1 /* 2 * VMware vSockets Driver 3 * 4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation version 2 and no later version. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 */ 15 16 #include <linux/types.h> 17 #include <linux/bitops.h> 18 #include <linux/cred.h> 19 #include <linux/init.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/kmod.h> 23 #include <linux/list.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/net.h> 27 #include <linux/poll.h> 28 #include <linux/skbuff.h> 29 #include <linux/smp.h> 30 #include <linux/socket.h> 31 #include <linux/stddef.h> 32 #include <linux/unistd.h> 33 #include <linux/wait.h> 34 #include <linux/workqueue.h> 35 #include <net/sock.h> 36 #include <net/af_vsock.h> 37 38 #include "vmci_transport_notify.h" 39 40 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg); 41 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg); 42 static void vmci_transport_peer_detach_cb(u32 sub_id, 43 const struct vmci_event_data *ed, 44 void *client_data); 45 static void vmci_transport_recv_pkt_work(struct work_struct *work); 46 static void vmci_transport_cleanup(struct work_struct *work); 47 static int vmci_transport_recv_listen(struct sock *sk, 48 struct vmci_transport_packet *pkt); 49 static int vmci_transport_recv_connecting_server( 50 struct sock *sk, 51 struct sock *pending, 52 struct vmci_transport_packet *pkt); 53 static int vmci_transport_recv_connecting_client( 54 struct sock *sk, 55 struct vmci_transport_packet *pkt); 56 static int vmci_transport_recv_connecting_client_negotiate( 57 struct sock *sk, 58 struct vmci_transport_packet *pkt); 59 static int vmci_transport_recv_connecting_client_invalid( 60 struct sock *sk, 61 struct vmci_transport_packet *pkt); 62 static int vmci_transport_recv_connected(struct sock *sk, 63 struct vmci_transport_packet *pkt); 64 static bool vmci_transport_old_proto_override(bool *old_pkt_proto); 65 static u16 vmci_transport_new_proto_supported_versions(void); 66 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto, 67 bool old_pkt_proto); 68 69 struct vmci_transport_recv_pkt_info { 70 struct work_struct work; 71 struct sock *sk; 72 struct vmci_transport_packet pkt; 73 }; 74 75 static LIST_HEAD(vmci_transport_cleanup_list); 76 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock); 77 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup); 78 79 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID, 80 VMCI_INVALID_ID }; 81 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 82 83 static int PROTOCOL_OVERRIDE = -1; 84 85 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN 128 86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE 262144 87 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX 262144 88 89 /* The default peer timeout indicates how long we will wait for a peer response 90 * to a control message. 91 */ 92 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 93 94 /* Helper function to convert from a VMCI error code to a VSock error code. */ 95 96 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error) 97 { 98 switch (vmci_error) { 99 case VMCI_ERROR_NO_MEM: 100 return -ENOMEM; 101 case VMCI_ERROR_DUPLICATE_ENTRY: 102 case VMCI_ERROR_ALREADY_EXISTS: 103 return -EADDRINUSE; 104 case VMCI_ERROR_NO_ACCESS: 105 return -EPERM; 106 case VMCI_ERROR_NO_RESOURCES: 107 return -ENOBUFS; 108 case VMCI_ERROR_INVALID_RESOURCE: 109 return -EHOSTUNREACH; 110 case VMCI_ERROR_INVALID_ARGS: 111 default: 112 break; 113 } 114 return -EINVAL; 115 } 116 117 static u32 vmci_transport_peer_rid(u32 peer_cid) 118 { 119 if (VMADDR_CID_HYPERVISOR == peer_cid) 120 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID; 121 122 return VMCI_TRANSPORT_PACKET_RID; 123 } 124 125 static inline void 126 vmci_transport_packet_init(struct vmci_transport_packet *pkt, 127 struct sockaddr_vm *src, 128 struct sockaddr_vm *dst, 129 u8 type, 130 u64 size, 131 u64 mode, 132 struct vmci_transport_waiting_info *wait, 133 u16 proto, 134 struct vmci_handle handle) 135 { 136 /* We register the stream control handler as an any cid handle so we 137 * must always send from a source address of VMADDR_CID_ANY 138 */ 139 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY, 140 VMCI_TRANSPORT_PACKET_RID); 141 pkt->dg.dst = vmci_make_handle(dst->svm_cid, 142 vmci_transport_peer_rid(dst->svm_cid)); 143 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg); 144 pkt->version = VMCI_TRANSPORT_PACKET_VERSION; 145 pkt->type = type; 146 pkt->src_port = src->svm_port; 147 pkt->dst_port = dst->svm_port; 148 memset(&pkt->proto, 0, sizeof(pkt->proto)); 149 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2)); 150 151 switch (pkt->type) { 152 case VMCI_TRANSPORT_PACKET_TYPE_INVALID: 153 pkt->u.size = 0; 154 break; 155 156 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST: 157 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: 158 pkt->u.size = size; 159 break; 160 161 case VMCI_TRANSPORT_PACKET_TYPE_OFFER: 162 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: 163 pkt->u.handle = handle; 164 break; 165 166 case VMCI_TRANSPORT_PACKET_TYPE_WROTE: 167 case VMCI_TRANSPORT_PACKET_TYPE_READ: 168 case VMCI_TRANSPORT_PACKET_TYPE_RST: 169 pkt->u.size = 0; 170 break; 171 172 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: 173 pkt->u.mode = mode; 174 break; 175 176 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ: 177 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE: 178 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait)); 179 break; 180 181 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2: 182 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: 183 pkt->u.size = size; 184 pkt->proto = proto; 185 break; 186 } 187 } 188 189 static inline void 190 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt, 191 struct sockaddr_vm *local, 192 struct sockaddr_vm *remote) 193 { 194 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port); 195 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port); 196 } 197 198 static int 199 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt, 200 struct sockaddr_vm *src, 201 struct sockaddr_vm *dst, 202 enum vmci_transport_packet_type type, 203 u64 size, 204 u64 mode, 205 struct vmci_transport_waiting_info *wait, 206 u16 proto, 207 struct vmci_handle handle, 208 bool convert_error) 209 { 210 int err; 211 212 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait, 213 proto, handle); 214 err = vmci_datagram_send(&pkt->dg); 215 if (convert_error && (err < 0)) 216 return vmci_transport_error_to_vsock_error(err); 217 218 return err; 219 } 220 221 static int 222 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt, 223 enum vmci_transport_packet_type type, 224 u64 size, 225 u64 mode, 226 struct vmci_transport_waiting_info *wait, 227 struct vmci_handle handle) 228 { 229 struct vmci_transport_packet reply; 230 struct sockaddr_vm src, dst; 231 232 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) { 233 return 0; 234 } else { 235 vmci_transport_packet_get_addresses(pkt, &src, &dst); 236 return __vmci_transport_send_control_pkt(&reply, &src, &dst, 237 type, 238 size, mode, wait, 239 VSOCK_PROTO_INVALID, 240 handle, true); 241 } 242 } 243 244 static int 245 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src, 246 struct sockaddr_vm *dst, 247 enum vmci_transport_packet_type type, 248 u64 size, 249 u64 mode, 250 struct vmci_transport_waiting_info *wait, 251 struct vmci_handle handle) 252 { 253 /* Note that it is safe to use a single packet across all CPUs since 254 * two tasklets of the same type are guaranteed to not ever run 255 * simultaneously. If that ever changes, or VMCI stops using tasklets, 256 * we can use per-cpu packets. 