1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VMware vSockets Driver 4 * 5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 6 */ 7 8 /* Implementation notes: 9 * 10 * - There are two kinds of sockets: those created by user action (such as 11 * calling socket(2)) and those created by incoming connection request packets. 12 * 13 * - There are two "global" tables, one for bound sockets (sockets that have 14 * specified an address that they are responsible for) and one for connected 15 * sockets (sockets that have established a connection with another socket). 16 * These tables are "global" in that all sockets on the system are placed 17 * within them. - Note, though, that the bound table contains an extra entry 18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 19 * that list. The bound table is used solely for lookup of sockets when packets 20 * are received and that's not necessary for SOCK_DGRAM sockets since we create 21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 22 * sockets out of the bound hash buckets will reduce the chance of collisions 23 * when looking for SOCK_STREAM sockets and prevents us from having to check the 24 * socket type in the hash table lookups. 25 * 26 * - Sockets created by user action will either be "client" sockets that 27 * initiate a connection or "server" sockets that listen for connections; we do 28 * not support simultaneous connects (two "client" sockets connecting). 29 * 30 * - "Server" sockets are referred to as listener sockets throughout this 31 * implementation because they are in the TCP_LISTEN state. When a 32 * connection request is received (the second kind of socket mentioned above), 33 * we create a new socket and refer to it as a pending socket. These pending 34 * sockets are placed on the pending connection list of the listener socket. 35 * When future packets are received for the address the listener socket is 36 * bound to, we check if the source of the packet is from one that has an 37 * existing pending connection. If it does, we process the packet for the 38 * pending socket. When that socket reaches the connected state, it is removed 39 * from the listener socket's pending list and enqueued in the listener 40 * socket's accept queue. Callers of accept(2) will accept connected sockets 41 * from the listener socket's accept queue. If the socket cannot be accepted 42 * for some reason then it is marked rejected. Once the connection is 43 * accepted, it is owned by the user process and the responsibility for cleanup 44 * falls with that user process. 45 * 46 * - It is possible that these pending sockets will never reach the connected 47 * state; in fact, we may never receive another packet after the connection 48 * request. Because of this, we must schedule a cleanup function to run in the 49 * future, after some amount of time passes where a connection should have been 50 * established. This function ensures that the socket is off all lists so it 51 * cannot be retrieved, then drops all references to the socket so it is cleaned 52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 53 * function will also cleanup rejected sockets, those that reach the connected 54 * state but leave it before they have been accepted. 55 * 56 * - Lock ordering for pending or accept queue sockets is: 57 * 58 * lock_sock(listener); 59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING); 60 * 61 * Using explicit nested locking keeps lockdep happy since normally only one 62 * lock of a given class may be taken at a time. 63 * 64 * - Sockets created by user action will be cleaned up when the user process 65 * calls close(2), causing our release implementation to be called. Our release 66 * implementation will perform some cleanup then drop the last reference so our 67 * sk_destruct implementation is invoked. Our sk_destruct implementation will 68 * perform additional cleanup that's common for both types of sockets. 69 * 70 * - A socket's reference count is what ensures that the structure won't be 71 * freed. Each entry in a list (such as the "global" bound and connected tables 72 * and the listener socket's pending list and connected queue) ensures a 73 * reference. When we defer work until process context and pass a socket as our 74 * argument, we must ensure the reference count is increased to ensure the 75 * socket isn't freed before the function is run; the deferred function will 76 * then drop the reference. 77 * 78 * - sk->sk_state uses the TCP state constants because they are widely used by 79 * other address families and exposed to userspace tools like ss(8): 80 * 81 * TCP_CLOSE - unconnected 82 * TCP_SYN_SENT - connecting 83 * TCP_ESTABLISHED - connected 84 * TCP_CLOSING - disconnecting 85 * TCP_LISTEN - listening 86 */ 87 88 #include <linux/compat.h> 89 #include <linux/types.h> 90 #include <linux/bitops.h> 91 #include <linux/cred.h> 92 #include <linux/errqueue.h> 93 #include <linux/init.h> 94 #include <linux/io.h> 95 #include <linux/kernel.h> 96 #include <linux/sched/signal.h> 97 #include <linux/kmod.h> 98 #include <linux/list.h> 99 #include <linux/miscdevice.h> 100 #include <linux/module.h> 101 #include <linux/mutex.h> 102 #include <linux/net.h> 103 #include <linux/poll.h> 104 #include <linux/random.h> 105 #include <linux/skbuff.h> 106 #include <linux/smp.h> 107 #include <linux/socket.h> 108 #include <linux/stddef.h> 109 #include <linux/unistd.h> 110 #include <linux/wait.h> 111 #include <linux/workqueue.h> 112 #include <net/sock.h> 113 #include <net/af_vsock.h> 114 #include <uapi/linux/vm_sockets.h> 115 #include <uapi/asm-generic/ioctls.h> 116 117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 118 static void vsock_sk_destruct(struct sock *sk); 119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 120 static void vsock_close(struct sock *sk, long timeout); 121 122 /* Protocol family. */ 123 struct proto vsock_proto = { 124 .name = "AF_VSOCK", 125 .owner = THIS_MODULE, 126 .obj_size = sizeof(struct vsock_sock), 127 .close = vsock_close, 128 #ifdef CONFIG_BPF_SYSCALL 129 .psock_update_sk_prot = vsock_bpf_update_proto, 130 #endif 131 }; 132 133 /* The default peer timeout indicates how long we will wait for a peer response 134 * to a control message. 135 */ 136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 137 138 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256) 139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256) 140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128 141 142 /* Transport used for host->guest communication */ 143 static const struct vsock_transport *transport_h2g; 144 /* Transport used for guest->host communication */ 145 static const struct vsock_transport *transport_g2h; 146 /* Transport used for DGRAM communication */ 147 static const struct vsock_transport *transport_dgram; 148 /* Transport used for local communication */ 149 static const struct vsock_transport *transport_local; 150 static DEFINE_MUTEX(vsock_register_mutex); 151 152 /**** UTILS ****/ 153 154 /* Each bound VSocket is stored in the bind hash table and each connected 155 * VSocket is stored in the connected hash table. 156 * 157 * Unbound sockets are all put on the same list attached to the end of the hash 158 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 159 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 160 * represents the list that addr hashes to). 