1 /* 2 * VMware vSockets Driver 3 * 4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation version 2 and no later version. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 */ 15 16 #include <linux/types.h> 17 #include <linux/bitops.h> 18 #include <linux/cred.h> 19 #include <linux/init.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/kmod.h> 23 #include <linux/list.h> 24 #include <linux/miscdevice.h> 25 #include <linux/module.h> 26 #include <linux/mutex.h> 27 #include <linux/net.h> 28 #include <linux/poll.h> 29 #include <linux/skbuff.h> 30 #include <linux/smp.h> 31 #include <linux/socket.h> 32 #include <linux/stddef.h> 33 #include <linux/unistd.h> 34 #include <linux/wait.h> 35 #include <linux/workqueue.h> 36 #include <net/sock.h> 37 #include <net/af_vsock.h> 38 39 #include "vmci_transport_notify.h" 40 41 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg); 42 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg); 43 static void vmci_transport_peer_detach_cb(u32 sub_id, 44 const struct vmci_event_data *ed, 45 void *client_data); 46 static void vmci_transport_recv_pkt_work(struct work_struct *work); 47 static void vmci_transport_cleanup(struct work_struct *work); 48 static int vmci_transport_recv_listen(struct sock *sk, 49 struct vmci_transport_packet *pkt); 50 static int vmci_transport_recv_connecting_server( 51 struct sock *sk, 52 struct sock *pending, 53 struct vmci_transport_packet *pkt); 54 static int vmci_transport_recv_connecting_client( 55 struct sock *sk, 56 struct vmci_transport_packet *pkt); 57 static int vmci_transport_recv_connecting_client_negotiate( 58 struct sock *sk, 59 struct vmci_transport_packet *pkt); 60 static int vmci_transport_recv_connecting_client_invalid( 61 struct sock *sk, 62 struct vmci_transport_packet *pkt); 63 static int vmci_transport_recv_connected(struct sock *sk, 64 struct vmci_transport_packet *pkt); 65 static bool vmci_transport_old_proto_override(bool *old_pkt_proto); 66 static u16 vmci_transport_new_proto_supported_versions(void); 67 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto, 68 bool old_pkt_proto); 69 70 struct vmci_transport_recv_pkt_info { 71 struct work_struct work; 72 struct sock *sk; 73 struct vmci_transport_packet pkt; 74 }; 75 76 static LIST_HEAD(vmci_transport_cleanup_list); 77 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock); 78 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup); 79 80 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID, 81 VMCI_INVALID_ID }; 82 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 83 84 static int PROTOCOL_OVERRIDE = -1; 85 86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN 128 87 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE 262144 88 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX 262144 89 90 /* The default peer timeout indicates how long we will wait for a peer response 91 * to a control message. 92 */ 93 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 94 95 #define SS_LISTEN 255 96 97 /* Helper function to convert from a VMCI error code to a VSock error code. */ 98 99 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error) 100 { 101 int err; 102 103 switch (vmci_error) { 104 case VMCI_ERROR_NO_MEM: 105 err = ENOMEM; 106 break; 107 case VMCI_ERROR_DUPLICATE_ENTRY: 108 case VMCI_ERROR_ALREADY_EXISTS: 109 err = EADDRINUSE; 110 break; 111 case VMCI_ERROR_NO_ACCESS: 112 err = EPERM; 113 break; 114 case VMCI_ERROR_NO_RESOURCES: 115 err = ENOBUFS; 116 break; 117 case VMCI_ERROR_INVALID_RESOURCE: 118 err = EHOSTUNREACH; 119 break; 120 case VMCI_ERROR_INVALID_ARGS: 121 default: 122 err = EINVAL; 123 } 124 125 return err > 0 ? -err : err; 126 } 127 128 static u32 vmci_transport_peer_rid(u32 peer_cid) 129 { 130 if (VMADDR_CID_HYPERVISOR == peer_cid) 131 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID; 132 133 return VMCI_TRANSPORT_PACKET_RID; 134 } 135 136 static inline void 137 vmci_transport_packet_init(struct vmci_transport_packet *pkt, 138 struct sockaddr_vm *src, 139 struct sockaddr_vm *dst, 140 u8 type, 141 u64 size, 142 u64 mode, 143 struct vmci_transport_waiting_info *wait, 144 u16 proto, 145 struct vmci_handle handle) 146 { 147 /* We register the stream control handler as an any cid handle so we 148 * must always send from a source address of VMADDR_CID_ANY 149 */ 150 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY, 151 VMCI_TRANSPORT_PACKET_RID); 152 pkt->dg.dst = vmci_make_handle(dst->svm_cid, 153 vmci_transport_peer_rid(dst->svm_cid)); 154 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg); 155 pkt->version = VMCI_TRANSPORT_PACKET_VERSION; 156 pkt->type = type; 157 pkt->src_port = src->svm_port; 158 pkt->dst_port = dst->svm_port; 159 memset(&pkt->proto, 0, sizeof(pkt->proto)); 160 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2)); 161 162 switch (pkt->type) { 163 case VMCI_TRANSPORT_PACKET_TYPE_INVALID: 164 pkt->u.size = 0; 165 break; 166 167 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST: 168 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: 169 pkt->u.size = size; 170 break; 171 172 case VMCI_TRANSPORT_PACKET_TYPE_OFFER: 173 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: 174 pkt->u.handle = handle; 175 break; 176 177 case VMCI_TRANSPORT_PACKET_TYPE_WROTE: 178 case VMCI_TRANSPORT_PACKET_TYPE_READ: 179 case VMCI_TRANSPORT_PACKET_TYPE_RST: 180 pkt->u.size = 0; 181 break; 182 183 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: 184 pkt->u.mode = mode; 185 break; 186 187 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ: 188 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE: 189 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait)); 190 break; 191 192 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2: 193 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: 194 pkt->u.size = size; 195 pkt->proto = proto; 196 break; 197 } 198 } 199 200 static inline void 201 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt, 202 struct sockaddr_vm *local, 203 struct sockaddr_vm *remote) 204 { 205 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port); 206 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port); 207 } 208 209 static int 210 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt, 211 struct sockaddr_vm *src, 212 struct sockaddr_vm *dst, 213 enum vmci_transport_packet_type type, 214 u64 size, 215 u64 mode, 216 struct vmci_transport_waiting_info *wait, 217 u16 proto, 218 struct vmci_handle handle, 219 bool convert_error) 220 { 221 int err; 222 223 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait, 224 proto, handle); 225 err = vmci_datagram_send(&pkt->dg); 226 if (convert_error && (err < 0)) 227 return vmci_transport_error_to_vsock_error(err); 228 229 return err; 230 } 231 232 static int 233 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt, 234 enum vmci_transport_packet_type type, 235 u64 size, 236 u64 mode, 237 struct vmci_transport_waiting_info *wait, 238 struct vmci_handle handle) 239 { 240 struct vmci_transport_packet reply; 241 struct sockaddr_vm src, dst; 242 243 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) { 244 return 0; 245 } else { 246 vmci_transport_packet_get_addresses(pkt, &src, &dst); 247 return __vmci_transport_send_control_pkt(&reply, &src, &dst, 248 type, 249 size, mode, wait, 250 VSOCK_PROTO_INVALID, 251 handle, true); 252 } 253 } 254 255 static int 256 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src, 257 struct sockaddr_vm *dst, 258 enum vmci_transport_packet_type type, 259 u64 size, 260 u64 mode, 261 struct vmci_transport_waiting_info *wait, 262 struct vmci_handle handle) 263 { 264 /* Note that it is safe to use a single packet across all CPUs since 265 * two tasklets of the same type are guaranteed to not ever run 266 * simultaneously. If that ever changes, or VMCI stops using tasklets, 267 * we can use per-cpu packets. 