1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VMware vSockets Driver 4 * 5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 6 */ 7 8 /* Implementation notes: 9 * 10 * - There are two kinds of sockets: those created by user action (such as 11 * calling socket(2)) and those created by incoming connection request packets. 12 * 13 * - There are two "global" tables, one for bound sockets (sockets that have 14 * specified an address that they are responsible for) and one for connected 15 * sockets (sockets that have established a connection with another socket). 16 * These tables are "global" in that all sockets on the system are placed 17 * within them. - Note, though, that the bound table contains an extra entry 18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 19 * that list. The bound table is used solely for lookup of sockets when packets 20 * are received and that's not necessary for SOCK_DGRAM sockets since we create 21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 22 * sockets out of the bound hash buckets will reduce the chance of collisions 23 * when looking for SOCK_STREAM sockets and prevents us from having to check the 24 * socket type in the hash table lookups. 25 * 26 * - Sockets created by user action will either be "client" sockets that 27 * initiate a connection or "server" sockets that listen for connections; we do 28 * not support simultaneous connects (two "client" sockets connecting). 29 * 30 * - "Server" sockets are referred to as listener sockets throughout this 31 * implementation because they are in the TCP_LISTEN state. When a 32 * connection request is received (the second kind of socket mentioned above), 33 * we create a new socket and refer to it as a pending socket. These pending 34 * sockets are placed on the pending connection list of the listener socket. 35 * When future packets are received for the address the listener socket is 36 * bound to, we check if the source of the packet is from one that has an 37 * existing pending connection. If it does, we process the packet for the 38 * pending socket. When that socket reaches the connected state, it is removed 39 * from the listener socket's pending list and enqueued in the listener 40 * socket's accept queue. Callers of accept(2) will accept connected sockets 41 * from the listener socket's accept queue. If the socket cannot be accepted 42 * for some reason then it is marked rejected. Once the connection is 43 * accepted, it is owned by the user process and the responsibility for cleanup 44 * falls with that user process. 45 * 46 * - It is possible that these pending sockets will never reach the connected 47 * state; in fact, we may never receive another packet after the connection 48 * request. Because of this, we must schedule a cleanup function to run in the 49 * future, after some amount of time passes where a connection should have been 50 * established. This function ensures that the socket is off all lists so it 51 * cannot be retrieved, then drops all references to the socket so it is cleaned 52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 53 * function will also cleanup rejected sockets, those that reach the connected 54 * state but leave it before they have been accepted. 55 * 56 * - Lock ordering for pending or accept queue sockets is: 57 * 58 * lock_sock(listener); 59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING); 60 * 61 * Using explicit nested locking keeps lockdep happy since normally only one 62 * lock of a given class may be taken at a time. 63 * 64 * - Sockets created by user action will be cleaned up when the user process 65 * calls close(2), causing our release implementation to be called. Our release 66 * implementation will perform some cleanup then drop the last reference so our 67 * sk_destruct implementation is invoked. Our sk_destruct implementation will 68 * perform additional cleanup that's common for both types of sockets. 69 * 70 * - A socket's reference count is what ensures that the structure won't be 71 * freed. Each entry in a list (such as the "global" bound and connected tables 72 * and the listener socket's pending list and connected queue) ensures a 73 * reference. When we defer work until process context and pass a socket as our 74 * argument, we must ensure the reference count is increased to ensure the 75 * socket isn't freed before the function is run; the deferred function will 76 * then drop the reference. 77 * 78 * - sk->sk_state uses the TCP state constants because they are widely used by 79 * other address families and exposed to userspace tools like ss(8): 80 * 81 * TCP_CLOSE - unconnected 82 * TCP_SYN_SENT - connecting 83 * TCP_ESTABLISHED - connected 84 * TCP_CLOSING - disconnecting 85 * TCP_LISTEN - listening 86 */ 87 88 #include <linux/compat.h> 89 #include <linux/types.h> 90 #include <linux/bitops.h> 91 #include <linux/cred.h> 92 #include <linux/errqueue.h> 93 #include <linux/init.h> 94 #include <linux/io.h> 95 #include <linux/kernel.h> 96 #include <linux/sched/signal.h> 97 #include <linux/kmod.h> 98 #include <linux/list.h> 99 #include <linux/miscdevice.h> 100 #include <linux/module.h> 101 #include <linux/mutex.h> 102 #include <linux/net.h> 103 #include <linux/poll.h> 104 #include <linux/random.h> 105 #include <linux/skbuff.h> 106 #include <linux/smp.h> 107 #include <linux/socket.h> 108 #include <linux/stddef.h> 109 #include <linux/unistd.h> 110 #include <linux/wait.h> 111 #include <linux/workqueue.h> 112 #include <net/sock.h> 113 #include <net/af_vsock.h> 114 #include <uapi/linux/vm_sockets.h> 115 #include <uapi/asm-generic/ioctls.h> 116 117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 118 static void vsock_sk_destruct(struct sock *sk); 119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 120 static void vsock_close(struct sock *sk, long timeout); 121 122 /* Protocol family. */ 123 struct proto vsock_proto = { 124 .name = "AF_VSOCK", 125 .owner = THIS_MODULE, 126 .obj_size = sizeof(struct vsock_sock), 127 .close = vsock_close, 128 #ifdef CONFIG_BPF_SYSCALL 129 .psock_update_sk_prot = vsock_bpf_update_proto, 130 #endif 131 }; 132 133 /* The default peer timeout indicates how long we will wait for a peer response 134 * to a control message. 135 */ 136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 137 138 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256) 139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256) 140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128 141 142 /* Transport used for host->guest communication */ 143 static const struct vsock_transport *transport_h2g; 144 /* Transport used for guest->host communication */ 145 static const struct vsock_transport *transport_g2h; 146 /* Transport used for DGRAM communication */ 147 static const struct vsock_transport *transport_dgram; 148 /* Transport used for local communication */ 149 static const struct vsock_transport *transport_local; 150 static DEFINE_MUTEX(vsock_register_mutex); 151 152 /**** UTILS ****/ 153 154 /* Each bound VSocket is stored in the bind hash table and each connected 155 * VSocket is stored in the connected hash table. 156 * 157 * Unbound sockets are all put on the same list attached to the end of the hash 158 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 159 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 160 * represents the list that addr hashes to). 161 * 162 * Specifically, we initialize the vsock_bind_table array to a size of 163 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 164 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 165 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 166 * mods with VSOCK_HASH_SIZE to ensure this. 167 */ 168 #define MAX_PORT_RETRIES 24 169 170 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) 171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 172 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 173 174 /* XXX This can probably be implemented in a better way. */ 175 #define VSOCK_CONN_HASH(src, dst) \ 176 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) 177 #define vsock_connected_sockets(src, dst) \ 178 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 179 #define vsock_connected_sockets_vsk(vsk) \ 180 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 181 182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 183 EXPORT_SYMBOL_GPL(vsock_bind_table); 184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 185 EXPORT_SYMBOL_GPL(vsock_connected_table); 186 DEFINE_SPINLOCK(vsock_table_lock); 187 EXPORT_SYMBOL_GPL(vsock_table_lock); 188 189 /* Autobind this socket to the local address if necessary. */ 190 static int vsock_auto_bind(struct vsock_sock *vsk) 191 { 192 struct sock *sk = sk_vsock(vsk); 193 struct sockaddr_vm local_addr; 194 195 if (vsock_addr_bound(&vsk->local_addr)) 196 return 0; 197 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 198 return __vsock_bind(sk, &local_addr); 199 } 200 201 static void vsock_init_tables(void) 202 { 203 int i; 204 205 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 206 INIT_LIST_HEAD(&vsock_bind_table[i]); 207 208 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 209 INIT_LIST_HEAD(&vsock_connected_table[i]); 210 } 211 212 static void __vsock_insert_bound(struct list_head *list, 213 struct vsock_sock *vsk) 214 { 215 sock_hold(&vsk->sk); 216 list_add(&vsk->bound_table, list); 217 } 218 219 static void __vsock_insert_connected(struct list_head *list, 220 struct