1 /* 2 * VMware vSockets Driver 3 * 4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation version 2 and no later version. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 */ 15 16 #include <linux/types.h> 17 #include <linux/bitops.h> 18 #include <linux/cred.h> 19 #include <linux/init.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/kmod.h> 23 #include <linux/list.h> 24 #include <linux/miscdevice.h> 25 #include <linux/module.h> 26 #include <linux/mutex.h> 27 #include <linux/net.h> 28 #include <linux/poll.h> 29 #include <linux/skbuff.h> 30 #include <linux/smp.h> 31 #include <linux/socket.h> 32 #include <linux/stddef.h> 33 #include <linux/unistd.h> 34 #include <linux/wait.h> 35 #include <linux/workqueue.h> 36 #include <net/sock.h> 37 38 #include "af_vsock.h" 39 #include "vmci_transport_notify.h" 40 41 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg); 42 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg); 43 static void vmci_transport_peer_attach_cb(u32 sub_id, 44 const struct vmci_event_data *ed, 45 void *client_data); 46 static void vmci_transport_peer_detach_cb(u32 sub_id, 47 const struct vmci_event_data *ed, 48 void *client_data); 49 static void vmci_transport_recv_pkt_work(struct work_struct *work); 50 static int vmci_transport_recv_listen(struct sock *sk, 51 struct vmci_transport_packet *pkt); 52 static int vmci_transport_recv_connecting_server( 53 struct sock *sk, 54 struct sock *pending, 55 struct vmci_transport_packet *pkt); 56 static int vmci_transport_recv_connecting_client( 57 struct sock *sk, 58 struct vmci_transport_packet *pkt); 59 static int vmci_transport_recv_connecting_client_negotiate( 60 struct sock *sk, 61 struct vmci_transport_packet *pkt); 62 static int vmci_transport_recv_connecting_client_invalid( 63 struct sock *sk, 64 struct vmci_transport_packet *pkt); 65 static int vmci_transport_recv_connected(struct sock *sk, 66 struct vmci_transport_packet *pkt); 67 static bool vmci_transport_old_proto_override(bool *old_pkt_proto); 68 static u16 vmci_transport_new_proto_supported_versions(void); 69 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto, 70 bool old_pkt_proto); 71 72 struct vmci_transport_recv_pkt_info { 73 struct work_struct work; 74 struct sock *sk; 75 struct vmci_transport_packet pkt; 76 }; 77 78 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID, 79 VMCI_INVALID_ID }; 80 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 81 82 static int PROTOCOL_OVERRIDE = -1; 83 84 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN 128 85 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE 262144 86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX 262144 87 88 /* The default peer timeout indicates how long we will wait for a peer response 89 * to a control message. 90 */ 91 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 92 93 #define SS_LISTEN 255 94 95 /* Helper function to convert from a VMCI error code to a VSock error code. */ 96 97 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error) 98 { 99 int err; 100 101 switch (vmci_error) { 102 case VMCI_ERROR_NO_MEM: 103 err = ENOMEM; 104 break; 105 case VMCI_ERROR_DUPLICATE_ENTRY: 106 case VMCI_ERROR_ALREADY_EXISTS: 107 err = EADDRINUSE; 108 break; 109 case VMCI_ERROR_NO_ACCESS: 110 err = EPERM; 111 break; 112 case VMCI_ERROR_NO_RESOURCES: 113 err = ENOBUFS; 114 break; 115 case VMCI_ERROR_INVALID_RESOURCE: 116 err = EHOSTUNREACH; 117 break; 118 case VMCI_ERROR_INVALID_ARGS: 119 default: 120 err = EINVAL; 121 } 122 123 return err > 0 ? -err : err; 124 } 125 126 static u32 vmci_transport_peer_rid(u32 peer_cid) 127 { 128 if (VMADDR_CID_HYPERVISOR == peer_cid) 129 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID; 130 131 return VMCI_TRANSPORT_PACKET_RID; 132 } 133 134 static inline void 135 vmci_transport_packet_init(struct vmci_transport_packet *pkt, 136 struct sockaddr_vm *src, 137 struct sockaddr_vm *dst, 138 u8 type, 139 u64 size, 140 u64 mode, 141 struct vmci_transport_waiting_info *wait, 142 u16 proto, 143 struct vmci_handle handle) 144 { 145 /* We register the stream control handler as an any cid handle so we 146 * must always send from a source address of VMADDR_CID_ANY 147 */ 148 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY, 149 VMCI_TRANSPORT_PACKET_RID); 150 pkt->dg.dst = vmci_make_handle(dst->svm_cid, 151 vmci_transport_peer_rid(dst->svm_cid)); 152 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg); 153 pkt->version = VMCI_TRANSPORT_PACKET_VERSION; 154 pkt->type = type; 155 pkt->src_port = src->svm_port; 156 pkt->dst_port = dst->svm_port; 157 memset(&pkt->proto, 0, sizeof(pkt->proto)); 158 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2)); 159 160 switch (pkt->type) { 161 case VMCI_TRANSPORT_PACKET_TYPE_INVALID: 162 pkt->u.size = 0; 163 break; 164 165 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST: 166 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: 167 pkt->u.size = size; 168 break; 169 170 case VMCI_TRANSPORT_PACKET_TYPE_OFFER: 171 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: 172 pkt->u.handle = handle; 173 break; 174 175 case VMCI_TRANSPORT_PACKET_TYPE_WROTE: 176 case VMCI_TRANSPORT_PACKET_TYPE_READ: 177 case VMCI_TRANSPORT_PACKET_TYPE_RST: 178 pkt->u.size = 0; 179 break; 180 181 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: 182 pkt->u.mode = mode; 183 break; 184 185 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ: 186 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE: 187 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait)); 188 break; 189 190 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2: 191 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: 192 pkt->u.size = size; 193 pkt->proto = proto; 194 break; 195 } 196 } 197 198 static inline void 199 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt, 200 struct sockaddr_vm *local, 201 struct sockaddr_vm *remote) 202 { 203 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port); 204 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port); 205 } 206 207 static int 208 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt, 209 struct sockaddr_vm *src, 210 struct sockaddr_vm *dst, 211 enum vmci_transport_packet_type type, 212 u64 size, 213 u64 mode, 214 struct vmci_transport_waiting_info *wait, 215 u16 proto, 216 struct vmci_handle handle, 217 bool convert_error) 218 { 219 int err; 220 221 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait, 222 proto, handle); 223 err = vmci_datagram_send(&pkt->dg); 224 if (convert_error && (err < 0)) 225 return vmci_transport_error_to_vsock_error(err); 226 227 return err; 228 } 229 230 static int 231 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt, 232 enum vmci_transport_packet_type type, 233 u64 size, 234 u64 mode, 235 struct vmci_transport_waiting_info *wait, 236 struct vmci_handle handle) 237 { 238 struct vmci_transport_packet reply; 239 struct sockaddr_vm src, dst; 240 241 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) { 242 return 0; 243 } else { 244 vmci_transport_packet_get_addresses(pkt, &src, &dst); 245 return __vmci_transport_send_control_pkt(&reply, &src, &dst, 246 type, 247 size, mode, wait, 248 VSOCK_PROTO_INVALID, 249 handle, true); 250 } 251 } 252 253 static int 254 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src, 255 struct sockaddr_vm *dst, 256 enum vmci_transport_packet_type type, 257 u64 size, 258 u64 mode, 259 struct vmci_transport_waiting_info *wait, 260 struct vmci_handle handle) 261 { 262 /* Note that it is safe to use a single packet across all CPUs since 263 * two tasklets of the same type are guaranteed to not ever run 264 * simultaneously. If that ever changes, or VMCI stops using tasklets, 265 * we can use per-cpu packets. 