xref: /linux/net/vmw_vsock/af_vsock.c (revision c909a49128a31bced8cfbd2dfb0a4fe56e01a6d0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115 #include <uapi/asm-generic/ioctls.h>
116 
117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
118 static void vsock_sk_destruct(struct sock *sk);
119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
120 static void vsock_close(struct sock *sk, long timeout);
121 
122 /* Protocol family. */
123 struct proto vsock_proto = {
124 	.name = "AF_VSOCK",
125 	.owner = THIS_MODULE,
126 	.obj_size = sizeof(struct vsock_sock),
127 	.close = vsock_close,
128 #ifdef CONFIG_BPF_SYSCALL
129 	.psock_update_sk_prot = vsock_bpf_update_proto,
130 #endif
131 };
132 
133 /* The default peer timeout indicates how long we will wait for a peer response
134  * to a control message.
135  */
136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
137 
138 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
141 
142 /* Transport used for host->guest communication */
143 static const struct vsock_transport *transport_h2g;
144 /* Transport used for guest->host communication */
145 static const struct vsock_transport *transport_g2h;
146 /* Transport used for DGRAM communication */
147 static const struct vsock_transport *transport_dgram;
148 /* Transport used for local communication */
149 static const struct vsock_transport *transport_local;
150 static DEFINE_MUTEX(vsock_register_mutex);
151 
152 /**** UTILS ****/
153 
154 /* Each bound VSocket is stored in the bind hash table and each connected
155  * VSocket is stored in the connected hash table.
156  *
157  * Unbound sockets are all put on the same list attached to the end of the hash
158  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
159  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
160  * represents the list that addr hashes to).
161  *
162  * Specifically, we initialize the vsock_bind_table array to a size of
163  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
164  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
165  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
166  * mods with VSOCK_HASH_SIZE to ensure this.
167  */
168 #define MAX_PORT_RETRIES        24
169 
170 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
172 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
173 
174 /* XXX This can probably be implemented in a better way. */
175 #define VSOCK_CONN_HASH(src, dst)				\
176 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
177 #define vsock_connected_sockets(src, dst)		\
178 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
179 #define vsock_connected_sockets_vsk(vsk)				\
180 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
181 
182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
183 EXPORT_SYMBOL_GPL(vsock_bind_table);
184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
185 EXPORT_SYMBOL_GPL(vsock_connected_table);
186 DEFINE_SPINLOCK(vsock_table_lock);
187 EXPORT_SYMBOL_GPL(vsock_table_lock);
188 
189 /* Autobind this socket to the local address if necessary. */
190 static int vsock_auto_bind(struct vsock_sock *vsk)
191 {
192 	struct sock *sk = sk_vsock(vsk);
193 	struct sockaddr_vm local_addr;
194 
195 	if (vsock_addr_bound(&vsk->local_addr))
196 		return 0;
197 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
198 	return __vsock_bind(sk, &local_addr);
199 }
200 
201 static void vsock_init_tables(void)
202 {
203 	int i;
204 
205 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
206 		INIT_LIST_HEAD(&vsock_bind_table[i]);
207 
208 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
209 		INIT_LIST_HEAD(&vsock_connected_table[i]);
210 }
211 
212 static void __vsock_insert_bound(struct list_head *list,
213 				 struct vsock_sock *vsk)
214 {
215 	sock_hold(&vsk->sk);
216 	list_add(&vsk->bound_table, list);
217 }
218 
219 static void __vsock_insert_connected(struct list_head *list,
220 				     struct vsock_sock *vsk)
221 {
222 	sock_hold(&vsk->sk);
223 	list_add(&vsk->connected_table, list);
224 }
225 
226 static void __vsock_remove_bound(struct vsock_sock *vsk)
227 {
228 	list_del_init(&vsk->bound_table);
229 	sock_put(&vsk->sk);
230 }
231 
232 static void __vsock_remove_connected(struct vsock_sock *vsk)
233 {
234 	list_del_init(&vsk->connected_table);
235 	sock_put(&vsk->sk);
236 }
237 
238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
239 {
240 	struct vsock_sock *vsk;
241 
242 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
243 		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
244 			return sk_vsock(vsk);
245 
246 		if (addr->svm_port == vsk->local_addr.svm_port &&
247 		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
248 		     addr->svm_cid == VMADDR_CID_ANY))
249 			return sk_vsock(vsk);
250 	}
251 
252 	return NULL;
253 }
254 
255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
256 						  struct sockaddr_vm *dst)
257 {
258 	struct vsock_sock *vsk;
259 
260 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
261 			    connected_table) {
262 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
263 		    dst->svm_port == vsk->local_addr.svm_port) {
264 			return sk_vsock(vsk);
265 		}
266 	}
267 
268 	return NULL;
269 }
270 
271 static void vsock_insert_unbound(struct vsock_sock *vsk)
272 {
273 	spin_lock_bh(&vsock_table_lock);
274 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
275 	spin_unlock_bh(&vsock_table_lock);
276 }
277 
278 void vsock_insert_connected(struct vsock_sock *vsk)
279 {
280 	struct list_head *list = vsock_connected_sockets(
281 		&vsk->remote_addr, &vsk->local_addr);
282 
283 	spin_lock_bh(&vsock_table_lock);
284 	__vsock_insert_connected(list, vsk);
285 	spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_insert_connected);
288 
289 void vsock_remove_bound(struct vsock_sock *vsk)
290 {
291 	spin_lock_bh(&vsock_table_lock);
292 	if (__vsock_in_bound_table(vsk))
293 		__vsock_remove_bound(vsk);
294 	spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_bound);
297 
298 void vsock_remove_connected(struct vsock_sock *vsk)
299 {
300 	spin_lock_bh(&vsock_table_lock);
301 	if (__vsock_in_connected_table(vsk))
302 		__vsock_remove_connected(vsk);
303 	spin_unlock_bh(&vsock_table_lock);
304 }
305 EXPORT_SYMBOL_GPL(vsock_remove_connected);
306 
307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
308 {
309 	struct sock *sk;
310 
311 	spin_lock_bh(&vsock_table_lock);
312 	sk = __vsock_find_bound_socket(addr);
313 	if (sk)
314 		sock_hold(sk);
315 
316 	spin_unlock_bh(&vsock_table_lock);
317 
318 	return sk;
319 }
320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
321 
322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
323 					 struct sockaddr_vm *dst)
324 {
325 	struct sock *sk;
326 
327 	spin_lock_bh(&vsock_table_lock);
328 	sk = __vsock_find_connected_socket(src, dst);
329 	if (sk)
330 		sock_hold(sk);
331 
332 	spin_unlock_bh(&vsock_table_lock);
333 
334 	return sk;
335 }
336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
337 
338 void vsock_remove_sock(struct vsock_sock *vsk)
339 {
340 	/* Transport reassignment must not remove the binding. */
341 	if (sock_flag(sk_vsock(vsk), SOCK_DEAD))
342 		vsock_remove_bound(vsk);
343 
344 	vsock_remove_connected(vsk);
345 }
346 EXPORT_SYMBOL_GPL(vsock_remove_sock);
347 
348 void vsock_for_each_connected_socket(struct vsock_transport *transport,
349 				     void (*fn)(struct sock *sk))
350 {
351 	int i;
352 
353 	spin_lock_bh(&vsock_table_lock);
354 
355 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
356 		struct vsock_sock *vsk;
357 		list_for_each_entry(vsk, &vsock_connected_table[i],
358 				    connected_table) {
359 			if (vsk->transport != transport)
360 				continue;
361 
362 			fn(sk_vsock(vsk));
363 		}
364 	}
365 
366 	spin_unlock_bh(&vsock_table_lock);
367 }
368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
369 
370 void vsock_add_pending(struct sock *listener, struct sock *pending)
371 {
372 	struct vsock_sock *vlistener;
373 	struct vsock_sock *vpending;
374 
375 	vlistener = vsock_sk(listener);
376 	vpending = vsock_sk(pending);
377 
378 	sock_hold(pending);
379 	sock_hold(listener);
380 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
381 }
382 EXPORT_SYMBOL_GPL(vsock_add_pending);
383 
384 void vsock_remove_pending(struct sock *listener, struct sock *pending)
385 {
386 	struct vsock_sock *vpending = vsock_sk(pending);
387 
388 	list_del_init(&vpending->pending_links);
389 	sock_put(listener);
390 	sock_put(pending);
391 }
392 EXPORT_SYMBOL_GPL(vsock_remove_pending);
393 
394 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
395 {
396 	struct vsock_sock *vlistener;
397 	struct vsock_sock *vconnected;
398 
399 	vlistener = vsock_sk(listener);
400 	vconnected = vsock_sk(connected);
401 
402 	sock_hold(connected);
403 	sock_hold(listener);
404 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
405 }
406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
407 
408 static bool vsock_use_local_transport(unsigned int remote_cid)
409 {
410 	if (!transport_local)
411 		return false;
412 
413 	if (remote_cid == VMADDR_CID_LOCAL)
414 		return true;
415 
416 	if (transport_g2h) {
417 		return remote_cid == transport_g2h->get_local_cid();
418 	} else {
419 		return remote_cid == VMADDR_CID_HOST;
420 	}
421 }
422 
423 static void vsock_deassign_transport(struct vsock_sock *vsk)
424 {
425 	if (!vsk->transport)
426 		return;
427 
428 	vsk->transport->destruct(vsk);
429 	module_put(vsk->transport->module);
430 	vsk->transport = NULL;
431 }
432 
433 /* Assign a transport to a socket and call the .init transport callback.
434  *
435  * Note: for connection oriented socket this must be called when vsk->remote_addr
436  * is set (e.g. during the connect() or when a connection request on a listener
437  * socket is received).
