1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VMware vSockets Driver 4 * 5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 6 */ 7 8 #include <linux/types.h> 9 #include <linux/bitops.h> 10 #include <linux/cred.h> 11 #include <linux/init.h> 12 #include <linux/io.h> 13 #include <linux/kernel.h> 14 #include <linux/kmod.h> 15 #include <linux/list.h> 16 #include <linux/module.h> 17 #include <linux/mutex.h> 18 #include <linux/net.h> 19 #include <linux/poll.h> 20 #include <linux/skbuff.h> 21 #include <linux/smp.h> 22 #include <linux/socket.h> 23 #include <linux/stddef.h> 24 #include <linux/unistd.h> 25 #include <linux/wait.h> 26 #include <linux/workqueue.h> 27 #include <net/sock.h> 28 #include <net/af_vsock.h> 29 30 #include "vmci_transport_notify.h" 31 32 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg); 33 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg); 34 static void vmci_transport_peer_detach_cb(u32 sub_id, 35 const struct vmci_event_data *ed, 36 void *client_data); 37 static void vmci_transport_recv_pkt_work(struct work_struct *work); 38 static void vmci_transport_cleanup(struct work_struct *work); 39 static int vmci_transport_recv_listen(struct sock *sk, 40 struct vmci_transport_packet *pkt); 41 static int vmci_transport_recv_connecting_server( 42 struct sock *sk, 43 struct sock *pending, 44 struct vmci_transport_packet *pkt); 45 static int vmci_transport_recv_connecting_client( 46 struct sock *sk, 47 struct vmci_transport_packet *pkt); 48 static int vmci_transport_recv_connecting_client_negotiate( 49 struct sock *sk, 50 struct vmci_transport_packet *pkt); 51 static int vmci_transport_recv_connecting_client_invalid( 52 struct sock *sk, 53 struct vmci_transport_packet *pkt); 54 static int vmci_transport_recv_connected(struct sock *sk, 55 struct vmci_transport_packet *pkt); 56 static bool vmci_transport_old_proto_override(bool *old_pkt_proto); 57 static u16 vmci_transport_new_proto_supported_versions(void); 58 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto, 59 bool old_pkt_proto); 60 static bool vmci_check_transport(struct vsock_sock *vsk); 61 62 struct vmci_transport_recv_pkt_info { 63 struct work_struct work; 64 struct sock *sk; 65 struct vmci_transport_packet pkt; 66 }; 67 68 static LIST_HEAD(vmci_transport_cleanup_list); 69 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock); 70 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup); 71 72 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID, 73 VMCI_INVALID_ID }; 74 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 75 76 static int PROTOCOL_OVERRIDE = -1; 77 78 /* Helper function to convert from a VMCI error code to a VSock error code. */ 79 80 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error) 81 { 82 switch (vmci_error) { 83 case VMCI_ERROR_NO_MEM: 84 return -ENOMEM; 85 case VMCI_ERROR_DUPLICATE_ENTRY: 86 case VMCI_ERROR_ALREADY_EXISTS: 87 return -EADDRINUSE; 88 case VMCI_ERROR_NO_ACCESS: 89 return -EPERM; 90 case VMCI_ERROR_NO_RESOURCES: 91 return -ENOBUFS; 92 case VMCI_ERROR_INVALID_RESOURCE: 93 return -EHOSTUNREACH; 94 case VMCI_ERROR_INVALID_ARGS: 95 default: 96 break; 97 } 98 return -EINVAL; 99 } 100 101 static u32 vmci_transport_peer_rid(u32 peer_cid) 102 { 103 if (VMADDR_CID_HYPERVISOR == peer_cid) 104 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID; 105 106 return VMCI_TRANSPORT_PACKET_RID; 107 } 108 109 static inline void 110 vmci_transport_packet_init(struct vmci_transport_packet *pkt, 111 struct sockaddr_vm *src, 112 struct sockaddr_vm *dst, 113 u8 type, 114 u64 size, 115 u64 mode, 116 struct vmci_transport_waiting_info *wait, 117 u16 proto, 118 struct vmci_handle handle) 119 { 120 /* We register the stream control handler as an any cid handle so we 121 * must always send from a source address of VMADDR_CID_ANY 122 */ 123 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY, 124 VMCI_TRANSPORT_PACKET_RID); 125 pkt->dg.dst = vmci_make_handle(dst->svm_cid, 126 vmci_transport_peer_rid(dst->svm_cid)); 127 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg); 128 pkt->version = VMCI_TRANSPORT_PACKET_VERSION; 129 pkt->type = type; 130 pkt->src_port = src->svm_port; 131 pkt->dst_port = dst->svm_port; 132 memset(&pkt->proto, 0, sizeof(pkt->proto)); 133 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2)); 134 135 switch (pkt->type) { 136 case VMCI_TRANSPORT_PACKET_TYPE_INVALID: 137 pkt->u.size = 0; 138 break; 139 140 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST: 141 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: 142 pkt->u.size = size; 143 break; 144 145 case VMCI_TRANSPORT_PACKET_TYPE_OFFER: 146 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: 147 pkt->u.handle = handle; 148 break; 149 150 case VMCI_TRANSPORT_PACKET_TYPE_WROTE: 151 case VMCI_TRANSPORT_PACKET_TYPE_READ: 152 case VMCI_TRANSPORT_PACKET_TYPE_RST: 153 pkt->u.size = 0; 154 break; 155 156 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: 157 pkt->u.mode = mode; 158 break; 159 160 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ: 161 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE: 162 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait)); 163 break; 164 165 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2: 166 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: 167 pkt->u.size = size; 168 pkt->proto = proto; 169 break; 170 } 171 } 172 173 static inline void 174 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt, 175 struct sockaddr_vm *local, 176 struct sockaddr_vm *remote) 177 { 178 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port); 179 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port); 180 } 181 182 static int 183 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt, 184 struct sockaddr_vm *src, 185 struct sockaddr_vm *dst, 186 enum vmci_transport_packet_type type, 187 u64 size, 188 u64 mode, 189 struct vmci_transport_waiting_info *wait, 190 u16 proto, 191 struct vmci_handle handle, 192 bool convert_error) 193 { 194 int err; 195 196 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait, 197 proto, handle); 198 err = vmci_datagram_send(&pkt->dg); 199 if (convert_error && (err < 0)) 200 return vmci_transport_error_to_vsock_error(err); 201 202 return err; 203 } 204 205 static int 206 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt, 207 enum vmci_transport_packet_type type, 208 u64 size, 209 u64 mode, 210 struct vmci_transport_waiting_info *wait, 211 struct vmci_handle handle) 212 { 213 struct vmci_transport_packet reply; 214 struct sockaddr_vm src, dst; 215 216 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) { 217 return 0; 218 } else { 219 vmci_transport_packet_get_addresses(pkt, &src, &dst); 220 return __vmci_transport_send_control_pkt(&reply, &src, &dst, 221 type, 222 size, mode, wait, 223 VSOCK_PROTO_INVALID, 224 handle, true); 225 } 226 } 227 228 static int 229 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src, 230 struct sockaddr_vm *dst, 231 enum vmci_transport_packet_type type, 232 u64 size, 233 u64 mode, 234 struct vmci_transport_waiting_info *wait, 235 struct vmci_handle handle) 236 { 237 /* Note that it is safe to use a single packet across all CPUs since 238 * two tasklets of the same type are guaranteed to not ever run 239 * simultaneously. If that ever changes, or VMCI stops using tasklets, 240 * we can use per-cpu packets. 