1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VMware vSockets Driver 4 * 5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 6 */ 7 8 #include <linux/types.h> 9 #include <linux/bitops.h> 10 #include <linux/cred.h> 11 #include <linux/init.h> 12 #include <linux/io.h> 13 #include <linux/kernel.h> 14 #include <linux/kmod.h> 15 #include <linux/list.h> 16 #include <linux/module.h> 17 #include <linux/mutex.h> 18 #include <linux/net.h> 19 #include <linux/poll.h> 20 #include <linux/skbuff.h> 21 #include <linux/smp.h> 22 #include <linux/socket.h> 23 #include <linux/stddef.h> 24 #include <linux/unistd.h> 25 #include <linux/wait.h> 26 #include <linux/workqueue.h> 27 #include <net/sock.h> 28 #include <net/af_vsock.h> 29 30 #include "vmci_transport_notify.h" 31 32 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg); 33 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg); 34 static void vmci_transport_peer_detach_cb(u32 sub_id, 35 const struct vmci_event_data *ed, 36 void *client_data); 37 static void vmci_transport_recv_pkt_work(struct work_struct *work); 38 static void vmci_transport_cleanup(struct work_struct *work); 39 static int vmci_transport_recv_listen(struct sock *sk, 40 struct vmci_transport_packet *pkt); 41 static int vmci_transport_recv_connecting_server( 42 struct sock *sk, 43 struct sock *pending, 44 struct vmci_transport_packet *pkt); 45 static int vmci_transport_recv_connecting_client( 46 struct sock *sk, 47 struct vmci_transport_packet *pkt); 48 static int vmci_transport_recv_connecting_client_negotiate( 49 struct sock *sk, 50 struct vmci_transport_packet *pkt); 51 static int vmci_transport_recv_connecting_client_invalid( 52 struct sock *sk, 53 struct vmci_transport_packet *pkt); 54 static int vmci_transport_recv_connected(struct sock *sk, 55 struct vmci_transport_packet *pkt); 56 static bool vmci_transport_old_proto_override(bool *old_pkt_proto); 57 static u16 vmci_transport_new_proto_supported_versions(void); 58 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto, 59 bool old_pkt_proto); 60 static bool vmci_check_transport(struct vsock_sock *vsk); 61 62 struct vmci_transport_recv_pkt_info { 63 struct work_struct work; 64 struct sock *sk; 65 struct vmci_transport_packet pkt; 66 }; 67 68 static LIST_HEAD(vmci_transport_cleanup_list); 69 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock); 70 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup); 71 72 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID, 73 VMCI_INVALID_ID }; 74 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 75 76 static int PROTOCOL_OVERRIDE = -1; 77 78 static struct vsock_transport vmci_transport; /* forward declaration */ 79 80 /* Helper function to convert from a VMCI error code to a VSock error code. */ 81 82 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error) 83 { 84 switch (vmci_error) { 85 case VMCI_ERROR_NO_MEM: 86 return -ENOMEM; 87 case VMCI_ERROR_DUPLICATE_ENTRY: 88 case VMCI_ERROR_ALREADY_EXISTS: 89 return -EADDRINUSE; 90 case VMCI_ERROR_NO_ACCESS: 91 return -EPERM; 92 case VMCI_ERROR_NO_RESOURCES: 93 return -ENOBUFS; 94 case VMCI_ERROR_INVALID_RESOURCE: 95 return -EHOSTUNREACH; 96 case VMCI_ERROR_INVALID_ARGS: 97 default: 98 break; 99 } 100 return -EINVAL; 101 } 102 103 static u32 vmci_transport_peer_rid(u32 peer_cid) 104 { 105 if (VMADDR_CID_HYPERVISOR == peer_cid) 106 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID; 107 108 return VMCI_TRANSPORT_PACKET_RID; 109 } 110 111 static inline void 112 vmci_transport_packet_init(struct vmci_transport_packet *pkt, 113 struct sockaddr_vm *src, 114 struct sockaddr_vm *dst, 115 u8 type, 116 u64 size, 117 u64 mode, 118 struct vmci_transport_waiting_info *wait, 119 u16 proto, 120 struct vmci_handle handle) 121 { 122 /* We register the stream control handler as an any cid handle so we 123 * must always send from a source address of VMADDR_CID_ANY 124 */ 125 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY, 126 VMCI_TRANSPORT_PACKET_RID); 127 pkt->dg.dst = vmci_make_handle(dst->svm_cid, 128 vmci_transport_peer_rid(dst->svm_cid)); 129 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg); 130 pkt->version = VMCI_TRANSPORT_PACKET_VERSION; 131 pkt->type = type; 132 pkt->src_port = src->svm_port; 133 pkt->dst_port = dst->svm_port; 134 memset(&pkt->proto, 0, sizeof(pkt->proto)); 135 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2)); 136 137 switch (pkt->type) { 138 case VMCI_TRANSPORT_PACKET_TYPE_INVALID: 139 pkt->u.size = 0; 140 break; 141 142 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST: 143 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: 144 pkt->u.size = size; 145 break; 146 147 case VMCI_TRANSPORT_PACKET_TYPE_OFFER: 148 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: 149 pkt->u.handle = handle; 150 break; 151 152 case VMCI_TRANSPORT_PACKET_TYPE_WROTE: 153 case VMCI_TRANSPORT_PACKET_TYPE_READ: 154 case VMCI_TRANSPORT_PACKET_TYPE_RST: 155 pkt->u.size = 0; 156 break; 157 158 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: 159 pkt->u.mode = mode; 160 break; 161 162 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ: 163 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE: 164 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait)); 165 break; 166 167 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2: 168 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: 169 pkt->u.size = size; 170 pkt->proto = proto; 171 break; 172 } 173 } 174 175 static inline void 176 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt, 177 struct sockaddr_vm *local, 178 struct sockaddr_vm *remote) 179 { 180 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port); 181 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port); 182 } 183 184 static int 185 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt, 186 struct sockaddr_vm *src, 187 struct sockaddr_vm *dst, 188 enum vmci_transport_packet_type type, 189 u64 size, 190 u64 mode, 191 struct vmci_transport_waiting_info *wait, 192 u16 proto, 193 struct vmci_handle handle, 194 bool convert_error) 195 { 196 int err; 197 198 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait, 199 proto, handle); 200 err = vmci_datagram_send(&pkt->dg); 201 if (convert_error && (err < 0)) 202 return vmci_transport_error_to_vsock_error(err); 203 204 return err; 205 } 206 207 static int 208 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt, 209 enum vmci_transport_packet_type type, 210 u64 size, 211 u64 mode, 212 struct vmci_transport_waiting_info *wait, 213 struct vmci_handle handle) 214 { 215 struct vmci_transport_packet reply; 216 struct sockaddr_vm src, dst; 217 218 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) { 219 return 0; 220 } else { 221 vmci_transport_packet_get_addresses(pkt, &src, &dst); 222 return __vmci_transport_send_control_pkt(&reply, &src, &dst, 223 type, 224 size, mode, wait, 225 VSOCK_PROTO_INVALID, 226 handle, true); 227 } 228 } 229 230 static int 231 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src, 232 struct sockaddr_vm *dst, 233 enum vmci_transport_packet_type type, 234 u64 size, 235 u64 mode, 236 struct vmci_transport_waiting_info *wait, 237 struct vmci_handle handle) 238 { 239 /* Note that it is safe to use a single packet across all CPUs since 240 * two tasklets of the same type are guaranteed to not ever run 241 * simultaneously. If that ever changes, or VMCI stops using tasklets, 242 * we can use per-cpu packets. 