268 */ 269 static struct vmci_transport_packet pkt; 270 271 return __vmci_transport_send_control_pkt(&pkt, src, dst, type, 272 size, mode, wait, 273 VSOCK_PROTO_INVALID, handle, 274 false); 275 } 276 277 static int 278 vmci_transport_send_control_pkt(struct sock *sk, 279 enum vmci_transport_packet_type type, 280 u64 size, 281 u64 mode, 282 struct vmci_transport_waiting_info *wait, 283 u16 proto, 284 struct vmci_handle handle) 285 { 286 struct vmci_transport_packet *pkt; 287 struct vsock_sock *vsk; 288 int err; 289 290 vsk = vsock_sk(sk); 291 292 if (!vsock_addr_bound(&vsk->local_addr)) 293 return -EINVAL; 294 295 if (!vsock_addr_bound(&vsk->remote_addr)) 296 return -EINVAL; 297 298 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL); 299 if (!pkt) 300 return -ENOMEM; 301 302 err = __vmci_transport_send_control_pkt(pkt, &vsk->local_addr, 303 &vsk->remote_addr, type, size, 304 mode, wait, proto, handle, 305 true); 306 kfree(pkt); 307 308 return err; 309 } 310 311 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst, 312 struct sockaddr_vm *src, 313 struct vmci_transport_packet *pkt) 314 { 315 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) 316 return 0; 317 return vmci_transport_send_control_pkt_bh( 318 dst, src, 319 VMCI_TRANSPORT_PACKET_TYPE_RST, 0, 320 0, NULL, VMCI_INVALID_HANDLE); 321 } 322 323 static int vmci_transport_send_reset(struct sock *sk, 324 struct vmci_transport_packet *pkt) 325 { 326 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) 327 return 0; 328 return vmci_transport_send_control_pkt(sk, 329 VMCI_TRANSPORT_PACKET_TYPE_RST, 330 0, 0, NULL, VSOCK_PROTO_INVALID, 331 VMCI_INVALID_HANDLE); 332 } 333 334 static int vmci_transport_send_negotiate(struct sock *sk, size_t size) 335 { 336 return vmci_transport_send_control_pkt( 337 sk, 338 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE, 339 size, 0, NULL, 340 VSOCK_PROTO_INVALID, 341 VMCI_INVALID_HANDLE); 342 } 343 344 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size, 345 u16 version) 346 { 347 return vmci_transport_send_control_pkt( 348 sk, 349 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2, 350 size, 0, NULL, version, 351 VMCI_INVALID_HANDLE); 352 } 353 354 static int vmci_transport_send_qp_offer(struct sock *sk, 355 struct vmci_handle handle) 356 { 357 return vmci_transport_send_control_pkt( 358 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0, 359 0, NULL, 360 VSOCK_PROTO_INVALID, handle); 361 } 362 363 static int vmci_transport_send_attach(struct sock *sk, 364 struct vmci_handle handle) 365 { 366 return vmci_transport_send_control_pkt( 367 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH, 368 0, 0, NULL, VSOCK_PROTO_INVALID, 369 handle); 370 } 371 372 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt) 373 { 374 return vmci_transport_reply_control_pkt_fast( 375 pkt, 376 VMCI_TRANSPORT_PACKET_TYPE_RST, 377 0, 0, NULL, 378 VMCI_INVALID_HANDLE); 379 } 380 381 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst, 382 struct sockaddr_vm *src) 383 { 384 return vmci_transport_send_control_pkt_bh( 385 dst, src, 386 VMCI_TRANSPORT_PACKET_TYPE_INVALID, 387 0, 0, NULL, VMCI_INVALID_HANDLE); 388 } 389 390 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst, 391 struct sockaddr_vm *src) 392 { 393 return vmci_transport_send_control_pkt_bh( 394 dst, src, 395 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 396 0, NULL, VMCI_INVALID_HANDLE); 397 } 398 399 int vmci_transport_send_read_bh(struct sockaddr_vm *dst, 400 struct sockaddr_vm *src) 401 { 402 return vmci_transport_send_control_pkt_bh( 403 dst, src, 404 VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 405 0, NULL, VMCI_INVALID_HANDLE); 406 } 407 408 int vmci_transport_send_wrote(struct sock *sk) 409 { 410 return vmci_transport_send_control_pkt( 411 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 412 0, NULL, VSOCK_PROTO_INVALID, 413 VMCI_INVALID_HANDLE); 414 } 415 416 int vmci_transport_send_read(struct sock *sk) 417 { 418 return vmci_transport_send_control_pkt( 419 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 420 0, NULL, VSOCK_PROTO_INVALID, 421 VMCI_INVALID_HANDLE); 422 } 423 424 int vmci_transport_send_waiting_write(struct sock *sk, 425 struct vmci_transport_waiting_info *wait) 426 { 427 return vmci_transport_send_control_pkt( 428 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE, 429 0, 0, wait, VSOCK_PROTO_INVALID, 430 VMCI_INVALID_HANDLE); 431 } 432 433 int vmci_transport_send_waiting_read(struct sock *sk, 434 struct vmci_transport_waiting_info *wait) 435 { 436 return vmci_transport_send_control_pkt( 437 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ, 438 0, 0, wait, VSOCK_PROTO_INVALID, 439 VMCI_INVALID_HANDLE); 440 } 441 442 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode) 443 { 444 return vmci_transport_send_control_pkt( 445 &vsk->sk, 446 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN, 447 0, mode, NULL, 448 VSOCK_PROTO_INVALID, 449 VMCI_INVALID_HANDLE); 450 } 451 452 static int vmci_transport_send_conn_request(struct sock *sk, size_t size) 453 { 454 return vmci_transport_send_control_pkt(sk, 455 VMCI_TRANSPORT_PACKET_TYPE_REQUEST, 456 size, 0, NULL, 457 VSOCK_PROTO_INVALID, 458 VMCI_INVALID_HANDLE); 459 } 460 461 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size, 462 u16 version) 463 { 464 return vmci_transport_send_control_pkt( 465 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2, 466 size, 0, NULL, version, 467 VMCI_INVALID_HANDLE); 468 } 469 470 static struct sock *vmci_transport_get_pending( 471 struct sock *listener, 472 struct vmci_transport_packet *pkt) 473 { 474 struct vsock_sock *vlistener; 475 struct vsock_sock *vpending; 476 struct sock *pending; 477 struct sockaddr_vm src; 478 479 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); 480 481 vlistener = vsock_sk(listener); 482 483 list_for_each_entry(vpending, &vlistener->pending_links, 484 pending_links) { 485 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) && 486 pkt->dst_port == vpending->local_addr.svm_port) { 487 pending = sk_vsock(vpending); 488 sock_hold(pending); 489 goto found; 490 } 491 } 492 493 pending = NULL; 494 found: 495 return pending; 496 497 } 498 499 static void vmci_transport_release_pending(struct sock *pending) 500 { 501 sock_put(pending); 502 } 503 504 /* We allow two kinds of sockets to communicate with a restricted VM: 1) 505 * trusted sockets 2) sockets from applications running as the same user as the 506 * VM (this is only true for the host side and only when using hosted products) 507 */ 508 509 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid) 510 { 511 return vsock->trusted || 512 vmci_is_context_owner(peer_cid, vsock->owner->uid); 513 } 514 515 /* We allow sending datagrams to and receiving datagrams from a restricted VM 516 * only if it is trusted as described in vmci_transport_is_trusted. 517 */ 518 519 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid) 520 { 521 if (VMADDR_CID_HYPERVISOR == peer_cid) 522 return true; 523 524 if (vsock->cached_peer != peer_cid) { 525 vsock->cached_peer = peer_cid; 526 if (!vmci_transport_is_trusted(vsock, peer_cid) && 527 (vmci_context_get_priv_flags(peer_cid) & 528 VMCI_PRIVILEGE_FLAG_RESTRICTED)) { 529 vsock->cached_peer_allow_dgram = false; 530 } else { 531 vsock->cached_peer_allow_dgram = true; 532 } 533 } 534 535 return vsock->cached_peer_allow_dgram; 536 } 537 538 static int 539 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair, 540 struct vmci_handle *handle, 541 u64 produce_size, 542 u64 consume_size, 543 u32 peer, u32 flags, bool trusted) 544 { 545 int err = 0; 546 547 if (trusted) { 548 /* Try to allocate our queue pair as trusted. This will only 549 * work if vsock is running in the host. 550 */ 551 552 err = vmci_qpair_alloc(qpair, handle, produce_size, 553 consume_size, 554 peer, flags, 555 VMCI_PRIVILEGE_FLAG_TRUSTED); 556 if (err != VMCI_ERROR_NO_ACCESS) 557 goto out; 558 559 } 560 561 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size, 562 peer, flags, VMCI_NO_PRIVILEGE_FLAGS); 563 out: 564 if (err < 0) { 565 pr_err("Could not attach to queue pair with %d\n", 566 err); 567 err = vmci_transport_error_to_vsock_error(err); 568 } 569 570 return err; 571 } 572 573 static int 574 vmci_transport_datagram_create_hnd(u32 resource_id, 575 u32 flags, 576 vmci_datagram_recv_cb recv_cb, 577 void *client_data, 578 struct vmci_handle *out_handle) 579 { 580 int err = 0; 581 582 /* Try to allocate our datagram handler as trusted. This will only work 583 * if vsock is running in the host. 584 */ 585 586 err = vmci_datagram_create_handle_priv(resource_id, flags, 587 VMCI_PRIVILEGE_FLAG_TRUSTED, 588 recv_cb, 589 client_data, out_handle); 590 591 if (err == VMCI_ERROR_NO_ACCESS) 592 err = vmci_datagram_create_handle(resource_id, flags, 593 recv_cb, client_data, 594 out_handle); 595 596 return err; 597 } 598 599 /* This is invoked as part of a tasklet that's scheduled when the VMCI 600 * interrupt fires. This is run in bottom-half context and if it ever needs to 601 * sleep it should defer that work to a work queue. 