241 */ 242 static struct vmci_transport_packet pkt; 243 244 return __vmci_transport_send_control_pkt(&pkt, src, dst, type, 245 size, mode, wait, 246 VSOCK_PROTO_INVALID, handle, 247 false); 248 } 249 250 static int 251 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src, 252 struct sockaddr_vm *dst, 253 enum vmci_transport_packet_type type, 254 u64 size, 255 u64 mode, 256 struct vmci_transport_waiting_info *wait, 257 u16 proto, 258 struct vmci_handle handle) 259 { 260 struct vmci_transport_packet *pkt; 261 int err; 262 263 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL); 264 if (!pkt) 265 return -ENOMEM; 266 267 err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size, 268 mode, wait, proto, handle, 269 true); 270 kfree(pkt); 271 272 return err; 273 } 274 275 static int 276 vmci_transport_send_control_pkt(struct sock *sk, 277 enum vmci_transport_packet_type type, 278 u64 size, 279 u64 mode, 280 struct vmci_transport_waiting_info *wait, 281 u16 proto, 282 struct vmci_handle handle) 283 { 284 struct vsock_sock *vsk; 285 286 vsk = vsock_sk(sk); 287 288 if (!vsock_addr_bound(&vsk->local_addr)) 289 return -EINVAL; 290 291 if (!vsock_addr_bound(&vsk->remote_addr)) 292 return -EINVAL; 293 294 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, 295 &vsk->remote_addr, 296 type, size, mode, 297 wait, proto, handle); 298 } 299 300 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst, 301 struct sockaddr_vm *src, 302 struct vmci_transport_packet *pkt) 303 { 304 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) 305 return 0; 306 return vmci_transport_send_control_pkt_bh( 307 dst, src, 308 VMCI_TRANSPORT_PACKET_TYPE_RST, 0, 309 0, NULL, VMCI_INVALID_HANDLE); 310 } 311 312 static int vmci_transport_send_reset(struct sock *sk, 313 struct vmci_transport_packet *pkt) 314 { 315 struct sockaddr_vm *dst_ptr; 316 struct sockaddr_vm dst; 317 struct vsock_sock *vsk; 318 319 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) 320 return 0; 321 322 vsk = vsock_sk(sk); 323 324 if (!vsock_addr_bound(&vsk->local_addr)) 325 return -EINVAL; 326 327 if (vsock_addr_bound(&vsk->remote_addr)) { 328 dst_ptr = &vsk->remote_addr; 329 } else { 330 vsock_addr_init(&dst, pkt->dg.src.context, 331 pkt->src_port); 332 dst_ptr = &dst; 333 } 334 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr, 335 VMCI_TRANSPORT_PACKET_TYPE_RST, 336 0, 0, NULL, VSOCK_PROTO_INVALID, 337 VMCI_INVALID_HANDLE); 338 } 339 340 static int vmci_transport_send_negotiate(struct sock *sk, size_t size) 341 { 342 return vmci_transport_send_control_pkt( 343 sk, 344 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE, 345 size, 0, NULL, 346 VSOCK_PROTO_INVALID, 347 VMCI_INVALID_HANDLE); 348 } 349 350 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size, 351 u16 version) 352 { 353 return vmci_transport_send_control_pkt( 354 sk, 355 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2, 356 size, 0, NULL, version, 357 VMCI_INVALID_HANDLE); 358 } 359 360 static int vmci_transport_send_qp_offer(struct sock *sk, 361 struct vmci_handle handle) 362 { 363 return vmci_transport_send_control_pkt( 364 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0, 365 0, NULL, 366 VSOCK_PROTO_INVALID, handle); 367 } 368 369 static int vmci_transport_send_attach(struct sock *sk, 370 struct vmci_handle handle) 371 { 372 return vmci_transport_send_control_pkt( 373 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH, 374 0, 0, NULL, VSOCK_PROTO_INVALID, 375 handle); 376 } 377 378 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt) 379 { 380 return vmci_transport_reply_control_pkt_fast( 381 pkt, 382 VMCI_TRANSPORT_PACKET_TYPE_RST, 383 0, 0, NULL, 384 VMCI_INVALID_HANDLE); 385 } 386 387 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst, 388 struct sockaddr_vm *src) 389 { 390 return vmci_transport_send_control_pkt_bh( 391 dst, src, 392 VMCI_TRANSPORT_PACKET_TYPE_INVALID, 393 0, 0, NULL, VMCI_INVALID_HANDLE); 394 } 395 396 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst, 397 struct sockaddr_vm *src) 398 { 399 return vmci_transport_send_control_pkt_bh( 400 dst, src, 401 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 402 0, NULL, VMCI_INVALID_HANDLE); 403 } 404 405 int vmci_transport_send_read_bh(struct sockaddr_vm *dst, 406 struct sockaddr_vm *src) 407 { 408 return vmci_transport_send_control_pkt_bh( 409 dst, src, 410 VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 411 0, NULL, VMCI_INVALID_HANDLE); 412 } 413 414 int vmci_transport_send_wrote(struct sock *sk) 415 { 416 return vmci_transport_send_control_pkt( 417 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 418 0, NULL, VSOCK_PROTO_INVALID, 419 VMCI_INVALID_HANDLE); 420 } 421 422 int vmci_transport_send_read(struct sock *sk) 423 { 424 return vmci_transport_send_control_pkt( 425 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 426 0, NULL, VSOCK_PROTO_INVALID, 427 VMCI_INVALID_HANDLE); 428 } 429 430 int vmci_transport_send_waiting_write(struct sock *sk, 431 struct vmci_transport_waiting_info *wait) 432 { 433 return vmci_transport_send_control_pkt( 434 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE, 435 0, 0, wait, VSOCK_PROTO_INVALID, 436 VMCI_INVALID_HANDLE); 437 } 438 439 int vmci_transport_send_waiting_read(struct sock *sk, 440 struct vmci_transport_waiting_info *wait) 441 { 442 return vmci_transport_send_control_pkt( 443 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ, 444 0, 0, wait, VSOCK_PROTO_INVALID, 445 VMCI_INVALID_HANDLE); 446 } 447 448 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode) 449 { 450 return vmci_transport_send_control_pkt( 451 &vsk->sk, 452 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN, 453 0, mode, NULL, 454 VSOCK_PROTO_INVALID, 455 VMCI_INVALID_HANDLE); 456 } 457 458 static int vmci_transport_send_conn_request(struct sock *sk, size_t size) 459 { 460 return vmci_transport_send_control_pkt(sk, 461 VMCI_TRANSPORT_PACKET_TYPE_REQUEST, 462 size, 0, NULL, 463 VSOCK_PROTO_INVALID, 464 VMCI_INVALID_HANDLE); 465 } 466 467 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size, 468 u16 version) 469 { 470 return vmci_transport_send_control_pkt( 471 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2, 472 size, 0, NULL, version, 473 VMCI_INVALID_HANDLE); 474 } 475 476 static struct sock *vmci_transport_get_pending( 477 struct sock *listener, 478 struct vmci_transport_packet *pkt) 479 { 480 struct vsock_sock *vlistener; 481 struct vsock_sock *vpending; 482 struct sock *pending; 483 struct sockaddr_vm src; 484 485 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); 486 487 vlistener = vsock_sk(listener); 488 489 list_for_each_entry(vpending, &vlistener->pending_links, 490 pending_links) { 491 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) && 492 pkt->dst_port == vpending->local_addr.svm_port) { 493 pending = sk_vsock(vpending); 494 sock_hold(pending); 495 goto found; 496 } 497 } 498 499 pending = NULL; 500 found: 501 return pending; 502 503 } 504 505 static void vmci_transport_release_pending(struct sock *pending) 506 { 507 sock_put(pending); 508 } 509 510 /* We allow two kinds of sockets to communicate with a restricted VM: 1) 511 * trusted sockets 2) sockets from applications running as the same user as the 512 * VM (this is only true for the host side and only when using hosted products) 513 */ 514 515 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid) 516 { 517 return vsock->trusted || 518 vmci_is_context_owner(peer_cid, vsock->owner->uid); 519 } 520 521 /* We allow sending datagrams to and receiving datagrams from a restricted VM 522 * only if it is trusted as described in vmci_transport_is_trusted. 