vsock_sock *vsk) 221 { 222 sock_hold(&vsk->sk); 223 list_add(&vsk->connected_table, list); 224 } 225 226 static void __vsock_remove_bound(struct vsock_sock *vsk) 227 { 228 list_del_init(&vsk->bound_table); 229 sock_put(&vsk->sk); 230 } 231 232 static void __vsock_remove_connected(struct vsock_sock *vsk) 233 { 234 list_del_init(&vsk->connected_table); 235 sock_put(&vsk->sk); 236 } 237 238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 239 { 240 struct vsock_sock *vsk; 241 242 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) { 243 if (vsock_addr_equals_addr(addr, &vsk->local_addr)) 244 return sk_vsock(vsk); 245 246 if (addr->svm_port == vsk->local_addr.svm_port && 247 (vsk->local_addr.svm_cid == VMADDR_CID_ANY || 248 addr->svm_cid == VMADDR_CID_ANY)) 249 return sk_vsock(vsk); 250 } 251 252 return NULL; 253 } 254 255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 256 struct sockaddr_vm *dst) 257 { 258 struct vsock_sock *vsk; 259 260 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 261 connected_table) { 262 if (vsock_addr_equals_addr(src, &vsk->remote_addr) && 263 dst->svm_port == vsk->local_addr.svm_port) { 264 return sk_vsock(vsk); 265 } 266 } 267 268 return NULL; 269 } 270 271 static void vsock_insert_unbound(struct vsock_sock *vsk) 272 { 273 spin_lock_bh(&vsock_table_lock); 274 __vsock_insert_bound(vsock_unbound_sockets, vsk); 275 spin_unlock_bh(&vsock_table_lock); 276 } 277 278 void vsock_insert_connected(struct vsock_sock *vsk) 279 { 280 struct list_head *list = vsock_connected_sockets( 281 &vsk->remote_addr, &vsk->local_addr); 282 283 spin_lock_bh(&vsock_table_lock); 284 __vsock_insert_connected(list, vsk); 285 spin_unlock_bh(&vsock_table_lock); 286 } 287 EXPORT_SYMBOL_GPL(vsock_insert_connected); 288 289 void vsock_remove_bound(struct vsock_sock *vsk) 290 { 291 spin_lock_bh(&vsock_table_lock); 292 if (__vsock_in_bound_table(vsk)) 293 __vsock_remove_bound(vsk); 294 spin_unlock_bh(&vsock_table_lock); 295 } 296 EXPORT_SYMBOL_GPL(vsock_remove_bound); 297 298 void vsock_remove_connected(struct vsock_sock *vsk) 299 { 300 spin_lock_bh(&vsock_table_lock); 301 if (__vsock_in_connected_table(vsk)) 302 __vsock_remove_connected(vsk); 303 spin_unlock_bh(&vsock_table_lock); 304 } 305 EXPORT_SYMBOL_GPL(vsock_remove_connected); 306 307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 308 { 309 struct sock *sk; 310 311 spin_lock_bh(&vsock_table_lock); 312 sk = __vsock_find_bound_socket(addr); 313 if (sk) 314 sock_hold(sk); 315 316 spin_unlock_bh(&vsock_table_lock); 317 318 return sk; 319 } 320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 321 322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 323 struct sockaddr_vm *dst) 324 { 325 struct sock *sk; 326 327 spin_lock_bh(&vsock_table_lock); 328 sk = __vsock_find_connected_socket(src, dst); 329 if (sk) 330 sock_hold(sk); 331 332 spin_unlock_bh(&vsock_table_lock); 333 334 return sk; 335 } 336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 337 338 void vsock_remove_sock(struct vsock_sock *vsk) 339 { 340 /* Transport reassignment must not remove the binding. */ 341 if (sock_flag(sk_vsock(vsk), SOCK_DEAD)) 342 vsock_remove_bound(vsk); 343 344 vsock_remove_connected(vsk); 345 } 346 EXPORT_SYMBOL_GPL(vsock_remove_sock); 347 348 void vsock_for_each_connected_socket(struct vsock_transport *transport, 349 void (*fn)(struct sock *sk)) 350 { 351 int i; 352 353 spin_lock_bh(&vsock_table_lock); 354 355 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 356 struct vsock_sock *vsk; 357 list_for_each_entry(vsk, &vsock_connected_table[i], 358 connected_table) { 359 if (vsk->transport != transport) 360 continue; 361 362 fn(sk_vsock(vsk)); 363 } 364 } 365 366 spin_unlock_bh(&vsock_table_lock); 367 } 368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 369 370 void vsock_add_pending(struct sock *listener, struct sock *pending) 371 { 372 struct vsock_sock *vlistener; 373 struct vsock_sock *vpending; 374 375 vlistener = vsock_sk(listener); 376 vpending = vsock_sk(pending); 377 378 sock_hold(pending); 379 sock_hold(listener); 380 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 381 } 382 EXPORT_SYMBOL_GPL(vsock_add_pending); 383 384 void vsock_remove_pending(struct sock *listener, struct sock *pending) 385 { 386 struct vsock_sock *vpending = vsock_sk(pending); 387 388 list_del_init(&vpending->pending_links); 389 sock_put(listener); 390 sock_put(pending); 391 } 392 EXPORT_SYMBOL_GPL(vsock_remove_pending); 393 394 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 395 { 396 struct vsock_sock *vlistener; 397 struct vsock_sock *vconnected; 398 399 vlistener = vsock_sk(listener); 400 vconnected = vsock_sk(connected); 401 402 sock_hold(connected); 403 sock_hold(listener); 404 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 405 } 406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 407 408 static bool vsock_use_local_transport(unsigned int remote_cid) 409 { 410 lockdep_assert_held(&vsock_register_mutex); 411 412 if (!transport_local) 413 return false; 414 415 if (remote_cid == VMADDR_CID_LOCAL) 416 return true; 417 418 if (transport_g2h) { 419 return remote_cid == transport_g2h->get_local_cid(); 420 } else { 421 return remote_cid == VMADDR_CID_HOST; 422 } 423 } 424 425 static void vsock_deassign_transport(struct vsock_sock *vsk) 426 { 427 if (!vsk->transport) 428 return; 429 430 vsk->transport->destruct(vsk); 431 module_put(vsk->transport->module); 432 vsk->transport = NULL; 433 } 434 435 /* Assign a transport to a socket and call the .init transport callback. 436 * 437 * Note: for connection oriented socket this must be called when vsk->remote_addr 438 * is set (e.g. during the connect() or when a connection request on a listener 439 * socket is received). 440 * The vsk->remote_addr is used to decide which transport to use: 441 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if 442 * g2h is not loaded, will use local transport; 443 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field 444 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport; 445 * - remote CID > VMADDR_CID_HOST will use host->guest transport; 446 */ 447 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk) 448 { 449 const struct vsock_transport *new_transport; 450 struct sock *sk = sk_vsock(vsk); 451 unsigned int remote_cid = vsk->remote_addr.svm_cid; 452 __u8 remote_flags; 453 int ret; 454 455 /* If the packet is coming with the source and destination CIDs higher 456 * than VMADDR_CID_HOST, then a vsock channel where all the packets are 457 * forwarded to the host should be established. Then the host will 458 * need to forward the packets to the guest. 459 * 460 * The flag is set on the (listen) receive path (psk is not NULL). On 461 * the connect path the flag can be set by the user space application. 462 */ 463 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST && 464 vsk->remote_addr.svm_cid > VMADDR_CID_HOST) 465 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST; 466 467 remote_flags = vsk->remote_addr.svm_flags; 468 469 mutex_lock(&vsock_register_mutex); 470 471 switch (sk->sk_type) { 472 case SOCK_DGRAM: 473 new_transport = transport_dgram; 474 break; 475 case SOCK_STREAM: 476 case SOCK_SEQPACKET: 477 if (vsock_use_local_transport(remote_cid)) 478 new_transport = transport_local; 479 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g || 480 (remote_flags & VMADDR_FLAG_TO_HOST)) 481 new_transport = transport_g2h; 482 else 483 new_transport = transport_h2g; 484 break; 485 default: 486 ret = -ESOCKTNOSUPPORT; 487 goto err; 488 } 489 490 if (vsk->transport) { 491 if (vsk->transport == new_transport) { 492 ret = 0; 493 goto err; 494 } 495 496 /* transport->release() must be called with sock lock acquired. 497 * This path can only be taken during vsock_connect(), where we 498 * have already held the sock lock. In the other cases, this 499 * function is called on a new socket which is not assigned to 500 * any transport. 501 */ 502 vsk->transport->release(vsk); 503 vsock_deassign_transport(vsk); 504 505 /* transport's release() and destruct() can touch some socket 506 * state, since we are reassigning the socket to a new transport 507 * during vsock_connect(), let's reset these fields to have a 508 * clean state. 509 */ 510 sock_reset_flag(sk, SOCK_DONE); 511 sk->sk_state = TCP_CLOSE; 512 vsk->peer_shutdown = 0; 513 } 514 515 /* We increase the module refcnt to prevent the transport unloading 516 * while there are open sockets assigned to it. 517 */ 518 if (!new_transport || !try_module_get(new_transport->module)) { 519 ret = -ENODEV; 520 goto err; 521 } 522 523 /* It's safe to release the mutex after a successful try_module_get(). 524 * Whichever transport `new_transport` points at, it won't go away until 525 * the last module_put() below or in vsock_deassign_transport(). 526 */ 527 mutex_unlock(&vsock_register_mutex); 528 529 if (sk->sk_type == SOCK_SEQPACKET) { 530 if (!new_transport->seqpacket_allow || 531 !new_transport->seqpacket_allow(remote_cid)) { 532 module_put(new_transport->module); 533 return -ESOCKTNOSUPPORT; 534 } 535 } 536 537 ret = new_transport->init(vsk, psk); 538 if (ret) { 539 module_put(new_transport->module); 540 return ret; 541 } 542 543 vsk->transport = new_transport; 544 545 return 0; 546 err: 547 mutex_unlock(&vsock_register_mutex); 548 return ret; 549 } 550 EXPORT_SYMBOL_GPL(vsock_assign_transport); 551 552 /* 553 * Provide safe access to static transport_{h2g,g2h,dgram,local} callbacks. 