602 */ 603 604 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg) 605 { 606 struct sock *sk; 607 size_t size; 608 struct sk_buff *skb; 609 struct vsock_sock *vsk; 610 611 sk = (struct sock *)data; 612 613 /* This handler is privileged when this module is running on the host. 614 * We will get datagrams from all endpoints (even VMs that are in a 615 * restricted context). If we get one from a restricted context then 616 * the destination socket must be trusted. 617 * 618 * NOTE: We access the socket struct without holding the lock here. 619 * This is ok because the field we are interested is never modified 620 * outside of the create and destruct socket functions. 621 */ 622 vsk = vsock_sk(sk); 623 if (!vmci_transport_allow_dgram(vsk, dg->src.context)) 624 return VMCI_ERROR_NO_ACCESS; 625 626 size = VMCI_DG_SIZE(dg); 627 628 /* Attach the packet to the socket's receive queue as an sk_buff. */ 629 skb = alloc_skb(size, GFP_ATOMIC); 630 if (!skb) 631 return VMCI_ERROR_NO_MEM; 632 633 /* sk_receive_skb() will do a sock_put(), so hold here. */ 634 sock_hold(sk); 635 skb_put(skb, size); 636 memcpy(skb->data, dg, size); 637 sk_receive_skb(sk, skb, 0); 638 639 return VMCI_SUCCESS; 640 } 641 642 static bool vmci_transport_stream_allow(u32 cid, u32 port) 643 { 644 static const u32 non_socket_contexts[] = { 645 VMADDR_CID_RESERVED, 646 }; 647 int i; 648 649 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts)); 650 651 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) { 652 if (cid == non_socket_contexts[i]) 653 return false; 654 } 655 656 return true; 657 } 658 659 /* This is invoked as part of a tasklet that's scheduled when the VMCI 660 * interrupt fires. This is run in bottom-half context but it defers most of 661 * its work to the packet handling work queue. 662 */ 663 664 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg) 665 { 666 struct sock *sk; 667 struct sockaddr_vm dst; 668 struct sockaddr_vm src; 669 struct vmci_transport_packet *pkt; 670 struct vsock_sock *vsk; 671 bool bh_process_pkt; 672 int err; 673 674 sk = NULL; 675 err = VMCI_SUCCESS; 676 bh_process_pkt = false; 677 678 /* Ignore incoming packets from contexts without sockets, or resources 679 * that aren't vsock implementations. 680 */ 681 682 if (!vmci_transport_stream_allow(dg->src.context, -1) 683 || vmci_transport_peer_rid(dg->src.context) != dg->src.resource) 684 return VMCI_ERROR_NO_ACCESS; 685 686 if (VMCI_DG_SIZE(dg) < sizeof(*pkt)) 687 /* Drop datagrams that do not contain full VSock packets. */ 688 return VMCI_ERROR_INVALID_ARGS; 689 690 pkt = (struct vmci_transport_packet *)dg; 691 692 /* Find the socket that should handle this packet. First we look for a 693 * connected socket and if there is none we look for a socket bound to 694 * the destintation address. 695 */ 696 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); 697 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port); 698 699 sk = vsock_find_connected_socket(&src, &dst); 700 if (!sk) { 701 sk = vsock_find_bound_socket(&dst); 702 if (!sk) { 703 /* We could not find a socket for this specified 704 * address. If this packet is a RST, we just drop it. 705 * If it is another packet, we send a RST. Note that 706 * we do not send a RST reply to RSTs so that we do not 707 * continually send RSTs between two endpoints. 708 * 709 * Note that since this is a reply, dst is src and src 710 * is dst. 711 */ 712 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) 713 pr_err("unable to send reset\n"); 714 715 err = VMCI_ERROR_NOT_FOUND; 716 goto out; 717 } 718 } 719 720 /* If the received packet type is beyond all types known to this 721 * implementation, reply with an invalid message. Hopefully this will 722 * help when implementing backwards compatibility in the future. 723 */ 724 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) { 725 vmci_transport_send_invalid_bh(&dst, &src); 726 err = VMCI_ERROR_INVALID_ARGS; 727 goto out; 728 } 729 730 /* This handler is privileged when this module is running on the host. 731 * We will get datagram connect requests from all endpoints (even VMs 732 * that are in a restricted context). If we get one from a restricted 733 * context then the destination socket must be trusted. 734 * 735 * NOTE: We access the socket struct without holding the lock here. 736 * This is ok because the field we are interested is never modified 737 * outside of the create and destruct socket functions. 738 */ 739 vsk = vsock_sk(sk); 740 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) { 741 err = VMCI_ERROR_NO_ACCESS; 742 goto out; 743 } 744 745 /* We do most everything in a work queue, but let's fast path the 746 * notification of reads and writes to help data transfer performance. 747 * We can only do this if there is no process context code executing 748 * for this socket since that may change the state. 749 */ 750 bh_lock_sock(sk); 751 752 if (!sock_owned_by_user(sk)) { 753 /* The local context ID may be out of date, update it. */ 754 vsk->local_addr.svm_cid = dst.svm_cid; 755 756 if (sk->sk_state == SS_CONNECTED) 757 vmci_trans(vsk)->notify_ops->handle_notify_pkt( 758 sk, pkt, true, &dst, &src, 759 &bh_process_pkt); 760 } 761 762 bh_unlock_sock(sk); 763 764 if (!bh_process_pkt) { 765 struct vmci_transport_recv_pkt_info *recv_pkt_info; 766 767 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC); 768 if (!recv_pkt_info) { 769 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) 770 pr_err("unable to send reset\n"); 771 772 err = VMCI_ERROR_NO_MEM; 773 goto out; 774 } 775 776 recv_pkt_info->sk = sk; 777 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt)); 778 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work); 779 780 schedule_work(&recv_pkt_info->work); 781 /* Clear sk so that the reference count incremented by one of 782 * the Find functions above is not decremented below. We need 783 * that reference count for the packet handler we've scheduled 784 * to run. 785 */ 786 sk = NULL; 787 } 788 789 out: 790 if (sk) 791 sock_put(sk); 792 793 return err; 794 } 795 796 static void vmci_transport_handle_detach(struct sock *sk) 797 { 798 struct vsock_sock *vsk; 799 800 vsk = vsock_sk(sk); 801 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) { 802 sock_set_flag(sk, SOCK_DONE); 803 804 /* On a detach the peer will not be sending or receiving 805 * anymore. 806 */ 807 vsk->peer_shutdown = SHUTDOWN_MASK; 808 809 /* We should not be sending anymore since the peer won't be 810 * there to receive, but we can still receive if there is data 811 * left in our consume queue. 812 */ 813 if (vsock_stream_has_data(vsk) <= 0) { 814 if (sk->sk_state == SS_CONNECTING) { 815 /* The peer may detach from a queue pair while 816 * we are still in the connecting state, i.e., 817 * if the peer VM is killed after attaching to 818 * a queue pair, but before we complete the 819 * handshake. In that case, we treat the detach 820 * event like a reset. 821 */ 822 823 sk->sk_state = SS_UNCONNECTED; 824 sk->sk_err = ECONNRESET; 825 sk->sk_error_report(sk); 826 return; 827 } 828 sk->sk_state = SS_UNCONNECTED; 829 } 830 sk->sk_state_change(sk); 831 } 832 } 833 834 static void vmci_transport_peer_detach_cb(u32 sub_id, 835 const struct vmci_event_data *e_data, 836 void *client_data) 837 { 838 struct vmci_transport *trans = client_data; 839 const struct vmci_event_payload_qp *e_payload; 840 841 e_payload = vmci_event_data_const_payload(e_data); 842 843 /* XXX This is lame, we should provide a way to lookup sockets by 844 * qp_handle. 