xref: /linux/net/vmw_vsock/af_vsock.c (revision f22cc6f766f84496b260347d4f0d92cf95f30699)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115 #include <uapi/asm-generic/ioctls.h>
116 
117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
118 static void vsock_sk_destruct(struct sock *sk);
119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
120 static void vsock_close(struct sock *sk, long timeout);
121 
122 /* Protocol family. */
123 struct proto vsock_proto = {
124 	.name = "AF_VSOCK",
125 	.owner = THIS_MODULE,
126 	.obj_size = sizeof(struct vsock_sock),
127 	.close = vsock_close,
128 #ifdef CONFIG_BPF_SYSCALL
129 	.psock_update_sk_prot = vsock_bpf_update_proto,
130 #endif
131 };
132 
133 /* The default peer timeout indicates how long we will wait for a peer response
134  * to a control message.
135  */
136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
137 
138 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
141 
142 /* Transport used for host->guest communication */
143 static const struct vsock_transport *transport_h2g;
144 /* Transport used for guest->host communication */
145 static const struct vsock_transport *transport_g2h;
146 /* Transport used for DGRAM communication */
147 static const struct vsock_transport *transport_dgram;
148 /* Transport used for local communication */
149 static const struct vsock_transport *transport_local;
150 static DEFINE_MUTEX(vsock_register_mutex);
151 
152 /**** UTILS ****/
153 
154 /* Each bound VSocket is stored in the bind hash table and each connected
155  * VSocket is stored in the connected hash table.
156  *
157  * Unbound sockets are all put on the same list attached to the end of the hash
158  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
159  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
160  * represents the list that addr hashes to).
161  *
162  * Specifically, we initialize the vsock_bind_table array to a size of
163  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
164  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
165  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
166  * mods with VSOCK_HASH_SIZE to ensure this.
167  */
168 #define MAX_PORT_RETRIES        24
169 
170 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
172 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
173 
174 /* XXX This can probably be implemented in a better way. */
175 #define VSOCK_CONN_HASH(src, dst)				\
176 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
177 #define vsock_connected_sockets(src, dst)		\
178 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
179 #define vsock_connected_sockets_vsk(vsk)				\
180 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
181 
182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
183 EXPORT_SYMBOL_GPL(vsock_bind_table);
184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
185 EXPORT_SYMBOL_GPL(vsock_connected_table);
186 DEFINE_SPINLOCK(vsock_table_lock);
187 EXPORT_SYMBOL_GPL(vsock_table_lock);
188 
189 /* Autobind this socket to the local address if necessary. */
190 static int vsock_auto_bind(struct vsock_sock *vsk)
191 {
192 	struct sock *sk = sk_vsock(vsk);
193 	struct sockaddr_vm local_addr;
194 
195 	if (vsock_addr_bound(&vsk->local_addr))
196 		return 0;
197 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
198 	return __vsock_bind(sk, &local_addr);
199 }
200 
201 static void vsock_init_tables(void)
202 {
203 	int i;
204 
205 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
206 		INIT_LIST_HEAD(&vsock_bind_table[i]);
207 
208 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
209 		INIT_LIST_HEAD(&vsock_connected_table[i]);
210 }
211 
212 static void __vsock_insert_bound(struct list_head *list,
213 				 struct vsock_sock *vsk)
214 {
215 	sock_hold(&vsk->sk);
216 	list_add(&vsk->bound_table, list);
217 }
218 
219 static void __vsock_insert_connected(struct list_head *list,
220 				     struct vsock_sock *vsk)
221 {
222 	sock_hold(&vsk->sk);
223 	list_add(&vsk->connected_table, list);
224 }
225 
226 static void __vsock_remove_bound(struct vsock_sock *vsk)
227 {
228 	list_del_init(&vsk->bound_table);
229 	sock_put(&vsk->sk);
230 }
231 
232 static void __vsock_remove_connected(struct vsock_sock *vsk)
233 {
234 	list_del_init(&vsk->connected_table);
235 	sock_put(&vsk->sk);
236 }
237 
238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
239 {
240 	struct vsock_sock *vsk;
241 
242 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
243 		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
244 			return sk_vsock(vsk);
245 
246 		if (addr->svm_port == vsk->local_addr.svm_port &&
247 		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
248 		     addr->svm_cid == VMADDR_CID_ANY))
249 			return sk_vsock(vsk);
250 	}
251 
252 	return NULL;
253 }
254 
255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
256 						  struct sockaddr_vm *dst)
257 {
258 	struct vsock_sock *vsk;
259 
260 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
261 			    connected_table) {
262 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
263 		    dst->svm_port == vsk->local_addr.svm_port) {
264 			return sk_vsock(vsk);
265 		}
266 	}
267 
268 	return NULL;
269 }
270 
271 static void vsock_insert_unbound(struct vsock_sock *vsk)
272 {
273 	spin_lock_bh(&vsock_table_lock);
274 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
275 	spin_unlock_bh(&vsock_table_lock);
276 }
277 
278 void vsock_insert_connected(struct vsock_sock *vsk)
279 {
280 	struct list_head *list = vsock_connected_sockets(
281 		&vsk->remote_addr, &vsk->local_addr);
282 
283 	spin_lock_bh(&vsock_table_lock);
284 	__vsock_insert_connected(list, vsk);
285 	spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_insert_connected);
288 
289 void vsock_remove_bound(struct vsock_sock *vsk)
290 {
291 	spin_lock_bh(&vsock_table_lock);
292 	if (__vsock_in_bound_table(vsk))
293 		__vsock_remove_bound(vsk);
294 	spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_bound);
297 
298 void vsock_remove_connected(struct vsock_sock *vsk)
299 {
300 	spin_lock_bh(&vsock_table_lock);
301 	if (__vsock_in_connected_table(vsk))
302 		__vsock_remove_connected(vsk);
303 	spin_unlock_bh(&vsock_table_lock);
304 }
305 EXPORT_SYMBOL_GPL(vsock_remove_connected);
306 
307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
308 {
309 	struct sock *sk;
310 
311 	spin_lock_bh(&vsock_table_lock);
312 	sk = __vsock_find_bound_socket(addr);
313 	if (sk)
314 		sock_hold(sk);
315 
316 	spin_unlock_bh(&vsock_table_lock);
317 
318 	return sk;
319 }
320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
321 
322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
323 					 struct sockaddr_vm *dst)
324 {
325 	struct sock *sk;
326 
327 	spin_lock_bh(&vsock_table_lock);
328 	sk = __vsock_find_connected_socket(src, dst);
329 	if (sk)
330 		sock_hold(sk);
331 
332 	spin_unlock_bh(&vsock_table_lock);
333 
334 	return sk;
335 }
336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
337 
338 void vsock_remove_sock(struct vsock_sock *vsk)
339 {
340 	/* Transport reassignment must not remove the binding. */
341 	if (sock_flag(sk_vsock(vsk), SOCK_DEAD))
342 		vsock_remove_bound(vsk);
343 
344 	vsock_remove_connected(vsk);
345 }
346 EXPORT_SYMBOL_GPL(vsock_remove_sock);
347 
348 void vsock_for_each_connected_socket(struct vsock_transport *transport,
349 				     void (*fn)(struct sock *sk))
350 {
351 	int i;
352 
353 	spin_lock_bh(&vsock_table_lock);
354 
355 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
356 		struct vsock_sock *vsk;
357 		list_for_each_entry(vsk, &vsock_connected_table[i],
358 				    connected_table) {
359 			if (vsk->transport != transport)
360 				continue;
361 
362 			fn(sk_vsock(vsk));
363 		}
364 	}
365 
366 	spin_unlock_bh(&vsock_table_lock);
367 }
368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
369 
370 void vsock_add_pending(struct sock *listener, struct sock *pending)
371 {
372 	struct vsock_sock *vlistener;
373 	struct vsock_sock *vpending;
374 
375 	vlistener = vsock_sk(listener);
376 	vpending = vsock_sk(pending);
377 
378 	sock_hold(pending);
379 	sock_hold(listener);
380 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
381 }
382 EXPORT_SYMBOL_GPL(vsock_add_pending);
383 
384 void vsock_remove_pending(struct sock *listener, struct sock *pending)
385 {
386 	struct vsock_sock *vpending = vsock_sk(pending);
387 
388 	list_del_init(&vpending->pending_links);
389 	sock_put(listener);
390 	sock_put(pending);
391 }
392 EXPORT_SYMBOL_GPL(vsock_remove_pending);
393 
394 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
395 {
396 	struct vsock_sock *vlistener;
397 	struct vsock_sock *vconnected;
398 
399 	vlistener = vsock_sk(listener);
400 	vconnected = vsock_sk(connected);
401 
402 	sock_hold(connected);
403 	sock_hold(listener);
404 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
405 }
406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
407 
408 static bool vsock_use_local_transport(unsigned int remote_cid)
409 {
410 	lockdep_assert_held(&vsock_register_mutex);
411 
412 	if (!transport_local)
413 		return false;
414 
415 	if (remote_cid == VMADDR_CID_LOCAL)
416 		return true;
417 
418 	if (transport_g2h) {
419 		return remote_cid == transport_g2h->get_local_cid();
420 	} else {
421 		return remote_cid == VMADDR_CID_HOST;
422 	}
423 }
424 
425 static void vsock_deassign_transport(struct vsock_sock *vsk)
426 {
427 	if (!vsk->transport)
428 		return;
429 
430 	vsk->transport->destruct(vsk);
431 	module_put(vsk->transport->module);
432 	vsk->transport = NULL;
433 }
434 
435 /* Assign a transport to a socket and call the .init transport callback.
436  *
437  * Note: for connection oriented socket this must be called when vsk->remote_addr
438  * is set (e.g. during the connect() or when a connection request on a listener
439  * socket is received).
440  * The vsk->remote_addr is used to decide which transport to use:
441  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
442  *    g2h is not loaded, will use local transport;
443  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
444  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
445  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
446  */
447 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
448 {
449 	const struct vsock_transport *new_transport;
450 	struct sock *sk = sk_vsock(vsk);
451 	unsigned int remote_cid = vsk->remote_addr.svm_cid;
452 	__u8 remote_flags;
453 	int ret;
454 
455 	/* If the packet is coming with the source and destination CIDs higher
456 	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
457 	 * forwarded to the host should be established. Then the host will
458 	 * need to forward the packets to the guest.
