xref: /linux/net/vmw_vsock/vmci_transport.c (revision 63307d015b91e626c97bb82e88054af3d0b74643)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 #include <linux/types.h>
9 #include <linux/bitops.h>
10 #include <linux/cred.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/kernel.h>
14 #include <linux/kmod.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/net.h>
19 #include <linux/poll.h>
20 #include <linux/skbuff.h>
21 #include <linux/smp.h>
22 #include <linux/socket.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/wait.h>
26 #include <linux/workqueue.h>
27 #include <net/sock.h>
28 #include <net/af_vsock.h>
29 
30 #include "vmci_transport_notify.h"
31 
32 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
33 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
34 static void vmci_transport_peer_detach_cb(u32 sub_id,
35 					  const struct vmci_event_data *ed,
36 					  void *client_data);
37 static void vmci_transport_recv_pkt_work(struct work_struct *work);
38 static void vmci_transport_cleanup(struct work_struct *work);
39 static int vmci_transport_recv_listen(struct sock *sk,
40 				      struct vmci_transport_packet *pkt);
41 static int vmci_transport_recv_connecting_server(
42 					struct sock *sk,
43 					struct sock *pending,
44 					struct vmci_transport_packet *pkt);
45 static int vmci_transport_recv_connecting_client(
46 					struct sock *sk,
47 					struct vmci_transport_packet *pkt);
48 static int vmci_transport_recv_connecting_client_negotiate(
49 					struct sock *sk,
50 					struct vmci_transport_packet *pkt);
51 static int vmci_transport_recv_connecting_client_invalid(
52 					struct sock *sk,
53 					struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connected(struct sock *sk,
55 					 struct vmci_transport_packet *pkt);
56 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
57 static u16 vmci_transport_new_proto_supported_versions(void);
58 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
59 						  bool old_pkt_proto);
60 
61 struct vmci_transport_recv_pkt_info {
62 	struct work_struct work;
63 	struct sock *sk;
64 	struct vmci_transport_packet pkt;
65 };
66 
67 static LIST_HEAD(vmci_transport_cleanup_list);
68 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
69 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
70 
71 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
72 							   VMCI_INVALID_ID };
73 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
74 
75 static int PROTOCOL_OVERRIDE = -1;
76 
77 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN   128
78 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE       262144
79 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX   262144
80 
81 /* The default peer timeout indicates how long we will wait for a peer response
82  * to a control message.
83  */
84 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
85 
86 /* Helper function to convert from a VMCI error code to a VSock error code. */
87 
88 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
89 {
90 	switch (vmci_error) {
91 	case VMCI_ERROR_NO_MEM:
92 		return -ENOMEM;
93 	case VMCI_ERROR_DUPLICATE_ENTRY:
94 	case VMCI_ERROR_ALREADY_EXISTS:
95 		return -EADDRINUSE;
96 	case VMCI_ERROR_NO_ACCESS:
97 		return -EPERM;
98 	case VMCI_ERROR_NO_RESOURCES:
99 		return -ENOBUFS;
100 	case VMCI_ERROR_INVALID_RESOURCE:
101 		return -EHOSTUNREACH;
102 	case VMCI_ERROR_INVALID_ARGS:
103 	default:
104 		break;
105 	}
106 	return -EINVAL;
107 }
108 
109 static u32 vmci_transport_peer_rid(u32 peer_cid)
110 {
111 	if (VMADDR_CID_HYPERVISOR == peer_cid)
112 		return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
113 
114 	return VMCI_TRANSPORT_PACKET_RID;
115 }
116 
117 static inline void
118 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
119 			   struct sockaddr_vm *src,
120 			   struct sockaddr_vm *dst,
121 			   u8 type,
122 			   u64 size,
123 			   u64 mode,
124 			   struct vmci_transport_waiting_info *wait,
125 			   u16 proto,
126 			   struct vmci_handle handle)
127 {
128 	/* We register the stream control handler as an any cid handle so we
129 	 * must always send from a source address of VMADDR_CID_ANY
130 	 */
131 	pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
132 				       VMCI_TRANSPORT_PACKET_RID);
133 	pkt->dg.dst = vmci_make_handle(dst->svm_cid,
134 				       vmci_transport_peer_rid(dst->svm_cid));
135 	pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
136 	pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
137 	pkt->type = type;
138 	pkt->src_port = src->svm_port;
139 	pkt->dst_port = dst->svm_port;
140 	memset(&pkt->proto, 0, sizeof(pkt->proto));
141 	memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
142 
143 	switch (pkt->type) {
144 	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
145 		pkt->u.size = 0;
146 		break;
147 
148 	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
149 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
150 		pkt->u.size = size;
151 		break;
152 
153 	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
154 	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
155 		pkt->u.handle = handle;
156 		break;
157 
158 	case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
159 	case VMCI_TRANSPORT_PACKET_TYPE_READ:
160 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
161 		pkt->u.size = 0;
162 		break;
163 
164 	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
165 		pkt->u.mode = mode;
166 		break;
167 
168 	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
169 	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
170 		memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
171 		break;
172 
173 	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
174 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
175 		pkt->u.size = size;
176 		pkt->proto = proto;
177 		break;
178 	}
179 }
180 
181 static inline void
182 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
183 				    struct sockaddr_vm *local,
184 				    struct sockaddr_vm *remote)
185 {
186 	vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
187 	vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
188 }
189 
190 static int
191 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
192 				  struct sockaddr_vm *src,
193 				  struct sockaddr_vm *dst,
194 				  enum vmci_transport_packet_type type,
195 				  u64 size,
196 				  u64 mode,
197 				  struct vmci_transport_waiting_info *wait,
198 				  u16 proto,
199 				  struct vmci_handle handle,
200 				  bool convert_error)
201 {
202 	int err;
203 
204 	vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
205 				   proto, handle);
206 	err = vmci_datagram_send(&pkt->dg);
207 	if (convert_error && (err < 0))
208 		return vmci_transport_error_to_vsock_error(err);
209 
210 	return err;
211 }
212 
213 static int
214 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
215 				      enum vmci_transport_packet_type type,
216 				      u64 size,
217 				      u64 mode,
218 				      struct vmci_transport_waiting_info *wait,
219 				      struct vmci_handle handle)
220 {
221 	struct vmci_transport_packet reply;
222 	struct sockaddr_vm src, dst;
223 
224 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
225 		return 0;
226 	} else {
227 		vmci_transport_packet_get_addresses(pkt, &src, &dst);
228 		return __vmci_transport_send_control_pkt(&reply, &src, &dst,
229 							 type,
230 							 size, mode, wait,
231 							 VSOCK_PROTO_INVALID,
232 							 handle, true);
233 	}
234 }
235 
236 static int
237 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
238 				   struct sockaddr_vm *dst,
239 				   enum vmci_transport_packet_type type,
240 				   u64 size,
241 				   u64 mode,
242 				   struct vmci_transport_waiting_info *wait,
243 				   struct vmci_handle handle)
244 {
245 	/* Note that it is safe to use a single packet across all CPUs since
246 	 * two tasklets of the same type are guaranteed to not ever run
247 	 * simultaneously. If that ever changes, or VMCI stops using tasklets,
248 	 * we can use per-cpu packets.
