1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VMware vSockets Driver 4 * 5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 6 */ 7 8 #include <linux/types.h> 9 #include <linux/bitops.h> 10 #include <linux/cred.h> 11 #include <linux/init.h> 12 #include <linux/io.h> 13 #include <linux/kernel.h> 14 #include <linux/kmod.h> 15 #include <linux/list.h> 16 #include <linux/module.h> 17 #include <linux/mutex.h> 18 #include <linux/net.h> 19 #include <linux/poll.h> 20 #include <linux/skbuff.h> 21 #include <linux/smp.h> 22 #include <linux/socket.h> 23 #include <linux/stddef.h> 24 #include <linux/unistd.h> 25 #include <linux/wait.h> 26 #include <linux/workqueue.h> 27 #include <net/sock.h> 28 #include <net/af_vsock.h> 29 30 #include "vmci_transport_notify.h" 31 32 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg); 33 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg); 34 static void vmci_transport_peer_detach_cb(u32 sub_id, 35 const struct vmci_event_data *ed, 36 void *client_data); 37 static void vmci_transport_recv_pkt_work(struct work_struct *work); 38 static void vmci_transport_cleanup(struct work_struct *work); 39 static int vmci_transport_recv_listen(struct sock *sk, 40 struct vmci_transport_packet *pkt); 41 static int vmci_transport_recv_connecting_server( 42 struct sock *sk, 43 struct sock *pending, 44 struct vmci_transport_packet *pkt); 45 static int vmci_transport_recv_connecting_client( 46 struct sock *sk, 47 struct vmci_transport_packet *pkt); 48 static int vmci_transport_recv_connecting_client_negotiate( 49 struct sock *sk, 50 struct vmci_transport_packet *pkt); 51 static int vmci_transport_recv_connecting_client_invalid( 52 struct sock *sk, 53 struct vmci_transport_packet *pkt); 54 static int vmci_transport_recv_connected(struct sock *sk, 55 struct vmci_transport_packet *pkt); 56 static bool vmci_transport_old_proto_override(bool *old_pkt_proto); 57 static u16 vmci_transport_new_proto_supported_versions(void); 58 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto, 59 bool old_pkt_proto); 60 61 struct vmci_transport_recv_pkt_info { 62 struct work_struct work; 63 struct sock *sk; 64 struct vmci_transport_packet pkt; 65 }; 66 67 static LIST_HEAD(vmci_transport_cleanup_list); 68 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock); 69 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup); 70 71 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID, 72 VMCI_INVALID_ID }; 73 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 74 75 static int PROTOCOL_OVERRIDE = -1; 76 77 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN 128 78 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE 262144 79 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX 262144 80 81 /* The default peer timeout indicates how long we will wait for a peer response 82 * to a control message. 83 */ 84 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 85 86 /* Helper function to convert from a VMCI error code to a VSock error code. */ 87 88 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error) 89 { 90 switch (vmci_error) { 91 case VMCI_ERROR_NO_MEM: 92 return -ENOMEM; 93 case VMCI_ERROR_DUPLICATE_ENTRY: 94 case VMCI_ERROR_ALREADY_EXISTS: 95 return -EADDRINUSE; 96 case VMCI_ERROR_NO_ACCESS: 97 return -EPERM; 98 case VMCI_ERROR_NO_RESOURCES: 99 return -ENOBUFS; 100 case VMCI_ERROR_INVALID_RESOURCE: 101 return -EHOSTUNREACH; 102 case VMCI_ERROR_INVALID_ARGS: 103 default: 104 break; 105 } 106 return -EINVAL; 107 } 108 109 static u32 vmci_transport_peer_rid(u32 peer_cid) 110 { 111 if (VMADDR_CID_HYPERVISOR == peer_cid) 112 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID; 113 114 return VMCI_TRANSPORT_PACKET_RID; 115 } 116 117 static inline void 118 vmci_transport_packet_init(struct vmci_transport_packet *pkt, 119 struct sockaddr_vm *src, 120 struct sockaddr_vm *dst, 121 u8 type, 122 u64 size, 123 u64 mode, 124 struct vmci_transport_waiting_info *wait, 125 u16 proto, 126 struct vmci_handle handle) 127 { 128 /* We register the stream control handler as an any cid handle so we 129 * must always send from a source address of VMADDR_CID_ANY 130 */ 131 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY, 132 VMCI_TRANSPORT_PACKET_RID); 133 pkt->dg.dst = vmci_make_handle(dst->svm_cid, 134 vmci_transport_peer_rid(dst->svm_cid)); 135 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg); 136 pkt->version = VMCI_TRANSPORT_PACKET_VERSION; 137 pkt->type = type; 138 pkt->src_port = src->svm_port; 139 pkt->dst_port = dst->svm_port; 140 memset(&pkt->proto, 0, sizeof(pkt->proto)); 141 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2)); 142 143 switch (pkt->type) { 144 case VMCI_TRANSPORT_PACKET_TYPE_INVALID: 145 pkt->u.size = 0; 146 break; 147 148 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST: 149 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: 150 pkt->u.size = size; 151 break; 152 153 case VMCI_TRANSPORT_PACKET_TYPE_OFFER: 154 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: 155 pkt->u.handle = handle; 156 break; 157 158 case VMCI_TRANSPORT_PACKET_TYPE_WROTE: 159 case VMCI_TRANSPORT_PACKET_TYPE_READ: 160 case VMCI_TRANSPORT_PACKET_TYPE_RST: 161 pkt->u.size = 0; 162 break; 163 164 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: 165 pkt->u.mode = mode; 166 break; 167 168 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ: 169 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE: 170 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait)); 171 break; 172 173 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2: 174 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: 175 pkt->u.size = size; 176 pkt->proto = proto; 177 break; 178 } 179 } 180 181 static inline void 182 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt, 183 struct sockaddr_vm *local, 184 struct sockaddr_vm *remote) 185 { 186 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port); 187 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port); 188 } 189 190 static int 191 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt, 192 struct sockaddr_vm *src, 193 struct sockaddr_vm *dst, 194 enum vmci_transport_packet_type type, 195 u64 size, 196 u64 mode, 197 struct vmci_transport_waiting_info *wait, 198 u16 proto, 199 struct vmci_handle handle, 200 bool convert_error) 201 { 202 int err; 203 204 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait, 205 proto, handle); 206 err = vmci_datagram_send(&pkt->dg); 207 if (convert_error && (err < 0)) 208 return vmci_transport_error_to_vsock_error(err); 209 210 return err; 211 } 212 213 static int 214 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt, 215 enum vmci_transport_packet_type type, 216 u64 size, 217 u64 mode, 218 struct vmci_transport_waiting_info *wait, 219 struct vmci_handle handle) 220 { 221 struct vmci_transport_packet reply; 222 struct sockaddr_vm src, dst; 223 224 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) { 225 return 0; 226 } else { 227 vmci_transport_packet_get_addresses(pkt, &src, &dst); 228 return __vmci_transport_send_control_pkt(&reply, &src, &dst, 229 type, 230 size, mode, wait, 231 VSOCK_PROTO_INVALID, 232 handle, true); 233 } 234 } 235 236 static int 237 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src, 238 struct sockaddr_vm *dst, 239 enum vmci_transport_packet_type type, 240 u64 size, 241 u64 mode, 242 struct vmci_transport_waiting_info *wait, 243 struct vmci_handle handle) 244 { 245 /* Note that it is safe to use a single packet across all CPUs since 246 * two tasklets of the same type are guaranteed to not ever run 247 * simultaneously. If that ever changes, or VMCI stops using tasklets, 248 * we can use per-cpu packets. 