243 */ 244 static struct vmci_transport_packet pkt; 245 246 return __vmci_transport_send_control_pkt(&pkt, src, dst, type, 247 size, mode, wait, 248 VSOCK_PROTO_INVALID, handle, 249 false); 250 } 251 252 static int 253 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src, 254 struct sockaddr_vm *dst, 255 enum vmci_transport_packet_type type, 256 u64 size, 257 u64 mode, 258 struct vmci_transport_waiting_info *wait, 259 u16 proto, 260 struct vmci_handle handle) 261 { 262 struct vmci_transport_packet *pkt; 263 int err; 264 265 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL); 266 if (!pkt) 267 return -ENOMEM; 268 269 err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size, 270 mode, wait, proto, handle, 271 true); 272 kfree(pkt); 273 274 return err; 275 } 276 277 static int 278 vmci_transport_send_control_pkt(struct sock *sk, 279 enum vmci_transport_packet_type type, 280 u64 size, 281 u64 mode, 282 struct vmci_transport_waiting_info *wait, 283 u16 proto, 284 struct vmci_handle handle) 285 { 286 struct vsock_sock *vsk; 287 288 vsk = vsock_sk(sk); 289 290 if (!vsock_addr_bound(&vsk->local_addr)) 291 return -EINVAL; 292 293 if (!vsock_addr_bound(&vsk->remote_addr)) 294 return -EINVAL; 295 296 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, 297 &vsk->remote_addr, 298 type, size, mode, 299 wait, proto, handle); 300 } 301 302 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst, 303 struct sockaddr_vm *src, 304 struct vmci_transport_packet *pkt) 305 { 306 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) 307 return 0; 308 return vmci_transport_send_control_pkt_bh( 309 dst, src, 310 VMCI_TRANSPORT_PACKET_TYPE_RST, 0, 311 0, NULL, VMCI_INVALID_HANDLE); 312 } 313 314 static int vmci_transport_send_reset(struct sock *sk, 315 struct vmci_transport_packet *pkt) 316 { 317 struct sockaddr_vm *dst_ptr; 318 struct sockaddr_vm dst; 319 struct vsock_sock *vsk; 320 321 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) 322 return 0; 323 324 vsk = vsock_sk(sk); 325 326 if (!vsock_addr_bound(&vsk->local_addr)) 327 return -EINVAL; 328 329 if (vsock_addr_bound(&vsk->remote_addr)) { 330 dst_ptr = &vsk->remote_addr; 331 } else { 332 vsock_addr_init(&dst, pkt->dg.src.context, 333 pkt->src_port); 334 dst_ptr = &dst; 335 } 336 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr, 337 VMCI_TRANSPORT_PACKET_TYPE_RST, 338 0, 0, NULL, VSOCK_PROTO_INVALID, 339 VMCI_INVALID_HANDLE); 340 } 341 342 static int vmci_transport_send_negotiate(struct sock *sk, size_t size) 343 { 344 return vmci_transport_send_control_pkt( 345 sk, 346 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE, 347 size, 0, NULL, 348 VSOCK_PROTO_INVALID, 349 VMCI_INVALID_HANDLE); 350 } 351 352 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size, 353 u16 version) 354 { 355 return vmci_transport_send_control_pkt( 356 sk, 357 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2, 358 size, 0, NULL, version, 359 VMCI_INVALID_HANDLE); 360 } 361 362 static int vmci_transport_send_qp_offer(struct sock *sk, 363 struct vmci_handle handle) 364 { 365 return vmci_transport_send_control_pkt( 366 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0, 367 0, NULL, 368 VSOCK_PROTO_INVALID, handle); 369 } 370 371 static int vmci_transport_send_attach(struct sock *sk, 372 struct vmci_handle handle) 373 { 374 return vmci_transport_send_control_pkt( 375 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH, 376 0, 0, NULL, VSOCK_PROTO_INVALID, 377 handle); 378 } 379 380 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt) 381 { 382 return vmci_transport_reply_control_pkt_fast( 383 pkt, 384 VMCI_TRANSPORT_PACKET_TYPE_RST, 385 0, 0, NULL, 386 VMCI_INVALID_HANDLE); 387 } 388 389 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst, 390 struct sockaddr_vm *src) 391 { 392 return vmci_transport_send_control_pkt_bh( 393 dst, src, 394 VMCI_TRANSPORT_PACKET_TYPE_INVALID, 395 0, 0, NULL, VMCI_INVALID_HANDLE); 396 } 397 398 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst, 399 struct sockaddr_vm *src) 400 { 401 return vmci_transport_send_control_pkt_bh( 402 dst, src, 403 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 404 0, NULL, VMCI_INVALID_HANDLE); 405 } 406 407 int vmci_transport_send_read_bh(struct sockaddr_vm *dst, 408 struct sockaddr_vm *src) 409 { 410 return vmci_transport_send_control_pkt_bh( 411 dst, src, 412 VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 413 0, NULL, VMCI_INVALID_HANDLE); 414 } 415 416 int vmci_transport_send_wrote(struct sock *sk) 417 { 418 return vmci_transport_send_control_pkt( 419 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 420 0, NULL, VSOCK_PROTO_INVALID, 421 VMCI_INVALID_HANDLE); 422 } 423 424 int vmci_transport_send_read(struct sock *sk) 425 { 426 return vmci_transport_send_control_pkt( 427 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 428 0, NULL, VSOCK_PROTO_INVALID, 429 VMCI_INVALID_HANDLE); 430 } 431 432 int vmci_transport_send_waiting_write(struct sock *sk, 433 struct vmci_transport_waiting_info *wait) 434 { 435 return vmci_transport_send_control_pkt( 436 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE, 437 0, 0, wait, VSOCK_PROTO_INVALID, 438 VMCI_INVALID_HANDLE); 439 } 440 441 int vmci_transport_send_waiting_read(struct sock *sk, 442 struct vmci_transport_waiting_info *wait) 443 { 444 return vmci_transport_send_control_pkt( 445 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ, 446 0, 0, wait, VSOCK_PROTO_INVALID, 447 VMCI_INVALID_HANDLE); 448 } 449 450 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode) 451 { 452 return vmci_transport_send_control_pkt( 453 &vsk->sk, 454 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN, 455 0, mode, NULL, 456 VSOCK_PROTO_INVALID, 457 VMCI_INVALID_HANDLE); 458 } 459 460 static int vmci_transport_send_conn_request(struct sock *sk, size_t size) 461 { 462 return vmci_transport_send_control_pkt(sk, 463 VMCI_TRANSPORT_PACKET_TYPE_REQUEST, 464 size, 0, NULL, 465 VSOCK_PROTO_INVALID, 466 VMCI_INVALID_HANDLE); 467 } 468 469 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size, 470 u16 version) 471 { 472 return vmci_transport_send_control_pkt( 473 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2, 474 size, 0, NULL, version, 475 VMCI_INVALID_HANDLE); 476 } 477 478 static struct sock *vmci_transport_get_pending( 479 struct sock *listener, 480 struct vmci_transport_packet *pkt) 481 { 482 struct vsock_sock *vlistener; 483 struct vsock_sock *vpending; 484 struct sock *pending; 485 struct sockaddr_vm src; 486 487 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); 488 489 vlistener = vsock_sk(listener); 490 491 list_for_each_entry(vpending, &vlistener->pending_links, 492 pending_links) { 493 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) && 494 pkt->dst_port == vpending->local_addr.svm_port) { 495 pending = sk_vsock(vpending); 496 sock_hold(pending); 497 goto found; 498 } 499 } 500 501 pending = NULL; 502 found: 503 return pending; 504 505 } 506 507 static void vmci_transport_release_pending(struct sock *pending) 508 { 509 sock_put(pending); 510 } 511 512 /* We allow two kinds of sockets to communicate with a restricted VM: 1) 513 * trusted sockets 2) sockets from applications running as the same user as the 514 * VM (this is only true for the host side and only when using hosted products) 515 */ 516 517 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid) 518 { 519 return vsock->trusted || 520 vmci_is_context_owner(peer_cid, vsock->owner->uid); 521 } 522 523 /* We allow sending datagrams to and receiving datagrams from a restricted VM 524 * only if it is trusted as described in vmci_transport_is_trusted. 