554 * Otherwise we may race with module removal. Do not use on `vsk->transport`. 555 */ 556 static u32 vsock_registered_transport_cid(const struct vsock_transport **transport) 557 { 558 u32 cid = VMADDR_CID_ANY; 559 560 mutex_lock(&vsock_register_mutex); 561 if (*transport) 562 cid = (*transport)->get_local_cid(); 563 mutex_unlock(&vsock_register_mutex); 564 565 return cid; 566 } 567 568 bool vsock_find_cid(unsigned int cid) 569 { 570 if (cid == vsock_registered_transport_cid(&transport_g2h)) 571 return true; 572 573 if (transport_h2g && cid == VMADDR_CID_HOST) 574 return true; 575 576 if (transport_local && cid == VMADDR_CID_LOCAL) 577 return true; 578 579 return false; 580 } 581 EXPORT_SYMBOL_GPL(vsock_find_cid); 582 583 static struct sock *vsock_dequeue_accept(struct sock *listener) 584 { 585 struct vsock_sock *vlistener; 586 struct vsock_sock *vconnected; 587 588 vlistener = vsock_sk(listener); 589 590 if (list_empty(&vlistener->accept_queue)) 591 return NULL; 592 593 vconnected = list_entry(vlistener->accept_queue.next, 594 struct vsock_sock, accept_queue); 595 596 list_del_init(&vconnected->accept_queue); 597 sock_put(listener); 598 /* The caller will need a reference on the connected socket so we let 599 * it call sock_put(). 600 */ 601 602 return sk_vsock(vconnected); 603 } 604 605 static bool vsock_is_accept_queue_empty(struct sock *sk) 606 { 607 struct vsock_sock *vsk = vsock_sk(sk); 608 return list_empty(&vsk->accept_queue); 609 } 610 611 static bool vsock_is_pending(struct sock *sk) 612 { 613 struct vsock_sock *vsk = vsock_sk(sk); 614 return !list_empty(&vsk->pending_links); 615 } 616 617 static int vsock_send_shutdown(struct sock *sk, int mode) 618 { 619 struct vsock_sock *vsk = vsock_sk(sk); 620 621 if (!vsk->transport) 622 return -ENODEV; 623 624 return vsk->transport->shutdown(vsk, mode); 625 } 626 627 static void vsock_pending_work(struct work_struct *work) 628 { 629 struct sock *sk; 630 struct sock *listener; 631 struct vsock_sock *vsk; 632 bool cleanup; 633 634 vsk = container_of(work, struct vsock_sock, pending_work.work); 635 sk = sk_vsock(vsk); 636 listener = vsk->listener; 637 cleanup = true; 638 639 lock_sock(listener); 640 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 641 642 if (vsock_is_pending(sk)) { 643 vsock_remove_pending(listener, sk); 644 645 sk_acceptq_removed(listener); 646 } else if (!vsk->rejected) { 647 /* We are not on the pending list and accept() did not reject 648 * us, so we must have been accepted by our user process. We 649 * just need to drop our references to the sockets and be on 650 * our way. 651 */ 652 cleanup = false; 653 goto out; 654 } 655 656 /* We need to remove ourself from the global connected sockets list so 657 * incoming packets can't find this socket, and to reduce the reference 658 * count. 659 */ 660 vsock_remove_connected(vsk); 661 662 sk->sk_state = TCP_CLOSE; 663 664 out: 665 release_sock(sk); 666 release_sock(listener); 667 if (cleanup) 668 sock_put(sk); 669 670 sock_put(sk); 671 sock_put(listener); 672 } 673 674 /**** SOCKET OPERATIONS ****/ 675 676 static int __vsock_bind_connectible(struct vsock_sock *vsk, 677 struct sockaddr_vm *addr) 678 { 679 static u32 port; 680 struct sockaddr_vm new_addr; 681 682 if (!port) 683 port = get_random_u32_above(LAST_RESERVED_PORT); 684 685 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 686 687 if (addr->svm_port == VMADDR_PORT_ANY) { 688 bool found = false; 689 unsigned int i; 690 691 for (i = 0; i < MAX_PORT_RETRIES; i++) { 692 if (port <= LAST_RESERVED_PORT) 693 port = LAST_RESERVED_PORT + 1; 694 695 new_addr.svm_port = port++; 696 697 if (!__vsock_find_bound_socket(&new_addr)) { 698 found = true; 699 break; 700 } 701 } 702 703 if (!found) 704 return -EADDRNOTAVAIL; 705 } else { 706 /* If port is in reserved range, ensure caller 707 * has necessary privileges. 708 */ 709 if (addr->svm_port <= LAST_RESERVED_PORT && 710 !capable(CAP_NET_BIND_SERVICE)) { 711 return -EACCES; 712 } 713 714 if (__vsock_find_bound_socket(&new_addr)) 715 return -EADDRINUSE; 716 } 717 718 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 719 720 /* Remove connection oriented sockets from the unbound list and add them 721 * to the hash table for easy lookup by its address. The unbound list 722 * is simply an extra entry at the end of the hash table, a trick used 723 * by AF_UNIX. 724 */ 725 __vsock_remove_bound(vsk); 726 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 727 728 return 0; 729 } 730 731 static int __vsock_bind_dgram(struct vsock_sock *vsk, 732 struct sockaddr_vm *addr) 733 { 734 return vsk->transport->dgram_bind(vsk, addr); 735 } 736 737 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 738 { 739 struct vsock_sock *vsk = vsock_sk(sk); 740 int retval; 741 742 /* First ensure this socket isn't already bound. */ 743 if (vsock_addr_bound(&vsk->local_addr)) 744 return -EINVAL; 745 746 /* Now bind to the provided address or select appropriate values if 747 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 748 * like AF_INET prevents binding to a non-local IP address (in most 749 * cases), we only allow binding to a local CID. 750 */ 751 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid)) 752 return -EADDRNOTAVAIL; 753 754 switch (sk->sk_socket->type) { 755 case SOCK_STREAM: 756 case SOCK_SEQPACKET: 757 spin_lock_bh(&vsock_table_lock); 758 retval = __vsock_bind_connectible(vsk, addr); 759 spin_unlock_bh(&vsock_table_lock); 760 break; 761 762 case SOCK_DGRAM: 763 retval = __vsock_bind_dgram(vsk, addr); 764 break; 765 766 default: 767 retval = -EINVAL; 768 break; 769 } 770 771 return retval; 772 } 773 774 static void vsock_connect_timeout(struct work_struct *work); 775 776 static struct sock *__vsock_create(struct net *net, 777 struct socket *sock, 778 struct sock *parent, 779 gfp_t priority, 780 unsigned short type, 781 int kern) 782 { 783 struct sock *sk; 784 struct vsock_sock *psk; 785 struct vsock_sock *vsk; 786 787 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); 788 if (!sk) 789 return NULL; 790 791 sock_init_data(sock, sk); 792 793 /* sk->sk_type is normally set in sock_init_data, but only if sock is 794 * non-NULL. We make sure that our sockets always have a type by 795 * setting it here if needed. 796 */ 797 if (!sock) 798 sk->sk_type = type; 799 800 vsk = vsock_sk(sk); 801 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 802 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 803 804 sk->sk_destruct = vsock_sk_destruct; 805 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 806 sock_reset_flag(sk, SOCK_DONE); 807 808 INIT_LIST_HEAD(&vsk->bound_table); 809 INIT_LIST_HEAD(&vsk->connected_table); 810 vsk->listener = NULL; 811 INIT_LIST_HEAD(&vsk->pending_links); 812 INIT_LIST_HEAD(&vsk->accept_queue); 813 vsk->rejected = false; 814 vsk->sent_request = false; 815 vsk->ignore_connecting_rst = false; 816 vsk->peer_shutdown = 0; 817 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout); 818 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work); 819 820 psk = parent ? vsock_sk(parent) : NULL; 821 if (parent) { 822 vsk->trusted = psk->trusted; 823 vsk->owner = get_cred(psk->owner); 824 vsk->connect_timeout = psk->connect_timeout; 825 vsk->buffer_size = psk->buffer_size; 826 vsk->buffer_min_size = psk->buffer_min_size; 827 vsk->buffer_max_size = psk->buffer_max_size; 828 security_sk_clone(parent, sk); 829 } else { 830 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN); 831 vsk->owner = get_current_cred(); 832 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 833 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE; 834 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE; 835 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE; 836 } 837 838 return sk; 839 } 840 841 static bool sock_type_connectible(u16 type) 842 { 843 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET); 844 } 845 846 static void __vsock_release(struct sock *sk, int level) 847 { 848 struct vsock_sock *vsk; 849 struct sock *pending; 850 851 vsk = vsock_sk(sk); 852 pending = NULL; /* Compiler warning. */ 853 854 /* When "level" is SINGLE_DEPTH_NESTING, use the nested 855 * version to avoid the warning "possible recursive locking 856 * detected". When "level" is 0, lock_sock_nested(sk, level) 857 * is the same as lock_sock(sk). 858 */ 859 lock_sock_nested(sk, level); 860 861 /* Indicate to vsock_remove_sock() that the socket is being released and 862 * can be removed from the bound_table. Unlike transport reassignment 863 * case, where the socket must remain bound despite vsock_remove_sock() 864 * being called from the transport release() callback. 865 */ 866 sock_set_flag(sk, SOCK_DEAD); 867 868 if (vsk->transport) 869 vsk->transport->release(vsk); 870 else if (sock_type_connectible(sk->sk_type)) 871 vsock_remove_sock(vsk); 872 873 sock_orphan(sk); 874 sk->sk_shutdown = SHUTDOWN_MASK; 875 876 skb_queue_purge(&sk->sk_receive_queue); 877 878 /* Clean up any sockets that never were accepted. */ 879 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 880 __vsock_release(pending, SINGLE_DEPTH_NESTING); 881 sock_put(pending); 882 } 883 884 release_sock(sk); 885 sock_put(sk); 886 } 887 888 static void vsock_sk_destruct(struct sock *sk) 889 { 890 struct vsock_sock *vsk = vsock_sk(sk); 891 892 /* Flush MSG_ZEROCOPY leftovers. */ 893 __skb_queue_purge(&sk->sk_error_queue); 894 895 vsock_deassign_transport(vsk); 896 897 /* When clearing these addresses, there's no need to set the family and 898 * possibly register the address family with the kernel. 