257 */ 258 static struct vmci_transport_packet pkt; 259 260 return __vmci_transport_send_control_pkt(&pkt, src, dst, type, 261 size, mode, wait, 262 VSOCK_PROTO_INVALID, handle, 263 false); 264 } 265 266 static int 267 vmci_transport_send_control_pkt(struct sock *sk, 268 enum vmci_transport_packet_type type, 269 u64 size, 270 u64 mode, 271 struct vmci_transport_waiting_info *wait, 272 u16 proto, 273 struct vmci_handle handle) 274 { 275 struct vmci_transport_packet *pkt; 276 struct vsock_sock *vsk; 277 int err; 278 279 vsk = vsock_sk(sk); 280 281 if (!vsock_addr_bound(&vsk->local_addr)) 282 return -EINVAL; 283 284 if (!vsock_addr_bound(&vsk->remote_addr)) 285 return -EINVAL; 286 287 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL); 288 if (!pkt) 289 return -ENOMEM; 290 291 err = __vmci_transport_send_control_pkt(pkt, &vsk->local_addr, 292 &vsk->remote_addr, type, size, 293 mode, wait, proto, handle, 294 true); 295 kfree(pkt); 296 297 return err; 298 } 299 300 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst, 301 struct sockaddr_vm *src, 302 struct vmci_transport_packet *pkt) 303 { 304 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) 305 return 0; 306 return vmci_transport_send_control_pkt_bh( 307 dst, src, 308 VMCI_TRANSPORT_PACKET_TYPE_RST, 0, 309 0, NULL, VMCI_INVALID_HANDLE); 310 } 311 312 static int vmci_transport_send_reset(struct sock *sk, 313 struct vmci_transport_packet *pkt) 314 { 315 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) 316 return 0; 317 return vmci_transport_send_control_pkt(sk, 318 VMCI_TRANSPORT_PACKET_TYPE_RST, 319 0, 0, NULL, VSOCK_PROTO_INVALID, 320 VMCI_INVALID_HANDLE); 321 } 322 323 static int vmci_transport_send_negotiate(struct sock *sk, size_t size) 324 { 325 return vmci_transport_send_control_pkt( 326 sk, 327 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE, 328 size, 0, NULL, 329 VSOCK_PROTO_INVALID, 330 VMCI_INVALID_HANDLE); 331 } 332 333 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size, 334 u16 version) 335 { 336 return vmci_transport_send_control_pkt( 337 sk, 338 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2, 339 size, 0, NULL, version, 340 VMCI_INVALID_HANDLE); 341 } 342 343 static int vmci_transport_send_qp_offer(struct sock *sk, 344 struct vmci_handle handle) 345 { 346 return vmci_transport_send_control_pkt( 347 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0, 348 0, NULL, 349 VSOCK_PROTO_INVALID, handle); 350 } 351 352 static int vmci_transport_send_attach(struct sock *sk, 353 struct vmci_handle handle) 354 { 355 return vmci_transport_send_control_pkt( 356 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH, 357 0, 0, NULL, VSOCK_PROTO_INVALID, 358 handle); 359 } 360 361 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt) 362 { 363 return vmci_transport_reply_control_pkt_fast( 364 pkt, 365 VMCI_TRANSPORT_PACKET_TYPE_RST, 366 0, 0, NULL, 367 VMCI_INVALID_HANDLE); 368 } 369 370 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst, 371 struct sockaddr_vm *src) 372 { 373 return vmci_transport_send_control_pkt_bh( 374 dst, src, 375 VMCI_TRANSPORT_PACKET_TYPE_INVALID, 376 0, 0, NULL, VMCI_INVALID_HANDLE); 377 } 378 379 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst, 380 struct sockaddr_vm *src) 381 { 382 return vmci_transport_send_control_pkt_bh( 383 dst, src, 384 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 385 0, NULL, VMCI_INVALID_HANDLE); 386 } 387 388 int vmci_transport_send_read_bh(struct sockaddr_vm *dst, 389 struct sockaddr_vm *src) 390 { 391 return vmci_transport_send_control_pkt_bh( 392 dst, src, 393 VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 394 0, NULL, VMCI_INVALID_HANDLE); 395 } 396 397 int vmci_transport_send_wrote(struct sock *sk) 398 { 399 return vmci_transport_send_control_pkt( 400 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 401 0, NULL, VSOCK_PROTO_INVALID, 402 VMCI_INVALID_HANDLE); 403 } 404 405 int vmci_transport_send_read(struct sock *sk) 406 { 407 return vmci_transport_send_control_pkt( 408 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 409 0, NULL, VSOCK_PROTO_INVALID, 410 VMCI_INVALID_HANDLE); 411 } 412 413 int vmci_transport_send_waiting_write(struct sock *sk, 414 struct vmci_transport_waiting_info *wait) 415 { 416 return vmci_transport_send_control_pkt( 417 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE, 418 0, 0, wait, VSOCK_PROTO_INVALID, 419 VMCI_INVALID_HANDLE); 420 } 421 422 int vmci_transport_send_waiting_read(struct sock *sk, 423 struct vmci_transport_waiting_info *wait) 424 { 425 return vmci_transport_send_control_pkt( 426 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ, 427 0, 0, wait, VSOCK_PROTO_INVALID, 428 VMCI_INVALID_HANDLE); 429 } 430 431 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode) 432 { 433 return vmci_transport_send_control_pkt( 434 &vsk->sk, 435 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN, 436 0, mode, NULL, 437 VSOCK_PROTO_INVALID, 438 VMCI_INVALID_HANDLE); 439 } 440 441 static int vmci_transport_send_conn_request(struct sock *sk, size_t size) 442 { 443 return vmci_transport_send_control_pkt(sk, 444 VMCI_TRANSPORT_PACKET_TYPE_REQUEST, 445 size, 0, NULL, 446 VSOCK_PROTO_INVALID, 447 VMCI_INVALID_HANDLE); 448 } 449 450 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size, 451 u16 version) 452 { 453 return vmci_transport_send_control_pkt( 454 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2, 455 size, 0, NULL, version, 456 VMCI_INVALID_HANDLE); 457 } 458 459 static struct sock *vmci_transport_get_pending( 460 struct sock *listener, 461 struct vmci_transport_packet *pkt) 462 { 463 struct vsock_sock *vlistener; 464 struct vsock_sock *vpending; 465 struct sock *pending; 466 struct sockaddr_vm src; 467 468 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); 469 470 vlistener = vsock_sk(listener); 471 472 list_for_each_entry(vpending, &vlistener->pending_links, 473 pending_links) { 474 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) && 475 pkt->dst_port == vpending->local_addr.svm_port) { 476 pending = sk_vsock(vpending); 477 sock_hold(pending); 478 goto found; 479 } 480 } 481 482 pending = NULL; 483 found: 484 return pending; 485 486 } 487 488 static void vmci_transport_release_pending(struct sock *pending) 489 { 490 sock_put(pending); 491 } 492 493 /* We allow two kinds of sockets to communicate with a restricted VM: 1) 494 * trusted sockets 2) sockets from applications running as the same user as the 495 * VM (this is only true for the host side and only when using hosted products) 496 */ 497 498 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid) 499 { 500 return vsock->trusted || 501 vmci_is_context_owner(peer_cid, vsock->owner->uid); 502 } 503 504 /* We allow sending datagrams to and receiving datagrams from a restricted VM 505 * only if it is trusted as described in vmci_transport_is_trusted. 506 */ 507 508 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid) 509 { 510 if (VMADDR_CID_HYPERVISOR == peer_cid) 511 return true; 512 513 if (vsock->cached_peer != peer_cid) { 514 vsock->cached_peer = peer_cid; 515 if (!vmci_transport_is_trusted(vsock, peer_cid) && 516 (vmci_context_get_priv_flags(peer_cid) & 517 VMCI_PRIVILEGE_FLAG_RESTRICTED)) { 518 vsock->cached_peer_allow_dgram = false; 519 } else { 520 vsock->cached_peer_allow_dgram = true; 521 } 522 } 523 524 return vsock->cached_peer_allow_dgram; 525 } 526 527 static int 528 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair, 529 struct vmci_handle *handle, 530 u64 produce_size, 531 u64 consume_size, 532 u32 peer, u32 flags, bool trusted) 533 { 534 int err = 0; 535 536 if (trusted) { 537 /* Try to allocate our queue pair as trusted. This will only 538 * work if vsock is running in the host. 539 */ 540 541 err = vmci_qpair_alloc(qpair, handle, produce_size, 542 consume_size, 543 peer, flags, 544 VMCI_PRIVILEGE_FLAG_TRUSTED); 545 if (err != VMCI_ERROR_NO_ACCESS) 546 goto out; 547 548 } 549 550 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size, 551 peer, flags, VMCI_NO_PRIVILEGE_FLAGS); 552 out: 553 if (err < 0) { 554 pr_err("Could not attach to queue pair with %d\n", 555 err); 556 err = vmci_transport_error_to_vsock_error(err); 557 } 558 559 return err; 560 } 561 562 static int 563 vmci_transport_datagram_create_hnd(u32 resource_id, 564 u32 flags, 565 vmci_datagram_recv_cb recv_cb, 566 void *client_data, 567 struct vmci_handle *out_handle) 568 { 569 int err = 0; 570 571 /* Try to allocate our datagram handler as trusted. This will only work 572 * if vsock is running in the host. 573 */ 574 575 err = vmci_datagram_create_handle_priv(resource_id, flags, 576 VMCI_PRIVILEGE_FLAG_TRUSTED, 577 recv_cb, 578 client_data, out_handle); 579 580 if (err == VMCI_ERROR_NO_ACCESS) 581 err = vmci_datagram_create_handle(resource_id, flags, 582 recv_cb, client_data, 583 out_handle); 584 585 return err; 586 } 587 588 /* This is invoked as part of a tasklet that's scheduled when the VMCI 589 * interrupt fires. This is run in bottom-half context and if it ever needs to 590 * sleep it should defer that work to a work queue. 