438  * The vsk->remote_addr is used to decide which transport to use:
439  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
440  *    g2h is not loaded, will use local transport;
441  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
442  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
443  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
444  */
445 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
446 {
447 	const struct vsock_transport *new_transport;
448 	struct sock *sk = sk_vsock(vsk);
449 	unsigned int remote_cid = vsk->remote_addr.svm_cid;
450 	__u8 remote_flags;
451 	int ret;
452 
453 	/* If the packet is coming with the source and destination CIDs higher
454 	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
455 	 * forwarded to the host should be established. Then the host will
456 	 * need to forward the packets to the guest.
457 	 *
458 	 * The flag is set on the (listen) receive path (psk is not NULL). On
459 	 * the connect path the flag can be set by the user space application.
460 	 */
461 	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
462 	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
463 		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
464 
465 	remote_flags = vsk->remote_addr.svm_flags;
466 
467 	switch (sk->sk_type) {
468 	case SOCK_DGRAM:
469 		new_transport = transport_dgram;
470 		break;
471 	case SOCK_STREAM:
472 	case SOCK_SEQPACKET:
473 		if (vsock_use_local_transport(remote_cid))
474 			new_transport = transport_local;
475 		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
476 			 (remote_flags & VMADDR_FLAG_TO_HOST))
477 			new_transport = transport_g2h;
478 		else
479 			new_transport = transport_h2g;
480 		break;
481 	default:
482 		return -ESOCKTNOSUPPORT;
483 	}
484 
485 	if (vsk->transport) {
486 		if (vsk->transport == new_transport)
487 			return 0;
488 
489 		/* transport->release() must be called with sock lock acquired.
490 		 * This path can only be taken during vsock_connect(), where we
491 		 * have already held the sock lock. In the other cases, this
492 		 * function is called on a new socket which is not assigned to
493 		 * any transport.
494 		 */
495 		vsk->transport->release(vsk);
496 		vsock_deassign_transport(vsk);
497 
498 		/* transport's release() and destruct() can touch some socket
499 		 * state, since we are reassigning the socket to a new transport
500 		 * during vsock_connect(), let's reset these fields to have a
501 		 * clean state.
502 		 */
503 		sock_reset_flag(sk, SOCK_DONE);
504 		sk->sk_state = TCP_CLOSE;
505 		vsk->peer_shutdown = 0;
506 	}
507 
508 	/* We increase the module refcnt to prevent the transport unloading
509 	 * while there are open sockets assigned to it.
510 	 */
511 	if (!new_transport || !try_module_get(new_transport->module))
512 		return -ENODEV;
513 
514 	if (sk->sk_type == SOCK_SEQPACKET) {
515 		if (!new_transport->seqpacket_allow ||
516 		    !new_transport->seqpacket_allow(remote_cid)) {
517 			module_put(new_transport->module);
518 			return -ESOCKTNOSUPPORT;
519 		}
520 	}
521 
522 	ret = new_transport->init(vsk, psk);
523 	if (ret) {
524 		module_put(new_transport->module);
525 		return ret;
526 	}
527 
528 	vsk->transport = new_transport;
529 
530 	return 0;
531 }
532 EXPORT_SYMBOL_GPL(vsock_assign_transport);
533 
534 bool vsock_find_cid(unsigned int cid)
535 {
536 	if (transport_g2h && cid == transport_g2h->get_local_cid())
537 		return true;
538 
539 	if (transport_h2g && cid == VMADDR_CID_HOST)
540 		return true;
541 
542 	if (transport_local && cid == VMADDR_CID_LOCAL)
543 		return true;
544 
545 	return false;
546 }
547 EXPORT_SYMBOL_GPL(vsock_find_cid);
548 
549 static struct sock *vsock_dequeue_accept(struct sock *listener)
550 {
551 	struct vsock_sock *vlistener;
552 	struct vsock_sock *vconnected;
553 
554 	vlistener = vsock_sk(listener);
555 
556 	if (list_empty(&vlistener->accept_queue))
557 		return NULL;
558 
559 	vconnected = list_entry(vlistener->accept_queue.next,
560 				struct vsock_sock, accept_queue);
561 
562 	list_del_init(&vconnected->accept_queue);
563 	sock_put(listener);
564 	/* The caller will need a reference on the connected socket so we let
565 	 * it call sock_put().
566 	 */
567 
568 	return sk_vsock(vconnected);
569 }
570 
571 static bool vsock_is_accept_queue_empty(struct sock *sk)
572 {
573 	struct vsock_sock *vsk = vsock_sk(sk);
574 	return list_empty(&vsk->accept_queue);
575 }
576 
577 static bool vsock_is_pending(struct sock *sk)
578 {
579 	struct vsock_sock *vsk = vsock_sk(sk);
580 	return !list_empty(&vsk->pending_links);
581 }
582 
583 static int vsock_send_shutdown(struct sock *sk, int mode)
584 {
585 	struct vsock_sock *vsk = vsock_sk(sk);
586 
587 	if (!vsk->transport)
588 		return -ENODEV;
589 
590 	return vsk->transport->shutdown(vsk, mode);
591 }
592 
593 static void vsock_pending_work(struct work_struct *work)
594 {
595 	struct sock *sk;
596 	struct sock *listener;
597 	struct vsock_sock *vsk;
598 	bool cleanup;
599 
600 	vsk = container_of(work, struct vsock_sock, pending_work.work);
601 	sk = sk_vsock(vsk);
602 	listener = vsk->listener;
603 	cleanup = true;
604 
605 	lock_sock(listener);
606 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
607 
608 	if (vsock_is_pending(sk)) {
609 		vsock_remove_pending(listener, sk);
610 
611 		sk_acceptq_removed(listener);
612 	} else if (!vsk->rejected) {
613 		/* We are not on the pending list and accept() did not reject
614 		 * us, so we must have been accepted by our user process.  We
615 		 * just need to drop our references to the sockets and be on
616 		 * our way.
617 		 */
618 		cleanup = false;
619 		goto out;
620 	}
621 
622 	/* We need to remove ourself from the global connected sockets list so
623 	 * incoming packets can't find this socket, and to reduce the reference
624 	 * count.
625 	 */
626 	vsock_remove_connected(vsk);
627 
628 	sk->sk_state = TCP_CLOSE;
629 
630 out:
631 	release_sock(sk);
632 	release_sock(listener);
633 	if (cleanup)
634 		sock_put(sk);
635 
636 	sock_put(sk);
637 	sock_put(listener);
638 }
639 
640 /**** SOCKET OPERATIONS ****/
641 
642 static int __vsock_bind_connectible(struct vsock_sock *vsk,
643 				    struct sockaddr_vm *addr)
644 {
645 	static u32 port;
646 	struct sockaddr_vm new_addr;
647 
648 	if (!port)
649 		port = get_random_u32_above(LAST_RESERVED_PORT);
650 
651 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
652 
653 	if (addr->svm_port == VMADDR_PORT_ANY) {
654 		bool found = false;
655 		unsigned int i;
656 
657 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
658 			if (port <= LAST_RESERVED_PORT)
659 				port = LAST_RESERVED_PORT + 1;
660 
661 			new_addr.svm_port = port++;
662 
663 			if (!__vsock_find_bound_socket(&new_addr)) {
664 				found = true;
665 				break;
666 			}
667 		}
668 
669 		if (!found)
670 			return -EADDRNOTAVAIL;
671 	} else {
672 		/* If port is in reserved range, ensure caller
673 		 * has necessary privileges.
674 		 */
675 		if (addr->svm_port <= LAST_RESERVED_PORT &&
676 		    !capable(CAP_NET_BIND_SERVICE)) {
677 			return -EACCES;
678 		}
679 
680 		if (__vsock_find_bound_socket(&new_addr))
681 			return -EADDRINUSE;
682 	}
683 
684 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
685 
686 	/* Remove connection oriented sockets from the unbound list and add them
687 	 * to the hash table for easy lookup by its address.  The unbound list
688 	 * is simply an extra entry at the end of the hash table, a trick used
689 	 * by AF_UNIX.
690 	 */
691 	__vsock_remove_bound(vsk);
692 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
693 
694 	return 0;
695 }
696 
697 static int __vsock_bind_dgram(struct vsock_sock *vsk,
698 			      struct sockaddr_vm *addr)
699 {
700 	return vsk->transport->dgram_bind(vsk, addr);
701 }
702 
703 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
704 {
705 	struct vsock_sock *vsk = vsock_sk(sk);
706 	int retval;
707 
708 	/* First ensure this socket isn't already bound. */
709 	if (vsock_addr_bound(&vsk->local_addr))
710 		return -EINVAL;
711 
712 	/* Now bind to the provided address or select appropriate values if
713 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
714 	 * like AF_INET prevents binding to a non-local IP address (in most
715 	 * cases), we only allow binding to a local CID.
716 	 */
717 	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
718 		return -EADDRNOTAVAIL;
719 
720 	switch (sk->sk_socket->type) {
721 	case SOCK_STREAM:
722 	case SOCK_SEQPACKET:
723 		spin_lock_bh(&vsock_table_lock);
724 		retval = __vsock_bind_connectible(vsk, addr);
725 		spin_unlock_bh(&vsock_table_lock);
726 		break;
727 
728 	case SOCK_DGRAM:
729 		retval = __vsock_bind_dgram(vsk, addr);
730 		break;
731 
732 	default:
733 		retval = -EINVAL;
734 		break;
735 	}
736 
737 	return retval;
738 }
739 
740 static void vsock_connect_timeout(struct work_struct *work);
741 
742 static struct sock *__vsock_create(struct net *net,
743 				   struct socket *sock,
744 				   struct sock *parent,
745 				   gfp_t priority,
746 				   unsigned short type,
747 				   int kern)
748 {
749 	struct sock *sk;
750 	struct vsock_sock *psk;
751 	struct vsock_sock *vsk;
752 
753 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
754 	if (!sk)
755 		return NULL;
756 
757 	sock_init_data(sock, sk);
758 
759 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
760 	 * non-NULL. We make sure that our sockets always have a type by
761 	 * setting it here if needed.