249 	 */
250 	static struct vmci_transport_packet pkt;
251 
252 	return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
253 						 size, mode, wait,
254 						 VSOCK_PROTO_INVALID, handle,
255 						 false);
256 }
257 
258 static int
259 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
260 				      struct sockaddr_vm *dst,
261 				      enum vmci_transport_packet_type type,
262 				      u64 size,
263 				      u64 mode,
264 				      struct vmci_transport_waiting_info *wait,
265 				      u16 proto,
266 				      struct vmci_handle handle)
267 {
268 	struct vmci_transport_packet *pkt;
269 	int err;
270 
271 	pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
272 	if (!pkt)
273 		return -ENOMEM;
274 
275 	err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
276 						mode, wait, proto, handle,
277 						true);
278 	kfree(pkt);
279 
280 	return err;
281 }
282 
283 static int
284 vmci_transport_send_control_pkt(struct sock *sk,
285 				enum vmci_transport_packet_type type,
286 				u64 size,
287 				u64 mode,
288 				struct vmci_transport_waiting_info *wait,
289 				u16 proto,
290 				struct vmci_handle handle)
291 {
292 	struct vsock_sock *vsk;
293 
294 	vsk = vsock_sk(sk);
295 
296 	if (!vsock_addr_bound(&vsk->local_addr))
297 		return -EINVAL;
298 
299 	if (!vsock_addr_bound(&vsk->remote_addr))
300 		return -EINVAL;
301 
302 	return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
303 						     &vsk->remote_addr,
304 						     type, size, mode,
305 						     wait, proto, handle);
306 }
307 
308 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
309 					struct sockaddr_vm *src,
310 					struct vmci_transport_packet *pkt)
311 {
312 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
313 		return 0;
314 	return vmci_transport_send_control_pkt_bh(
315 					dst, src,
316 					VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
317 					0, NULL, VMCI_INVALID_HANDLE);
318 }
319 
320 static int vmci_transport_send_reset(struct sock *sk,
321 				     struct vmci_transport_packet *pkt)
322 {
323 	struct sockaddr_vm *dst_ptr;
324 	struct sockaddr_vm dst;
325 	struct vsock_sock *vsk;
326 
327 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
328 		return 0;
329 
330 	vsk = vsock_sk(sk);
331 
332 	if (!vsock_addr_bound(&vsk->local_addr))
333 		return -EINVAL;
334 
335 	if (vsock_addr_bound(&vsk->remote_addr)) {
336 		dst_ptr = &vsk->remote_addr;
337 	} else {
338 		vsock_addr_init(&dst, pkt->dg.src.context,
339 				pkt->src_port);
340 		dst_ptr = &dst;
341 	}
342 	return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
343 					     VMCI_TRANSPORT_PACKET_TYPE_RST,
344 					     0, 0, NULL, VSOCK_PROTO_INVALID,
345 					     VMCI_INVALID_HANDLE);
346 }
347 
348 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
349 {
350 	return vmci_transport_send_control_pkt(
351 					sk,
352 					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
353 					size, 0, NULL,
354 					VSOCK_PROTO_INVALID,
355 					VMCI_INVALID_HANDLE);
356 }
357 
358 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
359 					  u16 version)
360 {
361 	return vmci_transport_send_control_pkt(
362 					sk,
363 					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
364 					size, 0, NULL, version,
365 					VMCI_INVALID_HANDLE);
366 }
367 
368 static int vmci_transport_send_qp_offer(struct sock *sk,
369 					struct vmci_handle handle)
370 {
371 	return vmci_transport_send_control_pkt(
372 					sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
373 					0, NULL,
374 					VSOCK_PROTO_INVALID, handle);
375 }
376 
377 static int vmci_transport_send_attach(struct sock *sk,
378 				      struct vmci_handle handle)
379 {
380 	return vmci_transport_send_control_pkt(
381 					sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
382 					0, 0, NULL, VSOCK_PROTO_INVALID,
383 					handle);
384 }
385 
386 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
387 {
388 	return vmci_transport_reply_control_pkt_fast(
389 						pkt,
390 						VMCI_TRANSPORT_PACKET_TYPE_RST,
391 						0, 0, NULL,
392 						VMCI_INVALID_HANDLE);
393 }
394 
395 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
396 					  struct sockaddr_vm *src)
397 {
398 	return vmci_transport_send_control_pkt_bh(
399 					dst, src,
400 					VMCI_TRANSPORT_PACKET_TYPE_INVALID,
401 					0, 0, NULL, VMCI_INVALID_HANDLE);
402 }
403 
404 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
405 				 struct sockaddr_vm *src)
406 {
407 	return vmci_transport_send_control_pkt_bh(
408 					dst, src,
409 					VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
410 					0, NULL, VMCI_INVALID_HANDLE);
411 }
412 
413 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
414 				struct sockaddr_vm *src)
415 {
416 	return vmci_transport_send_control_pkt_bh(
417 					dst, src,
418 					VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
419 					0, NULL, VMCI_INVALID_HANDLE);
420 }
421 
422 int vmci_transport_send_wrote(struct sock *sk)
423 {
424 	return vmci_transport_send_control_pkt(
425 					sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
426 					0, NULL, VSOCK_PROTO_INVALID,
427 					VMCI_INVALID_HANDLE);
428 }
429 
430 int vmci_transport_send_read(struct sock *sk)
431 {
432 	return vmci_transport_send_control_pkt(
433 					sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
434 					0, NULL, VSOCK_PROTO_INVALID,
435 					VMCI_INVALID_HANDLE);
436 }
437 
438 int vmci_transport_send_waiting_write(struct sock *sk,
439 				      struct vmci_transport_waiting_info *wait)
440 {
441 	return vmci_transport_send_control_pkt(
442 				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
443 				0, 0, wait, VSOCK_PROTO_INVALID,
444 				VMCI_INVALID_HANDLE);
445 }
446 
447 int vmci_transport_send_waiting_read(struct sock *sk,
448 				     struct vmci_transport_waiting_info *wait)
449 {
450 	return vmci_transport_send_control_pkt(
451 				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
452 				0, 0, wait, VSOCK_PROTO_INVALID,
453 				VMCI_INVALID_HANDLE);
454 }
455 
456 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
457 {
458 	return vmci_transport_send_control_pkt(
459 					&vsk->sk,
460 					VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
461 					0, mode, NULL,
462 					VSOCK_PROTO_INVALID,
463 					VMCI_INVALID_HANDLE);
464 }
465 
466 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
467 {
468 	return vmci_transport_send_control_pkt(sk,
469 					VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
470 					size, 0, NULL,
471 					VSOCK_PROTO_INVALID,
472 					VMCI_INVALID_HANDLE);
473 }
474 
475 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
476 					     u16 version)
477 {
478 	return vmci_transport_send_control_pkt(
479 					sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
480 					size, 0, NULL, version,
481 					VMCI_INVALID_HANDLE);
482 }
483 
484 static struct sock *vmci_transport_get_pending(
485 					struct sock *listener,
486 					struct vmci_transport_packet *pkt)
487 {
488 	struct vsock_sock *vlistener;
489 	struct vsock_sock *vpending;
490 	struct sock *pending;
491 	struct sockaddr_vm src;
492 
493 	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
494 
495 	vlistener = vsock_sk(listener);
496 
497 	list_for_each_entry(vpending, &vlistener->pending_links,
498 			    pending_links) {
499 		if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
500 		    pkt->dst_port == vpending->local_addr.svm_port) {
501 			pending = sk_vsock(vpending);
502 			sock_hold(pending);
503 			goto found;
504 		}
505 	}
506 
507 	pending = NULL;
508 found:
509 	return pending;
510 
511 }
512 
513 static void vmci_transport_release_pending(struct sock *pending)
514 {
515 	sock_put(pending);
516 }
517 
518 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
519  * trusted sockets 2) sockets from applications running as the same user as the
520  * VM (this is only true for the host side and only when using hosted products)
521  */
522 
523 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
524 {
525 	return vsock->trusted ||
526 	       vmci_is_context_owner(peer_cid, vsock->owner->uid);
527 }
528 
529 /* We allow sending datagrams to and receiving datagrams from a restricted VM
530  * only if it is trusted as described in vmci_transport_is_trusted.
531  */
532 
533 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
534 {
535 	if (VMADDR_CID_HYPERVISOR == peer_cid)
536 		return true;
537 
538 	if (vsock->cached_peer != peer_cid) {
539 		vsock->cached_peer = peer_cid;
540 		if (!vmci_transport_is_trusted(vsock, peer_cid) &&
541 		    (vmci_context_get_priv_flags(peer_cid) &
542 		     VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
543 			vsock->cached_peer_allow_dgram = false;
544 		} else {
545 			vsock->cached_peer_allow_dgram = true;
546 		}
547 	}
548 
549 	return vsock->cached_peer_allow_dgram;
550 }
551 
552 static int
553 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
554 				struct vmci_handle *handle,
555 				u64 produce_size,
556 				u64 consume_size,
557 				u32 peer, u32 flags, bool trusted)
558 {
559 	int err = 0;
560 
561 	if (trusted) {
562 		/* Try to allocate our queue pair as trusted. This will only
563 		 * work if vsock is running in the host.
564 		 */
565 
566 		err = vmci_qpair_alloc(qpair, handle, produce_size,
567 				       consume_size,
568 				       peer, flags,
569 				       VMCI_PRIVILEGE_FLAG_TRUSTED);
570 		if (err != VMCI_ERROR_NO_ACCESS)
571 			goto out;
572 
573 	}
574 
575 	err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
576 			       peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
577 out:
578 	if (err < 0) {
579 		pr_err("Could not attach to queue pair with %d\n",
580 		       err);
581 		err = vmci_transport_error_to_vsock_error(err);
582 	}
583 
584 	return err;
585 }
586 
587 static int
588 vmci_transport_datagram_create_hnd(u32 resource_id,
589 				   u32 flags,
590 				   vmci_datagram_recv_cb recv_cb,
591 				   void *client_data,
592 				   struct vmci_handle *out_handle)
593 {
594 	int err = 0;
595 
596 	/* Try to allocate our datagram handler as trusted. This will only work
597 	 * if vsock is running in the host.
598 	 */
599 
600 	err = vmci_datagram_create_handle_priv(resource_id, flags,
601 					       VMCI_PRIVILEGE_FLAG_TRUSTED,
602 					       recv_cb,
603 					       client_data, out_handle);
604 
605 	if (err == VMCI_ERROR_NO_ACCESS)
606 		err = vmci_datagram_create_handle(resource_id, flags,
607 						  recv_cb, client_data,
608 						  out_handle);
609 
610 	return err;
611 }
612 
613 /* This is invoked as part of a tasklet that's scheduled when the VMCI
614  * interrupt fires.  This is run in bottom-half context and if it ever needs to
615  * sleep it should defer that work to a work queue.