523 */ 524 525 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid) 526 { 527 if (VMADDR_CID_HYPERVISOR == peer_cid) 528 return true; 529 530 if (vsock->cached_peer != peer_cid) { 531 vsock->cached_peer = peer_cid; 532 if (!vmci_transport_is_trusted(vsock, peer_cid) && 533 (vmci_context_get_priv_flags(peer_cid) & 534 VMCI_PRIVILEGE_FLAG_RESTRICTED)) { 535 vsock->cached_peer_allow_dgram = false; 536 } else { 537 vsock->cached_peer_allow_dgram = true; 538 } 539 } 540 541 return vsock->cached_peer_allow_dgram; 542 } 543 544 static int 545 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair, 546 struct vmci_handle *handle, 547 u64 produce_size, 548 u64 consume_size, 549 u32 peer, u32 flags, bool trusted) 550 { 551 int err = 0; 552 553 if (trusted) { 554 /* Try to allocate our queue pair as trusted. This will only 555 * work if vsock is running in the host. 556 */ 557 558 err = vmci_qpair_alloc(qpair, handle, produce_size, 559 consume_size, 560 peer, flags, 561 VMCI_PRIVILEGE_FLAG_TRUSTED); 562 if (err != VMCI_ERROR_NO_ACCESS) 563 goto out; 564 565 } 566 567 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size, 568 peer, flags, VMCI_NO_PRIVILEGE_FLAGS); 569 out: 570 if (err < 0) { 571 pr_err_once("Could not attach to queue pair with %d\n", err); 572 err = vmci_transport_error_to_vsock_error(err); 573 } 574 575 return err; 576 } 577 578 static int 579 vmci_transport_datagram_create_hnd(u32 resource_id, 580 u32 flags, 581 vmci_datagram_recv_cb recv_cb, 582 void *client_data, 583 struct vmci_handle *out_handle) 584 { 585 int err = 0; 586 587 /* Try to allocate our datagram handler as trusted. This will only work 588 * if vsock is running in the host. 589 */ 590 591 err = vmci_datagram_create_handle_priv(resource_id, flags, 592 VMCI_PRIVILEGE_FLAG_TRUSTED, 593 recv_cb, 594 client_data, out_handle); 595 596 if (err == VMCI_ERROR_NO_ACCESS) 597 err = vmci_datagram_create_handle(resource_id, flags, 598 recv_cb, client_data, 599 out_handle); 600 601 return err; 602 } 603 604 /* This is invoked as part of a tasklet that's scheduled when the VMCI 605 * interrupt fires. This is run in bottom-half context and if it ever needs to 606 * sleep it should defer that work to a work queue. 607 */ 608 609 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg) 610 { 611 struct sock *sk; 612 size_t size; 613 struct sk_buff *skb; 614 struct vsock_sock *vsk; 615 616 sk = (struct sock *)data; 617 618 /* This handler is privileged when this module is running on the host. 619 * We will get datagrams from all endpoints (even VMs that are in a 620 * restricted context). If we get one from a restricted context then 621 * the destination socket must be trusted. 622 * 623 * NOTE: We access the socket struct without holding the lock here. 624 * This is ok because the field we are interested is never modified 625 * outside of the create and destruct socket functions. 626 */ 627 vsk = vsock_sk(sk); 628 if (!vmci_transport_allow_dgram(vsk, dg->src.context)) 629 return VMCI_ERROR_NO_ACCESS; 630 631 size = VMCI_DG_SIZE(dg); 632 633 /* Attach the packet to the socket's receive queue as an sk_buff. */ 634 skb = alloc_skb(size, GFP_ATOMIC); 635 if (!skb) 636 return VMCI_ERROR_NO_MEM; 637 638 /* sk_receive_skb() will do a sock_put(), so hold here. */ 639 sock_hold(sk); 640 skb_put(skb, size); 641 memcpy(skb->data, dg, size); 642 sk_receive_skb(sk, skb, 0); 643 644 return VMCI_SUCCESS; 645 } 646 647 static bool vmci_transport_stream_allow(u32 cid, u32 port) 648 { 649 static const u32 non_socket_contexts[] = { 650 VMADDR_CID_LOCAL, 651 }; 652 int i; 653 654 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts)); 655 656 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) { 657 if (cid == non_socket_contexts[i]) 658 return false; 659 } 660 661 return true; 662 } 663 664 /* This is invoked as part of a tasklet that's scheduled when the VMCI 665 * interrupt fires. This is run in bottom-half context but it defers most of 666 * its work to the packet handling work queue. 667 */ 668 669 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg) 670 { 671 struct sock *sk; 672 struct sockaddr_vm dst; 673 struct sockaddr_vm src; 674 struct vmci_transport_packet *pkt; 675 struct vsock_sock *vsk; 676 bool bh_process_pkt; 677 int err; 678 679 sk = NULL; 680 err = VMCI_SUCCESS; 681 bh_process_pkt = false; 682 683 /* Ignore incoming packets from contexts without sockets, or resources 684 * that aren't vsock implementations. 685 */ 686 687 if (!vmci_transport_stream_allow(dg->src.context, -1) 688 || vmci_transport_peer_rid(dg->src.context) != dg->src.resource) 689 return VMCI_ERROR_NO_ACCESS; 690 691 if (VMCI_DG_SIZE(dg) < sizeof(*pkt)) 692 /* Drop datagrams that do not contain full VSock packets. */ 693 return VMCI_ERROR_INVALID_ARGS; 694 695 pkt = (struct vmci_transport_packet *)dg; 696 697 /* Find the socket that should handle this packet. First we look for a 698 * connected socket and if there is none we look for a socket bound to 699 * the destintation address. 700 */ 701 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); 702 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port); 703 704 sk = vsock_find_connected_socket(&src, &dst); 705 if (!sk) { 706 sk = vsock_find_bound_socket(&dst); 707 if (!sk) { 708 /* We could not find a socket for this specified 709 * address. If this packet is a RST, we just drop it. 710 * If it is another packet, we send a RST. Note that 711 * we do not send a RST reply to RSTs so that we do not 712 * continually send RSTs between two endpoints. 713 * 714 * Note that since this is a reply, dst is src and src 715 * is dst. 716 */ 717 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) 718 pr_err("unable to send reset\n"); 719 720 err = VMCI_ERROR_NOT_FOUND; 721 goto out; 722 } 723 } 724 725 /* If the received packet type is beyond all types known to this 726 * implementation, reply with an invalid message. Hopefully this will 727 * help when implementing backwards compatibility in the future. 728 */ 729 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) { 730 vmci_transport_send_invalid_bh(&dst, &src); 731 err = VMCI_ERROR_INVALID_ARGS; 732 goto out; 733 } 734 735 /* This handler is privileged when this module is running on the host. 736 * We will get datagram connect requests from all endpoints (even VMs 737 * that are in a restricted context). If we get one from a restricted 738 * context then the destination socket must be trusted. 739 * 740 * NOTE: We access the socket struct without holding the lock here. 741 * This is ok because the field we are interested is never modified 742 * outside of the create and destruct socket functions. 743 */ 744 vsk = vsock_sk(sk); 745 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) { 746 err = VMCI_ERROR_NO_ACCESS; 747 goto out; 748 } 749 750 /* We do most everything in a work queue, but let's fast path the 751 * notification of reads and writes to help data transfer performance. 752 * We can only do this if there is no process context code executing 753 * for this socket since that may change the state. 754 */ 755 bh_lock_sock(sk); 756 757 if (!sock_owned_by_user(sk)) { 758 /* The local context ID may be out of date, update it. */ 759 vsk->local_addr.svm_cid = dst.svm_cid; 760 761 if (sk->sk_state == TCP_ESTABLISHED) 762 vmci_trans(vsk)->notify_ops->handle_notify_pkt( 763 sk, pkt, true, &dst, &src, 764 &bh_process_pkt); 765 } 766 767 bh_unlock_sock(sk); 768 769 if (!bh_process_pkt) { 770 struct vmci_transport_recv_pkt_info *recv_pkt_info; 771 772 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC); 773 if (!recv_pkt_info) { 774 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) 775 pr_err("unable to send reset\n"); 776 777 err = VMCI_ERROR_NO_MEM; 778 goto out; 779 } 780 781 recv_pkt_info->sk = sk; 782 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt)); 783 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work); 784 785 schedule_work(&recv_pkt_info->work); 786 /* Clear sk so that the reference count incremented by one of 787 * the Find functions above is not decremented below. We need 788 * that reference count for the packet handler we've scheduled 789 * to run. 790 */ 791 sk = NULL; 792 } 793 794 out: 795 if (sk) 796 sock_put(sk); 797 798 return err; 799 } 800 801 static void vmci_transport_handle_detach(struct sock *sk) 802 { 803 struct vsock_sock *vsk; 804 805 vsk = vsock_sk(sk); 806 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) { 807 sock_set_flag(sk, SOCK_DONE); 808 809 /* On a detach the peer will not be sending or receiving 810 * anymore. 811 */ 812 vsk->peer_shutdown = SHUTDOWN_MASK; 813 814 /* We should not be sending anymore since the peer won't be 815 * there to receive, but we can still receive if there is data 816 * left in our consume queue. If the local endpoint is a host, 817 * we can't call vsock_stream_has_data, since that may block, 818 * but a host endpoint can't read data once the VM has 819 * detached, so there is no available data in that case. 820 */ 821 if (vsk->local_addr.svm_cid == VMADDR_CID_HOST || 822 vsock_stream_has_data(vsk) <= 0) { 823 if (sk->sk_state == TCP_SYN_SENT) { 824 /* The peer may detach from a queue pair while 825 * we are still in the connecting state, i.e., 826 * if the peer VM is killed after attaching to 827 * a queue pair, but before we complete the 828 * handshake. In that case, we treat the detach 829 * event like a reset. 