591 */ 592 593 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg) 594 { 595 struct sock *sk; 596 size_t size; 597 struct sk_buff *skb; 598 struct vsock_sock *vsk; 599 600 sk = (struct sock *)data; 601 602 /* This handler is privileged when this module is running on the host. 603 * We will get datagrams from all endpoints (even VMs that are in a 604 * restricted context). If we get one from a restricted context then 605 * the destination socket must be trusted. 606 * 607 * NOTE: We access the socket struct without holding the lock here. 608 * This is ok because the field we are interested is never modified 609 * outside of the create and destruct socket functions. 610 */ 611 vsk = vsock_sk(sk); 612 if (!vmci_transport_allow_dgram(vsk, dg->src.context)) 613 return VMCI_ERROR_NO_ACCESS; 614 615 size = VMCI_DG_SIZE(dg); 616 617 /* Attach the packet to the socket's receive queue as an sk_buff. */ 618 skb = alloc_skb(size, GFP_ATOMIC); 619 if (!skb) 620 return VMCI_ERROR_NO_MEM; 621 622 /* sk_receive_skb() will do a sock_put(), so hold here. */ 623 sock_hold(sk); 624 skb_put(skb, size); 625 memcpy(skb->data, dg, size); 626 sk_receive_skb(sk, skb, 0); 627 628 return VMCI_SUCCESS; 629 } 630 631 static bool vmci_transport_stream_allow(u32 cid, u32 port) 632 { 633 static const u32 non_socket_contexts[] = { 634 VMADDR_CID_RESERVED, 635 }; 636 int i; 637 638 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts)); 639 640 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) { 641 if (cid == non_socket_contexts[i]) 642 return false; 643 } 644 645 return true; 646 } 647 648 /* This is invoked as part of a tasklet that's scheduled when the VMCI 649 * interrupt fires. This is run in bottom-half context but it defers most of 650 * its work to the packet handling work queue. 651 */ 652 653 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg) 654 { 655 struct sock *sk; 656 struct sockaddr_vm dst; 657 struct sockaddr_vm src; 658 struct vmci_transport_packet *pkt; 659 struct vsock_sock *vsk; 660 bool bh_process_pkt; 661 int err; 662 663 sk = NULL; 664 err = VMCI_SUCCESS; 665 bh_process_pkt = false; 666 667 /* Ignore incoming packets from contexts without sockets, or resources 668 * that aren't vsock implementations. 669 */ 670 671 if (!vmci_transport_stream_allow(dg->src.context, -1) 672 || vmci_transport_peer_rid(dg->src.context) != dg->src.resource) 673 return VMCI_ERROR_NO_ACCESS; 674 675 if (VMCI_DG_SIZE(dg) < sizeof(*pkt)) 676 /* Drop datagrams that do not contain full VSock packets. */ 677 return VMCI_ERROR_INVALID_ARGS; 678 679 pkt = (struct vmci_transport_packet *)dg; 680 681 /* Find the socket that should handle this packet. First we look for a 682 * connected socket and if there is none we look for a socket bound to 683 * the destintation address. 684 */ 685 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); 686 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port); 687 688 sk = vsock_find_connected_socket(&src, &dst); 689 if (!sk) { 690 sk = vsock_find_bound_socket(&dst); 691 if (!sk) { 692 /* We could not find a socket for this specified 693 * address. If this packet is a RST, we just drop it. 694 * If it is another packet, we send a RST. Note that 695 * we do not send a RST reply to RSTs so that we do not 696 * continually send RSTs between two endpoints. 697 * 698 * Note that since this is a reply, dst is src and src 699 * is dst. 700 */ 701 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) 702 pr_err("unable to send reset\n"); 703 704 err = VMCI_ERROR_NOT_FOUND; 705 goto out; 706 } 707 } 708 709 /* If the received packet type is beyond all types known to this 710 * implementation, reply with an invalid message. Hopefully this will 711 * help when implementing backwards compatibility in the future. 712 */ 713 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) { 714 vmci_transport_send_invalid_bh(&dst, &src); 715 err = VMCI_ERROR_INVALID_ARGS; 716 goto out; 717 } 718 719 /* This handler is privileged when this module is running on the host. 720 * We will get datagram connect requests from all endpoints (even VMs 721 * that are in a restricted context). If we get one from a restricted 722 * context then the destination socket must be trusted. 723 * 724 * NOTE: We access the socket struct without holding the lock here. 725 * This is ok because the field we are interested is never modified 726 * outside of the create and destruct socket functions. 727 */ 728 vsk = vsock_sk(sk); 729 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) { 730 err = VMCI_ERROR_NO_ACCESS; 731 goto out; 732 } 733 734 /* We do most everything in a work queue, but let's fast path the 735 * notification of reads and writes to help data transfer performance. 736 * We can only do this if there is no process context code executing 737 * for this socket since that may change the state. 738 */ 739 bh_lock_sock(sk); 740 741 if (!sock_owned_by_user(sk)) { 742 /* The local context ID may be out of date, update it. */ 743 vsk->local_addr.svm_cid = dst.svm_cid; 744 745 if (sk->sk_state == TCP_ESTABLISHED) 746 vmci_trans(vsk)->notify_ops->handle_notify_pkt( 747 sk, pkt, true, &dst, &src, 748 &bh_process_pkt); 749 } 750 751 bh_unlock_sock(sk); 752 753 if (!bh_process_pkt) { 754 struct vmci_transport_recv_pkt_info *recv_pkt_info; 755 756 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC); 757 if (!recv_pkt_info) { 758 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) 759 pr_err("unable to send reset\n"); 760 761 err = VMCI_ERROR_NO_MEM; 762 goto out; 763 } 764 765 recv_pkt_info->sk = sk; 766 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt)); 767 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work); 768 769 schedule_work(&recv_pkt_info->work); 770 /* Clear sk so that the reference count incremented by one of 771 * the Find functions above is not decremented below. We need 772 * that reference count for the packet handler we've scheduled 773 * to run. 774 */ 775 sk = NULL; 776 } 777 778 out: 779 if (sk) 780 sock_put(sk); 781 782 return err; 783 } 784 785 static void vmci_transport_handle_detach(struct sock *sk) 786 { 787 struct vsock_sock *vsk; 788 789 vsk = vsock_sk(sk); 790 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) { 791 sock_set_flag(sk, SOCK_DONE); 792 793 /* On a detach the peer will not be sending or receiving 794 * anymore. 795 */ 796 vsk->peer_shutdown = SHUTDOWN_MASK; 797 798 /* We should not be sending anymore since the peer won't be 799 * there to receive, but we can still receive if there is data 800 * left in our consume queue. If the local endpoint is a host, 801 * we can't call vsock_stream_has_data, since that may block, 802 * but a host endpoint can't read data once the VM has 803 * detached, so there is no available data in that case. 804 */ 805 if (vsk->local_addr.svm_cid == VMADDR_CID_HOST || 806 vsock_stream_has_data(vsk) <= 0) { 807 if (sk->sk_state == TCP_SYN_SENT) { 808 /* The peer may detach from a queue pair while 809 * we are still in the connecting state, i.e., 810 * if the peer VM is killed after attaching to 811 * a queue pair, but before we complete the 812 * handshake. In that case, we treat the detach 813 * event like a reset. 814 */ 815 816 sk->sk_state = TCP_CLOSE; 817 sk->sk_err = ECONNRESET; 818 sk->sk_error_report(sk); 819 return; 820 } 821 sk->sk_state = TCP_CLOSE; 822 } 823 sk->sk_state_change(sk); 824 } 825 } 826 827 static void vmci_transport_peer_detach_cb(u32 sub_id, 828 const struct vmci_event_data *e_data, 829 void *client_data) 830 { 831 struct vmci_transport *trans = client_data; 832 const struct vmci_event_payload_qp *e_payload; 833 834 e_payload = vmci_event_data_const_payload(e_data); 835 836 /* XXX This is lame, we should provide a way to lookup sockets by 837 * qp_handle. 