845 */ 846 if (vmci_handle_is_invalid(e_payload->handle) || 847 vmci_handle_is_equal(trans->qp_handle, e_payload->handle)) 848 return; 849 850 /* We don't ask for delayed CBs when we subscribe to this event (we 851 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no 852 * guarantees in that case about what context we might be running in, 853 * so it could be BH or process, blockable or non-blockable. So we 854 * need to account for all possible contexts here. 855 */ 856 spin_lock_bh(&trans->lock); 857 if (!trans->sk) 858 goto out; 859 860 /* Apart from here, trans->lock is only grabbed as part of sk destruct, 861 * where trans->sk isn't locked. 862 */ 863 bh_lock_sock(trans->sk); 864 865 vmci_transport_handle_detach(trans->sk); 866 867 bh_unlock_sock(trans->sk); 868 out: 869 spin_unlock_bh(&trans->lock); 870 } 871 872 static void vmci_transport_qp_resumed_cb(u32 sub_id, 873 const struct vmci_event_data *e_data, 874 void *client_data) 875 { 876 vsock_for_each_connected_socket(vmci_transport_handle_detach); 877 } 878 879 static void vmci_transport_recv_pkt_work(struct work_struct *work) 880 { 881 struct vmci_transport_recv_pkt_info *recv_pkt_info; 882 struct vmci_transport_packet *pkt; 883 struct sock *sk; 884 885 recv_pkt_info = 886 container_of(work, struct vmci_transport_recv_pkt_info, work); 887 sk = recv_pkt_info->sk; 888 pkt = &recv_pkt_info->pkt; 889 890 lock_sock(sk); 891 892 /* The local context ID may be out of date. */ 893 vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context; 894 895 switch (sk->sk_state) { 896 case SS_LISTEN: 897 vmci_transport_recv_listen(sk, pkt); 898 break; 899 case SS_CONNECTING: 900 /* Processing of pending connections for servers goes through 901 * the listening socket, so see vmci_transport_recv_listen() 902 * for that path. 903 */ 904 vmci_transport_recv_connecting_client(sk, pkt); 905 break; 906 case SS_CONNECTED: 907 vmci_transport_recv_connected(sk, pkt); 908 break; 909 default: 910 /* Because this function does not run in the same context as 911 * vmci_transport_recv_stream_cb it is possible that the 912 * socket has closed. We need to let the other side know or it 913 * could be sitting in a connect and hang forever. Send a 914 * reset to prevent that. 915 */ 916 vmci_transport_send_reset(sk, pkt); 917 break; 918 } 919 920 release_sock(sk); 921 kfree(recv_pkt_info); 922 /* Release reference obtained in the stream callback when we fetched 923 * this socket out of the bound or connected list. 924 */ 925 sock_put(sk); 926 } 927 928 static int vmci_transport_recv_listen(struct sock *sk, 929 struct vmci_transport_packet *pkt) 930 { 931 struct sock *pending; 932 struct vsock_sock *vpending; 933 int err; 934 u64 qp_size; 935 bool old_request = false; 936 bool old_pkt_proto = false; 937 938 err = 0; 939 940 /* Because we are in the listen state, we could be receiving a packet 941 * for ourself or any previous connection requests that we received. 942 * If it's the latter, we try to find a socket in our list of pending 943 * connections and, if we do, call the appropriate handler for the 944 * state that that socket is in. Otherwise we try to service the 945 * connection request. 946 */ 947 pending = vmci_transport_get_pending(sk, pkt); 948 if (pending) { 949 lock_sock(pending); 950 951 /* The local context ID may be out of date. */ 952 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context; 953 954 switch (pending->sk_state) { 955 case SS_CONNECTING: 956 err = vmci_transport_recv_connecting_server(sk, 957 pending, 958 pkt); 959 break; 960 default: 961 vmci_transport_send_reset(pending, pkt); 962 err = -EINVAL; 963 } 964 965 if (err < 0) 966 vsock_remove_pending(sk, pending); 967 968 release_sock(pending); 969 vmci_transport_release_pending(pending); 970 971 return err; 972 } 973 974 /* The listen state only accepts connection requests. Reply with a 975 * reset unless we received a reset. 976 */ 977 978 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST || 979 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) { 980 vmci_transport_reply_reset(pkt); 981 return -EINVAL; 982 } 983 984 if (pkt->u.size == 0) { 985 vmci_transport_reply_reset(pkt); 986 return -EINVAL; 987 } 988 989 /* If this socket can't accommodate this connection request, we send a 990 * reset. Otherwise we create and initialize a child socket and reply 991 * with a connection negotiation. 992 */ 993 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) { 994 vmci_transport_reply_reset(pkt); 995 return -ECONNREFUSED; 996 } 997 998 pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL, 999 sk->sk_type, 0); 1000 if (!pending) { 1001 vmci_transport_send_reset(sk, pkt); 1002 return -ENOMEM; 1003 } 1004 1005 vpending = vsock_sk(pending); 1006 1007 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context, 1008 pkt->dst_port); 1009 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context, 1010 pkt->src_port); 1011 1012 /* If the proposed size fits within our min/max, accept it. Otherwise 1013 * propose our own size. 1014 */ 1015 if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size && 1016 pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) { 1017 qp_size = pkt->u.size; 1018 } else { 1019 qp_size = vmci_trans(vpending)->queue_pair_size; 1020 } 1021 1022 /* Figure out if we are using old or new requests based on the 1023 * overrides pkt types sent by our peer. 1024 */ 1025 if (vmci_transport_old_proto_override(&old_pkt_proto)) { 1026 old_request = old_pkt_proto; 1027 } else { 1028 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST) 1029 old_request = true; 1030 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2) 1031 old_request = false; 1032 1033 } 1034 1035 if (old_request) { 1036 /* Handle a REQUEST (or override) */ 1037 u16 version = VSOCK_PROTO_INVALID; 1038 if (vmci_transport_proto_to_notify_struct( 1039 pending, &version, true)) 1040 err = vmci_transport_send_negotiate(pending, qp_size); 1041 else 1042 err = -EINVAL; 1043 1044 } else { 1045 /* Handle a REQUEST2 (or override) */ 1046 int proto_int = pkt->proto; 1047 int pos; 1048 u16 active_proto_version = 0; 1049 1050 /* The list of possible protocols is the intersection of all 1051 * protocols the client supports ... plus all the protocols we 1052 * support. 1053 */ 1054 proto_int &= vmci_transport_new_proto_supported_versions(); 1055 1056 /* We choose the highest possible protocol version and use that 1057 * one. 1058 */ 1059 pos = fls(proto_int); 1060 if (pos) { 1061 active_proto_version = (1 << (pos - 1)); 1062 if (vmci_transport_proto_to_notify_struct( 1063 pending, &active_proto_version, false)) 1064 err = vmci_transport_send_negotiate2(pending, 1065 qp_size, 1066 active_proto_version); 1067 else 1068 err = -EINVAL; 1069 1070 } else { 1071 err = -EINVAL; 1072 } 1073 } 1074 1075 if (err < 0) { 1076 vmci_transport_send_reset(sk, pkt); 1077 sock_put(pending); 1078 err = vmci_transport_error_to_vsock_error(err); 1079 goto out; 1080 } 1081 1082 vsock_add_pending(sk, pending); 1083 sk->sk_ack_backlog++; 1084 1085 pending->sk_state = SS_CONNECTING; 1086 vmci_trans(vpending)->produce_size = 1087 vmci_trans(vpending)->consume_size = qp_size; 1088 vmci_trans(vpending)->queue_pair_size = qp_size; 1089 1090 vmci_trans(vpending)->notify_ops->process_request(pending); 1091 1092 /* We might never receive another message for this socket and it's not 1093 * connected to any process, so we have to ensure it gets cleaned up 1094 * ourself. Our delayed work function will take care of that. Note 1095 * that we do not ever cancel this function since we have few 1096 * guarantees about its state when calling cancel_delayed_work(). 1097 * Instead we hold a reference on the socket for that function and make 1098 * it capable of handling cases where it needs to do nothing but 1099 * release that reference. 