525 */ 526 527 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid) 528 { 529 if (VMADDR_CID_HYPERVISOR == peer_cid) 530 return true; 531 532 if (vsock->cached_peer != peer_cid) { 533 vsock->cached_peer = peer_cid; 534 if (!vmci_transport_is_trusted(vsock, peer_cid) && 535 (vmci_context_get_priv_flags(peer_cid) & 536 VMCI_PRIVILEGE_FLAG_RESTRICTED)) { 537 vsock->cached_peer_allow_dgram = false; 538 } else { 539 vsock->cached_peer_allow_dgram = true; 540 } 541 } 542 543 return vsock->cached_peer_allow_dgram; 544 } 545 546 static int 547 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair, 548 struct vmci_handle *handle, 549 u64 produce_size, 550 u64 consume_size, 551 u32 peer, u32 flags, bool trusted) 552 { 553 int err = 0; 554 555 if (trusted) { 556 /* Try to allocate our queue pair as trusted. This will only 557 * work if vsock is running in the host. 558 */ 559 560 err = vmci_qpair_alloc(qpair, handle, produce_size, 561 consume_size, 562 peer, flags, 563 VMCI_PRIVILEGE_FLAG_TRUSTED); 564 if (err != VMCI_ERROR_NO_ACCESS) 565 goto out; 566 567 } 568 569 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size, 570 peer, flags, VMCI_NO_PRIVILEGE_FLAGS); 571 out: 572 if (err < 0) { 573 pr_err_once("Could not attach to queue pair with %d\n", err); 574 err = vmci_transport_error_to_vsock_error(err); 575 } 576 577 return err; 578 } 579 580 static int 581 vmci_transport_datagram_create_hnd(u32 resource_id, 582 u32 flags, 583 vmci_datagram_recv_cb recv_cb, 584 void *client_data, 585 struct vmci_handle *out_handle) 586 { 587 int err = 0; 588 589 /* Try to allocate our datagram handler as trusted. This will only work 590 * if vsock is running in the host. 591 */ 592 593 err = vmci_datagram_create_handle_priv(resource_id, flags, 594 VMCI_PRIVILEGE_FLAG_TRUSTED, 595 recv_cb, 596 client_data, out_handle); 597 598 if (err == VMCI_ERROR_NO_ACCESS) 599 err = vmci_datagram_create_handle(resource_id, flags, 600 recv_cb, client_data, 601 out_handle); 602 603 return err; 604 } 605 606 /* This is invoked as part of a tasklet that's scheduled when the VMCI 607 * interrupt fires. This is run in bottom-half context and if it ever needs to 608 * sleep it should defer that work to a work queue. 609 */ 610 611 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg) 612 { 613 struct sock *sk; 614 size_t size; 615 struct sk_buff *skb; 616 struct vsock_sock *vsk; 617 618 sk = (struct sock *)data; 619 620 /* This handler is privileged when this module is running on the host. 621 * We will get datagrams from all endpoints (even VMs that are in a 622 * restricted context). If we get one from a restricted context then 623 * the destination socket must be trusted. 624 * 625 * NOTE: We access the socket struct without holding the lock here. 626 * This is ok because the field we are interested is never modified 627 * outside of the create and destruct socket functions. 628 */ 629 vsk = vsock_sk(sk); 630 if (!vmci_transport_allow_dgram(vsk, dg->src.context)) 631 return VMCI_ERROR_NO_ACCESS; 632 633 size = VMCI_DG_SIZE(dg); 634 635 /* Attach the packet to the socket's receive queue as an sk_buff. */ 636 skb = alloc_skb(size, GFP_ATOMIC); 637 if (!skb) 638 return VMCI_ERROR_NO_MEM; 639 640 /* sk_receive_skb() will do a sock_put(), so hold here. */ 641 sock_hold(sk); 642 skb_put(skb, size); 643 memcpy(skb->data, dg, size); 644 sk_receive_skb(sk, skb, 0); 645 646 return VMCI_SUCCESS; 647 } 648 649 static bool vmci_transport_stream_allow(u32 cid, u32 port) 650 { 651 static const u32 non_socket_contexts[] = { 652 VMADDR_CID_LOCAL, 653 }; 654 int i; 655 656 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts)); 657 658 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) { 659 if (cid == non_socket_contexts[i]) 660 return false; 661 } 662 663 return true; 664 } 665 666 /* This is invoked as part of a tasklet that's scheduled when the VMCI 667 * interrupt fires. This is run in bottom-half context but it defers most of 668 * its work to the packet handling work queue. 669 */ 670 671 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg) 672 { 673 struct sock *sk; 674 struct sockaddr_vm dst; 675 struct sockaddr_vm src; 676 struct vmci_transport_packet *pkt; 677 struct vsock_sock *vsk; 678 bool bh_process_pkt; 679 int err; 680 681 sk = NULL; 682 err = VMCI_SUCCESS; 683 bh_process_pkt = false; 684 685 /* Ignore incoming packets from contexts without sockets, or resources 686 * that aren't vsock implementations. 687 */ 688 689 if (!vmci_transport_stream_allow(dg->src.context, -1) 690 || vmci_transport_peer_rid(dg->src.context) != dg->src.resource) 691 return VMCI_ERROR_NO_ACCESS; 692 693 if (VMCI_DG_SIZE(dg) < sizeof(*pkt)) 694 /* Drop datagrams that do not contain full VSock packets. */ 695 return VMCI_ERROR_INVALID_ARGS; 696 697 pkt = (struct vmci_transport_packet *)dg; 698 699 /* Find the socket that should handle this packet. First we look for a 700 * connected socket and if there is none we look for a socket bound to 701 * the destintation address. 702 */ 703 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); 704 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port); 705 706 sk = vsock_find_connected_socket(&src, &dst); 707 if (!sk) { 708 sk = vsock_find_bound_socket(&dst); 709 if (!sk) { 710 /* We could not find a socket for this specified 711 * address. If this packet is a RST, we just drop it. 712 * If it is another packet, we send a RST. Note that 713 * we do not send a RST reply to RSTs so that we do not 714 * continually send RSTs between two endpoints. 715 * 716 * Note that since this is a reply, dst is src and src 717 * is dst. 718 */ 719 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) 720 pr_err("unable to send reset\n"); 721 722 err = VMCI_ERROR_NOT_FOUND; 723 goto out; 724 } 725 } 726 727 /* If the received packet type is beyond all types known to this 728 * implementation, reply with an invalid message. Hopefully this will 729 * help when implementing backwards compatibility in the future. 730 */ 731 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) { 732 vmci_transport_send_invalid_bh(&dst, &src); 733 err = VMCI_ERROR_INVALID_ARGS; 734 goto out; 735 } 736 737 /* This handler is privileged when this module is running on the host. 738 * We will get datagram connect requests from all endpoints (even VMs 739 * that are in a restricted context). If we get one from a restricted 740 * context then the destination socket must be trusted. 741 * 742 * NOTE: We access the socket struct without holding the lock here. 743 * This is ok because the field we are interested is never modified 744 * outside of the create and destruct socket functions. 745 */ 746 vsk = vsock_sk(sk); 747 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) { 748 err = VMCI_ERROR_NO_ACCESS; 749 goto out; 750 } 751 752 /* We do most everything in a work queue, but let's fast path the 753 * notification of reads and writes to help data transfer performance. 754 * We can only do this if there is no process context code executing 755 * for this socket since that may change the state. 756 */ 757 bh_lock_sock(sk); 758 759 if (!sock_owned_by_user(sk)) { 760 /* The local context ID may be out of date, update it. */ 761 vsk->local_addr.svm_cid = dst.svm_cid; 762 763 if (sk->sk_state == TCP_ESTABLISHED) 764 vmci_trans(vsk)->notify_ops->handle_notify_pkt( 765 sk, pkt, true, &dst, &src, 766 &bh_process_pkt); 767 } 768 769 bh_unlock_sock(sk); 770 771 if (!bh_process_pkt) { 772 struct vmci_transport_recv_pkt_info *recv_pkt_info; 773 774 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC); 775 if (!recv_pkt_info) { 776 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) 777 pr_err("unable to send reset\n"); 778 779 err = VMCI_ERROR_NO_MEM; 780 goto out; 781 } 782 783 recv_pkt_info->sk = sk; 784 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt)); 785 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work); 786 787 schedule_work(&recv_pkt_info->work); 788 /* Clear sk so that the reference count incremented by one of 789 * the Find functions above is not decremented below. We need 790 * that reference count for the packet handler we've scheduled 791 * to run. 792 */ 793 sk = NULL; 794 } 795 796 out: 797 if (sk) 798 sock_put(sk); 799 800 return err; 801 } 802 803 static void vmci_transport_handle_detach(struct sock *sk) 804 { 805 struct vsock_sock *vsk; 806 807 vsk = vsock_sk(sk); 808 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) { 809 sock_set_flag(sk, SOCK_DONE); 810 811 /* On a detach the peer will not be sending or receiving 812 * anymore. 