830 */ 831 832 sk->sk_state = TCP_CLOSE; 833 sk->sk_err = ECONNRESET; 834 sk->sk_error_report(sk); 835 return; 836 } 837 sk->sk_state = TCP_CLOSE; 838 } 839 sk->sk_state_change(sk); 840 } 841 } 842 843 static void vmci_transport_peer_detach_cb(u32 sub_id, 844 const struct vmci_event_data *e_data, 845 void *client_data) 846 { 847 struct vmci_transport *trans = client_data; 848 const struct vmci_event_payload_qp *e_payload; 849 850 e_payload = vmci_event_data_const_payload(e_data); 851 852 /* XXX This is lame, we should provide a way to lookup sockets by 853 * qp_handle. 854 */ 855 if (vmci_handle_is_invalid(e_payload->handle) || 856 !vmci_handle_is_equal(trans->qp_handle, e_payload->handle)) 857 return; 858 859 /* We don't ask for delayed CBs when we subscribe to this event (we 860 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no 861 * guarantees in that case about what context we might be running in, 862 * so it could be BH or process, blockable or non-blockable. So we 863 * need to account for all possible contexts here. 864 */ 865 spin_lock_bh(&trans->lock); 866 if (!trans->sk) 867 goto out; 868 869 /* Apart from here, trans->lock is only grabbed as part of sk destruct, 870 * where trans->sk isn't locked. 871 */ 872 bh_lock_sock(trans->sk); 873 874 vmci_transport_handle_detach(trans->sk); 875 876 bh_unlock_sock(trans->sk); 877 out: 878 spin_unlock_bh(&trans->lock); 879 } 880 881 static void vmci_transport_qp_resumed_cb(u32 sub_id, 882 const struct vmci_event_data *e_data, 883 void *client_data) 884 { 885 vsock_for_each_connected_socket(vmci_transport_handle_detach); 886 } 887 888 static void vmci_transport_recv_pkt_work(struct work_struct *work) 889 { 890 struct vmci_transport_recv_pkt_info *recv_pkt_info; 891 struct vmci_transport_packet *pkt; 892 struct sock *sk; 893 894 recv_pkt_info = 895 container_of(work, struct vmci_transport_recv_pkt_info, work); 896 sk = recv_pkt_info->sk; 897 pkt = &recv_pkt_info->pkt; 898 899 lock_sock(sk); 900 901 /* The local context ID may be out of date. */ 902 vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context; 903 904 switch (sk->sk_state) { 905 case TCP_LISTEN: 906 vmci_transport_recv_listen(sk, pkt); 907 break; 908 case TCP_SYN_SENT: 909 /* Processing of pending connections for servers goes through 910 * the listening socket, so see vmci_transport_recv_listen() 911 * for that path. 912 */ 913 vmci_transport_recv_connecting_client(sk, pkt); 914 break; 915 case TCP_ESTABLISHED: 916 vmci_transport_recv_connected(sk, pkt); 917 break; 918 default: 919 /* Because this function does not run in the same context as 920 * vmci_transport_recv_stream_cb it is possible that the 921 * socket has closed. We need to let the other side know or it 922 * could be sitting in a connect and hang forever. Send a 923 * reset to prevent that. 924 */ 925 vmci_transport_send_reset(sk, pkt); 926 break; 927 } 928 929 release_sock(sk); 930 kfree(recv_pkt_info); 931 /* Release reference obtained in the stream callback when we fetched 932 * this socket out of the bound or connected list. 933 */ 934 sock_put(sk); 935 } 936 937 static int vmci_transport_recv_listen(struct sock *sk, 938 struct vmci_transport_packet *pkt) 939 { 940 struct sock *pending; 941 struct vsock_sock *vpending; 942 int err; 943 u64 qp_size; 944 bool old_request = false; 945 bool old_pkt_proto = false; 946 947 err = 0; 948 949 /* Because we are in the listen state, we could be receiving a packet 950 * for ourself or any previous connection requests that we received. 951 * If it's the latter, we try to find a socket in our list of pending 952 * connections and, if we do, call the appropriate handler for the 953 * state that that socket is in. Otherwise we try to service the 954 * connection request. 955 */ 956 pending = vmci_transport_get_pending(sk, pkt); 957 if (pending) { 958 lock_sock(pending); 959 960 /* The local context ID may be out of date. */ 961 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context; 962 963 switch (pending->sk_state) { 964 case TCP_SYN_SENT: 965 err = vmci_transport_recv_connecting_server(sk, 966 pending, 967 pkt); 968 break; 969 default: 970 vmci_transport_send_reset(pending, pkt); 971 err = -EINVAL; 972 } 973 974 if (err < 0) 975 vsock_remove_pending(sk, pending); 976 977 release_sock(pending); 978 vmci_transport_release_pending(pending); 979 980 return err; 981 } 982 983 /* The listen state only accepts connection requests. Reply with a 984 * reset unless we received a reset. 985 */ 986 987 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST || 988 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) { 989 vmci_transport_reply_reset(pkt); 990 return -EINVAL; 991 } 992 993 if (pkt->u.size == 0) { 994 vmci_transport_reply_reset(pkt); 995 return -EINVAL; 996 } 997 998 /* If this socket can't accommodate this connection request, we send a 999 * reset. Otherwise we create and initialize a child socket and reply 1000 * with a connection negotiation. 1001 */ 1002 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) { 1003 vmci_transport_reply_reset(pkt); 1004 return -ECONNREFUSED; 1005 } 1006 1007 pending = vsock_create_connected(sk); 1008 if (!pending) { 1009 vmci_transport_send_reset(sk, pkt); 1010 return -ENOMEM; 1011 } 1012 1013 vpending = vsock_sk(pending); 1014 1015 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context, 1016 pkt->dst_port); 1017 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context, 1018 pkt->src_port); 1019 1020 err = vsock_assign_transport(vpending, vsock_sk(sk)); 1021 /* Transport assigned (looking at remote_addr) must be the same 1022 * where we received the request. 1023 */ 1024 if (err || !vmci_check_transport(vpending)) { 1025 vmci_transport_send_reset(sk, pkt); 1026 sock_put(pending); 1027 return err; 1028 } 1029 1030 /* If the proposed size fits within our min/max, accept it. Otherwise 1031 * propose our own size. 1032 */ 1033 if (pkt->u.size >= vpending->buffer_min_size && 1034 pkt->u.size <= vpending->buffer_max_size) { 1035 qp_size = pkt->u.size; 1036 } else { 1037 qp_size = vpending->buffer_size; 1038 } 1039 1040 /* Figure out if we are using old or new requests based on the 1041 * overrides pkt types sent by our peer. 1042 */ 1043 if (vmci_transport_old_proto_override(&old_pkt_proto)) { 1044 old_request = old_pkt_proto; 1045 } else { 1046 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST) 1047 old_request = true; 1048 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2) 1049 old_request = false; 1050 1051 } 1052 1053 if (old_request) { 1054 /* Handle a REQUEST (or override) */ 1055 u16 version = VSOCK_PROTO_INVALID; 1056 if (vmci_transport_proto_to_notify_struct( 1057 pending, &version, true)) 1058 err = vmci_transport_send_negotiate(pending, qp_size); 1059 else 1060 err = -EINVAL; 1061 1062 } else { 1063 /* Handle a REQUEST2 (or override) */ 1064 int proto_int = pkt->proto; 1065 int pos; 1066 u16 active_proto_version = 0; 1067 1068 /* The list of possible protocols is the intersection of all 1069 * protocols the client supports ... plus all the protocols we 1070 * support. 