249 */ 250 static struct vmci_transport_packet pkt; 251 252 return __vmci_transport_send_control_pkt(&pkt, src, dst, type, 253 size, mode, wait, 254 VSOCK_PROTO_INVALID, handle, 255 false); 256 } 257 258 static int 259 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src, 260 struct sockaddr_vm *dst, 261 enum vmci_transport_packet_type type, 262 u64 size, 263 u64 mode, 264 struct vmci_transport_waiting_info *wait, 265 u16 proto, 266 struct vmci_handle handle) 267 { 268 struct vmci_transport_packet *pkt; 269 int err; 270 271 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL); 272 if (!pkt) 273 return -ENOMEM; 274 275 err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size, 276 mode, wait, proto, handle, 277 true); 278 kfree(pkt); 279 280 return err; 281 } 282 283 static int 284 vmci_transport_send_control_pkt(struct sock *sk, 285 enum vmci_transport_packet_type type, 286 u64 size, 287 u64 mode, 288 struct vmci_transport_waiting_info *wait, 289 u16 proto, 290 struct vmci_handle handle) 291 { 292 struct vsock_sock *vsk; 293 294 vsk = vsock_sk(sk); 295 296 if (!vsock_addr_bound(&vsk->local_addr)) 297 return -EINVAL; 298 299 if (!vsock_addr_bound(&vsk->remote_addr)) 300 return -EINVAL; 301 302 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, 303 &vsk->remote_addr, 304 type, size, mode, 305 wait, proto, handle); 306 } 307 308 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst, 309 struct sockaddr_vm *src, 310 struct vmci_transport_packet *pkt) 311 { 312 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) 313 return 0; 314 return vmci_transport_send_control_pkt_bh( 315 dst, src, 316 VMCI_TRANSPORT_PACKET_TYPE_RST, 0, 317 0, NULL, VMCI_INVALID_HANDLE); 318 } 319 320 static int vmci_transport_send_reset(struct sock *sk, 321 struct vmci_transport_packet *pkt) 322 { 323 struct sockaddr_vm *dst_ptr; 324 struct sockaddr_vm dst; 325 struct vsock_sock *vsk; 326 327 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) 328 return 0; 329 330 vsk = vsock_sk(sk); 331 332 if (!vsock_addr_bound(&vsk->local_addr)) 333 return -EINVAL; 334 335 if (vsock_addr_bound(&vsk->remote_addr)) { 336 dst_ptr = &vsk->remote_addr; 337 } else { 338 vsock_addr_init(&dst, pkt->dg.src.context, 339 pkt->src_port); 340 dst_ptr = &dst; 341 } 342 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr, 343 VMCI_TRANSPORT_PACKET_TYPE_RST, 344 0, 0, NULL, VSOCK_PROTO_INVALID, 345 VMCI_INVALID_HANDLE); 346 } 347 348 static int vmci_transport_send_negotiate(struct sock *sk, size_t size) 349 { 350 return vmci_transport_send_control_pkt( 351 sk, 352 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE, 353 size, 0, NULL, 354 VSOCK_PROTO_INVALID, 355 VMCI_INVALID_HANDLE); 356 } 357 358 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size, 359 u16 version) 360 { 361 return vmci_transport_send_control_pkt( 362 sk, 363 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2, 364 size, 0, NULL, version, 365 VMCI_INVALID_HANDLE); 366 } 367 368 static int vmci_transport_send_qp_offer(struct sock *sk, 369 struct vmci_handle handle) 370 { 371 return vmci_transport_send_control_pkt( 372 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0, 373 0, NULL, 374 VSOCK_PROTO_INVALID, handle); 375 } 376 377 static int vmci_transport_send_attach(struct sock *sk, 378 struct vmci_handle handle) 379 { 380 return vmci_transport_send_control_pkt( 381 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH, 382 0, 0, NULL, VSOCK_PROTO_INVALID, 383 handle); 384 } 385 386 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt) 387 { 388 return vmci_transport_reply_control_pkt_fast( 389 pkt, 390 VMCI_TRANSPORT_PACKET_TYPE_RST, 391 0, 0, NULL, 392 VMCI_INVALID_HANDLE); 393 } 394 395 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst, 396 struct sockaddr_vm *src) 397 { 398 return vmci_transport_send_control_pkt_bh( 399 dst, src, 400 VMCI_TRANSPORT_PACKET_TYPE_INVALID, 401 0, 0, NULL, VMCI_INVALID_HANDLE); 402 } 403 404 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst, 405 struct sockaddr_vm *src) 406 { 407 return vmci_transport_send_control_pkt_bh( 408 dst, src, 409 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 410 0, NULL, VMCI_INVALID_HANDLE); 411 } 412 413 int vmci_transport_send_read_bh(struct sockaddr_vm *dst, 414 struct sockaddr_vm *src) 415 { 416 return vmci_transport_send_control_pkt_bh( 417 dst, src, 418 VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 419 0, NULL, VMCI_INVALID_HANDLE); 420 } 421 422 int vmci_transport_send_wrote(struct sock *sk) 423 { 424 return vmci_transport_send_control_pkt( 425 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 426 0, NULL, VSOCK_PROTO_INVALID, 427 VMCI_INVALID_HANDLE); 428 } 429 430 int vmci_transport_send_read(struct sock *sk) 431 { 432 return vmci_transport_send_control_pkt( 433 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 434 0, NULL, VSOCK_PROTO_INVALID, 435 VMCI_INVALID_HANDLE); 436 } 437 438 int vmci_transport_send_waiting_write(struct sock *sk, 439 struct vmci_transport_waiting_info *wait) 440 { 441 return vmci_transport_send_control_pkt( 442 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE, 443 0, 0, wait, VSOCK_PROTO_INVALID, 444 VMCI_INVALID_HANDLE); 445 } 446 447 int vmci_transport_send_waiting_read(struct sock *sk, 448 struct vmci_transport_waiting_info *wait) 449 { 450 return vmci_transport_send_control_pkt( 451 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ, 452 0, 0, wait, VSOCK_PROTO_INVALID, 453 VMCI_INVALID_HANDLE); 454 } 455 456 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode) 457 { 458 return vmci_transport_send_control_pkt( 459 &vsk->sk, 460 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN, 461 0, mode, NULL, 462 VSOCK_PROTO_INVALID, 463 VMCI_INVALID_HANDLE); 464 } 465 466 static int vmci_transport_send_conn_request(struct sock *sk, size_t size) 467 { 468 return vmci_transport_send_control_pkt(sk, 469 VMCI_TRANSPORT_PACKET_TYPE_REQUEST, 470 size, 0, NULL, 471 VSOCK_PROTO_INVALID, 472 VMCI_INVALID_HANDLE); 473 } 474 475 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size, 476 u16 version) 477 { 478 return vmci_transport_send_control_pkt( 479 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2, 480 size, 0, NULL, version, 481 VMCI_INVALID_HANDLE); 482 } 483 484 static struct sock *vmci_transport_get_pending( 485 struct sock *listener, 486 struct vmci_transport_packet *pkt) 487 { 488 struct vsock_sock *vlistener; 489 struct vsock_sock *vpending; 490 struct sock *pending; 491 struct sockaddr_vm src; 492 493 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); 494 495 vlistener = vsock_sk(listener); 496 497 list_for_each_entry(vpending, &vlistener->pending_links, 498 pending_links) { 499 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) && 500 pkt->dst_port == vpending->local_addr.svm_port) { 501 pending = sk_vsock(vpending); 502 sock_hold(pending); 503 goto found; 504 } 505 } 506 507 pending = NULL; 508 found: 509 return pending; 510 511 } 512 513 static void vmci_transport_release_pending(struct sock *pending) 514 { 515 sock_put(pending); 516 } 517 518 /* We allow two kinds of sockets to communicate with a restricted VM: 1) 519 * trusted sockets 2) sockets from applications running as the same user as the 520 * VM (this is only true for the host side and only when using hosted products) 521 */ 522 523 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid) 524 { 525 return vsock->trusted || 526 vmci_is_context_owner(peer_cid, vsock->owner->uid); 527 } 528 529 /* We allow sending datagrams to and receiving datagrams from a restricted VM 530 * only if it is trusted as described in vmci_transport_is_trusted. 