762 	 */
763 	if (!sock)
764 		sk->sk_type = type;
765 
766 	vsk = vsock_sk(sk);
767 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
768 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
769 
770 	sk->sk_destruct = vsock_sk_destruct;
771 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
772 	sock_reset_flag(sk, SOCK_DONE);
773 
774 	INIT_LIST_HEAD(&vsk->bound_table);
775 	INIT_LIST_HEAD(&vsk->connected_table);
776 	vsk->listener = NULL;
777 	INIT_LIST_HEAD(&vsk->pending_links);
778 	INIT_LIST_HEAD(&vsk->accept_queue);
779 	vsk->rejected = false;
780 	vsk->sent_request = false;
781 	vsk->ignore_connecting_rst = false;
782 	vsk->peer_shutdown = 0;
783 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
784 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
785 
786 	psk = parent ? vsock_sk(parent) : NULL;
787 	if (parent) {
788 		vsk->trusted = psk->trusted;
789 		vsk->owner = get_cred(psk->owner);
790 		vsk->connect_timeout = psk->connect_timeout;
791 		vsk->buffer_size = psk->buffer_size;
792 		vsk->buffer_min_size = psk->buffer_min_size;
793 		vsk->buffer_max_size = psk->buffer_max_size;
794 		security_sk_clone(parent, sk);
795 	} else {
796 		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
797 		vsk->owner = get_current_cred();
798 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
799 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
800 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
801 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
802 	}
803 
804 	return sk;
805 }
806 
807 static bool sock_type_connectible(u16 type)
808 {
809 	return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
810 }
811 
812 static void __vsock_release(struct sock *sk, int level)
813 {
814 	struct vsock_sock *vsk;
815 	struct sock *pending;
816 
817 	vsk = vsock_sk(sk);
818 	pending = NULL;	/* Compiler warning. */
819 
820 	/* When "level" is SINGLE_DEPTH_NESTING, use the nested
821 	 * version to avoid the warning "possible recursive locking
822 	 * detected". When "level" is 0, lock_sock_nested(sk, level)
823 	 * is the same as lock_sock(sk).
824 	 */
825 	lock_sock_nested(sk, level);
826 
827 	sock_orphan(sk);
828 
829 	if (vsk->transport)
830 		vsk->transport->release(vsk);
831 	else if (sock_type_connectible(sk->sk_type))
832 		vsock_remove_sock(vsk);
833 
834 	sk->sk_shutdown = SHUTDOWN_MASK;
835 
836 	skb_queue_purge(&sk->sk_receive_queue);
837 
838 	/* Clean up any sockets that never were accepted. */
839 	while ((pending = vsock_dequeue_accept(sk)) != NULL) {
840 		__vsock_release(pending, SINGLE_DEPTH_NESTING);
841 		sock_put(pending);
842 	}
843 
844 	release_sock(sk);
845 	sock_put(sk);
846 }
847 
848 static void vsock_sk_destruct(struct sock *sk)
849 {
850 	struct vsock_sock *vsk = vsock_sk(sk);
851 
852 	/* Flush MSG_ZEROCOPY leftovers. */
853 	__skb_queue_purge(&sk->sk_error_queue);
854 
855 	vsock_deassign_transport(vsk);
856 
857 	/* When clearing these addresses, there's no need to set the family and
858 	 * possibly register the address family with the kernel.
859 	 */
860 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
861 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
862 
863 	put_cred(vsk->owner);
864 }
865 
866 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
867 {
868 	int err;
869 
870 	err = sock_queue_rcv_skb(sk, skb);
871 	if (err)
872 		kfree_skb(skb);
873 
874 	return err;
875 }
876 
877 struct sock *vsock_create_connected(struct sock *parent)
878 {
879 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
880 			      parent->sk_type, 0);
881 }
882 EXPORT_SYMBOL_GPL(vsock_create_connected);
883 
884 s64 vsock_stream_has_data(struct vsock_sock *vsk)
885 {
886 	if (WARN_ON(!vsk->transport))
887 		return 0;
888 
889 	return vsk->transport->stream_has_data(vsk);
890 }
891 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
892 
893 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
894 {
895 	struct sock *sk = sk_vsock(vsk);
896 
897 	if (WARN_ON(!vsk->transport))
898 		return 0;
899 
900 	if (sk->sk_type == SOCK_SEQPACKET)
901 		return vsk->transport->seqpacket_has_data(vsk);
902 	else
903 		return vsock_stream_has_data(vsk);
904 }
905 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
906 
907 s64 vsock_stream_has_space(struct vsock_sock *vsk)
908 {
909 	if (WARN_ON(!vsk->transport))
910 		return 0;
911 
912 	return vsk->transport->stream_has_space(vsk);
913 }
914 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
915 
916 void vsock_data_ready(struct sock *sk)
917 {
918 	struct vsock_sock *vsk = vsock_sk(sk);
919 
920 	if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
921 	    sock_flag(sk, SOCK_DONE))
922 		sk->sk_data_ready(sk);
923 }
924 EXPORT_SYMBOL_GPL(vsock_data_ready);
925 
926 /* Dummy callback required by sockmap.
927  * See unconditional call of saved_close() in sock_map_close().
928  */
929 static void vsock_close(struct sock *sk, long timeout)
930 {
931 }
932 
933 static int vsock_release(struct socket *sock)
934 {
935 	struct sock *sk = sock->sk;
936 
937 	if (!sk)
938 		return 0;
939 
940 	sk->sk_prot->close(sk, 0);
941 	__vsock_release(sk, 0);
942 	sock->sk = NULL;
943 	sock->state = SS_FREE;
944 
945 	return 0;
946 }
947 
948 static int
949 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
950 {
951 	int err;
952 	struct sock *sk;
953 	struct sockaddr_vm *vm_addr;
954 
955 	sk = sock->sk;
956 
957 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
958 		return -EINVAL;
959 
960 	lock_sock(sk);
961 	err = __vsock_bind(sk, vm_addr);
962 	release_sock(sk);
963 
964 	return err;
965 }
966 
967 static int vsock_getname(struct socket *sock,
968 			 struct sockaddr *addr, int peer)
969 {
970 	int err;
971 	struct sock *sk;
972 	struct vsock_sock *vsk;
973 	struct sockaddr_vm *vm_addr;
974 
975 	sk = sock->sk;
976 	vsk = vsock_sk(sk);
977 	err = 0;
978 
979 	lock_sock(sk);
980 
981 	if (peer) {
982 		if (sock->state != SS_CONNECTED) {
983 			err = -ENOTCONN;
984 			goto out;
985 		}
986 		vm_addr = &vsk->remote_addr;
987 	} else {
988 		vm_addr = &vsk->local_addr;
989 	}
990 
991 	if (!vm_addr) {
992 		err = -EINVAL;
993 		goto out;
994 	}
995 
996 	/* sys_getsockname() and sys_getpeername() pass us a
997 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
998 	 * that macro is defined in socket.c instead of .h, so we hardcode its
999 	 * value here.
1000 	 */
1001 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
1002 	memcpy(addr, vm_addr, sizeof(*vm_addr));
1003 	err = sizeof(*vm_addr);
1004 
1005 out:
1006 	release_sock(sk);
1007 	return err;
1008 }
1009 
1010 static int vsock_shutdown(struct socket *sock, int mode)
1011 {
1012 	int err;
1013 	struct sock *sk;
1014 
1015 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
1016 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
1017 	 * here like the other address families do.  Note also that the
1018 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
1019 	 * which is what we want.
1020 	 */
1021 	mode++;
1022 
1023 	if ((mode & ~SHUTDOWN_MASK) || !mode)
1024 		return -EINVAL;
1025 
1026 	/* If this is a connection oriented socket and it is not connected then
1027 	 * bail out immediately.  If it is a DGRAM socket then we must first
1028 	 * kick the socket so that it wakes up from any sleeping calls, for
1029 	 * example recv(), and then afterwards return the error.
1030 	 */
1031 
1032 	sk = sock->sk;
1033 
1034 	lock_sock(sk);
1035 	if (sock->state == SS_UNCONNECTED) {
1036 		err = -ENOTCONN;
1037 		if (sock_type_connectible(sk->sk_type))
1038 			goto out;
1039 	} else {
1040 		sock->state = SS_DISCONNECTING;
1041 		err = 0;
1042 	}
1043 
1044 	/* Receive and send shutdowns are treated alike. */
1045 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1046 	if (mode) {
1047 		sk->sk_shutdown |= mode;
1048 		sk->sk_state_change(sk);
1049 
1050 		if (sock_type_connectible(sk->sk_type)) {
1051 			sock_reset_flag(sk, SOCK_DONE);
1052 			vsock_send_shutdown(sk, mode);
1053 		}
1054 	}
1055 
1056 out:
1057 	release_sock(sk);
1058 	return err;
1059 }
1060 
1061 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1062 			       poll_table *wait)
1063 {
1064 	struct sock *sk;
1065 	__poll_t mask;
1066 	struct vsock_sock *vsk;
1067 
1068 	sk = sock->sk;
1069 	vsk = vsock_sk(sk);
1070 
1071 	poll_wait(file, sk_sleep(sk), wait);
1072 	mask = 0;
1073 
1074 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
1075 		/* Signify that there has been an error on this socket. */
1076 		mask |= EPOLLERR;
1077 
1078 	/* INET sockets treat local write shutdown and peer write shutdown as a
1079 	 * case of EPOLLHUP set.