838 */ 839 if (vmci_handle_is_invalid(e_payload->handle) || 840 !vmci_handle_is_equal(trans->qp_handle, e_payload->handle)) 841 return; 842 843 /* We don't ask for delayed CBs when we subscribe to this event (we 844 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no 845 * guarantees in that case about what context we might be running in, 846 * so it could be BH or process, blockable or non-blockable. So we 847 * need to account for all possible contexts here. 848 */ 849 spin_lock_bh(&trans->lock); 850 if (!trans->sk) 851 goto out; 852 853 /* Apart from here, trans->lock is only grabbed as part of sk destruct, 854 * where trans->sk isn't locked. 855 */ 856 bh_lock_sock(trans->sk); 857 858 vmci_transport_handle_detach(trans->sk); 859 860 bh_unlock_sock(trans->sk); 861 out: 862 spin_unlock_bh(&trans->lock); 863 } 864 865 static void vmci_transport_qp_resumed_cb(u32 sub_id, 866 const struct vmci_event_data *e_data, 867 void *client_data) 868 { 869 vsock_for_each_connected_socket(vmci_transport_handle_detach); 870 } 871 872 static void vmci_transport_recv_pkt_work(struct work_struct *work) 873 { 874 struct vmci_transport_recv_pkt_info *recv_pkt_info; 875 struct vmci_transport_packet *pkt; 876 struct sock *sk; 877 878 recv_pkt_info = 879 container_of(work, struct vmci_transport_recv_pkt_info, work); 880 sk = recv_pkt_info->sk; 881 pkt = &recv_pkt_info->pkt; 882 883 lock_sock(sk); 884 885 /* The local context ID may be out of date. */ 886 vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context; 887 888 switch (sk->sk_state) { 889 case TCP_LISTEN: 890 vmci_transport_recv_listen(sk, pkt); 891 break; 892 case TCP_SYN_SENT: 893 /* Processing of pending connections for servers goes through 894 * the listening socket, so see vmci_transport_recv_listen() 895 * for that path. 896 */ 897 vmci_transport_recv_connecting_client(sk, pkt); 898 break; 899 case TCP_ESTABLISHED: 900 vmci_transport_recv_connected(sk, pkt); 901 break; 902 default: 903 /* Because this function does not run in the same context as 904 * vmci_transport_recv_stream_cb it is possible that the 905 * socket has closed. We need to let the other side know or it 906 * could be sitting in a connect and hang forever. Send a 907 * reset to prevent that. 908 */ 909 vmci_transport_send_reset(sk, pkt); 910 break; 911 } 912 913 release_sock(sk); 914 kfree(recv_pkt_info); 915 /* Release reference obtained in the stream callback when we fetched 916 * this socket out of the bound or connected list. 917 */ 918 sock_put(sk); 919 } 920 921 static int vmci_transport_recv_listen(struct sock *sk, 922 struct vmci_transport_packet *pkt) 923 { 924 struct sock *pending; 925 struct vsock_sock *vpending; 926 int err; 927 u64 qp_size; 928 bool old_request = false; 929 bool old_pkt_proto = false; 930 931 err = 0; 932 933 /* Because we are in the listen state, we could be receiving a packet 934 * for ourself or any previous connection requests that we received. 935 * If it's the latter, we try to find a socket in our list of pending 936 * connections and, if we do, call the appropriate handler for the 937 * state that that socket is in. Otherwise we try to service the 938 * connection request. 939 */ 940 pending = vmci_transport_get_pending(sk, pkt); 941 if (pending) { 942 lock_sock(pending); 943 944 /* The local context ID may be out of date. */ 945 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context; 946 947 switch (pending->sk_state) { 948 case TCP_SYN_SENT: 949 err = vmci_transport_recv_connecting_server(sk, 950 pending, 951 pkt); 952 break; 953 default: 954 vmci_transport_send_reset(pending, pkt); 955 err = -EINVAL; 956 } 957 958 if (err < 0) 959 vsock_remove_pending(sk, pending); 960 961 release_sock(pending); 962 vmci_transport_release_pending(pending); 963 964 return err; 965 } 966 967 /* The listen state only accepts connection requests. Reply with a 968 * reset unless we received a reset. 969 */ 970 971 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST || 972 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) { 973 vmci_transport_reply_reset(pkt); 974 return -EINVAL; 975 } 976 977 if (pkt->u.size == 0) { 978 vmci_transport_reply_reset(pkt); 979 return -EINVAL; 980 } 981 982 /* If this socket can't accommodate this connection request, we send a 983 * reset. Otherwise we create and initialize a child socket and reply 984 * with a connection negotiation. 985 */ 986 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) { 987 vmci_transport_reply_reset(pkt); 988 return -ECONNREFUSED; 989 } 990 991 pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL, 992 sk->sk_type, 0); 993 if (!pending) { 994 vmci_transport_send_reset(sk, pkt); 995 return -ENOMEM; 996 } 997 998 vpending = vsock_sk(pending); 999 1000 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context, 1001 pkt->dst_port); 1002 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context, 1003 pkt->src_port); 1004 1005 /* If the proposed size fits within our min/max, accept it. Otherwise 1006 * propose our own size. 1007 */ 1008 if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size && 1009 pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) { 1010 qp_size = pkt->u.size; 1011 } else { 1012 qp_size = vmci_trans(vpending)->queue_pair_size; 1013 } 1014 1015 /* Figure out if we are using old or new requests based on the 1016 * overrides pkt types sent by our peer. 1017 */ 1018 if (vmci_transport_old_proto_override(&old_pkt_proto)) { 1019 old_request = old_pkt_proto; 1020 } else { 1021 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST) 1022 old_request = true; 1023 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2) 1024 old_request = false; 1025 1026 } 1027 1028 if (old_request) { 1029 /* Handle a REQUEST (or override) */ 1030 u16 version = VSOCK_PROTO_INVALID; 1031 if (vmci_transport_proto_to_notify_struct( 1032 pending, &version, true)) 1033 err = vmci_transport_send_negotiate(pending, qp_size); 1034 else 1035 err = -EINVAL; 1036 1037 } else { 1038 /* Handle a REQUEST2 (or override) */ 1039 int proto_int = pkt->proto; 1040 int pos; 1041 u16 active_proto_version = 0; 1042 1043 /* The list of possible protocols is the intersection of all 1044 * protocols the client supports ... plus all the protocols we 1045 * support. 1046 */ 1047 proto_int &= vmci_transport_new_proto_supported_versions(); 1048 1049 /* We choose the highest possible protocol version and use that 1050 * one. 1051 */ 1052 pos = fls(proto_int); 1053 if (pos) { 1054 active_proto_version = (1 << (pos - 1)); 1055 if (vmci_transport_proto_to_notify_struct( 1056 pending, &active_proto_version, false)) 1057 err = vmci_transport_send_negotiate2(pending, 1058 qp_size, 1059 active_proto_version); 1060 else 1061 err = -EINVAL; 1062 1063 } else { 1064 err = -EINVAL; 1065 } 1066 } 1067 1068 if (err < 0) { 1069 vmci_transport_send_reset(sk, pkt); 1070 sock_put(pending); 1071 err = vmci_transport_error_to_vsock_error(err); 1072 goto out; 1073 } 1074 1075 vsock_add_pending(sk, pending); 1076 sk->sk_ack_backlog++; 1077 1078 pending->sk_state = TCP_SYN_SENT; 1079 vmci_trans(vpending)->produce_size = 1080 vmci_trans(vpending)->consume_size = qp_size; 1081 vmci_trans(vpending)->queue_pair_size = qp_size; 1082 1083 vmci_trans(vpending)->notify_ops->process_request(pending); 1084 1085 /* We might never receive another message for this socket and it's not 1086 * connected to any process, so we have to ensure it gets cleaned up 1087 * ourself. Our delayed work function will take care of that. Note 1088 * that we do not ever cancel this function since we have few 1089 * guarantees about its state when calling cancel_delayed_work(). 1090 * Instead we hold a reference on the socket for that function and make 1091 * it capable of handling cases where it needs to do nothing but 1092 * release that reference. 