531 */ 532 533 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid) 534 { 535 if (VMADDR_CID_HYPERVISOR == peer_cid) 536 return true; 537 538 if (vsock->cached_peer != peer_cid) { 539 vsock->cached_peer = peer_cid; 540 if (!vmci_transport_is_trusted(vsock, peer_cid) && 541 (vmci_context_get_priv_flags(peer_cid) & 542 VMCI_PRIVILEGE_FLAG_RESTRICTED)) { 543 vsock->cached_peer_allow_dgram = false; 544 } else { 545 vsock->cached_peer_allow_dgram = true; 546 } 547 } 548 549 return vsock->cached_peer_allow_dgram; 550 } 551 552 static int 553 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair, 554 struct vmci_handle *handle, 555 u64 produce_size, 556 u64 consume_size, 557 u32 peer, u32 flags, bool trusted) 558 { 559 int err = 0; 560 561 if (trusted) { 562 /* Try to allocate our queue pair as trusted. This will only 563 * work if vsock is running in the host. 564 */ 565 566 err = vmci_qpair_alloc(qpair, handle, produce_size, 567 consume_size, 568 peer, flags, 569 VMCI_PRIVILEGE_FLAG_TRUSTED); 570 if (err != VMCI_ERROR_NO_ACCESS) 571 goto out; 572 573 } 574 575 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size, 576 peer, flags, VMCI_NO_PRIVILEGE_FLAGS); 577 out: 578 if (err < 0) { 579 pr_err("Could not attach to queue pair with %d\n", 580 err); 581 err = vmci_transport_error_to_vsock_error(err); 582 } 583 584 return err; 585 } 586 587 static int 588 vmci_transport_datagram_create_hnd(u32 resource_id, 589 u32 flags, 590 vmci_datagram_recv_cb recv_cb, 591 void *client_data, 592 struct vmci_handle *out_handle) 593 { 594 int err = 0; 595 596 /* Try to allocate our datagram handler as trusted. This will only work 597 * if vsock is running in the host. 598 */ 599 600 err = vmci_datagram_create_handle_priv(resource_id, flags, 601 VMCI_PRIVILEGE_FLAG_TRUSTED, 602 recv_cb, 603 client_data, out_handle); 604 605 if (err == VMCI_ERROR_NO_ACCESS) 606 err = vmci_datagram_create_handle(resource_id, flags, 607 recv_cb, client_data, 608 out_handle); 609 610 return err; 611 } 612 613 /* This is invoked as part of a tasklet that's scheduled when the VMCI 614 * interrupt fires. This is run in bottom-half context and if it ever needs to 615 * sleep it should defer that work to a work queue. 616 */ 617 618 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg) 619 { 620 struct sock *sk; 621 size_t size; 622 struct sk_buff *skb; 623 struct vsock_sock *vsk; 624 625 sk = (struct sock *)data; 626 627 /* This handler is privileged when this module is running on the host. 628 * We will get datagrams from all endpoints (even VMs that are in a 629 * restricted context). If we get one from a restricted context then 630 * the destination socket must be trusted. 631 * 632 * NOTE: We access the socket struct without holding the lock here. 633 * This is ok because the field we are interested is never modified 634 * outside of the create and destruct socket functions. 635 */ 636 vsk = vsock_sk(sk); 637 if (!vmci_transport_allow_dgram(vsk, dg->src.context)) 638 return VMCI_ERROR_NO_ACCESS; 639 640 size = VMCI_DG_SIZE(dg); 641 642 /* Attach the packet to the socket's receive queue as an sk_buff. */ 643 skb = alloc_skb(size, GFP_ATOMIC); 644 if (!skb) 645 return VMCI_ERROR_NO_MEM; 646 647 /* sk_receive_skb() will do a sock_put(), so hold here. */ 648 sock_hold(sk); 649 skb_put(skb, size); 650 memcpy(skb->data, dg, size); 651 sk_receive_skb(sk, skb, 0); 652 653 return VMCI_SUCCESS; 654 } 655 656 static bool vmci_transport_stream_allow(u32 cid, u32 port) 657 { 658 static const u32 non_socket_contexts[] = { 659 VMADDR_CID_RESERVED, 660 }; 661 int i; 662 663 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts)); 664 665 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) { 666 if (cid == non_socket_contexts[i]) 667 return false; 668 } 669 670 return true; 671 } 672 673 /* This is invoked as part of a tasklet that's scheduled when the VMCI 674 * interrupt fires. This is run in bottom-half context but it defers most of 675 * its work to the packet handling work queue. 676 */ 677 678 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg) 679 { 680 struct sock *sk; 681 struct sockaddr_vm dst; 682 struct sockaddr_vm src; 683 struct vmci_transport_packet *pkt; 684 struct vsock_sock *vsk; 685 bool bh_process_pkt; 686 int err; 687 688 sk = NULL; 689 err = VMCI_SUCCESS; 690 bh_process_pkt = false; 691 692 /* Ignore incoming packets from contexts without sockets, or resources 693 * that aren't vsock implementations. 694 */ 695 696 if (!vmci_transport_stream_allow(dg->src.context, -1) 697 || vmci_transport_peer_rid(dg->src.context) != dg->src.resource) 698 return VMCI_ERROR_NO_ACCESS; 699 700 if (VMCI_DG_SIZE(dg) < sizeof(*pkt)) 701 /* Drop datagrams that do not contain full VSock packets. */ 702 return VMCI_ERROR_INVALID_ARGS; 703 704 pkt = (struct vmci_transport_packet *)dg; 705 706 /* Find the socket that should handle this packet. First we look for a 707 * connected socket and if there is none we look for a socket bound to 708 * the destintation address. 709 */ 710 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); 711 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port); 712 713 sk = vsock_find_connected_socket(&src, &dst); 714 if (!sk) { 715 sk = vsock_find_bound_socket(&dst); 716 if (!sk) { 717 /* We could not find a socket for this specified 718 * address. If this packet is a RST, we just drop it. 719 * If it is another packet, we send a RST. Note that 720 * we do not send a RST reply to RSTs so that we do not 721 * continually send RSTs between two endpoints. 722 * 723 * Note that since this is a reply, dst is src and src 724 * is dst. 725 */ 726 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) 727 pr_err("unable to send reset\n"); 728 729 err = VMCI_ERROR_NOT_FOUND; 730 goto out; 731 } 732 } 733 734 /* If the received packet type is beyond all types known to this 735 * implementation, reply with an invalid message. Hopefully this will 736 * help when implementing backwards compatibility in the future. 737 */ 738 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) { 739 vmci_transport_send_invalid_bh(&dst, &src); 740 err = VMCI_ERROR_INVALID_ARGS; 741 goto out; 742 } 743 744 /* This handler is privileged when this module is running on the host. 745 * We will get datagram connect requests from all endpoints (even VMs 746 * that are in a restricted context). If we get one from a restricted 747 * context then the destination socket must be trusted. 748 * 749 * NOTE: We access the socket struct without holding the lock here. 750 * This is ok because the field we are interested is never modified 751 * outside of the create and destruct socket functions. 752 */ 753 vsk = vsock_sk(sk); 754 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) { 755 err = VMCI_ERROR_NO_ACCESS; 756 goto out; 757 } 758 759 /* We do most everything in a work queue, but let's fast path the 760 * notification of reads and writes to help data transfer performance. 761 * We can only do this if there is no process context code executing 762 * for this socket since that may change the state. 763 */ 764 bh_lock_sock(sk); 765 766 if (!sock_owned_by_user(sk)) { 767 /* The local context ID may be out of date, update it. */ 768 vsk->local_addr.svm_cid = dst.svm_cid; 769 770 if (sk->sk_state == TCP_ESTABLISHED) 771 vmci_trans(vsk)->notify_ops->handle_notify_pkt( 772 sk, pkt, true, &dst, &src, 773 &bh_process_pkt); 774 } 775 776 bh_unlock_sock(sk); 777 778 if (!bh_process_pkt) { 779 struct vmci_transport_recv_pkt_info *recv_pkt_info; 780 781 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC); 782 if (!recv_pkt_info) { 783 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) 784 pr_err("unable to send reset\n"); 785 786 err = VMCI_ERROR_NO_MEM; 787 goto out; 788 } 789 790 recv_pkt_info->sk = sk; 791 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt)); 792 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work); 793 794 schedule_work(&recv_pkt_info->work); 795 /* Clear sk so that the reference count incremented by one of 796 * the Find functions above is not decremented below. We need 797 * that reference count for the packet handler we've scheduled 798 * to run. 799 */ 800 sk = NULL; 801 } 802 803 out: 804 if (sk) 805 sock_put(sk); 806 807 return err; 808 } 809 810 static void vmci_transport_handle_detach(struct sock *sk) 811 { 812 struct vsock_sock *vsk; 813 814 vsk = vsock_sk(sk); 815 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) { 816 sock_set_flag(sk, SOCK_DONE); 817 818 /* On a detach the peer will not be sending or receiving 819 * anymore. 820 */ 821 vsk->peer_shutdown = SHUTDOWN_MASK; 822 823 /* We should not be sending anymore since the peer won't be 824 * there to receive, but we can still receive if there is data 825 * left in our consume queue. If the local endpoint is a host, 826 * we can't call vsock_stream_has_data, since that may block, 827 * but a host endpoint can't read data once the VM has 828 * detached, so there is no available data in that case. 829 */ 830 if (vsk->local_addr.svm_cid == VMADDR_CID_HOST || 831 vsock_stream_has_data(vsk) <= 0) { 832 if (sk->sk_state == TCP_SYN_SENT) { 833 /* The peer may detach from a queue pair while 834 * we are still in the connecting state, i.e., 835 * if the peer VM is killed after attaching to 836 * a queue pair, but before we complete the 837 * handshake. In that case, we treat the detach 838 * event like a reset. 