459 	 *
460 	 * The flag is set on the (listen) receive path (psk is not NULL). On
461 	 * the connect path the flag can be set by the user space application.
462 	 */
463 	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
464 	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
465 		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
466 
467 	remote_flags = vsk->remote_addr.svm_flags;
468 
469 	mutex_lock(&vsock_register_mutex);
470 
471 	switch (sk->sk_type) {
472 	case SOCK_DGRAM:
473 		new_transport = transport_dgram;
474 		break;
475 	case SOCK_STREAM:
476 	case SOCK_SEQPACKET:
477 		if (vsock_use_local_transport(remote_cid))
478 			new_transport = transport_local;
479 		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
480 			 (remote_flags & VMADDR_FLAG_TO_HOST))
481 			new_transport = transport_g2h;
482 		else
483 			new_transport = transport_h2g;
484 		break;
485 	default:
486 		ret = -ESOCKTNOSUPPORT;
487 		goto err;
488 	}
489 
490 	if (vsk->transport) {
491 		if (vsk->transport == new_transport) {
492 			ret = 0;
493 			goto err;
494 		}
495 
496 		/* transport->release() must be called with sock lock acquired.
497 		 * This path can only be taken during vsock_connect(), where we
498 		 * have already held the sock lock. In the other cases, this
499 		 * function is called on a new socket which is not assigned to
500 		 * any transport.
501 		 */
502 		vsk->transport->release(vsk);
503 		vsock_deassign_transport(vsk);
504 
505 		/* transport's release() and destruct() can touch some socket
506 		 * state, since we are reassigning the socket to a new transport
507 		 * during vsock_connect(), let's reset these fields to have a
508 		 * clean state.
509 		 */
510 		sock_reset_flag(sk, SOCK_DONE);
511 		sk->sk_state = TCP_CLOSE;
512 		vsk->peer_shutdown = 0;
513 	}
514 
515 	/* We increase the module refcnt to prevent the transport unloading
516 	 * while there are open sockets assigned to it.
517 	 */
518 	if (!new_transport || !try_module_get(new_transport->module)) {
519 		ret = -ENODEV;
520 		goto err;
521 	}
522 
523 	/* It's safe to release the mutex after a successful try_module_get().
524 	 * Whichever transport `new_transport` points at, it won't go away until
525 	 * the last module_put() below or in vsock_deassign_transport().
526 	 */
527 	mutex_unlock(&vsock_register_mutex);
528 
529 	if (sk->sk_type == SOCK_SEQPACKET) {
530 		if (!new_transport->seqpacket_allow ||
531 		    !new_transport->seqpacket_allow(remote_cid)) {
532 			module_put(new_transport->module);
533 			return -ESOCKTNOSUPPORT;
534 		}
535 	}
536 
537 	ret = new_transport->init(vsk, psk);
538 	if (ret) {
539 		module_put(new_transport->module);
540 		return ret;
541 	}
542 
543 	vsk->transport = new_transport;
544 
545 	return 0;
546 err:
547 	mutex_unlock(&vsock_register_mutex);
548 	return ret;
549 }
550 EXPORT_SYMBOL_GPL(vsock_assign_transport);
551 
552 /*
553  * Provide safe access to static transport_{h2g,g2h,dgram,local} callbacks.
554  * Otherwise we may race with module removal. Do not use on `vsk->transport`.
555  */
556 static u32 vsock_registered_transport_cid(const struct vsock_transport **transport)
557 {
558 	u32 cid = VMADDR_CID_ANY;
559 
560 	mutex_lock(&vsock_register_mutex);
561 	if (*transport)
562 		cid = (*transport)->get_local_cid();
563 	mutex_unlock(&vsock_register_mutex);
564 
565 	return cid;
566 }
567 
568 bool vsock_find_cid(unsigned int cid)
569 {
570 	if (cid == vsock_registered_transport_cid(&transport_g2h))
571 		return true;
572 
573 	if (transport_h2g && cid == VMADDR_CID_HOST)
574 		return true;
575 
576 	if (transport_local && cid == VMADDR_CID_LOCAL)
577 		return true;
578 
579 	return false;
580 }
581 EXPORT_SYMBOL_GPL(vsock_find_cid);
582 
583 static struct sock *vsock_dequeue_accept(struct sock *listener)
584 {
585 	struct vsock_sock *vlistener;
586 	struct vsock_sock *vconnected;
587 
588 	vlistener = vsock_sk(listener);
589 
590 	if (list_empty(&vlistener->accept_queue))
591 		return NULL;
592 
593 	vconnected = list_entry(vlistener->accept_queue.next,
594 				struct vsock_sock, accept_queue);
595 
596 	list_del_init(&vconnected->accept_queue);
597 	sock_put(listener);
598 	/* The caller will need a reference on the connected socket so we let
599 	 * it call sock_put().
600 	 */
601 
602 	return sk_vsock(vconnected);
603 }
604 
605 static bool vsock_is_accept_queue_empty(struct sock *sk)
606 {
607 	struct vsock_sock *vsk = vsock_sk(sk);
608 	return list_empty(&vsk->accept_queue);
609 }
610 
611 static bool vsock_is_pending(struct sock *sk)
612 {
613 	struct vsock_sock *vsk = vsock_sk(sk);
614 	return !list_empty(&vsk->pending_links);
615 }
616 
617 static int vsock_send_shutdown(struct sock *sk, int mode)
618 {
619 	struct vsock_sock *vsk = vsock_sk(sk);
620 
621 	if (!vsk->transport)
622 		return -ENODEV;
623 
624 	return vsk->transport->shutdown(vsk, mode);
625 }
626 
627 static void vsock_pending_work(struct work_struct *work)
628 {
629 	struct sock *sk;
630 	struct sock *listener;
631 	struct vsock_sock *vsk;
632 	bool cleanup;
633 
634 	vsk = container_of(work, struct vsock_sock, pending_work.work);
635 	sk = sk_vsock(vsk);
636 	listener = vsk->listener;
637 	cleanup = true;
638 
639 	lock_sock(listener);
640 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
641 
642 	if (vsock_is_pending(sk)) {
643 		vsock_remove_pending(listener, sk);
644 
645 		sk_acceptq_removed(listener);
646 	} else if (!vsk->rejected) {
647 		/* We are not on the pending list and accept() did not reject
648 		 * us, so we must have been accepted by our user process.  We
649 		 * just need to drop our references to the sockets and be on
650 		 * our way.
651 		 */
652 		cleanup = false;
653 		goto out;
654 	}
655 
656 	/* We need to remove ourself from the global connected sockets list so
657 	 * incoming packets can't find this socket, and to reduce the reference
658 	 * count.
659 	 */
660 	vsock_remove_connected(vsk);
661 
662 	sk->sk_state = TCP_CLOSE;
663 
664 out:
665 	release_sock(sk);
666 	release_sock(listener);
667 	if (cleanup)
668 		sock_put(sk);
669 
670 	sock_put(sk);
671 	sock_put(listener);
672 }
673 
674 /**** SOCKET OPERATIONS ****/
675 
676 static int __vsock_bind_connectible(struct vsock_sock *vsk,
677 				    struct sockaddr_vm *addr)
678 {
679 	static u32 port;
680 	struct sockaddr_vm new_addr;
681 
682 	if (!port)
683 		port = get_random_u32_above(LAST_RESERVED_PORT);
684 
685 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
686 
687 	if (addr->svm_port == VMADDR_PORT_ANY) {
688 		bool found = false;
689 		unsigned int i;
690 
691 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
692 			if (port <= LAST_RESERVED_PORT)
693 				port = LAST_RESERVED_PORT + 1;
694 
695 			new_addr.svm_port = port++;
696 
697 			if (!__vsock_find_bound_socket(&new_addr)) {
698 				found = true;
699 				break;
700 			}
701 		}
702 
703 		if (!found)
704 			return -EADDRNOTAVAIL;
705 	} else {
706 		/* If port is in reserved range, ensure caller
707 		 * has necessary privileges.
708 		 */
709 		if (addr->svm_port <= LAST_RESERVED_PORT &&
710 		    !capable(CAP_NET_BIND_SERVICE)) {
711 			return -EACCES;
712 		}
713 
714 		if (__vsock_find_bound_socket(&new_addr))
715 			return -EADDRINUSE;
716 	}
717 
718 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
719 
720 	/* Remove connection oriented sockets from the unbound list and add them
721 	 * to the hash table for easy lookup by its address.  The unbound list
722 	 * is simply an extra entry at the end of the hash table, a trick used
723 	 * by AF_UNIX.
724 	 */
725 	__vsock_remove_bound(vsk);
726 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
727 
728 	return 0;
729 }
730 
731 static int __vsock_bind_dgram(struct vsock_sock *vsk,
732 			      struct sockaddr_vm *addr)
733 {
734 	return vsk->transport->dgram_bind(vsk, addr);
735 }
736 
737 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
738 {
739 	struct vsock_sock *vsk = vsock_sk(sk);
740 	int retval;
741 
742 	/* First ensure this socket isn't already bound. */
743 	if (vsock_addr_bound(&vsk->local_addr))
744 		return -EINVAL;
745 
746 	/* Now bind to the provided address or select appropriate values if
747 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
748 	 * like AF_INET prevents binding to a non-local IP address (in most
749 	 * cases), we only allow binding to a local CID.
750 	 */
751 	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
752 		return -EADDRNOTAVAIL;
753 
754 	switch (sk->sk_socket->type) {
755 	case SOCK_STREAM:
756 	case SOCK_SEQPACKET:
757 		spin_lock_bh(&vsock_table_lock);
758 		retval = __vsock_bind_connectible(vsk, addr);
759 		spin_unlock_bh(&vsock_table_lock);
760 		break;
761 
762 	case SOCK_DGRAM:
763 		retval = __vsock_bind_dgram(vsk, addr);
764 		break;
765 
766 	default:
767 		retval = -EINVAL;
768 		break;
769 	}
770 
771 	return retval;
772 }
773 
774 static void vsock_connect_timeout(struct work_struct *work);
775 
776 static struct sock *__vsock_create(struct net *net,
777 				   struct socket *sock,
778 				   struct sock *parent,
779 				   gfp_t priority,
780 				   unsigned short type,
781 				   int kern)
782 {
783 	struct sock *sk;
784 	struct vsock_sock *psk;
785 	struct vsock_sock *vsk;
786 
787 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
788 	if (!sk)
789 		return NULL;
790 
791 	sock_init_data(sock, sk);
792 
793 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
794 	 * non-NULL. We make sure that our sockets always have a type by
795 	 * setting it here if needed.