161 * 162 * Specifically, we initialize the vsock_bind_table array to a size of 163 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 164 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 165 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 166 * mods with VSOCK_HASH_SIZE to ensure this. 167 */ 168 #define MAX_PORT_RETRIES 24 169 170 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) 171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 172 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 173 174 /* XXX This can probably be implemented in a better way. */ 175 #define VSOCK_CONN_HASH(src, dst) \ 176 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) 177 #define vsock_connected_sockets(src, dst) \ 178 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 179 #define vsock_connected_sockets_vsk(vsk) \ 180 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 181 182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 183 EXPORT_SYMBOL_GPL(vsock_bind_table); 184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 185 EXPORT_SYMBOL_GPL(vsock_connected_table); 186 DEFINE_SPINLOCK(vsock_table_lock); 187 EXPORT_SYMBOL_GPL(vsock_table_lock); 188 189 /* Autobind this socket to the local address if necessary. */ 190 static int vsock_auto_bind(struct vsock_sock *vsk) 191 { 192 struct sock *sk = sk_vsock(vsk); 193 struct sockaddr_vm local_addr; 194 195 if (vsock_addr_bound(&vsk->local_addr)) 196 return 0; 197 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 198 return __vsock_bind(sk, &local_addr); 199 } 200 201 static void vsock_init_tables(void) 202 { 203 int i; 204 205 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 206 INIT_LIST_HEAD(&vsock_bind_table[i]); 207 208 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 209 INIT_LIST_HEAD(&vsock_connected_table[i]); 210 } 211 212 static void __vsock_insert_bound(struct list_head *list, 213 struct vsock_sock *vsk) 214 { 215 sock_hold(&vsk->sk); 216 list_add(&vsk->bound_table, list); 217 } 218 219 static void __vsock_insert_connected(struct list_head *list, 220 struct vsock_sock *vsk) 221 { 222 sock_hold(&vsk->sk); 223 list_add(&vsk->connected_table, list); 224 } 225 226 static void __vsock_remove_bound(struct vsock_sock *vsk) 227 { 228 list_del_init(&vsk->bound_table); 229 sock_put(&vsk->sk); 230 } 231 232 static void __vsock_remove_connected(struct vsock_sock *vsk) 233 { 234 list_del_init(&vsk->connected_table); 235 sock_put(&vsk->sk); 236 } 237 238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 239 { 240 struct vsock_sock *vsk; 241 242 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) { 243 if (vsock_addr_equals_addr(addr, &vsk->local_addr)) 244 return sk_vsock(vsk); 245 246 if (addr->svm_port == vsk->local_addr.svm_port && 247 (vsk->local_addr.svm_cid == VMADDR_CID_ANY || 248 addr->svm_cid == VMADDR_CID_ANY)) 249 return sk_vsock(vsk); 250 } 251 252 return NULL; 253 } 254 255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 256 struct sockaddr_vm *dst) 257 { 258 struct vsock_sock *vsk; 259 260 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 261 connected_table) { 262 if (vsock_addr_equals_addr(src, &vsk->remote_addr) && 263 dst->svm_port == vsk->local_addr.svm_port) { 264 return sk_vsock(vsk); 265 } 266 } 267 268 return NULL; 269 } 270 271 static void vsock_insert_unbound(struct vsock_sock *vsk) 272 { 273 spin_lock_bh(&vsock_table_lock); 274 __vsock_insert_bound(vsock_unbound_sockets, vsk); 275 spin_unlock_bh(&vsock_table_lock); 276 } 277 278 void vsock_insert_connected(struct vsock_sock *vsk) 279 { 280 struct list_head *list = vsock_connected_sockets( 281 &vsk->remote_addr, &vsk->local_addr); 282 283 spin_lock_bh(&vsock_table_lock); 284 __vsock_insert_connected(list, vsk); 285 spin_unlock_bh(&vsock_table_lock); 286 } 287 EXPORT_SYMBOL_GPL(vsock_insert_connected); 288 289 void vsock_remove_bound(struct vsock_sock *vsk) 290 { 291 spin_lock_bh(&vsock_table_lock); 292 if (__vsock_in_bound_table(vsk)) 293 __vsock_remove_bound(vsk); 294 spin_unlock_bh(&vsock_table_lock); 295 } 296 EXPORT_SYMBOL_GPL(vsock_remove_bound); 297 298 void vsock_remove_connected(struct vsock_sock *vsk) 299 { 300 spin_lock_bh(&vsock_table_lock); 301 if (__vsock_in_connected_table(vsk)) 302 __vsock_remove_connected(vsk); 303 spin_unlock_bh(&vsock_table_lock); 304 } 305 EXPORT_SYMBOL_GPL(vsock_remove_connected); 306 307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 308 { 309 struct sock *sk; 310 311 spin_lock_bh(&vsock_table_lock); 312 sk = __vsock_find_bound_socket(addr); 313 if (sk) 314 sock_hold(sk); 315 316 spin_unlock_bh(&vsock_table_lock); 317 318 return sk; 319 } 320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 321 322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 323 struct sockaddr_vm *dst) 324 { 325 struct sock *sk; 326 327 spin_lock_bh(&vsock_table_lock); 328 sk = __vsock_find_connected_socket(src, dst); 329 if (sk) 330 sock_hold(sk); 331 332 spin_unlock_bh(&vsock_table_lock); 333 334 return sk; 335 } 336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 337 338 void vsock_remove_sock(struct vsock_sock *vsk) 339 { 340 /* Transport reassignment must not remove the binding. */ 341 if (sock_flag(sk_vsock(vsk), SOCK_DEAD)) 342 vsock_remove_bound(vsk); 343 344 vsock_remove_connected(vsk); 345 } 346 EXPORT_SYMBOL_GPL(vsock_remove_sock); 347 348 void vsock_for_each_connected_socket(struct vsock_transport *transport, 349 void (*fn)(struct sock *sk)) 350 { 351 int i; 352 353 spin_lock_bh(&vsock_table_lock); 354 355 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 356 struct vsock_sock *vsk; 357 list_for_each_entry(vsk, &vsock_connected_table[i], 358 connected_table) { 359 if (vsk->transport != transport) 360 continue; 361 362 fn(sk_vsock(vsk)); 363 } 364 } 365 366 spin_unlock_bh(&vsock_table_lock); 367 } 368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 369 370 void vsock_add_pending(struct sock *listener, struct sock *pending) 371 { 372 struct vsock_sock *vlistener; 373 struct vsock_sock *vpending; 374 375 vlistener = vsock_sk(listener); 376 vpending = vsock_sk(pending); 377 378 sock_hold(pending); 379 sock_hold(listener); 380 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 381 } 382 EXPORT_SYMBOL_GPL(vsock_add_pending); 383 384 void vsock_remove_pending(struct sock *listener, struct sock *pending) 385 { 386 struct vsock_sock *vpending = vsock_sk(pending); 387 388 list_del_init(&vpending->pending_links); 389 sock_put(listener); 390 sock_put(pending); 391 } 392 EXPORT_SYMBOL_GPL(vsock_remove_pending); 393 394 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 395 { 396 struct vsock_sock *vlistener; 397 struct vsock_sock *vconnected; 398 399 vlistener = vsock_sk(listener); 400 vconnected = vsock_sk(connected); 401 402 sock_hold(connected); 403 sock_hold(listener); 404 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 405 } 406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 407 408 static bool vsock_use_local_transport(unsigned int remote_cid) 409 { 410 if (!transport_local) 411 return false; 412 413 if (remote_cid == VMADDR_CID_LOCAL) 414 return true; 415 416 if (transport_g2h) { 417 return remote_cid == transport_g2h->get_local_cid(); 418 } else { 419 return remote_cid == VMADDR_CID_HOST; 420 } 421 } 422 423 static void vsock_deassign_transport(struct vsock_sock *vsk) 424 { 425 if (!vsk->transport) 426 return; 427 428 vsk->transport->destruct(vsk); 429 module_put(vsk->transport->module); 430 vsk->transport = NULL; 431 } 432 433 /* Assign a transport to a socket and call the .init transport callback. 434 * 435 * Note: for connection oriented socket this must be called when vsk->remote_addr 436 * is set (e.g. during the connect() or when a connection request on a listener 437 * socket is received). 438 * The vsk->remote_addr is used to decide which transport to use: 439 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if 440 * g2h is not loaded, will use local transport; 441 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field 442 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport; 443 * - remote CID > VMADDR_CID_HOST will use host->guest transport; 444 */ 445 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk) 446 { 447 const struct vsock_transport *new_transport; 448 struct sock *sk = sk_vsock(vsk); 449 unsigned int remote_cid = vsk->remote_addr.svm_cid; 450 __u8 remote_flags; 451 int ret; 452 453 /* If the packet is coming with the source and destination CIDs higher 454 * than VMADDR_CID_HOST, then a vsock channel where all the packets are 455 * forwarded to the host should be established. Then the host will 456 * need to forward the packets to the guest. 457 * 458 * The flag is set on the (listen) receive path (psk is not NULL). On 459 * the connect path the flag can be set by the user space application. 460 */ 461 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST && 462 vsk->remote_addr.svm_cid > VMADDR_CID_HOST) 463 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST; 464 465 remote_flags = vsk->remote_addr.svm_flags; 466 467 switch (sk->sk_type) { 468 case SOCK_DGRAM: 469 new_transport = transport_dgram; 470 break; 471 case SOCK_STREAM: 472 case SOCK_SEQPACKET: 473 if (vsock_use_local_transport(remote_cid)) 474 new_transport = transport_local; 475 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g || 476 (remote_flags & VMADDR_FLAG_TO_HOST)) 477 new_transport = transport_g2h; 478 else 479 new_transport = transport_h2g; 480 break; 481 default: 482 return -ESOCKTNOSUPPORT; 483 } 484 485 if (vsk->transport) { 486 if (vsk->transport == new_transport) 487 return 0; 488 489 /* transport->release() must be called with sock lock acquired. 490 * This path can only be taken during vsock_connect(), where we 491 * have already held the sock lock. In the other cases, this 492 * function is called on a new socket which is not assigned to 493 * any transport. 