839 */ 840 841 sk->sk_state = TCP_CLOSE; 842 sk->sk_err = ECONNRESET; 843 sk->sk_error_report(sk); 844 return; 845 } 846 sk->sk_state = TCP_CLOSE; 847 } 848 sk->sk_state_change(sk); 849 } 850 } 851 852 static void vmci_transport_peer_detach_cb(u32 sub_id, 853 const struct vmci_event_data *e_data, 854 void *client_data) 855 { 856 struct vmci_transport *trans = client_data; 857 const struct vmci_event_payload_qp *e_payload; 858 859 e_payload = vmci_event_data_const_payload(e_data); 860 861 /* XXX This is lame, we should provide a way to lookup sockets by 862 * qp_handle. 863 */ 864 if (vmci_handle_is_invalid(e_payload->handle) || 865 !vmci_handle_is_equal(trans->qp_handle, e_payload->handle)) 866 return; 867 868 /* We don't ask for delayed CBs when we subscribe to this event (we 869 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no 870 * guarantees in that case about what context we might be running in, 871 * so it could be BH or process, blockable or non-blockable. So we 872 * need to account for all possible contexts here. 873 */ 874 spin_lock_bh(&trans->lock); 875 if (!trans->sk) 876 goto out; 877 878 /* Apart from here, trans->lock is only grabbed as part of sk destruct, 879 * where trans->sk isn't locked. 880 */ 881 bh_lock_sock(trans->sk); 882 883 vmci_transport_handle_detach(trans->sk); 884 885 bh_unlock_sock(trans->sk); 886 out: 887 spin_unlock_bh(&trans->lock); 888 } 889 890 static void vmci_transport_qp_resumed_cb(u32 sub_id, 891 const struct vmci_event_data *e_data, 892 void *client_data) 893 { 894 vsock_for_each_connected_socket(vmci_transport_handle_detach); 895 } 896 897 static void vmci_transport_recv_pkt_work(struct work_struct *work) 898 { 899 struct vmci_transport_recv_pkt_info *recv_pkt_info; 900 struct vmci_transport_packet *pkt; 901 struct sock *sk; 902 903 recv_pkt_info = 904 container_of(work, struct vmci_transport_recv_pkt_info, work); 905 sk = recv_pkt_info->sk; 906 pkt = &recv_pkt_info->pkt; 907 908 lock_sock(sk); 909 910 /* The local context ID may be out of date. */ 911 vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context; 912 913 switch (sk->sk_state) { 914 case TCP_LISTEN: 915 vmci_transport_recv_listen(sk, pkt); 916 break; 917 case TCP_SYN_SENT: 918 /* Processing of pending connections for servers goes through 919 * the listening socket, so see vmci_transport_recv_listen() 920 * for that path. 921 */ 922 vmci_transport_recv_connecting_client(sk, pkt); 923 break; 924 case TCP_ESTABLISHED: 925 vmci_transport_recv_connected(sk, pkt); 926 break; 927 default: 928 /* Because this function does not run in the same context as 929 * vmci_transport_recv_stream_cb it is possible that the 930 * socket has closed. We need to let the other side know or it 931 * could be sitting in a connect and hang forever. Send a 932 * reset to prevent that. 933 */ 934 vmci_transport_send_reset(sk, pkt); 935 break; 936 } 937 938 release_sock(sk); 939 kfree(recv_pkt_info); 940 /* Release reference obtained in the stream callback when we fetched 941 * this socket out of the bound or connected list. 942 */ 943 sock_put(sk); 944 } 945 946 static int vmci_transport_recv_listen(struct sock *sk, 947 struct vmci_transport_packet *pkt) 948 { 949 struct sock *pending; 950 struct vsock_sock *vpending; 951 int err; 952 u64 qp_size; 953 bool old_request = false; 954 bool old_pkt_proto = false; 955 956 err = 0; 957 958 /* Because we are in the listen state, we could be receiving a packet 959 * for ourself or any previous connection requests that we received. 960 * If it's the latter, we try to find a socket in our list of pending 961 * connections and, if we do, call the appropriate handler for the 962 * state that that socket is in. Otherwise we try to service the 963 * connection request. 964 */ 965 pending = vmci_transport_get_pending(sk, pkt); 966 if (pending) { 967 lock_sock(pending); 968 969 /* The local context ID may be out of date. */ 970 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context; 971 972 switch (pending->sk_state) { 973 case TCP_SYN_SENT: 974 err = vmci_transport_recv_connecting_server(sk, 975 pending, 976 pkt); 977 break; 978 default: 979 vmci_transport_send_reset(pending, pkt); 980 err = -EINVAL; 981 } 982 983 if (err < 0) 984 vsock_remove_pending(sk, pending); 985 986 release_sock(pending); 987 vmci_transport_release_pending(pending); 988 989 return err; 990 } 991 992 /* The listen state only accepts connection requests. Reply with a 993 * reset unless we received a reset. 994 */ 995 996 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST || 997 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) { 998 vmci_transport_reply_reset(pkt); 999 return -EINVAL; 1000 } 1001 1002 if (pkt->u.size == 0) { 1003 vmci_transport_reply_reset(pkt); 1004 return -EINVAL; 1005 } 1006 1007 /* If this socket can't accommodate this connection request, we send a 1008 * reset. Otherwise we create and initialize a child socket and reply 1009 * with a connection negotiation. 1010 */ 1011 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) { 1012 vmci_transport_reply_reset(pkt); 1013 return -ECONNREFUSED; 1014 } 1015 1016 pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL, 1017 sk->sk_type, 0); 1018 if (!pending) { 1019 vmci_transport_send_reset(sk, pkt); 1020 return -ENOMEM; 1021 } 1022 1023 vpending = vsock_sk(pending); 1024 1025 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context, 1026 pkt->dst_port); 1027 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context, 1028 pkt->src_port); 1029 1030 /* If the proposed size fits within our min/max, accept it. Otherwise 1031 * propose our own size. 1032 */ 1033 if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size && 1034 pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) { 1035 qp_size = pkt->u.size; 1036 } else { 1037 qp_size = vmci_trans(vpending)->queue_pair_size; 1038 } 1039 1040 /* Figure out if we are using old or new requests based on the 1041 * overrides pkt types sent by our peer. 1042 */ 1043 if (vmci_transport_old_proto_override(&old_pkt_proto)) { 1044 old_request = old_pkt_proto; 1045 } else { 1046 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST) 1047 old_request = true; 1048 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2) 1049 old_request = false; 1050 1051 } 1052 1053 if (old_request) { 1054 /* Handle a REQUEST (or override) */ 1055 u16 version = VSOCK_PROTO_INVALID; 1056 if (vmci_transport_proto_to_notify_struct( 1057 pending, &version, true)) 1058 err = vmci_transport_send_negotiate(pending, qp_size); 1059 else 1060 err = -EINVAL; 1061 1062 } else { 1063 /* Handle a REQUEST2 (or override) */ 1064 int proto_int = pkt->proto; 1065 int pos; 1066 u16 active_proto_version = 0; 1067 1068 /* The list of possible protocols is the intersection of all 1069 * protocols the client supports ... plus all the protocols we 1070 * support. 1071 */ 1072 proto_int &= vmci_transport_new_proto_supported_versions(); 1073 1074 /* We choose the highest possible protocol version and use that 1075 * one. 1076 */ 1077 pos = fls(proto_int); 1078 if (pos) { 1079 active_proto_version = (1 << (pos - 1)); 1080 if (vmci_transport_proto_to_notify_struct( 1081 pending, &active_proto_version, false)) 1082 err = vmci_transport_send_negotiate2(pending, 1083 qp_size, 1084 active_proto_version); 1085 else 1086 err = -EINVAL; 1087 1088 } else { 1089 err = -EINVAL; 1090 } 1091 } 1092 1093 if (err < 0) { 1094 vmci_transport_send_reset(sk, pkt); 1095 sock_put(pending); 1096 err = vmci_transport_error_to_vsock_error(err); 1097 goto out; 1098 } 1099 1100 vsock_add_pending(sk, pending); 1101 sk->sk_ack_backlog++; 1102 1103 pending->sk_state = TCP_SYN_SENT; 1104 vmci_trans(vpending)->produce_size = 1105 vmci_trans(vpending)->consume_size = qp_size; 1106 vmci_trans(vpending)->queue_pair_size = qp_size; 1107 1108 vmci_trans(vpending)->notify_ops->process_request(pending); 1109 1110 /* We might never receive another message for this socket and it's not 1111 * connected to any process, so we have to ensure it gets cleaned up 1112 * ourself. Our delayed work function will take care of that. Note 1113 * that we do not ever cancel this function since we have few 1114 * guarantees about its state when calling cancel_delayed_work(). 