796 	 */
797 	if (!sock)
798 		sk->sk_type = type;
799 
800 	vsk = vsock_sk(sk);
801 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
802 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
803 
804 	sk->sk_destruct = vsock_sk_destruct;
805 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
806 	sock_reset_flag(sk, SOCK_DONE);
807 
808 	INIT_LIST_HEAD(&vsk->bound_table);
809 	INIT_LIST_HEAD(&vsk->connected_table);
810 	vsk->listener = NULL;
811 	INIT_LIST_HEAD(&vsk->pending_links);
812 	INIT_LIST_HEAD(&vsk->accept_queue);
813 	vsk->rejected = false;
814 	vsk->sent_request = false;
815 	vsk->ignore_connecting_rst = false;
816 	vsk->peer_shutdown = 0;
817 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
818 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
819 
820 	psk = parent ? vsock_sk(parent) : NULL;
821 	if (parent) {
822 		vsk->trusted = psk->trusted;
823 		vsk->owner = get_cred(psk->owner);
824 		vsk->connect_timeout = psk->connect_timeout;
825 		vsk->buffer_size = psk->buffer_size;
826 		vsk->buffer_min_size = psk->buffer_min_size;
827 		vsk->buffer_max_size = psk->buffer_max_size;
828 		security_sk_clone(parent, sk);
829 	} else {
830 		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
831 		vsk->owner = get_current_cred();
832 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
833 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
834 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
835 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
836 	}
837 
838 	return sk;
839 }
840 
841 static bool sock_type_connectible(u16 type)
842 {
843 	return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
844 }
845 
846 static void __vsock_release(struct sock *sk, int level)
847 {
848 	struct vsock_sock *vsk;
849 	struct sock *pending;
850 
851 	vsk = vsock_sk(sk);
852 	pending = NULL;	/* Compiler warning. */
853 
854 	/* When "level" is SINGLE_DEPTH_NESTING, use the nested
855 	 * version to avoid the warning "possible recursive locking
856 	 * detected". When "level" is 0, lock_sock_nested(sk, level)
857 	 * is the same as lock_sock(sk).
858 	 */
859 	lock_sock_nested(sk, level);
860 
861 	/* Indicate to vsock_remove_sock() that the socket is being released and
862 	 * can be removed from the bound_table. Unlike transport reassignment
863 	 * case, where the socket must remain bound despite vsock_remove_sock()
864 	 * being called from the transport release() callback.
865 	 */
866 	sock_set_flag(sk, SOCK_DEAD);
867 
868 	if (vsk->transport)
869 		vsk->transport->release(vsk);
870 	else if (sock_type_connectible(sk->sk_type))
871 		vsock_remove_sock(vsk);
872 
873 	sock_orphan(sk);
874 	sk->sk_shutdown = SHUTDOWN_MASK;
875 
876 	skb_queue_purge(&sk->sk_receive_queue);
877 
878 	/* Clean up any sockets that never were accepted. */
879 	while ((pending = vsock_dequeue_accept(sk)) != NULL) {
880 		__vsock_release(pending, SINGLE_DEPTH_NESTING);
881 		sock_put(pending);
882 	}
883 
884 	release_sock(sk);
885 	sock_put(sk);
886 }
887 
888 static void vsock_sk_destruct(struct sock *sk)
889 {
890 	struct vsock_sock *vsk = vsock_sk(sk);
891 
892 	/* Flush MSG_ZEROCOPY leftovers. */
893 	__skb_queue_purge(&sk->sk_error_queue);
894 
895 	vsock_deassign_transport(vsk);
896 
897 	/* When clearing these addresses, there's no need to set the family and
898 	 * possibly register the address family with the kernel.
899 	 */
900 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
901 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
902 
903 	put_cred(vsk->owner);
904 }
905 
906 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
907 {
908 	int err;
909 
910 	err = sock_queue_rcv_skb(sk, skb);
911 	if (err)
912 		kfree_skb(skb);
913 
914 	return err;
915 }
916 
917 struct sock *vsock_create_connected(struct sock *parent)
918 {
919 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
920 			      parent->sk_type, 0);
921 }
922 EXPORT_SYMBOL_GPL(vsock_create_connected);
923 
924 s64 vsock_stream_has_data(struct vsock_sock *vsk)
925 {
926 	if (WARN_ON(!vsk->transport))
927 		return 0;
928 
929 	return vsk->transport->stream_has_data(vsk);
930 }
931 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
932 
933 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
934 {
935 	struct sock *sk = sk_vsock(vsk);
936 
937 	if (WARN_ON(!vsk->transport))
938 		return 0;
939 
940 	if (sk->sk_type == SOCK_SEQPACKET)
941 		return vsk->transport->seqpacket_has_data(vsk);
942 	else
943 		return vsock_stream_has_data(vsk);
944 }
945 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
946 
947 s64 vsock_stream_has_space(struct vsock_sock *vsk)
948 {
949 	if (WARN_ON(!vsk->transport))
950 		return 0;
951 
952 	return vsk->transport->stream_has_space(vsk);
953 }
954 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
955 
956 void vsock_data_ready(struct sock *sk)
957 {
958 	struct vsock_sock *vsk = vsock_sk(sk);
959 
960 	if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
961 	    sock_flag(sk, SOCK_DONE))
962 		sk->sk_data_ready(sk);
963 }
964 EXPORT_SYMBOL_GPL(vsock_data_ready);
965 
966 /* Dummy callback required by sockmap.
967  * See unconditional call of saved_close() in sock_map_close().
968  */
969 static void vsock_close(struct sock *sk, long timeout)
970 {
971 }
972 
973 static int vsock_release(struct socket *sock)
974 {
975 	struct sock *sk = sock->sk;
976 
977 	if (!sk)
978 		return 0;
979 
980 	sk->sk_prot->close(sk, 0);
981 	__vsock_release(sk, 0);
982 	sock->sk = NULL;
983 	sock->state = SS_FREE;
984 
985 	return 0;
986 }
987 
988 static int
989 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
990 {
991 	int err;
992 	struct sock *sk;
993 	struct sockaddr_vm *vm_addr;
994 
995 	sk = sock->sk;
996 
997 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
998 		return -EINVAL;
999 
1000 	lock_sock(sk);
1001 	err = __vsock_bind(sk, vm_addr);
1002 	release_sock(sk);
1003 
1004 	return err;
1005 }
1006 
1007 static int vsock_getname(struct socket *sock,
1008 			 struct sockaddr *addr, int peer)
1009 {
1010 	int err;
1011 	struct sock *sk;
1012 	struct vsock_sock *vsk;
1013 	struct sockaddr_vm *vm_addr;
1014 
1015 	sk = sock->sk;
1016 	vsk = vsock_sk(sk);
1017 	err = 0;
1018 
1019 	lock_sock(sk);
1020 
1021 	if (peer) {
1022 		if (sock->state != SS_CONNECTED) {
1023 			err = -ENOTCONN;
1024 			goto out;
1025 		}
1026 		vm_addr = &vsk->remote_addr;
1027 	} else {
1028 		vm_addr = &vsk->local_addr;
1029 	}
1030 
1031 	BUILD_BUG_ON(sizeof(*vm_addr) > sizeof(struct sockaddr_storage));
1032 	memcpy(addr, vm_addr, sizeof(*vm_addr));
1033 	err = sizeof(*vm_addr);
1034 
1035 out:
1036 	release_sock(sk);
1037 	return err;
1038 }
1039 
1040 void vsock_linger(struct sock *sk)
1041 {
1042 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1043 	ssize_t (*unsent)(struct vsock_sock *vsk);
1044 	struct vsock_sock *vsk = vsock_sk(sk);
1045 	long timeout;
1046 
1047 	if (!sock_flag(sk, SOCK_LINGER))
1048 		return;
1049 
1050 	timeout = sk->sk_lingertime;
1051 	if (!timeout)
1052 		return;
1053 
1054 	/* Transports must implement `unsent_bytes` if they want to support
1055 	 * SOCK_LINGER through `vsock_linger()` since we use it to check when
1056 	 * the socket can be closed.
1057 	 */
1058 	unsent = vsk->transport->unsent_bytes;
1059 	if (!unsent)
1060 		return;
1061 
1062 	add_wait_queue(sk_sleep(sk), &wait);
1063 
1064 	do {
1065 		if (sk_wait_event(sk, &timeout, unsent(vsk) == 0, &wait))
1066 			break;
1067 	} while (!signal_pending(current) && timeout);
1068 
1069 	remove_wait_queue(sk_sleep(sk), &wait);
1070 }
1071 EXPORT_SYMBOL_GPL(vsock_linger);
1072 
1073 static int vsock_shutdown(struct socket *sock, int mode)
1074 {
1075 	int err;
1076 	struct sock *sk;
1077 
1078 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
1079 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
1080 	 * here like the other address families do.  Note also that the
1081 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
1082 	 * which is what we want.
1083 	 */
1084 	mode++;
1085 
1086 	if ((mode & ~SHUTDOWN_MASK) || !mode)
1087 		return -EINVAL;
1088 
1089 	/* If this is a connection oriented socket and it is not connected then
1090 	 * bail out immediately.  If it is a DGRAM socket then we must first
1091 	 * kick the socket so that it wakes up from any sleeping calls, for
1092 	 * example recv(), and then afterwards return the error.