813 */ 814 vsk->peer_shutdown = SHUTDOWN_MASK; 815 816 /* We should not be sending anymore since the peer won't be 817 * there to receive, but we can still receive if there is data 818 * left in our consume queue. If the local endpoint is a host, 819 * we can't call vsock_stream_has_data, since that may block, 820 * but a host endpoint can't read data once the VM has 821 * detached, so there is no available data in that case. 822 */ 823 if (vsk->local_addr.svm_cid == VMADDR_CID_HOST || 824 vsock_stream_has_data(vsk) <= 0) { 825 if (sk->sk_state == TCP_SYN_SENT) { 826 /* The peer may detach from a queue pair while 827 * we are still in the connecting state, i.e., 828 * if the peer VM is killed after attaching to 829 * a queue pair, but before we complete the 830 * handshake. In that case, we treat the detach 831 * event like a reset. 832 */ 833 834 sk->sk_state = TCP_CLOSE; 835 sk->sk_err = ECONNRESET; 836 sk_error_report(sk); 837 return; 838 } 839 sk->sk_state = TCP_CLOSE; 840 } 841 sk->sk_state_change(sk); 842 } 843 } 844 845 static void vmci_transport_peer_detach_cb(u32 sub_id, 846 const struct vmci_event_data *e_data, 847 void *client_data) 848 { 849 struct vmci_transport *trans = client_data; 850 const struct vmci_event_payload_qp *e_payload; 851 852 e_payload = vmci_event_data_const_payload(e_data); 853 854 /* XXX This is lame, we should provide a way to lookup sockets by 855 * qp_handle. 856 */ 857 if (vmci_handle_is_invalid(e_payload->handle) || 858 !vmci_handle_is_equal(trans->qp_handle, e_payload->handle)) 859 return; 860 861 /* We don't ask for delayed CBs when we subscribe to this event (we 862 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no 863 * guarantees in that case about what context we might be running in, 864 * so it could be BH or process, blockable or non-blockable. So we 865 * need to account for all possible contexts here. 866 */ 867 spin_lock_bh(&trans->lock); 868 if (!trans->sk) 869 goto out; 870 871 /* Apart from here, trans->lock is only grabbed as part of sk destruct, 872 * where trans->sk isn't locked. 873 */ 874 bh_lock_sock(trans->sk); 875 876 vmci_transport_handle_detach(trans->sk); 877 878 bh_unlock_sock(trans->sk); 879 out: 880 spin_unlock_bh(&trans->lock); 881 } 882 883 static void vmci_transport_qp_resumed_cb(u32 sub_id, 884 const struct vmci_event_data *e_data, 885 void *client_data) 886 { 887 vsock_for_each_connected_socket(&vmci_transport, 888 vmci_transport_handle_detach); 889 } 890 891 static void vmci_transport_recv_pkt_work(struct work_struct *work) 892 { 893 struct vmci_transport_recv_pkt_info *recv_pkt_info; 894 struct vmci_transport_packet *pkt; 895 struct sock *sk; 896 897 recv_pkt_info = 898 container_of(work, struct vmci_transport_recv_pkt_info, work); 899 sk = recv_pkt_info->sk; 900 pkt = &recv_pkt_info->pkt; 901 902 lock_sock(sk); 903 904 /* The local context ID may be out of date. */ 905 vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context; 906 907 switch (sk->sk_state) { 908 case TCP_LISTEN: 909 vmci_transport_recv_listen(sk, pkt); 910 break; 911 case TCP_SYN_SENT: 912 /* Processing of pending connections for servers goes through 913 * the listening socket, so see vmci_transport_recv_listen() 914 * for that path. 915 */ 916 vmci_transport_recv_connecting_client(sk, pkt); 917 break; 918 case TCP_ESTABLISHED: 919 vmci_transport_recv_connected(sk, pkt); 920 break; 921 default: 922 /* Because this function does not run in the same context as 923 * vmci_transport_recv_stream_cb it is possible that the 924 * socket has closed. We need to let the other side know or it 925 * could be sitting in a connect and hang forever. Send a 926 * reset to prevent that. 927 */ 928 vmci_transport_send_reset(sk, pkt); 929 break; 930 } 931 932 release_sock(sk); 933 kfree(recv_pkt_info); 934 /* Release reference obtained in the stream callback when we fetched 935 * this socket out of the bound or connected list. 936 */ 937 sock_put(sk); 938 } 939 940 static int vmci_transport_recv_listen(struct sock *sk, 941 struct vmci_transport_packet *pkt) 942 { 943 struct sock *pending; 944 struct vsock_sock *vpending; 945 int err; 946 u64 qp_size; 947 bool old_request = false; 948 bool old_pkt_proto = false; 949 950 /* Because we are in the listen state, we could be receiving a packet 951 * for ourself or any previous connection requests that we received. 952 * If it's the latter, we try to find a socket in our list of pending 953 * connections and, if we do, call the appropriate handler for the 954 * state that socket is in. Otherwise we try to service the 955 * connection request. 956 */ 957 pending = vmci_transport_get_pending(sk, pkt); 958 if (pending) { 959 lock_sock(pending); 960 961 /* The local context ID may be out of date. */ 962 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context; 963 964 switch (pending->sk_state) { 965 case TCP_SYN_SENT: 966 err = vmci_transport_recv_connecting_server(sk, 967 pending, 968 pkt); 969 break; 970 default: 971 vmci_transport_send_reset(pending, pkt); 972 err = -EINVAL; 973 } 974 975 if (err < 0) 976 vsock_remove_pending(sk, pending); 977 978 release_sock(pending); 979 vmci_transport_release_pending(pending); 980 981 return err; 982 } 983 984 /* The listen state only accepts connection requests. Reply with a 985 * reset unless we received a reset. 986 */ 987 988 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST || 989 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) { 990 vmci_transport_reply_reset(pkt); 991 return -EINVAL; 992 } 993 994 if (pkt->u.size == 0) { 995 vmci_transport_reply_reset(pkt); 996 return -EINVAL; 997 } 998 999 /* If this socket can't accommodate this connection request, we send a 1000 * reset. Otherwise we create and initialize a child socket and reply 1001 * with a connection negotiation. 1002 */ 1003 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) { 1004 vmci_transport_reply_reset(pkt); 1005 return -ECONNREFUSED; 1006 } 1007 1008 pending = vsock_create_connected(sk); 1009 if (!pending) { 1010 vmci_transport_send_reset(sk, pkt); 1011 return -ENOMEM; 1012 } 1013 1014 vpending = vsock_sk(pending); 1015 1016 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context, 1017 pkt->dst_port); 1018 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context, 1019 pkt->src_port); 1020 1021 err = vsock_assign_transport(vpending, vsock_sk(sk)); 1022 /* Transport assigned (looking at remote_addr) must be the same 1023 * where we received the request. 1024 */ 1025 if (err || !vmci_check_transport(vpending)) { 1026 vmci_transport_send_reset(sk, pkt); 1027 sock_put(pending); 1028 return err; 1029 } 1030 1031 /* If the proposed size fits within our min/max, accept it. Otherwise 1032 * propose our own size. 1033 */ 1034 if (pkt->u.size >= vpending->buffer_min_size && 1035 pkt->u.size <= vpending->buffer_max_size) { 1036 qp_size = pkt->u.size; 1037 } else { 1038 qp_size = vpending->buffer_size; 1039 } 1040 1041 /* Figure out if we are using old or new requests based on the 1042 * overrides pkt types sent by our peer. 1043 */ 1044 if (vmci_transport_old_proto_override(&old_pkt_proto)) { 1045 old_request = old_pkt_proto; 1046 } else { 1047 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST) 1048 old_request = true; 1049 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2) 1050 old_request = false; 1051 1052 } 1053 1054 if (old_request) { 1055 /* Handle a REQUEST (or override) */ 1056 u16 version = VSOCK_PROTO_INVALID; 1057 if (vmci_transport_proto_to_notify_struct( 1058 pending, &version, true)) 1059 err = vmci_transport_send_negotiate(pending, qp_size); 1060 else 1061 err = -EINVAL; 1062 1063 } else { 1064 /* Handle a REQUEST2 (or override) */ 1065 int proto_int = pkt->proto; 1066 int pos; 1067 u16 active_proto_version = 0; 1068 1069 /* The list of possible protocols is the intersection of all 1070 * protocols the client supports ... plus all the protocols we 1071 * support. 