1115 * Instead we hold a reference on the socket for that function and make 1116 * it capable of handling cases where it needs to do nothing but 1117 * release that reference. 1118 */ 1119 vpending->listener = sk; 1120 sock_hold(sk); 1121 sock_hold(pending); 1122 schedule_delayed_work(&vpending->pending_work, HZ); 1123 1124 out: 1125 return err; 1126 } 1127 1128 static int 1129 vmci_transport_recv_connecting_server(struct sock *listener, 1130 struct sock *pending, 1131 struct vmci_transport_packet *pkt) 1132 { 1133 struct vsock_sock *vpending; 1134 struct vmci_handle handle; 1135 struct vmci_qp *qpair; 1136 bool is_local; 1137 u32 flags; 1138 u32 detach_sub_id; 1139 int err; 1140 int skerr; 1141 1142 vpending = vsock_sk(pending); 1143 detach_sub_id = VMCI_INVALID_ID; 1144 1145 switch (pkt->type) { 1146 case VMCI_TRANSPORT_PACKET_TYPE_OFFER: 1147 if (vmci_handle_is_invalid(pkt->u.handle)) { 1148 vmci_transport_send_reset(pending, pkt); 1149 skerr = EPROTO; 1150 err = -EINVAL; 1151 goto destroy; 1152 } 1153 break; 1154 default: 1155 /* Close and cleanup the connection. */ 1156 vmci_transport_send_reset(pending, pkt); 1157 skerr = EPROTO; 1158 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL; 1159 goto destroy; 1160 } 1161 1162 /* In order to complete the connection we need to attach to the offered 1163 * queue pair and send an attach notification. We also subscribe to the 1164 * detach event so we know when our peer goes away, and we do that 1165 * before attaching so we don't miss an event. If all this succeeds, 1166 * we update our state and wakeup anything waiting in accept() for a 1167 * connection. 1168 */ 1169 1170 /* We don't care about attach since we ensure the other side has 1171 * attached by specifying the ATTACH_ONLY flag below. 1172 */ 1173 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, 1174 vmci_transport_peer_detach_cb, 1175 vmci_trans(vpending), &detach_sub_id); 1176 if (err < VMCI_SUCCESS) { 1177 vmci_transport_send_reset(pending, pkt); 1178 err = vmci_transport_error_to_vsock_error(err); 1179 skerr = -err; 1180 goto destroy; 1181 } 1182 1183 vmci_trans(vpending)->detach_sub_id = detach_sub_id; 1184 1185 /* Now attach to the queue pair the client created. */ 1186 handle = pkt->u.handle; 1187 1188 /* vpending->local_addr always has a context id so we do not need to 1189 * worry about VMADDR_CID_ANY in this case. 1190 */ 1191 is_local = 1192 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid; 1193 flags = VMCI_QPFLAG_ATTACH_ONLY; 1194 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0; 1195 1196 err = vmci_transport_queue_pair_alloc( 1197 &qpair, 1198 &handle, 1199 vmci_trans(vpending)->produce_size, 1200 vmci_trans(vpending)->consume_size, 1201 pkt->dg.src.context, 1202 flags, 1203 vmci_transport_is_trusted( 1204 vpending, 1205 vpending->remote_addr.svm_cid)); 1206 if (err < 0) { 1207 vmci_transport_send_reset(pending, pkt); 1208 skerr = -err; 1209 goto destroy; 1210 } 1211 1212 vmci_trans(vpending)->qp_handle = handle; 1213 vmci_trans(vpending)->qpair = qpair; 1214 1215 /* When we send the attach message, we must be ready to handle incoming 1216 * control messages on the newly connected socket. So we move the 1217 * pending socket to the connected state before sending the attach 1218 * message. Otherwise, an incoming packet triggered by the attach being 1219 * received by the peer may be processed concurrently with what happens 1220 * below after sending the attach message, and that incoming packet 1221 * will find the listening socket instead of the (currently) pending 1222 * socket. Note that enqueueing the socket increments the reference 1223 * count, so even if a reset comes before the connection is accepted, 1224 * the socket will be valid until it is removed from the queue. 1225 * 1226 * If we fail sending the attach below, we remove the socket from the 1227 * connected list and move the socket to TCP_CLOSE before 1228 * releasing the lock, so a pending slow path processing of an incoming 1229 * packet will not see the socket in the connected state in that case. 1230 */ 1231 pending->sk_state = TCP_ESTABLISHED; 1232 1233 vsock_insert_connected(vpending); 1234 1235 /* Notify our peer of our attach. */ 1236 err = vmci_transport_send_attach(pending, handle); 1237 if (err < 0) { 1238 vsock_remove_connected(vpending); 1239 pr_err("Could not send attach\n"); 1240 vmci_transport_send_reset(pending, pkt); 1241 err = vmci_transport_error_to_vsock_error(err); 1242 skerr = -err; 1243 goto destroy; 1244 } 1245 1246 /* We have a connection. Move the now connected socket from the 1247 * listener's pending list to the accept queue so callers of accept() 1248 * can find it. 1249 */ 1250 vsock_remove_pending(listener, pending); 1251 vsock_enqueue_accept(listener, pending); 1252 1253 /* Callers of accept() will be be waiting on the listening socket, not 1254 * the pending socket. 1255 */ 1256 listener->sk_data_ready(listener); 1257 1258 return 0; 1259 1260 destroy: 1261 pending->sk_err = skerr; 1262 pending->sk_state = TCP_CLOSE; 1263 /* As long as we drop our reference, all necessary cleanup will handle 1264 * when the cleanup function drops its reference and our destruct 1265 * implementation is called. Note that since the listen handler will 1266 * remove pending from the pending list upon our failure, the cleanup 1267 * function won't drop the additional reference, which is why we do it 1268 * here. 1269 */ 1270 sock_put(pending); 1271 1272 return err; 1273 } 1274 1275 static int 1276 vmci_transport_recv_connecting_client(struct sock *sk, 1277 struct vmci_transport_packet *pkt) 1278 { 1279 struct vsock_sock *vsk; 1280 int err; 1281 int skerr; 1282 1283 vsk = vsock_sk(sk); 1284 1285 switch (pkt->type) { 1286 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: 1287 if (vmci_handle_is_invalid(pkt->u.handle) || 1288 !vmci_handle_is_equal(pkt->u.handle, 1289 vmci_trans(vsk)->qp_handle)) { 1290 skerr = EPROTO; 1291 err = -EINVAL; 1292 goto destroy; 1293 } 1294 1295 /* Signify the socket is connected and wakeup the waiter in 1296 * connect(). Also place the socket in the connected table for 1297 * accounting (it can already be found since it's in the bound 1298 * table). 1299 */ 1300 sk->sk_state = TCP_ESTABLISHED; 1301 sk->sk_socket->state = SS_CONNECTED; 1302 vsock_insert_connected(vsk); 1303 sk->sk_state_change(sk); 1304 1305 break; 1306 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: 1307 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: 1308 if (pkt->u.size == 0 1309 || pkt->dg.src.context != vsk->remote_addr.svm_cid 1310 || pkt->src_port != vsk->remote_addr.svm_port 1311 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle) 1312 || vmci_trans(vsk)->qpair 1313 || vmci_trans(vsk)->produce_size != 0 1314 || vmci_trans(vsk)->consume_size != 0 1315 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) { 1316 skerr = EPROTO; 1317 err = -EINVAL; 1318 1319 goto destroy; 1320 } 1321 1322 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt); 1323 if (err) { 1324 skerr = -err; 1325 goto destroy; 1326 } 1327 1328 break; 1329 case VMCI_TRANSPORT_PACKET_TYPE_INVALID: 1330 err = vmci_transport_recv_connecting_client_invalid(sk, pkt); 1331 if (err) { 1332 skerr = -err; 1333 goto destroy; 1334 } 1335 1336 break; 1337 case VMCI_TRANSPORT_PACKET_TYPE_RST: 1338 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to 1339 * continue processing here after they sent an INVALID packet. 1340 * This meant that we got a RST after the INVALID. We ignore a 1341 * RST after an INVALID. The common code doesn't send the RST 1342 * ... so we can hang if an old version of the common code 1343 * fails between getting a REQUEST and sending an OFFER back. 1344 * Not much we can do about it... except hope that it doesn't 1345 * happen. 