1093 	 */
1094 
1095 	sk = sock->sk;
1096 
1097 	lock_sock(sk);
1098 	if (sock->state == SS_UNCONNECTED) {
1099 		err = -ENOTCONN;
1100 		if (sock_type_connectible(sk->sk_type))
1101 			goto out;
1102 	} else {
1103 		sock->state = SS_DISCONNECTING;
1104 		err = 0;
1105 	}
1106 
1107 	/* Receive and send shutdowns are treated alike. */
1108 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1109 	if (mode) {
1110 		sk->sk_shutdown |= mode;
1111 		sk->sk_state_change(sk);
1112 
1113 		if (sock_type_connectible(sk->sk_type)) {
1114 			sock_reset_flag(sk, SOCK_DONE);
1115 			vsock_send_shutdown(sk, mode);
1116 		}
1117 	}
1118 
1119 out:
1120 	release_sock(sk);
1121 	return err;
1122 }
1123 
1124 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1125 			       poll_table *wait)
1126 {
1127 	struct sock *sk;
1128 	__poll_t mask;
1129 	struct vsock_sock *vsk;
1130 
1131 	sk = sock->sk;
1132 	vsk = vsock_sk(sk);
1133 
1134 	poll_wait(file, sk_sleep(sk), wait);
1135 	mask = 0;
1136 
1137 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
1138 		/* Signify that there has been an error on this socket. */
1139 		mask |= EPOLLERR;
1140 
1141 	/* INET sockets treat local write shutdown and peer write shutdown as a
1142 	 * case of EPOLLHUP set.
1143 	 */
1144 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1145 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1146 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1147 		mask |= EPOLLHUP;
1148 	}
1149 
1150 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
1151 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
1152 		mask |= EPOLLRDHUP;
1153 	}
1154 
1155 	if (sk_is_readable(sk))
1156 		mask |= EPOLLIN | EPOLLRDNORM;
1157 
1158 	if (sock->type == SOCK_DGRAM) {
1159 		/* For datagram sockets we can read if there is something in
1160 		 * the queue and write as long as the socket isn't shutdown for
1161 		 * sending.
1162 		 */
1163 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1164 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1165 			mask |= EPOLLIN | EPOLLRDNORM;
1166 		}
1167 
1168 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1169 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1170 
1171 	} else if (sock_type_connectible(sk->sk_type)) {
1172 		const struct vsock_transport *transport;
1173 
1174 		lock_sock(sk);
1175 
1176 		transport = vsk->transport;
1177 
1178 		/* Listening sockets that have connections in their accept
1179 		 * queue can be read.
1180 		 */
1181 		if (sk->sk_state == TCP_LISTEN
1182 		    && !vsock_is_accept_queue_empty(sk))
1183 			mask |= EPOLLIN | EPOLLRDNORM;
1184 
1185 		/* If there is something in the queue then we can read. */
1186 		if (transport && transport->stream_is_active(vsk) &&
1187 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1188 			bool data_ready_now = false;
1189 			int target = sock_rcvlowat(sk, 0, INT_MAX);
1190 			int ret = transport->notify_poll_in(
1191 					vsk, target, &data_ready_now);
1192 			if (ret < 0) {
1193 				mask |= EPOLLERR;
1194 			} else {
1195 				if (data_ready_now)
1196 					mask |= EPOLLIN | EPOLLRDNORM;
1197 
1198 			}
1199 		}
1200 
1201 		/* Sockets whose connections have been closed, reset, or
1202 		 * terminated should also be considered read, and we check the
1203 		 * shutdown flag for that.
1204 		 */
1205 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1206 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1207 			mask |= EPOLLIN | EPOLLRDNORM;
1208 		}
1209 
1210 		/* Connected sockets that can produce data can be written. */
1211 		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1212 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1213 				bool space_avail_now = false;
1214 				int ret = transport->notify_poll_out(
1215 						vsk, 1, &space_avail_now);
1216 				if (ret < 0) {
1217 					mask |= EPOLLERR;
1218 				} else {
1219 					if (space_avail_now)
1220 						/* Remove EPOLLWRBAND since INET
1221 						 * sockets are not setting it.
1222 						 */
1223 						mask |= EPOLLOUT | EPOLLWRNORM;
1224 
1225 				}
1226 			}
1227 		}
1228 
1229 		/* Simulate INET socket poll behaviors, which sets
1230 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1231 		 * but local send is not shutdown.
1232 		 */
1233 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1234 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1235 				mask |= EPOLLOUT | EPOLLWRNORM;
1236 
1237 		}
1238 
1239 		release_sock(sk);
1240 	}
1241 
1242 	return mask;
1243 }
1244 
1245 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1246 {
1247 	struct vsock_sock *vsk = vsock_sk(sk);
1248 
1249 	if (WARN_ON_ONCE(!vsk->transport))
1250 		return -ENODEV;
1251 
1252 	return vsk->transport->read_skb(vsk, read_actor);
1253 }
1254 
1255 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1256 			       size_t len)
1257 {
1258 	int err;
1259 	struct sock *sk;
1260 	struct vsock_sock *vsk;
1261 	struct sockaddr_vm *remote_addr;
1262 	const struct vsock_transport *transport;
1263 
1264 	if (msg->msg_flags & MSG_OOB)
1265 		return -EOPNOTSUPP;
1266 
1267 	/* For now, MSG_DONTWAIT is always assumed... */
1268 	err = 0;
1269 	sk = sock->sk;
1270 	vsk = vsock_sk(sk);
1271 
1272 	lock_sock(sk);
1273 
1274 	transport = vsk->transport;
1275 
1276 	err = vsock_auto_bind(vsk);
1277 	if (err)
1278 		goto out;
1279 
1280 
1281 	/* If the provided message contains an address, use that.  Otherwise
1282 	 * fall back on the socket's remote handle (if it has been connected).
1283 	 */
1284 	if (msg->msg_name &&
1285 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1286 			    &remote_addr) == 0) {
1287 		/* Ensure this address is of the right type and is a valid
1288 		 * destination.
1289 		 */
1290 
1291 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1292 			remote_addr->svm_cid = transport->get_local_cid();
1293 
1294 		if (!vsock_addr_bound(remote_addr)) {
1295 			err = -EINVAL;
1296 			goto out;
1297 		}
1298 	} else if (sock->state == SS_CONNECTED) {
1299 		remote_addr = &vsk->remote_addr;
1300 
1301 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1302 			remote_addr->svm_cid = transport->get_local_cid();
1303 
1304 		/* XXX Should connect() or this function ensure remote_addr is
1305 		 * bound?
1306 		 */
1307 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1308 			err = -EINVAL;
1309 			goto out;
1310 		}
1311 	} else {
1312 		err = -EINVAL;
1313 		goto out;
1314 	}
1315 
1316 	if (!transport->dgram_allow(remote_addr->svm_cid,
1317 				    remote_addr->svm_port)) {
1318 		err = -EINVAL;
1319 		goto out;
1320 	}
1321 
1322 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1323 
1324 out:
1325 	release_sock(sk);
1326 	return err;
1327 }
1328 
1329 static int vsock_dgram_connect(struct socket *sock,
1330 			       struct sockaddr *addr, int addr_len, int flags)
1331 {
1332 	int err;
1333 	struct sock *sk;
1334 	struct vsock_sock *vsk;
1335 	struct sockaddr_vm *remote_addr;
1336 
1337 	sk = sock->sk;
1338 	vsk = vsock_sk(sk);
1339 
1340 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1341 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1342 		lock_sock(sk);
1343 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1344 				VMADDR_PORT_ANY);
1345 		sock->state = SS_UNCONNECTED;
1346 		release_sock(sk);
1347 		return 0;
1348 	} else if (err != 0)
1349 		return -EINVAL;
1350 
1351 	lock_sock(sk);
1352 
1353 	err = vsock_auto_bind(vsk);
1354 	if (err)
1355 		goto out;
1356 
1357 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1358 					 remote_addr->svm_port)) {
1359 		err = -EINVAL;
1360 		goto out;
1361 	}
1362 
1363 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1364 	sock->state = SS_CONNECTED;
1365 
1366 	/* sock map disallows redirection of non-TCP sockets with sk_state !=
1367 	 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1368 	 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1369 	 *
1370 	 * This doesn't seem to be abnormal state for datagram sockets, as the
1371 	 * same approach can be see in other datagram socket types as well
1372 	 * (such as unix sockets).