266 */ 267 static struct vmci_transport_packet pkt; 268 269 return __vmci_transport_send_control_pkt(&pkt, src, dst, type, 270 size, mode, wait, 271 VSOCK_PROTO_INVALID, handle, 272 false); 273 } 274 275 static int 276 vmci_transport_send_control_pkt(struct sock *sk, 277 enum vmci_transport_packet_type type, 278 u64 size, 279 u64 mode, 280 struct vmci_transport_waiting_info *wait, 281 u16 proto, 282 struct vmci_handle handle) 283 { 284 struct vmci_transport_packet *pkt; 285 struct vsock_sock *vsk; 286 int err; 287 288 vsk = vsock_sk(sk); 289 290 if (!vsock_addr_bound(&vsk->local_addr)) 291 return -EINVAL; 292 293 if (!vsock_addr_bound(&vsk->remote_addr)) 294 return -EINVAL; 295 296 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL); 297 if (!pkt) 298 return -ENOMEM; 299 300 err = __vmci_transport_send_control_pkt(pkt, &vsk->local_addr, 301 &vsk->remote_addr, type, size, 302 mode, wait, proto, handle, 303 true); 304 kfree(pkt); 305 306 return err; 307 } 308 309 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst, 310 struct sockaddr_vm *src, 311 struct vmci_transport_packet *pkt) 312 { 313 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) 314 return 0; 315 return vmci_transport_send_control_pkt_bh( 316 dst, src, 317 VMCI_TRANSPORT_PACKET_TYPE_RST, 0, 318 0, NULL, VMCI_INVALID_HANDLE); 319 } 320 321 static int vmci_transport_send_reset(struct sock *sk, 322 struct vmci_transport_packet *pkt) 323 { 324 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) 325 return 0; 326 return vmci_transport_send_control_pkt(sk, 327 VMCI_TRANSPORT_PACKET_TYPE_RST, 328 0, 0, NULL, VSOCK_PROTO_INVALID, 329 VMCI_INVALID_HANDLE); 330 } 331 332 static int vmci_transport_send_negotiate(struct sock *sk, size_t size) 333 { 334 return vmci_transport_send_control_pkt( 335 sk, 336 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE, 337 size, 0, NULL, 338 VSOCK_PROTO_INVALID, 339 VMCI_INVALID_HANDLE); 340 } 341 342 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size, 343 u16 version) 344 { 345 return vmci_transport_send_control_pkt( 346 sk, 347 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2, 348 size, 0, NULL, version, 349 VMCI_INVALID_HANDLE); 350 } 351 352 static int vmci_transport_send_qp_offer(struct sock *sk, 353 struct vmci_handle handle) 354 { 355 return vmci_transport_send_control_pkt( 356 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0, 357 0, NULL, 358 VSOCK_PROTO_INVALID, handle); 359 } 360 361 static int vmci_transport_send_attach(struct sock *sk, 362 struct vmci_handle handle) 363 { 364 return vmci_transport_send_control_pkt( 365 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH, 366 0, 0, NULL, VSOCK_PROTO_INVALID, 367 handle); 368 } 369 370 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt) 371 { 372 return vmci_transport_reply_control_pkt_fast( 373 pkt, 374 VMCI_TRANSPORT_PACKET_TYPE_RST, 375 0, 0, NULL, 376 VMCI_INVALID_HANDLE); 377 } 378 379 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst, 380 struct sockaddr_vm *src) 381 { 382 return vmci_transport_send_control_pkt_bh( 383 dst, src, 384 VMCI_TRANSPORT_PACKET_TYPE_INVALID, 385 0, 0, NULL, VMCI_INVALID_HANDLE); 386 } 387 388 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst, 389 struct sockaddr_vm *src) 390 { 391 return vmci_transport_send_control_pkt_bh( 392 dst, src, 393 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 394 0, NULL, VMCI_INVALID_HANDLE); 395 } 396 397 int vmci_transport_send_read_bh(struct sockaddr_vm *dst, 398 struct sockaddr_vm *src) 399 { 400 return vmci_transport_send_control_pkt_bh( 401 dst, src, 402 VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 403 0, NULL, VMCI_INVALID_HANDLE); 404 } 405 406 int vmci_transport_send_wrote(struct sock *sk) 407 { 408 return vmci_transport_send_control_pkt( 409 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 410 0, NULL, VSOCK_PROTO_INVALID, 411 VMCI_INVALID_HANDLE); 412 } 413 414 int vmci_transport_send_read(struct sock *sk) 415 { 416 return vmci_transport_send_control_pkt( 417 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 418 0, NULL, VSOCK_PROTO_INVALID, 419 VMCI_INVALID_HANDLE); 420 } 421 422 int vmci_transport_send_waiting_write(struct sock *sk, 423 struct vmci_transport_waiting_info *wait) 424 { 425 return vmci_transport_send_control_pkt( 426 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE, 427 0, 0, wait, VSOCK_PROTO_INVALID, 428 VMCI_INVALID_HANDLE); 429 } 430 431 int vmci_transport_send_waiting_read(struct sock *sk, 432 struct vmci_transport_waiting_info *wait) 433 { 434 return vmci_transport_send_control_pkt( 435 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ, 436 0, 0, wait, VSOCK_PROTO_INVALID, 437 VMCI_INVALID_HANDLE); 438 } 439 440 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode) 441 { 442 return vmci_transport_send_control_pkt( 443 &vsk->sk, 444 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN, 445 0, mode, NULL, 446 VSOCK_PROTO_INVALID, 447 VMCI_INVALID_HANDLE); 448 } 449 450 static int vmci_transport_send_conn_request(struct sock *sk, size_t size) 451 { 452 return vmci_transport_send_control_pkt(sk, 453 VMCI_TRANSPORT_PACKET_TYPE_REQUEST, 454 size, 0, NULL, 455 VSOCK_PROTO_INVALID, 456 VMCI_INVALID_HANDLE); 457 } 458 459 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size, 460 u16 version) 461 { 462 return vmci_transport_send_control_pkt( 463 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2, 464 size, 0, NULL, version, 465 VMCI_INVALID_HANDLE); 466 } 467 468 static struct sock *vmci_transport_get_pending( 469 struct sock *listener, 470 struct vmci_transport_packet *pkt) 471 { 472 struct vsock_sock *vlistener; 473 struct vsock_sock *vpending; 474 struct sock *pending; 475 struct sockaddr_vm src; 476 477 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); 478 479 vlistener = vsock_sk(listener); 480 481 list_for_each_entry(vpending, &vlistener->pending_links, 482 pending_links) { 483 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) && 484 pkt->dst_port == vpending->local_addr.svm_port) { 485 pending = sk_vsock(vpending); 486 sock_hold(pending); 487 goto found; 488 } 489 } 490 491 pending = NULL; 492 found: 493 return pending; 494 495 } 496 497 static void vmci_transport_release_pending(struct sock *pending) 498 { 499 sock_put(pending); 500 } 501 502 /* We allow two kinds of sockets to communicate with a restricted VM: 1) 503 * trusted sockets 2) sockets from applications running as the same user as the 504 * VM (this is only true for the host side and only when using hosted products) 505 */ 506 507 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid) 508 { 509 return vsock->trusted || 510 vmci_is_context_owner(peer_cid, vsock->owner->uid); 511 } 512 513 /* We allow sending datagrams to and receiving datagrams from a restricted VM 514 * only if it is trusted as described in vmci_transport_is_trusted. 515 */ 516 517 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid) 518 { 519 if (VMADDR_CID_HYPERVISOR == peer_cid) 520 return true; 521 522 if (vsock->cached_peer != peer_cid) { 523 vsock->cached_peer = peer_cid; 524 if (!vmci_transport_is_trusted(vsock, peer_cid) && 525 (vmci_context_get_priv_flags(peer_cid) & 526 VMCI_PRIVILEGE_FLAG_RESTRICTED)) { 527 vsock->cached_peer_allow_dgram = false; 528 } else { 529 vsock->cached_peer_allow_dgram = true; 530 } 531 } 532 533 return vsock->cached_peer_allow_dgram; 534 } 535 536 static int 537 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair, 538 struct vmci_handle *handle, 539 u64 produce_size, 540 u64 consume_size, 541 u32 peer, u32 flags, bool trusted) 542 { 543 int err = 0; 544 545 if (trusted) { 546 /* Try to allocate our queue pair as trusted. This will only 547 * work if vsock is running in the host. 548 */ 549 550 err = vmci_qpair_alloc(qpair, handle, produce_size, 551 consume_size, 552 peer, flags, 553 VMCI_PRIVILEGE_FLAG_TRUSTED); 554 if (err != VMCI_ERROR_NO_ACCESS) 555 goto out; 556 557 } 558 559 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size, 560 peer, flags, VMCI_NO_PRIVILEGE_FLAGS); 561 out: 562 if (err < 0) { 563 pr_err("Could not attach to queue pair with %d\n", 564 err); 565 err = vmci_transport_error_to_vsock_error(err); 566 } 567 568 return err; 569 } 570 571 static int 572 vmci_transport_datagram_create_hnd(u32 resource_id, 573 u32 flags, 574 vmci_datagram_recv_cb recv_cb, 575 void *client_data, 576 struct vmci_handle *out_handle) 577 { 578 int err = 0; 579 580 /* Try to allocate our datagram handler as trusted. This will only work 581 * if vsock is running in the host. 582 */ 583 584 err = vmci_datagram_create_handle_priv(resource_id, flags, 585 VMCI_PRIVILEGE_FLAG_TRUSTED, 586 recv_cb, 587 client_data, out_handle); 588 589 if (err == VMCI_ERROR_NO_ACCESS) 590 err = vmci_datagram_create_handle(resource_id, flags, 591 recv_cb, client_data, 592 out_handle); 593 594 return err; 595 } 596 597 /* This is invoked as part of a tasklet that's scheduled when the VMCI 598 * interrupt fires. This is run in bottom-half context and if it ever needs to 599 * sleep it should defer that work to a work queue. 