1071 */ 1072 proto_int &= vmci_transport_new_proto_supported_versions(); 1073 1074 /* We choose the highest possible protocol version and use that 1075 * one. 1076 */ 1077 pos = fls(proto_int); 1078 if (pos) { 1079 active_proto_version = (1 << (pos - 1)); 1080 if (vmci_transport_proto_to_notify_struct( 1081 pending, &active_proto_version, false)) 1082 err = vmci_transport_send_negotiate2(pending, 1083 qp_size, 1084 active_proto_version); 1085 else 1086 err = -EINVAL; 1087 1088 } else { 1089 err = -EINVAL; 1090 } 1091 } 1092 1093 if (err < 0) { 1094 vmci_transport_send_reset(sk, pkt); 1095 sock_put(pending); 1096 err = vmci_transport_error_to_vsock_error(err); 1097 goto out; 1098 } 1099 1100 vsock_add_pending(sk, pending); 1101 sk_acceptq_added(sk); 1102 1103 pending->sk_state = TCP_SYN_SENT; 1104 vmci_trans(vpending)->produce_size = 1105 vmci_trans(vpending)->consume_size = qp_size; 1106 vpending->buffer_size = qp_size; 1107 1108 vmci_trans(vpending)->notify_ops->process_request(pending); 1109 1110 /* We might never receive another message for this socket and it's not 1111 * connected to any process, so we have to ensure it gets cleaned up 1112 * ourself. Our delayed work function will take care of that. Note 1113 * that we do not ever cancel this function since we have few 1114 * guarantees about its state when calling cancel_delayed_work(). 1115 * Instead we hold a reference on the socket for that function and make 1116 * it capable of handling cases where it needs to do nothing but 1117 * release that reference. 1118 */ 1119 vpending->listener = sk; 1120 sock_hold(sk); 1121 sock_hold(pending); 1122 schedule_delayed_work(&vpending->pending_work, HZ); 1123 1124 out: 1125 return err; 1126 } 1127 1128 static int 1129 vmci_transport_recv_connecting_server(struct sock *listener, 1130 struct sock *pending, 1131 struct vmci_transport_packet *pkt) 1132 { 1133 struct vsock_sock *vpending; 1134 struct vmci_handle handle; 1135 struct vmci_qp *qpair; 1136 bool is_local; 1137 u32 flags; 1138 u32 detach_sub_id; 1139 int err; 1140 int skerr; 1141 1142 vpending = vsock_sk(pending); 1143 detach_sub_id = VMCI_INVALID_ID; 1144 1145 switch (pkt->type) { 1146 case VMCI_TRANSPORT_PACKET_TYPE_OFFER: 1147 if (vmci_handle_is_invalid(pkt->u.handle)) { 1148 vmci_transport_send_reset(pending, pkt); 1149 skerr = EPROTO; 1150 err = -EINVAL; 1151 goto destroy; 1152 } 1153 break; 1154 default: 1155 /* Close and cleanup the connection. */ 1156 vmci_transport_send_reset(pending, pkt); 1157 skerr = EPROTO; 1158 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL; 1159 goto destroy; 1160 } 1161 1162 /* In order to complete the connection we need to attach to the offered 1163 * queue pair and send an attach notification. We also subscribe to the 1164 * detach event so we know when our peer goes away, and we do that 1165 * before attaching so we don't miss an event. If all this succeeds, 1166 * we update our state and wakeup anything waiting in accept() for a 1167 * connection. 1168 */ 1169 1170 /* We don't care about attach since we ensure the other side has 1171 * attached by specifying the ATTACH_ONLY flag below. 1172 */ 1173 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, 1174 vmci_transport_peer_detach_cb, 1175 vmci_trans(vpending), &detach_sub_id); 1176 if (err < VMCI_SUCCESS) { 1177 vmci_transport_send_reset(pending, pkt); 1178 err = vmci_transport_error_to_vsock_error(err); 1179 skerr = -err; 1180 goto destroy; 1181 } 1182 1183 vmci_trans(vpending)->detach_sub_id = detach_sub_id; 1184 1185 /* Now attach to the queue pair the client created. */ 1186 handle = pkt->u.handle; 1187 1188 /* vpending->local_addr always has a context id so we do not need to 1189 * worry about VMADDR_CID_ANY in this case. 1190 */ 1191 is_local = 1192 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid; 1193 flags = VMCI_QPFLAG_ATTACH_ONLY; 1194 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0; 1195 1196 err = vmci_transport_queue_pair_alloc( 1197 &qpair, 1198 &handle, 1199 vmci_trans(vpending)->produce_size, 1200 vmci_trans(vpending)->consume_size, 1201 pkt->dg.src.context, 1202 flags, 1203 vmci_transport_is_trusted( 1204 vpending, 1205 vpending->remote_addr.svm_cid)); 1206 if (err < 0) { 1207 vmci_transport_send_reset(pending, pkt); 1208 skerr = -err; 1209 goto destroy; 1210 } 1211 1212 vmci_trans(vpending)->qp_handle = handle; 1213 vmci_trans(vpending)->qpair = qpair; 1214 1215 /* When we send the attach message, we must be ready to handle incoming 1216 * control messages on the newly connected socket. So we move the 1217 * pending socket to the connected state before sending the attach 1218 * message. Otherwise, an incoming packet triggered by the attach being 1219 * received by the peer may be processed concurrently with what happens 1220 * below after sending the attach message, and that incoming packet 1221 * will find the listening socket instead of the (currently) pending 1222 * socket. Note that enqueueing the socket increments the reference 1223 * count, so even if a reset comes before the connection is accepted, 1224 * the socket will be valid until it is removed from the queue. 1225 * 1226 * If we fail sending the attach below, we remove the socket from the 1227 * connected list and move the socket to TCP_CLOSE before 1228 * releasing the lock, so a pending slow path processing of an incoming 1229 * packet will not see the socket in the connected state in that case. 1230 */ 1231 pending->sk_state = TCP_ESTABLISHED; 1232 1233 vsock_insert_connected(vpending); 1234 1235 /* Notify our peer of our attach. */ 1236 err = vmci_transport_send_attach(pending, handle); 1237 if (err < 0) { 1238 vsock_remove_connected(vpending); 1239 pr_err("Could not send attach\n"); 1240 vmci_transport_send_reset(pending, pkt); 1241 err = vmci_transport_error_to_vsock_error(err); 1242 skerr = -err; 1243 goto destroy; 1244 } 1245 1246 /* We have a connection. Move the now connected socket from the 1247 * listener's pending list to the accept queue so callers of accept() 1248 * can find it. 1249 */ 1250 vsock_remove_pending(listener, pending); 1251 vsock_enqueue_accept(listener, pending); 1252 1253 /* Callers of accept() will be be waiting on the listening socket, not 1254 * the pending socket. 1255 */ 1256 listener->sk_data_ready(listener); 1257 1258 return 0; 1259 1260 destroy: 1261 pending->sk_err = skerr; 1262 pending->sk_state = TCP_CLOSE; 1263 /* As long as we drop our reference, all necessary cleanup will handle 1264 * when the cleanup function drops its reference and our destruct 1265 * implementation is called. Note that since the listen handler will 1266 * remove pending from the pending list upon our failure, the cleanup 1267 * function won't drop the additional reference, which is why we do it 1268 * here. 1269 */ 1270 sock_put(pending); 1271 1272 return err; 1273 } 1274 1275 static int 1276 vmci_transport_recv_connecting_client(struct sock *sk, 1277 struct vmci_transport_packet *pkt) 1278 { 1279 struct vsock_sock *vsk; 1280 int err; 1281 int skerr; 1282 1283 vsk = vsock_sk(sk); 1284 1285 switch (pkt->type) { 1286 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: 1287 if (vmci_handle_is_invalid(pkt->u.handle) || 1288 !vmci_handle_is_equal(pkt->u.handle, 1289 vmci_trans(vsk)->qp_handle)) { 1290 skerr = EPROTO; 1291 err = -EINVAL; 1292 goto destroy; 1293 } 1294 1295 /* Signify the socket is connected and wakeup the waiter in 1296 * connect(). Also place the socket in the connected table for 1297 * accounting (it can already be found since it's in the bound 1298 * table). 1299 */ 1300 sk->sk_state = TCP_ESTABLISHED; 1301 sk->sk_socket->state = SS_CONNECTED; 1302 vsock_insert_connected(vsk); 1303 sk->sk_state_change(sk); 1304 1305 break; 1306 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: 1307 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: 1308 if (pkt->u.size == 0 1309 || pkt->dg.src.context != vsk->remote_addr.svm_cid 1310 || pkt->src_port != vsk->remote_addr.svm_port 1311 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle) 1312 || vmci_trans(vsk)->qpair 1313 || vmci_trans(vsk)->produce_size != 0 1314 || vmci_trans(vsk)->consume_size != 0 1315 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) { 1316 skerr = EPROTO; 1317 err = -EINVAL; 1318 1319 goto destroy; 1320 } 1321 1322 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt); 1323 if (err) { 1324 skerr = -err; 1325 goto destroy; 1326 } 1327 1328 break; 1329 case VMCI_TRANSPORT_PACKET_TYPE_INVALID: 1330 err = vmci_transport_recv_connecting_client_invalid(sk, pkt); 1331 if (err) { 1332 skerr = -err; 1333 goto destroy; 1334 } 1335 1336 break; 1337 case VMCI_TRANSPORT_PACKET_TYPE_RST: 1338 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to 1339 * continue processing here after they sent an INVALID packet. 