494 */ 495 vsk->transport->release(vsk); 496 vsock_deassign_transport(vsk); 497 498 /* transport's release() and destruct() can touch some socket 499 * state, since we are reassigning the socket to a new transport 500 * during vsock_connect(), let's reset these fields to have a 501 * clean state. 502 */ 503 sock_reset_flag(sk, SOCK_DONE); 504 sk->sk_state = TCP_CLOSE; 505 vsk->peer_shutdown = 0; 506 } 507 508 /* We increase the module refcnt to prevent the transport unloading 509 * while there are open sockets assigned to it. 510 */ 511 if (!new_transport || !try_module_get(new_transport->module)) 512 return -ENODEV; 513 514 if (sk->sk_type == SOCK_SEQPACKET) { 515 if (!new_transport->seqpacket_allow || 516 !new_transport->seqpacket_allow(remote_cid)) { 517 module_put(new_transport->module); 518 return -ESOCKTNOSUPPORT; 519 } 520 } 521 522 ret = new_transport->init(vsk, psk); 523 if (ret) { 524 module_put(new_transport->module); 525 return ret; 526 } 527 528 vsk->transport = new_transport; 529 530 return 0; 531 } 532 EXPORT_SYMBOL_GPL(vsock_assign_transport); 533 534 bool vsock_find_cid(unsigned int cid) 535 { 536 if (transport_g2h && cid == transport_g2h->get_local_cid()) 537 return true; 538 539 if (transport_h2g && cid == VMADDR_CID_HOST) 540 return true; 541 542 if (transport_local && cid == VMADDR_CID_LOCAL) 543 return true; 544 545 return false; 546 } 547 EXPORT_SYMBOL_GPL(vsock_find_cid); 548 549 static struct sock *vsock_dequeue_accept(struct sock *listener) 550 { 551 struct vsock_sock *vlistener; 552 struct vsock_sock *vconnected; 553 554 vlistener = vsock_sk(listener); 555 556 if (list_empty(&vlistener->accept_queue)) 557 return NULL; 558 559 vconnected = list_entry(vlistener->accept_queue.next, 560 struct vsock_sock, accept_queue); 561 562 list_del_init(&vconnected->accept_queue); 563 sock_put(listener); 564 /* The caller will need a reference on the connected socket so we let 565 * it call sock_put(). 566 */ 567 568 return sk_vsock(vconnected); 569 } 570 571 static bool vsock_is_accept_queue_empty(struct sock *sk) 572 { 573 struct vsock_sock *vsk = vsock_sk(sk); 574 return list_empty(&vsk->accept_queue); 575 } 576 577 static bool vsock_is_pending(struct sock *sk) 578 { 579 struct vsock_sock *vsk = vsock_sk(sk); 580 return !list_empty(&vsk->pending_links); 581 } 582 583 static int vsock_send_shutdown(struct sock *sk, int mode) 584 { 585 struct vsock_sock *vsk = vsock_sk(sk); 586 587 if (!vsk->transport) 588 return -ENODEV; 589 590 return vsk->transport->shutdown(vsk, mode); 591 } 592 593 static void vsock_pending_work(struct work_struct *work) 594 { 595 struct sock *sk; 596 struct sock *listener; 597 struct vsock_sock *vsk; 598 bool cleanup; 599 600 vsk = container_of(work, struct vsock_sock, pending_work.work); 601 sk = sk_vsock(vsk); 602 listener = vsk->listener; 603 cleanup = true; 604 605 lock_sock(listener); 606 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 607 608 if (vsock_is_pending(sk)) { 609 vsock_remove_pending(listener, sk); 610 611 sk_acceptq_removed(listener); 612 } else if (!vsk->rejected) { 613 /* We are not on the pending list and accept() did not reject 614 * us, so we must have been accepted by our user process. We 615 * just need to drop our references to the sockets and be on 616 * our way. 617 */ 618 cleanup = false; 619 goto out; 620 } 621 622 /* We need to remove ourself from the global connected sockets list so 623 * incoming packets can't find this socket, and to reduce the reference 624 * count. 625 */ 626 vsock_remove_connected(vsk); 627 628 sk->sk_state = TCP_CLOSE; 629 630 out: 631 release_sock(sk); 632 release_sock(listener); 633 if (cleanup) 634 sock_put(sk); 635 636 sock_put(sk); 637 sock_put(listener); 638 } 639 640 /**** SOCKET OPERATIONS ****/ 641 642 static int __vsock_bind_connectible(struct vsock_sock *vsk, 643 struct sockaddr_vm *addr) 644 { 645 static u32 port; 646 struct sockaddr_vm new_addr; 647 648 if (!port) 649 port = get_random_u32_above(LAST_RESERVED_PORT); 650 651 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 652 653 if (addr->svm_port == VMADDR_PORT_ANY) { 654 bool found = false; 655 unsigned int i; 656 657 for (i = 0; i < MAX_PORT_RETRIES; i++) { 658 if (port <= LAST_RESERVED_PORT) 659 port = LAST_RESERVED_PORT + 1; 660 661 new_addr.svm_port = port++; 662 663 if (!__vsock_find_bound_socket(&new_addr)) { 664 found = true; 665 break; 666 } 667 } 668 669 if (!found) 670 return -EADDRNOTAVAIL; 671 } else { 672 /* If port is in reserved range, ensure caller 673 * has necessary privileges. 674 */ 675 if (addr->svm_port <= LAST_RESERVED_PORT && 676 !capable(CAP_NET_BIND_SERVICE)) { 677 return -EACCES; 678 } 679 680 if (__vsock_find_bound_socket(&new_addr)) 681 return -EADDRINUSE; 682 } 683 684 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 685 686 /* Remove connection oriented sockets from the unbound list and add them 687 * to the hash table for easy lookup by its address. The unbound list 688 * is simply an extra entry at the end of the hash table, a trick used 689 * by AF_UNIX. 690 */ 691 __vsock_remove_bound(vsk); 692 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 693 694 return 0; 695 } 696 697 static int __vsock_bind_dgram(struct vsock_sock *vsk, 698 struct sockaddr_vm *addr) 699 { 700 return vsk->transport->dgram_bind(vsk, addr); 701 } 702 703 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 704 { 705 struct vsock_sock *vsk = vsock_sk(sk); 706 int retval; 707 708 /* First ensure this socket isn't already bound. */ 709 if (vsock_addr_bound(&vsk->local_addr)) 710 return -EINVAL; 711 712 /* Now bind to the provided address or select appropriate values if 713 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 714 * like AF_INET prevents binding to a non-local IP address (in most 715 * cases), we only allow binding to a local CID. 716 */ 717 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid)) 718 return -EADDRNOTAVAIL; 719 720 switch (sk->sk_socket->type) { 721 case SOCK_STREAM: 722 case SOCK_SEQPACKET: 723 spin_lock_bh(&vsock_table_lock); 724 retval = __vsock_bind_connectible(vsk, addr); 725 spin_unlock_bh(&vsock_table_lock); 726 break; 727 728 case SOCK_DGRAM: 729 retval = __vsock_bind_dgram(vsk, addr); 730 break; 731 732 default: 733 retval = -EINVAL; 734 break; 735 } 736 737 return retval; 738 } 739 740 static void vsock_connect_timeout(struct work_struct *work); 741 742 static struct sock *__vsock_create(struct net *net, 743 struct socket *sock, 744 struct sock *parent, 745 gfp_t priority, 746 unsigned short type, 747 int kern) 748 { 749 struct sock *sk; 750 struct vsock_sock *psk; 751 struct vsock_sock *vsk; 752 753 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); 754 if (!sk) 755 return NULL; 756 757 sock_init_data(sock, sk); 758 759 /* sk->sk_type is normally set in sock_init_data, but only if sock is 760 * non-NULL. We make sure that our sockets always have a type by 761 * setting it here if needed. 762 */ 763 if (!sock) 764 sk->sk_type = type; 765 766 vsk = vsock_sk(sk); 767 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 768 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 769 770 sk->sk_destruct = vsock_sk_destruct; 771 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 772 sock_reset_flag(sk, SOCK_DONE); 773 774 INIT_LIST_HEAD(&vsk->bound_table); 775 INIT_LIST_HEAD(&vsk->connected_table); 776 vsk->listener = NULL; 777 INIT_LIST_HEAD(&vsk->pending_links); 778 INIT_LIST_HEAD(&vsk->accept_queue); 779 vsk->rejected = false; 780 vsk->sent_request = false; 781 vsk->ignore_connecting_rst = false; 782 vsk->peer_shutdown = 0; 783 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout); 784 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work); 785 786 psk = parent ? vsock_sk(parent) : NULL; 787 if (parent) { 788 vsk->trusted = psk->trusted; 789 vsk->owner = get_cred(psk->owner); 790 vsk->connect_timeout = psk->connect_timeout; 791 vsk->buffer_size = psk->buffer_size; 792 vsk->buffer_min_size = psk->buffer_min_size; 793 vsk->buffer_max_size = psk->buffer_max_size; 794 security_sk_clone(parent, sk); 795 } else { 796 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN); 797 vsk->owner = get_current_cred(); 798 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 799 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE; 800 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE; 801 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE; 802 } 803 804 return sk; 805 } 806 807 static bool sock_type_connectible(u16 type) 808 { 809 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET); 810 } 811 812 static void __vsock_release(struct sock *sk, int level) 813 { 814 struct vsock_sock *vsk; 815 struct sock *pending; 816 817 vsk = vsock_sk(sk); 818 pending = NULL; /* Compiler warning. */ 819 820 /* When "level" is SINGLE_DEPTH_NESTING, use the nested 821 * version to avoid the warning "possible recursive locking 822 * detected". When "level" is 0, lock_sock_nested(sk, level) 823 * is the same as lock_sock(sk). 