600 */ 601 602 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg) 603 { 604 struct sock *sk; 605 size_t size; 606 struct sk_buff *skb; 607 struct vsock_sock *vsk; 608 609 sk = (struct sock *)data; 610 611 /* This handler is privileged when this module is running on the host. 612 * We will get datagrams from all endpoints (even VMs that are in a 613 * restricted context). If we get one from a restricted context then 614 * the destination socket must be trusted. 615 * 616 * NOTE: We access the socket struct without holding the lock here. 617 * This is ok because the field we are interested is never modified 618 * outside of the create and destruct socket functions. 619 */ 620 vsk = vsock_sk(sk); 621 if (!vmci_transport_allow_dgram(vsk, dg->src.context)) 622 return VMCI_ERROR_NO_ACCESS; 623 624 size = VMCI_DG_SIZE(dg); 625 626 /* Attach the packet to the socket's receive queue as an sk_buff. */ 627 skb = alloc_skb(size, GFP_ATOMIC); 628 if (!skb) 629 return VMCI_ERROR_NO_MEM; 630 631 /* sk_receive_skb() will do a sock_put(), so hold here. */ 632 sock_hold(sk); 633 skb_put(skb, size); 634 memcpy(skb->data, dg, size); 635 sk_receive_skb(sk, skb, 0); 636 637 return VMCI_SUCCESS; 638 } 639 640 static bool vmci_transport_stream_allow(u32 cid, u32 port) 641 { 642 static const u32 non_socket_contexts[] = { 643 VMADDR_CID_RESERVED, 644 }; 645 int i; 646 647 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts)); 648 649 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) { 650 if (cid == non_socket_contexts[i]) 651 return false; 652 } 653 654 return true; 655 } 656 657 /* This is invoked as part of a tasklet that's scheduled when the VMCI 658 * interrupt fires. This is run in bottom-half context but it defers most of 659 * its work to the packet handling work queue. 660 */ 661 662 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg) 663 { 664 struct sock *sk; 665 struct sockaddr_vm dst; 666 struct sockaddr_vm src; 667 struct vmci_transport_packet *pkt; 668 struct vsock_sock *vsk; 669 bool bh_process_pkt; 670 int err; 671 672 sk = NULL; 673 err = VMCI_SUCCESS; 674 bh_process_pkt = false; 675 676 /* Ignore incoming packets from contexts without sockets, or resources 677 * that aren't vsock implementations. 678 */ 679 680 if (!vmci_transport_stream_allow(dg->src.context, -1) 681 || vmci_transport_peer_rid(dg->src.context) != dg->src.resource) 682 return VMCI_ERROR_NO_ACCESS; 683 684 if (VMCI_DG_SIZE(dg) < sizeof(*pkt)) 685 /* Drop datagrams that do not contain full VSock packets. */ 686 return VMCI_ERROR_INVALID_ARGS; 687 688 pkt = (struct vmci_transport_packet *)dg; 689 690 /* Find the socket that should handle this packet. First we look for a 691 * connected socket and if there is none we look for a socket bound to 692 * the destintation address. 693 */ 694 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); 695 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port); 696 697 sk = vsock_find_connected_socket(&src, &dst); 698 if (!sk) { 699 sk = vsock_find_bound_socket(&dst); 700 if (!sk) { 701 /* We could not find a socket for this specified 702 * address. If this packet is a RST, we just drop it. 703 * If it is another packet, we send a RST. Note that 704 * we do not send a RST reply to RSTs so that we do not 705 * continually send RSTs between two endpoints. 706 * 707 * Note that since this is a reply, dst is src and src 708 * is dst. 709 */ 710 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) 711 pr_err("unable to send reset\n"); 712 713 err = VMCI_ERROR_NOT_FOUND; 714 goto out; 715 } 716 } 717 718 /* If the received packet type is beyond all types known to this 719 * implementation, reply with an invalid message. Hopefully this will 720 * help when implementing backwards compatibility in the future. 721 */ 722 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) { 723 vmci_transport_send_invalid_bh(&dst, &src); 724 err = VMCI_ERROR_INVALID_ARGS; 725 goto out; 726 } 727 728 /* This handler is privileged when this module is running on the host. 729 * We will get datagram connect requests from all endpoints (even VMs 730 * that are in a restricted context). If we get one from a restricted 731 * context then the destination socket must be trusted. 732 * 733 * NOTE: We access the socket struct without holding the lock here. 734 * This is ok because the field we are interested is never modified 735 * outside of the create and destruct socket functions. 736 */ 737 vsk = vsock_sk(sk); 738 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) { 739 err = VMCI_ERROR_NO_ACCESS; 740 goto out; 741 } 742 743 /* We do most everything in a work queue, but let's fast path the 744 * notification of reads and writes to help data transfer performance. 745 * We can only do this if there is no process context code executing 746 * for this socket since that may change the state. 747 */ 748 bh_lock_sock(sk); 749 750 if (!sock_owned_by_user(sk)) { 751 /* The local context ID may be out of date, update it. */ 752 vsk->local_addr.svm_cid = dst.svm_cid; 753 754 if (sk->sk_state == SS_CONNECTED) 755 vmci_trans(vsk)->notify_ops->handle_notify_pkt( 756 sk, pkt, true, &dst, &src, 757 &bh_process_pkt); 758 } 759 760 bh_unlock_sock(sk); 761 762 if (!bh_process_pkt) { 763 struct vmci_transport_recv_pkt_info *recv_pkt_info; 764 765 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC); 766 if (!recv_pkt_info) { 767 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) 768 pr_err("unable to send reset\n"); 769 770 err = VMCI_ERROR_NO_MEM; 771 goto out; 772 } 773 774 recv_pkt_info->sk = sk; 775 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt)); 776 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work); 777 778 schedule_work(&recv_pkt_info->work); 779 /* Clear sk so that the reference count incremented by one of 780 * the Find functions above is not decremented below. We need 781 * that reference count for the packet handler we've scheduled 782 * to run. 783 */ 784 sk = NULL; 785 } 786 787 out: 788 if (sk) 789 sock_put(sk); 790 791 return err; 792 } 793 794 static void vmci_transport_peer_attach_cb(u32 sub_id, 795 const struct vmci_event_data *e_data, 796 void *client_data) 797 { 798 struct sock *sk = client_data; 799 const struct vmci_event_payload_qp *e_payload; 800 struct vsock_sock *vsk; 801 802 e_payload = vmci_event_data_const_payload(e_data); 803 804 vsk = vsock_sk(sk); 805 806 /* We don't ask for delayed CBs when we subscribe to this event (we 807 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no 808 * guarantees in that case about what context we might be running in, 809 * so it could be BH or process, blockable or non-blockable. So we 810 * need to account for all possible contexts here. 811 */ 812 local_bh_disable(); 813 bh_lock_sock(sk); 814 815 /* XXX This is lame, we should provide a way to lookup sockets by 816 * qp_handle. 817 */ 818 if (vmci_handle_is_equal(vmci_trans(vsk)->qp_handle, 819 e_payload->handle)) { 820 /* XXX This doesn't do anything, but in the future we may want 821 * to set a flag here to verify the attach really did occur and 822 * we weren't just sent a datagram claiming it was. 823 */ 824 goto out; 825 } 826 827 out: 828 bh_unlock_sock(sk); 829 local_bh_enable(); 830 } 831 832 static void vmci_transport_handle_detach(struct sock *sk) 833 { 834 struct vsock_sock *vsk; 835 836 vsk = vsock_sk(sk); 837 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) { 838 sock_set_flag(sk, SOCK_DONE); 839 840 /* On a detach the peer will not be sending or receiving 841 * anymore. 