1072 */ 1073 proto_int &= vmci_transport_new_proto_supported_versions(); 1074 1075 /* We choose the highest possible protocol version and use that 1076 * one. 1077 */ 1078 pos = fls(proto_int); 1079 if (pos) { 1080 active_proto_version = (1 << (pos - 1)); 1081 if (vmci_transport_proto_to_notify_struct( 1082 pending, &active_proto_version, false)) 1083 err = vmci_transport_send_negotiate2(pending, 1084 qp_size, 1085 active_proto_version); 1086 else 1087 err = -EINVAL; 1088 1089 } else { 1090 err = -EINVAL; 1091 } 1092 } 1093 1094 if (err < 0) { 1095 vmci_transport_send_reset(sk, pkt); 1096 sock_put(pending); 1097 err = vmci_transport_error_to_vsock_error(err); 1098 goto out; 1099 } 1100 1101 vsock_add_pending(sk, pending); 1102 sk_acceptq_added(sk); 1103 1104 pending->sk_state = TCP_SYN_SENT; 1105 vmci_trans(vpending)->produce_size = 1106 vmci_trans(vpending)->consume_size = qp_size; 1107 vpending->buffer_size = qp_size; 1108 1109 vmci_trans(vpending)->notify_ops->process_request(pending); 1110 1111 /* We might never receive another message for this socket and it's not 1112 * connected to any process, so we have to ensure it gets cleaned up 1113 * ourself. Our delayed work function will take care of that. Note 1114 * that we do not ever cancel this function since we have few 1115 * guarantees about its state when calling cancel_delayed_work(). 1116 * Instead we hold a reference on the socket for that function and make 1117 * it capable of handling cases where it needs to do nothing but 1118 * release that reference. 1119 */ 1120 vpending->listener = sk; 1121 sock_hold(sk); 1122 sock_hold(pending); 1123 schedule_delayed_work(&vpending->pending_work, HZ); 1124 1125 out: 1126 return err; 1127 } 1128 1129 static int 1130 vmci_transport_recv_connecting_server(struct sock *listener, 1131 struct sock *pending, 1132 struct vmci_transport_packet *pkt) 1133 { 1134 struct vsock_sock *vpending; 1135 struct vmci_handle handle; 1136 struct vmci_qp *qpair; 1137 bool is_local; 1138 u32 flags; 1139 u32 detach_sub_id; 1140 int err; 1141 int skerr; 1142 1143 vpending = vsock_sk(pending); 1144 detach_sub_id = VMCI_INVALID_ID; 1145 1146 switch (pkt->type) { 1147 case VMCI_TRANSPORT_PACKET_TYPE_OFFER: 1148 if (vmci_handle_is_invalid(pkt->u.handle)) { 1149 vmci_transport_send_reset(pending, pkt); 1150 skerr = EPROTO; 1151 err = -EINVAL; 1152 goto destroy; 1153 } 1154 break; 1155 default: 1156 /* Close and cleanup the connection. */ 1157 vmci_transport_send_reset(pending, pkt); 1158 skerr = EPROTO; 1159 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL; 1160 goto destroy; 1161 } 1162 1163 /* In order to complete the connection we need to attach to the offered 1164 * queue pair and send an attach notification. We also subscribe to the 1165 * detach event so we know when our peer goes away, and we do that 1166 * before attaching so we don't miss an event. If all this succeeds, 1167 * we update our state and wakeup anything waiting in accept() for a 1168 * connection. 1169 */ 1170 1171 /* We don't care about attach since we ensure the other side has 1172 * attached by specifying the ATTACH_ONLY flag below. 1173 */ 1174 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, 1175 vmci_transport_peer_detach_cb, 1176 vmci_trans(vpending), &detach_sub_id); 1177 if (err < VMCI_SUCCESS) { 1178 vmci_transport_send_reset(pending, pkt); 1179 err = vmci_transport_error_to_vsock_error(err); 1180 skerr = -err; 1181 goto destroy; 1182 } 1183 1184 vmci_trans(vpending)->detach_sub_id = detach_sub_id; 1185 1186 /* Now attach to the queue pair the client created. */ 1187 handle = pkt->u.handle; 1188 1189 /* vpending->local_addr always has a context id so we do not need to 1190 * worry about VMADDR_CID_ANY in this case. 1191 */ 1192 is_local = 1193 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid; 1194 flags = VMCI_QPFLAG_ATTACH_ONLY; 1195 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0; 1196 1197 err = vmci_transport_queue_pair_alloc( 1198 &qpair, 1199 &handle, 1200 vmci_trans(vpending)->produce_size, 1201 vmci_trans(vpending)->consume_size, 1202 pkt->dg.src.context, 1203 flags, 1204 vmci_transport_is_trusted( 1205 vpending, 1206 vpending->remote_addr.svm_cid)); 1207 if (err < 0) { 1208 vmci_transport_send_reset(pending, pkt); 1209 skerr = -err; 1210 goto destroy; 1211 } 1212 1213 vmci_trans(vpending)->qp_handle = handle; 1214 vmci_trans(vpending)->qpair = qpair; 1215 1216 /* When we send the attach message, we must be ready to handle incoming 1217 * control messages on the newly connected socket. So we move the 1218 * pending socket to the connected state before sending the attach 1219 * message. Otherwise, an incoming packet triggered by the attach being 1220 * received by the peer may be processed concurrently with what happens 1221 * below after sending the attach message, and that incoming packet 1222 * will find the listening socket instead of the (currently) pending 1223 * socket. Note that enqueueing the socket increments the reference 1224 * count, so even if a reset comes before the connection is accepted, 1225 * the socket will be valid until it is removed from the queue. 1226 * 1227 * If we fail sending the attach below, we remove the socket from the 1228 * connected list and move the socket to TCP_CLOSE before 1229 * releasing the lock, so a pending slow path processing of an incoming 1230 * packet will not see the socket in the connected state in that case. 1231 */ 1232 pending->sk_state = TCP_ESTABLISHED; 1233 1234 vsock_insert_connected(vpending); 1235 1236 /* Notify our peer of our attach. */ 1237 err = vmci_transport_send_attach(pending, handle); 1238 if (err < 0) { 1239 vsock_remove_connected(vpending); 1240 pr_err("Could not send attach\n"); 1241 vmci_transport_send_reset(pending, pkt); 1242 err = vmci_transport_error_to_vsock_error(err); 1243 skerr = -err; 1244 goto destroy; 1245 } 1246 1247 /* We have a connection. Move the now connected socket from the 1248 * listener's pending list to the accept queue so callers of accept() 1249 * can find it. 1250 */ 1251 vsock_remove_pending(listener, pending); 1252 vsock_enqueue_accept(listener, pending); 1253 1254 /* Callers of accept() will be waiting on the listening socket, not 1255 * the pending socket. 1256 */ 1257 listener->sk_data_ready(listener); 1258 1259 return 0; 1260 1261 destroy: 1262 pending->sk_err = skerr; 1263 pending->sk_state = TCP_CLOSE; 1264 /* As long as we drop our reference, all necessary cleanup will handle 1265 * when the cleanup function drops its reference and our destruct 1266 * implementation is called. Note that since the listen handler will 1267 * remove pending from the pending list upon our failure, the cleanup 1268 * function won't drop the additional reference, which is why we do it 1269 * here. 1270 */ 1271 sock_put(pending); 1272 1273 return err; 1274 } 1275 1276 static int 1277 vmci_transport_recv_connecting_client(struct sock *sk, 1278 struct vmci_transport_packet *pkt) 1279 { 1280 struct vsock_sock *vsk; 1281 int err; 1282 int skerr; 1283 1284 vsk = vsock_sk(sk); 1285 1286 switch (pkt->type) { 1287 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: 1288 if (vmci_handle_is_invalid(pkt->u.handle) || 1289 !vmci_handle_is_equal(pkt->u.handle, 1290 vmci_trans(vsk)->qp_handle)) { 1291 skerr = EPROTO; 1292 err = -EINVAL; 1293 goto destroy; 1294 } 1295 1296 /* Signify the socket is connected and wakeup the waiter in 1297 * connect(). Also place the socket in the connected table for 1298 * accounting (it can already be found since it's in the bound 1299 * table). 1300 */ 1301 sk->sk_state = TCP_ESTABLISHED; 1302 sk->sk_socket->state = SS_CONNECTED; 1303 vsock_insert_connected(vsk); 1304 sk->sk_state_change(sk); 1305 1306 break; 1307 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: 1308 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: 1309 if (pkt->u.size == 0 1310 || pkt->dg.src.context != vsk->remote_addr.svm_cid 1311 || pkt->src_port != vsk->remote_addr.svm_port 1312 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle) 1313 || vmci_trans(vsk)->qpair 1314 || vmci_trans(vsk)->produce_size != 0 1315 || vmci_trans(vsk)->consume_size != 0 1316 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) { 1317 skerr = EPROTO; 1318 err = -EINVAL; 1319 1320 goto destroy; 1321 } 1322 1323 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt); 1324 if (err) { 1325 skerr = -err; 1326 goto destroy; 1327 } 1328 1329 break; 1330 case VMCI_TRANSPORT_PACKET_TYPE_INVALID: 1331 err = vmci_transport_recv_connecting_client_invalid(sk, pkt); 1332 if (err) { 1333 skerr = -err; 1334 goto destroy; 1335 } 1336 1337 break; 1338 case VMCI_TRANSPORT_PACKET_TYPE_RST: 1339 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to 1340 * continue processing here after they sent an INVALID packet. 