824 */ 825 lock_sock_nested(sk, level); 826 827 sock_orphan(sk); 828 829 if (vsk->transport) 830 vsk->transport->release(vsk); 831 else if (sock_type_connectible(sk->sk_type)) 832 vsock_remove_sock(vsk); 833 834 sk->sk_shutdown = SHUTDOWN_MASK; 835 836 skb_queue_purge(&sk->sk_receive_queue); 837 838 /* Clean up any sockets that never were accepted. */ 839 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 840 __vsock_release(pending, SINGLE_DEPTH_NESTING); 841 sock_put(pending); 842 } 843 844 release_sock(sk); 845 sock_put(sk); 846 } 847 848 static void vsock_sk_destruct(struct sock *sk) 849 { 850 struct vsock_sock *vsk = vsock_sk(sk); 851 852 /* Flush MSG_ZEROCOPY leftovers. */ 853 __skb_queue_purge(&sk->sk_error_queue); 854 855 vsock_deassign_transport(vsk); 856 857 /* When clearing these addresses, there's no need to set the family and 858 * possibly register the address family with the kernel. 859 */ 860 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 861 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 862 863 put_cred(vsk->owner); 864 } 865 866 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 867 { 868 int err; 869 870 err = sock_queue_rcv_skb(sk, skb); 871 if (err) 872 kfree_skb(skb); 873 874 return err; 875 } 876 877 struct sock *vsock_create_connected(struct sock *parent) 878 { 879 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL, 880 parent->sk_type, 0); 881 } 882 EXPORT_SYMBOL_GPL(vsock_create_connected); 883 884 s64 vsock_stream_has_data(struct vsock_sock *vsk) 885 { 886 if (WARN_ON(!vsk->transport)) 887 return 0; 888 889 return vsk->transport->stream_has_data(vsk); 890 } 891 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 892 893 s64 vsock_connectible_has_data(struct vsock_sock *vsk) 894 { 895 struct sock *sk = sk_vsock(vsk); 896 897 if (WARN_ON(!vsk->transport)) 898 return 0; 899 900 if (sk->sk_type == SOCK_SEQPACKET) 901 return vsk->transport->seqpacket_has_data(vsk); 902 else 903 return vsock_stream_has_data(vsk); 904 } 905 EXPORT_SYMBOL_GPL(vsock_connectible_has_data); 906 907 s64 vsock_stream_has_space(struct vsock_sock *vsk) 908 { 909 if (WARN_ON(!vsk->transport)) 910 return 0; 911 912 return vsk->transport->stream_has_space(vsk); 913 } 914 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 915 916 void vsock_data_ready(struct sock *sk) 917 { 918 struct vsock_sock *vsk = vsock_sk(sk); 919 920 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat || 921 sock_flag(sk, SOCK_DONE)) 922 sk->sk_data_ready(sk); 923 } 924 EXPORT_SYMBOL_GPL(vsock_data_ready); 925 926 /* Dummy callback required by sockmap. 927 * See unconditional call of saved_close() in sock_map_close(). 928 */ 929 static void vsock_close(struct sock *sk, long timeout) 930 { 931 } 932 933 static int vsock_release(struct socket *sock) 934 { 935 struct sock *sk = sock->sk; 936 937 if (!sk) 938 return 0; 939 940 sk->sk_prot->close(sk, 0); 941 __vsock_release(sk, 0); 942 sock->sk = NULL; 943 sock->state = SS_FREE; 944 945 return 0; 946 } 947 948 static int 949 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 950 { 951 int err; 952 struct sock *sk; 953 struct sockaddr_vm *vm_addr; 954 955 sk = sock->sk; 956 957 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 958 return -EINVAL; 959 960 lock_sock(sk); 961 err = __vsock_bind(sk, vm_addr); 962 release_sock(sk); 963 964 return err; 965 } 966 967 static int vsock_getname(struct socket *sock, 968 struct sockaddr *addr, int peer) 969 { 970 int err; 971 struct sock *sk; 972 struct vsock_sock *vsk; 973 struct sockaddr_vm *vm_addr; 974 975 sk = sock->sk; 976 vsk = vsock_sk(sk); 977 err = 0; 978 979 lock_sock(sk); 980 981 if (peer) { 982 if (sock->state != SS_CONNECTED) { 983 err = -ENOTCONN; 984 goto out; 985 } 986 vm_addr = &vsk->remote_addr; 987 } else { 988 vm_addr = &vsk->local_addr; 989 } 990 991 if (!vm_addr) { 992 err = -EINVAL; 993 goto out; 994 } 995 996 /* sys_getsockname() and sys_getpeername() pass us a 997 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately 998 * that macro is defined in socket.c instead of .h, so we hardcode its 999 * value here. 1000 */ 1001 BUILD_BUG_ON(sizeof(*vm_addr) > 128); 1002 memcpy(addr, vm_addr, sizeof(*vm_addr)); 1003 err = sizeof(*vm_addr); 1004 1005 out: 1006 release_sock(sk); 1007 return err; 1008 } 1009 1010 static int vsock_shutdown(struct socket *sock, int mode) 1011 { 1012 int err; 1013 struct sock *sk; 1014 1015 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 1016 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 1017 * here like the other address families do. Note also that the 1018 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 1019 * which is what we want. 1020 */ 1021 mode++; 1022 1023 if ((mode & ~SHUTDOWN_MASK) || !mode) 1024 return -EINVAL; 1025 1026 /* If this is a connection oriented socket and it is not connected then 1027 * bail out immediately. If it is a DGRAM socket then we must first 1028 * kick the socket so that it wakes up from any sleeping calls, for 1029 * example recv(), and then afterwards return the error. 1030 */ 1031 1032 sk = sock->sk; 1033 1034 lock_sock(sk); 1035 if (sock->state == SS_UNCONNECTED) { 1036 err = -ENOTCONN; 1037 if (sock_type_connectible(sk->sk_type)) 1038 goto out; 1039 } else { 1040 sock->state = SS_DISCONNECTING; 1041 err = 0; 1042 } 1043 1044 /* Receive and send shutdowns are treated alike. */ 1045 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 1046 if (mode) { 1047 sk->sk_shutdown |= mode; 1048 sk->sk_state_change(sk); 1049 1050 if (sock_type_connectible(sk->sk_type)) { 1051 sock_reset_flag(sk, SOCK_DONE); 1052 vsock_send_shutdown(sk, mode); 1053 } 1054 } 1055 1056 out: 1057 release_sock(sk); 1058 return err; 1059 } 1060 1061 static __poll_t vsock_poll(struct file *file, struct socket *sock, 1062 poll_table *wait) 1063 { 1064 struct sock *sk; 1065 __poll_t mask; 1066 struct vsock_sock *vsk; 1067 1068 sk = sock->sk; 1069 vsk = vsock_sk(sk); 1070 1071 poll_wait(file, sk_sleep(sk), wait); 1072 mask = 0; 1073 1074 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 1075 /* Signify that there has been an error on this socket. */ 1076 mask |= EPOLLERR; 1077 1078 /* INET sockets treat local write shutdown and peer write shutdown as a 1079 * case of EPOLLHUP set. 1080 */ 1081 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 1082 ((sk->sk_shutdown & SEND_SHUTDOWN) && 1083 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 1084 mask |= EPOLLHUP; 1085 } 1086 1087 if (sk->sk_shutdown & RCV_SHUTDOWN || 1088 vsk->peer_shutdown & SEND_SHUTDOWN) { 1089 mask |= EPOLLRDHUP; 1090 } 1091 1092 if (sk_is_readable(sk)) 1093 mask |= EPOLLIN | EPOLLRDNORM; 1094 1095 if (sock->type == SOCK_DGRAM) { 1096 /* For datagram sockets we can read if there is something in 1097 * the queue and write as long as the socket isn't shutdown for 1098 * sending. 1099 */ 1100 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) || 1101 (sk->sk_shutdown & RCV_SHUTDOWN)) { 1102 mask |= EPOLLIN | EPOLLRDNORM; 1103 } 1104 1105 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1106 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 1107 1108 } else if (sock_type_connectible(sk->sk_type)) { 1109 const struct vsock_transport *transport; 1110 1111 lock_sock(sk); 1112 1113 transport = vsk->transport; 1114 1115 /* Listening sockets that have connections in their accept 1116 * queue can be read. 1117 */ 1118 if (sk->sk_state == TCP_LISTEN 1119 && !vsock_is_accept_queue_empty(sk)) 1120 mask |= EPOLLIN | EPOLLRDNORM; 1121 1122 /* If there is something in the queue then we can read. */ 1123 if (transport && transport->stream_is_active(vsk) && 1124 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1125 bool data_ready_now = false; 1126 int target = sock_rcvlowat(sk, 0, INT_MAX); 1127 int ret = transport->notify_poll_in( 1128 vsk, target, &data_ready_now); 1129 if (ret < 0) { 1130 mask |= EPOLLERR; 1131 } else { 1132 if (data_ready_now) 1133 mask |= EPOLLIN | EPOLLRDNORM; 1134 1135 } 1136 } 1137 1138 /* Sockets whose connections have been closed, reset, or 1139 * terminated should also be considered read, and we check the 1140 * shutdown flag for that. 1141 */ 1142 if (sk->sk_shutdown & RCV_SHUTDOWN || 1143 vsk->peer_shutdown & SEND_SHUTDOWN) { 1144 mask |= EPOLLIN | EPOLLRDNORM; 1145 } 1146 1147 /* Connected sockets that can produce data can be written. */ 1148 if (transport && sk->sk_state == TCP_ESTABLISHED) { 1149 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1150 bool space_avail_now = false; 1151 int ret = transport->notify_poll_out( 1152 vsk, 1, &space_avail_now); 1153 if (ret < 0) { 1154 mask |= EPOLLERR; 1155 } else { 1156 if (space_avail_now) 1157 /* Remove EPOLLWRBAND since INET 1158 * sockets are not setting it. 1159 */ 1160 mask |= EPOLLOUT | EPOLLWRNORM; 1161 1162 } 1163 } 1164 } 1165 1166 /* Simulate INET socket poll behaviors, which sets 1167 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read, 1168 * but local send is not shutdown. 