842 */ 843 vsk->peer_shutdown = SHUTDOWN_MASK; 844 845 /* We should not be sending anymore since the peer won't be 846 * there to receive, but we can still receive if there is data 847 * left in our consume queue. 848 */ 849 if (vsock_stream_has_data(vsk) <= 0) { 850 if (sk->sk_state == SS_CONNECTING) { 851 /* The peer may detach from a queue pair while 852 * we are still in the connecting state, i.e., 853 * if the peer VM is killed after attaching to 854 * a queue pair, but before we complete the 855 * handshake. In that case, we treat the detach 856 * event like a reset. 857 */ 858 859 sk->sk_state = SS_UNCONNECTED; 860 sk->sk_err = ECONNRESET; 861 sk->sk_error_report(sk); 862 return; 863 } 864 sk->sk_state = SS_UNCONNECTED; 865 } 866 sk->sk_state_change(sk); 867 } 868 } 869 870 static void vmci_transport_peer_detach_cb(u32 sub_id, 871 const struct vmci_event_data *e_data, 872 void *client_data) 873 { 874 struct sock *sk = client_data; 875 const struct vmci_event_payload_qp *e_payload; 876 struct vsock_sock *vsk; 877 878 e_payload = vmci_event_data_const_payload(e_data); 879 vsk = vsock_sk(sk); 880 if (vmci_handle_is_invalid(e_payload->handle)) 881 return; 882 883 /* Same rules for locking as for peer_attach_cb(). */ 884 local_bh_disable(); 885 bh_lock_sock(sk); 886 887 /* XXX This is lame, we should provide a way to lookup sockets by 888 * qp_handle. 889 */ 890 if (vmci_handle_is_equal(vmci_trans(vsk)->qp_handle, 891 e_payload->handle)) 892 vmci_transport_handle_detach(sk); 893 894 bh_unlock_sock(sk); 895 local_bh_enable(); 896 } 897 898 static void vmci_transport_qp_resumed_cb(u32 sub_id, 899 const struct vmci_event_data *e_data, 900 void *client_data) 901 { 902 vsock_for_each_connected_socket(vmci_transport_handle_detach); 903 } 904 905 static void vmci_transport_recv_pkt_work(struct work_struct *work) 906 { 907 struct vmci_transport_recv_pkt_info *recv_pkt_info; 908 struct vmci_transport_packet *pkt; 909 struct sock *sk; 910 911 recv_pkt_info = 912 container_of(work, struct vmci_transport_recv_pkt_info, work); 913 sk = recv_pkt_info->sk; 914 pkt = &recv_pkt_info->pkt; 915 916 lock_sock(sk); 917 918 /* The local context ID may be out of date. */ 919 vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context; 920 921 switch (sk->sk_state) { 922 case SS_LISTEN: 923 vmci_transport_recv_listen(sk, pkt); 924 break; 925 case SS_CONNECTING: 926 /* Processing of pending connections for servers goes through 927 * the listening socket, so see vmci_transport_recv_listen() 928 * for that path. 929 */ 930 vmci_transport_recv_connecting_client(sk, pkt); 931 break; 932 case SS_CONNECTED: 933 vmci_transport_recv_connected(sk, pkt); 934 break; 935 default: 936 /* Because this function does not run in the same context as 937 * vmci_transport_recv_stream_cb it is possible that the 938 * socket has closed. We need to let the other side know or it 939 * could be sitting in a connect and hang forever. Send a 940 * reset to prevent that. 941 */ 942 vmci_transport_send_reset(sk, pkt); 943 break; 944 } 945 946 release_sock(sk); 947 kfree(recv_pkt_info); 948 /* Release reference obtained in the stream callback when we fetched 949 * this socket out of the bound or connected list. 950 */ 951 sock_put(sk); 952 } 953 954 static int vmci_transport_recv_listen(struct sock *sk, 955 struct vmci_transport_packet *pkt) 956 { 957 struct sock *pending; 958 struct vsock_sock *vpending; 959 int err; 960 u64 qp_size; 961 bool old_request = false; 962 bool old_pkt_proto = false; 963 964 err = 0; 965 966 /* Because we are in the listen state, we could be receiving a packet 967 * for ourself or any previous connection requests that we received. 968 * If it's the latter, we try to find a socket in our list of pending 969 * connections and, if we do, call the appropriate handler for the 970 * state that that socket is in. Otherwise we try to service the 971 * connection request. 972 */ 973 pending = vmci_transport_get_pending(sk, pkt); 974 if (pending) { 975 lock_sock(pending); 976 977 /* The local context ID may be out of date. */ 978 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context; 979 980 switch (pending->sk_state) { 981 case SS_CONNECTING: 982 err = vmci_transport_recv_connecting_server(sk, 983 pending, 984 pkt); 985 break; 986 default: 987 vmci_transport_send_reset(pending, pkt); 988 err = -EINVAL; 989 } 990 991 if (err < 0) 992 vsock_remove_pending(sk, pending); 993 994 release_sock(pending); 995 vmci_transport_release_pending(pending); 996 997 return err; 998 } 999 1000 /* The listen state only accepts connection requests. Reply with a 1001 * reset unless we received a reset. 1002 */ 1003 1004 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST || 1005 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) { 1006 vmci_transport_reply_reset(pkt); 1007 return -EINVAL; 1008 } 1009 1010 if (pkt->u.size == 0) { 1011 vmci_transport_reply_reset(pkt); 1012 return -EINVAL; 1013 } 1014 1015 /* If this socket can't accommodate this connection request, we send a 1016 * reset. Otherwise we create and initialize a child socket and reply 1017 * with a connection negotiation. 1018 */ 1019 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) { 1020 vmci_transport_reply_reset(pkt); 1021 return -ECONNREFUSED; 1022 } 1023 1024 pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL, 1025 sk->sk_type); 1026 if (!pending) { 1027 vmci_transport_send_reset(sk, pkt); 1028 return -ENOMEM; 1029 } 1030 1031 vpending = vsock_sk(pending); 1032 1033 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context, 1034 pkt->dst_port); 1035 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context, 1036 pkt->src_port); 1037 1038 /* If the proposed size fits within our min/max, accept it. Otherwise 1039 * propose our own size. 1040 */ 1041 if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size && 1042 pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) { 1043 qp_size = pkt->u.size; 1044 } else { 1045 qp_size = vmci_trans(vpending)->queue_pair_size; 1046 } 1047 1048 /* Figure out if we are using old or new requests based on the 1049 * overrides pkt types sent by our peer. 1050 */ 1051 if (vmci_transport_old_proto_override(&old_pkt_proto)) { 1052 old_request = old_pkt_proto; 1053 } else { 1054 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST) 1055 old_request = true; 1056 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2) 1057 old_request = false; 1058 1059 } 1060 1061 if (old_request) { 1062 /* Handle a REQUEST (or override) */ 1063 u16 version = VSOCK_PROTO_INVALID; 1064 if (vmci_transport_proto_to_notify_struct( 1065 pending, &version, true)) 1066 err = vmci_transport_send_negotiate(pending, qp_size); 1067 else 1068 err = -EINVAL; 1069 1070 } else { 1071 /* Handle a REQUEST2 (or override) */ 1072 int proto_int = pkt->proto; 1073 int pos; 1074 u16 active_proto_version = 0; 1075 1076 /* The list of possible protocols is the intersection of all 1077 * protocols the client supports ... plus all the protocols we 1078 * support. 1079 */ 1080 proto_int &= vmci_transport_new_proto_supported_versions(); 1081 1082 /* We choose the highest possible protocol version and use that 1083 * one. 1084 */ 1085 pos = fls(proto_int); 1086 if (pos) { 1087 active_proto_version = (1 << (pos - 1)); 1088 if (vmci_transport_proto_to_notify_struct( 1089 pending, &active_proto_version, false)) 1090 err = vmci_transport_send_negotiate2(pending, 1091 qp_size, 1092 active_proto_version); 1093 else 1094 err = -EINVAL; 1095 1096 } else { 1097 err = -EINVAL; 1098 } 1099 } 1100 1101 if (err < 0) { 1102 vmci_transport_send_reset(sk, pkt); 1103 sock_put(pending); 1104 err = vmci_transport_error_to_vsock_error(err); 1105 goto out; 1106 } 1107 1108 vsock_add_pending(sk, pending); 1109 sk->sk_ack_backlog++; 1110 1111 pending->sk_state = SS_CONNECTING; 1112 vmci_trans(vpending)->produce_size = 1113 vmci_trans(vpending)->consume_size = qp_size; 1114 vmci_trans(vpending)->queue_pair_size = qp_size; 1115 1116 vmci_trans(vpending)->notify_ops->process_request(pending); 1117 1118 /* We might never receive another message for this socket and it's not 1119 * connected to any process, so we have to ensure it gets cleaned up 1120 * ourself. Our delayed work function will take care of that. Note 1121 * that we do not ever cancel this function since we have few 1122 * guarantees about its state when calling cancel_delayed_work(). 