1080 	 */
1081 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1082 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1083 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1084 		mask |= EPOLLHUP;
1085 	}
1086 
1087 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
1088 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
1089 		mask |= EPOLLRDHUP;
1090 	}
1091 
1092 	if (sk_is_readable(sk))
1093 		mask |= EPOLLIN | EPOLLRDNORM;
1094 
1095 	if (sock->type == SOCK_DGRAM) {
1096 		/* For datagram sockets we can read if there is something in
1097 		 * the queue and write as long as the socket isn't shutdown for
1098 		 * sending.
1099 		 */
1100 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1101 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1102 			mask |= EPOLLIN | EPOLLRDNORM;
1103 		}
1104 
1105 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1106 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1107 
1108 	} else if (sock_type_connectible(sk->sk_type)) {
1109 		const struct vsock_transport *transport;
1110 
1111 		lock_sock(sk);
1112 
1113 		transport = vsk->transport;
1114 
1115 		/* Listening sockets that have connections in their accept
1116 		 * queue can be read.
1117 		 */
1118 		if (sk->sk_state == TCP_LISTEN
1119 		    && !vsock_is_accept_queue_empty(sk))
1120 			mask |= EPOLLIN | EPOLLRDNORM;
1121 
1122 		/* If there is something in the queue then we can read. */
1123 		if (transport && transport->stream_is_active(vsk) &&
1124 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1125 			bool data_ready_now = false;
1126 			int target = sock_rcvlowat(sk, 0, INT_MAX);
1127 			int ret = transport->notify_poll_in(
1128 					vsk, target, &data_ready_now);
1129 			if (ret < 0) {
1130 				mask |= EPOLLERR;
1131 			} else {
1132 				if (data_ready_now)
1133 					mask |= EPOLLIN | EPOLLRDNORM;
1134 
1135 			}
1136 		}
1137 
1138 		/* Sockets whose connections have been closed, reset, or
1139 		 * terminated should also be considered read, and we check the
1140 		 * shutdown flag for that.
1141 		 */
1142 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1143 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1144 			mask |= EPOLLIN | EPOLLRDNORM;
1145 		}
1146 
1147 		/* Connected sockets that can produce data can be written. */
1148 		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1149 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1150 				bool space_avail_now = false;
1151 				int ret = transport->notify_poll_out(
1152 						vsk, 1, &space_avail_now);
1153 				if (ret < 0) {
1154 					mask |= EPOLLERR;
1155 				} else {
1156 					if (space_avail_now)
1157 						/* Remove EPOLLWRBAND since INET
1158 						 * sockets are not setting it.
1159 						 */
1160 						mask |= EPOLLOUT | EPOLLWRNORM;
1161 
1162 				}
1163 			}
1164 		}
1165 
1166 		/* Simulate INET socket poll behaviors, which sets
1167 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1168 		 * but local send is not shutdown.
1169 		 */
1170 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1171 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1172 				mask |= EPOLLOUT | EPOLLWRNORM;
1173 
1174 		}
1175 
1176 		release_sock(sk);
1177 	}
1178 
1179 	return mask;
1180 }
1181 
1182 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1183 {
1184 	struct vsock_sock *vsk = vsock_sk(sk);
1185 
1186 	return vsk->transport->read_skb(vsk, read_actor);
1187 }
1188 
1189 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1190 			       size_t len)
1191 {
1192 	int err;
1193 	struct sock *sk;
1194 	struct vsock_sock *vsk;
1195 	struct sockaddr_vm *remote_addr;
1196 	const struct vsock_transport *transport;
1197 
1198 	if (msg->msg_flags & MSG_OOB)
1199 		return -EOPNOTSUPP;
1200 
1201 	/* For now, MSG_DONTWAIT is always assumed... */
1202 	err = 0;
1203 	sk = sock->sk;
1204 	vsk = vsock_sk(sk);
1205 
1206 	lock_sock(sk);
1207 
1208 	transport = vsk->transport;
1209 
1210 	err = vsock_auto_bind(vsk);
1211 	if (err)
1212 		goto out;
1213 
1214 
1215 	/* If the provided message contains an address, use that.  Otherwise
1216 	 * fall back on the socket's remote handle (if it has been connected).
1217 	 */
1218 	if (msg->msg_name &&
1219 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1220 			    &remote_addr) == 0) {
1221 		/* Ensure this address is of the right type and is a valid
1222 		 * destination.
1223 		 */
1224 
1225 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1226 			remote_addr->svm_cid = transport->get_local_cid();
1227 
1228 		if (!vsock_addr_bound(remote_addr)) {
1229 			err = -EINVAL;
1230 			goto out;
1231 		}
1232 	} else if (sock->state == SS_CONNECTED) {
1233 		remote_addr = &vsk->remote_addr;
1234 
1235 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1236 			remote_addr->svm_cid = transport->get_local_cid();
1237 
1238 		/* XXX Should connect() or this function ensure remote_addr is
1239 		 * bound?
1240 		 */
1241 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1242 			err = -EINVAL;
1243 			goto out;
1244 		}
1245 	} else {
1246 		err = -EINVAL;
1247 		goto out;
1248 	}
1249 
1250 	if (!transport->dgram_allow(remote_addr->svm_cid,
1251 				    remote_addr->svm_port)) {
1252 		err = -EINVAL;
1253 		goto out;
1254 	}
1255 
1256 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1257 
1258 out:
1259 	release_sock(sk);
1260 	return err;
1261 }
1262 
1263 static int vsock_dgram_connect(struct socket *sock,
1264 			       struct sockaddr *addr, int addr_len, int flags)
1265 {
1266 	int err;
1267 	struct sock *sk;
1268 	struct vsock_sock *vsk;
1269 	struct sockaddr_vm *remote_addr;
1270 
1271 	sk = sock->sk;
1272 	vsk = vsock_sk(sk);
1273 
1274 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1275 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1276 		lock_sock(sk);
1277 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1278 				VMADDR_PORT_ANY);
1279 		sock->state = SS_UNCONNECTED;
1280 		release_sock(sk);
1281 		return 0;
1282 	} else if (err != 0)
1283 		return -EINVAL;
1284 
1285 	lock_sock(sk);
1286 
1287 	err = vsock_auto_bind(vsk);
1288 	if (err)
1289 		goto out;
1290 
1291 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1292 					 remote_addr->svm_port)) {
1293 		err = -EINVAL;
1294 		goto out;
1295 	}
1296 
1297 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1298 	sock->state = SS_CONNECTED;
1299 
1300 	/* sock map disallows redirection of non-TCP sockets with sk_state !=
1301 	 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1302 	 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1303 	 *
1304 	 * This doesn't seem to be abnormal state for datagram sockets, as the
1305 	 * same approach can be see in other datagram socket types as well
1306 	 * (such as unix sockets).
1307 	 */
1308 	sk->sk_state = TCP_ESTABLISHED;
1309 
1310 out:
1311 	release_sock(sk);
1312 	return err;
1313 }
1314 
1315 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1316 			  size_t len, int flags)
1317 {
1318 	struct sock *sk = sock->sk;
1319 	struct vsock_sock *vsk = vsock_sk(sk);
1320 
1321 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1322 }
1323 
1324 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1325 			size_t len, int flags)
1326 {
1327 #ifdef CONFIG_BPF_SYSCALL
1328 	struct sock *sk = sock->sk;
1329 	const struct proto *prot;
1330 
1331 	prot = READ_ONCE(sk->sk_prot);
1332 	if (prot != &vsock_proto)
1333 		return prot->recvmsg(sk, msg, len, flags, NULL);
1334 #endif
1335 
1336 	return __vsock_dgram_recvmsg(sock, msg, len, flags);
1337 }
1338 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1339 
1340 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd,
1341 			  int __user *arg)
1342 {
1343 	struct sock *sk = sock->sk;
1344 	struct vsock_sock *vsk;
1345 	int ret;
1346 
1347 	vsk = vsock_sk(sk);
1348 
1349 	switch (cmd) {
1350 	case SIOCOUTQ: {
1351 		ssize_t n_bytes;
1352 
1353 		if (!vsk->transport || !vsk->transport->unsent_bytes) {
1354 			ret = -EOPNOTSUPP;
1355 			break;
1356 		}
1357 
1358 		if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) {
1359 			ret = -EINVAL;
1360 			break;
1361 		}
1362 
1363 		n_bytes = vsk->transport->unsent_bytes(vsk);
1364 		if (n_bytes < 0) {
1365 			ret = n_bytes;
1366 			break;
1367 		}
1368 
1369 		ret = put_user(n_bytes, arg);
1370 		break;
1371 	}
1372 	default:
1373 		ret = -ENOIOCTLCMD;
1374 	}
1375 
1376 	return ret;
1377 }
1378 
1379 static int vsock_ioctl(struct socket *sock, unsigned int cmd,
1380 		       unsigned long arg)
1381 {
1382 	int ret;
1383 
1384 	lock_sock(sock->sk);
1385 	ret = vsock_do_ioctl(sock, cmd, (int __user *)arg);
1386 	release_sock(sock->sk);
1387 
1388 	return ret;
1389 }
1390 
1391 static const struct proto_ops vsock_dgram_ops = {
1392 	.family = PF_VSOCK,
1393 	.owner = THIS_MODULE,
1394 	.release = vsock_release,
1395 	.bind = vsock_bind,
1396 	.connect = vsock_dgram_connect,
1397 	.socketpair = sock_no_socketpair,
1398 	.accept = sock_no_accept,
1399 	.getname = vsock_getname,
1400 	.poll = vsock_poll,
1401 	.ioctl = vsock_ioctl,
1402 	.listen = sock_no_listen,
1403 	.shutdown = vsock_shutdown,
1404 	.sendmsg = vsock_dgram_sendmsg,
1405 	.recvmsg = vsock_dgram_recvmsg,
1406 	.mmap = sock_no_mmap,
1407 	.read_skb = vsock_read_skb,
1408 };
1409 
1410 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1411 {
1412 	const struct vsock_transport *transport = vsk->transport;
1413 
1414 	if (!transport || !transport->cancel_pkt)
1415 		return -EOPNOTSUPP;
1416 
1417 	return transport->cancel_pkt(vsk);
1418 }
1419 
1420 static void vsock_connect_timeout(struct work_struct *work)
1421 {
1422 	struct sock *sk;
1423 	struct vsock_sock *vsk;
1424 
1425 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1426 	sk = sk_vsock(vsk);
1427 
1428 	lock_sock(sk);
1429 	if (sk->sk_state == TCP_SYN_SENT &&
1430 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1431 		sk->sk_state = TCP_CLOSE;
1432 		sk->sk_socket->state = SS_UNCONNECTED;
1433 		sk->sk_err = ETIMEDOUT;
1434 		sk_error_report(sk);
1435 		vsock_transport_cancel_pkt(vsk);
1436 	}
1437 	release_sock(sk);
1438 
1439 	sock_put(sk);
1440 }
1441 
1442 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1443 			 int addr_len, int flags)
1444 {
1445 	int err;
1446 	struct sock *sk;
1447 	struct vsock_sock *vsk;
1448 	const struct vsock_transport *transport;
1449 	struct sockaddr_vm *remote_addr;
1450 	long timeout;
1451 	DEFINE_WAIT(wait);
1452 
1453 	err = 0;
1454 	sk = sock->sk;
1455 	vsk = vsock_sk(sk);
1456 
1457 	lock_sock(sk);
1458 
1459 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1460 	switch (sock->state) {
1461 	case SS_CONNECTED:
1462 		err = -EISCONN;
1463 		goto out;
1464 	case SS_DISCONNECTING:
1465 		err = -EINVAL;
1466 		goto out;
1467 	case SS_CONNECTING:
1468 		/* This continues on so we can move sock into the SS_CONNECTED
1469 		 * state once the connection has completed (at which point err
1470 		 * will be set to zero also).  Otherwise, we will either wait
1471 		 * for the connection or return -EALREADY should this be a
1472 		 * non-blocking call.