616  */
617 
618 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
619 {
620 	struct sock *sk;
621 	size_t size;
622 	struct sk_buff *skb;
623 	struct vsock_sock *vsk;
624 
625 	sk = (struct sock *)data;
626 
627 	/* This handler is privileged when this module is running on the host.
628 	 * We will get datagrams from all endpoints (even VMs that are in a
629 	 * restricted context). If we get one from a restricted context then
630 	 * the destination socket must be trusted.
631 	 *
632 	 * NOTE: We access the socket struct without holding the lock here.
633 	 * This is ok because the field we are interested is never modified
634 	 * outside of the create and destruct socket functions.
635 	 */
636 	vsk = vsock_sk(sk);
637 	if (!vmci_transport_allow_dgram(vsk, dg->src.context))
638 		return VMCI_ERROR_NO_ACCESS;
639 
640 	size = VMCI_DG_SIZE(dg);
641 
642 	/* Attach the packet to the socket's receive queue as an sk_buff. */
643 	skb = alloc_skb(size, GFP_ATOMIC);
644 	if (!skb)
645 		return VMCI_ERROR_NO_MEM;
646 
647 	/* sk_receive_skb() will do a sock_put(), so hold here. */
648 	sock_hold(sk);
649 	skb_put(skb, size);
650 	memcpy(skb->data, dg, size);
651 	sk_receive_skb(sk, skb, 0);
652 
653 	return VMCI_SUCCESS;
654 }
655 
656 static bool vmci_transport_stream_allow(u32 cid, u32 port)
657 {
658 	static const u32 non_socket_contexts[] = {
659 		VMADDR_CID_RESERVED,
660 	};
661 	int i;
662 
663 	BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
664 
665 	for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
666 		if (cid == non_socket_contexts[i])
667 			return false;
668 	}
669 
670 	return true;
671 }
672 
673 /* This is invoked as part of a tasklet that's scheduled when the VMCI
674  * interrupt fires.  This is run in bottom-half context but it defers most of
675  * its work to the packet handling work queue.
676  */
677 
678 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
679 {
680 	struct sock *sk;
681 	struct sockaddr_vm dst;
682 	struct sockaddr_vm src;
683 	struct vmci_transport_packet *pkt;
684 	struct vsock_sock *vsk;
685 	bool bh_process_pkt;
686 	int err;
687 
688 	sk = NULL;
689 	err = VMCI_SUCCESS;
690 	bh_process_pkt = false;
691 
692 	/* Ignore incoming packets from contexts without sockets, or resources
693 	 * that aren't vsock implementations.
694 	 */
695 
696 	if (!vmci_transport_stream_allow(dg->src.context, -1)
697 	    || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
698 		return VMCI_ERROR_NO_ACCESS;
699 
700 	if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
701 		/* Drop datagrams that do not contain full VSock packets. */
702 		return VMCI_ERROR_INVALID_ARGS;
703 
704 	pkt = (struct vmci_transport_packet *)dg;
705 
706 	/* Find the socket that should handle this packet.  First we look for a
707 	 * connected socket and if there is none we look for a socket bound to
708 	 * the destintation address.
709 	 */
710 	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
711 	vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
712 
713 	sk = vsock_find_connected_socket(&src, &dst);
714 	if (!sk) {
715 		sk = vsock_find_bound_socket(&dst);
716 		if (!sk) {
717 			/* We could not find a socket for this specified
718 			 * address.  If this packet is a RST, we just drop it.
719 			 * If it is another packet, we send a RST.  Note that
720 			 * we do not send a RST reply to RSTs so that we do not
721 			 * continually send RSTs between two endpoints.
722 			 *
723 			 * Note that since this is a reply, dst is src and src
724 			 * is dst.
725 			 */
726 			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
727 				pr_err("unable to send reset\n");
728 
729 			err = VMCI_ERROR_NOT_FOUND;
730 			goto out;
731 		}
732 	}
733 
734 	/* If the received packet type is beyond all types known to this
735 	 * implementation, reply with an invalid message.  Hopefully this will
736 	 * help when implementing backwards compatibility in the future.
737 	 */
738 	if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
739 		vmci_transport_send_invalid_bh(&dst, &src);
740 		err = VMCI_ERROR_INVALID_ARGS;
741 		goto out;
742 	}
743 
744 	/* This handler is privileged when this module is running on the host.
745 	 * We will get datagram connect requests from all endpoints (even VMs
746 	 * that are in a restricted context). If we get one from a restricted
747 	 * context then the destination socket must be trusted.
748 	 *
749 	 * NOTE: We access the socket struct without holding the lock here.
750 	 * This is ok because the field we are interested is never modified
751 	 * outside of the create and destruct socket functions.
752 	 */
753 	vsk = vsock_sk(sk);
754 	if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
755 		err = VMCI_ERROR_NO_ACCESS;
756 		goto out;
757 	}
758 
759 	/* We do most everything in a work queue, but let's fast path the
760 	 * notification of reads and writes to help data transfer performance.
761 	 * We can only do this if there is no process context code executing
762 	 * for this socket since that may change the state.
763 	 */
764 	bh_lock_sock(sk);
765 
766 	if (!sock_owned_by_user(sk)) {
767 		/* The local context ID may be out of date, update it. */
768 		vsk->local_addr.svm_cid = dst.svm_cid;
769 
770 		if (sk->sk_state == TCP_ESTABLISHED)
771 			vmci_trans(vsk)->notify_ops->handle_notify_pkt(
772 					sk, pkt, true, &dst, &src,
773 					&bh_process_pkt);
774 	}
775 
776 	bh_unlock_sock(sk);
777 
778 	if (!bh_process_pkt) {
779 		struct vmci_transport_recv_pkt_info *recv_pkt_info;
780 
781 		recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
782 		if (!recv_pkt_info) {
783 			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
784 				pr_err("unable to send reset\n");
785 
786 			err = VMCI_ERROR_NO_MEM;
787 			goto out;
788 		}
789 
790 		recv_pkt_info->sk = sk;
791 		memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
792 		INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
793 
794 		schedule_work(&recv_pkt_info->work);
795 		/* Clear sk so that the reference count incremented by one of
796 		 * the Find functions above is not decremented below.  We need
797 		 * that reference count for the packet handler we've scheduled
798 		 * to run.
799 		 */
800 		sk = NULL;
801 	}
802 
803 out:
804 	if (sk)
805 		sock_put(sk);
806 
807 	return err;
808 }
809 
810 static void vmci_transport_handle_detach(struct sock *sk)
811 {
812 	struct vsock_sock *vsk;
813 
814 	vsk = vsock_sk(sk);
815 	if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
816 		sock_set_flag(sk, SOCK_DONE);
817 
818 		/* On a detach the peer will not be sending or receiving
819 		 * anymore.
820 		 */
821 		vsk->peer_shutdown = SHUTDOWN_MASK;
822 
823 		/* We should not be sending anymore since the peer won't be
824 		 * there to receive, but we can still receive if there is data
825 		 * left in our consume queue. If the local endpoint is a host,
826 		 * we can't call vsock_stream_has_data, since that may block,
827 		 * but a host endpoint can't read data once the VM has
828 		 * detached, so there is no available data in that case.
829 		 */
830 		if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
831 		    vsock_stream_has_data(vsk) <= 0) {
832 			if (sk->sk_state == TCP_SYN_SENT) {
833 				/* The peer may detach from a queue pair while
834 				 * we are still in the connecting state, i.e.,
835 				 * if the peer VM is killed after attaching to
836 				 * a queue pair, but before we complete the
837 				 * handshake. In that case, we treat the detach
838 				 * event like a reset.
839 				 */
840 
841 				sk->sk_state = TCP_CLOSE;
842 				sk->sk_err = ECONNRESET;
843 				sk->sk_error_report(sk);
844 				return;
845 			}
846 			sk->sk_state = TCP_CLOSE;
847 		}
848 		sk->sk_state_change(sk);
849 	}
850 }
851 
852 static void vmci_transport_peer_detach_cb(u32 sub_id,
853 					  const struct vmci_event_data *e_data,
854 					  void *client_data)
855 {
856 	struct vmci_transport *trans = client_data;
857 	const struct vmci_event_payload_qp *e_payload;
858 
859 	e_payload = vmci_event_data_const_payload(e_data);
860 
861 	/* XXX This is lame, we should provide a way to lookup sockets by
862 	 * qp_handle.
863 	 */
864 	if (vmci_handle_is_invalid(e_payload->handle) ||
865 	    !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
866 		return;
867 
868 	/* We don't ask for delayed CBs when we subscribe to this event (we
869 	 * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
870 	 * guarantees in that case about what context we might be running in,
871 	 * so it could be BH or process, blockable or non-blockable.  So we
872 	 * need to account for all possible contexts here.