1340 * This meant that we got a RST after the INVALID. We ignore a 1341 * RST after an INVALID. The common code doesn't send the RST 1342 * ... so we can hang if an old version of the common code 1343 * fails between getting a REQUEST and sending an OFFER back. 1344 * Not much we can do about it... except hope that it doesn't 1345 * happen. 1346 */ 1347 if (vsk->ignore_connecting_rst) { 1348 vsk->ignore_connecting_rst = false; 1349 } else { 1350 skerr = ECONNRESET; 1351 err = 0; 1352 goto destroy; 1353 } 1354 1355 break; 1356 default: 1357 /* Close and cleanup the connection. */ 1358 skerr = EPROTO; 1359 err = -EINVAL; 1360 goto destroy; 1361 } 1362 1363 return 0; 1364 1365 destroy: 1366 vmci_transport_send_reset(sk, pkt); 1367 1368 sk->sk_state = TCP_CLOSE; 1369 sk->sk_err = skerr; 1370 sk->sk_error_report(sk); 1371 return err; 1372 } 1373 1374 static int vmci_transport_recv_connecting_client_negotiate( 1375 struct sock *sk, 1376 struct vmci_transport_packet *pkt) 1377 { 1378 int err; 1379 struct vsock_sock *vsk; 1380 struct vmci_handle handle; 1381 struct vmci_qp *qpair; 1382 u32 detach_sub_id; 1383 bool is_local; 1384 u32 flags; 1385 bool old_proto = true; 1386 bool old_pkt_proto; 1387 u16 version; 1388 1389 vsk = vsock_sk(sk); 1390 handle = VMCI_INVALID_HANDLE; 1391 detach_sub_id = VMCI_INVALID_ID; 1392 1393 /* If we have gotten here then we should be past the point where old 1394 * linux vsock could have sent the bogus rst. 1395 */ 1396 vsk->sent_request = false; 1397 vsk->ignore_connecting_rst = false; 1398 1399 /* Verify that we're OK with the proposed queue pair size */ 1400 if (pkt->u.size < vsk->buffer_min_size || 1401 pkt->u.size > vsk->buffer_max_size) { 1402 err = -EINVAL; 1403 goto destroy; 1404 } 1405 1406 /* At this point we know the CID the peer is using to talk to us. */ 1407 1408 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY) 1409 vsk->local_addr.svm_cid = pkt->dg.dst.context; 1410 1411 /* Setup the notify ops to be the highest supported version that both 1412 * the server and the client support. 1413 */ 1414 1415 if (vmci_transport_old_proto_override(&old_pkt_proto)) { 1416 old_proto = old_pkt_proto; 1417 } else { 1418 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE) 1419 old_proto = true; 1420 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2) 1421 old_proto = false; 1422 1423 } 1424 1425 if (old_proto) 1426 version = VSOCK_PROTO_INVALID; 1427 else 1428 version = pkt->proto; 1429 1430 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) { 1431 err = -EINVAL; 1432 goto destroy; 1433 } 1434 1435 /* Subscribe to detach events first. 1436 * 1437 * XXX We attach once for each queue pair created for now so it is easy 1438 * to find the socket (it's provided), but later we should only 1439 * subscribe once and add a way to lookup sockets by queue pair handle. 1440 */ 1441 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, 1442 vmci_transport_peer_detach_cb, 1443 vmci_trans(vsk), &detach_sub_id); 1444 if (err < VMCI_SUCCESS) { 1445 err = vmci_transport_error_to_vsock_error(err); 1446 goto destroy; 1447 } 1448 1449 /* Make VMCI select the handle for us. */ 1450 handle = VMCI_INVALID_HANDLE; 1451 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid; 1452 flags = is_local ? VMCI_QPFLAG_LOCAL : 0; 1453 1454 err = vmci_transport_queue_pair_alloc(&qpair, 1455 &handle, 1456 pkt->u.size, 1457 pkt->u.size, 1458 vsk->remote_addr.svm_cid, 1459 flags, 1460 vmci_transport_is_trusted( 1461 vsk, 1462 vsk-> 1463 remote_addr.svm_cid)); 1464 if (err < 0) 1465 goto destroy; 1466 1467 err = vmci_transport_send_qp_offer(sk, handle); 1468 if (err < 0) { 1469 err = vmci_transport_error_to_vsock_error(err); 1470 goto destroy; 1471 } 1472 1473 vmci_trans(vsk)->qp_handle = handle; 1474 vmci_trans(vsk)->qpair = qpair; 1475 1476 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 1477 pkt->u.size; 1478 1479 vmci_trans(vsk)->detach_sub_id = detach_sub_id; 1480 1481 vmci_trans(vsk)->notify_ops->process_negotiate(sk); 1482 1483 return 0; 1484 1485 destroy: 1486 if (detach_sub_id != VMCI_INVALID_ID) 1487 vmci_event_unsubscribe(detach_sub_id); 1488 1489 if (!vmci_handle_is_invalid(handle)) 1490 vmci_qpair_detach(&qpair); 1491 1492 return err; 1493 } 1494 1495 static int 1496 vmci_transport_recv_connecting_client_invalid(struct sock *sk, 1497 struct vmci_transport_packet *pkt) 1498 { 1499 int err = 0; 1500 struct vsock_sock *vsk = vsock_sk(sk); 1501 1502 if (vsk->sent_request) { 1503 vsk->sent_request = false; 1504 vsk->ignore_connecting_rst = true; 1505 1506 err = vmci_transport_send_conn_request(sk, vsk->buffer_size); 1507 if (err < 0) 1508 err = vmci_transport_error_to_vsock_error(err); 1509 else 1510 err = 0; 1511 1512 } 1513 1514 return err; 1515 } 1516 1517 static int vmci_transport_recv_connected(struct sock *sk, 1518 struct vmci_transport_packet *pkt) 1519 { 1520 struct vsock_sock *vsk; 1521 bool pkt_processed = false; 1522 1523 /* In cases where we are closing the connection, it's sufficient to 1524 * mark the state change (and maybe error) and wake up any waiting 1525 * threads. Since this is a connected socket, it's owned by a user 1526 * process and will be cleaned up when the failure is passed back on 1527 * the current or next system call. Our system call implementations 1528 * must therefore check for error and state changes on entry and when 1529 * being awoken. 1530 */ 1531 switch (pkt->type) { 1532 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: 1533 if (pkt->u.mode) { 1534 vsk = vsock_sk(sk); 1535 1536 vsk->peer_shutdown |= pkt->u.mode; 1537 sk->sk_state_change(sk); 1538 } 1539 break; 1540 1541 case VMCI_TRANSPORT_PACKET_TYPE_RST: 1542 vsk = vsock_sk(sk); 1543 /* It is possible that we sent our peer a message (e.g a 1544 * WAITING_READ) right before we got notified that the peer had 1545 * detached. If that happens then we can get a RST pkt back 1546 * from our peer even though there is data available for us to 1547 * read. In that case, don't shutdown the socket completely but 1548 * instead allow the local client to finish reading data off 1549 * the queuepair. Always treat a RST pkt in connected mode like 1550 * a clean shutdown. 1551 */ 1552 sock_set_flag(sk, SOCK_DONE); 1553 vsk->peer_shutdown = SHUTDOWN_MASK; 1554 if (vsock_stream_has_data(vsk) <= 0) 1555 sk->sk_state = TCP_CLOSING; 1556 1557 sk->sk_state_change(sk); 1558 break; 1559 1560 default: 1561 vsk = vsock_sk(sk); 1562 vmci_trans(vsk)->notify_ops->handle_notify_pkt( 1563 sk, pkt, false, NULL, NULL, 1564 &pkt_processed); 1565 if (!pkt_processed) 1566 return -EINVAL; 1567 1568 break; 1569 } 1570 1571 return 0; 1572 } 1573 1574 static int vmci_transport_socket_init(struct vsock_sock *vsk, 1575 struct vsock_sock *psk) 1576 { 1577 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL); 1578 if (!vsk->trans) 1579 return -ENOMEM; 1580 1581 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; 1582 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE; 1583 vmci_trans(vsk)->qpair = NULL; 1584 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0; 1585 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID; 1586 vmci_trans(vsk)->notify_ops = NULL; 1587 INIT_LIST_HEAD(&vmci_trans(vsk)->elem); 1588 vmci_trans(vsk)->sk = &vsk->sk; 1589 spin_lock_init(&vmci_trans(vsk)->lock); 1590 1591 return 0; 1592 } 1593 1594 static void vmci_transport_free_resources(struct list_head *transport_list) 1595 { 1596 while (!list_empty(transport_list)) { 1597 struct vmci_transport *transport = 1598 list_first_entry(transport_list, struct vmci_transport, 1599 elem); 1600 list_del(&transport->elem); 1601 1602 if (transport->detach_sub_id != VMCI_INVALID_ID) { 1603 vmci_event_unsubscribe(transport->detach_sub_id); 1604 transport->detach_sub_id = VMCI_INVALID_ID; 1605 } 1606 1607 if (!vmci_handle_is_invalid(transport->qp_handle)) { 1608 vmci_qpair_detach(&transport->qpair); 1609 transport->qp_handle = VMCI_INVALID_HANDLE; 1610 transport->produce_size = 0; 1611 transport->consume_size = 0; 1612 } 1613 1614 kfree(transport); 1615 } 1616 } 1617 1618 static void vmci_transport_cleanup(struct work_struct *work) 1619 { 1620 LIST_HEAD(pending); 1621 1622 spin_lock_bh(&vmci_transport_cleanup_lock); 1623 list_replace_init(&vmci_transport_cleanup_list, &pending); 1624 spin_unlock_bh(&vmci_transport_cleanup_lock); 1625 vmci_transport_free_resources(&pending); 1626 } 1627 1628 static void vmci_transport_destruct(struct vsock_sock *vsk) 1629 { 1630 /* transport can be NULL if we hit a failure at init() time */ 1631 if (!vmci_trans(vsk)) 1632 return; 1633 1634 /* Ensure that the detach callback doesn't use the sk/vsk 1635 * we are about to destruct. 