1100 */ 1101 vpending->listener = sk; 1102 sock_hold(sk); 1103 sock_hold(pending); 1104 INIT_DELAYED_WORK(&vpending->dwork, vsock_pending_work); 1105 schedule_delayed_work(&vpending->dwork, HZ); 1106 1107 out: 1108 return err; 1109 } 1110 1111 static int 1112 vmci_transport_recv_connecting_server(struct sock *listener, 1113 struct sock *pending, 1114 struct vmci_transport_packet *pkt) 1115 { 1116 struct vsock_sock *vpending; 1117 struct vmci_handle handle; 1118 struct vmci_qp *qpair; 1119 bool is_local; 1120 u32 flags; 1121 u32 detach_sub_id; 1122 int err; 1123 int skerr; 1124 1125 vpending = vsock_sk(pending); 1126 detach_sub_id = VMCI_INVALID_ID; 1127 1128 switch (pkt->type) { 1129 case VMCI_TRANSPORT_PACKET_TYPE_OFFER: 1130 if (vmci_handle_is_invalid(pkt->u.handle)) { 1131 vmci_transport_send_reset(pending, pkt); 1132 skerr = EPROTO; 1133 err = -EINVAL; 1134 goto destroy; 1135 } 1136 break; 1137 default: 1138 /* Close and cleanup the connection. */ 1139 vmci_transport_send_reset(pending, pkt); 1140 skerr = EPROTO; 1141 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL; 1142 goto destroy; 1143 } 1144 1145 /* In order to complete the connection we need to attach to the offered 1146 * queue pair and send an attach notification. We also subscribe to the 1147 * detach event so we know when our peer goes away, and we do that 1148 * before attaching so we don't miss an event. If all this succeeds, 1149 * we update our state and wakeup anything waiting in accept() for a 1150 * connection. 1151 */ 1152 1153 /* We don't care about attach since we ensure the other side has 1154 * attached by specifying the ATTACH_ONLY flag below. 1155 */ 1156 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, 1157 vmci_transport_peer_detach_cb, 1158 vmci_trans(vpending), &detach_sub_id); 1159 if (err < VMCI_SUCCESS) { 1160 vmci_transport_send_reset(pending, pkt); 1161 err = vmci_transport_error_to_vsock_error(err); 1162 skerr = -err; 1163 goto destroy; 1164 } 1165 1166 vmci_trans(vpending)->detach_sub_id = detach_sub_id; 1167 1168 /* Now attach to the queue pair the client created. */ 1169 handle = pkt->u.handle; 1170 1171 /* vpending->local_addr always has a context id so we do not need to 1172 * worry about VMADDR_CID_ANY in this case. 1173 */ 1174 is_local = 1175 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid; 1176 flags = VMCI_QPFLAG_ATTACH_ONLY; 1177 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0; 1178 1179 err = vmci_transport_queue_pair_alloc( 1180 &qpair, 1181 &handle, 1182 vmci_trans(vpending)->produce_size, 1183 vmci_trans(vpending)->consume_size, 1184 pkt->dg.src.context, 1185 flags, 1186 vmci_transport_is_trusted( 1187 vpending, 1188 vpending->remote_addr.svm_cid)); 1189 if (err < 0) { 1190 vmci_transport_send_reset(pending, pkt); 1191 skerr = -err; 1192 goto destroy; 1193 } 1194 1195 vmci_trans(vpending)->qp_handle = handle; 1196 vmci_trans(vpending)->qpair = qpair; 1197 1198 /* When we send the attach message, we must be ready to handle incoming 1199 * control messages on the newly connected socket. So we move the 1200 * pending socket to the connected state before sending the attach 1201 * message. Otherwise, an incoming packet triggered by the attach being 1202 * received by the peer may be processed concurrently with what happens 1203 * below after sending the attach message, and that incoming packet 1204 * will find the listening socket instead of the (currently) pending 1205 * socket. Note that enqueueing the socket increments the reference 1206 * count, so even if a reset comes before the connection is accepted, 1207 * the socket will be valid until it is removed from the queue. 1208 * 1209 * If we fail sending the attach below, we remove the socket from the 1210 * connected list and move the socket to SS_UNCONNECTED before 1211 * releasing the lock, so a pending slow path processing of an incoming 1212 * packet will not see the socket in the connected state in that case. 1213 */ 1214 pending->sk_state = SS_CONNECTED; 1215 1216 vsock_insert_connected(vpending); 1217 1218 /* Notify our peer of our attach. */ 1219 err = vmci_transport_send_attach(pending, handle); 1220 if (err < 0) { 1221 vsock_remove_connected(vpending); 1222 pr_err("Could not send attach\n"); 1223 vmci_transport_send_reset(pending, pkt); 1224 err = vmci_transport_error_to_vsock_error(err); 1225 skerr = -err; 1226 goto destroy; 1227 } 1228 1229 /* We have a connection. Move the now connected socket from the 1230 * listener's pending list to the accept queue so callers of accept() 1231 * can find it. 1232 */ 1233 vsock_remove_pending(listener, pending); 1234 vsock_enqueue_accept(listener, pending); 1235 1236 /* Callers of accept() will be be waiting on the listening socket, not 1237 * the pending socket. 1238 */ 1239 listener->sk_state_change(listener); 1240 1241 return 0; 1242 1243 destroy: 1244 pending->sk_err = skerr; 1245 pending->sk_state = SS_UNCONNECTED; 1246 /* As long as we drop our reference, all necessary cleanup will handle 1247 * when the cleanup function drops its reference and our destruct 1248 * implementation is called. Note that since the listen handler will 1249 * remove pending from the pending list upon our failure, the cleanup 1250 * function won't drop the additional reference, which is why we do it 1251 * here. 1252 */ 1253 sock_put(pending); 1254 1255 return err; 1256 } 1257 1258 static int 1259 vmci_transport_recv_connecting_client(struct sock *sk, 1260 struct vmci_transport_packet *pkt) 1261 { 1262 struct vsock_sock *vsk; 1263 int err; 1264 int skerr; 1265 1266 vsk = vsock_sk(sk); 1267 1268 switch (pkt->type) { 1269 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: 1270 if (vmci_handle_is_invalid(pkt->u.handle) || 1271 !vmci_handle_is_equal(pkt->u.handle, 1272 vmci_trans(vsk)->qp_handle)) { 1273 skerr = EPROTO; 1274 err = -EINVAL; 1275 goto destroy; 1276 } 1277 1278 /* Signify the socket is connected and wakeup the waiter in 1279 * connect(). Also place the socket in the connected table for 1280 * accounting (it can already be found since it's in the bound 1281 * table). 1282 */ 1283 sk->sk_state = SS_CONNECTED; 1284 sk->sk_socket->state = SS_CONNECTED; 1285 vsock_insert_connected(vsk); 1286 sk->sk_state_change(sk); 1287 1288 break; 1289 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: 1290 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: 1291 if (pkt->u.size == 0 1292 || pkt->dg.src.context != vsk->remote_addr.svm_cid 1293 || pkt->src_port != vsk->remote_addr.svm_port 1294 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle) 1295 || vmci_trans(vsk)->qpair 1296 || vmci_trans(vsk)->produce_size != 0 1297 || vmci_trans(vsk)->consume_size != 0 1298 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) { 1299 skerr = EPROTO; 1300 err = -EINVAL; 1301 1302 goto destroy; 1303 } 1304 1305 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt); 1306 if (err) { 1307 skerr = -err; 1308 goto destroy; 1309 } 1310 1311 break; 1312 case VMCI_TRANSPORT_PACKET_TYPE_INVALID: 1313 err = vmci_transport_recv_connecting_client_invalid(sk, pkt); 1314 if (err) { 1315 skerr = -err; 1316 goto destroy; 1317 } 1318 1319 break; 1320 case VMCI_TRANSPORT_PACKET_TYPE_RST: 1321 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to 1322 * continue processing here after they sent an INVALID packet. 1323 * This meant that we got a RST after the INVALID. We ignore a 1324 * RST after an INVALID. The common code doesn't send the RST 1325 * ... so we can hang if an old version of the common code 1326 * fails between getting a REQUEST and sending an OFFER back. 1327 * Not much we can do about it... except hope that it doesn't 1328 * happen. 