1169 */ 1170 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) { 1171 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1172 mask |= EPOLLOUT | EPOLLWRNORM; 1173 1174 } 1175 1176 release_sock(sk); 1177 } 1178 1179 return mask; 1180 } 1181 1182 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor) 1183 { 1184 struct vsock_sock *vsk = vsock_sk(sk); 1185 1186 return vsk->transport->read_skb(vsk, read_actor); 1187 } 1188 1189 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1190 size_t len) 1191 { 1192 int err; 1193 struct sock *sk; 1194 struct vsock_sock *vsk; 1195 struct sockaddr_vm *remote_addr; 1196 const struct vsock_transport *transport; 1197 1198 if (msg->msg_flags & MSG_OOB) 1199 return -EOPNOTSUPP; 1200 1201 /* For now, MSG_DONTWAIT is always assumed... */ 1202 err = 0; 1203 sk = sock->sk; 1204 vsk = vsock_sk(sk); 1205 1206 lock_sock(sk); 1207 1208 transport = vsk->transport; 1209 1210 err = vsock_auto_bind(vsk); 1211 if (err) 1212 goto out; 1213 1214 1215 /* If the provided message contains an address, use that. Otherwise 1216 * fall back on the socket's remote handle (if it has been connected). 1217 */ 1218 if (msg->msg_name && 1219 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 1220 &remote_addr) == 0) { 1221 /* Ensure this address is of the right type and is a valid 1222 * destination. 1223 */ 1224 1225 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1226 remote_addr->svm_cid = transport->get_local_cid(); 1227 1228 if (!vsock_addr_bound(remote_addr)) { 1229 err = -EINVAL; 1230 goto out; 1231 } 1232 } else if (sock->state == SS_CONNECTED) { 1233 remote_addr = &vsk->remote_addr; 1234 1235 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1236 remote_addr->svm_cid = transport->get_local_cid(); 1237 1238 /* XXX Should connect() or this function ensure remote_addr is 1239 * bound? 1240 */ 1241 if (!vsock_addr_bound(&vsk->remote_addr)) { 1242 err = -EINVAL; 1243 goto out; 1244 } 1245 } else { 1246 err = -EINVAL; 1247 goto out; 1248 } 1249 1250 if (!transport->dgram_allow(remote_addr->svm_cid, 1251 remote_addr->svm_port)) { 1252 err = -EINVAL; 1253 goto out; 1254 } 1255 1256 err = transport->dgram_enqueue(vsk, remote_addr, msg, len); 1257 1258 out: 1259 release_sock(sk); 1260 return err; 1261 } 1262 1263 static int vsock_dgram_connect(struct socket *sock, 1264 struct sockaddr *addr, int addr_len, int flags) 1265 { 1266 int err; 1267 struct sock *sk; 1268 struct vsock_sock *vsk; 1269 struct sockaddr_vm *remote_addr; 1270 1271 sk = sock->sk; 1272 vsk = vsock_sk(sk); 1273 1274 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1275 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1276 lock_sock(sk); 1277 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1278 VMADDR_PORT_ANY); 1279 sock->state = SS_UNCONNECTED; 1280 release_sock(sk); 1281 return 0; 1282 } else if (err != 0) 1283 return -EINVAL; 1284 1285 lock_sock(sk); 1286 1287 err = vsock_auto_bind(vsk); 1288 if (err) 1289 goto out; 1290 1291 if (!vsk->transport->dgram_allow(remote_addr->svm_cid, 1292 remote_addr->svm_port)) { 1293 err = -EINVAL; 1294 goto out; 1295 } 1296 1297 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1298 sock->state = SS_CONNECTED; 1299 1300 /* sock map disallows redirection of non-TCP sockets with sk_state != 1301 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set 1302 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams. 1303 * 1304 * This doesn't seem to be abnormal state for datagram sockets, as the 1305 * same approach can be see in other datagram socket types as well 1306 * (such as unix sockets). 1307 */ 1308 sk->sk_state = TCP_ESTABLISHED; 1309 1310 out: 1311 release_sock(sk); 1312 return err; 1313 } 1314 1315 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1316 size_t len, int flags) 1317 { 1318 struct sock *sk = sock->sk; 1319 struct vsock_sock *vsk = vsock_sk(sk); 1320 1321 return vsk->transport->dgram_dequeue(vsk, msg, len, flags); 1322 } 1323 1324 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1325 size_t len, int flags) 1326 { 1327 #ifdef CONFIG_BPF_SYSCALL 1328 struct sock *sk = sock->sk; 1329 const struct proto *prot; 1330 1331 prot = READ_ONCE(sk->sk_prot); 1332 if (prot != &vsock_proto) 1333 return prot->recvmsg(sk, msg, len, flags, NULL); 1334 #endif 1335 1336 return __vsock_dgram_recvmsg(sock, msg, len, flags); 1337 } 1338 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg); 1339 1340 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd, 1341 int __user *arg) 1342 { 1343 struct sock *sk = sock->sk; 1344 struct vsock_sock *vsk; 1345 int ret; 1346 1347 vsk = vsock_sk(sk); 1348 1349 switch (cmd) { 1350 case SIOCOUTQ: { 1351 ssize_t n_bytes; 1352 1353 if (!vsk->transport || !vsk->transport->unsent_bytes) { 1354 ret = -EOPNOTSUPP; 1355 break; 1356 } 1357 1358 if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) { 1359 ret = -EINVAL; 1360 break; 1361 } 1362 1363 n_bytes = vsk->transport->unsent_bytes(vsk); 1364 if (n_bytes < 0) { 1365 ret = n_bytes; 1366 break; 1367 } 1368 1369 ret = put_user(n_bytes, arg); 1370 break; 1371 } 1372 default: 1373 ret = -ENOIOCTLCMD; 1374 } 1375 1376 return ret; 1377 } 1378 1379 static int vsock_ioctl(struct socket *sock, unsigned int cmd, 1380 unsigned long arg) 1381 { 1382 int ret; 1383 1384 lock_sock(sock->sk); 1385 ret = vsock_do_ioctl(sock, cmd, (int __user *)arg); 1386 release_sock(sock->sk); 1387 1388 return ret; 1389 } 1390 1391 static const struct proto_ops vsock_dgram_ops = { 1392 .family = PF_VSOCK, 1393 .owner = THIS_MODULE, 1394 .release = vsock_release, 1395 .bind = vsock_bind, 1396 .connect = vsock_dgram_connect, 1397 .socketpair = sock_no_socketpair, 1398 .accept = sock_no_accept, 1399 .getname = vsock_getname, 1400 .poll = vsock_poll, 1401 .ioctl = vsock_ioctl, 1402 .listen = sock_no_listen, 1403 .shutdown = vsock_shutdown, 1404 .sendmsg = vsock_dgram_sendmsg, 1405 .recvmsg = vsock_dgram_recvmsg, 1406 .mmap = sock_no_mmap, 1407 .read_skb = vsock_read_skb, 1408 }; 1409 1410 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk) 1411 { 1412 const struct vsock_transport *transport = vsk->transport; 1413 1414 if (!transport || !transport->cancel_pkt) 1415 return -EOPNOTSUPP; 1416 1417 return transport->cancel_pkt(vsk); 1418 } 1419 1420 static void vsock_connect_timeout(struct work_struct *work) 1421 { 1422 struct sock *sk; 1423 struct vsock_sock *vsk; 1424 1425 vsk = container_of(work, struct vsock_sock, connect_work.work); 1426 sk = sk_vsock(vsk); 1427 1428 lock_sock(sk); 1429 if (sk->sk_state == TCP_SYN_SENT && 1430 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1431 sk->sk_state = TCP_CLOSE; 1432 sk->sk_socket->state = SS_UNCONNECTED; 1433 sk->sk_err = ETIMEDOUT; 1434 sk_error_report(sk); 1435 vsock_transport_cancel_pkt(vsk); 1436 } 1437 release_sock(sk); 1438 1439 sock_put(sk); 1440 } 1441 1442 static int vsock_connect(struct socket *sock, struct sockaddr *addr, 1443 int addr_len, int flags) 1444 { 1445 int err; 1446 struct sock *sk; 1447 struct vsock_sock *vsk; 1448 const struct vsock_transport *transport; 1449 struct sockaddr_vm *remote_addr; 1450 long timeout; 1451 DEFINE_WAIT(wait); 1452 1453 err = 0; 1454 sk = sock->sk; 1455 vsk = vsock_sk(sk); 1456 1457 lock_sock(sk); 1458 1459 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1460 switch (sock->state) { 1461 case SS_CONNECTED: 1462 err = -EISCONN; 1463 goto out; 1464 case SS_DISCONNECTING: 1465 err = -EINVAL; 1466 goto out; 1467 case SS_CONNECTING: 1468 /* This continues on so we can move sock into the SS_CONNECTED 1469 * state once the connection has completed (at which point err 1470 * will be set to zero also). Otherwise, we will either wait 1471 * for the connection or return -EALREADY should this be a 1472 * non-blocking call. 1473 */ 1474 err = -EALREADY; 1475 if (flags & O_NONBLOCK) 1476 goto out; 1477 break; 1478 default: 1479 if ((sk->sk_state == TCP_LISTEN) || 1480 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1481 err = -EINVAL; 1482 goto out; 1483 } 1484 1485 /* Set the remote address that we are connecting to. */ 1486 memcpy(&vsk->remote_addr, remote_addr, 1487 sizeof(vsk->remote_addr)); 1488 1489 err = vsock_assign_transport(vsk, NULL); 1490 if (err) 1491 goto out; 1492 1493 transport = vsk->transport; 1494 1495 /* The hypervisor and well-known contexts do not have socket 1496 * endpoints. 