1636 */ 1637 spin_lock_bh(&vmci_trans(vsk)->lock); 1638 vmci_trans(vsk)->sk = NULL; 1639 spin_unlock_bh(&vmci_trans(vsk)->lock); 1640 1641 if (vmci_trans(vsk)->notify_ops) 1642 vmci_trans(vsk)->notify_ops->socket_destruct(vsk); 1643 1644 spin_lock_bh(&vmci_transport_cleanup_lock); 1645 list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list); 1646 spin_unlock_bh(&vmci_transport_cleanup_lock); 1647 schedule_work(&vmci_transport_cleanup_work); 1648 1649 vsk->trans = NULL; 1650 } 1651 1652 static void vmci_transport_release(struct vsock_sock *vsk) 1653 { 1654 vsock_remove_sock(vsk); 1655 1656 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) { 1657 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle); 1658 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; 1659 } 1660 } 1661 1662 static int vmci_transport_dgram_bind(struct vsock_sock *vsk, 1663 struct sockaddr_vm *addr) 1664 { 1665 u32 port; 1666 u32 flags; 1667 int err; 1668 1669 /* VMCI will select a resource ID for us if we provide 1670 * VMCI_INVALID_ID. 1671 */ 1672 port = addr->svm_port == VMADDR_PORT_ANY ? 1673 VMCI_INVALID_ID : addr->svm_port; 1674 1675 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE)) 1676 return -EACCES; 1677 1678 flags = addr->svm_cid == VMADDR_CID_ANY ? 1679 VMCI_FLAG_ANYCID_DG_HND : 0; 1680 1681 err = vmci_transport_datagram_create_hnd(port, flags, 1682 vmci_transport_recv_dgram_cb, 1683 &vsk->sk, 1684 &vmci_trans(vsk)->dg_handle); 1685 if (err < VMCI_SUCCESS) 1686 return vmci_transport_error_to_vsock_error(err); 1687 vsock_addr_init(&vsk->local_addr, addr->svm_cid, 1688 vmci_trans(vsk)->dg_handle.resource); 1689 1690 return 0; 1691 } 1692 1693 static int vmci_transport_dgram_enqueue( 1694 struct vsock_sock *vsk, 1695 struct sockaddr_vm *remote_addr, 1696 struct msghdr *msg, 1697 size_t len) 1698 { 1699 int err; 1700 struct vmci_datagram *dg; 1701 1702 if (len > VMCI_MAX_DG_PAYLOAD_SIZE) 1703 return -EMSGSIZE; 1704 1705 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid)) 1706 return -EPERM; 1707 1708 /* Allocate a buffer for the user's message and our packet header. */ 1709 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL); 1710 if (!dg) 1711 return -ENOMEM; 1712 1713 memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len); 1714 1715 dg->dst = vmci_make_handle(remote_addr->svm_cid, 1716 remote_addr->svm_port); 1717 dg->src = vmci_make_handle(vsk->local_addr.svm_cid, 1718 vsk->local_addr.svm_port); 1719 dg->payload_size = len; 1720 1721 err = vmci_datagram_send(dg); 1722 kfree(dg); 1723 if (err < 0) 1724 return vmci_transport_error_to_vsock_error(err); 1725 1726 return err - sizeof(*dg); 1727 } 1728 1729 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk, 1730 struct msghdr *msg, size_t len, 1731 int flags) 1732 { 1733 int err; 1734 int noblock; 1735 struct vmci_datagram *dg; 1736 size_t payload_len; 1737 struct sk_buff *skb; 1738 1739 noblock = flags & MSG_DONTWAIT; 1740 1741 if (flags & MSG_OOB || flags & MSG_ERRQUEUE) 1742 return -EOPNOTSUPP; 1743 1744 /* Retrieve the head sk_buff from the socket's receive queue. */ 1745 err = 0; 1746 skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err); 1747 if (!skb) 1748 return err; 1749 1750 dg = (struct vmci_datagram *)skb->data; 1751 if (!dg) 1752 /* err is 0, meaning we read zero bytes. */ 1753 goto out; 1754 1755 payload_len = dg->payload_size; 1756 /* Ensure the sk_buff matches the payload size claimed in the packet. */ 1757 if (payload_len != skb->len - sizeof(*dg)) { 1758 err = -EINVAL; 1759 goto out; 1760 } 1761 1762 if (payload_len > len) { 1763 payload_len = len; 1764 msg->msg_flags |= MSG_TRUNC; 1765 } 1766 1767 /* Place the datagram payload in the user's iovec. */ 1768 err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len); 1769 if (err) 1770 goto out; 1771 1772 if (msg->msg_name) { 1773 /* Provide the address of the sender. */ 1774 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name); 1775 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource); 1776 msg->msg_namelen = sizeof(*vm_addr); 1777 } 1778 err = payload_len; 1779 1780 out: 1781 skb_free_datagram(&vsk->sk, skb); 1782 return err; 1783 } 1784 1785 static bool vmci_transport_dgram_allow(u32 cid, u32 port) 1786 { 1787 if (cid == VMADDR_CID_HYPERVISOR) { 1788 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor 1789 * state and are allowed. 1790 */ 1791 return port == VMCI_UNITY_PBRPC_REGISTER; 1792 } 1793 1794 return true; 1795 } 1796 1797 static int vmci_transport_connect(struct vsock_sock *vsk) 1798 { 1799 int err; 1800 bool old_pkt_proto = false; 1801 struct sock *sk = &vsk->sk; 1802 1803 if (vmci_transport_old_proto_override(&old_pkt_proto) && 1804 old_pkt_proto) { 1805 err = vmci_transport_send_conn_request(sk, vsk->buffer_size); 1806 if (err < 0) { 1807 sk->sk_state = TCP_CLOSE; 1808 return err; 1809 } 1810 } else { 1811 int supported_proto_versions = 1812 vmci_transport_new_proto_supported_versions(); 1813 err = vmci_transport_send_conn_request2(sk, vsk->buffer_size, 1814 supported_proto_versions); 1815 if (err < 0) { 1816 sk->sk_state = TCP_CLOSE; 1817 return err; 1818 } 1819 1820 vsk->sent_request = true; 1821 } 1822 1823 return err; 1824 } 1825 1826 static ssize_t vmci_transport_stream_dequeue( 1827 struct vsock_sock *vsk, 1828 struct msghdr *msg, 1829 size_t len, 1830 int flags) 1831 { 1832 if (flags & MSG_PEEK) 1833 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0); 1834 else 1835 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0); 1836 } 1837 1838 static ssize_t vmci_transport_stream_enqueue( 1839 struct vsock_sock *vsk, 1840 struct msghdr *msg, 1841 size_t len) 1842 { 1843 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0); 1844 } 1845 1846 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk) 1847 { 1848 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair); 1849 } 1850 1851 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk) 1852 { 1853 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair); 1854 } 1855 1856 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk) 1857 { 1858 return vmci_trans(vsk)->consume_size; 1859 } 1860 1861 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk) 1862 { 1863 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle); 1864 } 1865 1866 static int vmci_transport_notify_poll_in( 1867 struct vsock_sock *vsk, 1868 size_t target, 1869 bool *data_ready_now) 1870 { 1871 return vmci_trans(vsk)->notify_ops->poll_in( 1872 &vsk->sk, target, data_ready_now); 1873 } 1874 1875 static int vmci_transport_notify_poll_out( 1876 struct vsock_sock *vsk, 1877 size_t target, 1878 bool *space_available_now) 1879 { 1880 return vmci_trans(vsk)->notify_ops->poll_out( 1881 &vsk->sk, target, space_available_now); 1882 } 1883 1884 static int vmci_transport_notify_recv_init( 1885 struct vsock_sock *vsk, 1886 size_t target, 1887 struct vsock_transport_recv_notify_data *data) 1888 { 1889 return vmci_trans(vsk)->notify_ops->recv_init( 1890 &vsk->sk, target, 1891 (struct vmci_transport_recv_notify_data *)data); 1892 } 1893 1894 static int vmci_transport_notify_recv_pre_block( 1895 struct vsock_sock *vsk, 1896 size_t target, 1897 