1473 		 */
1474 		err = -EALREADY;
1475 		if (flags & O_NONBLOCK)
1476 			goto out;
1477 		break;
1478 	default:
1479 		if ((sk->sk_state == TCP_LISTEN) ||
1480 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1481 			err = -EINVAL;
1482 			goto out;
1483 		}
1484 
1485 		/* Set the remote address that we are connecting to. */
1486 		memcpy(&vsk->remote_addr, remote_addr,
1487 		       sizeof(vsk->remote_addr));
1488 
1489 		err = vsock_assign_transport(vsk, NULL);
1490 		if (err)
1491 			goto out;
1492 
1493 		transport = vsk->transport;
1494 
1495 		/* The hypervisor and well-known contexts do not have socket
1496 		 * endpoints.
1497 		 */
1498 		if (!transport ||
1499 		    !transport->stream_allow(remote_addr->svm_cid,
1500 					     remote_addr->svm_port)) {
1501 			err = -ENETUNREACH;
1502 			goto out;
1503 		}
1504 
1505 		if (vsock_msgzerocopy_allow(transport)) {
1506 			set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1507 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1508 			/* If this option was set before 'connect()',
1509 			 * when transport was unknown, check that this
1510 			 * feature is supported here.
1511 			 */
1512 			err = -EOPNOTSUPP;
1513 			goto out;
1514 		}
1515 
1516 		err = vsock_auto_bind(vsk);
1517 		if (err)
1518 			goto out;
1519 
1520 		sk->sk_state = TCP_SYN_SENT;
1521 
1522 		err = transport->connect(vsk);
1523 		if (err < 0)
1524 			goto out;
1525 
1526 		/* sk_err might have been set as a result of an earlier
1527 		 * (failed) connect attempt.
1528 		 */
1529 		sk->sk_err = 0;
1530 
1531 		/* Mark sock as connecting and set the error code to in
1532 		 * progress in case this is a non-blocking connect.
1533 		 */
1534 		sock->state = SS_CONNECTING;
1535 		err = -EINPROGRESS;
1536 	}
1537 
1538 	/* The receive path will handle all communication until we are able to
1539 	 * enter the connected state.  Here we wait for the connection to be
1540 	 * completed or a notification of an error.
1541 	 */
1542 	timeout = vsk->connect_timeout;
1543 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1544 
1545 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1546 		if (flags & O_NONBLOCK) {
1547 			/* If we're not going to block, we schedule a timeout
1548 			 * function to generate a timeout on the connection
1549 			 * attempt, in case the peer doesn't respond in a
1550 			 * timely manner. We hold on to the socket until the
1551 			 * timeout fires.
1552 			 */
1553 			sock_hold(sk);
1554 
1555 			/* If the timeout function is already scheduled,
1556 			 * reschedule it, then ungrab the socket refcount to
1557 			 * keep it balanced.
1558 			 */
1559 			if (mod_delayed_work(system_wq, &vsk->connect_work,
1560 					     timeout))
1561 				sock_put(sk);
1562 
1563 			/* Skip ahead to preserve error code set above. */
1564 			goto out_wait;
1565 		}
1566 
1567 		release_sock(sk);
1568 		timeout = schedule_timeout(timeout);
1569 		lock_sock(sk);
1570 
1571 		if (signal_pending(current)) {
1572 			err = sock_intr_errno(timeout);
1573 			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1574 			sock->state = SS_UNCONNECTED;
1575 			vsock_transport_cancel_pkt(vsk);
1576 			vsock_remove_connected(vsk);
1577 			goto out_wait;
1578 		} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1579 			err = -ETIMEDOUT;
1580 			sk->sk_state = TCP_CLOSE;
1581 			sock->state = SS_UNCONNECTED;
1582 			vsock_transport_cancel_pkt(vsk);
1583 			goto out_wait;
1584 		}
1585 
1586 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1587 	}
1588 
1589 	if (sk->sk_err) {
1590 		err = -sk->sk_err;
1591 		sk->sk_state = TCP_CLOSE;
1592 		sock->state = SS_UNCONNECTED;
1593 	} else {
1594 		err = 0;
1595 	}
1596 
1597 out_wait:
1598 	finish_wait(sk_sleep(sk), &wait);
1599 out:
1600 	release_sock(sk);
1601 	return err;
1602 }
1603 
1604 static int vsock_accept(struct socket *sock, struct socket *newsock,
1605 			struct proto_accept_arg *arg)
1606 {
1607 	struct sock *listener;
1608 	int err;
1609 	struct sock *connected;
1610 	struct vsock_sock *vconnected;
1611 	long timeout;
1612 	DEFINE_WAIT(wait);
1613 
1614 	err = 0;
1615 	listener = sock->sk;
1616 
1617 	lock_sock(listener);
1618 
1619 	if (!sock_type_connectible(sock->type)) {
1620 		err = -EOPNOTSUPP;
1621 		goto out;
1622 	}
1623 
1624 	if (listener->sk_state != TCP_LISTEN) {
1625 		err = -EINVAL;
1626 		goto out;
1627 	}
1628 
1629 	/* Wait for children sockets to appear; these are the new sockets
1630 	 * created upon connection establishment.
1631 	 */
1632 	timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK);
1633 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1634 
1635 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1636 	       listener->sk_err == 0) {
1637 		release_sock(listener);
1638 		timeout = schedule_timeout(timeout);
1639 		finish_wait(sk_sleep(listener), &wait);
1640 		lock_sock(listener);
1641 
1642 		if (signal_pending(current)) {
1643 			err = sock_intr_errno(timeout);
1644 			goto out;
1645 		} else if (timeout == 0) {
1646 			err = -EAGAIN;
1647 			goto out;
1648 		}
1649 
1650 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1651 	}
1652 	finish_wait(sk_sleep(listener), &wait);
1653 
1654 	if (listener->sk_err)
1655 		err = -listener->sk_err;
1656 
1657 	if (connected) {
1658 		sk_acceptq_removed(listener);
1659 
1660 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1661 		vconnected = vsock_sk(connected);
1662 
1663 		/* If the listener socket has received an error, then we should
1664 		 * reject this socket and return.  Note that we simply mark the
1665 		 * socket rejected, drop our reference, and let the cleanup
1666 		 * function handle the cleanup; the fact that we found it in
1667 		 * the listener's accept queue guarantees that the cleanup
1668 		 * function hasn't run yet.