1497 */ 1498 if (!transport || 1499 !transport->stream_allow(remote_addr->svm_cid, 1500 remote_addr->svm_port)) { 1501 err = -ENETUNREACH; 1502 goto out; 1503 } 1504 1505 if (vsock_msgzerocopy_allow(transport)) { 1506 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1507 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1508 /* If this option was set before 'connect()', 1509 * when transport was unknown, check that this 1510 * feature is supported here. 1511 */ 1512 err = -EOPNOTSUPP; 1513 goto out; 1514 } 1515 1516 err = vsock_auto_bind(vsk); 1517 if (err) 1518 goto out; 1519 1520 sk->sk_state = TCP_SYN_SENT; 1521 1522 err = transport->connect(vsk); 1523 if (err < 0) 1524 goto out; 1525 1526 /* sk_err might have been set as a result of an earlier 1527 * (failed) connect attempt. 1528 */ 1529 sk->sk_err = 0; 1530 1531 /* Mark sock as connecting and set the error code to in 1532 * progress in case this is a non-blocking connect. 1533 */ 1534 sock->state = SS_CONNECTING; 1535 err = -EINPROGRESS; 1536 } 1537 1538 /* The receive path will handle all communication until we are able to 1539 * enter the connected state. Here we wait for the connection to be 1540 * completed or a notification of an error. 1541 */ 1542 timeout = vsk->connect_timeout; 1543 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1544 1545 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) { 1546 if (flags & O_NONBLOCK) { 1547 /* If we're not going to block, we schedule a timeout 1548 * function to generate a timeout on the connection 1549 * attempt, in case the peer doesn't respond in a 1550 * timely manner. We hold on to the socket until the 1551 * timeout fires. 1552 */ 1553 sock_hold(sk); 1554 1555 /* If the timeout function is already scheduled, 1556 * reschedule it, then ungrab the socket refcount to 1557 * keep it balanced. 1558 */ 1559 if (mod_delayed_work(system_wq, &vsk->connect_work, 1560 timeout)) 1561 sock_put(sk); 1562 1563 /* Skip ahead to preserve error code set above. */ 1564 goto out_wait; 1565 } 1566 1567 release_sock(sk); 1568 timeout = schedule_timeout(timeout); 1569 lock_sock(sk); 1570 1571 if (signal_pending(current)) { 1572 err = sock_intr_errno(timeout); 1573 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE; 1574 sock->state = SS_UNCONNECTED; 1575 vsock_transport_cancel_pkt(vsk); 1576 vsock_remove_connected(vsk); 1577 goto out_wait; 1578 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) { 1579 err = -ETIMEDOUT; 1580 sk->sk_state = TCP_CLOSE; 1581 sock->state = SS_UNCONNECTED; 1582 vsock_transport_cancel_pkt(vsk); 1583 goto out_wait; 1584 } 1585 1586 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1587 } 1588 1589 if (sk->sk_err) { 1590 err = -sk->sk_err; 1591 sk->sk_state = TCP_CLOSE; 1592 sock->state = SS_UNCONNECTED; 1593 } else { 1594 err = 0; 1595 } 1596 1597 out_wait: 1598 finish_wait(sk_sleep(sk), &wait); 1599 out: 1600 release_sock(sk); 1601 return err; 1602 } 1603 1604 static int vsock_accept(struct socket *sock, struct socket *newsock, 1605 struct proto_accept_arg *arg) 1606 { 1607 struct sock *listener; 1608 int err; 1609 struct sock *connected; 1610 struct vsock_sock *vconnected; 1611 long timeout; 1612 DEFINE_WAIT(wait); 1613 1614 err = 0; 1615 listener = sock->sk; 1616 1617 lock_sock(listener); 1618 1619 if (!sock_type_connectible(sock->type)) { 1620 err = -EOPNOTSUPP; 1621 goto out; 1622 } 1623 1624 if (listener->sk_state != TCP_LISTEN) { 1625 err = -EINVAL; 1626 goto out; 1627 } 1628 1629 /* Wait for children sockets to appear; these are the new sockets 1630 * created upon connection establishment. 1631 */ 1632 timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK); 1633 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1634 1635 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1636 listener->sk_err == 0) { 1637 release_sock(listener); 1638 timeout = schedule_timeout(timeout); 1639 finish_wait(sk_sleep(listener), &wait); 1640 lock_sock(listener); 1641 1642 if (signal_pending(current)) { 1643 err = sock_intr_errno(timeout); 1644 goto out; 1645 } else if (timeout == 0) { 1646 err = -EAGAIN; 1647 goto out; 1648 } 1649 1650 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1651 } 1652 finish_wait(sk_sleep(listener), &wait); 1653 1654 if (listener->sk_err) 1655 err = -listener->sk_err; 1656 1657 if (connected) { 1658 sk_acceptq_removed(listener); 1659 1660 lock_sock_nested(connected, SINGLE_DEPTH_NESTING); 1661 vconnected = vsock_sk(connected); 1662 1663 /* If the listener socket has received an error, then we should 1664 * reject this socket and return. Note that we simply mark the 1665 * socket rejected, drop our reference, and let the cleanup 1666 * function handle the cleanup; the fact that we found it in 1667 * the listener's accept queue guarantees that the cleanup 1668 * function hasn't run yet. 1669 */ 1670 if (err) { 1671 vconnected->rejected = true; 1672 } else { 1673 newsock->state = SS_CONNECTED; 1674 sock_graft(connected, newsock); 1675 if (vsock_msgzerocopy_allow(vconnected->transport)) 1676 set_bit(SOCK_SUPPORT_ZC, 1677 &connected->sk_socket->flags); 1678 } 1679 1680 release_sock(connected); 1681 sock_put(connected); 1682 } 1683 1684 out: 1685 release_sock(listener); 1686 return err; 1687 } 1688 1689 static int vsock_listen(struct socket *sock, int backlog) 1690 { 1691 int err; 1692 struct sock *sk; 1693 struct vsock_sock *vsk; 1694 1695 sk = sock->sk; 1696 1697 lock_sock(sk); 1698 1699 if (!sock_type_connectible(sk->sk_type)) { 1700 err = -EOPNOTSUPP; 1701 goto out; 1702 } 1703 1704 if (sock->state != SS_UNCONNECTED) { 1705 err = -EINVAL; 1706 goto out; 1707 } 1708 1709 vsk = vsock_sk(sk); 1710 1711 if (!vsock_addr_bound(&vsk->local_addr)) { 1712 err = -EINVAL; 1713 goto out; 1714 } 1715 1716 sk->sk_max_ack_backlog = backlog; 1717 sk->sk_state = TCP_LISTEN; 1718 1719 err = 0; 1720 1721 out: 1722 release_sock(sk); 1723 return err; 1724 } 1725 1726 static void vsock_update_buffer_size(struct vsock_sock *vsk, 1727 const struct vsock_transport *transport, 1728 u64 val) 1729 { 1730 if (val > vsk->buffer_max_size) 1731 val = vsk->buffer_max_size; 1732 1733 if (val < vsk->buffer_min_size) 1734 val = vsk->buffer_min_size; 1735 1736 if (val != vsk->buffer_size && 1737 transport && transport->notify_buffer_size) 1738 transport->notify_buffer_size(vsk, &val); 1739 1740 vsk->buffer_size = val; 1741 } 1742 1743 static int vsock_connectible_setsockopt(struct socket *sock, 1744 int level, 1745 int optname, 1746 sockptr_t optval, 1747 unsigned int optlen) 1748 { 1749 int err; 1750 struct sock *sk; 1751 struct vsock_sock *vsk; 1752 const struct vsock_transport *transport; 1753 u64 val; 1754 1755 if (level != AF_VSOCK && level != SOL_SOCKET) 1756 return -ENOPROTOOPT; 1757 1758 #define COPY_IN(_v) \ 1759 do { \ 1760 if (optlen < sizeof(_v)) { \ 1761 err = -EINVAL; \ 1762 goto exit; \ 1763 } \ 1764 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \ 1765 err = -EFAULT; \ 1766 goto exit; \ 1767 } \ 1768 } while (0) 1769 1770 err = 0; 1771 sk = sock->sk; 1772 vsk = vsock_sk(sk); 1773 1774 lock_sock(sk); 1775 1776 transport = vsk->transport; 1777 1778 if (level == SOL_SOCKET) { 1779 int zerocopy; 1780 1781 if (optname != SO_ZEROCOPY) { 1782 release_sock(sk); 1783 return sock_setsockopt(sock, level, optname, optval, optlen); 1784 } 1785 1786 /* Use 'int' type here, because variable to 1787 * set this option usually has this type. 1788 */ 1789 COPY_IN(zerocopy); 1790 1791 if (zerocopy < 0 || zerocopy > 1) { 1792 err = -EINVAL; 1793 goto exit; 1794 } 1795 1796 if (transport && !vsock_msgzerocopy_allow(transport)) { 1797 err = -EOPNOTSUPP; 1798 goto exit; 1799 } 1800 1801 sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy); 1802 goto exit; 1803 } 1804 1805 switch (optname) { 1806 case SO_VM_SOCKETS_BUFFER_SIZE: 1807 COPY_IN(val); 1808 vsock_update_buffer_size(vsk, transport, val); 1809 break; 1810 1811 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1812 COPY_IN(val); 1813 vsk->buffer_max_size = val; 1814 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1815 break; 1816 1817 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1818 