873 	 */
874 	spin_lock_bh(&trans->lock);
875 	if (!trans->sk)
876 		goto out;
877 
878 	/* Apart from here, trans->lock is only grabbed as part of sk destruct,
879 	 * where trans->sk isn't locked.
880 	 */
881 	bh_lock_sock(trans->sk);
882 
883 	vmci_transport_handle_detach(trans->sk);
884 
885 	bh_unlock_sock(trans->sk);
886  out:
887 	spin_unlock_bh(&trans->lock);
888 }
889 
890 static void vmci_transport_qp_resumed_cb(u32 sub_id,
891 					 const struct vmci_event_data *e_data,
892 					 void *client_data)
893 {
894 	vsock_for_each_connected_socket(vmci_transport_handle_detach);
895 }
896 
897 static void vmci_transport_recv_pkt_work(struct work_struct *work)
898 {
899 	struct vmci_transport_recv_pkt_info *recv_pkt_info;
900 	struct vmci_transport_packet *pkt;
901 	struct sock *sk;
902 
903 	recv_pkt_info =
904 		container_of(work, struct vmci_transport_recv_pkt_info, work);
905 	sk = recv_pkt_info->sk;
906 	pkt = &recv_pkt_info->pkt;
907 
908 	lock_sock(sk);
909 
910 	/* The local context ID may be out of date. */
911 	vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
912 
913 	switch (sk->sk_state) {
914 	case TCP_LISTEN:
915 		vmci_transport_recv_listen(sk, pkt);
916 		break;
917 	case TCP_SYN_SENT:
918 		/* Processing of pending connections for servers goes through
919 		 * the listening socket, so see vmci_transport_recv_listen()
920 		 * for that path.
921 		 */
922 		vmci_transport_recv_connecting_client(sk, pkt);
923 		break;
924 	case TCP_ESTABLISHED:
925 		vmci_transport_recv_connected(sk, pkt);
926 		break;
927 	default:
928 		/* Because this function does not run in the same context as
929 		 * vmci_transport_recv_stream_cb it is possible that the
930 		 * socket has closed. We need to let the other side know or it
931 		 * could be sitting in a connect and hang forever. Send a
932 		 * reset to prevent that.
933 		 */
934 		vmci_transport_send_reset(sk, pkt);
935 		break;
936 	}
937 
938 	release_sock(sk);
939 	kfree(recv_pkt_info);
940 	/* Release reference obtained in the stream callback when we fetched
941 	 * this socket out of the bound or connected list.
942 	 */
943 	sock_put(sk);
944 }
945 
946 static int vmci_transport_recv_listen(struct sock *sk,
947 				      struct vmci_transport_packet *pkt)
948 {
949 	struct sock *pending;
950 	struct vsock_sock *vpending;
951 	int err;
952 	u64 qp_size;
953 	bool old_request = false;
954 	bool old_pkt_proto = false;
955 
956 	err = 0;
957 
958 	/* Because we are in the listen state, we could be receiving a packet
959 	 * for ourself or any previous connection requests that we received.
960 	 * If it's the latter, we try to find a socket in our list of pending
961 	 * connections and, if we do, call the appropriate handler for the
962 	 * state that that socket is in.  Otherwise we try to service the
963 	 * connection request.
964 	 */
965 	pending = vmci_transport_get_pending(sk, pkt);
966 	if (pending) {
967 		lock_sock(pending);
968 
969 		/* The local context ID may be out of date. */
970 		vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
971 
972 		switch (pending->sk_state) {
973 		case TCP_SYN_SENT:
974 			err = vmci_transport_recv_connecting_server(sk,
975 								    pending,
976 								    pkt);
977 			break;
978 		default:
979 			vmci_transport_send_reset(pending, pkt);
980 			err = -EINVAL;
981 		}
982 
983 		if (err < 0)
984 			vsock_remove_pending(sk, pending);
985 
986 		release_sock(pending);
987 		vmci_transport_release_pending(pending);
988 
989 		return err;
990 	}
991 
992 	/* The listen state only accepts connection requests.  Reply with a
993 	 * reset unless we received a reset.
994 	 */
995 
996 	if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
997 	      pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
998 		vmci_transport_reply_reset(pkt);
999 		return -EINVAL;
1000 	}
1001 
1002 	if (pkt->u.size == 0) {
1003 		vmci_transport_reply_reset(pkt);
1004 		return -EINVAL;
1005 	}
1006 
1007 	/* If this socket can't accommodate this connection request, we send a
1008 	 * reset.  Otherwise we create and initialize a child socket and reply
1009 	 * with a connection negotiation.
1010 	 */
1011 	if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1012 		vmci_transport_reply_reset(pkt);
1013 		return -ECONNREFUSED;
1014 	}
1015 
1016 	pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
1017 				 sk->sk_type, 0);
1018 	if (!pending) {
1019 		vmci_transport_send_reset(sk, pkt);
1020 		return -ENOMEM;
1021 	}
1022 
1023 	vpending = vsock_sk(pending);
1024 
1025 	vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1026 			pkt->dst_port);
1027 	vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1028 			pkt->src_port);
1029 
1030 	/* If the proposed size fits within our min/max, accept it. Otherwise
1031 	 * propose our own size.
1032 	 */
1033 	if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1034 	    pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1035 		qp_size = pkt->u.size;
1036 	} else {
1037 		qp_size = vmci_trans(vpending)->queue_pair_size;
1038 	}
1039 
1040 	/* Figure out if we are using old or new requests based on the
1041 	 * overrides pkt types sent by our peer.
1042 	 */
1043 	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1044 		old_request = old_pkt_proto;
1045 	} else {
1046 		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1047 			old_request = true;
1048 		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1049 			old_request = false;
1050 
1051 	}
1052 
1053 	if (old_request) {
1054 		/* Handle a REQUEST (or override) */
1055 		u16 version = VSOCK_PROTO_INVALID;
1056 		if (vmci_transport_proto_to_notify_struct(
1057 			pending, &version, true))
1058 			err = vmci_transport_send_negotiate(pending, qp_size);
1059 		else
1060 			err = -EINVAL;
1061 
1062 	} else {
1063 		/* Handle a REQUEST2 (or override) */
1064 		int proto_int = pkt->proto;
1065 		int pos;
1066 		u16 active_proto_version = 0;
1067 
1068 		/* The list of possible protocols is the intersection of all
1069 		 * protocols the client supports ... plus all the protocols we
1070 		 * support.
1071 		 */
1072 		proto_int &= vmci_transport_new_proto_supported_versions();
1073 
1074 		/* We choose the highest possible protocol version and use that
1075 		 * one.
1076 		 */
1077 		pos = fls(proto_int);
1078 		if (pos) {
1079 			active_proto_version = (1 << (pos - 1));
1080 			if (vmci_transport_proto_to_notify_struct(
1081 				pending, &active_proto_version, false))
1082 				err = vmci_transport_send_negotiate2(pending,
1083 							qp_size,
1084 							active_proto_version);
1085 			else
1086 				err = -EINVAL;
1087 
1088 		} else {
1089 			err = -EINVAL;
1090 		}
1091 	}
1092 
1093 	if (err < 0) {
1094 		vmci_transport_send_reset(sk, pkt);
1095 		sock_put(pending);
1096 		err = vmci_transport_error_to_vsock_error(err);
1097 		goto out;
1098 	}
1099 
1100 	vsock_add_pending(sk, pending);
1101 	sk->sk_ack_backlog++;
1102 
1103 	pending->sk_state = TCP_SYN_SENT;
1104 	vmci_trans(vpending)->produce_size =
1105 		vmci_trans(vpending)->consume_size = qp_size;
1106 	vmci_trans(vpending)->queue_pair_size = qp_size;
1107 
1108 	vmci_trans(vpending)->notify_ops->process_request(pending);
1109 
1110 	/* We might never receive another message for this socket and it's not
1111 	 * connected to any process, so we have to ensure it gets cleaned up
1112 	 * ourself.  Our delayed work function will take care of that.  Note
1113 	 * that we do not ever cancel this function since we have few
1114 	 * guarantees about its state when calling cancel_delayed_work().
1115 	 * Instead we hold a reference on the socket for that function and make
1116 	 * it capable of handling cases where it needs to do nothing but
1117 	 * release that reference.