struct vsock_transport_recv_notify_data *data) 1898 { 1899 return vmci_trans(vsk)->notify_ops->recv_pre_block( 1900 &vsk->sk, target, 1901 (struct vmci_transport_recv_notify_data *)data); 1902 } 1903 1904 static int vmci_transport_notify_recv_pre_dequeue( 1905 struct vsock_sock *vsk, 1906 size_t target, 1907 struct vsock_transport_recv_notify_data *data) 1908 { 1909 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue( 1910 &vsk->sk, target, 1911 (struct vmci_transport_recv_notify_data *)data); 1912 } 1913 1914 static int vmci_transport_notify_recv_post_dequeue( 1915 struct vsock_sock *vsk, 1916 size_t target, 1917 ssize_t copied, 1918 bool data_read, 1919 struct vsock_transport_recv_notify_data *data) 1920 { 1921 return vmci_trans(vsk)->notify_ops->recv_post_dequeue( 1922 &vsk->sk, target, copied, data_read, 1923 (struct vmci_transport_recv_notify_data *)data); 1924 } 1925 1926 static int vmci_transport_notify_send_init( 1927 struct vsock_sock *vsk, 1928 struct vsock_transport_send_notify_data *data) 1929 { 1930 return vmci_trans(vsk)->notify_ops->send_init( 1931 &vsk->sk, 1932 (struct vmci_transport_send_notify_data *)data); 1933 } 1934 1935 static int vmci_transport_notify_send_pre_block( 1936 struct vsock_sock *vsk, 1937 struct vsock_transport_send_notify_data *data) 1938 { 1939 return vmci_trans(vsk)->notify_ops->send_pre_block( 1940 &vsk->sk, 1941 (struct vmci_transport_send_notify_data *)data); 1942 } 1943 1944 static int vmci_transport_notify_send_pre_enqueue( 1945 struct vsock_sock *vsk, 1946 struct vsock_transport_send_notify_data *data) 1947 { 1948 return vmci_trans(vsk)->notify_ops->send_pre_enqueue( 1949 &vsk->sk, 1950 (struct vmci_transport_send_notify_data *)data); 1951 } 1952 1953 static int vmci_transport_notify_send_post_enqueue( 1954 struct vsock_sock *vsk, 1955 ssize_t written, 1956 struct vsock_transport_send_notify_data *data) 1957 { 1958 return vmci_trans(vsk)->notify_ops->send_post_enqueue( 1959 &vsk->sk, written, 1960 (struct vmci_transport_send_notify_data *)data); 1961 } 1962 1963 static bool vmci_transport_old_proto_override(bool *old_pkt_proto) 1964 { 1965 if (PROTOCOL_OVERRIDE != -1) { 1966 if (PROTOCOL_OVERRIDE == 0) 1967 *old_pkt_proto = true; 1968 else 1969 *old_pkt_proto = false; 1970 1971 pr_info("Proto override in use\n"); 1972 return true; 1973 } 1974 1975 return false; 1976 } 1977 1978 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, 1979 u16 *proto, 1980 bool old_pkt_proto) 1981 { 1982 struct vsock_sock *vsk = vsock_sk(sk); 1983 1984 if (old_pkt_proto) { 1985 if (*proto != VSOCK_PROTO_INVALID) { 1986 pr_err("Can't set both an old and new protocol\n"); 1987 return false; 1988 } 1989 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops; 1990 goto exit; 1991 } 1992 1993 switch (*proto) { 1994 case VSOCK_PROTO_PKT_ON_NOTIFY: 1995 vmci_trans(vsk)->notify_ops = 1996 &vmci_transport_notify_pkt_q_state_ops; 1997 break; 1998 default: 1999 pr_err("Unknown notify protocol version\n"); 2000 return false; 2001 } 2002 2003 exit: 2004 vmci_trans(vsk)->notify_ops->socket_init(sk); 2005 return true; 2006 } 2007 2008 static u16 vmci_transport_new_proto_supported_versions(void) 2009 { 2010 if (PROTOCOL_OVERRIDE != -1) 2011 return PROTOCOL_OVERRIDE; 2012 2013 return VSOCK_PROTO_ALL_SUPPORTED; 2014 } 2015 2016 static u32 vmci_transport_get_local_cid(void) 2017 { 2018 return vmci_get_context_id(); 2019 } 2020 2021 static struct vsock_transport vmci_transport = { 2022 .module = THIS_MODULE, 2023 .init = vmci_transport_socket_init, 2024 .destruct = vmci_transport_destruct, 2025 .release = vmci_transport_release, 2026 .connect = vmci_transport_connect, 2027 .dgram_bind = vmci_transport_dgram_bind, 2028 .dgram_dequeue = vmci_transport_dgram_dequeue, 2029 .dgram_enqueue = vmci_transport_dgram_enqueue, 2030 .dgram_allow = vmci_transport_dgram_allow, 2031 .stream_dequeue = vmci_transport_stream_dequeue, 2032 .stream_enqueue = vmci_transport_stream_enqueue, 2033 .stream_has_data = vmci_transport_stream_has_data, 2034 .stream_has_space = vmci_transport_stream_has_space, 2035 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat, 2036 .stream_is_active = vmci_transport_stream_is_active, 2037 .stream_allow = vmci_transport_stream_allow, 2038 .notify_poll_in = vmci_transport_notify_poll_in, 2039 .notify_poll_out = vmci_transport_notify_poll_out, 2040 .notify_recv_init = vmci_transport_notify_recv_init, 2041 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block, 2042 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue, 2043 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue, 2044 .notify_send_init = vmci_transport_notify_send_init, 2045 .notify_send_pre_block = vmci_transport_notify_send_pre_block, 2046 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue, 2047 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue, 2048 .shutdown = vmci_transport_shutdown, 2049 .get_local_cid = vmci_transport_get_local_cid, 2050 }; 2051 2052 static bool vmci_check_transport(struct vsock_sock *vsk) 2053 { 2054 return vsk->transport == &vmci_transport; 2055 } 2056 2057 static void vmci_vsock_transport_cb(bool is_host) 2058 { 2059 int features; 2060 2061 if (is_host) 2062 features = VSOCK_TRANSPORT_F_H2G; 2063 else 2064 features = VSOCK_TRANSPORT_F_G2H; 2065 2066 vsock_core_register(&vmci_transport, features); 2067 } 2068 2069 static int __init vmci_transport_init(void) 2070 { 2071 int err; 2072 2073 /* Create the datagram handle that we will use to send and receive all 2074 * VSocket control messages for this context. 2075 */ 2076 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID, 2077 VMCI_FLAG_ANYCID_DG_HND, 2078 vmci_transport_recv_stream_cb, 2079 NULL, 2080 &vmci_transport_stream_handle); 2081 if (err < VMCI_SUCCESS) { 2082 pr_err("Unable to create datagram handle. (%d)\n", err); 2083 return vmci_transport_error_to_vsock_error(err); 2084 } 2085 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED, 2086 vmci_transport_qp_resumed_cb, 2087 NULL, &vmci_transport_qp_resumed_sub_id); 2088 if (err < VMCI_SUCCESS) { 2089 pr_err("Unable to subscribe to resumed event. (%d)\n", err); 2090 err = vmci_transport_error_to_vsock_error(err); 2091 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 2092 goto err_destroy_stream_handle; 2093 } 2094 2095 /* Register only with dgram feature, other features (H2G, G2H) will be 2096 * registered when the first host or guest becomes active. 2097 */ 2098 err = vsock_core_register(&vmci_transport, VSOCK_TRANSPORT_F_DGRAM); 2099 if (err < 0) 2100 goto err_unsubscribe; 2101 2102 err = vmci_register_vsock_callback(vmci_vsock_transport_cb); 2103 if (err < 0) 2104 goto err_unregister; 2105 2106 return 0; 2107 2108 err_unregister: 2109 vsock_core_unregister(&vmci_transport); 2110 err_unsubscribe: 2111 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); 2112 err_destroy_stream_handle: 2113 vmci_datagram_destroy_handle(vmci_transport_stream_handle); 2114 return err; 2115 } 2116 module_init(vmci_transport_init); 2117 2118 static void __exit vmci_transport_exit(void) 2119 { 2120 cancel_work_sync(&vmci_transport_cleanup_work); 2121 vmci_transport_free_resources(&vmci_transport_cleanup_list); 2122 2123 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) { 2124 if (vmci_datagram_destroy_handle( 2125 vmci_transport_stream_handle) != VMCI_SUCCESS) 2126 pr_err("Couldn't destroy datagram handle\n"); 2127 vmci_transport_stream_handle = VMCI_INVALID_HANDLE; 2128 } 2129 2130 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) { 2131 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); 2132 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 2133 } 2134 2135 vmci_register_vsock_callback(NULL); 2136 vsock_core_unregister(&vmci_transport); 2137 } 2138 module_exit(vmci_transport_exit); 2139 2140 MODULE_AUTHOR("VMware, Inc."); 2141 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets"); 2142 MODULE_VERSION("1.0.5.0-k"); 2143 MODULE_LICENSE("GPL v2"); 2144 MODULE_ALIAS("vmware_vsock"); 2145 MODULE_ALIAS_NETPROTO(PF_VSOCK); 2146