1329 */ 1330 if (vsk->ignore_connecting_rst) { 1331 vsk->ignore_connecting_rst = false; 1332 } else { 1333 skerr = ECONNRESET; 1334 err = 0; 1335 goto destroy; 1336 } 1337 1338 break; 1339 default: 1340 /* Close and cleanup the connection. */ 1341 skerr = EPROTO; 1342 err = -EINVAL; 1343 goto destroy; 1344 } 1345 1346 return 0; 1347 1348 destroy: 1349 vmci_transport_send_reset(sk, pkt); 1350 1351 sk->sk_state = SS_UNCONNECTED; 1352 sk->sk_err = skerr; 1353 sk->sk_error_report(sk); 1354 return err; 1355 } 1356 1357 static int vmci_transport_recv_connecting_client_negotiate( 1358 struct sock *sk, 1359 struct vmci_transport_packet *pkt) 1360 { 1361 int err; 1362 struct vsock_sock *vsk; 1363 struct vmci_handle handle; 1364 struct vmci_qp *qpair; 1365 u32 detach_sub_id; 1366 bool is_local; 1367 u32 flags; 1368 bool old_proto = true; 1369 bool old_pkt_proto; 1370 u16 version; 1371 1372 vsk = vsock_sk(sk); 1373 handle = VMCI_INVALID_HANDLE; 1374 detach_sub_id = VMCI_INVALID_ID; 1375 1376 /* If we have gotten here then we should be past the point where old 1377 * linux vsock could have sent the bogus rst. 1378 */ 1379 vsk->sent_request = false; 1380 vsk->ignore_connecting_rst = false; 1381 1382 /* Verify that we're OK with the proposed queue pair size */ 1383 if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size || 1384 pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) { 1385 err = -EINVAL; 1386 goto destroy; 1387 } 1388 1389 /* At this point we know the CID the peer is using to talk to us. */ 1390 1391 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY) 1392 vsk->local_addr.svm_cid = pkt->dg.dst.context; 1393 1394 /* Setup the notify ops to be the highest supported version that both 1395 * the server and the client support. 1396 */ 1397 1398 if (vmci_transport_old_proto_override(&old_pkt_proto)) { 1399 old_proto = old_pkt_proto; 1400 } else { 1401 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE) 1402 old_proto = true; 1403 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2) 1404 old_proto = false; 1405 1406 } 1407 1408 if (old_proto) 1409 version = VSOCK_PROTO_INVALID; 1410 else 1411 version = pkt->proto; 1412 1413 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) { 1414 err = -EINVAL; 1415 goto destroy; 1416 } 1417 1418 /* Subscribe to detach events first. 1419 * 1420 * XXX We attach once for each queue pair created for now so it is easy 1421 * to find the socket (it's provided), but later we should only 1422 * subscribe once and add a way to lookup sockets by queue pair handle. 1423 */ 1424 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, 1425 vmci_transport_peer_detach_cb, 1426 vmci_trans(vsk), &detach_sub_id); 1427 if (err < VMCI_SUCCESS) { 1428 err = vmci_transport_error_to_vsock_error(err); 1429 goto destroy; 1430 } 1431 1432 /* Make VMCI select the handle for us. */ 1433 handle = VMCI_INVALID_HANDLE; 1434 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid; 1435 flags = is_local ? VMCI_QPFLAG_LOCAL : 0; 1436 1437 err = vmci_transport_queue_pair_alloc(&qpair, 1438 &handle, 1439 pkt->u.size, 1440 pkt->u.size, 1441 vsk->remote_addr.svm_cid, 1442 flags, 1443 vmci_transport_is_trusted( 1444 vsk, 1445 vsk-> 1446 remote_addr.svm_cid)); 1447 if (err < 0) 1448 goto destroy; 1449 1450 err = vmci_transport_send_qp_offer(sk, handle); 1451 if (err < 0) { 1452 err = vmci_transport_error_to_vsock_error(err); 1453 goto destroy; 1454 } 1455 1456 vmci_trans(vsk)->qp_handle = handle; 1457 vmci_trans(vsk)->qpair = qpair; 1458 1459 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 1460 pkt->u.size; 1461 1462 vmci_trans(vsk)->detach_sub_id = detach_sub_id; 1463 1464 vmci_trans(vsk)->notify_ops->process_negotiate(sk); 1465 1466 return 0; 1467 1468 destroy: 1469 if (detach_sub_id != VMCI_INVALID_ID) 1470 vmci_event_unsubscribe(detach_sub_id); 1471 1472 if (!vmci_handle_is_invalid(handle)) 1473 vmci_qpair_detach(&qpair); 1474 1475 return err; 1476 } 1477 1478 static int 1479 vmci_transport_recv_connecting_client_invalid(struct sock *sk, 1480 struct vmci_transport_packet *pkt) 1481 { 1482 int err = 0; 1483 struct vsock_sock *vsk = vsock_sk(sk); 1484 1485 if (vsk->sent_request) { 1486 vsk->sent_request = false; 1487 vsk->ignore_connecting_rst = true; 1488 1489 err = vmci_transport_send_conn_request( 1490 sk, vmci_trans(vsk)->queue_pair_size); 1491 if (err < 0) 1492 err = vmci_transport_error_to_vsock_error(err); 1493 else 1494 err = 0; 1495 1496 } 1497 1498 return err; 1499 } 1500 1501 static int vmci_transport_recv_connected(struct sock *sk, 1502 struct vmci_transport_packet *pkt) 1503 { 1504 struct vsock_sock *vsk; 1505 bool pkt_processed = false; 1506 1507 /* In cases where we are closing the connection, it's sufficient to 1508 * mark the state change (and maybe error) and wake up any waiting 1509 * threads. Since this is a connected socket, it's owned by a user 1510 * process and will be cleaned up when the failure is passed back on 1511 * the current or next system call. Our system call implementations 1512 * must therefore check for error and state changes on entry and when 1513 * being awoken. 1514 */ 1515 switch (pkt->type) { 1516 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: 1517 if (pkt->u.mode) { 1518 vsk = vsock_sk(sk); 1519 1520 vsk->peer_shutdown |= pkt->u.mode; 1521 sk->sk_state_change(sk); 1522 } 1523 break; 1524 1525 case VMCI_TRANSPORT_PACKET_TYPE_RST: 1526 vsk = vsock_sk(sk); 1527 /* It is possible that we sent our peer a message (e.g a 1528 * WAITING_READ) right before we got notified that the peer had 1529 * detached. If that happens then we can get a RST pkt back 1530 * from our peer even though there is data available for us to 1531 * read. In that case, don't shutdown the socket completely but 1532 * instead allow the local client to finish reading data off 1533 * the queuepair. Always treat a RST pkt in connected mode like 1534 * a clean shutdown. 1535 */ 1536 sock_set_flag(sk, SOCK_DONE); 1537 vsk->peer_shutdown = SHUTDOWN_MASK; 1538 if (vsock_stream_has_data(vsk) <= 0) 1539 sk->sk_state = SS_DISCONNECTING; 1540 1541 sk->sk_state_change(sk); 1542 break; 1543 1544 default: 1545 vsk = vsock_sk(sk); 1546 vmci_trans(vsk)->notify_ops->handle_notify_pkt( 1547 sk, pkt, false, NULL, NULL, 1548 &pkt_processed); 1549 if (!pkt_processed) 1550 return -EINVAL; 1551 1552 break; 1553 } 1554 1555 return 0; 1556 } 1557 1558 static int vmci_transport_socket_init(struct vsock_sock *vsk, 1559 struct vsock_sock *psk) 1560 { 1561 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL); 1562 if (!vsk->trans) 1563 return -ENOMEM; 1564 1565 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; 1566 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE; 1567 vmci_trans(vsk)->qpair = NULL; 1568 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0; 1569 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID; 1570 vmci_trans(vsk)->notify_ops = NULL; 1571 INIT_LIST_HEAD(&vmci_trans(vsk)->elem); 1572 vmci_trans(vsk)->sk = &vsk->sk; 1573 spin_lock_init(&vmci_trans(vsk)->lock); 1574 if (psk) { 1575 vmci_trans(vsk)->queue_pair_size = 1576 vmci_trans(psk)->queue_pair_size; 1577 vmci_trans(vsk)->queue_pair_min_size = 1578 vmci_trans(psk)->queue_pair_min_size; 1579 vmci_trans(vsk)->queue_pair_max_size = 1580 vmci_trans(psk)->queue_pair_max_size; 1581 } else { 1582 vmci_trans(vsk)->queue_pair_size = 1583 VMCI_TRANSPORT_DEFAULT_QP_SIZE; 1584 vmci_trans(vsk)->queue_pair_min_size = 1585 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN; 1586 vmci_trans(vsk)->queue_pair_max_size = 1587 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX; 1588 } 1589 1590 return 0; 1591 } 1592 1593 static void vmci_transport_free_resources(struct list_head *transport_list) 1594 { 1595 while (!list_empty(transport_list)) { 1596 struct vmci_transport *transport = 1597 list_first_entry(transport_list, struct vmci_transport, 1598 elem); 1599 list_del(&transport->elem); 1600 1601 if (transport->detach_sub_id != VMCI_INVALID_ID) { 1602 vmci_event_unsubscribe(transport->detach_sub_id); 1603 transport->detach_sub_id = VMCI_INVALID_ID; 1604 } 1605 1606 if (!vmci_handle_is_invalid(transport->qp_handle)) { 1607 vmci_qpair_detach(&transport->qpair); 1608 transport->qp_handle = VMCI_INVALID_HANDLE; 1609 transport->produce_size = 0; 1610 transport->consume_size = 0; 1611 } 1612 1613 kfree(transport); 1614 } 1615 } 1616 1617 static void vmci_transport_cleanup(struct work_struct *work) 1618 { 1619 LIST_HEAD(pending); 1620 1621 spin_lock_bh(&vmci_transport_cleanup_lock); 1622 list_replace_init(&vmci_transport_cleanup_list, &pending); 1623 spin_unlock_bh(&vmci_transport_cleanup_lock); 1624 vmci_transport_free_resources(&pending); 1625 } 1626 1627 static void vmci_transport_destruct(struct vsock_sock *vsk) 1628 { 1629 /* Ensure that the detach callback doesn't use the sk/vsk 1630 * we are about to destruct. 