1669 		 */
1670 		if (err) {
1671 			vconnected->rejected = true;
1672 		} else {
1673 			newsock->state = SS_CONNECTED;
1674 			sock_graft(connected, newsock);
1675 			if (vsock_msgzerocopy_allow(vconnected->transport))
1676 				set_bit(SOCK_SUPPORT_ZC,
1677 					&connected->sk_socket->flags);
1678 		}
1679 
1680 		release_sock(connected);
1681 		sock_put(connected);
1682 	}
1683 
1684 out:
1685 	release_sock(listener);
1686 	return err;
1687 }
1688 
1689 static int vsock_listen(struct socket *sock, int backlog)
1690 {
1691 	int err;
1692 	struct sock *sk;
1693 	struct vsock_sock *vsk;
1694 
1695 	sk = sock->sk;
1696 
1697 	lock_sock(sk);
1698 
1699 	if (!sock_type_connectible(sk->sk_type)) {
1700 		err = -EOPNOTSUPP;
1701 		goto out;
1702 	}
1703 
1704 	if (sock->state != SS_UNCONNECTED) {
1705 		err = -EINVAL;
1706 		goto out;
1707 	}
1708 
1709 	vsk = vsock_sk(sk);
1710 
1711 	if (!vsock_addr_bound(&vsk->local_addr)) {
1712 		err = -EINVAL;
1713 		goto out;
1714 	}
1715 
1716 	sk->sk_max_ack_backlog = backlog;
1717 	sk->sk_state = TCP_LISTEN;
1718 
1719 	err = 0;
1720 
1721 out:
1722 	release_sock(sk);
1723 	return err;
1724 }
1725 
1726 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1727 				     const struct vsock_transport *transport,
1728 				     u64 val)
1729 {
1730 	if (val > vsk->buffer_max_size)
1731 		val = vsk->buffer_max_size;
1732 
1733 	if (val < vsk->buffer_min_size)
1734 		val = vsk->buffer_min_size;
1735 
1736 	if (val != vsk->buffer_size &&
1737 	    transport && transport->notify_buffer_size)
1738 		transport->notify_buffer_size(vsk, &val);
1739 
1740 	vsk->buffer_size = val;
1741 }
1742 
1743 static int vsock_connectible_setsockopt(struct socket *sock,
1744 					int level,
1745 					int optname,
1746 					sockptr_t optval,
1747 					unsigned int optlen)
1748 {
1749 	int err;
1750 	struct sock *sk;
1751 	struct vsock_sock *vsk;
1752 	const struct vsock_transport *transport;
1753 	u64 val;
1754 
1755 	if (level != AF_VSOCK && level != SOL_SOCKET)
1756 		return -ENOPROTOOPT;
1757 
1758 #define COPY_IN(_v)                                       \
1759 	do {						  \
1760 		if (optlen < sizeof(_v)) {		  \
1761 			err = -EINVAL;			  \
1762 			goto exit;			  \
1763 		}					  \
1764 		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1765 			err = -EFAULT;					\
1766 			goto exit;					\
1767 		}							\
1768 	} while (0)
1769 
1770 	err = 0;
1771 	sk = sock->sk;
1772 	vsk = vsock_sk(sk);
1773 
1774 	lock_sock(sk);
1775 
1776 	transport = vsk->transport;
1777 
1778 	if (level == SOL_SOCKET) {
1779 		int zerocopy;
1780 
1781 		if (optname != SO_ZEROCOPY) {
1782 			release_sock(sk);
1783 			return sock_setsockopt(sock, level, optname, optval, optlen);
1784 		}
1785 
1786 		/* Use 'int' type here, because variable to
1787 		 * set this option usually has this type.
1788 		 */
1789 		COPY_IN(zerocopy);
1790 
1791 		if (zerocopy < 0 || zerocopy > 1) {
1792 			err = -EINVAL;
1793 			goto exit;
1794 		}
1795 
1796 		if (transport && !vsock_msgzerocopy_allow(transport)) {
1797 			err = -EOPNOTSUPP;
1798 			goto exit;
1799 		}
1800 
1801 		sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
1802 		goto exit;
1803 	}
1804 
1805 	switch (optname) {
1806 	case SO_VM_SOCKETS_BUFFER_SIZE:
1807 		COPY_IN(val);
1808 		vsock_update_buffer_size(vsk, transport, val);
1809 		break;
1810 
1811 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1812 		COPY_IN(val);
1813 		vsk->buffer_max_size = val;
1814 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1815 		break;
1816 
1817 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1818 		COPY_IN(val);
1819 		vsk->buffer_min_size = val;
1820 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1821 		break;
1822 
1823 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1824 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1825 		struct __kernel_sock_timeval tv;
1826 
1827 		err = sock_copy_user_timeval(&tv, optval, optlen,
1828 					     optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1829 		if (err)
1830 			break;
1831 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1832 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1833 			vsk->connect_timeout = tv.tv_sec * HZ +
1834 				DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1835 			if (vsk->connect_timeout == 0)
1836 				vsk->connect_timeout =
1837 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1838 
1839 		} else {
1840 			err = -ERANGE;
1841 		}
1842 		break;
1843 	}
1844 
1845 	default:
1846 		err = -ENOPROTOOPT;
1847 		break;
1848 	}
1849 
1850 #undef COPY_IN
1851 
1852 exit:
1853 	release_sock(sk);
1854 	return err;
1855 }
1856 
1857 static int vsock_connectible_getsockopt(struct socket *sock,
1858 					int level, int optname,
1859 					char __user *optval,
1860 					int __user *optlen)
1861 {
1862 	struct sock *sk = sock->sk;
1863 	struct vsock_sock *vsk = vsock_sk(sk);
1864 
1865 	union {
1866 		u64 val64;
1867 		struct old_timeval32 tm32;
1868 		struct __kernel_old_timeval tm;
1869 		struct  __kernel_sock_timeval stm;
1870 	} v;
1871 
1872 	int lv = sizeof(v.val64);
1873 	int len;
1874 
1875 	if (level != AF_VSOCK)
1876 		return -ENOPROTOOPT;
1877 
1878 	if (get_user(len, optlen))
1879 		return -EFAULT;
1880 
1881 	memset(&v, 0, sizeof(v));
1882 
1883 	switch (optname) {
1884 	case SO_VM_SOCKETS_BUFFER_SIZE:
1885 		v.val64 = vsk->buffer_size;
1886 		break;
1887 
1888 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1889 		v.val64 = vsk->buffer_max_size;
1890 		break;
1891 
1892 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1893 		v.val64 = vsk->buffer_min_size;
1894 		break;
1895 
1896 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1897 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1898 		lv = sock_get_timeout(vsk->connect_timeout, &v,
1899 				      optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1900 		break;
1901 
1902 	default:
1903 		return -ENOPROTOOPT;
1904 	}
1905 
1906 	if (len < lv)
1907 		return -EINVAL;
1908 	if (len > lv)
1909 		len = lv;
1910 	if (copy_to_user(optval, &v, len))
1911 		return -EFAULT;
1912 
1913 	if (put_user(len, optlen))
1914 		return -EFAULT;
1915 
1916 	return 0;
1917 }
1918 
1919 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1920 				     size_t len)
1921 {
1922 	struct sock *sk;
1923 	struct vsock_sock *vsk;
1924 	const struct vsock_transport *transport;
1925 	ssize_t total_written;
1926 	long timeout;
1927 	int err;
1928 	struct vsock_transport_send_notify_data send_data;
1929 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1930 
1931 	sk = sock->sk;
1932 	vsk = vsock_sk(sk);
1933 	total_written = 0;
1934 	err = 0;
1935 
1936 	if (msg->msg_flags & MSG_OOB)
1937 		return -EOPNOTSUPP;
1938 
1939 	lock_sock(sk);
1940 
1941 	transport = vsk->transport;
1942 
1943 	/* Callers should not provide a destination with connection oriented
1944 	 * sockets.
1945 	 */
1946 	if (msg->msg_namelen) {
1947 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1948 		goto out;
1949 	}
1950 
1951 	/* Send data only if both sides are not shutdown in the direction. */
1952 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1953 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1954 		err = -EPIPE;
1955 		goto out;
1956 	}
1957 
1958 	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1959 	    !vsock_addr_bound(&vsk->local_addr)) {
1960 		err = -ENOTCONN;
1961 		goto out;
1962 	}
1963 
1964 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1965 		err = -EDESTADDRREQ;
1966 		goto out;
1967 	}
1968 
1969 	if (msg->msg_flags & MSG_ZEROCOPY &&
1970 	    !vsock_msgzerocopy_allow(transport)) {
1971 		err = -EOPNOTSUPP;
1972 		goto out;
1973 	}
1974 
1975 	/* Wait for room in the produce queue to enqueue our user's data. */
1976 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1977 
1978 	err = transport->notify_send_init(vsk, &send_data);
1979 	if (err < 0)
1980 		goto out;
1981 
1982 	while (total_written < len) {
1983 		ssize_t written;
1984 
1985 		add_wait_queue(sk_sleep(sk), &wait);
1986 		while (vsock_stream_has_space(vsk) == 0 &&
1987 		       sk->sk_err == 0 &&
1988 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1989 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1990 
1991 			/* Don't wait for non-blocking sockets. */
1992 			if (timeout == 0) {
1993 				err = -EAGAIN;
1994 				remove_wait_queue(sk_sleep(sk), &wait);
1995 				goto out_err;
1996 			}
1997 
1998 			err = transport->notify_send_pre_block(vsk, &send_data);
1999 			if (err < 0) {
2000 				remove_wait_queue(sk_sleep(sk), &wait);
2001 				goto out_err;
2002 			}
2003 
2004 			release_sock(sk);
2005 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
2006 			lock_sock(sk);
2007 			if (signal_pending(current)) {
2008 				err = sock_intr_errno(timeout);
2009 				remove_wait_queue(sk_sleep(sk), &wait);
2010 				goto out_err;
2011 			} else if (timeout == 0) {
2012 				err = -EAGAIN;
2013 				remove_wait_queue(sk_sleep(sk), &wait);
2014 				goto out_err;
2015 			}
2016 		}
2017 		remove_wait_queue(sk_sleep(sk), &wait);
2018 
2019 		/* These checks occur both as part of and after the loop
2020 		 * conditional since we need to check before and after
2021 		 * sleeping.
2022 		 */
2023 		if (sk->sk_err) {
2024 			err = -sk->sk_err;
2025 			goto out_err;
2026 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
2027 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
2028 			err = -EPIPE;
2029 			goto out_err;
2030 		}
2031 
2032 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
2033 		if (err < 0)
2034 			goto out_err;
2035 
2036 		/* Note that enqueue will only write as many bytes as are free
2037 		 * in the produce queue, so we don't need to ensure len is
2038 		 * smaller than the queue size.  It is the caller's
2039 		 * responsibility to check how many bytes we were able to send.