899 */ 900 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 901 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 902 903 put_cred(vsk->owner); 904 } 905 906 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 907 { 908 int err; 909 910 err = sock_queue_rcv_skb(sk, skb); 911 if (err) 912 kfree_skb(skb); 913 914 return err; 915 } 916 917 struct sock *vsock_create_connected(struct sock *parent) 918 { 919 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL, 920 parent->sk_type, 0); 921 } 922 EXPORT_SYMBOL_GPL(vsock_create_connected); 923 924 s64 vsock_stream_has_data(struct vsock_sock *vsk) 925 { 926 if (WARN_ON(!vsk->transport)) 927 return 0; 928 929 return vsk->transport->stream_has_data(vsk); 930 } 931 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 932 933 s64 vsock_connectible_has_data(struct vsock_sock *vsk) 934 { 935 struct sock *sk = sk_vsock(vsk); 936 937 if (WARN_ON(!vsk->transport)) 938 return 0; 939 940 if (sk->sk_type == SOCK_SEQPACKET) 941 return vsk->transport->seqpacket_has_data(vsk); 942 else 943 return vsock_stream_has_data(vsk); 944 } 945 EXPORT_SYMBOL_GPL(vsock_connectible_has_data); 946 947 s64 vsock_stream_has_space(struct vsock_sock *vsk) 948 { 949 if (WARN_ON(!vsk->transport)) 950 return 0; 951 952 return vsk->transport->stream_has_space(vsk); 953 } 954 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 955 956 void vsock_data_ready(struct sock *sk) 957 { 958 struct vsock_sock *vsk = vsock_sk(sk); 959 960 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat || 961 sock_flag(sk, SOCK_DONE)) 962 sk->sk_data_ready(sk); 963 } 964 EXPORT_SYMBOL_GPL(vsock_data_ready); 965 966 /* Dummy callback required by sockmap. 967 * See unconditional call of saved_close() in sock_map_close(). 968 */ 969 static void vsock_close(struct sock *sk, long timeout) 970 { 971 } 972 973 static int vsock_release(struct socket *sock) 974 { 975 struct sock *sk = sock->sk; 976 977 if (!sk) 978 return 0; 979 980 sk->sk_prot->close(sk, 0); 981 __vsock_release(sk, 0); 982 sock->sk = NULL; 983 sock->state = SS_FREE; 984 985 return 0; 986 } 987 988 static int 989 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 990 { 991 int err; 992 struct sock *sk; 993 struct sockaddr_vm *vm_addr; 994 995 sk = sock->sk; 996 997 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 998 return -EINVAL; 999 1000 lock_sock(sk); 1001 err = __vsock_bind(sk, vm_addr); 1002 release_sock(sk); 1003 1004 return err; 1005 } 1006 1007 static int vsock_getname(struct socket *sock, 1008 struct sockaddr *addr, int peer) 1009 { 1010 int err; 1011 struct sock *sk; 1012 struct vsock_sock *vsk; 1013 struct sockaddr_vm *vm_addr; 1014 1015 sk = sock->sk; 1016 vsk = vsock_sk(sk); 1017 err = 0; 1018 1019 lock_sock(sk); 1020 1021 if (peer) { 1022 if (sock->state != SS_CONNECTED) { 1023 err = -ENOTCONN; 1024 goto out; 1025 } 1026 vm_addr = &vsk->remote_addr; 1027 } else { 1028 vm_addr = &vsk->local_addr; 1029 } 1030 1031 BUILD_BUG_ON(sizeof(*vm_addr) > sizeof(struct sockaddr_storage)); 1032 memcpy(addr, vm_addr, sizeof(*vm_addr)); 1033 err = sizeof(*vm_addr); 1034 1035 out: 1036 release_sock(sk); 1037 return err; 1038 } 1039 1040 void vsock_linger(struct sock *sk) 1041 { 1042 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1043 ssize_t (*unsent)(struct vsock_sock *vsk); 1044 struct vsock_sock *vsk = vsock_sk(sk); 1045 long timeout; 1046 1047 if (!sock_flag(sk, SOCK_LINGER)) 1048 return; 1049 1050 timeout = sk->sk_lingertime; 1051 if (!timeout) 1052 return; 1053 1054 /* Transports must implement `unsent_bytes` if they want to support 1055 * SOCK_LINGER through `vsock_linger()` since we use it to check when 1056 * the socket can be closed. 1057 */ 1058 unsent = vsk->transport->unsent_bytes; 1059 if (!unsent) 1060 return; 1061 1062 add_wait_queue(sk_sleep(sk), &wait); 1063 1064 do { 1065 if (sk_wait_event(sk, &timeout, unsent(vsk) == 0, &wait)) 1066 break; 1067 } while (!signal_pending(current) && timeout); 1068 1069 remove_wait_queue(sk_sleep(sk), &wait); 1070 } 1071 EXPORT_SYMBOL_GPL(vsock_linger); 1072 1073 static int vsock_shutdown(struct socket *sock, int mode) 1074 { 1075 int err; 1076 struct sock *sk; 1077 1078 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 1079 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 1080 * here like the other address families do. Note also that the 1081 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 1082 * which is what we want. 1083 */ 1084 mode++; 1085 1086 if ((mode & ~SHUTDOWN_MASK) || !mode) 1087 return -EINVAL; 1088 1089 /* If this is a connection oriented socket and it is not connected then 1090 * bail out immediately. If it is a DGRAM socket then we must first 1091 * kick the socket so that it wakes up from any sleeping calls, for 1092 * example recv(), and then afterwards return the error. 1093 */ 1094 1095 sk = sock->sk; 1096 1097 lock_sock(sk); 1098 if (sock->state == SS_UNCONNECTED) { 1099 err = -ENOTCONN; 1100 if (sock_type_connectible(sk->sk_type)) 1101 goto out; 1102 } else { 1103 sock->state = SS_DISCONNECTING; 1104 err = 0; 1105 } 1106 1107 /* Receive and send shutdowns are treated alike. */ 1108 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 1109 if (mode) { 1110 sk->sk_shutdown |= mode; 1111 sk->sk_state_change(sk); 1112 1113 if (sock_type_connectible(sk->sk_type)) { 1114 sock_reset_flag(sk, SOCK_DONE); 1115 vsock_send_shutdown(sk, mode); 1116 } 1117 } 1118 1119 out: 1120 release_sock(sk); 1121 return err; 1122 } 1123 1124 static __poll_t vsock_poll(struct file *file, struct socket *sock, 1125 poll_table *wait) 1126 { 1127 struct sock *sk; 1128 __poll_t mask; 1129 struct vsock_sock *vsk; 1130 1131 sk = sock->sk; 1132 vsk = vsock_sk(sk); 1133 1134 poll_wait(file, sk_sleep(sk), wait); 1135 mask = 0; 1136 1137 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 1138 /* Signify that there has been an error on this socket. */ 1139 mask |= EPOLLERR; 1140 1141 /* INET sockets treat local write shutdown and peer write shutdown as a 1142 * case of EPOLLHUP set. 1143 */ 1144 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 1145 ((sk->sk_shutdown & SEND_SHUTDOWN) && 1146 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 1147 mask |= EPOLLHUP; 1148 } 1149 1150 if (sk->sk_shutdown & RCV_SHUTDOWN || 1151 vsk->peer_shutdown & SEND_SHUTDOWN) { 1152 mask |= EPOLLRDHUP; 1153 } 1154 1155 if (sk_is_readable(sk)) 1156 mask |= EPOLLIN | EPOLLRDNORM; 1157 1158 if (sock->type == SOCK_DGRAM) { 1159 /* For datagram sockets we can read if there is something in 1160 * the queue and write as long as the socket isn't shutdown for 1161 * sending. 1162 */ 1163 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) || 1164 (sk->sk_shutdown & RCV_SHUTDOWN)) { 1165 mask |= EPOLLIN | EPOLLRDNORM; 1166 } 1167 1168 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1169 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 1170 1171 } else if (sock_type_connectible(sk->sk_type)) { 1172 const struct vsock_transport *transport; 1173 1174 lock_sock(sk); 1175 1176 transport = vsk->transport; 1177 1178 /* Listening sockets that have connections in their accept 1179 * queue can be read. 1180 */ 1181 if (sk->sk_state == TCP_LISTEN 1182 && !vsock_is_accept_queue_empty(sk)) 1183 mask |= EPOLLIN | EPOLLRDNORM; 1184 1185 /* If there is something in the queue then we can read. */ 1186 if (transport && transport->stream_is_active(vsk) && 1187 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1188 bool data_ready_now = false; 1189 int target = sock_rcvlowat(sk, 0, INT_MAX); 1190 int ret = transport->notify_poll_in( 1191 vsk, target, &data_ready_now); 1192 if (ret < 0) { 1193 mask |= EPOLLERR; 1194 } else { 1195 if (data_ready_now) 1196 mask |= EPOLLIN | EPOLLRDNORM; 1197 1198 } 1199 } 1200 1201 /* Sockets whose connections have been closed, reset, or 1202 * terminated should also be considered read, and we check the 1203 * shutdown flag for that. 1204 */ 1205 if (sk->sk_shutdown & RCV_SHUTDOWN || 1206 vsk->peer_shutdown & SEND_SHUTDOWN) { 1207 mask |= EPOLLIN | EPOLLRDNORM; 1208 } 1209 1210 /* Connected sockets that can produce data can be written. */ 1211 if (transport && sk->sk_state == TCP_ESTABLISHED) { 1212 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1213 bool space_avail_now = false; 1214 int ret = transport->notify_poll_out( 1215 vsk, 1, &space_avail_now); 1216 if (ret < 0) { 1217 mask |= EPOLLERR; 1218 } else { 1219 if (space_avail_now) 1220 /* Remove EPOLLWRBAND since INET 1221 * sockets are not setting it. 1222 */ 1223 mask |= EPOLLOUT | EPOLLWRNORM; 1224 1225 } 1226 } 1227 } 1228 1229 /* Simulate INET socket poll behaviors, which sets 1230 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read, 1231 * but local send is not shutdown. 1232 */ 1233 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) { 1234 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1235 mask |= EPOLLOUT | EPOLLWRNORM; 1236 1237 } 1238 1239 release_sock(sk); 1240 } 1241 1242 return mask; 1243 } 1244 1245 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor) 1246 { 1247 struct vsock_sock *vsk = vsock_sk(sk); 1248 1249 if (WARN_ON_ONCE(!vsk->transport)) 1250 return -ENODEV; 1251 1252 return vsk->transport->read_skb(vsk, read_actor); 1253 } 1254 1255 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1256 size_t len) 1257 { 1258 int err; 1259 struct sock *sk; 1260 struct vsock_sock *vsk; 1261 struct sockaddr_vm *remote_addr; 1262 const struct vsock_transport *transport; 1263 1264 if (msg->msg_flags & MSG_OOB) 1265 return -EOPNOTSUPP; 1266 1267 /* For now, MSG_DONTWAIT is always assumed... */ 1268 err = 0; 1269 sk = sock->sk; 1270 vsk = vsock_sk(sk); 1271 1272 lock_sock(sk); 1273 1274 transport = vsk->transport; 1275 1276 err = vsock_auto_bind(vsk); 1277 if (err) 1278 goto out; 1279 1280 1281 /* If the provided message contains an address, use that. Otherwise 1282 * fall back on the socket's remote handle (if it has been connected). 