1631 */ 1632 spin_lock_bh(&vmci_trans(vsk)->lock); 1633 vmci_trans(vsk)->sk = NULL; 1634 spin_unlock_bh(&vmci_trans(vsk)->lock); 1635 1636 if (vmci_trans(vsk)->notify_ops) 1637 vmci_trans(vsk)->notify_ops->socket_destruct(vsk); 1638 1639 spin_lock_bh(&vmci_transport_cleanup_lock); 1640 list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list); 1641 spin_unlock_bh(&vmci_transport_cleanup_lock); 1642 schedule_work(&vmci_transport_cleanup_work); 1643 1644 vsk->trans = NULL; 1645 } 1646 1647 static void vmci_transport_release(struct vsock_sock *vsk) 1648 { 1649 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) { 1650 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle); 1651 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; 1652 } 1653 } 1654 1655 static int vmci_transport_dgram_bind(struct vsock_sock *vsk, 1656 struct sockaddr_vm *addr) 1657 { 1658 u32 port; 1659 u32 flags; 1660 int err; 1661 1662 /* VMCI will select a resource ID for us if we provide 1663 * VMCI_INVALID_ID. 1664 */ 1665 port = addr->svm_port == VMADDR_PORT_ANY ? 1666 VMCI_INVALID_ID : addr->svm_port; 1667 1668 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE)) 1669 return -EACCES; 1670 1671 flags = addr->svm_cid == VMADDR_CID_ANY ? 1672 VMCI_FLAG_ANYCID_DG_HND : 0; 1673 1674 err = vmci_transport_datagram_create_hnd(port, flags, 1675 vmci_transport_recv_dgram_cb, 1676 &vsk->sk, 1677 &vmci_trans(vsk)->dg_handle); 1678 if (err < VMCI_SUCCESS) 1679 return vmci_transport_error_to_vsock_error(err); 1680 vsock_addr_init(&vsk->local_addr, addr->svm_cid, 1681 vmci_trans(vsk)->dg_handle.resource); 1682 1683 return 0; 1684 } 1685 1686 static int vmci_transport_dgram_enqueue( 1687 struct vsock_sock *vsk, 1688 struct sockaddr_vm *remote_addr, 1689 struct msghdr *msg, 1690 size_t len) 1691 { 1692 int err; 1693 struct vmci_datagram *dg; 1694 1695 if (len > VMCI_MAX_DG_PAYLOAD_SIZE) 1696 return -EMSGSIZE; 1697 1698 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid)) 1699 return -EPERM; 1700 1701 /* Allocate a buffer for the user's message and our packet header. */ 1702 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL); 1703 if (!dg) 1704 return -ENOMEM; 1705 1706 memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len); 1707 1708 dg->dst = vmci_make_handle(remote_addr->svm_cid, 1709 remote_addr->svm_port); 1710 dg->src = vmci_make_handle(vsk->local_addr.svm_cid, 1711 vsk->local_addr.svm_port); 1712 dg->payload_size = len; 1713 1714 err = vmci_datagram_send(dg); 1715 kfree(dg); 1716 if (err < 0) 1717 return vmci_transport_error_to_vsock_error(err); 1718 1719 return err - sizeof(*dg); 1720 } 1721 1722 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk, 1723 struct msghdr *msg, size_t len, 1724 int flags) 1725 { 1726 int err; 1727 int noblock; 1728 struct vmci_datagram *dg; 1729 size_t payload_len; 1730 struct sk_buff *skb; 1731 1732 noblock = flags & MSG_DONTWAIT; 1733 1734 if (flags & MSG_OOB || flags & MSG_ERRQUEUE) 1735 return -EOPNOTSUPP; 1736 1737 /* Retrieve the head sk_buff from the socket's receive queue. */ 1738 err = 0; 1739 skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err); 1740 if (err) 1741 return err; 1742 1743 if (!skb) 1744 return -EAGAIN; 1745 1746 dg = (struct vmci_datagram *)skb->data; 1747 if (!dg) 1748 /* err is 0, meaning we read zero bytes. */ 1749 goto out; 1750 1751 payload_len = dg->payload_size; 1752 /* Ensure the sk_buff matches the payload size claimed in the packet. */ 1753 if (payload_len != skb->len - sizeof(*dg)) { 1754 err = -EINVAL; 1755 goto out; 1756 } 1757 1758 if (payload_len > len) { 1759 payload_len = len; 1760 msg->msg_flags |= MSG_TRUNC; 1761 } 1762 1763 /* Place the datagram payload in the user's iovec. */ 1764 err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len); 1765 if (err) 1766 goto out; 1767 1768 if (msg->msg_name) { 1769 /* Provide the address of the sender. */ 1770 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name); 1771 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource); 1772 msg->msg_namelen = sizeof(*vm_addr); 1773 } 1774 err = payload_len; 1775 1776 out: 1777 skb_free_datagram(&vsk->sk, skb); 1778 return err; 1779 } 1780 1781 static bool vmci_transport_dgram_allow(u32 cid, u32 port) 1782 { 1783 if (cid == VMADDR_CID_HYPERVISOR) { 1784 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor 1785 * state and are allowed. 1786 */ 1787 return port == VMCI_UNITY_PBRPC_REGISTER; 1788 } 1789 1790 return true; 1791 } 1792 1793 static int vmci_transport_connect(struct vsock_sock *vsk) 1794 { 1795 int err; 1796 bool old_pkt_proto = false; 1797 struct sock *sk = &vsk->sk; 1798 1799 if (vmci_transport_old_proto_override(&old_pkt_proto) && 1800 old_pkt_proto) { 1801 err = vmci_transport_send_conn_request( 1802 sk, vmci_trans(vsk)->queue_pair_size); 1803 if (err < 0) { 1804 sk->sk_state = SS_UNCONNECTED; 1805 return err; 1806 } 1807 } else { 1808 int supported_proto_versions = 1809 vmci_transport_new_proto_supported_versions(); 1810 err = vmci_transport_send_conn_request2( 1811 sk, vmci_trans(vsk)->queue_pair_size, 1812 supported_proto_versions); 1813 if (err < 0) { 1814 sk->sk_state = SS_UNCONNECTED; 1815 return err; 1816 } 1817 1818 vsk->sent_request = true; 1819 } 1820 1821 return err; 1822 } 1823 1824 static ssize_t vmci_transport_stream_dequeue( 1825 struct vsock_sock *vsk, 1826 struct msghdr *msg, 1827 size_t len, 1828 int flags) 1829 { 1830 if (flags & MSG_PEEK) 1831 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0); 1832 else 1833 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0); 1834 } 1835 1836 static ssize_t vmci_transport_stream_enqueue( 1837 struct vsock_sock *vsk, 1838 struct msghdr *msg, 1839 size_t len) 1840 { 1841 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0); 1842 } 1843 1844 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk) 1845 { 1846 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair); 1847 } 1848 1849 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk) 1850 { 1851 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair); 1852 } 1853 1854 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk) 1855 { 1856 return vmci_trans(vsk)->consume_size; 1857 } 1858 1859 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk) 1860 { 1861 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle); 1862 } 1863 1864 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk) 1865 { 1866 return vmci_trans(vsk)->queue_pair_size; 1867 } 1868 1869 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk) 1870 { 1871 return vmci_trans(vsk)->queue_pair_min_size; 1872 } 1873 1874 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk) 1875 { 1876 return vmci_trans(vsk)->queue_pair_max_size; 1877 } 1878 1879 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val) 1880 { 1881 if (val < vmci_trans(vsk)->queue_pair_min_size) 1882 vmci_trans(vsk)->queue_pair_min_size = val; 1883 if (val > vmci_trans(vsk)->queue_pair_max_size) 1884 vmci_trans(vsk)->queue_pair_max_size = val; 1885 vmci_trans(vsk)->queue_pair_size = val; 1886 } 1887 1888 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk, 1889 u64 val) 1890 { 1891 if (val > vmci_trans(vsk)->queue_pair_size) 1892 vmci_trans(vsk)->queue_pair_size = val; 1893 vmci_trans(vsk)->queue_pair_min_size = val; 1894 } 1895 1896 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk, 1897 u64 val) 1898 { 1899 if (val < vmci_trans(vsk)->queue_pair_size) 1900 vmci_trans(vsk)->queue_pair_size = val; 1901 vmci_trans(vsk)->queue_pair_max_size = val; 1902 } 1903 1904 static int vmci_transport_notify_poll_in( 1905 struct vsock_sock *vsk, 1906 size_t target, 1907 bool *data_ready_now) 1908 { 1909 return vmci_trans(vsk)->notify_ops->poll_in( 1910 &vsk->sk, target, data_ready_now); 1911 } 1912 1913 static int vmci_transport_notify_poll_out( 1914 struct vsock_sock *vsk, 1915 size_t target, 1916 bool *space_available_now) 1917 { 1918 return vmci_trans(vsk)->notify_ops->poll_out( 1919 &vsk->sk, target, space_available_now); 1920 } 1921 1922 static int vmci_transport_notify_recv_init( 1923 struct vsock_sock *vsk, 1924 size_t target, 1925 struct vsock_transport_recv_notify_data *data) 1926 { 1927 return vmci_trans(vsk)->notify_ops->recv_init( 1928 &vsk->sk, target, 1929 (struct vmci_transport_recv_notify_data *)data); 1930 } 1931 1932 static int vmci_transport_notify_recv_pre_block( 1933 struct vsock_sock *vsk, 1934 size_t target, 1935 struct vsock_transport_recv_notify_data *data) 1936 { 1937 return vmci_trans(vsk)->notify_ops->recv_pre_block( 1938 &vsk->sk, target, 1939 (struct vmci_transport_recv_notify_data *)data); 1940 } 1941 1942 static int vmci_transport_notify_recv_pre_dequeue( 1943 struct vsock_sock *vsk, 1944 size_t target, 1945 struct vsock_transport_recv_notify_data *data) 1946 { 1947 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue( 1948 &vsk->sk, target, 1949 (struct vmci_transport_recv_notify_data *)data); 1950 } 1951 1952 static int vmci_transport_notify_recv_post_dequeue( 1953 struct vsock_sock *vsk, 1954 size_t target, 1955 ssize_t copied, 1956 bool data_read, 1957 struct vsock_transport_recv_notify_data *data) 1958 { 1959 return vmci_trans(vsk)->notify_ops->recv_post_dequeue( 1960 &vsk->sk, target, copied, data_read, 1961 (struct vmci_transport_recv_notify_data *)data); 1962 } 1963 1964 static int vmci_transport_notify_send_init( 1965 struct vsock_sock *vsk, 1966 struct vsock_transport_send_notify_data *data) 1967 { 1968 return vmci_trans(vsk)->notify_ops->send_init( 1969 &vsk->sk, 1970 (struct vmci_transport_send_notify_data *)data); 1971 } 1972 1973 static int vmci_transport_notify_send_pre_block( 1974 struct vsock_sock *vsk, 1975 struct vsock_transport_send_notify_data *data) 1976 { 1977 return vmci_trans(vsk)->notify_ops->send_pre_block( 1978 &vsk->sk, 1979 (struct vmci_transport_send_notify_data *)data); 1980 } 1981 1982 static int vmci_transport_notify_send_pre_enqueue( 1983 struct vsock_sock *vsk, 1984 struct vsock_transport_send_notify_data *data) 1985 { 1986 return vmci_trans(vsk)->notify_ops->send_pre_enqueue( 1987 &vsk->sk, 1988 (struct vmci_transport_send_notify_data *)data); 1989 } 1990 1991 static int vmci_transport_notify_send_post_enqueue( 1992 struct vsock_sock *vsk, 1993 ssize_t written, 1994 struct vsock_transport_send_notify_data *data) 1995 { 1996 return vmci_trans(vsk)->notify_ops->send_post_enqueue( 1997 &vsk->sk, written, 1998 (struct vmci_transport_send_notify_data *)data); 1999 } 2000 2001 static bool vmci_transport_old_proto_override(bool *old_pkt_proto) 2002 { 2003 if (PROTOCOL_OVERRIDE != -1) { 2004 if (PROTOCOL_OVERRIDE == 0) 2005 *old_pkt_proto = true; 2006 else 2007 *old_pkt_proto = false; 2008 2009 pr_info("Proto override in use\n"); 2010 return true; 2011 } 2012 2013 return false; 2014 } 2015 2016 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, 2017 u16 *proto, 2018 bool old_pkt_proto) 2019 { 2020 struct vsock_sock *vsk = vsock_sk(sk); 2021 2022 if (old_pkt_proto) { 2023 if (*proto != VSOCK_PROTO_INVALID) { 2024 pr_err("Can't set both an old and new protocol\n"); 2025 return false; 2026 } 2027 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops; 2028 goto exit; 2029 } 2030 2031 switch (*proto) { 2032 case VSOCK_PROTO_PKT_ON_NOTIFY: 2033 vmci_trans(vsk)->notify_ops = 2034 &vmci_transport_notify_pkt_q_state_ops; 2035 break; 2036 default: 2037 pr_err("Unknown notify protocol version\n"); 2038 return false; 2039 } 2040 2041 exit: 2042 vmci_trans(vsk)->notify_ops->socket_init(sk); 2043 return true; 2044 } 2045 2046 static u16 vmci_transport_new_proto_supported_versions(void) 2047 { 2048 if (PROTOCOL_OVERRIDE != -1) 2049 return PROTOCOL_OVERRIDE; 2050 2051 return VSOCK_PROTO_ALL_SUPPORTED; 2052 } 2053 2054 static u32 vmci_transport_get_local_cid(void) 2055 { 2056 return vmci_get_context_id(); 2057 } 2058 2059 static struct vsock_transport vmci_transport = { 2060 .init = vmci_transport_socket_init, 2061 .destruct = vmci_transport_destruct, 2062 .release = vmci_transport_release, 2063 .connect = vmci_transport_connect, 2064 .dgram_bind = vmci_transport_dgram_bind, 2065 .dgram_dequeue = vmci_transport_dgram_dequeue, 2066 .dgram_enqueue = vmci_transport_dgram_enqueue, 2067 .dgram_allow = vmci_transport_dgram_allow, 2068 .stream_dequeue = vmci_transport_stream_dequeue, 2069 .stream_enqueue = vmci_transport_stream_enqueue, 2070 .stream_has_data = vmci_transport_stream_has_data, 2071 .stream_has_space = vmci_transport_stream_has_space, 2072 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat, 2073 .stream_is_active = vmci_transport_stream_is_active, 2074 .stream_allow = vmci_transport_stream_allow, 2075 .notify_poll_in = vmci_transport_notify_poll_in, 2076 .notify_poll_out = vmci_transport_notify_poll_out, 2077 .notify_recv_init = vmci_transport_notify_recv_init, 2078 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block, 2079 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue, 2080 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue, 2081 .notify_send_init = vmci_transport_notify_send_init, 2082 .notify_send_pre_block = vmci_transport_notify_send_pre_block, 2083 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue, 2084 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue, 2085 .shutdown = vmci_transport_shutdown, 2086 .set_buffer_size = vmci_transport_set_buffer_size, 2087 .set_min_buffer_size = vmci_transport_set_min_buffer_size, 2088 .set_max_buffer_size = vmci_transport_set_max_buffer_size, 2089 .get_buffer_size = vmci_transport_get_buffer_size, 2090 .get_min_buffer_size = vmci_transport_get_min_buffer_size, 2091 .get_max_buffer_size = vmci_transport_get_max_buffer_size, 2092 .get_local_cid = vmci_transport_get_local_cid, 2093 }; 2094 2095 static int __init vmci_transport_init(void) 2096 { 2097 int err; 2098 2099 /* Create the datagram handle that we will use to send and receive all 2100 * VSocket control messages for this context. 2101 */ 2102 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID, 2103 VMCI_FLAG_ANYCID_DG_HND, 2104 vmci_transport_recv_stream_cb, 2105 NULL, 2106 &vmci_transport_stream_handle); 2107 if (err < VMCI_SUCCESS) { 2108 pr_err("Unable to create datagram handle. (%d)\n", err); 2109 return vmci_transport_error_to_vsock_error(err); 2110 } 2111 2112 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED, 2113 vmci_transport_qp_resumed_cb, 2114 NULL, &vmci_transport_qp_resumed_sub_id); 2115 if (err < VMCI_SUCCESS) { 2116 pr_err("Unable to subscribe to resumed event. (%d)\n", err); 2117 err = vmci_transport_error_to_vsock_error(err); 2118 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 2119 goto err_destroy_stream_handle; 2120 } 2121 2122 err = vsock_core_init(&vmci_transport); 2123 if (err < 0) 2124 goto err_unsubscribe; 2125 2126 return 0; 2127 2128 err_unsubscribe: 2129 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); 2130 err_destroy_stream_handle: 2131 vmci_datagram_destroy_handle(vmci_transport_stream_handle); 2132 return err; 2133 } 2134 module_init(vmci_transport_init); 2135 2136 static void __exit vmci_transport_exit(void) 2137 { 2138 cancel_work_sync(&vmci_transport_cleanup_work); 2139 vmci_transport_free_resources(&vmci_transport_cleanup_list); 2140 2141 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) { 2142 if (vmci_datagram_destroy_handle( 2143 vmci_transport_stream_handle) != VMCI_SUCCESS) 2144 pr_err("Couldn't destroy datagram handle\n"); 2145 vmci_transport_stream_handle = VMCI_INVALID_HANDLE; 2146 } 2147 2148 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) { 2149 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); 2150 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 2151 } 2152 2153 vsock_core_exit(); 2154 } 2155 module_exit(vmci_transport_exit); 2156 2157 MODULE_AUTHOR("VMware, Inc."); 2158 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets"); 2159 MODULE_VERSION("1.0.2.0-k"); 2160 MODULE_LICENSE("GPL v2"); 2161 MODULE_ALIAS("vmware_vsock"); 2162 MODULE_ALIAS_NETPROTO(PF_VSOCK); 2163