONFIG_10:
167 case IEEE80211_EDMG_BW_CONFIG_14:
168 if (max_contiguous < 3)
169 return false;
170 break;
171 case IEEE80211_EDMG_BW_CONFIG_7:
172 case IEEE80211_EDMG_BW_CONFIG_11:
173 case IEEE80211_EDMG_BW_CONFIG_15:
174 if (max_contiguous < 4)
175 return false;
176 break;
177
178 default:
179 return false;
180 }
181
182 /* check bw_config against aggregated (non contiguous) edmg channels */
183 switch (chandef->edmg.bw_config) {
184 case IEEE80211_EDMG_BW_CONFIG_4:
185 case IEEE80211_EDMG_BW_CONFIG_5:
186 case IEEE80211_EDMG_BW_CONFIG_6:
187 case IEEE80211_EDMG_BW_CONFIG_7:
188 break;
189 case IEEE80211_EDMG_BW_CONFIG_8:
190 case IEEE80211_EDMG_BW_CONFIG_9:
191 case IEEE80211_EDMG_BW_CONFIG_10:
192 case IEEE80211_EDMG_BW_CONFIG_11:
193 if (num_of_enabled < 2)
194 return false;
195 break;
196 case IEEE80211_EDMG_BW_CONFIG_12:
197 case IEEE80211_EDMG_BW_CONFIG_13:
198 case IEEE80211_EDMG_BW_CONFIG_14:
199 case IEEE80211_EDMG_BW_CONFIG_15:
200 if (num_of_enabled < 4 || max_contiguous < 2)
201 return false;
202 break;
203 default:
204 return false;
205 }
206
207 return true;
208 }
209
nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width)210 int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width)
211 {
212 int mhz;
213
214 switch (chan_width) {
215 case NL80211_CHAN_WIDTH_1:
216 mhz = 1;
217 break;
218 case NL80211_CHAN_WIDTH_2:
219 mhz = 2;
220 break;
221 case NL80211_CHAN_WIDTH_4:
222 mhz = 4;
223 break;
224 case NL80211_CHAN_WIDTH_8:
225 mhz = 8;
226 break;
227 case NL80211_CHAN_WIDTH_16:
228 mhz = 16;
229 break;
230 case NL80211_CHAN_WIDTH_5:
231 mhz = 5;
232 break;
233 case NL80211_CHAN_WIDTH_10:
234 mhz = 10;
235 break;
236 case NL80211_CHAN_WIDTH_20:
237 case NL80211_CHAN_WIDTH_20_NOHT:
238 mhz = 20;
239 break;
240 case NL80211_CHAN_WIDTH_40:
241 mhz = 40;
242 break;
243 case NL80211_CHAN_WIDTH_80P80:
244 case NL80211_CHAN_WIDTH_80:
245 mhz = 80;
246 break;
247 case NL80211_CHAN_WIDTH_160:
248 mhz = 160;
249 break;
250 case NL80211_CHAN_WIDTH_320:
251 mhz = 320;
252 break;
253 default:
254 WARN_ON_ONCE(1);
255 return -1;
256 }
257 return mhz;
258 }
259 EXPORT_SYMBOL(nl80211_chan_width_to_mhz);
260
cfg80211_chandef_get_width(const struct cfg80211_chan_def * c)261 static int cfg80211_chandef_get_width(const struct cfg80211_chan_def *c)
262 {
263 return nl80211_chan_width_to_mhz(c->width);
264 }
265
cfg80211_valid_center_freq(u32 center,enum nl80211_chan_width width)266 static bool cfg80211_valid_center_freq(u32 center,
267 enum nl80211_chan_width width)
268 {
269 int bw;
270 int step;
271
272 /* We only do strict verification on 6 GHz */
273 if (center < 5955 || center > 7115)
274 return true;
275
276 bw = nl80211_chan_width_to_mhz(width);
277 if (bw < 0)
278 return false;
279
280 /* Validate that the channels bw is entirely within the 6 GHz band */
281 if (center - bw / 2 < 5945 || center + bw / 2 > 7125)
282 return false;
283
284 /* With 320 MHz the permitted channels overlap */
285 if (bw == 320)
286 step = 160;
287 else
288 step = bw;
289
290 /*
291 * Valid channels are packed from lowest frequency towards higher ones.
292 * So test that the lower frequency alignes with one of these steps.
293 */
294 return (center - bw / 2 - 5945) % step == 0;
295 }
296
cfg80211_chandef_valid(const struct cfg80211_chan_def * chandef)297 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef)
298 {
299 u32 control_freq, oper_freq;
300 int oper_width, control_width;
301
302 if (!chandef->chan)
303 return false;
304
305 if (chandef->freq1_offset >= 1000)
306 return false;
307
308 control_freq = chandef->chan->center_freq;
309
310 switch (chandef->width) {
311 case NL80211_CHAN_WIDTH_5:
312 case NL80211_CHAN_WIDTH_10:
313 case NL80211_CHAN_WIDTH_20:
314 case NL80211_CHAN_WIDTH_20_NOHT:
315 if (ieee80211_chandef_to_khz(chandef) !=
316 ieee80211_channel_to_khz(chandef->chan))
317 return false;
318 if (chandef->center_freq2)
319 return false;
320 break;
321 case NL80211_CHAN_WIDTH_1:
322 case NL80211_CHAN_WIDTH_2:
323 case NL80211_CHAN_WIDTH_4:
324 case NL80211_CHAN_WIDTH_8:
325 case NL80211_CHAN_WIDTH_16:
326 if (chandef->chan->band != NL80211_BAND_S1GHZ)
327 return false;
328
329 control_freq = ieee80211_channel_to_khz(chandef->chan);
330 oper_freq = ieee80211_chandef_to_khz(chandef);
331 control_width = nl80211_chan_width_to_mhz(
332 ieee80211_s1g_channel_width(
333 chandef->chan));
334 oper_width = cfg80211_chandef_get_width(chandef);
335
336 if (oper_width < 0 || control_width < 0)
337 return false;
338 if (chandef->center_freq2)
339 return false;
340
341 if (control_freq + MHZ_TO_KHZ(control_width) / 2 >
342 oper_freq + MHZ_TO_KHZ(oper_width) / 2)
343 return false;
344
345 if (control_freq - MHZ_TO_KHZ(control_width) / 2 <
346 oper_freq - MHZ_TO_KHZ(oper_width) / 2)
347 return false;
348 break;
349 case NL80211_CHAN_WIDTH_80P80:
350 if (!chandef->center_freq2)
351 return false;
352 /* adjacent is not allowed -- that's a 160 MHz channel */
353 if (chandef->center_freq1 - chandef->center_freq2 == 80 ||
354 chandef->center_freq2 - chandef->center_freq1 == 80)
355 return false;
356 break;
357 default:
358 if (chandef->center_freq2)
359 return false;
360 break;
361 }
362
363 switch (chandef->width) {
364 case NL80211_CHAN_WIDTH_5:
365 case NL80211_CHAN_WIDTH_10:
366 case NL80211_CHAN_WIDTH_20:
367 case NL80211_CHAN_WIDTH_20_NOHT:
368 case NL80211_CHAN_WIDTH_1:
369 case NL80211_CHAN_WIDTH_2:
370 case NL80211_CHAN_WIDTH_4:
371 case NL80211_CHAN_WIDTH_8:
372 case NL80211_CHAN_WIDTH_16:
373 /* all checked above */
374 break;
375 case NL80211_CHAN_WIDTH_320:
376 if (chandef->center_freq1 == control_freq + 150 ||
377 chandef->center_freq1 == control_freq + 130 ||