1123 * Instead we hold a reference on the socket for that function and make 1124 * it capable of handling cases where it needs to do nothing but 1125 * release that reference. 1126 */ 1127 vpending->listener = sk; 1128 sock_hold(sk); 1129 sock_hold(pending); 1130 INIT_DELAYED_WORK(&vpending->dwork, vsock_pending_work); 1131 schedule_delayed_work(&vpending->dwork, HZ); 1132 1133 out: 1134 return err; 1135 } 1136 1137 static int 1138 vmci_transport_recv_connecting_server(struct sock *listener, 1139 struct sock *pending, 1140 struct vmci_transport_packet *pkt) 1141 { 1142 struct vsock_sock *vpending; 1143 struct vmci_handle handle; 1144 struct vmci_qp *qpair; 1145 bool is_local; 1146 u32 flags; 1147 u32 detach_sub_id; 1148 int err; 1149 int skerr; 1150 1151 vpending = vsock_sk(pending); 1152 detach_sub_id = VMCI_INVALID_ID; 1153 1154 switch (pkt->type) { 1155 case VMCI_TRANSPORT_PACKET_TYPE_OFFER: 1156 if (vmci_handle_is_invalid(pkt->u.handle)) { 1157 vmci_transport_send_reset(pending, pkt); 1158 skerr = EPROTO; 1159 err = -EINVAL; 1160 goto destroy; 1161 } 1162 break; 1163 default: 1164 /* Close and cleanup the connection. */ 1165 vmci_transport_send_reset(pending, pkt); 1166 skerr = EPROTO; 1167 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL; 1168 goto destroy; 1169 } 1170 1171 /* In order to complete the connection we need to attach to the offered 1172 * queue pair and send an attach notification. We also subscribe to the 1173 * detach event so we know when our peer goes away, and we do that 1174 * before attaching so we don't miss an event. If all this succeeds, 1175 * we update our state and wakeup anything waiting in accept() for a 1176 * connection. 1177 */ 1178 1179 /* We don't care about attach since we ensure the other side has 1180 * attached by specifying the ATTACH_ONLY flag below. 1181 */ 1182 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, 1183 vmci_transport_peer_detach_cb, 1184 pending, &detach_sub_id); 1185 if (err < VMCI_SUCCESS) { 1186 vmci_transport_send_reset(pending, pkt); 1187 err = vmci_transport_error_to_vsock_error(err); 1188 skerr = -err; 1189 goto destroy; 1190 } 1191 1192 vmci_trans(vpending)->detach_sub_id = detach_sub_id; 1193 1194 /* Now attach to the queue pair the client created. */ 1195 handle = pkt->u.handle; 1196 1197 /* vpending->local_addr always has a context id so we do not need to 1198 * worry about VMADDR_CID_ANY in this case. 1199 */ 1200 is_local = 1201 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid; 1202 flags = VMCI_QPFLAG_ATTACH_ONLY; 1203 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0; 1204 1205 err = vmci_transport_queue_pair_alloc( 1206 &qpair, 1207 &handle, 1208 vmci_trans(vpending)->produce_size, 1209 vmci_trans(vpending)->consume_size, 1210 pkt->dg.src.context, 1211 flags, 1212 vmci_transport_is_trusted( 1213 vpending, 1214 vpending->remote_addr.svm_cid)); 1215 if (err < 0) { 1216 vmci_transport_send_reset(pending, pkt); 1217 skerr = -err; 1218 goto destroy; 1219 } 1220 1221 vmci_trans(vpending)->qp_handle = handle; 1222 vmci_trans(vpending)->qpair = qpair; 1223 1224 /* When we send the attach message, we must be ready to handle incoming 1225 * control messages on the newly connected socket. So we move the 1226 * pending socket to the connected state before sending the attach 1227 * message. Otherwise, an incoming packet triggered by the attach being 1228 * received by the peer may be processed concurrently with what happens 1229 * below after sending the attach message, and that incoming packet 1230 * will find the listening socket instead of the (currently) pending 1231 * socket. Note that enqueueing the socket increments the reference 1232 * count, so even if a reset comes before the connection is accepted, 1233 * the socket will be valid until it is removed from the queue. 1234 * 1235 * If we fail sending the attach below, we remove the socket from the 1236 * connected list and move the socket to SS_UNCONNECTED before 1237 * releasing the lock, so a pending slow path processing of an incoming 1238 * packet will not see the socket in the connected state in that case. 1239 */ 1240 pending->sk_state = SS_CONNECTED; 1241 1242 vsock_insert_connected(vpending); 1243 1244 /* Notify our peer of our attach. */ 1245 err = vmci_transport_send_attach(pending, handle); 1246 if (err < 0) { 1247 vsock_remove_connected(vpending); 1248 pr_err("Could not send attach\n"); 1249 vmci_transport_send_reset(pending, pkt); 1250 err = vmci_transport_error_to_vsock_error(err); 1251 skerr = -err; 1252 goto destroy; 1253 } 1254 1255 /* We have a connection. Move the now connected socket from the 1256 * listener's pending list to the accept queue so callers of accept() 1257 * can find it. 1258 */ 1259 vsock_remove_pending(listener, pending); 1260 vsock_enqueue_accept(listener, pending); 1261 1262 /* Callers of accept() will be be waiting on the listening socket, not 1263 * the pending socket. 1264 */ 1265 listener->sk_state_change(listener); 1266 1267 return 0; 1268 1269 destroy: 1270 pending->sk_err = skerr; 1271 pending->sk_state = SS_UNCONNECTED; 1272 /* As long as we drop our reference, all necessary cleanup will handle 1273 * when the cleanup function drops its reference and our destruct 1274 * implementation is called. Note that since the listen handler will 1275 * remove pending from the pending list upon our failure, the cleanup 1276 * function won't drop the additional reference, which is why we do it 1277 * here. 1278 */ 1279 sock_put(pending); 1280 1281 return err; 1282 } 1283 1284 static int 1285 vmci_transport_recv_connecting_client(struct sock *sk, 1286 struct vmci_transport_packet *pkt) 1287 { 1288 struct vsock_sock *vsk; 1289 int err; 1290 int skerr; 1291 1292 vsk = vsock_sk(sk); 1293 1294 switch (pkt->type) { 1295 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: 1296 if (vmci_handle_is_invalid(pkt->u.handle) || 1297 !vmci_handle_is_equal(pkt->u.handle, 1298 vmci_trans(vsk)->qp_handle)) { 1299 skerr = EPROTO; 1300 err = -EINVAL; 1301 goto destroy; 1302 } 1303 1304 /* Signify the socket is connected and wakeup the waiter in 1305 * connect(). Also place the socket in the connected table for 1306 * accounting (it can already be found since it's in the bound 1307 * table). 1308 */ 1309 sk->sk_state = SS_CONNECTED; 1310 sk->sk_socket->state = SS_CONNECTED; 1311 vsock_insert_connected(vsk); 1312 sk->sk_state_change(sk); 1313 1314 break; 1315 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: 1316 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: 1317 if (pkt->u.size == 0 1318 || pkt->dg.src.context != vsk->remote_addr.svm_cid 1319 || pkt->src_port != vsk->remote_addr.svm_port 1320 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle) 1321 || vmci_trans(vsk)->qpair 1322 || vmci_trans(vsk)->produce_size != 0 1323 || vmci_trans(vsk)->consume_size != 0 1324 || vmci_trans(vsk)->attach_sub_id != VMCI_INVALID_ID 1325 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) { 1326 skerr = EPROTO; 1327 err = -EINVAL; 1328 1329 goto destroy; 1330 } 1331 1332 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt); 1333 if (err) { 1334 skerr = -err; 1335 goto destroy; 1336 } 1337 1338 break; 1339 case VMCI_TRANSPORT_PACKET_TYPE_INVALID: 1340 err = vmci_transport_recv_connecting_client_invalid(sk, pkt); 1341 if (err) { 1342 skerr = -err; 1343 goto destroy; 1344 } 1345 1346 break; 1347 case VMCI_TRANSPORT_PACKET_TYPE_RST: 1348 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to 1349 * continue processing here after they sent an INVALID packet. 1350 * This meant that we got a RST after the INVALID. We ignore a 1351 * RST after an INVALID. The common code doesn't send the RST 1352 * ... so we can hang if an old version of the common code 1353 * fails between getting a REQUEST and sending an OFFER back. 1354 * Not much we can do about it... except hope that it doesn't 1355 * happen. 