1118 	 */
1119 	vpending->listener = sk;
1120 	sock_hold(sk);
1121 	sock_hold(pending);
1122 	schedule_delayed_work(&vpending->pending_work, HZ);
1123 
1124 out:
1125 	return err;
1126 }
1127 
1128 static int
1129 vmci_transport_recv_connecting_server(struct sock *listener,
1130 				      struct sock *pending,
1131 				      struct vmci_transport_packet *pkt)
1132 {
1133 	struct vsock_sock *vpending;
1134 	struct vmci_handle handle;
1135 	struct vmci_qp *qpair;
1136 	bool is_local;
1137 	u32 flags;
1138 	u32 detach_sub_id;
1139 	int err;
1140 	int skerr;
1141 
1142 	vpending = vsock_sk(pending);
1143 	detach_sub_id = VMCI_INVALID_ID;
1144 
1145 	switch (pkt->type) {
1146 	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1147 		if (vmci_handle_is_invalid(pkt->u.handle)) {
1148 			vmci_transport_send_reset(pending, pkt);
1149 			skerr = EPROTO;
1150 			err = -EINVAL;
1151 			goto destroy;
1152 		}
1153 		break;
1154 	default:
1155 		/* Close and cleanup the connection. */
1156 		vmci_transport_send_reset(pending, pkt);
1157 		skerr = EPROTO;
1158 		err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1159 		goto destroy;
1160 	}
1161 
1162 	/* In order to complete the connection we need to attach to the offered
1163 	 * queue pair and send an attach notification.  We also subscribe to the
1164 	 * detach event so we know when our peer goes away, and we do that
1165 	 * before attaching so we don't miss an event.  If all this succeeds,
1166 	 * we update our state and wakeup anything waiting in accept() for a
1167 	 * connection.
1168 	 */
1169 
1170 	/* We don't care about attach since we ensure the other side has
1171 	 * attached by specifying the ATTACH_ONLY flag below.
1172 	 */
1173 	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1174 				   vmci_transport_peer_detach_cb,
1175 				   vmci_trans(vpending), &detach_sub_id);
1176 	if (err < VMCI_SUCCESS) {
1177 		vmci_transport_send_reset(pending, pkt);
1178 		err = vmci_transport_error_to_vsock_error(err);
1179 		skerr = -err;
1180 		goto destroy;
1181 	}
1182 
1183 	vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1184 
1185 	/* Now attach to the queue pair the client created. */
1186 	handle = pkt->u.handle;
1187 
1188 	/* vpending->local_addr always has a context id so we do not need to
1189 	 * worry about VMADDR_CID_ANY in this case.
1190 	 */
1191 	is_local =
1192 	    vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1193 	flags = VMCI_QPFLAG_ATTACH_ONLY;
1194 	flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1195 
1196 	err = vmci_transport_queue_pair_alloc(
1197 					&qpair,
1198 					&handle,
1199 					vmci_trans(vpending)->produce_size,
1200 					vmci_trans(vpending)->consume_size,
1201 					pkt->dg.src.context,
1202 					flags,
1203 					vmci_transport_is_trusted(
1204 						vpending,
1205 						vpending->remote_addr.svm_cid));
1206 	if (err < 0) {
1207 		vmci_transport_send_reset(pending, pkt);
1208 		skerr = -err;
1209 		goto destroy;
1210 	}
1211 
1212 	vmci_trans(vpending)->qp_handle = handle;
1213 	vmci_trans(vpending)->qpair = qpair;
1214 
1215 	/* When we send the attach message, we must be ready to handle incoming
1216 	 * control messages on the newly connected socket. So we move the
1217 	 * pending socket to the connected state before sending the attach
1218 	 * message. Otherwise, an incoming packet triggered by the attach being
1219 	 * received by the peer may be processed concurrently with what happens
1220 	 * below after sending the attach message, and that incoming packet
1221 	 * will find the listening socket instead of the (currently) pending
1222 	 * socket. Note that enqueueing the socket increments the reference
1223 	 * count, so even if a reset comes before the connection is accepted,
1224 	 * the socket will be valid until it is removed from the queue.
1225 	 *
1226 	 * If we fail sending the attach below, we remove the socket from the
1227 	 * connected list and move the socket to TCP_CLOSE before
1228 	 * releasing the lock, so a pending slow path processing of an incoming
1229 	 * packet will not see the socket in the connected state in that case.
1230 	 */
1231 	pending->sk_state = TCP_ESTABLISHED;
1232 
1233 	vsock_insert_connected(vpending);
1234 
1235 	/* Notify our peer of our attach. */
1236 	err = vmci_transport_send_attach(pending, handle);
1237 	if (err < 0) {
1238 		vsock_remove_connected(vpending);
1239 		pr_err("Could not send attach\n");
1240 		vmci_transport_send_reset(pending, pkt);
1241 		err = vmci_transport_error_to_vsock_error(err);
1242 		skerr = -err;
1243 		goto destroy;
1244 	}
1245 
1246 	/* We have a connection. Move the now connected socket from the
1247 	 * listener's pending list to the accept queue so callers of accept()
1248 	 * can find it.
1249 	 */
1250 	vsock_remove_pending(listener, pending);
1251 	vsock_enqueue_accept(listener, pending);
1252 
1253 	/* Callers of accept() will be be waiting on the listening socket, not
1254 	 * the pending socket.
1255 	 */
1256 	listener->sk_data_ready(listener);
1257 
1258 	return 0;
1259 
1260 destroy:
1261 	pending->sk_err = skerr;
1262 	pending->sk_state = TCP_CLOSE;
1263 	/* As long as we drop our reference, all necessary cleanup will handle
1264 	 * when the cleanup function drops its reference and our destruct
1265 	 * implementation is called.  Note that since the listen handler will
1266 	 * remove pending from the pending list upon our failure, the cleanup
1267 	 * function won't drop the additional reference, which is why we do it
1268 	 * here.
1269 	 */
1270 	sock_put(pending);
1271 
1272 	return err;
1273 }
1274 
1275 static int
1276 vmci_transport_recv_connecting_client(struct sock *sk,
1277 				      struct vmci_transport_packet *pkt)
1278 {
1279 	struct vsock_sock *vsk;
1280 	int err;
1281 	int skerr;
1282 
1283 	vsk = vsock_sk(sk);
1284 
1285 	switch (pkt->type) {
1286 	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1287 		if (vmci_handle_is_invalid(pkt->u.handle) ||
1288 		    !vmci_handle_is_equal(pkt->u.handle,
1289 					  vmci_trans(vsk)->qp_handle)) {
1290 			skerr = EPROTO;
1291 			err = -EINVAL;
1292 			goto destroy;
1293 		}
1294 
1295 		/* Signify the socket is connected and wakeup the waiter in
1296 		 * connect(). Also place the socket in the connected table for
1297 		 * accounting (it can already be found since it's in the bound
1298 		 * table).
1299 		 */
1300 		sk->sk_state = TCP_ESTABLISHED;
1301 		sk->sk_socket->state = SS_CONNECTED;
1302 		vsock_insert_connected(vsk);
1303 		sk->sk_state_change(sk);
1304 
1305 		break;
1306 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1307 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1308 		if (pkt->u.size == 0
1309 		    || pkt->dg.src.context != vsk->remote_addr.svm_cid
1310 		    || pkt->src_port != vsk->remote_addr.svm_port
1311 		    || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1312 		    || vmci_trans(vsk)->qpair
1313 		    || vmci_trans(vsk)->produce_size != 0
1314 		    || vmci_trans(vsk)->consume_size != 0
1315 		    || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1316 			skerr = EPROTO;
1317 			err = -EINVAL;
1318 
1319 			goto destroy;
1320 		}
1321 
1322 		err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1323 		if (err) {
1324 			skerr = -err;
1325 			goto destroy;
1326 		}
1327 
1328 		break;
1329 	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1330 		err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1331 		if (err) {
1332 			skerr = -err;
1333 			goto destroy;
1334 		}
1335 
1336 		break;
1337 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1338 		/* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1339 		 * continue processing here after they sent an INVALID packet.
1340 		 * This meant that we got a RST after the INVALID. We ignore a
1341 		 * RST after an INVALID. The common code doesn't send the RST
1342 		 * ... so we can hang if an old version of the common code
1343 		 * fails between getting a REQUEST and sending an OFFER back.
1344 		 * Not much we can do about it... except hope that it doesn't
1345 		 * happen.
1346 		 */
1347 		if (vsk->ignore_connecting_rst) {
1348 			vsk->ignore_connecting_rst = false;
1349 		} else {
1350 			skerr = ECONNRESET;
1351 			err = 0;
1352 			goto destroy;
1353 		}
1354 
1355 		break;
1356 	default:
1357 		/* Close and cleanup the connection. */
1358 		skerr = EPROTO;
1359 		err = -EINVAL;
1360 		goto destroy;
1361 	}
1362 
1363 	return 0;
1364 
1365 destroy:
1366 	vmci_transport_send_reset(sk, pkt);
1367 
1368 	sk->sk_state = TCP_CLOSE;
1369 	sk->sk_err = skerr;
1370 	sk->sk_error_report(sk);
1371 	return err;
1372 }
1373 
1374 static int vmci_transport_recv_connecting_client_negotiate(
1375 					struct sock *sk,
1376 					struct vmci_transport_packet *pkt)
1377 {
1378 	int err;
1379 	struct vsock_sock *vsk;
1380 	struct vmci_handle handle;
1381 	struct vmci_qp *qpair;
1382 	u32 detach_sub_id;
1383 	bool is_local;
1384 	u32 flags;
1385 	bool old_proto = true;
1386 	bool old_pkt_proto;
1387 	u16 version;
1388 
1389 	vsk = vsock_sk(sk);
1390 	handle = VMCI_INVALID_HANDLE;
1391 	detach_sub_id = VMCI_INVALID_ID;
1392 
1393 	/* If we have gotten here then we should be past the point where old
1394 	 * linux vsock could have sent the bogus rst.