1346 */ 1347 if (vsk->ignore_connecting_rst) { 1348 vsk->ignore_connecting_rst = false; 1349 } else { 1350 skerr = ECONNRESET; 1351 err = 0; 1352 goto destroy; 1353 } 1354 1355 break; 1356 default: 1357 /* Close and cleanup the connection. */ 1358 skerr = EPROTO; 1359 err = -EINVAL; 1360 goto destroy; 1361 } 1362 1363 return 0; 1364 1365 destroy: 1366 vmci_transport_send_reset(sk, pkt); 1367 1368 sk->sk_state = TCP_CLOSE; 1369 sk->sk_err = skerr; 1370 sk->sk_error_report(sk); 1371 return err; 1372 } 1373 1374 static int vmci_transport_recv_connecting_client_negotiate( 1375 struct sock *sk, 1376 struct vmci_transport_packet *pkt) 1377 { 1378 int err; 1379 struct vsock_sock *vsk; 1380 struct vmci_handle handle; 1381 struct vmci_qp *qpair; 1382 u32 detach_sub_id; 1383 bool is_local; 1384 u32 flags; 1385 bool old_proto = true; 1386 bool old_pkt_proto; 1387 u16 version; 1388 1389 vsk = vsock_sk(sk); 1390 handle = VMCI_INVALID_HANDLE; 1391 detach_sub_id = VMCI_INVALID_ID; 1392 1393 /* If we have gotten here then we should be past the point where old 1394 * linux vsock could have sent the bogus rst. 1395 */ 1396 vsk->sent_request = false; 1397 vsk->ignore_connecting_rst = false; 1398 1399 /* Verify that we're OK with the proposed queue pair size */ 1400 if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size || 1401 pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) { 1402 err = -EINVAL; 1403 goto destroy; 1404 } 1405 1406 /* At this point we know the CID the peer is using to talk to us. */ 1407 1408 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY) 1409 vsk->local_addr.svm_cid = pkt->dg.dst.context; 1410 1411 /* Setup the notify ops to be the highest supported version that both 1412 * the server and the client support. 1413 */ 1414 1415 if (vmci_transport_old_proto_override(&old_pkt_proto)) { 1416 old_proto = old_pkt_proto; 1417 } else { 1418 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE) 1419 old_proto = true; 1420 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2) 1421 old_proto = false; 1422 1423 } 1424 1425 if (old_proto) 1426 version = VSOCK_PROTO_INVALID; 1427 else 1428 version = pkt->proto; 1429 1430 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) { 1431 err = -EINVAL; 1432 goto destroy; 1433 } 1434 1435 /* Subscribe to detach events first. 1436 * 1437 * XXX We attach once for each queue pair created for now so it is easy 1438 * to find the socket (it's provided), but later we should only 1439 * subscribe once and add a way to lookup sockets by queue pair handle. 1440 */ 1441 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, 1442 vmci_transport_peer_detach_cb, 1443 vmci_trans(vsk), &detach_sub_id); 1444 if (err < VMCI_SUCCESS) { 1445 err = vmci_transport_error_to_vsock_error(err); 1446 goto destroy; 1447 } 1448 1449 /* Make VMCI select the handle for us. */ 1450 handle = VMCI_INVALID_HANDLE; 1451 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid; 1452 flags = is_local ? VMCI_QPFLAG_LOCAL : 0; 1453 1454 err = vmci_transport_queue_pair_alloc(&qpair, 1455 &handle, 1456 pkt->u.size, 1457 pkt->u.size, 1458 vsk->remote_addr.svm_cid, 1459 flags, 1460 vmci_transport_is_trusted( 1461 vsk, 1462 vsk-> 1463 remote_addr.svm_cid)); 1464 if (err < 0) 1465 goto destroy; 1466 1467 err = vmci_transport_send_qp_offer(sk, handle); 1468 if (err < 0) { 1469 err = vmci_transport_error_to_vsock_error(err); 1470 goto destroy; 1471 } 1472 1473 vmci_trans(vsk)->qp_handle = handle; 1474 vmci_trans(vsk)->qpair = qpair; 1475 1476 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 1477 pkt->u.size; 1478 1479 vmci_trans(vsk)->detach_sub_id = detach_sub_id; 1480 1481 vmci_trans(vsk)->notify_ops->process_negotiate(sk); 1482 1483 return 0; 1484 1485 destroy: 1486 if (detach_sub_id != VMCI_INVALID_ID) 1487 vmci_event_unsubscribe(detach_sub_id); 1488 1489 if (!vmci_handle_is_invalid(handle)) 1490 vmci_qpair_detach(&qpair); 1491 1492 return err; 1493 } 1494 1495 static int 1496 vmci_transport_recv_connecting_client_invalid(struct sock *sk, 1497 struct vmci_transport_packet *pkt) 1498 { 1499 int err = 0; 1500 struct vsock_sock *vsk = vsock_sk(sk); 1501 1502 if (vsk->sent_request) { 1503 vsk->sent_request = false; 1504 vsk->ignore_connecting_rst = true; 1505 1506 err = vmci_transport_send_conn_request( 1507 sk, vmci_trans(vsk)->queue_pair_size); 1508 if (err < 0) 1509 err = vmci_transport_error_to_vsock_error(err); 1510 else 1511 err = 0; 1512 1513 } 1514 1515 return err; 1516 } 1517 1518 static int vmci_transport_recv_connected(struct sock *sk, 1519 struct vmci_transport_packet *pkt) 1520 { 1521 struct vsock_sock *vsk; 1522 bool pkt_processed = false; 1523 1524 /* In cases where we are closing the connection, it's sufficient to 1525 * mark the state change (and maybe error) and wake up any waiting 1526 * threads. Since this is a connected socket, it's owned by a user 1527 * process and will be cleaned up when the failure is passed back on 1528 * the current or next system call. Our system call implementations 1529 * must therefore check for error and state changes on entry and when 1530 * being awoken. 1531 */ 1532 switch (pkt->type) { 1533 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: 1534 if (pkt->u.mode) { 1535 vsk = vsock_sk(sk); 1536 1537 vsk->peer_shutdown |= pkt->u.mode; 1538 sk->sk_state_change(sk); 1539 } 1540 break; 1541 1542 case VMCI_TRANSPORT_PACKET_TYPE_RST: 1543 vsk = vsock_sk(sk); 1544 /* It is possible that we sent our peer a message (e.g a 1545 * WAITING_READ) right before we got notified that the peer had 1546 * detached. If that happens then we can get a RST pkt back 1547 * from our peer even though there is data available for us to 1548 * read. In that case, don't shutdown the socket completely but 1549 * instead allow the local client to finish reading data off 1550 * the queuepair. Always treat a RST pkt in connected mode like 1551 * a clean shutdown. 1552 */ 1553 sock_set_flag(sk, SOCK_DONE); 1554 vsk->peer_shutdown = SHUTDOWN_MASK; 1555 if (vsock_stream_has_data(vsk) <= 0) 1556 sk->sk_state = TCP_CLOSING; 1557 1558 sk->sk_state_change(sk); 1559 break; 1560 1561 default: 1562 vsk = vsock_sk(sk); 1563 vmci_trans(vsk)->notify_ops->handle_notify_pkt( 1564 sk, pkt, false, NULL, NULL, 1565 &pkt_processed); 1566 if (!pkt_processed) 1567 return -EINVAL; 1568 1569 break; 1570 } 1571 1572 return 0; 1573 } 1574 1575 static int vmci_transport_socket_init(struct vsock_sock *vsk, 1576 struct vsock_sock *psk) 1577 { 1578 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL); 1579 if (!vsk->trans) 1580 return -ENOMEM; 1581 1582 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; 1583 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE; 1584 vmci_trans(vsk)->qpair = NULL; 1585 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0; 1586 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID; 1587 vmci_trans(vsk)->notify_ops = NULL; 1588 INIT_LIST_HEAD(&vmci_trans(vsk)->elem); 1589 vmci_trans(vsk)->sk = &vsk->sk; 1590 spin_lock_init(&vmci_trans(vsk)->lock); 1591 if (psk) { 1592 vmci_trans(vsk)->queue_pair_size = 1593 vmci_trans(psk)->queue_pair_size; 1594 vmci_trans(vsk)->queue_pair_min_size = 1595 vmci_trans(psk)->queue_pair_min_size; 1596 vmci_trans(vsk)->queue_pair_max_size = 1597 vmci_trans(psk)->queue_pair_max_size; 1598 } else { 1599 vmci_trans(vsk)->queue_pair_size = 1600 VMCI_TRANSPORT_DEFAULT_QP_SIZE; 1601 vmci_trans(vsk)->queue_pair_min_size = 1602 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN; 1603 vmci_trans(vsk)->queue_pair_max_size = 1604 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX; 1605 } 1606 1607 return 0; 1608 } 1609 1610 static void vmci_transport_free_resources(struct list_head *transport_list) 1611 { 1612 while (!list_empty(transport_list)) { 1613 struct vmci_transport *transport = 1614 list_first_entry(transport_list, struct vmci_transport, 1615 elem); 1616 list_del(&transport->elem); 1617 1618 if (transport->detach_sub_id != VMCI_INVALID_ID) { 1619 vmci_event_unsubscribe(transport->detach_sub_id); 1620 transport->detach_sub_id = VMCI_INVALID_ID; 1621 } 1622 1623 if (!vmci_handle_is_invalid(transport->qp_handle)) { 1624 vmci_qpair_detach(&transport->qpair); 1625 transport->qp_handle = VMCI_INVALID_HANDLE; 1626 transport->produce_size = 0; 1627 transport->consume_size = 0; 1628 } 1629 1630 kfree(transport); 1631 } 1632 } 1633 1634 static void vmci_transport_cleanup(struct work_struct *work) 1635 { 1636 LIST_HEAD(pending); 1637 1638 spin_lock_bh(&vmci_transport_cleanup_lock); 1639 list_replace_init(&vmci_transport_cleanup_list, &pending); 1640 spin_unlock_bh(&vmci_transport_cleanup_lock); 1641 vmci_transport_free_resources(&pending); 1642 } 1643 1644 static void vmci_transport_destruct(struct vsock_sock *vsk) 1645 { 1646 /* transport can be NULL if we hit a failure at init() time */ 1647 if (!vmci_trans(vsk)) 1648 return; 1649 1650 /* Ensure that the detach callback doesn't use the sk/vsk 1651 * we are about to destruct. 