1093 */ 1094 vpending->listener = sk; 1095 sock_hold(sk); 1096 sock_hold(pending); 1097 INIT_DELAYED_WORK(&vpending->dwork, vsock_pending_work); 1098 schedule_delayed_work(&vpending->dwork, HZ); 1099 1100 out: 1101 return err; 1102 } 1103 1104 static int 1105 vmci_transport_recv_connecting_server(struct sock *listener, 1106 struct sock *pending, 1107 struct vmci_transport_packet *pkt) 1108 { 1109 struct vsock_sock *vpending; 1110 struct vmci_handle handle; 1111 struct vmci_qp *qpair; 1112 bool is_local; 1113 u32 flags; 1114 u32 detach_sub_id; 1115 int err; 1116 int skerr; 1117 1118 vpending = vsock_sk(pending); 1119 detach_sub_id = VMCI_INVALID_ID; 1120 1121 switch (pkt->type) { 1122 case VMCI_TRANSPORT_PACKET_TYPE_OFFER: 1123 if (vmci_handle_is_invalid(pkt->u.handle)) { 1124 vmci_transport_send_reset(pending, pkt); 1125 skerr = EPROTO; 1126 err = -EINVAL; 1127 goto destroy; 1128 } 1129 break; 1130 default: 1131 /* Close and cleanup the connection. */ 1132 vmci_transport_send_reset(pending, pkt); 1133 skerr = EPROTO; 1134 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL; 1135 goto destroy; 1136 } 1137 1138 /* In order to complete the connection we need to attach to the offered 1139 * queue pair and send an attach notification. We also subscribe to the 1140 * detach event so we know when our peer goes away, and we do that 1141 * before attaching so we don't miss an event. If all this succeeds, 1142 * we update our state and wakeup anything waiting in accept() for a 1143 * connection. 1144 */ 1145 1146 /* We don't care about attach since we ensure the other side has 1147 * attached by specifying the ATTACH_ONLY flag below. 1148 */ 1149 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, 1150 vmci_transport_peer_detach_cb, 1151 vmci_trans(vpending), &detach_sub_id); 1152 if (err < VMCI_SUCCESS) { 1153 vmci_transport_send_reset(pending, pkt); 1154 err = vmci_transport_error_to_vsock_error(err); 1155 skerr = -err; 1156 goto destroy; 1157 } 1158 1159 vmci_trans(vpending)->detach_sub_id = detach_sub_id; 1160 1161 /* Now attach to the queue pair the client created. */ 1162 handle = pkt->u.handle; 1163 1164 /* vpending->local_addr always has a context id so we do not need to 1165 * worry about VMADDR_CID_ANY in this case. 1166 */ 1167 is_local = 1168 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid; 1169 flags = VMCI_QPFLAG_ATTACH_ONLY; 1170 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0; 1171 1172 err = vmci_transport_queue_pair_alloc( 1173 &qpair, 1174 &handle, 1175 vmci_trans(vpending)->produce_size, 1176 vmci_trans(vpending)->consume_size, 1177 pkt->dg.src.context, 1178 flags, 1179 vmci_transport_is_trusted( 1180 vpending, 1181 vpending->remote_addr.svm_cid)); 1182 if (err < 0) { 1183 vmci_transport_send_reset(pending, pkt); 1184 skerr = -err; 1185 goto destroy; 1186 } 1187 1188 vmci_trans(vpending)->qp_handle = handle; 1189 vmci_trans(vpending)->qpair = qpair; 1190 1191 /* When we send the attach message, we must be ready to handle incoming 1192 * control messages on the newly connected socket. So we move the 1193 * pending socket to the connected state before sending the attach 1194 * message. Otherwise, an incoming packet triggered by the attach being 1195 * received by the peer may be processed concurrently with what happens 1196 * below after sending the attach message, and that incoming packet 1197 * will find the listening socket instead of the (currently) pending 1198 * socket. Note that enqueueing the socket increments the reference 1199 * count, so even if a reset comes before the connection is accepted, 1200 * the socket will be valid until it is removed from the queue. 1201 * 1202 * If we fail sending the attach below, we remove the socket from the 1203 * connected list and move the socket to TCP_CLOSE before 1204 * releasing the lock, so a pending slow path processing of an incoming 1205 * packet will not see the socket in the connected state in that case. 1206 */ 1207 pending->sk_state = TCP_ESTABLISHED; 1208 1209 vsock_insert_connected(vpending); 1210 1211 /* Notify our peer of our attach. */ 1212 err = vmci_transport_send_attach(pending, handle); 1213 if (err < 0) { 1214 vsock_remove_connected(vpending); 1215 pr_err("Could not send attach\n"); 1216 vmci_transport_send_reset(pending, pkt); 1217 err = vmci_transport_error_to_vsock_error(err); 1218 skerr = -err; 1219 goto destroy; 1220 } 1221 1222 /* We have a connection. Move the now connected socket from the 1223 * listener's pending list to the accept queue so callers of accept() 1224 * can find it. 1225 */ 1226 vsock_remove_pending(listener, pending); 1227 vsock_enqueue_accept(listener, pending); 1228 1229 /* Callers of accept() will be be waiting on the listening socket, not 1230 * the pending socket. 1231 */ 1232 listener->sk_data_ready(listener); 1233 1234 return 0; 1235 1236 destroy: 1237 pending->sk_err = skerr; 1238 pending->sk_state = TCP_CLOSE; 1239 /* As long as we drop our reference, all necessary cleanup will handle 1240 * when the cleanup function drops its reference and our destruct 1241 * implementation is called. Note that since the listen handler will 1242 * remove pending from the pending list upon our failure, the cleanup 1243 * function won't drop the additional reference, which is why we do it 1244 * here. 1245 */ 1246 sock_put(pending); 1247 1248 return err; 1249 } 1250 1251 static int 1252 vmci_transport_recv_connecting_client(struct sock *sk, 1253 struct vmci_transport_packet *pkt) 1254 { 1255 struct vsock_sock *vsk; 1256 int err; 1257 int skerr; 1258 1259 vsk = vsock_sk(sk); 1260 1261 switch (pkt->type) { 1262 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: 1263 if (vmci_handle_is_invalid(pkt->u.handle) || 1264 !vmci_handle_is_equal(pkt->u.handle, 1265 vmci_trans(vsk)->qp_handle)) { 1266 skerr = EPROTO; 1267 err = -EINVAL; 1268 goto destroy; 1269 } 1270 1271 /* Signify the socket is connected and wakeup the waiter in 1272 * connect(). Also place the socket in the connected table for 1273 * accounting (it can already be found since it's in the bound 1274 * table). 1275 */ 1276 sk->sk_state = TCP_ESTABLISHED; 1277 sk->sk_socket->state = SS_CONNECTED; 1278 vsock_insert_connected(vsk); 1279 sk->sk_state_change(sk); 1280 1281 break; 1282 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: 1283 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: 1284 if (pkt->u.size == 0 1285 || pkt->dg.src.context != vsk->remote_addr.svm_cid 1286 || pkt->src_port != vsk->remote_addr.svm_port 1287 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle) 1288 || vmci_trans(vsk)->qpair 1289 || vmci_trans(vsk)->produce_size != 0 1290 || vmci_trans(vsk)->consume_size != 0 1291 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) { 1292 skerr = EPROTO; 1293 err = -EINVAL; 1294 1295 goto destroy; 1296 } 1297 1298 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt); 1299 if (err) { 1300 skerr = -err; 1301 goto destroy; 1302 } 1303 1304 break; 1305 case VMCI_TRANSPORT_PACKET_TYPE_INVALID: 1306 err = vmci_transport_recv_connecting_client_invalid(sk, pkt); 1307 if (err) { 1308 skerr = -err; 1309 goto destroy; 1310 } 1311 1312 break; 1313 case VMCI_TRANSPORT_PACKET_TYPE_RST: 1314 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to 1315 * continue processing here after they sent an INVALID packet. 1316 * This meant that we got a RST after the INVALID. We ignore a 1317 * RST after an INVALID. The common code doesn't send the RST 1318 * ... so we can hang if an old version of the common code 1319 * fails between getting a REQUEST and sending an OFFER back. 1320 * Not much we can do about it... except hope that it doesn't 1321 * happen. 