2040 		 */
2041 
2042 		if (sk->sk_type == SOCK_SEQPACKET) {
2043 			written = transport->seqpacket_enqueue(vsk,
2044 						msg, len - total_written);
2045 		} else {
2046 			written = transport->stream_enqueue(vsk,
2047 					msg, len - total_written);
2048 		}
2049 
2050 		if (written < 0) {
2051 			err = written;
2052 			goto out_err;
2053 		}
2054 
2055 		total_written += written;
2056 
2057 		err = transport->notify_send_post_enqueue(
2058 				vsk, written, &send_data);
2059 		if (err < 0)
2060 			goto out_err;
2061 
2062 	}
2063 
2064 out_err:
2065 	if (total_written > 0) {
2066 		/* Return number of written bytes only if:
2067 		 * 1) SOCK_STREAM socket.
2068 		 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
2069 		 */
2070 		if (sk->sk_type == SOCK_STREAM || total_written == len)
2071 			err = total_written;
2072 	}
2073 out:
2074 	if (sk->sk_type == SOCK_STREAM)
2075 		err = sk_stream_error(sk, msg->msg_flags, err);
2076 
2077 	release_sock(sk);
2078 	return err;
2079 }
2080 
2081 static int vsock_connectible_wait_data(struct sock *sk,
2082 				       struct wait_queue_entry *wait,
2083 				       long timeout,
2084 				       struct vsock_transport_recv_notify_data *recv_data,
2085 				       size_t target)
2086 {
2087 	const struct vsock_transport *transport;
2088 	struct vsock_sock *vsk;
2089 	s64 data;
2090 	int err;
2091 
2092 	vsk = vsock_sk(sk);
2093 	err = 0;
2094 	transport = vsk->transport;
2095 
2096 	while (1) {
2097 		prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2098 		data = vsock_connectible_has_data(vsk);
2099 		if (data != 0)
2100 			break;
2101 
2102 		if (sk->sk_err != 0 ||
2103 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2104 		    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2105 			break;
2106 		}
2107 
2108 		/* Don't wait for non-blocking sockets. */
2109 		if (timeout == 0) {
2110 			err = -EAGAIN;
2111 			break;
2112 		}
2113 
2114 		if (recv_data) {
2115 			err = transport->notify_recv_pre_block(vsk, target, recv_data);
2116 			if (err < 0)
2117 				break;
2118 		}
2119 
2120 		release_sock(sk);
2121 		timeout = schedule_timeout(timeout);
2122 		lock_sock(sk);
2123 
2124 		if (signal_pending(current)) {
2125 			err = sock_intr_errno(timeout);
2126 			break;
2127 		} else if (timeout == 0) {
2128 			err = -EAGAIN;
2129 			break;
2130 		}
2131 	}
2132 
2133 	finish_wait(sk_sleep(sk), wait);
2134 
2135 	if (err)
2136 		return err;
2137 
2138 	/* Internal transport error when checking for available
2139 	 * data. XXX This should be changed to a connection
2140 	 * reset in a later change.
2141 	 */
2142 	if (data < 0)
2143 		return -ENOMEM;
2144 
2145 	return data;
2146 }
2147 
2148 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2149 				  size_t len, int flags)
2150 {
2151 	struct vsock_transport_recv_notify_data recv_data;
2152 	const struct vsock_transport *transport;
2153 	struct vsock_sock *vsk;
2154 	ssize_t copied;
2155 	size_t target;
2156 	long timeout;
2157 	int err;
2158 
2159 	DEFINE_WAIT(wait);
2160 
2161 	vsk = vsock_sk(sk);
2162 	transport = vsk->transport;
2163 
2164 	/* We must not copy less than target bytes into the user's buffer
2165 	 * before returning successfully, so we wait for the consume queue to
2166 	 * have that much data to consume before dequeueing.  Note that this
2167 	 * makes it impossible to handle cases where target is greater than the
2168 	 * queue size.
2169 	 */
2170 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2171 	if (target >= transport->stream_rcvhiwat(vsk)) {
2172 		err = -ENOMEM;
2173 		goto out;
2174 	}
2175 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2176 	copied = 0;
2177 
2178 	err = transport->notify_recv_init(vsk, target, &recv_data);
2179 	if (err < 0)
2180 		goto out;
2181 
2182 
2183 	while (1) {
2184 		ssize_t read;
2185 
2186 		err = vsock_connectible_wait_data(sk, &wait, timeout,
2187 						  &recv_data, target);
2188 		if (err <= 0)
2189 			break;
2190 
2191 		err = transport->notify_recv_pre_dequeue(vsk, target,
2192 							 &recv_data);
2193 		if (err < 0)
2194 			break;
2195 
2196 		read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2197 		if (read < 0) {
2198 			err = read;
2199 			break;
2200 		}
2201 
2202 		copied += read;
2203 
2204 		err = transport->notify_recv_post_dequeue(vsk, target, read,
2205 						!(flags & MSG_PEEK), &recv_data);
2206 		if (err < 0)
2207 			goto out;
2208 
2209 		if (read >= target || flags & MSG_PEEK)
2210 			break;
2211 
2212 		target -= read;
2213 	}
2214 
2215 	if (sk->sk_err)
2216 		err = -sk->sk_err;
2217 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
2218 		err = 0;
2219 
2220 	if (copied > 0)
2221 		err = copied;
2222 
2223 out:
2224 	return err;
2225 }
2226 
2227 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2228 				     size_t len, int flags)
2229 {
2230 	const struct vsock_transport *transport;
2231 	struct vsock_sock *vsk;
2232 	ssize_t msg_len;
2233 	long timeout;
2234 	int err = 0;
2235 	DEFINE_WAIT(wait);
2236 
2237 	vsk = vsock_sk(sk);
2238 	transport = vsk->transport;
2239 
2240 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2241 
2242 	err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2243 	if (err <= 0)
2244 		goto out;
2245 
2246 	msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2247 
2248 	if (msg_len < 0) {
2249 		err = msg_len;
2250 		goto out;
2251 	}
2252 
2253 	if (sk->sk_err) {
2254 		err = -sk->sk_err;
2255 	} else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2256 		err = 0;
2257 	} else {
2258 		/* User sets MSG_TRUNC, so return real length of
2259 		 * packet.
2260 		 */
2261 		if (flags & MSG_TRUNC)
2262 			err = msg_len;
2263 		else
2264 			err = len - msg_data_left(msg);
2265 
2266 		/* Always set MSG_TRUNC if real length of packet is
2267 		 * bigger than user's buffer.
2268 		 */
2269 		if (msg_len > len)
2270 			msg->msg_flags |= MSG_TRUNC;
2271 	}
2272 
2273 out:
2274 	return err;
2275 }
2276 
2277 int
2278 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2279 			    int flags)
2280 {
2281 	struct sock *sk;
2282 	struct vsock_sock *vsk;
2283 	const struct vsock_transport *transport;
2284 	int err;
2285 
2286 	sk = sock->sk;
2287 
2288 	if (unlikely(flags & MSG_ERRQUEUE))
2289 		return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2290 
2291 	vsk = vsock_sk(sk);
2292 	err = 0;
2293 
2294 	lock_sock(sk);
2295 
2296 	transport = vsk->transport;
2297 
2298 	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2299 		/* Recvmsg is supposed to return 0 if a peer performs an
2300 		 * orderly shutdown. Differentiate between that case and when a
2301 		 * peer has not connected or a local shutdown occurred with the
2302 		 * SOCK_DONE flag.
2303 		 */
2304 		if (sock_flag(sk, SOCK_DONE))
2305 			err = 0;
2306 		else
2307 			err = -ENOTCONN;
2308 
2309 		goto out;
2310 	}
2311 
2312 	if (flags & MSG_OOB) {
2313 		err = -EOPNOTSUPP;
2314 		goto out;
2315 	}
2316 
2317 	/* We don't check peer_shutdown flag here since peer may actually shut
2318 	 * down, but there can be data in the queue that a local socket can
2319 	 * receive.
2320 	 */
2321 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
2322 		err = 0;
2323 		goto out;
2324 	}
2325 
2326 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
2327 	 * is not an error.  We may as well bail out now.