1283 */ 1284 if (msg->msg_name && 1285 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 1286 &remote_addr) == 0) { 1287 /* Ensure this address is of the right type and is a valid 1288 * destination. 1289 */ 1290 1291 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1292 remote_addr->svm_cid = transport->get_local_cid(); 1293 1294 if (!vsock_addr_bound(remote_addr)) { 1295 err = -EINVAL; 1296 goto out; 1297 } 1298 } else if (sock->state == SS_CONNECTED) { 1299 remote_addr = &vsk->remote_addr; 1300 1301 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1302 remote_addr->svm_cid = transport->get_local_cid(); 1303 1304 /* XXX Should connect() or this function ensure remote_addr is 1305 * bound? 1306 */ 1307 if (!vsock_addr_bound(&vsk->remote_addr)) { 1308 err = -EINVAL; 1309 goto out; 1310 } 1311 } else { 1312 err = -EINVAL; 1313 goto out; 1314 } 1315 1316 if (!transport->dgram_allow(remote_addr->svm_cid, 1317 remote_addr->svm_port)) { 1318 err = -EINVAL; 1319 goto out; 1320 } 1321 1322 err = transport->dgram_enqueue(vsk, remote_addr, msg, len); 1323 1324 out: 1325 release_sock(sk); 1326 return err; 1327 } 1328 1329 static int vsock_dgram_connect(struct socket *sock, 1330 struct sockaddr *addr, int addr_len, int flags) 1331 { 1332 int err; 1333 struct sock *sk; 1334 struct vsock_sock *vsk; 1335 struct sockaddr_vm *remote_addr; 1336 1337 sk = sock->sk; 1338 vsk = vsock_sk(sk); 1339 1340 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1341 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1342 lock_sock(sk); 1343 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1344 VMADDR_PORT_ANY); 1345 sock->state = SS_UNCONNECTED; 1346 release_sock(sk); 1347 return 0; 1348 } else if (err != 0) 1349 return -EINVAL; 1350 1351 lock_sock(sk); 1352 1353 err = vsock_auto_bind(vsk); 1354 if (err) 1355 goto out; 1356 1357 if (!vsk->transport->dgram_allow(remote_addr->svm_cid, 1358 remote_addr->svm_port)) { 1359 err = -EINVAL; 1360 goto out; 1361 } 1362 1363 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1364 sock->state = SS_CONNECTED; 1365 1366 /* sock map disallows redirection of non-TCP sockets with sk_state != 1367 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set 1368 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams. 1369 * 1370 * This doesn't seem to be abnormal state for datagram sockets, as the 1371 * same approach can be see in other datagram socket types as well 1372 * (such as unix sockets). 1373 */ 1374 sk->sk_state = TCP_ESTABLISHED; 1375 1376 out: 1377 release_sock(sk); 1378 return err; 1379 } 1380 1381 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1382 size_t len, int flags) 1383 { 1384 struct sock *sk = sock->sk; 1385 struct vsock_sock *vsk = vsock_sk(sk); 1386 1387 return vsk->transport->dgram_dequeue(vsk, msg, len, flags); 1388 } 1389 1390 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1391 size_t len, int flags) 1392 { 1393 #ifdef CONFIG_BPF_SYSCALL 1394 struct sock *sk = sock->sk; 1395 const struct proto *prot; 1396 1397 prot = READ_ONCE(sk->sk_prot); 1398 if (prot != &vsock_proto) 1399 return prot->recvmsg(sk, msg, len, flags, NULL); 1400 #endif 1401 1402 return __vsock_dgram_recvmsg(sock, msg, len, flags); 1403 } 1404 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg); 1405 1406 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd, 1407 int __user *arg) 1408 { 1409 struct sock *sk = sock->sk; 1410 struct vsock_sock *vsk; 1411 int ret; 1412 1413 vsk = vsock_sk(sk); 1414 1415 switch (cmd) { 1416 case SIOCINQ: { 1417 ssize_t n_bytes; 1418 1419 if (!vsk->transport) { 1420 ret = -EOPNOTSUPP; 1421 break; 1422 } 1423 1424 if (sock_type_connectible(sk->sk_type) && 1425 sk->sk_state == TCP_LISTEN) { 1426 ret = -EINVAL; 1427 break; 1428 } 1429 1430 n_bytes = vsock_stream_has_data(vsk); 1431 if (n_bytes < 0) { 1432 ret = n_bytes; 1433 break; 1434 } 1435 ret = put_user(n_bytes, arg); 1436 break; 1437 } 1438 case SIOCOUTQ: { 1439 ssize_t n_bytes; 1440 1441 if (!vsk->transport || !vsk->transport->unsent_bytes) { 1442 ret = -EOPNOTSUPP; 1443 break; 1444 } 1445 1446 if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) { 1447 ret = -EINVAL; 1448 break; 1449 } 1450 1451 n_bytes = vsk->transport->unsent_bytes(vsk); 1452 if (n_bytes < 0) { 1453 ret = n_bytes; 1454 break; 1455 } 1456 1457 ret = put_user(n_bytes, arg); 1458 break; 1459 } 1460 default: 1461 ret = -ENOIOCTLCMD; 1462 } 1463 1464 return ret; 1465 } 1466 1467 static int vsock_ioctl(struct socket *sock, unsigned int cmd, 1468 unsigned long arg) 1469 { 1470 int ret; 1471 1472 lock_sock(sock->sk); 1473 ret = vsock_do_ioctl(sock, cmd, (int __user *)arg); 1474 release_sock(sock->sk); 1475 1476 return ret; 1477 } 1478 1479 static const struct proto_ops vsock_dgram_ops = { 1480 .family = PF_VSOCK, 1481 .owner = THIS_MODULE, 1482 .release = vsock_release, 1483 .bind = vsock_bind, 1484 .connect = vsock_dgram_connect, 1485 .socketpair = sock_no_socketpair, 1486 .accept = sock_no_accept, 1487 .getname = vsock_getname, 1488 .poll = vsock_poll, 1489 .ioctl = vsock_ioctl, 1490 .listen = sock_no_listen, 1491 .shutdown = vsock_shutdown, 1492 .sendmsg = vsock_dgram_sendmsg, 1493 .recvmsg = vsock_dgram_recvmsg, 1494 .mmap = sock_no_mmap, 1495 .read_skb = vsock_read_skb, 1496 }; 1497 1498 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk) 1499 { 1500 const struct vsock_transport *transport = vsk->transport; 1501 1502 if (!transport || !transport->cancel_pkt) 1503 return -EOPNOTSUPP; 1504 1505 return transport->cancel_pkt(vsk); 1506 } 1507 1508 static void vsock_connect_timeout(struct work_struct *work) 1509 { 1510 struct sock *sk; 1511 struct vsock_sock *vsk; 1512 1513 vsk = container_of(work, struct vsock_sock, connect_work.work); 1514 sk = sk_vsock(vsk); 1515 1516 lock_sock(sk); 1517 if (sk->sk_state == TCP_SYN_SENT && 1518 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1519 sk->sk_state = TCP_CLOSE; 1520 sk->sk_socket->state = SS_UNCONNECTED; 1521 sk->sk_err = ETIMEDOUT; 1522 sk_error_report(sk); 1523 vsock_transport_cancel_pkt(vsk); 1524 } 1525 release_sock(sk); 1526 1527 sock_put(sk); 1528 } 1529 1530 static int vsock_connect(struct socket *sock, struct sockaddr *addr, 1531 int addr_len, int flags) 1532 { 1533 int err; 1534 struct sock *sk; 1535 struct vsock_sock *vsk; 1536 const struct vsock_transport *transport; 1537 struct sockaddr_vm *remote_addr; 1538 long timeout; 1539 DEFINE_WAIT(wait); 1540 1541 err = 0; 1542 sk = sock->sk; 1543 vsk = vsock_sk(sk); 1544 1545 lock_sock(sk); 1546 1547 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1548 switch (sock->state) { 1549 case SS_CONNECTED: 1550 err = -EISCONN; 1551 goto out; 1552 case SS_DISCONNECTING: 1553 err = -EINVAL; 1554 goto out; 1555 case SS_CONNECTING: 1556 /* This continues on so we can move sock into the SS_CONNECTED 1557 * state once the connection has completed (at which point err 1558 * will be set to zero also). Otherwise, we will either wait 1559 * for the connection or return -EALREADY should this be a 1560 * non-blocking call. 1561 */ 1562 err = -EALREADY; 1563 if (flags & O_NONBLOCK) 1564 goto out; 1565 break; 1566 default: 1567 if ((sk->sk_state == TCP_LISTEN) || 1568 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1569 err = -EINVAL; 1570 goto out; 1571 } 1572 1573 /* Set the remote address that we are connecting to. */ 1574 memcpy(&vsk->remote_addr, remote_addr, 1575 sizeof(vsk->remote_addr)); 1576 1577 err = vsock_assign_transport(vsk, NULL); 1578 if (err) 1579 goto out; 1580 1581 transport = vsk->transport; 1582 1583 /* The hypervisor and well-known contexts do not have socket 1584 * endpoints. 1585 */ 1586 if (!transport || 1587 !transport->stream_allow(remote_addr->svm_cid, 1588 remote_addr->svm_port)) { 1589 err = -ENETUNREACH; 1590 goto out; 1591 } 1592 1593 if (vsock_msgzerocopy_allow(transport)) { 1594 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1595 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1596 /* If this option was set before 'connect()', 1597 * when transport was unknown, check that this 1598 * feature is supported here. 1599 */ 1600 err = -EOPNOTSUPP; 1601 goto out; 1602 } 1603 1604 err = vsock_auto_bind(vsk); 1605 if (err) 1606 goto out; 1607 1608 sk->sk_state = TCP_SYN_SENT; 1609 1610 err = transport->connect(vsk); 1611 if (err < 0) 1612 goto out; 1613 1614 /* sk_err might have been set as a result of an earlier 1615 * (failed) connect attempt. 1616 */ 1617 sk->sk_err = 0; 1618 1619 /* Mark sock as connecting and set the error code to in 1620 * progress in case this is a non-blocking connect. 1621 */ 1622 sock->state = SS_CONNECTING; 1623 err = -EINPROGRESS; 1624 } 1625 1626 /* The receive path will handle all communication until we are able to 1627 * enter the connected state. Here we wait for the connection to be 1628 * completed or a notification of an error. 