1395 	 */
1396 	vsk->sent_request = false;
1397 	vsk->ignore_connecting_rst = false;
1398 
1399 	/* Verify that we're OK with the proposed queue pair size */
1400 	if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1401 	    pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1402 		err = -EINVAL;
1403 		goto destroy;
1404 	}
1405 
1406 	/* At this point we know the CID the peer is using to talk to us. */
1407 
1408 	if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1409 		vsk->local_addr.svm_cid = pkt->dg.dst.context;
1410 
1411 	/* Setup the notify ops to be the highest supported version that both
1412 	 * the server and the client support.
1413 	 */
1414 
1415 	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1416 		old_proto = old_pkt_proto;
1417 	} else {
1418 		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1419 			old_proto = true;
1420 		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1421 			old_proto = false;
1422 
1423 	}
1424 
1425 	if (old_proto)
1426 		version = VSOCK_PROTO_INVALID;
1427 	else
1428 		version = pkt->proto;
1429 
1430 	if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1431 		err = -EINVAL;
1432 		goto destroy;
1433 	}
1434 
1435 	/* Subscribe to detach events first.
1436 	 *
1437 	 * XXX We attach once for each queue pair created for now so it is easy
1438 	 * to find the socket (it's provided), but later we should only
1439 	 * subscribe once and add a way to lookup sockets by queue pair handle.
1440 	 */
1441 	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1442 				   vmci_transport_peer_detach_cb,
1443 				   vmci_trans(vsk), &detach_sub_id);
1444 	if (err < VMCI_SUCCESS) {
1445 		err = vmci_transport_error_to_vsock_error(err);
1446 		goto destroy;
1447 	}
1448 
1449 	/* Make VMCI select the handle for us. */
1450 	handle = VMCI_INVALID_HANDLE;
1451 	is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1452 	flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1453 
1454 	err = vmci_transport_queue_pair_alloc(&qpair,
1455 					      &handle,
1456 					      pkt->u.size,
1457 					      pkt->u.size,
1458 					      vsk->remote_addr.svm_cid,
1459 					      flags,
1460 					      vmci_transport_is_trusted(
1461 						  vsk,
1462 						  vsk->
1463 						  remote_addr.svm_cid));
1464 	if (err < 0)
1465 		goto destroy;
1466 
1467 	err = vmci_transport_send_qp_offer(sk, handle);
1468 	if (err < 0) {
1469 		err = vmci_transport_error_to_vsock_error(err);
1470 		goto destroy;
1471 	}
1472 
1473 	vmci_trans(vsk)->qp_handle = handle;
1474 	vmci_trans(vsk)->qpair = qpair;
1475 
1476 	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1477 		pkt->u.size;
1478 
1479 	vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1480 
1481 	vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1482 
1483 	return 0;
1484 
1485 destroy:
1486 	if (detach_sub_id != VMCI_INVALID_ID)
1487 		vmci_event_unsubscribe(detach_sub_id);
1488 
1489 	if (!vmci_handle_is_invalid(handle))
1490 		vmci_qpair_detach(&qpair);
1491 
1492 	return err;
1493 }
1494 
1495 static int
1496 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1497 					      struct vmci_transport_packet *pkt)
1498 {
1499 	int err = 0;
1500 	struct vsock_sock *vsk = vsock_sk(sk);
1501 
1502 	if (vsk->sent_request) {
1503 		vsk->sent_request = false;
1504 		vsk->ignore_connecting_rst = true;
1505 
1506 		err = vmci_transport_send_conn_request(
1507 			sk, vmci_trans(vsk)->queue_pair_size);
1508 		if (err < 0)
1509 			err = vmci_transport_error_to_vsock_error(err);
1510 		else
1511 			err = 0;
1512 
1513 	}
1514 
1515 	return err;
1516 }
1517 
1518 static int vmci_transport_recv_connected(struct sock *sk,
1519 					 struct vmci_transport_packet *pkt)
1520 {
1521 	struct vsock_sock *vsk;
1522 	bool pkt_processed = false;
1523 
1524 	/* In cases where we are closing the connection, it's sufficient to
1525 	 * mark the state change (and maybe error) and wake up any waiting
1526 	 * threads. Since this is a connected socket, it's owned by a user
1527 	 * process and will be cleaned up when the failure is passed back on
1528 	 * the current or next system call.  Our system call implementations
1529 	 * must therefore check for error and state changes on entry and when
1530 	 * being awoken.
1531 	 */
1532 	switch (pkt->type) {
1533 	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1534 		if (pkt->u.mode) {
1535 			vsk = vsock_sk(sk);
1536 
1537 			vsk->peer_shutdown |= pkt->u.mode;
1538 			sk->sk_state_change(sk);
1539 		}
1540 		break;
1541 
1542 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1543 		vsk = vsock_sk(sk);
1544 		/* It is possible that we sent our peer a message (e.g a
1545 		 * WAITING_READ) right before we got notified that the peer had
1546 		 * detached. If that happens then we can get a RST pkt back
1547 		 * from our peer even though there is data available for us to
1548 		 * read. In that case, don't shutdown the socket completely but
1549 		 * instead allow the local client to finish reading data off
1550 		 * the queuepair. Always treat a RST pkt in connected mode like
1551 		 * a clean shutdown.
1552 		 */
1553 		sock_set_flag(sk, SOCK_DONE);
1554 		vsk->peer_shutdown = SHUTDOWN_MASK;
1555 		if (vsock_stream_has_data(vsk) <= 0)
1556 			sk->sk_state = TCP_CLOSING;
1557 
1558 		sk->sk_state_change(sk);
1559 		break;
1560 
1561 	default:
1562 		vsk = vsock_sk(sk);
1563 		vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1564 				sk, pkt, false, NULL, NULL,
1565 				&pkt_processed);
1566 		if (!pkt_processed)
1567 			return -EINVAL;
1568 
1569 		break;
1570 	}
1571 
1572 	return 0;
1573 }
1574 
1575 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1576 				      struct vsock_sock *psk)
1577 {
1578 	vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1579 	if (!vsk->trans)
1580 		return -ENOMEM;
1581 
1582 	vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1583 	vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1584 	vmci_trans(vsk)->qpair = NULL;
1585 	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1586 	vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1587 	vmci_trans(vsk)->notify_ops = NULL;
1588 	INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1589 	vmci_trans(vsk)->sk = &vsk->sk;
1590 	spin_lock_init(&vmci_trans(vsk)->lock);
1591 	if (psk) {
1592 		vmci_trans(vsk)->queue_pair_size =
1593 			vmci_trans(psk)->queue_pair_size;
1594 		vmci_trans(vsk)->queue_pair_min_size =
1595 			vmci_trans(psk)->queue_pair_min_size;
1596 		vmci_trans(vsk)->queue_pair_max_size =
1597 			vmci_trans(psk)->queue_pair_max_size;
1598 	} else {
1599 		vmci_trans(vsk)->queue_pair_size =
1600 			VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1601 		vmci_trans(vsk)->queue_pair_min_size =
1602 			 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1603 		vmci_trans(vsk)->queue_pair_max_size =
1604 			VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1605 	}
1606 
1607 	return 0;
1608 }
1609 
1610 static void vmci_transport_free_resources(struct list_head *transport_list)
1611 {
1612 	while (!list_empty(transport_list)) {
1613 		struct vmci_transport *transport =
1614 		    list_first_entry(transport_list, struct vmci_transport,
1615 				     elem);
1616 		list_del(&transport->elem);
1617 
1618 		if (transport->detach_sub_id != VMCI_INVALID_ID) {
1619 			vmci_event_unsubscribe(transport->detach_sub_id);
1620 			transport->detach_sub_id = VMCI_INVALID_ID;
1621 		}
1622 
1623 		if (!vmci_handle_is_invalid(transport->qp_handle)) {
1624 			vmci_qpair_detach(&transport->qpair);
1625 			transport->qp_handle = VMCI_INVALID_HANDLE;
1626 			transport->produce_size = 0;
1627 			transport->consume_size = 0;
1628 		}
1629 
1630 		kfree(transport);
1631 	}
1632 }
1633 
1634 static void vmci_transport_cleanup(struct work_struct *work)
1635 {
1636 	LIST_HEAD(pending);
1637 
1638 	spin_lock_bh(&vmci_transport_cleanup_lock);
1639 	list_replace_init(&vmci_transport_cleanup_list, &pending);
1640 	spin_unlock_bh(&vmci_transport_cleanup_lock);
1641 	vmci_transport_free_resources(&pending);
1642 }
1643 
1644 static void vmci_transport_destruct(struct vsock_sock *vsk)
1645 {
1646 	/* transport can be NULL if we hit a failure at init() time */
1647 	if (!vmci_trans(vsk))
1648 		return;
1649 
1650 	/* Ensure that the detach callback doesn't use the sk/vsk
1651 	 * we are about to destruct.