1652 */ 1653 spin_lock_bh(&vmci_trans(vsk)->lock); 1654 vmci_trans(vsk)->sk = NULL; 1655 spin_unlock_bh(&vmci_trans(vsk)->lock); 1656 1657 if (vmci_trans(vsk)->notify_ops) 1658 vmci_trans(vsk)->notify_ops->socket_destruct(vsk); 1659 1660 spin_lock_bh(&vmci_transport_cleanup_lock); 1661 list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list); 1662 spin_unlock_bh(&vmci_transport_cleanup_lock); 1663 schedule_work(&vmci_transport_cleanup_work); 1664 1665 vsk->trans = NULL; 1666 } 1667 1668 static void vmci_transport_release(struct vsock_sock *vsk) 1669 { 1670 vsock_remove_sock(vsk); 1671 1672 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) { 1673 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle); 1674 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; 1675 } 1676 } 1677 1678 static int vmci_transport_dgram_bind(struct vsock_sock *vsk, 1679 struct sockaddr_vm *addr) 1680 { 1681 u32 port; 1682 u32 flags; 1683 int err; 1684 1685 /* VMCI will select a resource ID for us if we provide 1686 * VMCI_INVALID_ID. 1687 */ 1688 port = addr->svm_port == VMADDR_PORT_ANY ? 1689 VMCI_INVALID_ID : addr->svm_port; 1690 1691 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE)) 1692 return -EACCES; 1693 1694 flags = addr->svm_cid == VMADDR_CID_ANY ? 1695 VMCI_FLAG_ANYCID_DG_HND : 0; 1696 1697 err = vmci_transport_datagram_create_hnd(port, flags, 1698 vmci_transport_recv_dgram_cb, 1699 &vsk->sk, 1700 &vmci_trans(vsk)->dg_handle); 1701 if (err < VMCI_SUCCESS) 1702 return vmci_transport_error_to_vsock_error(err); 1703 vsock_addr_init(&vsk->local_addr, addr->svm_cid, 1704 vmci_trans(vsk)->dg_handle.resource); 1705 1706 return 0; 1707 } 1708 1709 static int vmci_transport_dgram_enqueue( 1710 struct vsock_sock *vsk, 1711 struct sockaddr_vm *remote_addr, 1712 struct msghdr *msg, 1713 size_t len) 1714 { 1715 int err; 1716 struct vmci_datagram *dg; 1717 1718 if (len > VMCI_MAX_DG_PAYLOAD_SIZE) 1719 return -EMSGSIZE; 1720 1721 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid)) 1722 return -EPERM; 1723 1724 /* Allocate a buffer for the user's message and our packet header. */ 1725 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL); 1726 if (!dg) 1727 return -ENOMEM; 1728 1729 memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len); 1730 1731 dg->dst = vmci_make_handle(remote_addr->svm_cid, 1732 remote_addr->svm_port); 1733 dg->src = vmci_make_handle(vsk->local_addr.svm_cid, 1734 vsk->local_addr.svm_port); 1735 dg->payload_size = len; 1736 1737 err = vmci_datagram_send(dg); 1738 kfree(dg); 1739 if (err < 0) 1740 return vmci_transport_error_to_vsock_error(err); 1741 1742 return err - sizeof(*dg); 1743 } 1744 1745 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk, 1746 struct msghdr *msg, size_t len, 1747 int flags) 1748 { 1749 int err; 1750 int noblock; 1751 struct vmci_datagram *dg; 1752 size_t payload_len; 1753 struct sk_buff *skb; 1754 1755 noblock = flags & MSG_DONTWAIT; 1756 1757 if (flags & MSG_OOB || flags & MSG_ERRQUEUE) 1758 return -EOPNOTSUPP; 1759 1760 /* Retrieve the head sk_buff from the socket's receive queue. */ 1761 err = 0; 1762 skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err); 1763 if (!skb) 1764 return err; 1765 1766 dg = (struct vmci_datagram *)skb->data; 1767 if (!dg) 1768 /* err is 0, meaning we read zero bytes. */ 1769 goto out; 1770 1771 payload_len = dg->payload_size; 1772 /* Ensure the sk_buff matches the payload size claimed in the packet. */ 1773 if (payload_len != skb->len - sizeof(*dg)) { 1774 err = -EINVAL; 1775 goto out; 1776 } 1777 1778 if (payload_len > len) { 1779 payload_len = len; 1780 msg->msg_flags |= MSG_TRUNC; 1781 } 1782 1783 /* Place the datagram payload in the user's iovec. */ 1784 err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len); 1785 if (err) 1786 goto out; 1787 1788 if (msg->msg_name) { 1789 /* Provide the address of the sender. */ 1790 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name); 1791 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource); 1792 msg->msg_namelen = sizeof(*vm_addr); 1793 } 1794 err = payload_len; 1795 1796 out: 1797 skb_free_datagram(&vsk->sk, skb); 1798 return err; 1799 } 1800 1801 static bool vmci_transport_dgram_allow(u32 cid, u32 port) 1802 { 1803 if (cid == VMADDR_CID_HYPERVISOR) { 1804 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor 1805 * state and are allowed. 1806 */ 1807 return port == VMCI_UNITY_PBRPC_REGISTER; 1808 } 1809 1810 return true; 1811 } 1812 1813 static int vmci_transport_connect(struct vsock_sock *vsk) 1814 { 1815 int err; 1816 bool old_pkt_proto = false; 1817 struct sock *sk = &vsk->sk; 1818 1819 if (vmci_transport_old_proto_override(&old_pkt_proto) && 1820 old_pkt_proto) { 1821 err = vmci_transport_send_conn_request( 1822 sk, vmci_trans(vsk)->queue_pair_size); 1823 if (err < 0) { 1824 sk->sk_state = TCP_CLOSE; 1825 return err; 1826 } 1827 } else { 1828 int supported_proto_versions = 1829 vmci_transport_new_proto_supported_versions(); 1830 err = vmci_transport_send_conn_request2( 1831 sk, vmci_trans(vsk)->queue_pair_size, 1832 supported_proto_versions); 1833 if (err < 0) { 1834 sk->sk_state = TCP_CLOSE; 1835 return err; 1836 } 1837 1838 vsk->sent_request = true; 1839 } 1840 1841 return err; 1842 } 1843 1844 static ssize_t vmci_transport_stream_dequeue( 1845 struct vsock_sock *vsk, 1846 struct msghdr *msg, 1847 size_t len, 1848 int flags) 1849 { 1850 if (flags & MSG_PEEK) 1851 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0); 1852 else 1853 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0); 1854 } 1855 1856 static ssize_t vmci_transport_stream_enqueue( 1857 struct vsock_sock *vsk, 1858 struct msghdr *msg, 1859 size_t len) 1860 { 1861 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0); 1862 } 1863 1864 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk) 1865 { 1866 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair); 1867 } 1868 1869 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk) 1870 { 1871 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair); 1872 } 1873 1874 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk) 1875 { 1876 return vmci_trans(vsk)->consume_size; 1877 } 1878 1879 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk) 1880 { 1881 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle); 1882 } 1883 1884 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk) 1885 { 1886 return vmci_trans(vsk)->queue_pair_size; 1887 } 1888 1889 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk) 1890 { 1891 return vmci_trans(vsk)->queue_pair_min_size; 1892 } 1893 1894 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk) 1895 { 1896 return vmci_trans(vsk)->queue_pair_max_size; 1897 } 1898 1899 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val) 1900 { 1901 if (val < vmci_trans(vsk)->queue_pair_min_size) 1902 vmci_trans(vsk)->queue_pair_min_size = val; 1903 if (val > vmci_trans(vsk)->queue_pair_max_size) 1904 vmci_trans(vsk)->queue_pair_max_size = val; 1905 vmci_trans(vsk)->queue_pair_size = val; 1906 } 1907 1908 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk, 1909 u64 val) 1910 { 1911 if (val > vmci_trans(vsk)->queue_pair_size) 1912 vmci_trans(vsk)->queue_pair_size = val; 1913 vmci_trans(vsk)->queue_pair_min_size = val; 1914 } 1915 1916 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk, 1917 u64 val) 1918 { 1919 if (val < vmci_trans(vsk)->queue_pair_size) 1920 vmci_trans(vsk)->queue_pair_size = val; 1921 vmci_trans(vsk)->queue_pair_max_size = val; 1922 } 1923 1924 static int vmci_transport_notify_poll_in( 1925 struct vsock_sock *vsk, 1926 size_t target, 1927 bool *data_ready_now) 1928 { 1929 return vmci_trans(vsk)->notify_ops->poll_in( 1930 &vsk->sk, target, data_ready_now); 1931 } 1932 