1629 */ 1630 timeout = vsk->connect_timeout; 1631 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1632 1633 /* If the socket is already closing or it is in an error state, there 1634 * is no point in waiting. 1635 */ 1636 while (sk->sk_state != TCP_ESTABLISHED && 1637 sk->sk_state != TCP_CLOSING && sk->sk_err == 0) { 1638 if (flags & O_NONBLOCK) { 1639 /* If we're not going to block, we schedule a timeout 1640 * function to generate a timeout on the connection 1641 * attempt, in case the peer doesn't respond in a 1642 * timely manner. We hold on to the socket until the 1643 * timeout fires. 1644 */ 1645 sock_hold(sk); 1646 1647 /* If the timeout function is already scheduled, 1648 * reschedule it, then ungrab the socket refcount to 1649 * keep it balanced. 1650 */ 1651 if (mod_delayed_work(system_wq, &vsk->connect_work, 1652 timeout)) 1653 sock_put(sk); 1654 1655 /* Skip ahead to preserve error code set above. */ 1656 goto out_wait; 1657 } 1658 1659 release_sock(sk); 1660 timeout = schedule_timeout(timeout); 1661 lock_sock(sk); 1662 1663 if (signal_pending(current)) { 1664 err = sock_intr_errno(timeout); 1665 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE; 1666 sock->state = SS_UNCONNECTED; 1667 vsock_transport_cancel_pkt(vsk); 1668 vsock_remove_connected(vsk); 1669 goto out_wait; 1670 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) { 1671 err = -ETIMEDOUT; 1672 sk->sk_state = TCP_CLOSE; 1673 sock->state = SS_UNCONNECTED; 1674 vsock_transport_cancel_pkt(vsk); 1675 goto out_wait; 1676 } 1677 1678 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1679 } 1680 1681 if (sk->sk_err) { 1682 err = -sk->sk_err; 1683 sk->sk_state = TCP_CLOSE; 1684 sock->state = SS_UNCONNECTED; 1685 } else { 1686 err = 0; 1687 } 1688 1689 out_wait: 1690 finish_wait(sk_sleep(sk), &wait); 1691 out: 1692 release_sock(sk); 1693 return err; 1694 } 1695 1696 static int vsock_accept(struct socket *sock, struct socket *newsock, 1697 struct proto_accept_arg *arg) 1698 { 1699 struct sock *listener; 1700 int err; 1701 struct sock *connected; 1702 struct vsock_sock *vconnected; 1703 long timeout; 1704 DEFINE_WAIT(wait); 1705 1706 err = 0; 1707 listener = sock->sk; 1708 1709 lock_sock(listener); 1710 1711 if (!sock_type_connectible(sock->type)) { 1712 err = -EOPNOTSUPP; 1713 goto out; 1714 } 1715 1716 if (listener->sk_state != TCP_LISTEN) { 1717 err = -EINVAL; 1718 goto out; 1719 } 1720 1721 /* Wait for children sockets to appear; these are the new sockets 1722 * created upon connection establishment. 1723 */ 1724 timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK); 1725 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1726 1727 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1728 listener->sk_err == 0) { 1729 release_sock(listener); 1730 timeout = schedule_timeout(timeout); 1731 finish_wait(sk_sleep(listener), &wait); 1732 lock_sock(listener); 1733 1734 if (signal_pending(current)) { 1735 err = sock_intr_errno(timeout); 1736 goto out; 1737 } else if (timeout == 0) { 1738 err = -EAGAIN; 1739 goto out; 1740 } 1741 1742 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1743 } 1744 finish_wait(sk_sleep(listener), &wait); 1745 1746 if (listener->sk_err) 1747 err = -listener->sk_err; 1748 1749 if (connected) { 1750 sk_acceptq_removed(listener); 1751 1752 lock_sock_nested(connected, SINGLE_DEPTH_NESTING); 1753 vconnected = vsock_sk(connected); 1754 1755 /* If the listener socket has received an error, then we should 1756 * reject this socket and return. Note that we simply mark the 1757 * socket rejected, drop our reference, and let the cleanup 1758 * function handle the cleanup; the fact that we found it in 1759 * the listener's accept queue guarantees that the cleanup 1760 * function hasn't run yet. 1761 */ 1762 if (err) { 1763 vconnected->rejected = true; 1764 } else { 1765 newsock->state = SS_CONNECTED; 1766 sock_graft(connected, newsock); 1767 if (vsock_msgzerocopy_allow(vconnected->transport)) 1768 set_bit(SOCK_SUPPORT_ZC, 1769 &connected->sk_socket->flags); 1770 } 1771 1772 release_sock(connected); 1773 sock_put(connected); 1774 } 1775 1776 out: 1777 release_sock(listener); 1778 return err; 1779 } 1780 1781 static int vsock_listen(struct socket *sock, int backlog) 1782 { 1783 int err; 1784 struct sock *sk; 1785 struct vsock_sock *vsk; 1786 1787 sk = sock->sk; 1788 1789 lock_sock(sk); 1790 1791 if (!sock_type_connectible(sk->sk_type)) { 1792 err = -EOPNOTSUPP; 1793 goto out; 1794 } 1795 1796 if (sock->state != SS_UNCONNECTED) { 1797 err = -EINVAL; 1798 goto out; 1799 } 1800 1801 vsk = vsock_sk(sk); 1802 1803 if (!vsock_addr_bound(&vsk->local_addr)) { 1804 err = -EINVAL; 1805 goto out; 1806 } 1807 1808 sk->sk_max_ack_backlog = backlog; 1809 sk->sk_state = TCP_LISTEN; 1810 1811 err = 0; 1812 1813 out: 1814 release_sock(sk); 1815 return err; 1816 } 1817 1818 static void vsock_update_buffer_size(struct vsock_sock *vsk, 1819 const struct vsock_transport *transport, 1820 u64 val) 1821 { 1822 if (val > vsk->buffer_max_size) 1823 val = vsk->buffer_max_size; 1824 1825 if (val < vsk->buffer_min_size) 1826 val = vsk->buffer_min_size; 1827 1828 if (val != vsk->buffer_size && 1829 transport && transport->notify_buffer_size) 1830 transport->notify_buffer_size(vsk, &val); 1831 1832 vsk->buffer_size = val; 1833 } 1834 1835 static int vsock_connectible_setsockopt(struct socket *sock, 1836 int level, 1837 int optname, 1838 sockptr_t optval, 1839 unsigned int optlen) 1840 { 1841 int err; 1842 struct sock *sk; 1843 struct vsock_sock *vsk; 1844 const struct vsock_transport *transport; 1845 u64 val; 1846 1847 if (level != AF_VSOCK && level != SOL_SOCKET) 1848 return -ENOPROTOOPT; 1849 1850 #define COPY_IN(_v) \ 1851 do { \ 1852 if (optlen < sizeof(_v)) { \ 1853 err = -EINVAL; \ 1854 goto exit; \ 1855 } \ 1856 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \ 1857 err = -EFAULT; \ 1858 goto exit; \ 1859 } \ 1860 } while (0) 1861 1862 err = 0; 1863 sk = sock->sk; 1864 vsk = vsock_sk(sk); 1865 1866 lock_sock(sk); 1867 1868 transport = vsk->transport; 1869 1870 if (level == SOL_SOCKET) { 1871 int zerocopy; 1872 1873 if (optname != SO_ZEROCOPY) { 1874 release_sock(sk); 1875 return sock_setsockopt(sock, level, optname, optval, optlen); 1876 } 1877 1878 /* Use 'int' type here, because variable to 1879 * set this option usually has this type. 1880 */ 1881 COPY_IN(zerocopy); 1882 1883 if (zerocopy < 0 || zerocopy > 1) { 1884 err = -EINVAL; 1885 goto exit; 1886 } 1887 1888 if (transport && !vsock_msgzerocopy_allow(transport)) { 1889 err = -EOPNOTSUPP; 1890 goto exit; 1891 } 1892 1893 sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy); 1894 goto exit; 1895 } 1896 1897 switch (optname) { 1898 case SO_VM_SOCKETS_BUFFER_SIZE: 1899 COPY_IN(val); 1900 vsock_update_buffer_size(vsk, transport, val); 1901 break; 1902 1903 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1904 COPY_IN(val); 1905 vsk->buffer_max_size = val; 1906 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1907 break; 1908 1909 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1910 COPY_IN(val); 1911 vsk->buffer_min_size = val; 1912 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1913 break; 1914 1915 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1916 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: { 1917 struct __kernel_sock_timeval tv; 1918 1919 err = sock_copy_user_timeval(&tv, optval, optlen, 1920 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1921 if (err) 1922 break; 1923 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1924 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1925 vsk->connect_timeout = tv.tv_sec * HZ + 1926 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ)); 1927 if (vsk->connect_timeout == 0) 1928 vsk->connect_timeout = 1929 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1930 1931 } else { 1932 err = -ERANGE; 1933 } 1934 break; 1935 } 1936 1937 default: 1938 err = -ENOPROTOOPT; 1939 break; 1940 } 1941 1942 #undef COPY_IN 1943 1944 exit: 1945 release_sock(sk); 1946 return err; 1947 } 1948 1949 static int vsock_connectible_getsockopt(struct socket *sock, 1950 int level, int optname, 1951 char __user *optval, 1952 int __user *optlen) 1953 { 1954 struct sock *sk = sock->sk; 1955 struct vsock_sock *vsk = vsock_sk(sk); 1956 1957 union { 1958 u64 val64; 1959 struct old_timeval32 tm32; 1960 struct __kernel_old_timeval tm; 1961 struct __kernel_sock_timeval stm; 1962 } v; 1963 1964 int lv = sizeof(v.val64); 1965 int len; 1966 1967 if (level != AF_VSOCK) 1968 return -ENOPROTOOPT; 1969 1970 if (get_user(len, optlen)) 1971 return -EFAULT; 1972 1973 memset(&v, 0, sizeof(v)); 1974 1975 switch (optname) { 1976 case SO_VM_SOCKETS_BUFFER_SIZE: 1977 v.val64 = vsk->buffer_size; 1978 break; 1979 1980 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1981 v.val64 = vsk->buffer_max_size; 1982 break; 1983 1984 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1985 v.val64 = vsk->buffer_min_size; 1986 break; 1987 1988 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1989 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: 1990 lv = sock_get_timeout(vsk->connect_timeout, &v, 1991 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1992 break; 1993 1994 default: 1995 return -ENOPROTOOPT; 1996 } 1997 1998 if (len < lv) 1999 return -EINVAL; 2000 if (len > lv) 2001 len = lv; 2002 if (copy_to_user(optval, &v, len)) 2003 return -EFAULT; 2004 2005 if (put_user(len, optlen)) 2006 return -EFAULT; 2007 2008 return 0; 2009 } 2010 2011 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg, 2012 size_t len) 2013 { 2014 struct sock *sk; 2015 struct vsock_sock *vsk; 2016 const struct vsock_transport *transport; 2017 ssize_t total_written; 2018 long timeout; 2019 int err; 2020 struct vsock_transport_send_notify_data send_data; 2021 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2022 2023 sk = sock->sk; 2024 vsk = vsock_sk(sk); 2025 total_written = 0; 2026 err = 0; 2027 2028 if (msg->msg_flags & MSG_OOB) 2029 return -EOPNOTSUPP; 2030 2031 lock_sock(sk); 2032 2033 transport = vsk->transport; 2034 2035 /* Callers should not provide a destination with connection oriented 2036 * sockets. 