1652 	 */
1653 	spin_lock_bh(&vmci_trans(vsk)->lock);
1654 	vmci_trans(vsk)->sk = NULL;
1655 	spin_unlock_bh(&vmci_trans(vsk)->lock);
1656 
1657 	if (vmci_trans(vsk)->notify_ops)
1658 		vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1659 
1660 	spin_lock_bh(&vmci_transport_cleanup_lock);
1661 	list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1662 	spin_unlock_bh(&vmci_transport_cleanup_lock);
1663 	schedule_work(&vmci_transport_cleanup_work);
1664 
1665 	vsk->trans = NULL;
1666 }
1667 
1668 static void vmci_transport_release(struct vsock_sock *vsk)
1669 {
1670 	vsock_remove_sock(vsk);
1671 
1672 	if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1673 		vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1674 		vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1675 	}
1676 }
1677 
1678 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1679 				     struct sockaddr_vm *addr)
1680 {
1681 	u32 port;
1682 	u32 flags;
1683 	int err;
1684 
1685 	/* VMCI will select a resource ID for us if we provide
1686 	 * VMCI_INVALID_ID.
1687 	 */
1688 	port = addr->svm_port == VMADDR_PORT_ANY ?
1689 			VMCI_INVALID_ID : addr->svm_port;
1690 
1691 	if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1692 		return -EACCES;
1693 
1694 	flags = addr->svm_cid == VMADDR_CID_ANY ?
1695 				VMCI_FLAG_ANYCID_DG_HND : 0;
1696 
1697 	err = vmci_transport_datagram_create_hnd(port, flags,
1698 						 vmci_transport_recv_dgram_cb,
1699 						 &vsk->sk,
1700 						 &vmci_trans(vsk)->dg_handle);
1701 	if (err < VMCI_SUCCESS)
1702 		return vmci_transport_error_to_vsock_error(err);
1703 	vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1704 			vmci_trans(vsk)->dg_handle.resource);
1705 
1706 	return 0;
1707 }
1708 
1709 static int vmci_transport_dgram_enqueue(
1710 	struct vsock_sock *vsk,
1711 	struct sockaddr_vm *remote_addr,
1712 	struct msghdr *msg,
1713 	size_t len)
1714 {
1715 	int err;
1716 	struct vmci_datagram *dg;
1717 
1718 	if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1719 		return -EMSGSIZE;
1720 
1721 	if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1722 		return -EPERM;
1723 
1724 	/* Allocate a buffer for the user's message and our packet header. */
1725 	dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1726 	if (!dg)
1727 		return -ENOMEM;
1728 
1729 	memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1730 
1731 	dg->dst = vmci_make_handle(remote_addr->svm_cid,
1732 				   remote_addr->svm_port);
1733 	dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1734 				   vsk->local_addr.svm_port);
1735 	dg->payload_size = len;
1736 
1737 	err = vmci_datagram_send(dg);
1738 	kfree(dg);
1739 	if (err < 0)
1740 		return vmci_transport_error_to_vsock_error(err);
1741 
1742 	return err - sizeof(*dg);
1743 }
1744 
1745 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1746 					struct msghdr *msg, size_t len,
1747 					int flags)
1748 {
1749 	int err;
1750 	int noblock;
1751 	struct vmci_datagram *dg;
1752 	size_t payload_len;
1753 	struct sk_buff *skb;
1754 
1755 	noblock = flags & MSG_DONTWAIT;
1756 
1757 	if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1758 		return -EOPNOTSUPP;
1759 
1760 	/* Retrieve the head sk_buff from the socket's receive queue. */
1761 	err = 0;
1762 	skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1763 	if (!skb)
1764 		return err;
1765 
1766 	dg = (struct vmci_datagram *)skb->data;
1767 	if (!dg)
1768 		/* err is 0, meaning we read zero bytes. */
1769 		goto out;
1770 
1771 	payload_len = dg->payload_size;
1772 	/* Ensure the sk_buff matches the payload size claimed in the packet. */
1773 	if (payload_len != skb->len - sizeof(*dg)) {
1774 		err = -EINVAL;
1775 		goto out;
1776 	}
1777 
1778 	if (payload_len > len) {
1779 		payload_len = len;
1780 		msg->msg_flags |= MSG_TRUNC;
1781 	}
1782 
1783 	/* Place the datagram payload in the user's iovec. */
1784 	err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1785 	if (err)
1786 		goto out;
1787 
1788 	if (msg->msg_name) {
1789 		/* Provide the address of the sender. */
1790 		DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1791 		vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1792 		msg->msg_namelen = sizeof(*vm_addr);
1793 	}
1794 	err = payload_len;
1795 
1796 out:
1797 	skb_free_datagram(&vsk->sk, skb);
1798 	return err;
1799 }
1800 
1801 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1802 {
1803 	if (cid == VMADDR_CID_HYPERVISOR) {
1804 		/* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1805 		 * state and are allowed.
1806 		 */
1807 		return port == VMCI_UNITY_PBRPC_REGISTER;
1808 	}
1809 
1810 	return true;
1811 }
1812 
1813 static int vmci_transport_connect(struct vsock_sock *vsk)
1814 {
1815 	int err;
1816 	bool old_pkt_proto = false;
1817 	struct sock *sk = &vsk->sk;
1818 
1819 	if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1820 		old_pkt_proto) {
1821 		err = vmci_transport_send_conn_request(
1822 			sk, vmci_trans(vsk)->queue_pair_size);
1823 		if (err < 0) {
1824 			sk->sk_state = TCP_CLOSE;
1825 			return err;
1826 		}
1827 	} else {
1828 		int supported_proto_versions =
1829 			vmci_transport_new_proto_supported_versions();
1830 		err = vmci_transport_send_conn_request2(
1831 				sk, vmci_trans(vsk)->queue_pair_size,
1832 				supported_proto_versions);
1833 		if (err < 0) {
1834 			sk->sk_state = TCP_CLOSE;
1835 			return err;
1836 		}
1837 
1838 		vsk->sent_request = true;
1839 	}
1840 
1841 	return err;
1842 }
1843 
1844 static ssize_t vmci_transport_stream_dequeue(
1845 	struct vsock_sock *vsk,
1846 	struct msghdr *msg,
1847 	size_t len,
1848 	int flags)
1849 {
1850 	if (flags & MSG_PEEK)
1851 		return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1852 	else
1853 		return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1854 }
1855 
1856 static ssize_t vmci_transport_stream_enqueue(
1857 	struct vsock_sock *vsk,
1858 	struct msghdr *msg,
1859 	size_t len)
1860 {
1861 	return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1862 }
1863 
1864 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1865 {
1866 	return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1867 }
1868 
1869 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1870 {
1871 	return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1872 }
1873 
1874 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1875 {
1876 	return vmci_trans(vsk)->consume_size;
1877 }
1878 
1879 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1880 {
1881 	return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1882 }
1883 
1884 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1885 {
1886 	return vmci_trans(vsk)->queue_pair_size;
1887 }
1888 
1889 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1890 {
1891 	return vmci_trans(vsk)->queue_pair_min_size;
1892 }
1893 
1894 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1895 {
1896 	return vmci_trans(vsk)->queue_pair_max_size;
1897 }
1898 
1899 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1900 {
1901 	if (val < vmci_trans(vsk)->queue_pair_min_size)
1902 		vmci_trans(vsk)->queue_pair_min_size = val;
1903 	if (val > vmci_trans(vsk)->queue_pair_max_size)
1904 		vmci_trans(vsk)->queue_pair_max_size = val;
1905 	vmci_trans(vsk)->queue_pair_size = val;
1906 }
1907 
1908 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1909 					       u64 val)
1910 {
1911 	if (val > vmci_trans(vsk)->queue_pair_size)
1912 		vmci_trans(vsk)->queue_pair_size = val;
1913 	vmci_trans(vsk)->queue_pair_min_size = val;
1914 }
1915 
1916 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1917 					       u64 val)
1918 {
1919 	if (val < vmci_trans(vsk)->queue_pair_size)
1920 		vmci_trans(vsk)->queue_pair_size = val;
1921 	vmci_trans(vsk)->queue_pair_max_size = val;
1922 }
1923 
1924 static int vmci_transport_notify_poll_in(
1925 	struct vsock_sock *vsk,
1926 	size_t target,
1927 	bool *data_ready_now)
1928 {
1929 	return vmci_trans(vsk)->notify_ops->poll_in(
1930 			&vsk->sk, target, data_ready_now);
1931 }
1932 
1933 static int vmci_transport_notify_poll_out(
1934 	struct vsock_sock *vsk,
1935 	size_t target,
1936 	bool *space_available_now)
1937 {
1938 	return vmci_trans(vsk)->notify_ops->poll_out(
1939 			&vsk->sk, target, space_available_now);