1933 static int vmci_transport_notify_poll_out( 1934 struct vsock_sock *vsk, 1935 size_t target, 1936 bool *space_available_now) 1937 { 1938 return vmci_trans(vsk)->notify_ops->poll_out( 1939 &vsk->sk, target, space_available_now); 1940 } 1941 1942 static int vmci_transport_notify_recv_init( 1943 struct vsock_sock *vsk, 1944 size_t target, 1945 struct vsock_transport_recv_notify_data *data) 1946 { 1947 return vmci_trans(vsk)->notify_ops->recv_init( 1948 &vsk->sk, target, 1949 (struct vmci_transport_recv_notify_data *)data); 1950 } 1951 1952 static int vmci_transport_notify_recv_pre_block( 1953 struct vsock_sock *vsk, 1954 size_t target, 1955 struct vsock_transport_recv_notify_data *data) 1956 { 1957 return vmci_trans(vsk)->notify_ops->recv_pre_block( 1958 &vsk->sk, target, 1959 (struct vmci_transport_recv_notify_data *)data); 1960 } 1961 1962 static int vmci_transport_notify_recv_pre_dequeue( 1963 struct vsock_sock *vsk, 1964 size_t target, 1965 struct vsock_transport_recv_notify_data *data) 1966 { 1967 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue( 1968 &vsk->sk, target, 1969 (struct vmci_transport_recv_notify_data *)data); 1970 } 1971 1972 static int vmci_transport_notify_recv_post_dequeue( 1973 struct vsock_sock *vsk, 1974 size_t target, 1975 ssize_t copied, 1976 bool data_read, 1977 struct vsock_transport_recv_notify_data *data) 1978 { 1979 return vmci_trans(vsk)->notify_ops->recv_post_dequeue( 1980 &vsk->sk, target, copied, data_read, 1981 (struct vmci_transport_recv_notify_data *)data); 1982 } 1983 1984 static int vmci_transport_notify_send_init( 1985 struct vsock_sock *vsk, 1986 struct vsock_transport_send_notify_data *data) 1987 { 1988 return vmci_trans(vsk)->notify_ops->send_init( 1989 &vsk->sk, 1990 (struct vmci_transport_send_notify_data *)data); 1991 } 1992 1993 static int vmci_transport_notify_send_pre_block( 1994 struct vsock_sock *vsk, 1995 struct vsock_transport_send_notify_data *data) 1996 { 1997 return vmci_trans(vsk)->notify_ops->send_pre_block( 1998 &vsk->sk, 1999 (struct vmci_transport_send_notify_data *)data); 2000 } 2001 2002 static int vmci_transport_notify_send_pre_enqueue( 2003 struct vsock_sock *vsk, 2004 struct vsock_transport_send_notify_data *data) 2005 { 2006 return vmci_trans(vsk)->notify_ops->send_pre_enqueue( 2007 &vsk->sk, 2008 (struct vmci_transport_send_notify_data *)data); 2009 } 2010 2011 static int vmci_transport_notify_send_post_enqueue( 2012 struct vsock_sock *vsk, 2013 ssize_t written, 2014 struct vsock_transport_send_notify_data *data) 2015 { 2016 return vmci_trans(vsk)->notify_ops->send_post_enqueue( 2017 &vsk->sk, written, 2018 (struct vmci_transport_send_notify_data *)data); 2019 } 2020 2021 static bool vmci_transport_old_proto_override(bool *old_pkt_proto) 2022 { 2023 if (PROTOCOL_OVERRIDE != -1) { 2024 if (PROTOCOL_OVERRIDE == 0) 2025 *old_pkt_proto = true; 2026 else 2027 *old_pkt_proto = false; 2028 2029 pr_info("Proto override in use\n"); 2030 return true; 2031 } 2032 2033 return false; 2034 } 2035 2036 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, 2037 u16 *proto, 2038 bool old_pkt_proto) 2039 { 2040 struct vsock_sock *vsk = vsock_sk(sk); 2041 2042 if (old_pkt_proto) { 2043 if (*proto != VSOCK_PROTO_INVALID) { 2044 pr_err("Can't set both an old and new protocol\n"); 2045 return false; 2046 } 2047 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops; 2048 goto exit; 2049 } 2050 2051 switch (*proto) { 2052 case VSOCK_PROTO_PKT_ON_NOTIFY: 2053 vmci_trans(vsk)->notify_ops = 2054 &vmci_transport_notify_pkt_q_state_ops; 2055 break; 2056 default: 2057 pr_err("Unknown notify protocol version\n"); 2058 return false; 2059 } 2060 2061 exit: 2062 vmci_trans(vsk)->notify_ops->socket_init(sk); 2063 return true; 2064 } 2065 2066 static u16 vmci_transport_new_proto_supported_versions(void) 2067 { 2068 if (PROTOCOL_OVERRIDE != -1) 2069 return PROTOCOL_OVERRIDE; 2070 2071 return VSOCK_PROTO_ALL_SUPPORTED; 2072 } 2073 2074 static u32 vmci_transport_get_local_cid(void) 2075 { 2076 return vmci_get_context_id(); 2077 } 2078 2079 static const struct vsock_transport vmci_transport = { 2080 .init = vmci_transport_socket_init, 2081 .destruct = vmci_transport_destruct, 2082 .release = vmci_transport_release, 2083 .connect = vmci_transport_connect, 2084 .dgram_bind = vmci_transport_dgram_bind, 2085 .dgram_dequeue = vmci_transport_dgram_dequeue, 2086 .dgram_enqueue = vmci_transport_dgram_enqueue, 2087 .dgram_allow = vmci_transport_dgram_allow, 2088 .stream_dequeue = vmci_transport_stream_dequeue, 2089 .stream_enqueue = vmci_transport_stream_enqueue, 2090 .stream_has_data = vmci_transport_stream_has_data, 2091 .stream_has_space = vmci_transport_stream_has_space, 2092 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat, 2093 .stream_is_active = vmci_transport_stream_is_active, 2094 .stream_allow = vmci_transport_stream_allow, 2095 .notify_poll_in = vmci_transport_notify_poll_in, 2096 .notify_poll_out = vmci_transport_notify_poll_out, 2097 .notify_recv_init = vmci_transport_notify_recv_init, 2098 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block, 2099 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue, 2100 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue, 2101 .notify_send_init = vmci_transport_notify_send_init, 2102 .notify_send_pre_block = vmci_transport_notify_send_pre_block, 2103 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue, 2104 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue, 2105 .shutdown = vmci_transport_shutdown, 2106 .set_buffer_size = vmci_transport_set_buffer_size, 2107 .set_min_buffer_size = vmci_transport_set_min_buffer_size, 2108 .set_max_buffer_size = vmci_transport_set_max_buffer_size, 2109 .get_buffer_size = vmci_transport_get_buffer_size, 2110 .get_min_buffer_size = vmci_transport_get_min_buffer_size, 2111 .get_max_buffer_size = vmci_transport_get_max_buffer_size, 2112 .get_local_cid = vmci_transport_get_local_cid, 2113 }; 2114 2115 static int __init vmci_transport_init(void) 2116 { 2117 int err; 2118 2119 /* Create the datagram handle that we will use to send and receive all 2120 * VSocket control messages for this context. 2121 */ 2122 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID, 2123 VMCI_FLAG_ANYCID_DG_HND, 2124 vmci_transport_recv_stream_cb, 2125 NULL, 2126 &vmci_transport_stream_handle); 2127 if (err < VMCI_SUCCESS) { 2128 pr_err("Unable to create datagram handle. (%d)\n", err); 2129 return vmci_transport_error_to_vsock_error(err); 2130 } 2131 2132 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED, 2133 vmci_transport_qp_resumed_cb, 2134 NULL, &vmci_transport_qp_resumed_sub_id); 2135 if (err < VMCI_SUCCESS) { 2136 pr_err("Unable to subscribe to resumed event. (%d)\n", err); 2137 err = vmci_transport_error_to_vsock_error(err); 2138 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 2139 goto err_destroy_stream_handle; 2140 } 2141 2142 err = vsock_core_init(&vmci_transport); 2143 if (err < 0) 2144 goto err_unsubscribe; 2145 2146 return 0; 2147 2148 err_unsubscribe: 2149 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); 2150 err_destroy_stream_handle: 2151 vmci_datagram_destroy_handle(vmci_transport_stream_handle); 2152 return err; 2153 } 2154 module_init(vmci_transport_init); 2155 2156 static void __exit vmci_transport_exit(void) 2157 { 2158 cancel_work_sync(&vmci_transport_cleanup_work); 2159 vmci_transport_free_resources(&vmci_transport_cleanup_list); 2160 2161 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) { 2162 if (vmci_datagram_destroy_handle( 2163 vmci_transport_stream_handle) != VMCI_SUCCESS) 2164 pr_err("Couldn't destroy datagram handle\n"); 2165 vmci_transport_stream_handle = VMCI_INVALID_HANDLE; 2166 } 2167 2168 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) { 2169 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); 2170 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 2171 } 2172 2173 vsock_core_exit(); 2174 } 2175 module_exit(vmci_transport_exit); 2176 2177 MODULE_AUTHOR("VMware, Inc."); 2178 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets"); 2179 MODULE_VERSION("1.0.5.0-k"); 2180 MODULE_LICENSE("GPL v2"); 2181 MODULE_ALIAS("vmware_vsock"); 2182 MODULE_ALIAS_NETPROTO(PF_VSOCK); 2183