2037 */ 2038 if (msg->msg_namelen) { 2039 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 2040 goto out; 2041 } 2042 2043 /* Send data only if both sides are not shutdown in the direction. */ 2044 if (sk->sk_shutdown & SEND_SHUTDOWN || 2045 vsk->peer_shutdown & RCV_SHUTDOWN) { 2046 err = -EPIPE; 2047 goto out; 2048 } 2049 2050 if (!transport || sk->sk_state != TCP_ESTABLISHED || 2051 !vsock_addr_bound(&vsk->local_addr)) { 2052 err = -ENOTCONN; 2053 goto out; 2054 } 2055 2056 if (!vsock_addr_bound(&vsk->remote_addr)) { 2057 err = -EDESTADDRREQ; 2058 goto out; 2059 } 2060 2061 if (msg->msg_flags & MSG_ZEROCOPY && 2062 !vsock_msgzerocopy_allow(transport)) { 2063 err = -EOPNOTSUPP; 2064 goto out; 2065 } 2066 2067 /* Wait for room in the produce queue to enqueue our user's data. */ 2068 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 2069 2070 err = transport->notify_send_init(vsk, &send_data); 2071 if (err < 0) 2072 goto out; 2073 2074 while (total_written < len) { 2075 ssize_t written; 2076 2077 add_wait_queue(sk_sleep(sk), &wait); 2078 while (vsock_stream_has_space(vsk) == 0 && 2079 sk->sk_err == 0 && 2080 !(sk->sk_shutdown & SEND_SHUTDOWN) && 2081 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 2082 2083 /* Don't wait for non-blocking sockets. */ 2084 if (timeout == 0) { 2085 err = -EAGAIN; 2086 remove_wait_queue(sk_sleep(sk), &wait); 2087 goto out_err; 2088 } 2089 2090 err = transport->notify_send_pre_block(vsk, &send_data); 2091 if (err < 0) { 2092 remove_wait_queue(sk_sleep(sk), &wait); 2093 goto out_err; 2094 } 2095 2096 release_sock(sk); 2097 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout); 2098 lock_sock(sk); 2099 if (signal_pending(current)) { 2100 err = sock_intr_errno(timeout); 2101 remove_wait_queue(sk_sleep(sk), &wait); 2102 goto out_err; 2103 } else if (timeout == 0) { 2104 err = -EAGAIN; 2105 remove_wait_queue(sk_sleep(sk), &wait); 2106 goto out_err; 2107 } 2108 } 2109 remove_wait_queue(sk_sleep(sk), &wait); 2110 2111 /* These checks occur both as part of and after the loop 2112 * conditional since we need to check before and after 2113 * sleeping. 2114 */ 2115 if (sk->sk_err) { 2116 err = -sk->sk_err; 2117 goto out_err; 2118 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 2119 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 2120 err = -EPIPE; 2121 goto out_err; 2122 } 2123 2124 err = transport->notify_send_pre_enqueue(vsk, &send_data); 2125 if (err < 0) 2126 goto out_err; 2127 2128 /* Note that enqueue will only write as many bytes as are free 2129 * in the produce queue, so we don't need to ensure len is 2130 * smaller than the queue size. It is the caller's 2131 * responsibility to check how many bytes we were able to send. 2132 */ 2133 2134 if (sk->sk_type == SOCK_SEQPACKET) { 2135 written = transport->seqpacket_enqueue(vsk, 2136 msg, len - total_written); 2137 } else { 2138 written = transport->stream_enqueue(vsk, 2139 msg, len - total_written); 2140 } 2141 2142 if (written < 0) { 2143 err = written; 2144 goto out_err; 2145 } 2146 2147 total_written += written; 2148 2149 err = transport->notify_send_post_enqueue( 2150 vsk, written, &send_data); 2151 if (err < 0) 2152 goto out_err; 2153 2154 } 2155 2156 out_err: 2157 if (total_written > 0) { 2158 /* Return number of written bytes only if: 2159 * 1) SOCK_STREAM socket. 2160 * 2) SOCK_SEQPACKET socket when whole buffer is sent. 2161 */ 2162 if (sk->sk_type == SOCK_STREAM || total_written == len) 2163 err = total_written; 2164 } 2165 out: 2166 if (sk->sk_type == SOCK_STREAM) 2167 err = sk_stream_error(sk, msg->msg_flags, err); 2168 2169 release_sock(sk); 2170 return err; 2171 } 2172 2173 static int vsock_connectible_wait_data(struct sock *sk, 2174 struct wait_queue_entry *wait, 2175 long timeout, 2176 struct vsock_transport_recv_notify_data *recv_data, 2177 size_t target) 2178 { 2179 const struct vsock_transport *transport; 2180 struct vsock_sock *vsk; 2181 s64 data; 2182 int err; 2183 2184 vsk = vsock_sk(sk); 2185 err = 0; 2186 transport = vsk->transport; 2187 2188 while (1) { 2189 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE); 2190 data = vsock_connectible_has_data(vsk); 2191 if (data != 0) 2192 break; 2193 2194 if (sk->sk_err != 0 || 2195 (sk->sk_shutdown & RCV_SHUTDOWN) || 2196 (vsk->peer_shutdown & SEND_SHUTDOWN)) { 2197 break; 2198 } 2199 2200 /* Don't wait for non-blocking sockets. */ 2201 if (timeout == 0) { 2202 err = -EAGAIN; 2203 break; 2204 } 2205 2206 if (recv_data) { 2207 err = transport->notify_recv_pre_block(vsk, target, recv_data); 2208 if (err < 0) 2209 break; 2210 } 2211 2212 release_sock(sk); 2213 timeout = schedule_timeout(timeout); 2214 lock_sock(sk); 2215 2216 if (signal_pending(current)) { 2217 err = sock_intr_errno(timeout); 2218 break; 2219 } else if (timeout == 0) { 2220 err = -EAGAIN; 2221 break; 2222 } 2223 } 2224 2225 finish_wait(sk_sleep(sk), wait); 2226 2227 if (err) 2228 return err; 2229 2230 /* Internal transport error when checking for available 2231 * data. XXX This should be changed to a connection 2232 * reset in a later change. 2233 */ 2234 if (data < 0) 2235 return -ENOMEM; 2236 2237 return data; 2238 } 2239 2240 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg, 2241 size_t len, int flags) 2242 { 2243 struct vsock_transport_recv_notify_data recv_data; 2244 const struct vsock_transport *transport; 2245 struct vsock_sock *vsk; 2246 ssize_t copied; 2247 size_t target; 2248 long timeout; 2249 int err; 2250 2251 DEFINE_WAIT(wait); 2252 2253 vsk = vsock_sk(sk); 2254 transport = vsk->transport; 2255 2256 /* We must not copy less than target bytes into the user's buffer 2257 * before returning successfully, so we wait for the consume queue to 2258 * have that much data to consume before dequeueing. Note that this 2259 * makes it impossible to handle cases where target is greater than the 2260 * queue size. 2261 */ 2262 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2263 if (target >= transport->stream_rcvhiwat(vsk)) { 2264 err = -ENOMEM; 2265 goto out; 2266 } 2267 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2268 copied = 0; 2269 2270 err = transport->notify_recv_init(vsk, target, &recv_data); 2271 if (err < 0) 2272 goto out; 2273 2274 2275 while (1) { 2276 ssize_t read; 2277 2278 err = vsock_connectible_wait_data(sk, &wait, timeout, 2279 &recv_data, target); 2280 if (err <= 0) 2281 break; 2282 2283 err = transport->notify_recv_pre_dequeue(vsk, target, 2284 &recv_data); 2285 if (err < 0) 2286 break; 2287 2288 read = transport->stream_dequeue(vsk, msg, len - copied, flags); 2289 if (read < 0) { 2290 err = read; 2291 break; 2292 } 2293 2294 copied += read; 2295 2296 err = transport->notify_recv_post_dequeue(vsk, target, read, 2297 !(flags & MSG_PEEK), &recv_data); 2298 if (err < 0) 2299 goto out; 2300 2301 if (read >= target || flags & MSG_PEEK) 2302 break; 2303 2304 target -= read; 2305 } 2306 2307 if (sk->sk_err) 2308 err = -sk->sk_err; 2309 else if (sk->sk_shutdown & RCV_SHUTDOWN) 2310 err = 0; 2311 2312 if (copied > 0) 2313 err = copied; 2314 2315 out: 2316 return err; 2317 } 2318 2319 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg, 2320 size_t len, int flags) 2321 { 2322 const struct vsock_transport *transport; 2323 struct vsock_sock *vsk; 2324 ssize_t msg_len; 2325 long timeout; 2326 int err = 0; 2327 DEFINE_WAIT(wait); 2328 2329 vsk = vsock_sk(sk); 2330 transport = vsk->transport; 2331 2332 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2333 2334 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0); 2335 if (err <= 0) 2336 goto out; 2337 2338 msg_len = transport->seqpacket_dequeue(vsk, msg, flags); 2339 2340 if (msg_len < 0) { 2341 err = msg_len; 2342 goto out; 2343 } 2344 2345 if (sk->sk_err) { 2346 err = -sk->sk_err; 2347 } else if (sk->sk_shutdown & RCV_SHUTDOWN) { 2348 err = 0; 2349 } else { 2350 /* User sets MSG_TRUNC, so return real length of 2351 * packet. 2352 */ 2353 if (flags & MSG_TRUNC) 2354 err = msg_len; 2355 else 2356 err = len - msg_data_left(msg); 2357 2358 /* Always set MSG_TRUNC if real length of packet is 2359 * bigger than user's buffer. 2360 */ 2361 if (msg_len > len) 2362 msg->msg_flags |= MSG_TRUNC; 2363 } 2364 2365 out: 2366 return err; 2367 } 2368 2369 int 2370 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2371 int flags) 2372 { 2373 struct sock *sk; 2374 struct vsock_sock *vsk; 2375 const struct vsock_transport *transport; 2376 int err; 2377 2378 sk = sock->sk; 2379 2380 if (unlikely(flags & MSG_ERRQUEUE)) 2381 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR); 2382 2383 vsk = vsock_sk(sk); 2384 err = 0; 2385 2386 lock_sock(sk); 2387 2388 transport = vsk->transport; 2389 2390 if (!transport || sk->sk_state != TCP_ESTABLISHED) { 2391 /* Recvmsg is supposed to return 0 if a peer performs an 2392 * orderly shutdown. Differentiate between that case and when a 2393 * peer has not connected or a local shutdown occurred with the 2394 * SOCK_DONE flag. 2395 */ 2396 if (sock_flag(sk, SOCK_DONE)) 2397 err = 0; 2398 else 2399 err = -ENOTCONN; 2400 2401 goto out; 2402 } 2403 2404 if (flags & MSG_OOB) { 2405 err = -EOPNOTSUPP; 2406 goto out; 2407 } 2408 2409 /* We don't check peer_shutdown flag here since peer may actually shut 2410 * down, but there can be data in the queue that a local socket can 2411 * receive. 