COPY_IN(val); 1819 vsk->buffer_min_size = val; 1820 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1821 break; 1822 1823 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1824 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: { 1825 struct __kernel_sock_timeval tv; 1826 1827 err = sock_copy_user_timeval(&tv, optval, optlen, 1828 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1829 if (err) 1830 break; 1831 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1832 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1833 vsk->connect_timeout = tv.tv_sec * HZ + 1834 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ)); 1835 if (vsk->connect_timeout == 0) 1836 vsk->connect_timeout = 1837 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1838 1839 } else { 1840 err = -ERANGE; 1841 } 1842 break; 1843 } 1844 1845 default: 1846 err = -ENOPROTOOPT; 1847 break; 1848 } 1849 1850 #undef COPY_IN 1851 1852 exit: 1853 release_sock(sk); 1854 return err; 1855 } 1856 1857 static int vsock_connectible_getsockopt(struct socket *sock, 1858 int level, int optname, 1859 char __user *optval, 1860 int __user *optlen) 1861 { 1862 struct sock *sk = sock->sk; 1863 struct vsock_sock *vsk = vsock_sk(sk); 1864 1865 union { 1866 u64 val64; 1867 struct old_timeval32 tm32; 1868 struct __kernel_old_timeval tm; 1869 struct __kernel_sock_timeval stm; 1870 } v; 1871 1872 int lv = sizeof(v.val64); 1873 int len; 1874 1875 if (level != AF_VSOCK) 1876 return -ENOPROTOOPT; 1877 1878 if (get_user(len, optlen)) 1879 return -EFAULT; 1880 1881 memset(&v, 0, sizeof(v)); 1882 1883 switch (optname) { 1884 case SO_VM_SOCKETS_BUFFER_SIZE: 1885 v.val64 = vsk->buffer_size; 1886 break; 1887 1888 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1889 v.val64 = vsk->buffer_max_size; 1890 break; 1891 1892 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1893 v.val64 = vsk->buffer_min_size; 1894 break; 1895 1896 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1897 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: 1898 lv = sock_get_timeout(vsk->connect_timeout, &v, 1899 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1900 break; 1901 1902 default: 1903 return -ENOPROTOOPT; 1904 } 1905 1906 if (len < lv) 1907 return -EINVAL; 1908 if (len > lv) 1909 len = lv; 1910 if (copy_to_user(optval, &v, len)) 1911 return -EFAULT; 1912 1913 if (put_user(len, optlen)) 1914 return -EFAULT; 1915 1916 return 0; 1917 } 1918 1919 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg, 1920 size_t len) 1921 { 1922 struct sock *sk; 1923 struct vsock_sock *vsk; 1924 const struct vsock_transport *transport; 1925 ssize_t total_written; 1926 long timeout; 1927 int err; 1928 struct vsock_transport_send_notify_data send_data; 1929 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1930 1931 sk = sock->sk; 1932 vsk = vsock_sk(sk); 1933 total_written = 0; 1934 err = 0; 1935 1936 if (msg->msg_flags & MSG_OOB) 1937 return -EOPNOTSUPP; 1938 1939 lock_sock(sk); 1940 1941 transport = vsk->transport; 1942 1943 /* Callers should not provide a destination with connection oriented 1944 * sockets. 1945 */ 1946 if (msg->msg_namelen) { 1947 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 1948 goto out; 1949 } 1950 1951 /* Send data only if both sides are not shutdown in the direction. */ 1952 if (sk->sk_shutdown & SEND_SHUTDOWN || 1953 vsk->peer_shutdown & RCV_SHUTDOWN) { 1954 err = -EPIPE; 1955 goto out; 1956 } 1957 1958 if (!transport || sk->sk_state != TCP_ESTABLISHED || 1959 !vsock_addr_bound(&vsk->local_addr)) { 1960 err = -ENOTCONN; 1961 goto out; 1962 } 1963 1964 if (!vsock_addr_bound(&vsk->remote_addr)) { 1965 err = -EDESTADDRREQ; 1966 goto out; 1967 } 1968 1969 if (msg->msg_flags & MSG_ZEROCOPY && 1970 !vsock_msgzerocopy_allow(transport)) { 1971 err = -EOPNOTSUPP; 1972 goto out; 1973 } 1974 1975 /* Wait for room in the produce queue to enqueue our user's data. */ 1976 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1977 1978 err = transport->notify_send_init(vsk, &send_data); 1979 if (err < 0) 1980 goto out; 1981 1982 while (total_written < len) { 1983 ssize_t written; 1984 1985 add_wait_queue(sk_sleep(sk), &wait); 1986 while (vsock_stream_has_space(vsk) == 0 && 1987 sk->sk_err == 0 && 1988 !(sk->sk_shutdown & SEND_SHUTDOWN) && 1989 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 1990 1991 /* Don't wait for non-blocking sockets. */ 1992 if (timeout == 0) { 1993 err = -EAGAIN; 1994 remove_wait_queue(sk_sleep(sk), &wait); 1995 goto out_err; 1996 } 1997 1998 err = transport->notify_send_pre_block(vsk, &send_data); 1999 if (err < 0) { 2000 remove_wait_queue(sk_sleep(sk), &wait); 2001 goto out_err; 2002 } 2003 2004 release_sock(sk); 2005 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout); 2006 lock_sock(sk); 2007 if (signal_pending(current)) { 2008 err = sock_intr_errno(timeout); 2009 remove_wait_queue(sk_sleep(sk), &wait); 2010 goto out_err; 2011 } else if (timeout == 0) { 2012 err = -EAGAIN; 2013 remove_wait_queue(sk_sleep(sk), &wait); 2014 goto out_err; 2015 } 2016 } 2017 remove_wait_queue(sk_sleep(sk), &wait); 2018 2019 /* These checks occur both as part of and after the loop 2020 * conditional since we need to check before and after 2021 * sleeping. 2022 */ 2023 if (sk->sk_err) { 2024 err = -sk->sk_err; 2025 goto out_err; 2026 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 2027 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 2028 err = -EPIPE; 2029 goto out_err; 2030 } 2031 2032 err = transport->notify_send_pre_enqueue(vsk, &send_data); 2033 if (err < 0) 2034 goto out_err; 2035 2036 /* Note that enqueue will only write as many bytes as are free 2037 * in the produce queue, so we don't need to ensure len is 2038 * smaller than the queue size. It is the caller's 2039 * responsibility to check how many bytes we were able to send. 2040 */ 2041 2042 if (sk->sk_type == SOCK_SEQPACKET) { 2043 written = transport->seqpacket_enqueue(vsk, 2044 msg, len - total_written); 2045 } else { 2046 written = transport->stream_enqueue(vsk, 2047 msg, len - total_written); 2048 } 2049 2050 if (written < 0) { 2051 err = written; 2052 goto out_err; 2053 } 2054 2055 total_written += written; 2056 2057 err = transport->notify_send_post_enqueue( 2058 vsk, written, &send_data); 2059 if (err < 0) 2060 goto out_err; 2061 2062 } 2063 2064 out_err: 2065 if (total_written > 0) { 2066 /* Return number of written bytes only if: 2067 * 1) SOCK_STREAM socket. 2068 * 2) SOCK_SEQPACKET socket when whole buffer is sent. 2069 */ 2070 if (sk->sk_type == SOCK_STREAM || total_written == len) 2071 err = total_written; 2072 } 2073 out: 2074 if (sk->sk_type == SOCK_STREAM) 2075 err = sk_stream_error(sk, msg->msg_flags, err); 2076 2077 release_sock(sk); 2078 return err; 2079 } 2080 2081 static int vsock_connectible_wait_data(struct sock *sk, 2082 struct wait_queue_entry *wait, 2083 long timeout, 2084 struct vsock_transport_recv_notify_data *recv_data, 2085 size_t target) 2086 { 2087 const struct vsock_transport *transport; 2088 struct vsock_sock *vsk; 2089 s64 data; 2090 int err; 2091 2092 vsk = vsock_sk(sk); 2093 err = 0; 2094 transport = vsk->transport; 2095 2096 while (1) { 2097 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE); 2098 data = vsock_connectible_has_data(vsk); 2099 if (data != 0) 2100 break; 2101 2102 if (sk->sk_err != 0 || 2103 (sk->sk_shutdown & RCV_SHUTDOWN) || 2104 (vsk->peer_shutdown & SEND_SHUTDOWN)) { 2105 break; 2106 } 2107 2108 /* Don't wait for non-blocking sockets. */ 2109 if (timeout == 0) { 2110 err = -EAGAIN; 2111 break; 2112 } 2113 2114 if (recv_data) { 2115 err = transport->notify_recv_pre_block(vsk, target, recv_data); 2116 if (err < 0) 2117 break; 2118 } 2119 2120 release_sock(sk); 2121 timeout = schedule_timeout(timeout); 2122 lock_sock(sk); 2123 2124 if (signal_pending(current)) { 2125 err = sock_intr_errno(timeout); 2126 break; 2127 } else if (timeout == 0) { 2128 err = -EAGAIN; 2129 break; 2130 } 2131 } 2132 2133 finish_wait(sk_sleep(sk), wait); 2134 2135 if (err) 2136 return err; 2137 2138 /* Internal transport error when checking for available 2139 * data. XXX This should be changed to a connection 2140 * reset in a later change. 