1322 */ 1323 if (vsk->ignore_connecting_rst) { 1324 vsk->ignore_connecting_rst = false; 1325 } else { 1326 skerr = ECONNRESET; 1327 err = 0; 1328 goto destroy; 1329 } 1330 1331 break; 1332 default: 1333 /* Close and cleanup the connection. */ 1334 skerr = EPROTO; 1335 err = -EINVAL; 1336 goto destroy; 1337 } 1338 1339 return 0; 1340 1341 destroy: 1342 vmci_transport_send_reset(sk, pkt); 1343 1344 sk->sk_state = TCP_CLOSE; 1345 sk->sk_err = skerr; 1346 sk->sk_error_report(sk); 1347 return err; 1348 } 1349 1350 static int vmci_transport_recv_connecting_client_negotiate( 1351 struct sock *sk, 1352 struct vmci_transport_packet *pkt) 1353 { 1354 int err; 1355 struct vsock_sock *vsk; 1356 struct vmci_handle handle; 1357 struct vmci_qp *qpair; 1358 u32 detach_sub_id; 1359 bool is_local; 1360 u32 flags; 1361 bool old_proto = true; 1362 bool old_pkt_proto; 1363 u16 version; 1364 1365 vsk = vsock_sk(sk); 1366 handle = VMCI_INVALID_HANDLE; 1367 detach_sub_id = VMCI_INVALID_ID; 1368 1369 /* If we have gotten here then we should be past the point where old 1370 * linux vsock could have sent the bogus rst. 1371 */ 1372 vsk->sent_request = false; 1373 vsk->ignore_connecting_rst = false; 1374 1375 /* Verify that we're OK with the proposed queue pair size */ 1376 if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size || 1377 pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) { 1378 err = -EINVAL; 1379 goto destroy; 1380 } 1381 1382 /* At this point we know the CID the peer is using to talk to us. */ 1383 1384 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY) 1385 vsk->local_addr.svm_cid = pkt->dg.dst.context; 1386 1387 /* Setup the notify ops to be the highest supported version that both 1388 * the server and the client support. 1389 */ 1390 1391 if (vmci_transport_old_proto_override(&old_pkt_proto)) { 1392 old_proto = old_pkt_proto; 1393 } else { 1394 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE) 1395 old_proto = true; 1396 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2) 1397 old_proto = false; 1398 1399 } 1400 1401 if (old_proto) 1402 version = VSOCK_PROTO_INVALID; 1403 else 1404 version = pkt->proto; 1405 1406 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) { 1407 err = -EINVAL; 1408 goto destroy; 1409 } 1410 1411 /* Subscribe to detach events first. 1412 * 1413 * XXX We attach once for each queue pair created for now so it is easy 1414 * to find the socket (it's provided), but later we should only 1415 * subscribe once and add a way to lookup sockets by queue pair handle. 1416 */ 1417 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, 1418 vmci_transport_peer_detach_cb, 1419 vmci_trans(vsk), &detach_sub_id); 1420 if (err < VMCI_SUCCESS) { 1421 err = vmci_transport_error_to_vsock_error(err); 1422 goto destroy; 1423 } 1424 1425 /* Make VMCI select the handle for us. */ 1426 handle = VMCI_INVALID_HANDLE; 1427 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid; 1428 flags = is_local ? VMCI_QPFLAG_LOCAL : 0; 1429 1430 err = vmci_transport_queue_pair_alloc(&qpair, 1431 &handle, 1432 pkt->u.size, 1433 pkt->u.size, 1434 vsk->remote_addr.svm_cid, 1435 flags, 1436 vmci_transport_is_trusted( 1437 vsk, 1438 vsk-> 1439 remote_addr.svm_cid)); 1440 if (err < 0) 1441 goto destroy; 1442 1443 err = vmci_transport_send_qp_offer(sk, handle); 1444 if (err < 0) { 1445 err = vmci_transport_error_to_vsock_error(err); 1446 goto destroy; 1447 } 1448 1449 vmci_trans(vsk)->qp_handle = handle; 1450 vmci_trans(vsk)->qpair = qpair; 1451 1452 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 1453 pkt->u.size; 1454 1455 vmci_trans(vsk)->detach_sub_id = detach_sub_id; 1456 1457 vmci_trans(vsk)->notify_ops->process_negotiate(sk); 1458 1459 return 0; 1460 1461 destroy: 1462 if (detach_sub_id != VMCI_INVALID_ID) 1463 vmci_event_unsubscribe(detach_sub_id); 1464 1465 if (!vmci_handle_is_invalid(handle)) 1466 vmci_qpair_detach(&qpair); 1467 1468 return err; 1469 } 1470 1471 static int 1472 vmci_transport_recv_connecting_client_invalid(struct sock *sk, 1473 struct vmci_transport_packet *pkt) 1474 { 1475 int err = 0; 1476 struct vsock_sock *vsk = vsock_sk(sk); 1477 1478 if (vsk->sent_request) { 1479 vsk->sent_request = false; 1480 vsk->ignore_connecting_rst = true; 1481 1482 err = vmci_transport_send_conn_request( 1483 sk, vmci_trans(vsk)->queue_pair_size); 1484 if (err < 0) 1485 err = vmci_transport_error_to_vsock_error(err); 1486 else 1487 err = 0; 1488 1489 } 1490 1491 return err; 1492 } 1493 1494 static int vmci_transport_recv_connected(struct sock *sk, 1495 struct vmci_transport_packet *pkt) 1496 { 1497 struct vsock_sock *vsk; 1498 bool pkt_processed = false; 1499 1500 /* In cases where we are closing the connection, it's sufficient to 1501 * mark the state change (and maybe error) and wake up any waiting 1502 * threads. Since this is a connected socket, it's owned by a user 1503 * process and will be cleaned up when the failure is passed back on 1504 * the current or next system call. Our system call implementations 1505 * must therefore check for error and state changes on entry and when 1506 * being awoken. 1507 */ 1508 switch (pkt->type) { 1509 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: 1510 if (pkt->u.mode) { 1511 vsk = vsock_sk(sk); 1512 1513 vsk->peer_shutdown |= pkt->u.mode; 1514 sk->sk_state_change(sk); 1515 } 1516 break; 1517 1518 case VMCI_TRANSPORT_PACKET_TYPE_RST: 1519 vsk = vsock_sk(sk); 1520 /* It is possible that we sent our peer a message (e.g a 1521 * WAITING_READ) right before we got notified that the peer had 1522 * detached. If that happens then we can get a RST pkt back 1523 * from our peer even though there is data available for us to 1524 * read. In that case, don't shutdown the socket completely but 1525 * instead allow the local client to finish reading data off 1526 * the queuepair. Always treat a RST pkt in connected mode like 1527 * a clean shutdown. 1528 */ 1529 sock_set_flag(sk, SOCK_DONE); 1530 vsk->peer_shutdown = SHUTDOWN_MASK; 1531 if (vsock_stream_has_data(vsk) <= 0) 1532 sk->sk_state = TCP_CLOSING; 1533 1534 sk->sk_state_change(sk); 1535 break; 1536 1537 default: 1538 vsk = vsock_sk(sk); 1539 vmci_trans(vsk)->notify_ops->handle_notify_pkt( 1540 sk, pkt, false, NULL, NULL, 1541 &pkt_processed); 1542 if (!pkt_processed) 1543 return -EINVAL; 1544 1545 break; 1546 } 1547 1548 return 0; 1549 } 1550 1551 static int vmci_transport_socket_init(struct vsock_sock *vsk, 1552 struct vsock_sock *psk) 1553 { 1554 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL); 1555 if (!vsk->trans) 1556 return -ENOMEM; 1557 1558 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; 1559 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE; 1560 vmci_trans(vsk)->qpair = NULL; 1561 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0; 1562 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID; 1563 vmci_trans(vsk)->notify_ops = NULL; 1564 INIT_LIST_HEAD(&vmci_trans(vsk)->elem); 1565 vmci_trans(vsk)->sk = &vsk->sk; 1566 spin_lock_init(&vmci_trans(vsk)->lock); 1567 if (psk) { 1568 vmci_trans(vsk)->queue_pair_size = 1569 vmci_trans(psk)->queue_pair_size; 1570 vmci_trans(vsk)->queue_pair_min_size = 1571 vmci_trans(psk)->queue_pair_min_size; 1572 vmci_trans(vsk)->queue_pair_max_size = 1573 vmci_trans(psk)->queue_pair_max_size; 1574 } else { 1575 vmci_trans(vsk)->queue_pair_size = 1576 VMCI_TRANSPORT_DEFAULT_QP_SIZE; 1577 vmci_trans(vsk)->queue_pair_min_size = 1578 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN; 1579 vmci_trans(vsk)->queue_pair_max_size = 1580 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX; 1581 } 1582 1583 return 0; 1584 } 1585 1586 static void vmci_transport_free_resources(struct list_head *transport_list) 1587 { 1588 while (!list_empty(transport_list)) { 1589 struct vmci_transport *transport = 1590 list_first_entry(transport_list, struct vmci_transport, 1591 elem); 1592 list_del(&transport->elem); 1593 1594 if (transport->detach_sub_id != VMCI_INVALID_ID) { 1595 vmci_event_unsubscribe(transport->detach_sub_id); 1596 transport->detach_sub_id = VMCI_INVALID_ID; 1597 } 1598 1599 if (!vmci_handle_is_invalid(transport->qp_handle)) { 1600 vmci_qpair_detach(&transport->qpair); 1601 transport->qp_handle = VMCI_INVALID_HANDLE; 1602 transport->produce_size = 0; 1603 transport->consume_size = 0; 1604 } 1605 1606 kfree(transport); 1607 } 1608 } 1609 1610 static void vmci_transport_cleanup(struct work_struct *work) 1611 { 1612 LIST_HEAD(pending); 1613 1614 spin_lock_bh(&vmci_transport_cleanup_lock); 1615 list_replace_init(&vmci_transport_cleanup_list, &pending); 1616 spin_unlock_bh(&vmci_transport_cleanup_lock); 1617 vmci_transport_free_resources(&pending); 1618 } 1619 1620 static void vmci_transport_destruct(struct vsock_sock *vsk) 1621 { 1622 /* Ensure that the detach callback doesn't use the sk/vsk 1623 * we are about to destruct. 