1341 * This meant that we got a RST after the INVALID. We ignore a 1342 * RST after an INVALID. The common code doesn't send the RST 1343 * ... so we can hang if an old version of the common code 1344 * fails between getting a REQUEST and sending an OFFER back. 1345 * Not much we can do about it... except hope that it doesn't 1346 * happen. 1347 */ 1348 if (vsk->ignore_connecting_rst) { 1349 vsk->ignore_connecting_rst = false; 1350 } else { 1351 skerr = ECONNRESET; 1352 err = 0; 1353 goto destroy; 1354 } 1355 1356 break; 1357 default: 1358 /* Close and cleanup the connection. */ 1359 skerr = EPROTO; 1360 err = -EINVAL; 1361 goto destroy; 1362 } 1363 1364 return 0; 1365 1366 destroy: 1367 vmci_transport_send_reset(sk, pkt); 1368 1369 sk->sk_state = TCP_CLOSE; 1370 sk->sk_err = skerr; 1371 sk_error_report(sk); 1372 return err; 1373 } 1374 1375 static int vmci_transport_recv_connecting_client_negotiate( 1376 struct sock *sk, 1377 struct vmci_transport_packet *pkt) 1378 { 1379 int err; 1380 struct vsock_sock *vsk; 1381 struct vmci_handle handle; 1382 struct vmci_qp *qpair; 1383 u32 detach_sub_id; 1384 bool is_local; 1385 u32 flags; 1386 bool old_proto = true; 1387 bool old_pkt_proto; 1388 u16 version; 1389 1390 vsk = vsock_sk(sk); 1391 handle = VMCI_INVALID_HANDLE; 1392 detach_sub_id = VMCI_INVALID_ID; 1393 1394 /* If we have gotten here then we should be past the point where old 1395 * linux vsock could have sent the bogus rst. 1396 */ 1397 vsk->sent_request = false; 1398 vsk->ignore_connecting_rst = false; 1399 1400 /* Verify that we're OK with the proposed queue pair size */ 1401 if (pkt->u.size < vsk->buffer_min_size || 1402 pkt->u.size > vsk->buffer_max_size) { 1403 err = -EINVAL; 1404 goto destroy; 1405 } 1406 1407 /* At this point we know the CID the peer is using to talk to us. */ 1408 1409 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY) 1410 vsk->local_addr.svm_cid = pkt->dg.dst.context; 1411 1412 /* Setup the notify ops to be the highest supported version that both 1413 * the server and the client support. 1414 */ 1415 1416 if (vmci_transport_old_proto_override(&old_pkt_proto)) { 1417 old_proto = old_pkt_proto; 1418 } else { 1419 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE) 1420 old_proto = true; 1421 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2) 1422 old_proto = false; 1423 1424 } 1425 1426 if (old_proto) 1427 version = VSOCK_PROTO_INVALID; 1428 else 1429 version = pkt->proto; 1430 1431 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) { 1432 err = -EINVAL; 1433 goto destroy; 1434 } 1435 1436 /* Subscribe to detach events first. 1437 * 1438 * XXX We attach once for each queue pair created for now so it is easy 1439 * to find the socket (it's provided), but later we should only 1440 * subscribe once and add a way to lookup sockets by queue pair handle. 1441 */ 1442 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, 1443 vmci_transport_peer_detach_cb, 1444 vmci_trans(vsk), &detach_sub_id); 1445 if (err < VMCI_SUCCESS) { 1446 err = vmci_transport_error_to_vsock_error(err); 1447 goto destroy; 1448 } 1449 1450 /* Make VMCI select the handle for us. */ 1451 handle = VMCI_INVALID_HANDLE; 1452 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid; 1453 flags = is_local ? VMCI_QPFLAG_LOCAL : 0; 1454 1455 err = vmci_transport_queue_pair_alloc(&qpair, 1456 &handle, 1457 pkt->u.size, 1458 pkt->u.size, 1459 vsk->remote_addr.svm_cid, 1460 flags, 1461 vmci_transport_is_trusted( 1462 vsk, 1463 vsk-> 1464 remote_addr.svm_cid)); 1465 if (err < 0) 1466 goto destroy; 1467 1468 err = vmci_transport_send_qp_offer(sk, handle); 1469 if (err < 0) { 1470 err = vmci_transport_error_to_vsock_error(err); 1471 goto destroy; 1472 } 1473 1474 vmci_trans(vsk)->qp_handle = handle; 1475 vmci_trans(vsk)->qpair = qpair; 1476 1477 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 1478 pkt->u.size; 1479 1480 vmci_trans(vsk)->detach_sub_id = detach_sub_id; 1481 1482 vmci_trans(vsk)->notify_ops->process_negotiate(sk); 1483 1484 return 0; 1485 1486 destroy: 1487 if (detach_sub_id != VMCI_INVALID_ID) 1488 vmci_event_unsubscribe(detach_sub_id); 1489 1490 if (!vmci_handle_is_invalid(handle)) 1491 vmci_qpair_detach(&qpair); 1492 1493 return err; 1494 } 1495 1496 static int 1497 vmci_transport_recv_connecting_client_invalid(struct sock *sk, 1498 struct vmci_transport_packet *pkt) 1499 { 1500 int err = 0; 1501 struct vsock_sock *vsk = vsock_sk(sk); 1502 1503 if (vsk->sent_request) { 1504 vsk->sent_request = false; 1505 vsk->ignore_connecting_rst = true; 1506 1507 err = vmci_transport_send_conn_request(sk, vsk->buffer_size); 1508 if (err < 0) 1509 err = vmci_transport_error_to_vsock_error(err); 1510 else 1511 err = 0; 1512 1513 } 1514 1515 return err; 1516 } 1517 1518 static int vmci_transport_recv_connected(struct sock *sk, 1519 struct vmci_transport_packet *pkt) 1520 { 1521 struct vsock_sock *vsk; 1522 bool pkt_processed = false; 1523 1524 /* In cases where we are closing the connection, it's sufficient to 1525 * mark the state change (and maybe error) and wake up any waiting 1526 * threads. Since this is a connected socket, it's owned by a user 1527 * process and will be cleaned up when the failure is passed back on 1528 * the current or next system call. Our system call implementations 1529 * must therefore check for error and state changes on entry and when 1530 * being awoken. 1531 */ 1532 switch (pkt->type) { 1533 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: 1534 if (pkt->u.mode) { 1535 vsk = vsock_sk(sk); 1536 1537 vsk->peer_shutdown |= pkt->u.mode; 1538 sk->sk_state_change(sk); 1539 } 1540 break; 1541 1542 case VMCI_TRANSPORT_PACKET_TYPE_RST: 1543 vsk = vsock_sk(sk); 1544 /* It is possible that we sent our peer a message (e.g a 1545 * WAITING_READ) right before we got notified that the peer had 1546 * detached. If that happens then we can get a RST pkt back 1547 * from our peer even though there is data available for us to 1548 * read. In that case, don't shutdown the socket completely but 1549 * instead allow the local client to finish reading data off 1550 * the queuepair. Always treat a RST pkt in connected mode like 1551 * a clean shutdown. 1552 */ 1553 sock_set_flag(sk, SOCK_DONE); 1554 vsk->peer_shutdown = SHUTDOWN_MASK; 1555 if (vsock_stream_has_data(vsk) <= 0) 1556 sk->sk_state = TCP_CLOSING; 1557 1558 sk->sk_state_change(sk); 1559 break; 1560 1561 default: 1562 vsk = vsock_sk(sk); 1563 vmci_trans(vsk)->notify_ops->handle_notify_pkt( 1564 sk, pkt, false, NULL, NULL, 1565 &pkt_processed); 1566 if (!pkt_processed) 1567 return -EINVAL; 1568 1569 break; 1570 } 1571 1572 return 0; 1573 } 1574 1575 static int vmci_transport_socket_init(struct vsock_sock *vsk, 1576 struct vsock_sock *psk) 1577 { 1578 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL); 1579 if (!vsk->trans) 1580 return -ENOMEM; 1581 1582 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; 1583 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE; 1584 vmci_trans(vsk)->qpair = NULL; 1585 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0; 1586 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID; 1587 vmci_trans(vsk)->notify_ops = NULL; 1588 INIT_LIST_HEAD(&vmci_trans(vsk)->elem); 1589 vmci_trans(vsk)->sk = &vsk->sk; 1590 spin_lock_init(&vmci_trans(vsk)->lock); 1591 1592 return 0; 1593 } 1594 1595 static void vmci_transport_free_resources(struct list_head *transport_list) 1596 { 1597 while (!list_empty(transport_list)) { 1598 struct vmci_transport *transport = 1599 list_first_entry(transport_list, struct vmci_transport, 1600 elem); 1601 list_del(&transport->elem); 1602 1603 if (transport->detach_sub_id != VMCI_INVALID_ID) { 1604 vmci_event_unsubscribe(transport->detach_sub_id); 1605 transport->detach_sub_id = VMCI_INVALID_ID; 1606 } 1607 1608 if (!vmci_handle_is_invalid(transport->qp_handle)) { 1609 vmci_qpair_detach(&transport->qpair); 1610 transport->qp_handle = VMCI_INVALID_HANDLE; 1611 transport->produce_size = 0; 1612 transport->consume_size = 0; 1613 } 1614 1615 kfree(transport); 1616 } 1617 } 1618 1619 static void vmci_transport_cleanup(struct work_struct *work) 1620 { 1621 LIST_HEAD(pending); 1622 1623 spin_lock_bh(&vmci_transport_cleanup_lock); 1624 list_replace_init(&vmci_transport_cleanup_list, &pending); 1625 spin_unlock_bh(&vmci_transport_cleanup_lock); 1626 vmci_transport_free_resources(&pending); 1627 } 1628 1629 static void vmci_transport_destruct(struct vsock_sock *vsk) 1630 { 1631 /* transport can be NULL if we hit a failure at init() time */ 1632 if (!vmci_trans(vsk)) 1633 return; 1634 1635 /* Ensure that the detach callback doesn't use the sk/vsk 1636 * we are about to destruct. 