378 chandef->center_freq1 == control_freq + 110 ||
379 chandef->center_freq1 == control_freq + 90 ||
380 chandef->center_freq1 == control_freq - 90 ||
381 chandef->center_freq1 == control_freq - 110 ||
382 chandef->center_freq1 == control_freq - 130 ||
383 chandef->center_freq1 == control_freq - 150)
384 break;
385 fallthrough;
386 case NL80211_CHAN_WIDTH_160:
387 if (chandef->center_freq1 == control_freq + 70 ||
388 chandef->center_freq1 == control_freq + 50 ||
389 chandef->center_freq1 == control_freq - 50 ||
390 chandef->center_freq1 == control_freq - 70)
391 break;
392 fallthrough;
393 case NL80211_CHAN_WIDTH_80P80:
394 case NL80211_CHAN_WIDTH_80:
395 if (chandef->center_freq1 == control_freq + 30 ||
396 chandef->center_freq1 == control_freq - 30)
397 break;
398 fallthrough;
399 case NL80211_CHAN_WIDTH_40:
400 if (chandef->center_freq1 == control_freq + 10 ||
401 chandef->center_freq1 == control_freq - 10)
402 break;
403 fallthrough;
404 default:
405 return false;
406 }
407
408 if (!cfg80211_valid_center_freq(chandef->center_freq1, chandef->width))
409 return false;
410
411 if (chandef->width == NL80211_CHAN_WIDTH_80P80 &&
412 !cfg80211_valid_center_freq(chandef->center_freq2, chandef->width))
413 return false;
414
415 /* channel 14 is only for IEEE 802.11b */
416 if (chandef->center_freq1 == 2484 &&
417 chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
418 return false;
419
420 if (cfg80211_chandef_is_edmg(chandef) &&
421 !cfg80211_edmg_chandef_valid(chandef))
422 return false;
423
424 return valid_puncturing_bitmap(chandef);
425 }
426 EXPORT_SYMBOL(cfg80211_chandef_valid);
427
cfg80211_chandef_primary(const struct cfg80211_chan_def * c,enum nl80211_chan_width primary_chan_width,u16 * punctured)428 int cfg80211_chandef_primary(const struct cfg80211_chan_def *c,
429 enum nl80211_chan_width primary_chan_width,
430 u16 *punctured)
431 {
432 int pri_width = nl80211_chan_width_to_mhz(primary_chan_width);
433 int width = cfg80211_chandef_get_width(c);
434 u32 control = c->chan->center_freq;
435 u32 center = c->center_freq1;
436 u16 _punct = 0;
437
438 if (WARN_ON_ONCE(pri_width < 0 || width < 0))
439 return -1;
440
441 /* not intended to be called this way, can't determine */
442 if (WARN_ON_ONCE(pri_width > width))
443 return -1;
444
445 if (!punctured)
446 punctured = &_punct;
447
448 *punctured = c->punctured;
449
450 while (width > pri_width) {
451 unsigned int bits_to_drop = width / 20 / 2;
452
453 if (control > center) {
454 center += width / 4;
455 *punctured >>= bits_to_drop;
456 } else {
457 center -= width / 4;
458 *punctured &= (1 << bits_to_drop) - 1;
459 }
460 width /= 2;
461 }
462
463 return center;
464 }
465 EXPORT_SYMBOL(cfg80211_chandef_primary);
466
467 static const struct cfg80211_chan_def *
check_chandef_primary_compat(const struct cfg80211_chan_def * c1,const struct cfg80211_chan_def * c2,enum nl80211_chan_width primary_chan_width)468 check_chandef_primary_compat(const struct cfg80211_chan_def *c1,
469 const struct cfg80211_chan_def *c2,
470 enum nl80211_chan_width primary_chan_width)
471 {
472 u16 punct_c1 = 0, punct_c2 = 0;
473
474 /* check primary is compatible -> error if not */
475 if (cfg80211_chandef_primary(c1, primary_chan_width, &punct_c1) !=
476 cfg80211_chandef_primary(c2, primary_chan_width, &punct_c2))
477 return ERR_PTR(-EINVAL);
478
479 if (punct_c1 != punct_c2)
480 return ERR_PTR(-EINVAL);
481
482 /* assumes c1 is smaller width, if that was just checked -> done */
483 if (c1->width == primary_chan_width)
484 return c2;
485
486 /* otherwise continue checking the next width */
487 return NULL;
488 }
489
490 static const struct cfg80211_chan_def *
_cfg80211_chandef_compatible(const struct cfg80211_chan_def * c1,const struct cfg80211_chan_def * c2)491 _cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1,
492 const struct cfg80211_chan_def *c2)
493 {
494 const struct cfg80211_chan_def *ret;
495
496 /* If they are identical, return */
497 if (cfg80211_chandef_identical(c1, c2))
498 return c2;
499
500 /* otherwise, must have same control channel */
501 if (c1->chan != c2->chan)
502 return NULL;
503
504 /*
505 * If they have the same width, but aren't identical,
506 * then they can't be compatible.
507 */
508 if (c1->width == c2->width)
509 return NULL;
510
511 /*
512 * can't be compatible if one of them is 5/10 MHz or S1G
513 * but they don't have the same width.
514 */
515 #define NARROW_OR_S1G(width) ((width) == NL80211_CHAN_WIDTH_5 || \
516 (width) == NL80211_CHAN_WIDTH_10 || \
517 (width) == NL80211_CHAN_WIDTH_1 || \
518 (width) == NL80211_CHAN_WIDTH_2 || \
519 (width) == NL80211_CHAN_WIDTH_4 || \
520 (width) == NL80211_CHAN_WIDTH_8 || \
521 (width) == NL80211_CHAN_WIDTH_16)
522
523 if (NARROW_OR_S1G(c1->width) || NARROW_OR_S1G(c2->width))
524 return NULL;
525
526 /*
527 * Make sure that c1 is always the narrower one, so that later
528 * we either return NULL or c2 and don't have to check both
529 * directions.
530 */
531 if (c1->width > c2->width)
532 swap(c1, c2);
533
534 /*
535 * No further checks needed if the "narrower" one is only 20 MHz.
536 * Here "narrower" includes being a 20 MHz non-HT channel vs. a
537 * 20 MHz HT (or later) one.
538 */
539 if (c1->width <= NL80211_CHAN_WIDTH_20)
540 return c2;
541
542 ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_40);
543 if (ret)
544 return ret;
545
546 ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_80);
547 if (ret)
548 return ret;
549
550 /*
551 * If c1 is 80+80, then c2 is 160 or higher, but that cannot
552 * match. If c2 was also 80+80 it was already either accepted
553 * or rejected above (identical or not, respectively.)