1624 */ 1625 spin_lock_bh(&vmci_trans(vsk)->lock); 1626 vmci_trans(vsk)->sk = NULL; 1627 spin_unlock_bh(&vmci_trans(vsk)->lock); 1628 1629 if (vmci_trans(vsk)->notify_ops) 1630 vmci_trans(vsk)->notify_ops->socket_destruct(vsk); 1631 1632 spin_lock_bh(&vmci_transport_cleanup_lock); 1633 list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list); 1634 spin_unlock_bh(&vmci_transport_cleanup_lock); 1635 schedule_work(&vmci_transport_cleanup_work); 1636 1637 vsk->trans = NULL; 1638 } 1639 1640 static void vmci_transport_release(struct vsock_sock *vsk) 1641 { 1642 vsock_remove_sock(vsk); 1643 1644 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) { 1645 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle); 1646 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; 1647 } 1648 } 1649 1650 static int vmci_transport_dgram_bind(struct vsock_sock *vsk, 1651 struct sockaddr_vm *addr) 1652 { 1653 u32 port; 1654 u32 flags; 1655 int err; 1656 1657 /* VMCI will select a resource ID for us if we provide 1658 * VMCI_INVALID_ID. 1659 */ 1660 port = addr->svm_port == VMADDR_PORT_ANY ? 1661 VMCI_INVALID_ID : addr->svm_port; 1662 1663 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE)) 1664 return -EACCES; 1665 1666 flags = addr->svm_cid == VMADDR_CID_ANY ? 1667 VMCI_FLAG_ANYCID_DG_HND : 0; 1668 1669 err = vmci_transport_datagram_create_hnd(port, flags, 1670 vmci_transport_recv_dgram_cb, 1671 &vsk->sk, 1672 &vmci_trans(vsk)->dg_handle); 1673 if (err < VMCI_SUCCESS) 1674 return vmci_transport_error_to_vsock_error(err); 1675 vsock_addr_init(&vsk->local_addr, addr->svm_cid, 1676 vmci_trans(vsk)->dg_handle.resource); 1677 1678 return 0; 1679 } 1680 1681 static int vmci_transport_dgram_enqueue( 1682 struct vsock_sock *vsk, 1683 struct sockaddr_vm *remote_addr, 1684 struct msghdr *msg, 1685 size_t len) 1686 { 1687 int err; 1688 struct vmci_datagram *dg; 1689 1690 if (len > VMCI_MAX_DG_PAYLOAD_SIZE) 1691 return -EMSGSIZE; 1692 1693 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid)) 1694 return -EPERM; 1695 1696 /* Allocate a buffer for the user's message and our packet header. */ 1697 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL); 1698 if (!dg) 1699 return -ENOMEM; 1700 1701 memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len); 1702 1703 dg->dst = vmci_make_handle(remote_addr->svm_cid, 1704 remote_addr->svm_port); 1705 dg->src = vmci_make_handle(vsk->local_addr.svm_cid, 1706 vsk->local_addr.svm_port); 1707 dg->payload_size = len; 1708 1709 err = vmci_datagram_send(dg); 1710 kfree(dg); 1711 if (err < 0) 1712 return vmci_transport_error_to_vsock_error(err); 1713 1714 return err - sizeof(*dg); 1715 } 1716 1717 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk, 1718 struct msghdr *msg, size_t len, 1719 int flags) 1720 { 1721 int err; 1722 int noblock; 1723 struct vmci_datagram *dg; 1724 size_t payload_len; 1725 struct sk_buff *skb; 1726 1727 noblock = flags & MSG_DONTWAIT; 1728 1729 if (flags & MSG_OOB || flags & MSG_ERRQUEUE) 1730 return -EOPNOTSUPP; 1731 1732 /* Retrieve the head sk_buff from the socket's receive queue. */ 1733 err = 0; 1734 skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err); 1735 if (!skb) 1736 return err; 1737 1738 dg = (struct vmci_datagram *)skb->data; 1739 if (!dg) 1740 /* err is 0, meaning we read zero bytes. */ 1741 goto out; 1742 1743 payload_len = dg->payload_size; 1744 /* Ensure the sk_buff matches the payload size claimed in the packet. */ 1745 if (payload_len != skb->len - sizeof(*dg)) { 1746 err = -EINVAL; 1747 goto out; 1748 } 1749 1750 if (payload_len > len) { 1751 payload_len = len; 1752 msg->msg_flags |= MSG_TRUNC; 1753 } 1754 1755 /* Place the datagram payload in the user's iovec. */ 1756 err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len); 1757 if (err) 1758 goto out; 1759 1760 if (msg->msg_name) { 1761 /* Provide the address of the sender. */ 1762 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name); 1763 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource); 1764 msg->msg_namelen = sizeof(*vm_addr); 1765 } 1766 err = payload_len; 1767 1768 out: 1769 skb_free_datagram(&vsk->sk, skb); 1770 return err; 1771 } 1772 1773 static bool vmci_transport_dgram_allow(u32 cid, u32 port) 1774 { 1775 if (cid == VMADDR_CID_HYPERVISOR) { 1776 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor 1777 * state and are allowed. 1778 */ 1779 return port == VMCI_UNITY_PBRPC_REGISTER; 1780 } 1781 1782 return true; 1783 } 1784 1785 static int vmci_transport_connect(struct vsock_sock *vsk) 1786 { 1787 int err; 1788 bool old_pkt_proto = false; 1789 struct sock *sk = &vsk->sk; 1790 1791 if (vmci_transport_old_proto_override(&old_pkt_proto) && 1792 old_pkt_proto) { 1793 err = vmci_transport_send_conn_request( 1794 sk, vmci_trans(vsk)->queue_pair_size); 1795 if (err < 0) { 1796 sk->sk_state = TCP_CLOSE; 1797 return err; 1798 } 1799 } else { 1800 int supported_proto_versions = 1801 vmci_transport_new_proto_supported_versions(); 1802 err = vmci_transport_send_conn_request2( 1803 sk, vmci_trans(vsk)->queue_pair_size, 1804 supported_proto_versions); 1805 if (err < 0) { 1806 sk->sk_state = TCP_CLOSE; 1807 return err; 1808 } 1809 1810 vsk->sent_request = true; 1811 } 1812 1813 return err; 1814 } 1815 1816 static ssize_t vmci_transport_stream_dequeue( 1817 struct vsock_sock *vsk, 1818 struct msghdr *msg, 1819 size_t len, 1820 int flags) 1821 { 1822 if (flags & MSG_PEEK) 1823 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0); 1824 else 1825 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0); 1826 } 1827 1828 static ssize_t vmci_transport_stream_enqueue( 1829 struct vsock_sock *vsk, 1830 struct msghdr *msg, 1831 size_t len) 1832 { 1833 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0); 1834 } 1835 1836 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk) 1837 { 1838 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair); 1839 } 1840 1841 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk) 1842 { 1843 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair); 1844 } 1845 1846 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk) 1847 { 1848 return vmci_trans(vsk)->consume_size; 1849 } 1850 1851 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk) 1852 { 1853 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle); 1854 } 1855 1856 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk) 1857 { 1858 return vmci_trans(vsk)->queue_pair_size; 1859 } 1860 1861 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk) 1862 { 1863 return vmci_trans(vsk)->queue_pair_min_size; 1864 } 1865 1866 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk) 1867 { 1868 return vmci_trans(vsk)->queue_pair_max_size; 1869 } 1870 1871 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val) 1872 { 1873 if (val < vmci_trans(vsk)->queue_pair_min_size) 1874 vmci_trans(vsk)->queue_pair_min_size = val; 1875 if (val > vmci_trans(vsk)->queue_pair_max_size) 1876 vmci_trans(vsk)->queue_pair_max_size = val; 1877 vmci_trans(vsk)->queue_pair_size = val; 1878 } 1879 1880 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk, 1881 u64 val) 1882 { 1883 if (val > vmci_trans(vsk)->queue_pair_size) 1884 vmci_trans(vsk)->queue_pair_size = val; 1885 vmci_trans(vsk)->queue_pair_min_size = val; 1886 } 1887 1888 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk, 1889 u64 val) 1890 { 1891 if (val < vmci_trans(vsk)->queue_pair_size) 1892 vmci_trans(vsk)->queue_pair_size = val; 1893 vmci_trans(vsk)->queue_pair_max_size = val; 1894 } 1895 1896 static int vmci_transport_notify_poll_in( 1897 struct vsock_sock *vsk, 1898 size_t target, 1899 bool *data_ready_now) 1900 { 1901 return vmci_trans(vsk)->notify_ops->poll_in( 1902 &vsk->sk, target, data_ready_now); 1903 } 1904 1905 static int vmci_transport_notify_poll_out( 1906 struct vsock_sock *vsk, 1907 size_t target, 1908 bool *space_available_now) 1909 { 1910 return vmci_trans(vsk)->notify_ops->poll_out( 1911 &vsk->sk, target, space_available_now); 1912 } 1913 1914 static int vmci_transport_notify_recv_init( 1915 struct vsock_sock *vsk, 1916 size_t target, 1917 struct vsock_transport_recv_notify_data *data) 1918 { 1919 return vmci_trans(vsk)->notify_ops->recv_init( 1920 &vsk->sk, target, 1921 (struct vmci_transport_recv_notify_data *)data); 1922 } 1923 1924 static int vmci_transport_notify_recv_pre_block( 1925 struct vsock_sock *vsk, 1926 size_t target, 1927 struct vsock_transport_recv_notify_data *data) 1928 { 1929 return vmci_trans(vsk)->notify_ops->recv_pre_block( 1930 &vsk->sk, target, 1931 (struct vmci_transport_recv_notify_data *)data); 1932 } 1933 1934 static int vmci_transport_notify_recv_pre_dequeue( 1935 struct vsock_sock *vsk, 1936 size_t target, 1937 struct vsock_transport_recv_notify_data *data) 1938 { 1939 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue( 1940 &vsk->sk, target, 1941 (struct vmci_transport_recv_notify_data *)data); 1942 } 1943 1944 static int vmci_transport_notify_recv_post_dequeue( 1945 struct vsock_sock *vsk, 1946 size_t target, 1947 ssize_t copied, 1948 bool data_read, 1949 struct vsock_transport_recv_notify_data *data) 1950 { 1951 return vmci_trans(vsk)->notify_ops->recv_post_dequeue( 1952 &vsk->sk, target, copied, data_read, 1953 (struct vmci_transport_recv_notify_data *)data); 1954 } 1955 1956 static int vmci_transport_notify_send_init( 1957 struct vsock_sock *vsk, 1958 struct vsock_transport_send_notify_data *data) 1959 { 1960 return vmci_trans(vsk)->notify_ops->send_init( 1961 &vsk->sk, 1962 (struct vmci_transport_send_notify_data *)data); 1963 } 1964 1965 static int vmci_transport_notify_send_pre_block( 1966 struct vsock_sock *vsk, 1967 struct vsock_transport_send_notify_data *data) 1968 { 1969 return vmci_trans(vsk)->notify_ops->send_pre_block( 1970 &vsk->sk, 1971 (struct vmci_transport_send_notify_data *)data); 1972 } 1973 1974 static int vmci_transport_notify_send_pre_enqueue( 1975 struct vsock_sock *vsk, 1976 struct vsock_transport_send_notify_data *data) 1977 { 1978 return vmci_trans(vsk)->notify_ops->send_pre_enqueue( 1979 &vsk->sk, 1980 (struct vmci_transport_send_notify_data *)data); 1981 } 1982 1983 static int vmci_transport_notify_send_post_enqueue( 1984 struct vsock_sock *vsk, 1985 ssize_t written, 1986 struct vsock_transport_send_notify_data *data) 1987 { 1988 return vmci_trans(vsk)->notify_ops->send_post_enqueue( 1989 &vsk->sk, written, 1990 (struct vmci_transport_send_notify_data *)data); 1991 } 1992 1993 static bool vmci_transport_old_proto_override(bool *old_pkt_proto) 1994 { 1995 if (PROTOCOL_OVERRIDE != -1) { 1996 if (PROTOCOL_OVERRIDE == 0) 1997 *old_pkt_proto = true; 1998 else 1999 *old_pkt_proto = false; 2000 2001 pr_info("Proto override in use\n"); 2002 return true; 2003 } 2004 2005 return false; 2006 } 2007 2008 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, 2009 u16 *proto, 2010 bool old_pkt_proto) 2011 { 2012 struct vsock_sock *vsk = vsock_sk(sk); 2013 2014 if (old_pkt_proto) { 2015 if (*proto != VSOCK_PROTO_INVALID) { 2016 pr_err("Can't set both an old and new protocol\n"); 2017 return false; 2018 } 2019 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops; 2020 goto exit; 2021 } 2022 2023 switch (*proto) { 2024 case VSOCK_PROTO_PKT_ON_NOTIFY: 2025 vmci_trans(vsk)->notify_ops = 2026 &vmci_transport_notify_pkt_q_state_ops; 2027 break; 2028 default: 2029 pr_err("Unknown notify protocol version\n"); 2030 return false; 2031 } 2032 2033 exit: 2034 vmci_trans(vsk)->notify_ops->socket_init(sk); 2035 return true; 2036 } 2037 2038 static u16 vmci_transport_new_proto_supported_versions(void) 2039 { 2040 if (PROTOCOL_OVERRIDE != -1) 2041 return PROTOCOL_OVERRIDE; 2042 2043 return VSOCK_PROTO_ALL_SUPPORTED; 2044 } 2045 2046 static u32 vmci_transport_get_local_cid(void) 2047 { 2048 return vmci_get_context_id(); 2049 } 2050 2051 static const struct vsock_transport vmci_transport = { 2052 .init = vmci_transport_socket_init, 2053 .destruct = vmci_transport_destruct, 2054 .release = vmci_transport_release, 2055 .connect = vmci_transport_connect, 2056 .dgram_bind = vmci_transport_dgram_bind, 2057 .dgram_dequeue = vmci_transport_dgram_dequeue, 2058 .dgram_enqueue = vmci_transport_dgram_enqueue, 2059 .dgram_allow = vmci_transport_dgram_allow, 2060 .stream_dequeue = vmci_transport_stream_dequeue, 2061 .stream_enqueue = vmci_transport_stream_enqueue, 2062 .stream_has_data = vmci_transport_stream_has_data, 2063 .stream_has_space = vmci_transport_stream_has_space, 2064 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat, 2065 .stream_is_active = vmci_transport_stream_is_active, 2066 .stream_allow = vmci_transport_stream_allow, 2067 .notify_poll_in = vmci_transport_notify_poll_in, 2068 .notify_poll_out = vmci_transport_notify_poll_out, 2069 .notify_recv_init = vmci_transport_notify_recv_init, 2070 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block, 2071 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue, 2072 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue, 2073 .notify_send_init = vmci_transport_notify_send_init, 2074 .notify_send_pre_block = vmci_transport_notify_send_pre_block, 2075 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue, 2076 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue, 2077 .shutdown = vmci_transport_shutdown, 2078 .set_buffer_size = vmci_transport_set_buffer_size, 2079 .set_min_buffer_size = vmci_transport_set_min_buffer_size, 2080 .set_max_buffer_size = vmci_transport_set_max_buffer_size, 2081 .get_buffer_size = vmci_transport_get_buffer_size, 2082 .get_min_buffer_size = vmci_transport_get_min_buffer_size, 2083 .get_max_buffer_size = vmci_transport_get_max_buffer_size, 2084 .get_local_cid = vmci_transport_get_local_cid, 2085 }; 2086 2087 static int __init vmci_transport_init(void) 2088 { 2089 int err; 2090 2091 /* Create the datagram handle that we will use to send and receive all 2092 * VSocket control messages for this context. 2093 */ 2094 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID, 2095 VMCI_FLAG_ANYCID_DG_HND, 2096 vmci_transport_recv_stream_cb, 2097 NULL, 2098 &vmci_transport_stream_handle); 2099 if (err < VMCI_SUCCESS) { 2100 pr_err("Unable to create datagram handle. (%d)\n", err); 2101 return vmci_transport_error_to_vsock_error(err); 2102 } 2103 2104 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED, 2105 vmci_transport_qp_resumed_cb, 2106 NULL, &vmci_transport_qp_resumed_sub_id); 2107 if (err < VMCI_SUCCESS) { 2108 pr_err("Unable to subscribe to resumed event. (%d)\n", err); 2109 err = vmci_transport_error_to_vsock_error(err); 2110 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 2111 goto err_destroy_stream_handle; 2112 } 2113 2114 err = vsock_core_init(&vmci_transport); 2115 if (err < 0) 2116 goto err_unsubscribe; 2117 2118 return 0; 2119 2120 err_unsubscribe: 2121 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); 2122 err_destroy_stream_handle: 2123 vmci_datagram_destroy_handle(vmci_transport_stream_handle); 2124 return err; 2125 } 2126 module_init(vmci_transport_init); 2127 2128 static void __exit vmci_transport_exit(void) 2129 { 2130 cancel_work_sync(&vmci_transport_cleanup_work); 2131 vmci_transport_free_resources(&vmci_transport_cleanup_list); 2132 2133 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) { 2134 if (vmci_datagram_destroy_handle( 2135 vmci_transport_stream_handle) != VMCI_SUCCESS) 2136 pr_err("Couldn't destroy datagram handle\n"); 2137 vmci_transport_stream_handle = VMCI_INVALID_HANDLE; 2138 } 2139 2140 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) { 2141 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); 2142 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 2143 } 2144 2145 vsock_core_exit(); 2146 } 2147 module_exit(vmci_transport_exit); 2148 2149 MODULE_AUTHOR("VMware, Inc."); 2150 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets"); 2151 MODULE_VERSION("1.0.5.0-k"); 2152 MODULE_LICENSE("GPL v2"); 2153 MODULE_ALIAS("vmware_vsock"); 2154 MODULE_ALIAS_NETPROTO(PF_VSOCK); 2155