1637 */ 1638 spin_lock_bh(&vmci_trans(vsk)->lock); 1639 vmci_trans(vsk)->sk = NULL; 1640 spin_unlock_bh(&vmci_trans(vsk)->lock); 1641 1642 if (vmci_trans(vsk)->notify_ops) 1643 vmci_trans(vsk)->notify_ops->socket_destruct(vsk); 1644 1645 spin_lock_bh(&vmci_transport_cleanup_lock); 1646 list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list); 1647 spin_unlock_bh(&vmci_transport_cleanup_lock); 1648 schedule_work(&vmci_transport_cleanup_work); 1649 1650 vsk->trans = NULL; 1651 } 1652 1653 static void vmci_transport_release(struct vsock_sock *vsk) 1654 { 1655 vsock_remove_sock(vsk); 1656 1657 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) { 1658 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle); 1659 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; 1660 } 1661 } 1662 1663 static int vmci_transport_dgram_bind(struct vsock_sock *vsk, 1664 struct sockaddr_vm *addr) 1665 { 1666 u32 port; 1667 u32 flags; 1668 int err; 1669 1670 /* VMCI will select a resource ID for us if we provide 1671 * VMCI_INVALID_ID. 1672 */ 1673 port = addr->svm_port == VMADDR_PORT_ANY ? 1674 VMCI_INVALID_ID : addr->svm_port; 1675 1676 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE)) 1677 return -EACCES; 1678 1679 flags = addr->svm_cid == VMADDR_CID_ANY ? 1680 VMCI_FLAG_ANYCID_DG_HND : 0; 1681 1682 err = vmci_transport_datagram_create_hnd(port, flags, 1683 vmci_transport_recv_dgram_cb, 1684 &vsk->sk, 1685 &vmci_trans(vsk)->dg_handle); 1686 if (err < VMCI_SUCCESS) 1687 return vmci_transport_error_to_vsock_error(err); 1688 vsock_addr_init(&vsk->local_addr, addr->svm_cid, 1689 vmci_trans(vsk)->dg_handle.resource); 1690 1691 return 0; 1692 } 1693 1694 static int vmci_transport_dgram_enqueue( 1695 struct vsock_sock *vsk, 1696 struct sockaddr_vm *remote_addr, 1697 struct msghdr *msg, 1698 size_t len) 1699 { 1700 int err; 1701 struct vmci_datagram *dg; 1702 1703 if (len > VMCI_MAX_DG_PAYLOAD_SIZE) 1704 return -EMSGSIZE; 1705 1706 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid)) 1707 return -EPERM; 1708 1709 /* Allocate a buffer for the user's message and our packet header. */ 1710 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL); 1711 if (!dg) 1712 return -ENOMEM; 1713 1714 err = memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len); 1715 if (err) { 1716 kfree(dg); 1717 return err; 1718 } 1719 1720 dg->dst = vmci_make_handle(remote_addr->svm_cid, 1721 remote_addr->svm_port); 1722 dg->src = vmci_make_handle(vsk->local_addr.svm_cid, 1723 vsk->local_addr.svm_port); 1724 dg->payload_size = len; 1725 1726 err = vmci_datagram_send(dg); 1727 kfree(dg); 1728 if (err < 0) 1729 return vmci_transport_error_to_vsock_error(err); 1730 1731 return err - sizeof(*dg); 1732 } 1733 1734 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk, 1735 struct msghdr *msg, size_t len, 1736 int flags) 1737 { 1738 int err; 1739 struct vmci_datagram *dg; 1740 size_t payload_len; 1741 struct sk_buff *skb; 1742 1743 if (flags & MSG_OOB || flags & MSG_ERRQUEUE) 1744 return -EOPNOTSUPP; 1745 1746 /* Retrieve the head sk_buff from the socket's receive queue. */ 1747 err = 0; 1748 skb = skb_recv_datagram(&vsk->sk, flags, &err); 1749 if (!skb) 1750 return err; 1751 1752 dg = (struct vmci_datagram *)skb->data; 1753 if (!dg) 1754 /* err is 0, meaning we read zero bytes. */ 1755 goto out; 1756 1757 payload_len = dg->payload_size; 1758 /* Ensure the sk_buff matches the payload size claimed in the packet. */ 1759 if (payload_len != skb->len - sizeof(*dg)) { 1760 err = -EINVAL; 1761 goto out; 1762 } 1763 1764 if (payload_len > len) { 1765 payload_len = len; 1766 msg->msg_flags |= MSG_TRUNC; 1767 } 1768 1769 /* Place the datagram payload in the user's iovec. */ 1770 err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len); 1771 if (err) 1772 goto out; 1773 1774 if (msg->msg_name) { 1775 /* Provide the address of the sender. */ 1776 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name); 1777 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource); 1778 msg->msg_namelen = sizeof(*vm_addr); 1779 } 1780 err = payload_len; 1781 1782 out: 1783 skb_free_datagram(&vsk->sk, skb); 1784 return err; 1785 } 1786 1787 static bool vmci_transport_dgram_allow(u32 cid, u32 port) 1788 { 1789 if (cid == VMADDR_CID_HYPERVISOR) { 1790 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor 1791 * state and are allowed. 1792 */ 1793 return port == VMCI_UNITY_PBRPC_REGISTER; 1794 } 1795 1796 return true; 1797 } 1798 1799 static int vmci_transport_connect(struct vsock_sock *vsk) 1800 { 1801 int err; 1802 bool old_pkt_proto = false; 1803 struct sock *sk = &vsk->sk; 1804 1805 if (vmci_transport_old_proto_override(&old_pkt_proto) && 1806 old_pkt_proto) { 1807 err = vmci_transport_send_conn_request(sk, vsk->buffer_size); 1808 if (err < 0) { 1809 sk->sk_state = TCP_CLOSE; 1810 return err; 1811 } 1812 } else { 1813 int supported_proto_versions = 1814 vmci_transport_new_proto_supported_versions(); 1815 err = vmci_transport_send_conn_request2(sk, vsk->buffer_size, 1816 supported_proto_versions); 1817 if (err < 0) { 1818 sk->sk_state = TCP_CLOSE; 1819 return err; 1820 } 1821 1822 vsk->sent_request = true; 1823 } 1824 1825 return err; 1826 } 1827 1828 static ssize_t vmci_transport_stream_dequeue( 1829 struct vsock_sock *vsk, 1830 struct msghdr *msg, 1831 size_t len, 1832 int flags) 1833 { 1834 if (flags & MSG_PEEK) 1835 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0); 1836 else 1837 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0); 1838 } 1839 1840 static ssize_t vmci_transport_stream_enqueue( 1841 struct vsock_sock *vsk, 1842 struct msghdr *msg, 1843 size_t len) 1844 { 1845 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0); 1846 } 1847 1848 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk) 1849 { 1850 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair); 1851 } 1852 1853 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk) 1854 { 1855 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair); 1856 } 1857 1858 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk) 1859 { 1860 return vmci_trans(vsk)->consume_size; 1861 } 1862 1863 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk) 1864 { 1865 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle); 1866 } 1867 1868 static int vmci_transport_notify_poll_in( 1869 struct vsock_sock *vsk, 1870 size_t target, 1871 bool *data_ready_now) 1872 { 1873 return vmci_trans(vsk)->notify_ops->poll_in( 1874 &vsk->sk, target, data_ready_now); 1875 } 1876 1877 static int vmci_transport_notify_poll_out( 1878 struct vsock_sock *vsk, 1879 size_t target, 1880 bool *space_available_now) 1881 { 1882 return vmci_trans(vsk)->notify_ops->poll_out( 1883 &vsk->sk, target, space_available_now); 1884 } 1885 1886 static int vmci_transport_notify_recv_init( 1887 struct vsock_sock *vsk, 1888 size_t target, 1889 struct vsock_transport_recv_notify_data *data) 1890 { 1891 return vmci_trans(vsk)->notify_ops->recv_init( 1892 &vsk->sk, target, 1893 (struct vmci_transport_recv_notify_data *)data); 1894 } 1895 1896 static int vmci_transport_notify_recv_pre_block( 1897 struct vsock_sock *vsk, 1898 size_t target, 