554 */
555 if (c1->width == NL80211_CHAN_WIDTH_80P80)
556 return NULL;
557
558 ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_160);
559 if (ret)
560 return ret;
561
562 /*
563 * Getting here would mean they're both wider than 160, have the
564 * same primary 160, but are not identical - this cannot happen
565 * since they must be 320 (no wider chandefs exist, at least yet.)
566 */
567 WARN_ON_ONCE(1);
568
569 return NULL;
570 }
571
572 const struct cfg80211_chan_def *
cfg80211_chandef_compatible(const struct cfg80211_chan_def * c1,const struct cfg80211_chan_def * c2)573 cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1,
574 const struct cfg80211_chan_def *c2)
575 {
576 const struct cfg80211_chan_def *ret;
577
578 ret = _cfg80211_chandef_compatible(c1, c2);
579 if (IS_ERR(ret))
580 return NULL;
581 return ret;
582 }
583 EXPORT_SYMBOL(cfg80211_chandef_compatible);
584
cfg80211_set_chans_dfs_state(struct wiphy * wiphy,u32 center_freq,u32 bandwidth,enum nl80211_dfs_state dfs_state)585 static void cfg80211_set_chans_dfs_state(struct wiphy *wiphy, u32 center_freq,
586 u32 bandwidth,
587 enum nl80211_dfs_state dfs_state)
588 {
589 struct ieee80211_channel *c;
590 u32 freq;
591
592 for (freq = center_freq - bandwidth/2 + 10;
593 freq <= center_freq + bandwidth/2 - 10;
594 freq += 20) {
595 c = ieee80211_get_channel(wiphy, freq);
596 if (!c || !(c->flags & IEEE80211_CHAN_RADAR))
597 continue;
598
599 c->dfs_state = dfs_state;
600 c->dfs_state_entered = jiffies;
601 }
602 }
603
cfg80211_set_dfs_state(struct wiphy * wiphy,const struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state)604 void cfg80211_set_dfs_state(struct wiphy *wiphy,
605 const struct cfg80211_chan_def *chandef,
606 enum nl80211_dfs_state dfs_state)
607 {
608 int width;
609
610 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
611 return;
612
613 width = cfg80211_chandef_get_width(chandef);
614 if (width < 0)
615 return;
616
617 cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq1,
618 width, dfs_state);
619
620 if (!chandef->center_freq2)
621 return;
622 cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq2,
623 width, dfs_state);
624 }
625
cfg80211_get_start_freq(u32 center_freq,u32 bandwidth)626 static u32 cfg80211_get_start_freq(u32 center_freq,
627 u32 bandwidth)
628 {
629 u32 start_freq;
630
631 bandwidth = MHZ_TO_KHZ(bandwidth);
632 if (bandwidth <= MHZ_TO_KHZ(20))
633 start_freq = center_freq;
634 else
635 start_freq = center_freq - bandwidth / 2 + MHZ_TO_KHZ(10);
636
637 return start_freq;
638 }
639
cfg80211_get_end_freq(u32 center_freq,u32 bandwidth)640 static u32 cfg80211_get_end_freq(u32 center_freq,
641 u32 bandwidth)
642 {
643 u32 end_freq;
644
645 bandwidth = MHZ_TO_KHZ(bandwidth);
646 if (bandwidth <= MHZ_TO_KHZ(20))
647 end_freq = center_freq;
648 else
649 end_freq = center_freq + bandwidth / 2 - MHZ_TO_KHZ(10);
650
651 return end_freq;
652 }
653
654 static bool
cfg80211_dfs_permissive_check_wdev(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,struct wireless_dev * wdev,struct ieee80211_channel * chan)655 cfg80211_dfs_permissive_check_wdev(struct cfg80211_registered_device *rdev,
656 enum nl80211_iftype iftype,
657 struct wireless_dev *wdev,
658 struct ieee80211_channel *chan)
659 {
660 unsigned int link_id;
661
662 for_each_valid_link(wdev, link_id) {
663 struct ieee80211_channel *other_chan = NULL;
664 struct cfg80211_chan_def chandef = {};
665 int ret;
666
667 /* In order to avoid daisy chaining only allow BSS STA */
668 if (wdev->iftype != NL80211_IFTYPE_STATION ||
669 !wdev->links[link_id].client.current_bss)
670 continue;
671
672 other_chan =
673 wdev->links[link_id].client.current_bss->pub.channel;
674
675 if (!other_chan)
676 continue;
677
678 if (chan == other_chan)
679 return true;
680
681 /* continue if we can't get the channel */
682 ret = rdev_get_channel(rdev, wdev, link_id, &chandef);
683 if (ret)
684 continue;
685
686 if (cfg80211_is_sub_chan(&chandef, chan, false))
687 return true;
688 }
689
690 return false;
691 }
692
693 /*
694 * Check if P2P GO is allowed to operate on a DFS channel
695 */
cfg80211_dfs_permissive_chan(struct wiphy * wiphy,enum nl80211_iftype iftype,struct ieee80211_channel * chan)696 static bool cfg80211_dfs_permissive_chan(struct wiphy *wiphy,
697 enum nl80211_iftype iftype,
698 struct ieee80211_channel *chan)
699 {
700 struct wireless_dev *wdev;
701 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
702
703 lockdep_assert_held(&rdev->wiphy.mtx);
704
705 if (!wiphy_ext_feature_isset(&rdev->wiphy,
706 NL80211_EXT_FEATURE_DFS_CONCURRENT) ||
707 !(chan->flags & IEEE80211_CHAN_DFS_CONCURRENT))
708 return false;
709
710 /* only valid for P2P GO */
711 if (iftype != NL80211_IFTYPE_P2P_GO)
712 return false;
713
714 /*
715 * Allow only if there's a concurrent BSS
716 */
717 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
718 bool ret = cfg80211_dfs_permissive_check_wdev(rdev, iftype,
719 wdev, chan);
720 if (ret)
721 return ret;
722 }
723
724 return false;
725 }
726
cfg80211_get_chans_dfs_required(struct wiphy * wiphy,u32 center_freq,u32 bandwidth,enum nl80211_iftype iftype)727 static int cfg80211_get_chans_dfs_required(struct wiphy *wiphy,
728 u32 center_freq,
729 u32 bandwidth,
730 enum nl80211_iftype iftype)
731 {
732 struct ieee80211_channel *c;
733 u32 freq, start_freq, end_freq;
734
735 start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
736 end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
737
738 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
739 c = ieee80211_get_channel_khz(wiphy, freq);
740 if (!c)
741 return -EINVAL;
742
743 if (c->flags & IEEE80211_CHAN_RADAR &&
744 !cfg80211_dfs_permissive_chan(wiphy, iftype, c))
745 return 1;
746 }
747
748 return 0;
749 }
750
751
cfg80211_chandef_dfs_required(struct wiphy * wiphy,const struct cfg80211_chan_def * chandef,enum nl80211_iftype iftype)752 int cfg80211_chandef_dfs_required(struct wiphy *wiphy,
753 const struct cfg80211_chan_def *chandef,
754 enum nl80211_iftype iftype)
755 {
756 int width;
757 int ret;
758
759 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
760 return -EINVAL;
761
762 switch (iftype) {
763 case NL80211_IFTYPE_ADHOC:
764 case NL80211_IFTYPE_AP:
765 case NL80211_IFTYPE_P2P_GO:
766 case NL80211_IFTYPE_MESH_POINT:
767 width = cfg80211_chandef_get_width(chandef);
768 if (width < 0)
769 return -EINVAL;
770
771 ret = cfg80211_get_chans_dfs_required(wiphy,
772 ieee80211_chandef_to_khz(chandef),
773 width, iftype);
774 if (ret < 0)
775 return ret;
776 else if (ret > 0)
777 return BIT(chandef->width);
778
779 if (!chandef->center_freq2)
780 return 0;
781
782 ret = cfg80211_get_chans_dfs_required(wiphy,
783 MHZ_TO_KHZ(chandef->center_freq2),
784 width, iftype);
785 if (ret < 0)
786 return ret;
787 else if (ret > 0)
788 return BIT(chandef->width);
789
790 break;
791 case NL80211_IFTYPE_STATION:
792 case NL80211_IFTYPE_OCB:
793 case NL80211_IFTYPE_P2P_CLIENT:
794 case NL80211_IFTYPE_MONITOR:
795 case NL80211_IFTYPE_AP_VLAN:
796 case NL80211_IFTYPE_P2P_DEVICE:
797 case NL80211_IFTYPE_NAN:
798 break;
799 case NL80211_IFTYPE_WDS:
800 case NL80211_IFTYPE_UNSPECIFIED:
801 case NUM_NL80211_IFTYPES:
802 WARN_ON(1);
803 }
804
805 return 0;
806 }
807 EXPORT_SYMBOL(cfg80211_chandef_dfs_required);
808
cfg80211_get_chans_dfs_usable(struct wiphy * wiphy,u32 center_freq,u32 bandwidth)809 static int cfg80211_get_chans_dfs_usable(struct wiphy *wiphy,
810 u32 center_freq,
811 u32 bandwidth)
812 {
813 struct ieee80211_channel *c;
814 u32 freq, start_freq, end_freq;
815 int count = 0;
816
817 start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
818 end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
819
820 /*
821 * Check entire range of channels for the bandwidth.
822 * Check all channels are DFS channels (DFS_USABLE or
823 * DFS_AVAILABLE). Return number of usable channels
824 * (require CAC). Allow DFS and non-DFS channel mix.
825 */
826 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
827 c = ieee80211_get_channel_khz(wiphy, freq);
828 if (!c)
829 return -EINVAL;
830
831 if (c->flags & IEEE80211_CHAN_DISABLED)
832 return -EINVAL;
833
834 if (c->flags & IEEE80211_CHAN_RADAR) {
835 if (c->dfs_state == NL80211_DFS_UNAVAILABLE)
836 return -EINVAL;
837
838 if (c->dfs_state == NL80211_DFS_USABLE)
839 count++;
840 }
841 }
842
843 return count;
844 }
845
cfg80211_chandef_dfs_usable(struct wiphy * wiphy,const struct cfg80211_chan_def * chandef)846 bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy,
847 const struct cfg80211_chan_def *chandef)
848 {
849 int width;
850 int r1, r2 = 0;
851
852 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
853 return false;
854
855 width = cfg80211_chandef_get_width(chandef);
856 if (width < 0)
857 return false;
858
859 r1 = cfg80211_get_chans_dfs_usable(wiphy,
860 MHZ_TO_KHZ(chandef->center_freq1),
861 width);
862
863 if (r1 < 0)
864 return false;
865
866 switch (chandef->width) {
867 case NL80211_CHAN_WIDTH_80P80:
868 WARN_ON(!chandef->center_freq2);
869 r2 = cfg80211_get_chans_dfs_usable(wiphy,
870 MHZ_TO_KHZ(chandef->center_freq2),
871 width);
872 if (r2 < 0)
873 return false;
874 break;
875 default:
876 WARN_ON(chandef->center_freq2);
877 break;
878 }
879
880 return (r1 + r2 > 0);
881 }
882 EXPORT_SYMBOL(cfg80211_chandef_dfs_usable);
883
884 /*
885 * Checks if center frequency of chan falls with in the bandwidth
886 * range of chandef.
887 */
cfg80211_is_sub_chan(struct cfg80211_chan_def * chandef,struct ieee80211_channel * chan,bool primary_only)888 bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef,
889 struct ieee80211_channel *chan,
890 bool primary_only)
891 {
892 int width;
893 u32 freq;
894
895 if (!chandef->chan)
896 return false;
897
898 if (chandef->chan->center_freq == chan->center_freq)
899 return true;
900
901 if (primary_only)
902 return false;
903
904 width = cfg80211_chandef_get_width(chandef);
905 if (width <= 20)
906 return false;
907
908 for (freq = chandef->center_freq1 - width / 2 + 10;
909 freq <= chandef->center_freq1 + width / 2 - 10; freq += 20) {
910 if (chan->center_freq == freq)
911 return true;
912 }
913
914 if (!chandef->center_freq2)
915 return false;
916
917 for (freq = chandef->center_freq2 - width / 2 + 10;
918 freq <= chandef->center_freq2 + width / 2 - 10; freq += 20) {
919 if (chan->center_freq == freq)
920 return true;
921 }
922
923 return false;
924 }
925
cfg80211_beaconing_iface_active(struct wireless_dev * wdev)926 bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev)
927 {
928 unsigned int link;
929
930 lockdep_assert_wiphy(wdev->wiphy);
931
932 switch (wdev->iftype) {
933 case NL80211_IFTYPE_AP:
934 case NL80211_IFTYPE_P2P_GO:
935 for_each_valid_link(wdev, link) {
936 if (wdev->links[link].ap.beacon_interval)
937 return true;
938 }
939 break;
940 case NL80211_IFTYPE_ADHOC:
941 if (wdev->u.ibss.ssid_len)
942 return true;
943 break;
944 case NL80211_IFTYPE_MESH_POINT:
945 if (wdev->u.mesh.id_len)
946 return true;
947 break;
948 case NL80211_IFTYPE_STATION:
949 case NL80211_IFTYPE_OCB:
950 case NL80211_IFTYPE_P2P_CLIENT:
951 case NL80211_IFTYPE_MONITOR:
952 case NL80211_IFTYPE_AP_VLAN:
953 case NL80211_IFTYPE_P2P_DEVICE:
954 /* Can NAN type be considered as beaconing interface? */
955 case NL80211_IFTYPE_NAN:
956 break;
957 case NL80211_IFTYPE_UNSPECIFIED:
958 case NL80211_IFTYPE_WDS:
959 case NUM_NL80211_IFTYPES:
960 WARN_ON(1);
961 }
962
963 return false;
964 }
965
cfg80211_wdev_on_sub_chan(struct wireless_dev * wdev,struct ieee80211_channel * chan,bool primary_only)966 bool cfg80211_wdev_on_sub_chan(struct wireless_dev *wdev,
967 struct ieee80211_channel *chan,
968 bool primary_only)
969 {
970 unsigned int link;
971
972 switch (wdev->iftype) {
973 case NL80211_IFTYPE_AP:
974 case NL80211_IFTYPE_P2P_GO:
975 for_each_valid_link(wdev, link) {
976 if (cfg80211_is_sub_chan(&wdev->links[link].ap.chandef,
977 chan, primary_only))
978 return true;
979 }
980 break;
981 case NL80211_IFTYPE_ADHOC:
982 return cfg80211_is_sub_chan(&wdev->u.ibss.chandef, chan,
983 primary_only);
984 case NL80211_IFTYPE_MESH_POINT:
985 return cfg80211_is_sub_chan(&wdev->u.mesh.chandef, chan,
986 primary_only);
987 default:
988 break;
989 }
990
991 return false;
992 }
993
cfg80211_is_wiphy_oper_chan(struct wiphy * wiphy,struct ieee80211_channel * chan)994 static bool cfg80211_is_wiphy_oper_chan(struct wiphy *wiphy,