1940 }
1941 
1942 static int vmci_transport_notify_recv_init(
1943 	struct vsock_sock *vsk,
1944 	size_t target,
1945 	struct vsock_transport_recv_notify_data *data)
1946 {
1947 	return vmci_trans(vsk)->notify_ops->recv_init(
1948 			&vsk->sk, target,
1949 			(struct vmci_transport_recv_notify_data *)data);
1950 }
1951 
1952 static int vmci_transport_notify_recv_pre_block(
1953 	struct vsock_sock *vsk,
1954 	size_t target,
1955 	struct vsock_transport_recv_notify_data *data)
1956 {
1957 	return vmci_trans(vsk)->notify_ops->recv_pre_block(
1958 			&vsk->sk, target,
1959 			(struct vmci_transport_recv_notify_data *)data);
1960 }
1961 
1962 static int vmci_transport_notify_recv_pre_dequeue(
1963 	struct vsock_sock *vsk,
1964 	size_t target,
1965 	struct vsock_transport_recv_notify_data *data)
1966 {
1967 	return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1968 			&vsk->sk, target,
1969 			(struct vmci_transport_recv_notify_data *)data);
1970 }
1971 
1972 static int vmci_transport_notify_recv_post_dequeue(
1973 	struct vsock_sock *vsk,
1974 	size_t target,
1975 	ssize_t copied,
1976 	bool data_read,
1977 	struct vsock_transport_recv_notify_data *data)
1978 {
1979 	return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1980 			&vsk->sk, target, copied, data_read,
1981 			(struct vmci_transport_recv_notify_data *)data);
1982 }
1983 
1984 static int vmci_transport_notify_send_init(
1985 	struct vsock_sock *vsk,
1986 	struct vsock_transport_send_notify_data *data)
1987 {
1988 	return vmci_trans(vsk)->notify_ops->send_init(
1989 			&vsk->sk,
1990 			(struct vmci_transport_send_notify_data *)data);
1991 }
1992 
1993 static int vmci_transport_notify_send_pre_block(
1994 	struct vsock_sock *vsk,
1995 	struct vsock_transport_send_notify_data *data)
1996 {
1997 	return vmci_trans(vsk)->notify_ops->send_pre_block(
1998 			&vsk->sk,
1999 			(struct vmci_transport_send_notify_data *)data);
2000 }
2001 
2002 static int vmci_transport_notify_send_pre_enqueue(
2003 	struct vsock_sock *vsk,
2004 	struct vsock_transport_send_notify_data *data)
2005 {
2006 	return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
2007 			&vsk->sk,
2008 			(struct vmci_transport_send_notify_data *)data);
2009 }
2010 
2011 static int vmci_transport_notify_send_post_enqueue(
2012 	struct vsock_sock *vsk,
2013 	ssize_t written,
2014 	struct vsock_transport_send_notify_data *data)
2015 {
2016 	return vmci_trans(vsk)->notify_ops->send_post_enqueue(
2017 			&vsk->sk, written,
2018 			(struct vmci_transport_send_notify_data *)data);
2019 }
2020 
2021 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
2022 {
2023 	if (PROTOCOL_OVERRIDE != -1) {
2024 		if (PROTOCOL_OVERRIDE == 0)
2025 			*old_pkt_proto = true;
2026 		else
2027 			*old_pkt_proto = false;
2028 
2029 		pr_info("Proto override in use\n");
2030 		return true;
2031 	}
2032 
2033 	return false;
2034 }
2035 
2036 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2037 						  u16 *proto,
2038 						  bool old_pkt_proto)
2039 {
2040 	struct vsock_sock *vsk = vsock_sk(sk);
2041 
2042 	if (old_pkt_proto) {
2043 		if (*proto != VSOCK_PROTO_INVALID) {
2044 			pr_err("Can't set both an old and new protocol\n");
2045 			return false;
2046 		}
2047 		vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2048 		goto exit;
2049 	}
2050 
2051 	switch (*proto) {
2052 	case VSOCK_PROTO_PKT_ON_NOTIFY:
2053 		vmci_trans(vsk)->notify_ops =
2054 			&vmci_transport_notify_pkt_q_state_ops;
2055 		break;
2056 	default:
2057 		pr_err("Unknown notify protocol version\n");
2058 		return false;
2059 	}
2060 
2061 exit:
2062 	vmci_trans(vsk)->notify_ops->socket_init(sk);
2063 	return true;
2064 }
2065 
2066 static u16 vmci_transport_new_proto_supported_versions(void)
2067 {
2068 	if (PROTOCOL_OVERRIDE != -1)
2069 		return PROTOCOL_OVERRIDE;
2070 
2071 	return VSOCK_PROTO_ALL_SUPPORTED;
2072 }
2073 
2074 static u32 vmci_transport_get_local_cid(void)
2075 {
2076 	return vmci_get_context_id();
2077 }
2078 
2079 static const struct vsock_transport vmci_transport = {
2080 	.init = vmci_transport_socket_init,
2081 	.destruct = vmci_transport_destruct,
2082 	.release = vmci_transport_release,
2083 	.connect = vmci_transport_connect,
2084 	.dgram_bind = vmci_transport_dgram_bind,
2085 	.dgram_dequeue = vmci_transport_dgram_dequeue,
2086 	.dgram_enqueue = vmci_transport_dgram_enqueue,
2087 	.dgram_allow = vmci_transport_dgram_allow,
2088 	.stream_dequeue = vmci_transport_stream_dequeue,
2089 	.stream_enqueue = vmci_transport_stream_enqueue,
2090 	.stream_has_data = vmci_transport_stream_has_data,
2091 	.stream_has_space = vmci_transport_stream_has_space,
2092 	.stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2093 	.stream_is_active = vmci_transport_stream_is_active,
2094 	.stream_allow = vmci_transport_stream_allow,
2095 	.notify_poll_in = vmci_transport_notify_poll_in,
2096 	.notify_poll_out = vmci_transport_notify_poll_out,
2097 	.notify_recv_init = vmci_transport_notify_recv_init,
2098 	.notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2099 	.notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2100 	.notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2101 	.notify_send_init = vmci_transport_notify_send_init,
2102 	.notify_send_pre_block = vmci_transport_notify_send_pre_block,
2103 	.notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2104 	.notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2105 	.shutdown = vmci_transport_shutdown,
2106 	.set_buffer_size = vmci_transport_set_buffer_size,
2107 	.set_min_buffer_size = vmci_transport_set_min_buffer_size,
2108 	.set_max_buffer_size = vmci_transport_set_max_buffer_size,
2109 	.get_buffer_size = vmci_transport_get_buffer_size,
2110 	.get_min_buffer_size = vmci_transport_get_min_buffer_size,
2111 	.get_max_buffer_size = vmci_transport_get_max_buffer_size,
2112 	.get_local_cid = vmci_transport_get_local_cid,
2113 };
2114 
2115 static int __init vmci_transport_init(void)
2116 {
2117 	int err;
2118 
2119 	/* Create the datagram handle that we will use to send and receive all
2120 	 * VSocket control messages for this context.
2121 	 */
2122 	err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2123 						 VMCI_FLAG_ANYCID_DG_HND,
2124 						 vmci_transport_recv_stream_cb,
2125 						 NULL,
2126 						 &vmci_transport_stream_handle);
2127 	if (err < VMCI_SUCCESS) {
2128 		pr_err("Unable to create datagram handle. (%d)\n", err);
2129 		return vmci_transport_error_to_vsock_error(err);
2130 	}
2131 
2132 	err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2133 				   vmci_transport_qp_resumed_cb,
2134 				   NULL, &vmci_transport_qp_resumed_sub_id);
2135 	if (err < VMCI_SUCCESS) {
2136 		pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2137 		err = vmci_transport_error_to_vsock_error(err);
2138 		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2139 		goto err_destroy_stream_handle;
2140 	}
2141 
2142 	err = vsock_core_init(&vmci_transport);
2143 	if (err < 0)
2144 		goto err_unsubscribe;
2145 
2146 	return 0;
2147 
2148 err_unsubscribe:
2149 	vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2150 err_destroy_stream_handle:
2151 	vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2152 	return err;
2153 }
2154 module_init(vmci_transport_init);
2155 
2156 static void __exit vmci_transport_exit(void)
2157 {
2158 	cancel_work_sync(&vmci_transport_cleanup_work);
2159 	vmci_transport_free_resources(&vmci_transport_cleanup_list);
2160 
2161 	if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2162 		if (vmci_datagram_destroy_handle(
2163 			vmci_transport_stream_handle) != VMCI_SUCCESS)
2164 			pr_err("Couldn't destroy datagram handle\n");
2165 		vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2166 	}
2167 
2168 	if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2169 		vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2170 		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2171 	}
2172 
2173 	vsock_core_exit();
2174 }
2175 module_exit(vmci_transport_exit);
2176 
2177 MODULE_AUTHOR("VMware, Inc.");
2178 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2179 MODULE_VERSION("1.0.5.0-k");
2180 MODULE_LICENSE("GPL v2");
2181 MODULE_ALIAS("vmware_vsock");
2182 MODULE_ALIAS_NETPROTO(PF_VSOCK);
2183