1899 struct vsock_transport_recv_notify_data *data) 1900 { 1901 return vmci_trans(vsk)->notify_ops->recv_pre_block( 1902 &vsk->sk, target, 1903 (struct vmci_transport_recv_notify_data *)data); 1904 } 1905 1906 static int vmci_transport_notify_recv_pre_dequeue( 1907 struct vsock_sock *vsk, 1908 size_t target, 1909 struct vsock_transport_recv_notify_data *data) 1910 { 1911 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue( 1912 &vsk->sk, target, 1913 (struct vmci_transport_recv_notify_data *)data); 1914 } 1915 1916 static int vmci_transport_notify_recv_post_dequeue( 1917 struct vsock_sock *vsk, 1918 size_t target, 1919 ssize_t copied, 1920 bool data_read, 1921 struct vsock_transport_recv_notify_data *data) 1922 { 1923 return vmci_trans(vsk)->notify_ops->recv_post_dequeue( 1924 &vsk->sk, target, copied, data_read, 1925 (struct vmci_transport_recv_notify_data *)data); 1926 } 1927 1928 static int vmci_transport_notify_send_init( 1929 struct vsock_sock *vsk, 1930 struct vsock_transport_send_notify_data *data) 1931 { 1932 return vmci_trans(vsk)->notify_ops->send_init( 1933 &vsk->sk, 1934 (struct vmci_transport_send_notify_data *)data); 1935 } 1936 1937 static int vmci_transport_notify_send_pre_block( 1938 struct vsock_sock *vsk, 1939 struct vsock_transport_send_notify_data *data) 1940 { 1941 return vmci_trans(vsk)->notify_ops->send_pre_block( 1942 &vsk->sk, 1943 (struct vmci_transport_send_notify_data *)data); 1944 } 1945 1946 static int vmci_transport_notify_send_pre_enqueue( 1947 struct vsock_sock *vsk, 1948 struct vsock_transport_send_notify_data *data) 1949 { 1950 return vmci_trans(vsk)->notify_ops->send_pre_enqueue( 1951 &vsk->sk, 1952 (struct vmci_transport_send_notify_data *)data); 1953 } 1954 1955 static int vmci_transport_notify_send_post_enqueue( 1956 struct vsock_sock *vsk, 1957 ssize_t written, 1958 struct vsock_transport_send_notify_data *data) 1959 { 1960 return vmci_trans(vsk)->notify_ops->send_post_enqueue( 1961 &vsk->sk, written, 1962 (struct vmci_transport_send_notify_data *)data); 1963 } 1964 1965 static bool vmci_transport_old_proto_override(bool *old_pkt_proto) 1966 { 1967 if (PROTOCOL_OVERRIDE != -1) { 1968 if (PROTOCOL_OVERRIDE == 0) 1969 *old_pkt_proto = true; 1970 else 1971 *old_pkt_proto = false; 1972 1973 pr_info("Proto override in use\n"); 1974 return true; 1975 } 1976 1977 return false; 1978 } 1979 1980 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, 1981 u16 *proto, 1982 bool old_pkt_proto) 1983 { 1984 struct vsock_sock *vsk = vsock_sk(sk); 1985 1986 if (old_pkt_proto) { 1987 if (*proto != VSOCK_PROTO_INVALID) { 1988 pr_err("Can't set both an old and new protocol\n"); 1989 return false; 1990 } 1991 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops; 1992 goto exit; 1993 } 1994 1995 switch (*proto) { 1996 case VSOCK_PROTO_PKT_ON_NOTIFY: 1997 vmci_trans(vsk)->notify_ops = 1998 &vmci_transport_notify_pkt_q_state_ops; 1999 break; 2000 default: 2001 pr_err("Unknown notify protocol version\n"); 2002 return false; 2003 } 2004 2005 exit: 2006 vmci_trans(vsk)->notify_ops->socket_init(sk); 2007 return true; 2008 } 2009 2010 static u16 vmci_transport_new_proto_supported_versions(void) 2011 { 2012 if (PROTOCOL_OVERRIDE != -1) 2013 return PROTOCOL_OVERRIDE; 2014 2015 return VSOCK_PROTO_ALL_SUPPORTED; 2016 } 2017 2018 static u32 vmci_transport_get_local_cid(void) 2019 { 2020 return vmci_get_context_id(); 2021 } 2022 2023 static struct vsock_transport vmci_transport = { 2024 .module = THIS_MODULE, 2025 .init = vmci_transport_socket_init, 2026 .destruct = vmci_transport_destruct, 2027 .release = vmci_transport_release, 2028 .connect = vmci_transport_connect, 2029 .dgram_bind = vmci_transport_dgram_bind, 2030 .dgram_dequeue = vmci_transport_dgram_dequeue, 2031 .dgram_enqueue = vmci_transport_dgram_enqueue, 2032 .dgram_allow = vmci_transport_dgram_allow, 2033 .stream_dequeue = vmci_transport_stream_dequeue, 2034 .stream_enqueue = vmci_transport_stream_enqueue, 2035 .stream_has_data = vmci_transport_stream_has_data, 2036 .stream_has_space = vmci_transport_stream_has_space, 2037 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat, 2038 .stream_is_active = vmci_transport_stream_is_active, 2039 .stream_allow = vmci_transport_stream_allow, 2040 .notify_poll_in = vmci_transport_notify_poll_in, 2041 .notify_poll_out = vmci_transport_notify_poll_out, 2042 .notify_recv_init = vmci_transport_notify_recv_init, 2043 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block, 2044 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue, 2045 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue, 2046 .notify_send_init = vmci_transport_notify_send_init, 2047 .notify_send_pre_block = vmci_transport_notify_send_pre_block, 2048 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue, 2049 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue, 2050 .shutdown = vmci_transport_shutdown, 2051 .get_local_cid = vmci_transport_get_local_cid, 2052 }; 2053 2054 static bool vmci_check_transport(struct vsock_sock *vsk) 2055 { 2056 return vsk->transport == &vmci_transport; 2057 } 2058 2059 static void vmci_vsock_transport_cb(bool is_host) 2060 { 2061 int features; 2062 2063 if (is_host) 2064 features = VSOCK_TRANSPORT_F_H2G; 2065 else 2066 features = VSOCK_TRANSPORT_F_G2H; 2067 2068 vsock_core_register(&vmci_transport, features); 2069 } 2070 2071 static int __init vmci_transport_init(void) 2072 { 2073 int err; 2074 2075 /* Create the datagram handle that we will use to send and receive all 2076 * VSocket control messages for this context. 2077 */ 2078 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID, 2079 VMCI_FLAG_ANYCID_DG_HND, 2080 vmci_transport_recv_stream_cb, 2081 NULL, 2082 &vmci_transport_stream_handle); 2083 if (err < VMCI_SUCCESS) { 2084 pr_err("Unable to create datagram handle. (%d)\n", err); 2085 return vmci_transport_error_to_vsock_error(err); 2086 } 2087 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED, 2088 vmci_transport_qp_resumed_cb, 2089 NULL, &vmci_transport_qp_resumed_sub_id); 2090 if (err < VMCI_SUCCESS) { 2091 pr_err("Unable to subscribe to resumed event. (%d)\n", err); 2092 err = vmci_transport_error_to_vsock_error(err); 2093 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 2094 goto err_destroy_stream_handle; 2095 } 2096 2097 /* Register only with dgram feature, other features (H2G, G2H) will be 2098 * registered when the first host or guest becomes active. 2099 */ 2100 err = vsock_core_register(&vmci_transport, VSOCK_TRANSPORT_F_DGRAM); 2101 if (err < 0) 2102 goto err_unsubscribe; 2103 2104 err = vmci_register_vsock_callback(vmci_vsock_transport_cb); 2105 if (err < 0) 2106 goto err_unregister; 2107 2108 return 0; 2109 2110 err_unregister: 2111 vsock_core_unregister(&vmci_transport); 2112 err_unsubscribe: 2113 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); 2114 err_destroy_stream_handle: 2115 vmci_datagram_destroy_handle(vmci_transport_stream_handle); 2116 return err; 2117 } 2118 module_init(vmci_transport_init); 2119 2120 static void __exit vmci_transport_exit(void) 2121 { 2122 cancel_work_sync(&vmci_transport_cleanup_work); 2123 vmci_transport_free_resources(&vmci_transport_cleanup_list); 2124 2125 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) { 2126 if (vmci_datagram_destroy_handle( 2127 vmci_transport_stream_handle) != VMCI_SUCCESS) 2128 pr_err("Couldn't destroy datagram handle\n"); 2129 vmci_transport_stream_handle = VMCI_INVALID_HANDLE; 2130 } 2131 2132 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) { 2133 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); 2134 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 2135 } 2136 2137 vmci_register_vsock_callback(NULL); 2138 vsock_core_unregister(&vmci_transport); 2139 } 2140 module_exit(vmci_transport_exit); 2141 2142 MODULE_AUTHOR("VMware, Inc."); 2143 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets"); 2144 MODULE_VERSION("1.0.5.0-k"); 2145 MODULE_LICENSE("GPL v2"); 2146 MODULE_ALIAS("vmware_vsock"); 2147 MODULE_ALIAS_NETPROTO(PF_VSOCK); 2148