995 struct ieee80211_channel *chan)
996 {
997 struct wireless_dev *wdev;
998
999 lockdep_assert_wiphy(wiphy);
1000
1001 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1002 if (!cfg80211_beaconing_iface_active(wdev))
1003 continue;
1004
1005 if (cfg80211_wdev_on_sub_chan(wdev, chan, false))
1006 return true;
1007 }
1008
1009 return false;
1010 }
1011
1012 static bool
cfg80211_offchan_chain_is_active(struct cfg80211_registered_device * rdev,struct ieee80211_channel * channel)1013 cfg80211_offchan_chain_is_active(struct cfg80211_registered_device *rdev,
1014 struct ieee80211_channel *channel)
1015 {
1016 if (!rdev->background_radar_wdev)
1017 return false;
1018
1019 if (!cfg80211_chandef_valid(&rdev->background_radar_chandef))
1020 return false;
1021
1022 return cfg80211_is_sub_chan(&rdev->background_radar_chandef, channel,
1023 false);
1024 }
1025
cfg80211_any_wiphy_oper_chan(struct wiphy * wiphy,struct ieee80211_channel * chan)1026 bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy,
1027 struct ieee80211_channel *chan)
1028 {
1029 struct cfg80211_registered_device *rdev;
1030
1031 ASSERT_RTNL();
1032
1033 if (!(chan->flags & IEEE80211_CHAN_RADAR))
1034 return false;
1035
1036 for_each_rdev(rdev) {
1037 bool found;
1038
1039 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
1040 continue;
1041
1042 wiphy_lock(&rdev->wiphy);
1043 found = cfg80211_is_wiphy_oper_chan(&rdev->wiphy, chan) ||
1044 cfg80211_offchan_chain_is_active(rdev, chan);
1045 wiphy_unlock(&rdev->wiphy);
1046
1047 if (found)
1048 return true;
1049 }
1050
1051 return false;
1052 }
1053
cfg80211_get_chans_dfs_available(struct wiphy * wiphy,u32 center_freq,u32 bandwidth)1054 static bool cfg80211_get_chans_dfs_available(struct wiphy *wiphy,
1055 u32 center_freq,
1056 u32 bandwidth)
1057 {
1058 struct ieee80211_channel *c;
1059 u32 freq, start_freq, end_freq;
1060 bool dfs_offload;
1061
1062 dfs_offload = wiphy_ext_feature_isset(wiphy,
1063 NL80211_EXT_FEATURE_DFS_OFFLOAD);
1064
1065 start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
1066 end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
1067
1068 /*
1069 * Check entire range of channels for the bandwidth.
1070 * If any channel in between is disabled or has not
1071 * had gone through CAC return false
1072 */
1073 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
1074 c = ieee80211_get_channel_khz(wiphy, freq);
1075 if (!c)
1076 return false;
1077
1078 if (c->flags & IEEE80211_CHAN_DISABLED)
1079 return false;
1080
1081 if ((c->flags & IEEE80211_CHAN_RADAR) &&
1082 (c->dfs_state != NL80211_DFS_AVAILABLE) &&
1083 !(c->dfs_state == NL80211_DFS_USABLE && dfs_offload))
1084 return false;
1085 }
1086
1087 return true;
1088 }
1089
cfg80211_chandef_dfs_available(struct wiphy * wiphy,const struct cfg80211_chan_def * chandef)1090 static bool cfg80211_chandef_dfs_available(struct wiphy *wiphy,
1091 const struct cfg80211_chan_def *chandef)
1092 {
1093 int width;
1094 int r;
1095
1096 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1097 return false;
1098
1099 width = cfg80211_chandef_get_width(chandef);
1100 if (width < 0)
1101 return false;
1102
1103 r = cfg80211_get_chans_dfs_available(wiphy,
1104 MHZ_TO_KHZ(chandef->center_freq1),
1105 width);
1106
1107 /* If any of channels unavailable for cf1 just return */
1108 if (!r)
1109 return r;
1110
1111 switch (chandef->width) {
1112 case NL80211_CHAN_WIDTH_80P80:
1113 WARN_ON(!chandef->center_freq2);
1114 r = cfg80211_get_chans_dfs_available(wiphy,
1115 MHZ_TO_KHZ(chandef->center_freq2),
1116 width);
1117 break;
1118 default:
1119 WARN_ON(chandef->center_freq2);
1120 break;
1121 }
1122
1123 return r;
1124 }
1125
cfg80211_get_chans_dfs_cac_time(struct wiphy * wiphy,u32 center_freq,u32 bandwidth)1126 static unsigned int cfg80211_get_chans_dfs_cac_time(struct wiphy *wiphy,
1127 u32 center_freq,
1128 u32 bandwidth)
1129 {
1130 struct ieee80211_channel *c;
1131 u32 start_freq, end_freq, freq;
1132 unsigned int dfs_cac_ms = 0;
1133
1134 start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
1135 end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
1136
1137 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
1138 c = ieee80211_get_channel_khz(wiphy, freq);
1139 if (!c)
1140 return 0;
1141
1142 if (c->flags & IEEE80211_CHAN_DISABLED)
1143 return 0;
1144
1145 if (!(c->flags & IEEE80211_CHAN_RADAR))
1146 continue;
1147
1148 if (c->dfs_cac_ms > dfs_cac_ms)
1149 dfs_cac_ms = c->dfs_cac_ms;
1150 }
1151
1152 return dfs_cac_ms;
1153 }
1154
1155 unsigned int
cfg80211_chandef_dfs_cac_time(struct wiphy * wiphy,const struct cfg80211_chan_def * chandef)1156 cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy,
1157 const struct cfg80211_chan_def *chandef)
1158 {
1159 int width;
1160 unsigned int t1 = 0, t2 = 0;
1161
1162 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1163 return 0;
1164
1165 width = cfg80211_chandef_get_width(chandef);
1166 if (width < 0)
1167 return 0;
1168
1169 t1 = cfg80211_get_chans_dfs_cac_time(wiphy,
1170 MHZ_TO_KHZ(chandef->center_freq1),
1171 width);
1172
1173 if (!chandef->center_freq2)
1174 return t1;
1175
1176 t2 = cfg80211_get_chans_dfs_cac_time(wiphy,
1177 MHZ_TO_KHZ(chandef->center_freq2),
1178 width);
1179
1180 return max(t1, t2);
1181 }
1182 EXPORT_SYMBOL(cfg80211_chandef_dfs_cac_time);
1183
cfg80211_secondary_chans_ok(struct wiphy * wiphy,u32 center_freq,u32 bandwidth,u32 prohibited_flags,u32 permitting_flags)1184 static bool cfg80211_secondary_chans_ok(struct wiphy *wiphy,
1185 u32 center_freq, u32 bandwidth,
1186 u32 prohibited_flags,
1187 u32 permitting_flags)
1188 {
1189 struct ieee80211_channel *c;
1190 u32 freq, start_freq, end_freq;
1191
1192 start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
1193 end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
1194
1195 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
1196 c = ieee80211_get_channel_khz(wiphy, freq);
1197 if (!c)
1198 return false;
1199 if (c->flags & permitting_flags)
1200 continue;
1201 if (c->flags & prohibited_flags)
1202 return false;
1203 }
1204
1205 return true;
1206 }
1207
1208 /* check if the operating channels are valid and supported */