2328 	 */
2329 	if (!len) {
2330 		err = 0;
2331 		goto out;
2332 	}
2333 
2334 	if (sk->sk_type == SOCK_STREAM)
2335 		err = __vsock_stream_recvmsg(sk, msg, len, flags);
2336 	else
2337 		err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2338 
2339 out:
2340 	release_sock(sk);
2341 	return err;
2342 }
2343 
2344 int
2345 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2346 			  int flags)
2347 {
2348 #ifdef CONFIG_BPF_SYSCALL
2349 	struct sock *sk = sock->sk;
2350 	const struct proto *prot;
2351 
2352 	prot = READ_ONCE(sk->sk_prot);
2353 	if (prot != &vsock_proto)
2354 		return prot->recvmsg(sk, msg, len, flags, NULL);
2355 #endif
2356 
2357 	return __vsock_connectible_recvmsg(sock, msg, len, flags);
2358 }
2359 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2360 
2361 static int vsock_set_rcvlowat(struct sock *sk, int val)
2362 {
2363 	const struct vsock_transport *transport;
2364 	struct vsock_sock *vsk;
2365 
2366 	vsk = vsock_sk(sk);
2367 
2368 	if (val > vsk->buffer_size)
2369 		return -EINVAL;
2370 
2371 	transport = vsk->transport;
2372 
2373 	if (transport && transport->notify_set_rcvlowat) {
2374 		int err;
2375 
2376 		err = transport->notify_set_rcvlowat(vsk, val);
2377 		if (err)
2378 			return err;
2379 	}
2380 
2381 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2382 	return 0;
2383 }
2384 
2385 static const struct proto_ops vsock_stream_ops = {
2386 	.family = PF_VSOCK,
2387 	.owner = THIS_MODULE,
2388 	.release = vsock_release,
2389 	.bind = vsock_bind,
2390 	.connect = vsock_connect,
2391 	.socketpair = sock_no_socketpair,
2392 	.accept = vsock_accept,
2393 	.getname = vsock_getname,
2394 	.poll = vsock_poll,
2395 	.ioctl = vsock_ioctl,
2396 	.listen = vsock_listen,
2397 	.shutdown = vsock_shutdown,
2398 	.setsockopt = vsock_connectible_setsockopt,
2399 	.getsockopt = vsock_connectible_getsockopt,
2400 	.sendmsg = vsock_connectible_sendmsg,
2401 	.recvmsg = vsock_connectible_recvmsg,
2402 	.mmap = sock_no_mmap,
2403 	.set_rcvlowat = vsock_set_rcvlowat,
2404 	.read_skb = vsock_read_skb,
2405 };
2406 
2407 static const struct proto_ops vsock_seqpacket_ops = {
2408 	.family = PF_VSOCK,
2409 	.owner = THIS_MODULE,
2410 	.release = vsock_release,
2411 	.bind = vsock_bind,
2412 	.connect = vsock_connect,
2413 	.socketpair = sock_no_socketpair,
2414 	.accept = vsock_accept,
2415 	.getname = vsock_getname,
2416 	.poll = vsock_poll,
2417 	.ioctl = vsock_ioctl,
2418 	.listen = vsock_listen,
2419 	.shutdown = vsock_shutdown,
2420 	.setsockopt = vsock_connectible_setsockopt,
2421 	.getsockopt = vsock_connectible_getsockopt,
2422 	.sendmsg = vsock_connectible_sendmsg,
2423 	.recvmsg = vsock_connectible_recvmsg,
2424 	.mmap = sock_no_mmap,
2425 	.read_skb = vsock_read_skb,
2426 };
2427 
2428 static int vsock_create(struct net *net, struct socket *sock,
2429 			int protocol, int kern)
2430 {
2431 	struct vsock_sock *vsk;
2432 	struct sock *sk;
2433 	int ret;
2434 
2435 	if (!sock)
2436 		return -EINVAL;
2437 
2438 	if (protocol && protocol != PF_VSOCK)
2439 		return -EPROTONOSUPPORT;
2440 
2441 	switch (sock->type) {
2442 	case SOCK_DGRAM:
2443 		sock->ops = &vsock_dgram_ops;
2444 		break;
2445 	case SOCK_STREAM:
2446 		sock->ops = &vsock_stream_ops;
2447 		break;
2448 	case SOCK_SEQPACKET:
2449 		sock->ops = &vsock_seqpacket_ops;
2450 		break;
2451 	default:
2452 		return -ESOCKTNOSUPPORT;
2453 	}
2454 
2455 	sock->state = SS_UNCONNECTED;
2456 
2457 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2458 	if (!sk)
2459 		return -ENOMEM;
2460 
2461 	vsk = vsock_sk(sk);
2462 
2463 	if (sock->type == SOCK_DGRAM) {
2464 		ret = vsock_assign_transport(vsk, NULL);
2465 		if (ret < 0) {
2466 			sock->sk = NULL;
2467 			sock_put(sk);
2468 			return ret;
2469 		}
2470 	}
2471 
2472 	/* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
2473 	 * proto_ops, so there is no handler for custom logic.
2474 	 */
2475 	if (sock_type_connectible(sock->type))
2476 		set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2477 
2478 	vsock_insert_unbound(vsk);
2479 
2480 	return 0;
2481 }
2482 
2483 static const struct net_proto_family vsock_family_ops = {
2484 	.family = AF_VSOCK,
2485 	.create = vsock_create,
2486 	.owner = THIS_MODULE,
2487 };
2488 
2489 static long vsock_dev_do_ioctl(struct file *filp,
2490 			       unsigned int cmd, void __user *ptr)
2491 {
2492 	u32 __user *p = ptr;
2493 	u32 cid = VMADDR_CID_ANY;
2494 	int retval = 0;
2495 
2496 	switch (cmd) {
2497 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2498 		/* To be compatible with the VMCI behavior, we prioritize the
2499 		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2500 		 */
2501 		if (transport_g2h)
2502 			cid = transport_g2h->get_local_cid();
2503 		else if (transport_h2g)
2504 			cid = transport_h2g->get_local_cid();
2505 
2506 		if (put_user(cid, p) != 0)
2507 			retval = -EFAULT;
2508 		break;
2509 
2510 	default:
2511 		retval = -ENOIOCTLCMD;
2512 	}
2513 
2514 	return retval;
2515 }
2516 
2517 static long vsock_dev_ioctl(struct file *filp,
2518 			    unsigned int cmd, unsigned long arg)
2519 {
2520 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2521 }
2522 
2523 #ifdef CONFIG_COMPAT
2524 static long vsock_dev_compat_ioctl(struct file *filp,
2525 				   unsigned int cmd, unsigned long arg)
2526 {
2527 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2528 }
2529 #endif
2530 
2531 static const struct file_operations vsock_device_ops = {
2532 	.owner		= THIS_MODULE,
2533 	.unlocked_ioctl	= vsock_dev_ioctl,
2534 #ifdef CONFIG_COMPAT
2535 	.compat_ioctl	= vsock_dev_compat_ioctl,
2536 #endif
2537 	.open		= nonseekable_open,
2538 };
2539 
2540 static struct miscdevice vsock_device = {
2541 	.name		= "vsock",
2542 	.fops		= &vsock_device_ops,
2543 };
2544 
2545 static int __init vsock_init(void)
2546 {
2547 	int err = 0;
2548 
2549 	vsock_init_tables();
2550 
2551 	vsock_proto.owner = THIS_MODULE;
2552 	vsock_device.minor = MISC_DYNAMIC_MINOR;
2553 	err = misc_register(&vsock_device);
2554 	if (err) {
2555 		pr_err("Failed to register misc device\n");
2556 		goto err_reset_transport;
2557 	}
2558 
2559 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2560 	if (err) {
2561 		pr_err("Cannot register vsock protocol\n");
2562 		goto err_deregister_misc;
2563 	}
2564 
2565 	err = sock_register(&vsock_family_ops);
2566 	if (err) {
2567 		pr_err("could not register af_vsock (%d) address family: %d\n",
2568 		       AF_VSOCK, err);
2569 		goto err_unregister_proto;
2570 	}
2571 
2572 	vsock_bpf_build_proto();
2573 
2574 	return 0;
2575 
2576 err_unregister_proto:
2577 	proto_unregister(&vsock_proto);
2578 err_deregister_misc:
2579 	misc_deregister(&vsock_device);
2580 err_reset_transport:
2581 	return err;
2582 }
2583 
2584 static void __exit vsock_exit(void)
2585 {
2586 	misc_deregister(&vsock_device);
2587 	sock_unregister(AF_VSOCK);
2588 	proto_unregister(&vsock_proto);
2589 }
2590 
2591 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2592 {
2593 	return vsk->transport;
2594 }
2595 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2596 
2597 int vsock_core_register(const struct vsock_transport *t, int features)
2598 {
2599 	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2600 	int err = mutex_lock_interruptible(&vsock_register_mutex);
2601 
2602 	if (err)
2603 		return err;
2604 
2605 	t_h2g = transport_h2g;
2606 	t_g2h = transport_g2h;
2607 	t_dgram = transport_dgram;
2608 	t_local = transport_local;
2609 
2610 	if (features & VSOCK_TRANSPORT_F_H2G) {
2611 		if (t_h2g) {
2612 			err = -EBUSY;
2613 			goto err_busy;
2614 		}
2615 		t_h2g = t;
2616 	}
2617 
2618 	if (features & VSOCK_TRANSPORT_F_G2H) {
2619 		if (t_g2h) {
2620 			err = -EBUSY;
2621 			goto err_busy;
2622 		}
2623 		t_g2h = t;
2624 	}
2625 
2626 	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2627 		if (t_dgram) {
2628 			err = -EBUSY;
2629 			goto err_busy;
2630 		}
2631 		t_dgram = t;
2632 	}
2633 
2634 	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2635 		if (t_local) {
2636 			err = -EBUSY;
2637 			goto err_busy;
2638 		}
2639 		t_local = t;
2640 	}
2641 
2642 	transport_h2g = t_h2g;
2643 	transport_g2h = t_g2h;
2644 	transport_dgram = t_dgram;
2645 	transport_local = t_local;
2646 
2647 err_busy:
2648 	mutex_unlock(&vsock_register_mutex);
2649 	return err;
2650 }
2651 EXPORT_SYMBOL_GPL(vsock_core_register);
2652 
2653 void vsock_core_unregister(const struct vsock_transport *t)
2654 {
2655 	mutex_lock(&vsock_register_mutex);
2656 
2657 	if (transport_h2g == t)
2658 		transport_h2g = NULL;
2659 
2660 	if (transport_g2h == t)
2661 		transport_g2h = NULL;
2662 
2663 	if (transport_dgram == t)
2664 		transport_dgram = NULL;
2665 
2666 	if (transport_local == t)
2667 		transport_local = NULL;
2668 
2669 	mutex_unlock(&vsock_register_mutex);
2670 }
2671 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2672 
2673 module_init(vsock_init);
2674 module_exit(vsock_exit);
2675 
2676 MODULE_AUTHOR("VMware, Inc.");
2677 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2678 MODULE_VERSION("1.0.2.0-k");
2679 MODULE_LICENSE("GPL v2");
2680