1373 	 */
1374 	sk->sk_state = TCP_ESTABLISHED;
1375 
1376 out:
1377 	release_sock(sk);
1378 	return err;
1379 }
1380 
1381 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1382 			  size_t len, int flags)
1383 {
1384 	struct sock *sk = sock->sk;
1385 	struct vsock_sock *vsk = vsock_sk(sk);
1386 
1387 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1388 }
1389 
1390 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1391 			size_t len, int flags)
1392 {
1393 #ifdef CONFIG_BPF_SYSCALL
1394 	struct sock *sk = sock->sk;
1395 	const struct proto *prot;
1396 
1397 	prot = READ_ONCE(sk->sk_prot);
1398 	if (prot != &vsock_proto)
1399 		return prot->recvmsg(sk, msg, len, flags, NULL);
1400 #endif
1401 
1402 	return __vsock_dgram_recvmsg(sock, msg, len, flags);
1403 }
1404 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1405 
1406 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd,
1407 			  int __user *arg)
1408 {
1409 	struct sock *sk = sock->sk;
1410 	struct vsock_sock *vsk;
1411 	int ret;
1412 
1413 	vsk = vsock_sk(sk);
1414 
1415 	switch (cmd) {
1416 	case SIOCINQ: {
1417 		ssize_t n_bytes;
1418 
1419 		if (!vsk->transport) {
1420 			ret = -EOPNOTSUPP;
1421 			break;
1422 		}
1423 
1424 		if (sock_type_connectible(sk->sk_type) &&
1425 		    sk->sk_state == TCP_LISTEN) {
1426 			ret = -EINVAL;
1427 			break;
1428 		}
1429 
1430 		n_bytes = vsock_stream_has_data(vsk);
1431 		if (n_bytes < 0) {
1432 			ret = n_bytes;
1433 			break;
1434 		}
1435 		ret = put_user(n_bytes, arg);
1436 		break;
1437 	}
1438 	case SIOCOUTQ: {
1439 		ssize_t n_bytes;
1440 
1441 		if (!vsk->transport || !vsk->transport->unsent_bytes) {
1442 			ret = -EOPNOTSUPP;
1443 			break;
1444 		}
1445 
1446 		if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) {
1447 			ret = -EINVAL;
1448 			break;
1449 		}
1450 
1451 		n_bytes = vsk->transport->unsent_bytes(vsk);
1452 		if (n_bytes < 0) {
1453 			ret = n_bytes;
1454 			break;
1455 		}
1456 
1457 		ret = put_user(n_bytes, arg);
1458 		break;
1459 	}
1460 	default:
1461 		ret = -ENOIOCTLCMD;
1462 	}
1463 
1464 	return ret;
1465 }
1466 
1467 static int vsock_ioctl(struct socket *sock, unsigned int cmd,
1468 		       unsigned long arg)
1469 {
1470 	int ret;
1471 
1472 	lock_sock(sock->sk);
1473 	ret = vsock_do_ioctl(sock, cmd, (int __user *)arg);
1474 	release_sock(sock->sk);
1475 
1476 	return ret;
1477 }
1478 
1479 static const struct proto_ops vsock_dgram_ops = {
1480 	.family = PF_VSOCK,
1481 	.owner = THIS_MODULE,
1482 	.release = vsock_release,
1483 	.bind = vsock_bind,
1484 	.connect = vsock_dgram_connect,
1485 	.socketpair = sock_no_socketpair,
1486 	.accept = sock_no_accept,
1487 	.getname = vsock_getname,
1488 	.poll = vsock_poll,
1489 	.ioctl = vsock_ioctl,
1490 	.listen = sock_no_listen,
1491 	.shutdown = vsock_shutdown,
1492 	.sendmsg = vsock_dgram_sendmsg,
1493 	.recvmsg = vsock_dgram_recvmsg,
1494 	.mmap = sock_no_mmap,
1495 	.read_skb = vsock_read_skb,
1496 };
1497 
1498 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1499 {
1500 	const struct vsock_transport *transport = vsk->transport;
1501 
1502 	if (!transport || !transport->cancel_pkt)
1503 		return -EOPNOTSUPP;
1504 
1505 	return transport->cancel_pkt(vsk);
1506 }
1507 
1508 static void vsock_connect_timeout(struct work_struct *work)
1509 {
1510 	struct sock *sk;
1511 	struct vsock_sock *vsk;
1512 
1513 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1514 	sk = sk_vsock(vsk);
1515 
1516 	lock_sock(sk);
1517 	if (sk->sk_state == TCP_SYN_SENT &&
1518 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1519 		sk->sk_state = TCP_CLOSE;
1520 		sk->sk_socket->state = SS_UNCONNECTED;
1521 		sk->sk_err = ETIMEDOUT;
1522 		sk_error_report(sk);
1523 		vsock_transport_cancel_pkt(vsk);
1524 	}
1525 	release_sock(sk);
1526 
1527 	sock_put(sk);
1528 }
1529 
1530 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1531 			 int addr_len, int flags)
1532 {
1533 	int err;
1534 	struct sock *sk;
1535 	struct vsock_sock *vsk;
1536 	const struct vsock_transport *transport;
1537 	struct sockaddr_vm *remote_addr;
1538 	long timeout;
1539 	DEFINE_WAIT(wait);
1540 
1541 	err = 0;
1542 	sk = sock->sk;
1543 	vsk = vsock_sk(sk);
1544 
1545 	lock_sock(sk);
1546 
1547 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1548 	switch (sock->state) {
1549 	case SS_CONNECTED:
1550 		err = -EISCONN;
1551 		goto out;
1552 	case SS_DISCONNECTING:
1553 		err = -EINVAL;
1554 		goto out;
1555 	case SS_CONNECTING:
1556 		/* This continues on so we can move sock into the SS_CONNECTED
1557 		 * state once the connection has completed (at which point err
1558 		 * will be set to zero also).  Otherwise, we will either wait
1559 		 * for the connection or return -EALREADY should this be a
1560 		 * non-blocking call.
1561 		 */
1562 		err = -EALREADY;
1563 		if (flags & O_NONBLOCK)
1564 			goto out;
1565 		break;
1566 	default:
1567 		if ((sk->sk_state == TCP_LISTEN) ||
1568 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1569 			err = -EINVAL;
1570 			goto out;
1571 		}
1572 
1573 		/* Set the remote address that we are connecting to. */
1574 		memcpy(&vsk->remote_addr, remote_addr,
1575 		       sizeof(vsk->remote_addr));
1576 
1577 		err = vsock_assign_transport(vsk, NULL);
1578 		if (err)
1579 			goto out;
1580 
1581 		transport = vsk->transport;
1582 
1583 		/* The hypervisor and well-known contexts do not have socket
1584 		 * endpoints.
1585 		 */
1586 		if (!transport ||
1587 		    !transport->stream_allow(remote_addr->svm_cid,
1588 					     remote_addr->svm_port)) {
1589 			err = -ENETUNREACH;
1590 			goto out;
1591 		}
1592 
1593 		if (vsock_msgzerocopy_allow(transport)) {
1594 			set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1595 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1596 			/* If this option was set before 'connect()',
1597 			 * when transport was unknown, check that this
1598 			 * feature is supported here.
1599 			 */
1600 			err = -EOPNOTSUPP;
1601 			goto out;
1602 		}
1603 
1604 		err = vsock_auto_bind(vsk);
1605 		if (err)
1606 			goto out;
1607 
1608 		sk->sk_state = TCP_SYN_SENT;
1609 
1610 		err = transport->connect(vsk);
1611 		if (err < 0)
1612 			goto out;
1613 
1614 		/* sk_err might have been set as a result of an earlier
1615 		 * (failed) connect attempt.
1616 		 */
1617 		sk->sk_err = 0;
1618 
1619 		/* Mark sock as connecting and set the error code to in
1620 		 * progress in case this is a non-blocking connect.
1621 		 */
1622 		sock->state = SS_CONNECTING;
1623 		err = -EINPROGRESS;
1624 	}
1625 
1626 	/* The receive path will handle all communication until we are able to
1627 	 * enter the connected state.  Here we wait for the connection to be
1628 	 * completed or a notification of an error.
1629 	 */
1630 	timeout = vsk->connect_timeout;
1631 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1632 
1633 	/* If the socket is already closing or it is in an error state, there
1634 	 * is no point in waiting.
1635 	 */
1636 	while (sk->sk_state != TCP_ESTABLISHED &&
1637 	       sk->sk_state != TCP_CLOSING && sk->sk_err == 0) {
1638 		if (flags & O_NONBLOCK) {
1639 			/* If we're not going to block, we schedule a timeout
1640 			 * function to generate a timeout on the connection
1641 			 * attempt, in case the peer doesn't respond in a
1642 			 * timely manner. We hold on to the socket until the
1643 			 * timeout fires.
1644 			 */
1645 			sock_hold(sk);
1646 
1647 			/* If the timeout function is already scheduled,
1648 			 * reschedule it, then ungrab the socket refcount to
1649 			 * keep it balanced.
1650 			 */
1651 			if (mod_delayed_work(system_wq, &vsk->connect_work,
1652 					     timeout))
1653 				sock_put(sk);
1654 
1655 			/* Skip ahead to preserve error code set above. */
1656 			goto out_wait;
1657 		}
1658 
1659 		release_sock(sk);
1660 		timeout = schedule_timeout(timeout);
1661 		lock_sock(sk);
1662 
1663 		if (signal_pending(current)) {
1664 			err = sock_intr_errno(timeout);
1665 			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1666 			sock->state = SS_UNCONNECTED;
1667 			vsock_transport_cancel_pkt(vsk);
1668 			vsock_remove_connected(vsk);
1669 			goto out_wait;
1670 		} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1671 			err = -ETIMEDOUT;
1672 			sk->sk_state = TCP_CLOSE;
1673 			sock->state = SS_UNCONNECTED;
1674 			vsock_transport_cancel_pkt(vsk);
1675 			goto out_wait;
1676 		}
1677 
1678 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1679 	}
1680 
1681 	if (sk->sk_err) {
1682 		err = -sk->sk_err;
1683 		sk->sk_state = TCP_CLOSE;
1684 		sock->state = SS_UNCONNECTED;
1685 	} else {
1686 		err = 0;
1687 	}
1688 
1689 out_wait:
1690 	finish_wait(sk_sleep(sk), &wait);
1691 out:
1692 	release_sock(sk);
1693 	return err;
1694 }
1695 
1696 static int vsock_accept(struct socket *sock, struct socket *newsock,
1697 			struct proto_accept_arg *arg)
1698 {
1699 	struct sock *listener;
1700 	int err;
1701 	struct sock *connected;
1702 	struct vsock_sock *vconnected;
1703 	long timeout;
1704 	DEFINE_WAIT(wait);
1705 
1706 	err = 0;
1707 	listener = sock->sk;
1708 
1709 	lock_sock(listener);
1710 
1711 	if (!sock_type_connectible(sock->type)) {
1712 		err = -EOPNOTSUPP;
1713 		goto out;
1714 	}
1715 
1716 	if (listener->sk_state != TCP_LISTEN) {
1717 		err = -EINVAL;
1718 		goto out;
1719 	}
1720 
1721 	/* Wait for children sockets to appear; these are the new sockets
1722 	 * created upon connection establishment.
1723 	 */
1724 	timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK);
1725 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1726 
1727 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1728 	       listener->sk_err == 0) {
1729 		release_sock(listener);
1730 		timeout = schedule_timeout(timeout);
1731 		finish_wait(sk_sleep(listener), &wait);
1732 		lock_sock(listener);
1733 
1734 		if (signal_pending(current)) {
1735 			err = sock_intr_errno(timeout);
1736 			goto out;
1737 		} else if (timeout == 0) {
1738 			err = -EAGAIN;
1739 			goto out;
1740 		}
1741 
1742 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1743 	}
1744 	finish_wait(sk_sleep(listener), &wait);
1745 
1746 	if (listener->sk_err)
1747 		err = -listener->sk_err;
1748 
1749 	if (connected) {
1750 		sk_acceptq_removed(listener);
1751 
1752 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1753 		vconnected = vsock_sk(connected);
1754 
1755 		/* If the listener socket has received an error, then we should
1756 		 * reject this socket and return.  Note that we simply mark the
1757 		 * socket rejected, drop our reference, and let the cleanup
1758 		 * function handle the cleanup; the fact that we found it in
1759 		 * the listener's accept queue guarantees that the cleanup
1760 		 * function hasn't run yet.