1356 */ 1357 if (vsk->ignore_connecting_rst) { 1358 vsk->ignore_connecting_rst = false; 1359 } else { 1360 skerr = ECONNRESET; 1361 err = 0; 1362 goto destroy; 1363 } 1364 1365 break; 1366 default: 1367 /* Close and cleanup the connection. */ 1368 skerr = EPROTO; 1369 err = -EINVAL; 1370 goto destroy; 1371 } 1372 1373 return 0; 1374 1375 destroy: 1376 vmci_transport_send_reset(sk, pkt); 1377 1378 sk->sk_state = SS_UNCONNECTED; 1379 sk->sk_err = skerr; 1380 sk->sk_error_report(sk); 1381 return err; 1382 } 1383 1384 static int vmci_transport_recv_connecting_client_negotiate( 1385 struct sock *sk, 1386 struct vmci_transport_packet *pkt) 1387 { 1388 int err; 1389 struct vsock_sock *vsk; 1390 struct vmci_handle handle; 1391 struct vmci_qp *qpair; 1392 u32 attach_sub_id; 1393 u32 detach_sub_id; 1394 bool is_local; 1395 u32 flags; 1396 bool old_proto = true; 1397 bool old_pkt_proto; 1398 u16 version; 1399 1400 vsk = vsock_sk(sk); 1401 handle = VMCI_INVALID_HANDLE; 1402 attach_sub_id = VMCI_INVALID_ID; 1403 detach_sub_id = VMCI_INVALID_ID; 1404 1405 /* If we have gotten here then we should be past the point where old 1406 * linux vsock could have sent the bogus rst. 1407 */ 1408 vsk->sent_request = false; 1409 vsk->ignore_connecting_rst = false; 1410 1411 /* Verify that we're OK with the proposed queue pair size */ 1412 if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size || 1413 pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) { 1414 err = -EINVAL; 1415 goto destroy; 1416 } 1417 1418 /* At this point we know the CID the peer is using to talk to us. */ 1419 1420 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY) 1421 vsk->local_addr.svm_cid = pkt->dg.dst.context; 1422 1423 /* Setup the notify ops to be the highest supported version that both 1424 * the server and the client support. 1425 */ 1426 1427 if (vmci_transport_old_proto_override(&old_pkt_proto)) { 1428 old_proto = old_pkt_proto; 1429 } else { 1430 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE) 1431 old_proto = true; 1432 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2) 1433 old_proto = false; 1434 1435 } 1436 1437 if (old_proto) 1438 version = VSOCK_PROTO_INVALID; 1439 else 1440 version = pkt->proto; 1441 1442 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) { 1443 err = -EINVAL; 1444 goto destroy; 1445 } 1446 1447 /* Subscribe to attach and detach events first. 1448 * 1449 * XXX We attach once for each queue pair created for now so it is easy 1450 * to find the socket (it's provided), but later we should only 1451 * subscribe once and add a way to lookup sockets by queue pair handle. 1452 */ 1453 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_ATTACH, 1454 vmci_transport_peer_attach_cb, 1455 sk, &attach_sub_id); 1456 if (err < VMCI_SUCCESS) { 1457 err = vmci_transport_error_to_vsock_error(err); 1458 goto destroy; 1459 } 1460 1461 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, 1462 vmci_transport_peer_detach_cb, 1463 sk, &detach_sub_id); 1464 if (err < VMCI_SUCCESS) { 1465 err = vmci_transport_error_to_vsock_error(err); 1466 goto destroy; 1467 } 1468 1469 /* Make VMCI select the handle for us. */ 1470 handle = VMCI_INVALID_HANDLE; 1471 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid; 1472 flags = is_local ? VMCI_QPFLAG_LOCAL : 0; 1473 1474 err = vmci_transport_queue_pair_alloc(&qpair, 1475 &handle, 1476 pkt->u.size, 1477 pkt->u.size, 1478 vsk->remote_addr.svm_cid, 1479 flags, 1480 vmci_transport_is_trusted( 1481 vsk, 1482 vsk-> 1483 remote_addr.svm_cid)); 1484 if (err < 0) 1485 goto destroy; 1486 1487 err = vmci_transport_send_qp_offer(sk, handle); 1488 if (err < 0) { 1489 err = vmci_transport_error_to_vsock_error(err); 1490 goto destroy; 1491 } 1492 1493 vmci_trans(vsk)->qp_handle = handle; 1494 vmci_trans(vsk)->qpair = qpair; 1495 1496 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 1497 pkt->u.size; 1498 1499 vmci_trans(vsk)->attach_sub_id = attach_sub_id; 1500 vmci_trans(vsk)->detach_sub_id = detach_sub_id; 1501 1502 vmci_trans(vsk)->notify_ops->process_negotiate(sk); 1503 1504 return 0; 1505 1506 destroy: 1507 if (attach_sub_id != VMCI_INVALID_ID) 1508 vmci_event_unsubscribe(attach_sub_id); 1509 1510 if (detach_sub_id != VMCI_INVALID_ID) 1511 vmci_event_unsubscribe(detach_sub_id); 1512 1513 if (!vmci_handle_is_invalid(handle)) 1514 vmci_qpair_detach(&qpair); 1515 1516 return err; 1517 } 1518 1519 static int 1520 vmci_transport_recv_connecting_client_invalid(struct sock *sk, 1521 struct vmci_transport_packet *pkt) 1522 { 1523 int err = 0; 1524 struct vsock_sock *vsk = vsock_sk(sk); 1525 1526 if (vsk->sent_request) { 1527 vsk->sent_request = false; 1528 vsk->ignore_connecting_rst = true; 1529 1530 err = vmci_transport_send_conn_request( 1531 sk, vmci_trans(vsk)->queue_pair_size); 1532 if (err < 0) 1533 err = vmci_transport_error_to_vsock_error(err); 1534 else 1535 err = 0; 1536 1537 } 1538 1539 return err; 1540 } 1541 1542 static int vmci_transport_recv_connected(struct sock *sk, 1543 struct vmci_transport_packet *pkt) 1544 { 1545 struct vsock_sock *vsk; 1546 bool pkt_processed = false; 1547 1548 /* In cases where we are closing the connection, it's sufficient to 1549 * mark the state change (and maybe error) and wake up any waiting 1550 * threads. Since this is a connected socket, it's owned by a user 1551 * process and will be cleaned up when the failure is passed back on 1552 * the current or next system call. Our system call implementations 1553 * must therefore check for error and state changes on entry and when 1554 * being awoken. 1555 */ 1556 switch (pkt->type) { 1557 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: 1558 if (pkt->u.mode) { 1559 vsk = vsock_sk(sk); 1560 1561 vsk->peer_shutdown |= pkt->u.mode; 1562 sk->sk_state_change(sk); 1563 } 1564 break; 1565 1566 case VMCI_TRANSPORT_PACKET_TYPE_RST: 1567 vsk = vsock_sk(sk); 1568 /* It is possible that we sent our peer a message (e.g a 1569 * WAITING_READ) right before we got notified that the peer had 1570 * detached. If that happens then we can get a RST pkt back 1571 * from our peer even though there is data available for us to 1572 * read. In that case, don't shutdown the socket completely but 1573 * instead allow the local client to finish reading data off 1574 * the queuepair. Always treat a RST pkt in connected mode like 1575 * a clean shutdown. 1576 */ 1577 sock_set_flag(sk, SOCK_DONE); 1578 vsk->peer_shutdown = SHUTDOWN_MASK; 1579 if (vsock_stream_has_data(vsk) <= 0) 1580 sk->sk_state = SS_DISCONNECTING; 1581 1582 sk->sk_state_change(sk); 1583 break; 1584 1585 default: 1586 vsk = vsock_sk(sk); 1587 vmci_trans(vsk)->notify_ops->handle_notify_pkt( 1588 sk, pkt, false, NULL, NULL, 1589 &pkt_processed); 1590 if (!pkt_processed) 1591 return -EINVAL; 1592 1593 break; 1594 } 1595 1596 return 0; 1597 } 1598 1599 static int vmci_transport_socket_init(struct vsock_sock *vsk, 1600 struct vsock_sock *psk) 1601 { 1602 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL); 1603 if (!vsk->trans) 1604 return -ENOMEM; 1605 1606 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; 1607 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE; 1608 vmci_trans(vsk)->qpair = NULL; 1609 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0; 1610 vmci_trans(vsk)->attach_sub_id = vmci_trans(vsk)->detach_sub_id = 1611 VMCI_INVALID_ID; 1612 vmci_trans(vsk)->notify_ops = NULL; 1613 if (psk) { 1614 vmci_trans(vsk)->queue_pair_size = 1615 vmci_trans(psk)->queue_pair_size; 1616 vmci_trans(vsk)->queue_pair_min_size = 1617 vmci_trans(psk)->queue_pair_min_size; 1618 vmci_trans(vsk)->queue_pair_max_size = 1619 vmci_trans(psk)->queue_pair_max_size; 1620 } else { 1621 vmci_trans(vsk)->queue_pair_size = 1622 VMCI_TRANSPORT_DEFAULT_QP_SIZE; 1623 vmci_trans(vsk)->queue_pair_min_size = 1624 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN; 1625 vmci_trans(vsk)->queue_pair_max_size = 1626 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX; 1627 } 1628 1629 return 0; 1630 } 1631 1632 static void vmci_transport_destruct(struct vsock_sock *vsk) 1633 { 1634 if (vmci_trans(vsk)->attach_sub_id != VMCI_INVALID_ID) { 1635 vmci_event_unsubscribe(vmci_trans(vsk)->attach_sub_id); 1636 vmci_trans(vsk)->attach_sub_id = VMCI_INVALID_ID; 1637 } 1638 1639 if (vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) { 1640 vmci_event_unsubscribe(vmci_trans(vsk)->detach_sub_id); 1641 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID; 1642 } 1643 1644 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) { 1645 vmci_qpair_detach(&vmci_trans(vsk)->qpair); 1646 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE; 1647 vmci_trans(vsk)->produce_size = 0; 1648 vmci_trans(vsk)->consume_size = 0; 1649 } 1650 1651 if (vmci_trans(vsk)->notify_ops) 1652 vmci_trans(vsk)->notify_ops->socket_destruct(vsk); 1653 1654 kfree(vsk->trans); 1655 vsk->trans = NULL; 1656 } 1657 1658 static void vmci_transport_release(struct vsock_sock *vsk) 1659 { 1660 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) { 1661 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle); 1662 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; 1663 } 1664 } 1665 1666 static int vmci_transport_dgram_bind(struct vsock_sock *vsk, 1667 struct sockaddr_vm *addr) 1668 { 1669 u32 port; 1670 u32 flags; 1671 int err; 1672 1673 /* VMCI will select a resource ID for us if we provide 1674 * VMCI_INVALID_ID. 1675 */ 1676 port = addr->svm_port == VMADDR_PORT_ANY ? 1677 VMCI_INVALID_ID : addr->svm_port; 1678 1679 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE)) 1680 return -EACCES; 1681 1682 flags = addr->svm_cid == VMADDR_CID_ANY ? 1683 VMCI_FLAG_ANYCID_DG_HND : 0; 1684 1685 err = vmci_transport_datagram_create_hnd(port, flags, 1686 vmci_transport_recv_dgram_cb, 1687 &vsk->sk, 1688 &vmci_trans(vsk)->dg_handle); 1689 if (err < VMCI_SUCCESS) 1690 return vmci_transport_error_to_vsock_error(err); 1691 vsock_addr_init(&vsk->local_addr, addr->svm_cid, 1692 vmci_trans(vsk)->dg_handle.resource); 1693 1694 return 0; 1695 } 1696 1697 static int vmci_transport_dgram_enqueue( 1698 struct vsock_sock *vsk, 1699 struct sockaddr_vm *remote_addr, 1700 struct iovec *iov, 1701 size_t len) 1702 { 1703 int err; 1704 struct vmci_datagram *dg; 1705 1706 if (len > VMCI_MAX_DG_PAYLOAD_SIZE) 1707 return -EMSGSIZE; 1708 1709 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid)) 1710 return -EPERM; 1711 1712 /* Allocate a buffer for the user's message and our packet header. */ 1713 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL); 1714 if (!dg) 1715 return -ENOMEM; 1716 1717 memcpy_fromiovec(VMCI_DG_PAYLOAD(dg), iov, len); 1718 1719 dg->dst = vmci_make_handle(remote_addr->svm_cid, 1720 remote_addr->svm_port); 1721 dg->src = vmci_make_handle(vsk->local_addr.svm_cid, 1722 vsk->local_addr.svm_port); 1723 dg->payload_size = len; 1724 1725 err = vmci_datagram_send(dg); 1726 kfree(dg); 1727 if (err < 0) 1728 return vmci_transport_error_to_vsock_error(err); 1729 1730 return err - sizeof(*dg); 1731 } 1732 1733 static int vmci_transport_dgram_dequeue(struct kiocb *kiocb, 1734 struct vsock_sock *vsk, 1735 struct msghdr *msg, size_t len, 1736 int flags) 1737 { 1738 int err; 1739 int noblock; 1740 struct vmci_datagram *dg; 1741 size_t payload_len; 1742 struct sk_buff *skb; 1743 1744 noblock = flags & MSG_DONTWAIT; 1745 1746 if (flags & MSG_OOB || flags & MSG_ERRQUEUE) 1747 return -EOPNOTSUPP; 1748 1749 msg->msg_namelen = 0; 1750 1751 /* Retrieve the head sk_buff from the socket's receive queue. */ 1752 err = 0; 1753 skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err); 1754 if (err) 1755 return err; 1756 1757 if (!skb) 1758 return -EAGAIN; 1759 1760 dg = (struct vmci_datagram *)skb->data; 1761 if (!dg) 1762 /* err is 0, meaning we read zero bytes. */ 1763 goto out; 1764 1765 payload_len = dg->payload_size; 1766 /* Ensure the sk_buff matches the payload size claimed in the packet. */ 1767 if (payload_len != skb->len - sizeof(*dg)) { 1768 err = -EINVAL; 1769 goto out; 1770 } 1771 1772 if (payload_len > len) { 1773 payload_len = len; 1774 msg->msg_flags |= MSG_TRUNC; 1775 } 1776 1777 /* Place the datagram payload in the user's iovec. */ 1778 err = skb_copy_datagram_iovec(skb, sizeof(*dg), msg->msg_iov, 1779 payload_len); 1780 if (err) 1781 goto out; 1782 1783 if (msg->msg_name) { 1784 struct sockaddr_vm *vm_addr; 1785 1786 /* Provide the address of the sender. */ 1787 vm_addr = (struct sockaddr_vm *)msg->msg_name; 1788 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource); 1789 msg->msg_namelen = sizeof(*vm_addr); 1790 } 1791 err = payload_len; 1792 1793 out: 1794 skb_free_datagram(&vsk->sk, skb); 1795 return err; 1796 } 1797 1798 static bool vmci_transport_dgram_allow(u32 cid, u32 port) 1799 { 1800 if (cid == VMADDR_CID_HYPERVISOR) { 1801 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor 1802 * state and are allowed. 1803 */ 1804 return port == VMCI_UNITY_PBRPC_REGISTER; 1805 } 1806 1807 return true; 1808 } 1809 1810 static int vmci_transport_connect(struct vsock_sock *vsk) 1811 { 1812 int err; 1813 bool old_pkt_proto = false; 1814 struct sock *sk = &vsk->sk; 1815 1816 if (vmci_transport_old_proto_override(&old_pkt_proto) && 1817 old_pkt_proto) { 1818 err = vmci_transport_send_conn_request( 1819 sk, vmci_trans(vsk)->queue_pair_size); 1820 if (err < 0) { 1821 sk->sk_state = SS_UNCONNECTED; 1822 return err; 1823 } 1824 } else { 1825 int supported_proto_versions = 1826 vmci_transport_new_proto_supported_versions(); 1827 err = vmci_transport_send_conn_request2( 1828 sk, vmci_trans(vsk)->queue_pair_size, 1829 supported_proto_versions); 1830 if (err < 0) { 1831 sk->sk_state = SS_UNCONNECTED; 1832 return err; 1833 } 1834 1835 vsk->sent_request = true; 1836 } 1837 1838 return err; 1839 } 1840 1841 static ssize_t vmci_transport_stream_dequeue( 1842 struct vsock_sock *vsk, 1843 struct iovec *iov, 1844 size_t len, 1845 int flags) 1846 { 1847 if (flags & MSG_PEEK) 1848 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, iov, len, 0); 1849 else 1850 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, iov, len, 0); 1851 } 1852 1853 static ssize_t vmci_transport_stream_enqueue( 1854 struct vsock_sock *vsk, 1855 struct iovec *iov, 1856 size_t len) 1857 { 1858 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, iov, len, 0); 1859 } 1860 1861 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk) 1862 { 1863 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair); 1864 } 1865 1866 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk) 1867 { 1868 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair); 1869 } 1870 1871 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk) 1872 { 1873 return vmci_trans(vsk)->consume_size; 1874 } 1875 1876 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk) 1877 { 1878 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle); 1879 } 1880 1881 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk) 1882 { 1883 return vmci_trans(vsk)->queue_pair_size; 1884 } 1885 1886 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk) 1887 { 1888 return vmci_trans(vsk)->queue_pair_min_size; 1889 } 1890 1891 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk) 1892 { 1893 return vmci_trans(vsk)->queue_pair_max_size; 1894 } 1895 1896 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val) 1897 { 1898 if (val < vmci_trans(vsk)->queue_pair_min_size) 1899 vmci_trans(vsk)->queue_pair_min_size = val; 1900 if (val > vmci_trans(vsk)->queue_pair_max_size) 1901 vmci_trans(vsk)->queue_pair_max_size = val; 1902 vmci_trans(vsk)->queue_pair_size = val; 1903 } 1904 1905 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk, 1906 u64 val) 1907 { 1908 if (val > vmci_trans(vsk)->queue_pair_size) 1909 vmci_trans(vsk)->queue_pair_size = val; 1910 vmci_trans(vsk)->queue_pair_min_size = val; 1911 } 1912 1913 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk, 1914 u64 val) 1915 { 1916 if (val < vmci_trans(vsk)->queue_pair_size) 1917 vmci_trans(vsk)->queue_pair_size = val; 1918 vmci_trans(vsk)->queue_pair_max_size = val; 1919 } 1920 1921 static int vmci_transport_notify_poll_in( 1922 struct vsock_sock *vsk, 1923 size_t target, 1924 bool *data_ready_now) 1925 { 1926 return