2412 */ 2413 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2414 err = 0; 2415 goto out; 2416 } 2417 2418 /* It is valid on Linux to pass in a zero-length receive buffer. This 2419 * is not an error. We may as well bail out now. 2420 */ 2421 if (!len) { 2422 err = 0; 2423 goto out; 2424 } 2425 2426 if (sk->sk_type == SOCK_STREAM) 2427 err = __vsock_stream_recvmsg(sk, msg, len, flags); 2428 else 2429 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags); 2430 2431 out: 2432 release_sock(sk); 2433 return err; 2434 } 2435 2436 int 2437 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2438 int flags) 2439 { 2440 #ifdef CONFIG_BPF_SYSCALL 2441 struct sock *sk = sock->sk; 2442 const struct proto *prot; 2443 2444 prot = READ_ONCE(sk->sk_prot); 2445 if (prot != &vsock_proto) 2446 return prot->recvmsg(sk, msg, len, flags, NULL); 2447 #endif 2448 2449 return __vsock_connectible_recvmsg(sock, msg, len, flags); 2450 } 2451 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg); 2452 2453 static int vsock_set_rcvlowat(struct sock *sk, int val) 2454 { 2455 const struct vsock_transport *transport; 2456 struct vsock_sock *vsk; 2457 2458 vsk = vsock_sk(sk); 2459 2460 if (val > vsk->buffer_size) 2461 return -EINVAL; 2462 2463 transport = vsk->transport; 2464 2465 if (transport && transport->notify_set_rcvlowat) { 2466 int err; 2467 2468 err = transport->notify_set_rcvlowat(vsk, val); 2469 if (err) 2470 return err; 2471 } 2472 2473 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 2474 return 0; 2475 } 2476 2477 static const struct proto_ops vsock_stream_ops = { 2478 .family = PF_VSOCK, 2479 .owner = THIS_MODULE, 2480 .release = vsock_release, 2481 .bind = vsock_bind, 2482 .connect = vsock_connect, 2483 .socketpair = sock_no_socketpair, 2484 .accept = vsock_accept, 2485 .getname = vsock_getname, 2486 .poll = vsock_poll, 2487 .ioctl = vsock_ioctl, 2488 .listen = vsock_listen, 2489 .shutdown = vsock_shutdown, 2490 .setsockopt = vsock_connectible_setsockopt, 2491 .getsockopt = vsock_connectible_getsockopt, 2492 .sendmsg = vsock_connectible_sendmsg, 2493 .recvmsg = vsock_connectible_recvmsg, 2494 .mmap = sock_no_mmap, 2495 .set_rcvlowat = vsock_set_rcvlowat, 2496 .read_skb = vsock_read_skb, 2497 }; 2498 2499 static const struct proto_ops vsock_seqpacket_ops = { 2500 .family = PF_VSOCK, 2501 .owner = THIS_MODULE, 2502 .release = vsock_release, 2503 .bind = vsock_bind, 2504 .connect = vsock_connect, 2505 .socketpair = sock_no_socketpair, 2506 .accept = vsock_accept, 2507 .getname = vsock_getname, 2508 .poll = vsock_poll, 2509 .ioctl = vsock_ioctl, 2510 .listen = vsock_listen, 2511 .shutdown = vsock_shutdown, 2512 .setsockopt = vsock_connectible_setsockopt, 2513 .getsockopt = vsock_connectible_getsockopt, 2514 .sendmsg = vsock_connectible_sendmsg, 2515 .recvmsg = vsock_connectible_recvmsg, 2516 .mmap = sock_no_mmap, 2517 .read_skb = vsock_read_skb, 2518 }; 2519 2520 static int vsock_create(struct net *net, struct socket *sock, 2521 int protocol, int kern) 2522 { 2523 struct vsock_sock *vsk; 2524 struct sock *sk; 2525 int ret; 2526 2527 if (!sock) 2528 return -EINVAL; 2529 2530 if (protocol && protocol != PF_VSOCK) 2531 return -EPROTONOSUPPORT; 2532 2533 switch (sock->type) { 2534 case SOCK_DGRAM: 2535 sock->ops = &vsock_dgram_ops; 2536 break; 2537 case SOCK_STREAM: 2538 sock->ops = &vsock_stream_ops; 2539 break; 2540 case SOCK_SEQPACKET: 2541 sock->ops = &vsock_seqpacket_ops; 2542 break; 2543 default: 2544 return -ESOCKTNOSUPPORT; 2545 } 2546 2547 sock->state = SS_UNCONNECTED; 2548 2549 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern); 2550 if (!sk) 2551 return -ENOMEM; 2552 2553 vsk = vsock_sk(sk); 2554 2555 if (sock->type == SOCK_DGRAM) { 2556 ret = vsock_assign_transport(vsk, NULL); 2557 if (ret < 0) { 2558 sock->sk = NULL; 2559 sock_put(sk); 2560 return ret; 2561 } 2562 } 2563 2564 /* SOCK_DGRAM doesn't have 'setsockopt' callback set in its 2565 * proto_ops, so there is no handler for custom logic. 2566 */ 2567 if (sock_type_connectible(sock->type)) 2568 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2569 2570 vsock_insert_unbound(vsk); 2571 2572 return 0; 2573 } 2574 2575 static const struct net_proto_family vsock_family_ops = { 2576 .family = AF_VSOCK, 2577 .create = vsock_create, 2578 .owner = THIS_MODULE, 2579 }; 2580 2581 static long vsock_dev_do_ioctl(struct file *filp, 2582 unsigned int cmd, void __user *ptr) 2583 { 2584 u32 __user *p = ptr; 2585 int retval = 0; 2586 u32 cid; 2587 2588 switch (cmd) { 2589 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 2590 /* To be compatible with the VMCI behavior, we prioritize the 2591 * guest CID instead of well-know host CID (VMADDR_CID_HOST). 2592 */ 2593 cid = vsock_registered_transport_cid(&transport_g2h); 2594 if (cid == VMADDR_CID_ANY) 2595 cid = vsock_registered_transport_cid(&transport_h2g); 2596 if (cid == VMADDR_CID_ANY) 2597 cid = vsock_registered_transport_cid(&transport_local); 2598 2599 if (put_user(cid, p) != 0) 2600 retval = -EFAULT; 2601 break; 2602 2603 default: 2604 retval = -ENOIOCTLCMD; 2605 } 2606 2607 return retval; 2608 } 2609 2610 static long vsock_dev_ioctl(struct file *filp, 2611 unsigned int cmd, unsigned long arg) 2612 { 2613 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 2614 } 2615 2616 #ifdef CONFIG_COMPAT 2617 static long vsock_dev_compat_ioctl(struct file *filp, 2618 unsigned int cmd, unsigned long arg) 2619 { 2620 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 2621 } 2622 #endif 2623 2624 static const struct file_operations vsock_device_ops = { 2625 .owner = THIS_MODULE, 2626 .unlocked_ioctl = vsock_dev_ioctl, 2627 #ifdef CONFIG_COMPAT 2628 .compat_ioctl = vsock_dev_compat_ioctl, 2629 #endif 2630 .open = nonseekable_open, 2631 }; 2632 2633 static struct miscdevice vsock_device = { 2634 .name = "vsock", 2635 .fops = &vsock_device_ops, 2636 }; 2637 2638 static int __init vsock_init(void) 2639 { 2640 int err = 0; 2641 2642 vsock_init_tables(); 2643 2644 vsock_proto.owner = THIS_MODULE; 2645 vsock_device.minor = MISC_DYNAMIC_MINOR; 2646 err = misc_register(&vsock_device); 2647 if (err) { 2648 pr_err("Failed to register misc device\n"); 2649 goto err_reset_transport; 2650 } 2651 2652 err = proto_register(&vsock_proto, 1); /* we want our slab */ 2653 if (err) { 2654 pr_err("Cannot register vsock protocol\n"); 2655 goto err_deregister_misc; 2656 } 2657 2658 err = sock_register(&vsock_family_ops); 2659 if (err) { 2660 pr_err("could not register af_vsock (%d) address family: %d\n", 2661 AF_VSOCK, err); 2662 goto err_unregister_proto; 2663 } 2664 2665 vsock_bpf_build_proto(); 2666 2667 return 0; 2668 2669 err_unregister_proto: 2670 proto_unregister(&vsock_proto); 2671 err_deregister_misc: 2672 misc_deregister(&vsock_device); 2673 err_reset_transport: 2674 return err; 2675 } 2676 2677 static void __exit vsock_exit(void) 2678 { 2679 misc_deregister(&vsock_device); 2680 sock_unregister(AF_VSOCK); 2681 proto_unregister(&vsock_proto); 2682 } 2683 2684 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk) 2685 { 2686 return vsk->transport; 2687 } 2688 EXPORT_SYMBOL_GPL(vsock_core_get_transport); 2689 2690 int vsock_core_register(const struct vsock_transport *t, int features) 2691 { 2692 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local; 2693 int err = mutex_lock_interruptible(&vsock_register_mutex); 2694 2695 if (err) 2696 return err; 2697 2698 t_h2g = transport_h2g; 2699 t_g2h = transport_g2h; 2700 t_dgram = transport_dgram; 2701 t_local = transport_local; 2702 2703 if (features & VSOCK_TRANSPORT_F_H2G) { 2704 if (t_h2g) { 2705 err = -EBUSY; 2706 goto err_busy; 2707 } 2708 t_h2g = t; 2709 } 2710 2711 if (features & VSOCK_TRANSPORT_F_G2H) { 2712 if (t_g2h) { 2713 err = -EBUSY; 2714 goto err_busy; 2715 } 2716 t_g2h = t; 2717 } 2718 2719 if (features & VSOCK_TRANSPORT_F_DGRAM) { 2720 if (t_dgram) { 2721 err = -EBUSY; 2722 goto err_busy; 2723 } 2724 t_dgram = t; 2725 } 2726 2727 if (features & VSOCK_TRANSPORT_F_LOCAL) { 2728 if (t_local) { 2729 err = -EBUSY; 2730 goto err_busy; 2731 } 2732 t_local = t; 2733 } 2734 2735 transport_h2g = t_h2g; 2736 transport_g2h = t_g2h; 2737 transport_dgram = t_dgram; 2738 transport_local = t_local; 2739 2740 err_busy: 2741 mutex_unlock(&vsock_register_mutex); 2742 return err; 2743 } 2744 EXPORT_SYMBOL_GPL(vsock_core_register); 2745 2746 void vsock_core_unregister(const struct vsock_transport *t) 2747 { 2748 mutex_lock(&vsock_register_mutex); 2749 2750 if (transport_h2g == t) 2751 transport_h2g = NULL; 2752 2753 if (transport_g2h == t) 2754 transport_g2h = NULL; 2755 2756 if (transport_dgram == t) 2757 transport_dgram = NULL; 2758 2759 if (transport_local == t) 2760 transport_local = NULL; 2761 2762 mutex_unlock(&vsock_register_mutex); 2763 } 2764 EXPORT_SYMBOL_GPL(vsock_core_unregister); 2765 2766 module_init(vsock_init); 2767 module_exit(vsock_exit); 2768 2769 MODULE_AUTHOR("VMware, Inc."); 2770 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 2771 MODULE_VERSION("1.0.2.0-k"); 2772 MODULE_LICENSE("GPL v2"); 2773