1761 		 */
1762 		if (err) {
1763 			vconnected->rejected = true;
1764 		} else {
1765 			newsock->state = SS_CONNECTED;
1766 			sock_graft(connected, newsock);
1767 			if (vsock_msgzerocopy_allow(vconnected->transport))
1768 				set_bit(SOCK_SUPPORT_ZC,
1769 					&connected->sk_socket->flags);
1770 		}
1771 
1772 		release_sock(connected);
1773 		sock_put(connected);
1774 	}
1775 
1776 out:
1777 	release_sock(listener);
1778 	return err;
1779 }
1780 
1781 static int vsock_listen(struct socket *sock, int backlog)
1782 {
1783 	int err;
1784 	struct sock *sk;
1785 	struct vsock_sock *vsk;
1786 
1787 	sk = sock->sk;
1788 
1789 	lock_sock(sk);
1790 
1791 	if (!sock_type_connectible(sk->sk_type)) {
1792 		err = -EOPNOTSUPP;
1793 		goto out;
1794 	}
1795 
1796 	if (sock->state != SS_UNCONNECTED) {
1797 		err = -EINVAL;
1798 		goto out;
1799 	}
1800 
1801 	vsk = vsock_sk(sk);
1802 
1803 	if (!vsock_addr_bound(&vsk->local_addr)) {
1804 		err = -EINVAL;
1805 		goto out;
1806 	}
1807 
1808 	sk->sk_max_ack_backlog = backlog;
1809 	sk->sk_state = TCP_LISTEN;
1810 
1811 	err = 0;
1812 
1813 out:
1814 	release_sock(sk);
1815 	return err;
1816 }
1817 
1818 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1819 				     const struct vsock_transport *transport,
1820 				     u64 val)
1821 {
1822 	if (val > vsk->buffer_max_size)
1823 		val = vsk->buffer_max_size;
1824 
1825 	if (val < vsk->buffer_min_size)
1826 		val = vsk->buffer_min_size;
1827 
1828 	if (val != vsk->buffer_size &&
1829 	    transport && transport->notify_buffer_size)
1830 		transport->notify_buffer_size(vsk, &val);
1831 
1832 	vsk->buffer_size = val;
1833 }
1834 
1835 static int vsock_connectible_setsockopt(struct socket *sock,
1836 					int level,
1837 					int optname,
1838 					sockptr_t optval,
1839 					unsigned int optlen)
1840 {
1841 	int err;
1842 	struct sock *sk;
1843 	struct vsock_sock *vsk;
1844 	const struct vsock_transport *transport;
1845 	u64 val;
1846 
1847 	if (level != AF_VSOCK && level != SOL_SOCKET)
1848 		return -ENOPROTOOPT;
1849 
1850 #define COPY_IN(_v)                                       \
1851 	do {						  \
1852 		if (optlen < sizeof(_v)) {		  \
1853 			err = -EINVAL;			  \
1854 			goto exit;			  \
1855 		}					  \
1856 		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1857 			err = -EFAULT;					\
1858 			goto exit;					\
1859 		}							\
1860 	} while (0)
1861 
1862 	err = 0;
1863 	sk = sock->sk;
1864 	vsk = vsock_sk(sk);
1865 
1866 	lock_sock(sk);
1867 
1868 	transport = vsk->transport;
1869 
1870 	if (level == SOL_SOCKET) {
1871 		int zerocopy;
1872 
1873 		if (optname != SO_ZEROCOPY) {
1874 			release_sock(sk);
1875 			return sock_setsockopt(sock, level, optname, optval, optlen);
1876 		}
1877 
1878 		/* Use 'int' type here, because variable to
1879 		 * set this option usually has this type.
1880 		 */
1881 		COPY_IN(zerocopy);
1882 
1883 		if (zerocopy < 0 || zerocopy > 1) {
1884 			err = -EINVAL;
1885 			goto exit;
1886 		}
1887 
1888 		if (transport && !vsock_msgzerocopy_allow(transport)) {
1889 			err = -EOPNOTSUPP;
1890 			goto exit;
1891 		}
1892 
1893 		sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
1894 		goto exit;
1895 	}
1896 
1897 	switch (optname) {
1898 	case SO_VM_SOCKETS_BUFFER_SIZE:
1899 		COPY_IN(val);
1900 		vsock_update_buffer_size(vsk, transport, val);
1901 		break;
1902 
1903 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1904 		COPY_IN(val);
1905 		vsk->buffer_max_size = val;
1906 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1907 		break;
1908 
1909 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1910 		COPY_IN(val);
1911 		vsk->buffer_min_size = val;
1912 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1913 		break;
1914 
1915 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1916 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1917 		struct __kernel_sock_timeval tv;
1918 
1919 		err = sock_copy_user_timeval(&tv, optval, optlen,
1920 					     optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1921 		if (err)
1922 			break;
1923 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1924 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1925 			vsk->connect_timeout = tv.tv_sec * HZ +
1926 				DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1927 			if (vsk->connect_timeout == 0)
1928 				vsk->connect_timeout =
1929 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1930 
1931 		} else {
1932 			err = -ERANGE;
1933 		}
1934 		break;
1935 	}
1936 
1937 	default:
1938 		err = -ENOPROTOOPT;
1939 		break;
1940 	}
1941 
1942 #undef COPY_IN
1943 
1944 exit:
1945 	release_sock(sk);
1946 	return err;
1947 }
1948 
1949 static int vsock_connectible_getsockopt(struct socket *sock,
1950 					int level, int optname,
1951 					char __user *optval,
1952 					int __user *optlen)
1953 {
1954 	struct sock *sk = sock->sk;
1955 	struct vsock_sock *vsk = vsock_sk(sk);
1956 
1957 	union {
1958 		u64 val64;
1959 		struct old_timeval32 tm32;
1960 		struct __kernel_old_timeval tm;
1961 		struct  __kernel_sock_timeval stm;
1962 	} v;
1963 
1964 	int lv = sizeof(v.val64);
1965 	int len;
1966 
1967 	if (level != AF_VSOCK)
1968 		return -ENOPROTOOPT;
1969 
1970 	if (get_user(len, optlen))
1971 		return -EFAULT;
1972 
1973 	memset(&v, 0, sizeof(v));
1974 
1975 	switch (optname) {
1976 	case SO_VM_SOCKETS_BUFFER_SIZE:
1977 		v.val64 = vsk->buffer_size;
1978 		break;
1979 
1980 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1981 		v.val64 = vsk->buffer_max_size;
1982 		break;
1983 
1984 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1985 		v.val64 = vsk->buffer_min_size;
1986 		break;
1987 
1988 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1989 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1990 		lv = sock_get_timeout(vsk->connect_timeout, &v,
1991 				      optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1992 		break;
1993 
1994 	default:
1995 		return -ENOPROTOOPT;
1996 	}
1997 
1998 	if (len < lv)
1999 		return -EINVAL;
2000 	if (len > lv)
2001 		len = lv;
2002 	if (copy_to_user(optval, &v, len))
2003 		return -EFAULT;
2004 
2005 	if (put_user(len, optlen))
2006 		return -EFAULT;
2007 
2008 	return 0;
2009 }
2010 
2011 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
2012 				     size_t len)
2013 {
2014 	struct sock *sk;
2015 	struct vsock_sock *vsk;
2016 	const struct vsock_transport *transport;
2017 	ssize_t total_written;
2018 	long timeout;
2019 	int err;
2020 	struct vsock_transport_send_notify_data send_data;
2021 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2022 
2023 	sk = sock->sk;
2024 	vsk = vsock_sk(sk);
2025 	total_written = 0;
2026 	err = 0;
2027 
2028 	if (msg->msg_flags & MSG_OOB)
2029 		return -EOPNOTSUPP;
2030 
2031 	lock_sock(sk);
2032 
2033 	transport = vsk->transport;
2034 
2035 	/* Callers should not provide a destination with connection oriented
2036 	 * sockets.
2037 	 */
2038 	if (msg->msg_namelen) {
2039 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
2040 		goto out;
2041 	}
2042 
2043 	/* Send data only if both sides are not shutdown in the direction. */
2044 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
2045 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
2046 		err = -EPIPE;
2047 		goto out;
2048 	}
2049 
2050 	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
2051 	    !vsock_addr_bound(&vsk->local_addr)) {
2052 		err = -ENOTCONN;
2053 		goto out;
2054 	}
2055 
2056 	if (!vsock_addr_bound(&vsk->remote_addr)) {
2057 		err = -EDESTADDRREQ;
2058 		goto out;
2059 	}
2060 
2061 	if (msg->msg_flags & MSG_ZEROCOPY &&
2062 	    !vsock_msgzerocopy_allow(transport)) {
2063 		err = -EOPNOTSUPP;
2064 		goto out;
2065 	}
2066 
2067 	/* Wait for room in the produce queue to enqueue our user's data. */
2068 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
2069 
2070 	err = transport->notify_send_init(vsk, &send_data);
2071 	if (err < 0)
2072 		goto out;
2073 
2074 	while (total_written < len) {
2075 		ssize_t written;
2076 
2077 		add_wait_queue(sk_sleep(sk), &wait);
2078 		while (vsock_stream_has_space(vsk) == 0 &&
2079 		       sk->sk_err == 0 &&
2080 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
2081 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
2082 
2083 			/* Don't wait for non-blocking sockets. */
2084 			if (timeout == 0) {
2085 				err = -EAGAIN;
2086 				remove_wait_queue(sk_sleep(sk), &wait);
2087 				goto out_err;
2088 			}
2089 
2090 			err = transport->notify_send_pre_block(vsk, &send_data);
2091 			if (err < 0) {
2092 				remove_wait_queue(sk_sleep(sk), &wait);
2093 				goto out_err;
2094 			}
2095 
2096 			release_sock(sk);
2097 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
2098 			lock_sock(sk);
2099 			if (signal_pending(current)) {
2100 				err = sock_intr_errno(timeout);
2101 				remove_wait_queue(sk_sleep(sk), &wait);
2102 				goto out_err;
2103 			} else if (timeout == 0) {
2104 				err = -EAGAIN;
2105 				remove_wait_queue(sk_sleep(sk), &wait);
2106 				goto out_err;
2107 			}
2108 		}
2109 		remove_wait_queue(sk_sleep(sk), &wait);
2110 
2111 		/* These checks occur both as part of and after the loop
2112 		 * conditional since we need to check before and after
2113 		 * sleeping.