cfg80211_edmg_usable(struct wiphy * wiphy,u8 edmg_channels,enum ieee80211_edmg_bw_config edmg_bw_config,int primary_channel,struct ieee80211_edmg * edmg_cap)1209 static bool cfg80211_edmg_usable(struct wiphy *wiphy, u8 edmg_channels,
1210 enum ieee80211_edmg_bw_config edmg_bw_config,
1211 int primary_channel,
1212 struct ieee80211_edmg *edmg_cap)
1213 {
1214 struct ieee80211_channel *chan;
1215 int i, freq;
1216 int channels_counter = 0;
1217
1218 if (!edmg_channels && !edmg_bw_config)
1219 return true;
1220
1221 if ((!edmg_channels && edmg_bw_config) ||
1222 (edmg_channels && !edmg_bw_config))
1223 return false;
1224
1225 if (!(edmg_channels & BIT(primary_channel - 1)))
1226 return false;
1227
1228 /* 60GHz channels 1..6 */
1229 for (i = 0; i < 6; i++) {
1230 if (!(edmg_channels & BIT(i)))
1231 continue;
1232
1233 if (!(edmg_cap->channels & BIT(i)))
1234 return false;
1235
1236 channels_counter++;
1237
1238 freq = ieee80211_channel_to_frequency(i + 1,
1239 NL80211_BAND_60GHZ);
1240 chan = ieee80211_get_channel(wiphy, freq);
1241 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
1242 return false;
1243 }
1244
1245 /* IEEE802.11 allows max 4 channels */
1246 if (channels_counter > 4)
1247 return false;
1248
1249 /* check bw_config is a subset of what driver supports
1250 * (see IEEE P802.11ay/D4.0 section 9.4.2.251, Table 13)
1251 */
1252 if ((edmg_bw_config % 4) > (edmg_cap->bw_config % 4))
1253 return false;
1254
1255 if (edmg_bw_config > edmg_cap->bw_config)
1256 return false;
1257
1258 return true;
1259 }
1260
_cfg80211_chandef_usable(struct wiphy * wiphy,const struct cfg80211_chan_def * chandef,u32 prohibited_flags,u32 permitting_flags)1261 bool _cfg80211_chandef_usable(struct wiphy *wiphy,
1262 const struct cfg80211_chan_def *chandef,
1263 u32 prohibited_flags,
1264 u32 permitting_flags)
1265 {
1266 struct ieee80211_sta_ht_cap *ht_cap;
1267 struct ieee80211_sta_vht_cap *vht_cap;
1268 struct ieee80211_edmg *edmg_cap;
1269 u32 width, control_freq, cap;
1270 bool ext_nss_cap, support_80_80 = false, support_320 = false;
1271 const struct ieee80211_sband_iftype_data *iftd;
1272 struct ieee80211_supported_band *sband;
1273 int i;
1274
1275 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1276 return false;
1277
1278 ht_cap = &wiphy->bands[chandef->chan->band]->ht_cap;
1279 vht_cap = &wiphy->bands[chandef->chan->band]->vht_cap;
1280 edmg_cap = &wiphy->bands[chandef->chan->band]->edmg_cap;
1281 ext_nss_cap = __le16_to_cpu(vht_cap->vht_mcs.tx_highest) &
1282 IEEE80211_VHT_EXT_NSS_BW_CAPABLE;
1283
1284 if (edmg_cap->channels &&
1285 !cfg80211_edmg_usable(wiphy,
1286 chandef->edmg.channels,
1287 chandef->edmg.bw_config,
1288 chandef->chan->hw_value,
1289 edmg_cap))
1290 return false;
1291
1292 control_freq = chandef->chan->center_freq;
1293
1294 switch (chandef->width) {
1295 case NL80211_CHAN_WIDTH_1:
1296 width = 1;
1297 break;
1298 case NL80211_CHAN_WIDTH_2:
1299 width = 2;
1300 break;
1301 case NL80211_CHAN_WIDTH_4:
1302 width = 4;
1303 break;
1304 case NL80211_CHAN_WIDTH_8:
1305 width = 8;
1306 break;
1307 case NL80211_CHAN_WIDTH_16:
1308 width = 16;
1309 break;
1310 case NL80211_CHAN_WIDTH_5:
1311 width = 5;
1312 break;
1313 case NL80211_CHAN_WIDTH_10:
1314 prohibited_flags |= IEEE80211_CHAN_NO_10MHZ;
1315 width = 10;
1316 break;
1317 case NL80211_CHAN_WIDTH_20:
1318 if (!ht_cap->ht_supported &&
1319 chandef->chan->band != NL80211_BAND_6GHZ)
1320 return false;
1321 fallthrough;
1322 case NL80211_CHAN_WIDTH_20_NOHT:
1323 prohibited_flags |= IEEE80211_CHAN_NO_20MHZ;
1324 width = 20;
1325 break;
1326 case NL80211_CHAN_WIDTH_40:
1327 width = 40;
1328 if (chandef->chan->band == NL80211_BAND_6GHZ)
1329 break;
1330 if (!ht_cap->ht_supported)
1331 return false;
1332 if (!(ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) ||
1333 ht_cap->cap & IEEE80211_HT_CAP_40MHZ_INTOLERANT)
1334 return false;
1335 if (chandef->center_freq1 < control_freq &&
1336 chandef->chan->flags & IEEE80211_CHAN_NO_HT40MINUS)
1337 return false;
1338 if (chandef->center_freq1 > control_freq &&
1339 chandef->chan->flags & IEEE80211_CHAN_NO_HT40PLUS)
1340 return false;
1341 break;
1342 case NL80211_CHAN_WIDTH_80P80:
1343 cap = vht_cap->cap;
1344 support_80_80 =
1345 (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) ||
1346 (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
1347 cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) ||
1348 (ext_nss_cap &&
1349 u32_get_bits(cap, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) > 1);
1350 if (chandef->chan->band != NL80211_BAND_6GHZ && !support_80_80)
1351 return false;
1352 fallthrough;
1353 case NL80211_CHAN_WIDTH_80:
1354 prohibited_flags |= IEEE80211_CHAN_NO_80MHZ;
1355 width = 80;
1356 if (chandef->chan->band == NL80211_BAND_6GHZ)
1357 break;
1358 if (!vht_cap->vht_supported)
1359 return false;
1360 break;
1361 case NL80211_CHAN_WIDTH_160:
1362 prohibited_flags |= IEEE80211_CHAN_NO_160MHZ;
1363 width = 160;
1364 if (chandef->chan->band == NL80211_BAND_6GHZ)
1365 break;
1366 if (!vht_cap->vht_supported)
1367 return false;
1368 cap = vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK;
1369 if (cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
1370 cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ &&
1371 !(ext_nss_cap &&
1372 (vht_cap->cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)))
1373 return false;
1374 break;
1375 case NL80211_CHAN_WIDTH_320:
1376 prohibited_flags |= IEEE80211_CHAN_NO_320MHZ;
1377 width = 320;
1378
1379 if (chandef->chan->band != NL80211_BAND_6GHZ)
1380 return false;
1381
1382 sband = wiphy->bands[NL80211_BAND_6GHZ];
1383 if (!sband)
1384 return false;
1385
1386 for_each_sband_iftype_data(sband, i, iftd) {
1387 if (!iftd->eht_cap.has_eht)
1388 continue;
1389
1390 if (iftd->eht_cap.eht_cap_elem.phy_cap_info[0] &
1391 IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) {
1392 support_320 = true;
1393 break;
1394 }
1395 }
1396
1397 if (!support_320)
1398 return false;
1399 break;
1400 default:
1401 WARN_ON_ONCE(1);
1402 return false;
1403 }
1404
1405 /*
1406 * TODO: What if there are only certain 80/160/80+80 MHz channels
1407 * allowed by the driver, or only certain combinations?