vmci_trans(vsk)->notify_ops->poll_in( 1927 &vsk->sk, target, data_ready_now); 1928 } 1929 1930 static int vmci_transport_notify_poll_out( 1931 struct vsock_sock *vsk, 1932 size_t target, 1933 bool *space_available_now) 1934 { 1935 return vmci_trans(vsk)->notify_ops->poll_out( 1936 &vsk->sk, target, space_available_now); 1937 } 1938 1939 static int vmci_transport_notify_recv_init( 1940 struct vsock_sock *vsk, 1941 size_t target, 1942 struct vsock_transport_recv_notify_data *data) 1943 { 1944 return vmci_trans(vsk)->notify_ops->recv_init( 1945 &vsk->sk, target, 1946 (struct vmci_transport_recv_notify_data *)data); 1947 } 1948 1949 static int vmci_transport_notify_recv_pre_block( 1950 struct vsock_sock *vsk, 1951 size_t target, 1952 struct vsock_transport_recv_notify_data *data) 1953 { 1954 return vmci_trans(vsk)->notify_ops->recv_pre_block( 1955 &vsk->sk, target, 1956 (struct vmci_transport_recv_notify_data *)data); 1957 } 1958 1959 static int vmci_transport_notify_recv_pre_dequeue( 1960 struct vsock_sock *vsk, 1961 size_t target, 1962 struct vsock_transport_recv_notify_data *data) 1963 { 1964 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue( 1965 &vsk->sk, target, 1966 (struct vmci_transport_recv_notify_data *)data); 1967 } 1968 1969 static int vmci_transport_notify_recv_post_dequeue( 1970 struct vsock_sock *vsk, 1971 size_t target, 1972 ssize_t copied, 1973 bool data_read, 1974 struct vsock_transport_recv_notify_data *data) 1975 { 1976 return vmci_trans(vsk)->notify_ops->recv_post_dequeue( 1977 &vsk->sk, target, copied, data_read, 1978 (struct vmci_transport_recv_notify_data *)data); 1979 } 1980 1981 static int vmci_transport_notify_send_init( 1982 struct vsock_sock *vsk, 1983 struct vsock_transport_send_notify_data *data) 1984 { 1985 return vmci_trans(vsk)->notify_ops->send_init( 1986 &vsk->sk, 1987 (struct vmci_transport_send_notify_data *)data); 1988 } 1989 1990 static int vmci_transport_notify_send_pre_block( 1991 struct vsock_sock *vsk, 1992 struct vsock_transport_send_notify_data *data) 1993 { 1994 return vmci_trans(vsk)->notify_ops->send_pre_block( 1995 &vsk->sk, 1996 (struct vmci_transport_send_notify_data *)data); 1997 } 1998 1999 static int vmci_transport_notify_send_pre_enqueue( 2000 struct vsock_sock *vsk, 2001 struct vsock_transport_send_notify_data *data) 2002 { 2003 return vmci_trans(vsk)->notify_ops->send_pre_enqueue( 2004 &vsk->sk, 2005 (struct vmci_transport_send_notify_data *)data); 2006 } 2007 2008 static int vmci_transport_notify_send_post_enqueue( 2009 struct vsock_sock *vsk, 2010 ssize_t written, 2011 struct vsock_transport_send_notify_data *data) 2012 { 2013 return vmci_trans(vsk)->notify_ops->send_post_enqueue( 2014 &vsk->sk, written, 2015 (struct vmci_transport_send_notify_data *)data); 2016 } 2017 2018 static bool vmci_transport_old_proto_override(bool *old_pkt_proto) 2019 { 2020 if (PROTOCOL_OVERRIDE != -1) { 2021 if (PROTOCOL_OVERRIDE == 0) 2022 *old_pkt_proto = true; 2023 else 2024 *old_pkt_proto = false; 2025 2026 pr_info("Proto override in use\n"); 2027 return true; 2028 } 2029 2030 return false; 2031 } 2032 2033 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, 2034 u16 *proto, 2035 bool old_pkt_proto) 2036 { 2037 struct vsock_sock *vsk = vsock_sk(sk); 2038 2039 if (old_pkt_proto) { 2040 if (*proto != VSOCK_PROTO_INVALID) { 2041 pr_err("Can't set both an old and new protocol\n"); 2042 return false; 2043 } 2044 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops; 2045 goto exit; 2046 } 2047 2048 switch (*proto) { 2049 case VSOCK_PROTO_PKT_ON_NOTIFY: 2050 vmci_trans(vsk)->notify_ops = 2051 &vmci_transport_notify_pkt_q_state_ops; 2052 break; 2053 default: 2054 pr_err("Unknown notify protocol version\n"); 2055 return false; 2056 } 2057 2058 exit: 2059 vmci_trans(vsk)->notify_ops->socket_init(sk); 2060 return true; 2061 } 2062 2063 static u16 vmci_transport_new_proto_supported_versions(void) 2064 { 2065 if (PROTOCOL_OVERRIDE != -1) 2066 return PROTOCOL_OVERRIDE; 2067 2068 return VSOCK_PROTO_ALL_SUPPORTED; 2069 } 2070 2071 static u32 vmci_transport_get_local_cid(void) 2072 { 2073 return vmci_get_context_id(); 2074 } 2075 2076 static struct vsock_transport vmci_transport = { 2077 .init = vmci_transport_socket_init, 2078 .destruct = vmci_transport_destruct, 2079 .release = vmci_transport_release, 2080 .connect = vmci_transport_connect, 2081 .dgram_bind = vmci_transport_dgram_bind, 2082 .dgram_dequeue = vmci_transport_dgram_dequeue, 2083 .dgram_enqueue = vmci_transport_dgram_enqueue, 2084 .dgram_allow = vmci_transport_dgram_allow, 2085 .stream_dequeue = vmci_transport_stream_dequeue, 2086 .stream_enqueue = vmci_transport_stream_enqueue, 2087 .stream_has_data = vmci_transport_stream_has_data, 2088 .stream_has_space = vmci_transport_stream_has_space, 2089 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat, 2090 .stream_is_active = vmci_transport_stream_is_active, 2091 .stream_allow = vmci_transport_stream_allow, 2092 .notify_poll_in = vmci_transport_notify_poll_in, 2093 .notify_poll_out = vmci_transport_notify_poll_out, 2094 .notify_recv_init = vmci_transport_notify_recv_init, 2095 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block, 2096 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue, 2097 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue, 2098 .notify_send_init = vmci_transport_notify_send_init, 2099 .notify_send_pre_block = vmci_transport_notify_send_pre_block, 2100 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue, 2101 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue, 2102 .shutdown = vmci_transport_shutdown, 2103 .set_buffer_size = vmci_transport_set_buffer_size, 2104 .set_min_buffer_size = vmci_transport_set_min_buffer_size, 2105 .set_max_buffer_size = vmci_transport_set_max_buffer_size, 2106 .get_buffer_size = vmci_transport_get_buffer_size, 2107 .get_min_buffer_size = vmci_transport_get_min_buffer_size, 2108 .get_max_buffer_size = vmci_transport_get_max_buffer_size, 2109 .get_local_cid = vmci_transport_get_local_cid, 2110 }; 2111 2112 static int __init vmci_transport_init(void) 2113 { 2114 int err; 2115 2116 /* Create the datagram handle that we will use to send and receive all 2117 * VSocket control messages for this context. 2118 */ 2119 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID, 2120 VMCI_FLAG_ANYCID_DG_HND, 2121 vmci_transport_recv_stream_cb, 2122 NULL, 2123 &vmci_transport_stream_handle); 2124 if (err < VMCI_SUCCESS) { 2125 pr_err("Unable to create datagram handle. (%d)\n", err); 2126 return vmci_transport_error_to_vsock_error(err); 2127 } 2128 2129 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED, 2130 vmci_transport_qp_resumed_cb, 2131 NULL, &vmci_transport_qp_resumed_sub_id); 2132 if (err < VMCI_SUCCESS) { 2133 pr_err("Unable to subscribe to resumed event. (%d)\n", err); 2134 err = vmci_transport_error_to_vsock_error(err); 2135 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 2136 goto err_destroy_stream_handle; 2137 } 2138 2139 err = vsock_core_init(&vmci_transport); 2140 if (err < 0) 2141 goto err_unsubscribe; 2142 2143 return 0; 2144 2145 err_unsubscribe: 2146 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); 2147 err_destroy_stream_handle: 2148 vmci_datagram_destroy_handle(vmci_transport_stream_handle); 2149 return err; 2150 } 2151 module_init(vmci_transport_init); 2152 2153 static void __exit vmci_transport_exit(void) 2154 { 2155 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) { 2156 if (vmci_datagram_destroy_handle( 2157 vmci_transport_stream_handle) != VMCI_SUCCESS) 2158 pr_err("Couldn't destroy datagram handle\n"); 2159 vmci_transport_stream_handle = VMCI_INVALID_HANDLE; 2160 } 2161 2162 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) { 2163 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); 2164 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; 2165 } 2166 2167 vsock_core_exit(); 2168 } 2169 module_exit(vmci_transport_exit); 2170 2171 MODULE_AUTHOR("VMware, Inc."); 2172 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets"); 2173 MODULE_LICENSE("GPL v2"); 2174 MODULE_ALIAS("vmware_vsock"); 2175 MODULE_ALIAS_NETPROTO(PF_VSOCK); 2176