2114 		 */
2115 		if (sk->sk_err) {
2116 			err = -sk->sk_err;
2117 			goto out_err;
2118 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
2119 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
2120 			err = -EPIPE;
2121 			goto out_err;
2122 		}
2123 
2124 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
2125 		if (err < 0)
2126 			goto out_err;
2127 
2128 		/* Note that enqueue will only write as many bytes as are free
2129 		 * in the produce queue, so we don't need to ensure len is
2130 		 * smaller than the queue size.  It is the caller's
2131 		 * responsibility to check how many bytes we were able to send.
2132 		 */
2133 
2134 		if (sk->sk_type == SOCK_SEQPACKET) {
2135 			written = transport->seqpacket_enqueue(vsk,
2136 						msg, len - total_written);
2137 		} else {
2138 			written = transport->stream_enqueue(vsk,
2139 					msg, len - total_written);
2140 		}
2141 
2142 		if (written < 0) {
2143 			err = written;
2144 			goto out_err;
2145 		}
2146 
2147 		total_written += written;
2148 
2149 		err = transport->notify_send_post_enqueue(
2150 				vsk, written, &send_data);
2151 		if (err < 0)
2152 			goto out_err;
2153 
2154 	}
2155 
2156 out_err:
2157 	if (total_written > 0) {
2158 		/* Return number of written bytes only if:
2159 		 * 1) SOCK_STREAM socket.
2160 		 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
2161 		 */
2162 		if (sk->sk_type == SOCK_STREAM || total_written == len)
2163 			err = total_written;
2164 	}
2165 out:
2166 	if (sk->sk_type == SOCK_STREAM)
2167 		err = sk_stream_error(sk, msg->msg_flags, err);
2168 
2169 	release_sock(sk);
2170 	return err;
2171 }
2172 
2173 static int vsock_connectible_wait_data(struct sock *sk,
2174 				       struct wait_queue_entry *wait,
2175 				       long timeout,
2176 				       struct vsock_transport_recv_notify_data *recv_data,
2177 				       size_t target)
2178 {
2179 	const struct vsock_transport *transport;
2180 	struct vsock_sock *vsk;
2181 	s64 data;
2182 	int err;
2183 
2184 	vsk = vsock_sk(sk);
2185 	err = 0;
2186 	transport = vsk->transport;
2187 
2188 	while (1) {
2189 		prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2190 		data = vsock_connectible_has_data(vsk);
2191 		if (data != 0)
2192 			break;
2193 
2194 		if (sk->sk_err != 0 ||
2195 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2196 		    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2197 			break;
2198 		}
2199 
2200 		/* Don't wait for non-blocking sockets. */
2201 		if (timeout == 0) {
2202 			err = -EAGAIN;
2203 			break;
2204 		}
2205 
2206 		if (recv_data) {
2207 			err = transport->notify_recv_pre_block(vsk, target, recv_data);
2208 			if (err < 0)
2209 				break;
2210 		}
2211 
2212 		release_sock(sk);
2213 		timeout = schedule_timeout(timeout);
2214 		lock_sock(sk);
2215 
2216 		if (signal_pending(current)) {
2217 			err = sock_intr_errno(timeout);
2218 			break;
2219 		} else if (timeout == 0) {
2220 			err = -EAGAIN;
2221 			break;
2222 		}
2223 	}
2224 
2225 	finish_wait(sk_sleep(sk), wait);
2226 
2227 	if (err)
2228 		return err;
2229 
2230 	/* Internal transport error when checking for available
2231 	 * data. XXX This should be changed to a connection
2232 	 * reset in a later change.
2233 	 */
2234 	if (data < 0)
2235 		return -ENOMEM;
2236 
2237 	return data;
2238 }
2239 
2240 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2241 				  size_t len, int flags)
2242 {
2243 	struct vsock_transport_recv_notify_data recv_data;
2244 	const struct vsock_transport *transport;
2245 	struct vsock_sock *vsk;
2246 	ssize_t copied;
2247 	size_t target;
2248 	long timeout;
2249 	int err;
2250 
2251 	DEFINE_WAIT(wait);
2252 
2253 	vsk = vsock_sk(sk);
2254 	transport = vsk->transport;
2255 
2256 	/* We must not copy less than target bytes into the user's buffer
2257 	 * before returning successfully, so we wait for the consume queue to
2258 	 * have that much data to consume before dequeueing.  Note that this
2259 	 * makes it impossible to handle cases where target is greater than the
2260 	 * queue size.
2261 	 */
2262 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2263 	if (target >= transport->stream_rcvhiwat(vsk)) {
2264 		err = -ENOMEM;
2265 		goto out;
2266 	}
2267 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2268 	copied = 0;
2269 
2270 	err = transport->notify_recv_init(vsk, target, &recv_data);
2271 	if (err < 0)
2272 		goto out;
2273 
2274 
2275 	while (1) {
2276 		ssize_t read;
2277 
2278 		err = vsock_connectible_wait_data(sk, &wait, timeout,
2279 						  &recv_data, target);
2280 		if (err <= 0)
2281 			break;
2282 
2283 		err = transport->notify_recv_pre_dequeue(vsk, target,
2284 							 &recv_data);
2285 		if (err < 0)
2286 			break;
2287 
2288 		read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2289 		if (read < 0) {
2290 			err = read;
2291 			break;
2292 		}
2293 
2294 		copied += read;
2295 
2296 		err = transport->notify_recv_post_dequeue(vsk, target, read,
2297 						!(flags & MSG_PEEK), &recv_data);
2298 		if (err < 0)
2299 			goto out;
2300 
2301 		if (read >= target || flags & MSG_PEEK)
2302 			break;
2303 
2304 		target -= read;
2305 	}
2306 
2307 	if (sk->sk_err)
2308 		err = -sk->sk_err;
2309 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
2310 		err = 0;
2311 
2312 	if (copied > 0)
2313 		err = copied;
2314 
2315 out:
2316 	return err;
2317 }
2318 
2319 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2320 				     size_t len, int flags)
2321 {
2322 	const struct vsock_transport *transport;
2323 	struct vsock_sock *vsk;
2324 	ssize_t msg_len;
2325 	long timeout;
2326 	int err = 0;
2327 	DEFINE_WAIT(wait);
2328 
2329 	vsk = vsock_sk(sk);
2330 	transport = vsk->transport;
2331 
2332 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2333 
2334 	err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2335 	if (err <= 0)
2336 		goto out;
2337 
2338 	msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2339 
2340 	if (msg_len < 0) {
2341 		err = msg_len;
2342 		goto out;
2343 	}
2344 
2345 	if (sk->sk_err) {
2346 		err = -sk->sk_err;
2347 	} else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2348 		err = 0;
2349 	} else {
2350 		/* User sets MSG_TRUNC, so return real length of
2351 		 * packet.
2352 		 */
2353 		if (flags & MSG_TRUNC)
2354 			err = msg_len;
2355 		else
2356 			err = len - msg_data_left(msg);
2357 
2358 		/* Always set MSG_TRUNC if real length of packet is
2359 		 * bigger than user's buffer.
2360 		 */
2361 		if (msg_len > len)
2362 			msg->msg_flags |= MSG_TRUNC;
2363 	}
2364 
2365 out:
2366 	return err;
2367 }
2368 
2369 int
2370 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2371 			    int flags)
2372 {
2373 	struct sock *sk;
2374 	struct vsock_sock *vsk;
2375 	const struct vsock_transport *transport;
2376 	int err;
2377 
2378 	sk = sock->sk;
2379 
2380 	if (unlikely(flags & MSG_ERRQUEUE))
2381 		return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2382 
2383 	vsk = vsock_sk(sk);
2384 	err = 0;
2385 
2386 	lock_sock(sk);
2387 
2388 	transport = vsk->transport;
2389 
2390 	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2391 		/* Recvmsg is supposed to return 0 if a peer performs an
2392 		 * orderly shutdown. Differentiate between that case and when a
2393 		 * peer has not connected or a local shutdown occurred with the
2394 		 * SOCK_DONE flag.
2395 		 */
2396 		if (sock_flag(sk, SOCK_DONE))
2397 			err = 0;
2398 		else
2399 			err = -ENOTCONN;
2400 
2401 		goto out;
2402 	}
2403 
2404 	if (flags & MSG_OOB) {
2405 		err = -EOPNOTSUPP;
2406 		goto out;
2407 	}
2408 
2409 	/* We don't check peer_shutdown flag here since peer may actually shut
2410 	 * down, but there can be data in the queue that a local socket can
2411 	 * receive.
2412 	 */
2413 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
2414 		err = 0;
2415 		goto out;
2416 	}
2417 
2418 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
2419 	 * is not an error.  We may as well bail out now.