1408 * For 40 MHz the driver can set the NO_HT40 flags, but for
1409 * 80/160 MHz and in particular 80+80 MHz this isn't really
1410 * feasible and we only have NO_80MHZ/NO_160MHZ so far but
1411 * no way to cover 80+80 MHz or more complex restrictions.
1412 * Note that such restrictions also need to be advertised to
1413 * userspace, for example for P2P channel selection.
1414 */
1415
1416 if (width > 20)
1417 prohibited_flags |= IEEE80211_CHAN_NO_OFDM;
1418
1419 /* 5 and 10 MHz are only defined for the OFDM PHY */
1420 if (width < 20)
1421 prohibited_flags |= IEEE80211_CHAN_NO_OFDM;
1422
1423
1424 if (!cfg80211_secondary_chans_ok(wiphy,
1425 ieee80211_chandef_to_khz(chandef),
1426 width, prohibited_flags,
1427 permitting_flags))
1428 return false;
1429
1430 if (!chandef->center_freq2)
1431 return true;
1432 return cfg80211_secondary_chans_ok(wiphy,
1433 MHZ_TO_KHZ(chandef->center_freq2),
1434 width, prohibited_flags,
1435 permitting_flags);
1436 }
1437
cfg80211_chandef_usable(struct wiphy * wiphy,const struct cfg80211_chan_def * chandef,u32 prohibited_flags)1438 bool cfg80211_chandef_usable(struct wiphy *wiphy,
1439 const struct cfg80211_chan_def *chandef,
1440 u32 prohibited_flags)
1441 {
1442 return _cfg80211_chandef_usable(wiphy, chandef, prohibited_flags, 0);
1443 }
1444 EXPORT_SYMBOL(cfg80211_chandef_usable);
1445
cfg80211_ir_permissive_check_wdev(enum nl80211_iftype iftype,struct wireless_dev * wdev,struct ieee80211_channel * chan)1446 static bool cfg80211_ir_permissive_check_wdev(enum nl80211_iftype iftype,
1447 struct wireless_dev *wdev,
1448 struct ieee80211_channel *chan)
1449 {
1450 struct ieee80211_channel *other_chan = NULL;
1451 unsigned int link_id;
1452 int r1, r2;
1453
1454 for_each_valid_link(wdev, link_id) {
1455 if (wdev->iftype == NL80211_IFTYPE_STATION &&
1456 wdev->links[link_id].client.current_bss)
1457 other_chan = wdev->links[link_id].client.current_bss->pub.channel;
1458
1459 /*
1460 * If a GO already operates on the same GO_CONCURRENT channel,
1461 * this one (maybe the same one) can beacon as well. We allow
1462 * the operation even if the station we relied on with
1463 * GO_CONCURRENT is disconnected now. But then we must make sure
1464 * we're not outdoor on an indoor-only channel.
1465 */
1466 if (iftype == NL80211_IFTYPE_P2P_GO &&
1467 wdev->iftype == NL80211_IFTYPE_P2P_GO &&
1468 wdev->links[link_id].ap.beacon_interval &&
1469 !(chan->flags & IEEE80211_CHAN_INDOOR_ONLY))
1470 other_chan = wdev->links[link_id].ap.chandef.chan;
1471
1472 if (!other_chan)
1473 continue;
1474
1475 if (chan == other_chan)
1476 return true;
1477
1478 if (chan->band != NL80211_BAND_5GHZ &&
1479 chan->band != NL80211_BAND_6GHZ)
1480 continue;
1481
1482 r1 = cfg80211_get_unii(chan->center_freq);
1483 r2 = cfg80211_get_unii(other_chan->center_freq);
1484
1485 if (r1 != -EINVAL && r1 == r2) {
1486 /*
1487 * At some locations channels 149-165 are considered a
1488 * bundle, but at other locations, e.g., Indonesia,
1489 * channels 149-161 are considered a bundle while
1490 * channel 165 is left out and considered to be in a
1491 * different bundle. Thus, in case that there is a
1492 * station interface connected to an AP on channel 165,
1493 * it is assumed that channels 149-161 are allowed for
1494 * GO operations. However, having a station interface
1495 * connected to an AP on channels 149-161, does not
1496 * allow GO operation on channel 165.
1497 */
1498 if (chan->center_freq == 5825 &&
1499 other_chan->center_freq != 5825)
1500 continue;
1501 return true;
1502 }
1503 }
1504
1505 return false;
1506 }
1507
1508 /*
1509 * Check if the channel can be used under permissive conditions mandated by
1510 * some regulatory bodies, i.e., the channel is marked with
1511 * IEEE80211_CHAN_IR_CONCURRENT and there is an additional station interface
1512 * associated to an AP on the same channel or on the same UNII band
1513 * (assuming that the AP is an authorized master).
1514 * In addition allow operation on a channel on which indoor operation is
1515 * allowed, iff we are currently operating in an indoor environment.