2420 	 */
2421 	if (!len) {
2422 		err = 0;
2423 		goto out;
2424 	}
2425 
2426 	if (sk->sk_type == SOCK_STREAM)
2427 		err = __vsock_stream_recvmsg(sk, msg, len, flags);
2428 	else
2429 		err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2430 
2431 out:
2432 	release_sock(sk);
2433 	return err;
2434 }
2435 
2436 int
2437 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2438 			  int flags)
2439 {
2440 #ifdef CONFIG_BPF_SYSCALL
2441 	struct sock *sk = sock->sk;
2442 	const struct proto *prot;
2443 
2444 	prot = READ_ONCE(sk->sk_prot);
2445 	if (prot != &vsock_proto)
2446 		return prot->recvmsg(sk, msg, len, flags, NULL);
2447 #endif
2448 
2449 	return __vsock_connectible_recvmsg(sock, msg, len, flags);
2450 }
2451 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2452 
2453 static int vsock_set_rcvlowat(struct sock *sk, int val)
2454 {
2455 	const struct vsock_transport *transport;
2456 	struct vsock_sock *vsk;
2457 
2458 	vsk = vsock_sk(sk);
2459 
2460 	if (val > vsk->buffer_size)
2461 		return -EINVAL;
2462 
2463 	transport = vsk->transport;
2464 
2465 	if (transport && transport->notify_set_rcvlowat) {
2466 		int err;
2467 
2468 		err = transport->notify_set_rcvlowat(vsk, val);
2469 		if (err)
2470 			return err;
2471 	}
2472 
2473 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2474 	return 0;
2475 }
2476 
2477 static const struct proto_ops vsock_stream_ops = {
2478 	.family = PF_VSOCK,
2479 	.owner = THIS_MODULE,
2480 	.release = vsock_release,
2481 	.bind = vsock_bind,
2482 	.connect = vsock_connect,
2483 	.socketpair = sock_no_socketpair,
2484 	.accept = vsock_accept,
2485 	.getname = vsock_getname,
2486 	.poll = vsock_poll,
2487 	.ioctl = vsock_ioctl,
2488 	.listen = vsock_listen,
2489 	.shutdown = vsock_shutdown,
2490 	.setsockopt = vsock_connectible_setsockopt,
2491 	.getsockopt = vsock_connectible_getsockopt,
2492 	.sendmsg = vsock_connectible_sendmsg,
2493 	.recvmsg = vsock_connectible_recvmsg,
2494 	.mmap = sock_no_mmap,
2495 	.set_rcvlowat = vsock_set_rcvlowat,
2496 	.read_skb = vsock_read_skb,
2497 };
2498 
2499 static const struct proto_ops vsock_seqpacket_ops = {
2500 	.family = PF_VSOCK,
2501 	.owner = THIS_MODULE,
2502 	.release = vsock_release,
2503 	.bind = vsock_bind,
2504 	.connect = vsock_connect,
2505 	.socketpair = sock_no_socketpair,
2506 	.accept = vsock_accept,
2507 	.getname = vsock_getname,
2508 	.poll = vsock_poll,
2509 	.ioctl = vsock_ioctl,
2510 	.listen = vsock_listen,
2511 	.shutdown = vsock_shutdown,
2512 	.setsockopt = vsock_connectible_setsockopt,
2513 	.getsockopt = vsock_connectible_getsockopt,
2514 	.sendmsg = vsock_connectible_sendmsg,
2515 	.recvmsg = vsock_connectible_recvmsg,
2516 	.mmap = sock_no_mmap,
2517 	.read_skb = vsock_read_skb,
2518 };
2519 
2520 static int vsock_create(struct net *net, struct socket *sock,
2521 			int protocol, int kern)
2522 {
2523 	struct vsock_sock *vsk;
2524 	struct sock *sk;
2525 	int ret;
2526 
2527 	if (!sock)
2528 		return -EINVAL;
2529 
2530 	if (protocol && protocol != PF_VSOCK)
2531 		return -EPROTONOSUPPORT;
2532 
2533 	switch (sock->type) {
2534 	case SOCK_DGRAM:
2535 		sock->ops = &vsock_dgram_ops;
2536 		break;
2537 	case SOCK_STREAM:
2538 		sock->ops = &vsock_stream_ops;
2539 		break;
2540 	case SOCK_SEQPACKET:
2541 		sock->ops = &vsock_seqpacket_ops;
2542 		break;
2543 	default:
2544 		return -ESOCKTNOSUPPORT;
2545 	}
2546 
2547 	sock->state = SS_UNCONNECTED;
2548 
2549 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2550 	if (!sk)
2551 		return -ENOMEM;
2552 
2553 	vsk = vsock_sk(sk);
2554 
2555 	if (sock->type == SOCK_DGRAM) {
2556 		ret = vsock_assign_transport(vsk, NULL);
2557 		if (ret < 0) {
2558 			sock->sk = NULL;
2559 			sock_put(sk);
2560 			return ret;
2561 		}
2562 	}
2563 
2564 	/* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
2565 	 * proto_ops, so there is no handler for custom logic.
2566 	 */
2567 	if (sock_type_connectible(sock->type))
2568 		set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2569 
2570 	vsock_insert_unbound(vsk);
2571 
2572 	return 0;
2573 }
2574 
2575 static const struct net_proto_family vsock_family_ops = {
2576 	.family = AF_VSOCK,
2577 	.create = vsock_create,
2578 	.owner = THIS_MODULE,
2579 };
2580 
2581 static long vsock_dev_do_ioctl(struct file *filp,
2582 			       unsigned int cmd, void __user *ptr)
2583 {
2584 	u32 __user *p = ptr;
2585 	int retval = 0;
2586 	u32 cid;
2587 
2588 	switch (cmd) {
2589 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2590 		/* To be compatible with the VMCI behavior, we prioritize the
2591 		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2592 		 */
2593 		cid = vsock_registered_transport_cid(&transport_g2h);
2594 		if (cid == VMADDR_CID_ANY)
2595 			cid = vsock_registered_transport_cid(&transport_h2g);
2596 		if (cid == VMADDR_CID_ANY)
2597 			cid = vsock_registered_transport_cid(&transport_local);
2598 
2599 		if (put_user(cid, p) != 0)
2600 			retval = -EFAULT;
2601 		break;
2602 
2603 	default:
2604 		retval = -ENOIOCTLCMD;
2605 	}
2606 
2607 	return retval;
2608 }
2609 
2610 static long vsock_dev_ioctl(struct file *filp,
2611 			    unsigned int cmd, unsigned long arg)
2612 {
2613 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2614 }
2615 
2616 #ifdef CONFIG_COMPAT
2617 static long vsock_dev_compat_ioctl(struct file *filp,
2618 				   unsigned int cmd, unsigned long arg)
2619 {
2620 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2621 }
2622 #endif
2623 
2624 static const struct file_operations vsock_device_ops = {
2625 	.owner		= THIS_MODULE,
2626 	.unlocked_ioctl	= vsock_dev_ioctl,
2627 #ifdef CONFIG_COMPAT
2628 	.compat_ioctl	= vsock_dev_compat_ioctl,
2629 #endif
2630 	.open		= nonseekable_open,
2631 };
2632 
2633 static struct miscdevice vsock_device = {
2634 	.name		= "vsock",
2635 	.fops		= &vsock_device_ops,
2636 };
2637 
2638 static int __init vsock_init(void)
2639 {
2640 	int err = 0;
2641 
2642 	vsock_init_tables();
2643 
2644 	vsock_proto.owner = THIS_MODULE;
2645 	vsock_device.minor = MISC_DYNAMIC_MINOR;
2646 	err = misc_register(&vsock_device);
2647 	if (err) {
2648 		pr_err("Failed to register misc device\n");
2649 		goto err_reset_transport;
2650 	}
2651 
2652 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2653 	if (err) {
2654 		pr_err("Cannot register vsock protocol\n");
2655 		goto err_deregister_misc;
2656 	}
2657 
2658 	err = sock_register(&vsock_family_ops);
2659 	if (err) {
2660 		pr_err("could not register af_vsock (%d) address family: %d\n",
2661 		       AF_VSOCK, err);
2662 		goto err_unregister_proto;
2663 	}
2664 
2665 	vsock_bpf_build_proto();
2666 
2667 	return 0;
2668 
2669 err_unregister_proto:
2670 	proto_unregister(&vsock_proto);
2671 err_deregister_misc:
2672 	misc_deregister(&vsock_device);
2673 err_reset_transport:
2674 	return err;
2675 }
2676 
2677 static void __exit vsock_exit(void)
2678 {
2679 	misc_deregister(&vsock_device);
2680 	sock_unregister(AF_VSOCK);
2681 	proto_unregister(&vsock_proto);
2682 }
2683 
2684 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2685 {
2686 	return vsk->transport;
2687 }
2688 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2689 
2690 int vsock_core_register(const struct vsock_transport *t, int features)
2691 {
2692 	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2693 	int err = mutex_lock_interruptible(&vsock_register_mutex);
2694 
2695 	if (err)
2696 		return err;
2697 
2698 	t_h2g = transport_h2g;
2699 	t_g2h = transport_g2h;
2700 	t_dgram = transport_dgram;
2701 	t_local = transport_local;
2702 
2703 	if (features & VSOCK_TRANSPORT_F_H2G) {
2704 		if (t_h2g) {
2705 			err = -EBUSY;
2706 			goto err_busy;
2707 		}
2708 		t_h2g = t;
2709 	}
2710 
2711 	if (features & VSOCK_TRANSPORT_F_G2H) {
2712 		if (t_g2h) {
2713 			err = -EBUSY;
2714 			goto err_busy;
2715 		}
2716 		t_g2h = t;
2717 	}
2718 
2719 	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2720 		if (t_dgram) {
2721 			err = -EBUSY;
2722 			goto err_busy;
2723 		}
2724 		t_dgram = t;
2725 	}
2726 
2727 	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2728 		if (t_local) {
2729 			err = -EBUSY;
2730 			goto err_busy;
2731 		}
2732 		t_local = t;
2733 	}
2734 
2735 	transport_h2g = t_h2g;
2736 	transport_g2h = t_g2h;
2737 	transport_dgram = t_dgram;
2738 	transport_local = t_local;
2739 
2740 err_busy:
2741 	mutex_unlock(&vsock_register_mutex);
2742 	return err;
2743 }
2744 EXPORT_SYMBOL_GPL(vsock_core_register);
2745 
2746 void vsock_core_unregister(const struct vsock_transport *t)
2747 {
2748 	mutex_lock(&vsock_register_mutex);
2749 
2750 	if (transport_h2g == t)
2751 		transport_h2g = NULL;
2752 
2753 	if (transport_g2h == t)
2754 		transport_g2h = NULL;
2755 
2756 	if (transport_dgram == t)
2757 		transport_dgram = NULL;
2758 
2759 	if (transport_local == t)
2760 		transport_local = NULL;
2761 
2762 	mutex_unlock(&vsock_register_mutex);
2763 }
2764 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2765 
2766 module_init(vsock_init);
2767 module_exit(vsock_exit);
2768 
2769 MODULE_AUTHOR("VMware, Inc.");
2770 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2771 MODULE_VERSION("1.0.2.0-k");
2772 MODULE_LICENSE("GPL v2");
2773