1516 */
cfg80211_ir_permissive_chan(struct wiphy * wiphy,enum nl80211_iftype iftype,struct ieee80211_channel * chan)1517 static bool cfg80211_ir_permissive_chan(struct wiphy *wiphy,
1518 enum nl80211_iftype iftype,
1519 struct ieee80211_channel *chan)
1520 {
1521 struct wireless_dev *wdev;
1522 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1523
1524 lockdep_assert_held(&rdev->wiphy.mtx);
1525
1526 if (!IS_ENABLED(CONFIG_CFG80211_REG_RELAX_NO_IR) ||
1527 !(wiphy->regulatory_flags & REGULATORY_ENABLE_RELAX_NO_IR))
1528 return false;
1529
1530 /* only valid for GO and TDLS off-channel (station/p2p-CL) */
1531 if (iftype != NL80211_IFTYPE_P2P_GO &&
1532 iftype != NL80211_IFTYPE_STATION &&
1533 iftype != NL80211_IFTYPE_P2P_CLIENT)
1534 return false;
1535
1536 if (regulatory_indoor_allowed() &&
1537 (chan->flags & IEEE80211_CHAN_INDOOR_ONLY))
1538 return true;
1539
1540 if (!(chan->flags & IEEE80211_CHAN_IR_CONCURRENT))
1541 return false;
1542
1543 /*
1544 * Generally, it is possible to rely on another device/driver to allow
1545 * the IR concurrent relaxation, however, since the device can further
1546 * enforce the relaxation (by doing a similar verifications as this),
1547 * and thus fail the GO instantiation, consider only the interfaces of
1548 * the current registered device.
1549 */
1550 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
1551 bool ret;
1552
1553 ret = cfg80211_ir_permissive_check_wdev(iftype, wdev, chan);
1554 if (ret)
1555 return ret;
1556 }
1557
1558 return false;
1559 }
1560
_cfg80211_reg_can_beacon(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_iftype iftype,u32 prohibited_flags,u32 permitting_flags)1561 static bool _cfg80211_reg_can_beacon(struct wiphy *wiphy,
1562 struct cfg80211_chan_def *chandef,
1563 enum nl80211_iftype iftype,
1564 u32 prohibited_flags,
1565 u32 permitting_flags)
1566 {
1567 bool res, check_radar;
1568 int dfs_required;
1569
1570 trace_cfg80211_reg_can_beacon(wiphy, chandef, iftype,
1571 prohibited_flags,
1572 permitting_flags);
1573
1574 if (!_cfg80211_chandef_usable(wiphy, chandef,
1575 IEEE80211_CHAN_DISABLED, 0))
1576 return false;
1577
1578 dfs_required = cfg80211_chandef_dfs_required(wiphy, chandef, iftype);
1579 check_radar = dfs_required != 0;
1580
1581 if (dfs_required > 0 &&
1582 cfg80211_chandef_dfs_available(wiphy, chandef)) {
1583 /* We can skip IEEE80211_CHAN_NO_IR if chandef dfs available */
1584 prohibited_flags &= ~IEEE80211_CHAN_NO_IR;
1585 check_radar = false;
1586 }
1587
1588 if (check_radar &&
1589 !_cfg80211_chandef_usable(wiphy, chandef,
1590 IEEE80211_CHAN_RADAR, 0))
1591 return false;
1592
1593 res = _cfg80211_chandef_usable(wiphy, chandef,
1594 prohibited_flags,
1595 permitting_flags);
1596
1597 trace_cfg80211_return_bool(res);
1598 return res;
1599 }
1600
cfg80211_reg_check_beaconing(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,struct cfg80211_beaconing_check_config * cfg)1601 bool cfg80211_reg_check_beaconing(struct wiphy *wiphy,
1602 struct cfg80211_chan_def *chandef,
1603 struct cfg80211_beaconing_check_config *cfg)
1604 {
1605 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1606 u32 permitting_flags = 0;
1607 bool check_no_ir = true;
1608
1609 /*
1610 * Under certain conditions suggested by some regulatory bodies a
1611 * GO/STA can IR on channels marked with IEEE80211_NO_IR. Set this flag
1612 * only if such relaxations are not enabled and the conditions are not
1613 * met.
1614 */
1615 if (cfg->relax) {
1616 lockdep_assert_held(&rdev->wiphy.mtx);
1617 check_no_ir = !cfg80211_ir_permissive_chan(wiphy, cfg->iftype,
1618 chandef->chan);
1619 }
1620
1621 if (cfg->reg_power == IEEE80211_REG_VLP_AP)
1622 permitting_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
1623
1624 return _cfg80211_reg_can_beacon(wiphy, chandef, cfg->iftype,
1625 check_no_ir ? IEEE80211_CHAN_NO_IR : 0,
1626 permitting_flags);
1627 }
1628 EXPORT_SYMBOL(cfg80211_reg_check_beaconing);
1629
cfg80211_set_monitor_channel(struct cfg80211_registered_device * rdev,struct cfg80211_chan_def * chandef)1630 int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev,
1631 struct cfg80211_chan_def *chandef)
1632 {
1633 if (!rdev->ops->set_monitor_channel)
1634 return -EOPNOTSUPP;
1635 if (!cfg80211_has_monitors_only(rdev))
1636 return -EBUSY;
1637
1638 return rdev_set_monitor_channel(rdev, chandef);
1639 }
1640
cfg80211_any_usable_channels(struct wiphy * wiphy,unsigned long sband_mask,u32 prohibited_flags)1641 bool cfg80211_any_usable_channels(struct wiphy *wiphy,
1642 unsigned long sband_mask,
1643 u32 prohibited_flags)
1644 {
1645 int idx;
1646
1647 prohibited_flags |= IEEE80211_CHAN_DISABLED;
1648
1649 for_each_set_bit(idx, &sband_mask, NUM_NL80211_BANDS) {
1650 struct ieee80211_supported_band *sband = wiphy->bands[idx];
1651 int chanidx;
1652
1653 if (!sband)
1654 continue;
1655
1656 for (chanidx = 0; chanidx < sband->n_channels; chanidx++) {
1657 struct ieee80211_channel *chan;
1658
1659 chan = &sband->channels[chanidx];
1660
1661 if (chan->flags & prohibited_flags)
1662 continue;
1663
1664 return true;
1665 }
1666 }
1667
1668 return false;
1669 }
1670 EXPORT_SYMBOL(cfg80211_any_usable_channels);
1671
wdev_chandef(struct wireless_dev * wdev,unsigned int link_id)1672 struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev,
1673 unsigned int link_id)
1674 {
1675 lockdep_assert_wiphy(wdev->wiphy);
1676
1677 WARN_ON(wdev->valid_links && !(wdev->valid_links & BIT(link_id)));
1678 WARN_ON(!wdev->valid_links && link_id > 0);
1679
1680 switch (wdev->iftype) {
1681 case NL80211_IFTYPE_MESH_POINT:
1682 return &wdev->u.mesh.chandef;
1683 case NL80211_IFTYPE_ADHOC:
1684 return &wdev->u.ibss.chandef;
1685 case NL80211_IFTYPE_OCB:
1686 return &wdev->u.ocb.chandef;
1687 case NL80211_IFTYPE_AP:
1688 case NL80211_IFTYPE_P2P_GO:
1689 return &wdev->links[link_id].ap.chandef;
1690 default:
1691 return NULL;
1692 }
1693 }
1694 EXPORT_SYMBOL(wdev_chandef);
1695