2141 */ 2142 if (data < 0) 2143 return -ENOMEM; 2144 2145 return data; 2146 } 2147 2148 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg, 2149 size_t len, int flags) 2150 { 2151 struct vsock_transport_recv_notify_data recv_data; 2152 const struct vsock_transport *transport; 2153 struct vsock_sock *vsk; 2154 ssize_t copied; 2155 size_t target; 2156 long timeout; 2157 int err; 2158 2159 DEFINE_WAIT(wait); 2160 2161 vsk = vsock_sk(sk); 2162 transport = vsk->transport; 2163 2164 /* We must not copy less than target bytes into the user's buffer 2165 * before returning successfully, so we wait for the consume queue to 2166 * have that much data to consume before dequeueing. Note that this 2167 * makes it impossible to handle cases where target is greater than the 2168 * queue size. 2169 */ 2170 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2171 if (target >= transport->stream_rcvhiwat(vsk)) { 2172 err = -ENOMEM; 2173 goto out; 2174 } 2175 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2176 copied = 0; 2177 2178 err = transport->notify_recv_init(vsk, target, &recv_data); 2179 if (err < 0) 2180 goto out; 2181 2182 2183 while (1) { 2184 ssize_t read; 2185 2186 err = vsock_connectible_wait_data(sk, &wait, timeout, 2187 &recv_data, target); 2188 if (err <= 0) 2189 break; 2190 2191 err = transport->notify_recv_pre_dequeue(vsk, target, 2192 &recv_data); 2193 if (err < 0) 2194 break; 2195 2196 read = transport->stream_dequeue(vsk, msg, len - copied, flags); 2197 if (read < 0) { 2198 err = read; 2199 break; 2200 } 2201 2202 copied += read; 2203 2204 err = transport->notify_recv_post_dequeue(vsk, target, read, 2205 !(flags & MSG_PEEK), &recv_data); 2206 if (err < 0) 2207 goto out; 2208 2209 if (read >= target || flags & MSG_PEEK) 2210 break; 2211 2212 target -= read; 2213 } 2214 2215 if (sk->sk_err) 2216 err = -sk->sk_err; 2217 else if (sk->sk_shutdown & RCV_SHUTDOWN) 2218 err = 0; 2219 2220 if (copied > 0) 2221 err = copied; 2222 2223 out: 2224 return err; 2225 } 2226 2227 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg, 2228 size_t len, int flags) 2229 { 2230 const struct vsock_transport *transport; 2231 struct vsock_sock *vsk; 2232 ssize_t msg_len; 2233 long timeout; 2234 int err = 0; 2235 DEFINE_WAIT(wait); 2236 2237 vsk = vsock_sk(sk); 2238 transport = vsk->transport; 2239 2240 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2241 2242 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0); 2243 if (err <= 0) 2244 goto out; 2245 2246 msg_len = transport->seqpacket_dequeue(vsk, msg, flags); 2247 2248 if (msg_len < 0) { 2249 err = msg_len; 2250 goto out; 2251 } 2252 2253 if (sk->sk_err) { 2254 err = -sk->sk_err; 2255 } else if (sk->sk_shutdown & RCV_SHUTDOWN) { 2256 err = 0; 2257 } else { 2258 /* User sets MSG_TRUNC, so return real length of 2259 * packet. 2260 */ 2261 if (flags & MSG_TRUNC) 2262 err = msg_len; 2263 else 2264 err = len - msg_data_left(msg); 2265 2266 /* Always set MSG_TRUNC if real length of packet is 2267 * bigger than user's buffer. 2268 */ 2269 if (msg_len > len) 2270 msg->msg_flags |= MSG_TRUNC; 2271 } 2272 2273 out: 2274 return err; 2275 } 2276 2277 int 2278 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2279 int flags) 2280 { 2281 struct sock *sk; 2282 struct vsock_sock *vsk; 2283 const struct vsock_transport *transport; 2284 int err; 2285 2286 sk = sock->sk; 2287 2288 if (unlikely(flags & MSG_ERRQUEUE)) 2289 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR); 2290 2291 vsk = vsock_sk(sk); 2292 err = 0; 2293 2294 lock_sock(sk); 2295 2296 transport = vsk->transport; 2297 2298 if (!transport || sk->sk_state != TCP_ESTABLISHED) { 2299 /* Recvmsg is supposed to return 0 if a peer performs an 2300 * orderly shutdown. Differentiate between that case and when a 2301 * peer has not connected or a local shutdown occurred with the 2302 * SOCK_DONE flag. 2303 */ 2304 if (sock_flag(sk, SOCK_DONE)) 2305 err = 0; 2306 else 2307 err = -ENOTCONN; 2308 2309 goto out; 2310 } 2311 2312 if (flags & MSG_OOB) { 2313 err = -EOPNOTSUPP; 2314 goto out; 2315 } 2316 2317 /* We don't check peer_shutdown flag here since peer may actually shut 2318 * down, but there can be data in the queue that a local socket can 2319 * receive. 2320 */ 2321 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2322 err = 0; 2323 goto out; 2324 } 2325 2326 /* It is valid on Linux to pass in a zero-length receive buffer. This 2327 * is not an error. We may as well bail out now. 2328 */ 2329 if (!len) { 2330 err = 0; 2331 goto out; 2332 } 2333 2334 if (sk->sk_type == SOCK_STREAM) 2335 err = __vsock_stream_recvmsg(sk, msg, len, flags); 2336 else 2337 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags); 2338 2339 out: 2340 release_sock(sk); 2341 return err; 2342 } 2343 2344 int 2345 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2346 int flags) 2347 { 2348 #ifdef CONFIG_BPF_SYSCALL 2349 struct sock *sk = sock->sk; 2350 const struct proto *prot; 2351 2352 prot = READ_ONCE(sk->sk_prot); 2353 if (prot != &vsock_proto) 2354 return prot->recvmsg(sk, msg, len, flags, NULL); 2355 #endif 2356 2357 return __vsock_connectible_recvmsg(sock, msg, len, flags); 2358 } 2359 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg); 2360 2361 static int vsock_set_rcvlowat(struct sock *sk, int val) 2362 { 2363 const struct vsock_transport *transport; 2364 struct vsock_sock *vsk; 2365 2366 vsk = vsock_sk(sk); 2367 2368 if (val > vsk->buffer_size) 2369 return -EINVAL; 2370 2371 transport = vsk->transport; 2372 2373 if (transport && transport->notify_set_rcvlowat) { 2374 int err; 2375 2376 err = transport->notify_set_rcvlowat(vsk, val); 2377 if (err) 2378 return err; 2379 } 2380 2381 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 2382 return 0; 2383 } 2384 2385 static const struct proto_ops vsock_stream_ops = { 2386 .family = PF_VSOCK, 2387 .owner = THIS_MODULE, 2388 .release = vsock_release, 2389 .bind = vsock_bind, 2390 .connect = vsock_connect, 2391 .socketpair = sock_no_socketpair, 2392 .accept = vsock_accept, 2393 .getname = vsock_getname, 2394 .poll = vsock_poll, 2395 .ioctl = vsock_ioctl, 2396 .listen = vsock_listen, 2397 .shutdown = vsock_shutdown, 2398 .setsockopt = vsock_connectible_setsockopt, 2399 .getsockopt = vsock_connectible_getsockopt, 2400 .sendmsg = vsock_connectible_sendmsg, 2401 .recvmsg = vsock_connectible_recvmsg, 2402 .mmap = sock_no_mmap, 2403 .set_rcvlowat = vsock_set_rcvlowat, 2404 .read_skb = vsock_read_skb, 2405 }; 2406 2407 static const struct proto_ops vsock_seqpacket_ops = { 2408 .family = PF_VSOCK, 2409 .owner = THIS_MODULE, 2410 .release = vsock_release, 2411 .bind = vsock_bind, 2412 .connect = vsock_connect, 2413 .socketpair = sock_no_socketpair, 2414 .accept = vsock_accept, 2415 .getname = vsock_getname, 2416 .poll = vsock_poll, 2417 .ioctl = vsock_ioctl, 2418 .listen = vsock_listen, 2419 .shutdown = vsock_shutdown, 2420 .setsockopt = vsock_connectible_setsockopt, 2421 .getsockopt = vsock_connectible_getsockopt, 2422 .sendmsg = vsock_connectible_sendmsg, 2423 .recvmsg = vsock_connectible_recvmsg, 2424 .mmap = sock_no_mmap, 2425 .read_skb = vsock_read_skb, 2426 }; 2427 2428 static int vsock_create(struct net *net, struct socket *sock, 2429 int protocol, int kern) 2430 { 2431 struct vsock_sock *vsk; 2432 struct sock *sk; 2433 int ret; 2434 2435 if (!sock) 2436 return -EINVAL; 2437 2438 if (protocol && protocol != PF_VSOCK) 2439 return -EPROTONOSUPPORT; 2440 2441 switch (sock->type) { 2442 case SOCK_DGRAM: 2443 sock->ops = &vsock_dgram_ops; 2444 break; 2445 case SOCK_STREAM: 2446 sock->ops = &vsock_stream_ops; 2447 break; 2448 case SOCK_SEQPACKET: 2449 sock->ops = &vsock_seqpacket_ops; 2450 break; 2451 default: 2452 return -ESOCKTNOSUPPORT; 2453 } 2454 2455 sock->state = SS_UNCONNECTED; 2456 2457 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern); 2458 if (!sk) 2459 return -ENOMEM; 2460 2461 vsk = vsock_sk(sk); 2462 2463 if (sock->type == SOCK_DGRAM) { 2464 ret = vsock_assign_transport(vsk, NULL); 2465 if (ret < 0) { 2466 sock->sk = NULL; 2467 sock_put(sk); 2468 return ret; 2469 } 2470 } 2471 2472 /* SOCK_DGRAM doesn't have 'setsockopt' callback set in its 2473 * proto_ops, so there is no handler for custom logic. 2474 */ 2475 if (sock_type_connectible(sock->type)) 2476 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2477 2478 vsock_insert_unbound(vsk); 2479 2480 return 0; 2481 } 2482 2483 static const struct net_proto_family vsock_family_ops = { 2484 .family = AF_VSOCK, 2485 .create = vsock_create, 2486 .owner = THIS_MODULE, 2487 }; 2488 2489 static long vsock_dev_do_ioctl(struct file *filp, 2490 unsigned int cmd, void __user *ptr) 2491 { 2492 u32 __user *p = ptr; 2493 u32 cid = VMADDR_CID_ANY; 2494 int retval = 0; 2495 2496 switch (cmd) { 2497 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 2498 /* To be compatible with the VMCI behavior, we prioritize the 2499 * guest CID instead of well-know host CID (VMADDR_CID_HOST). 2500 */ 2501 if (transport_g2h) 2502 cid = transport_g2h->get_local_cid(); 2503 else if (transport_h2g) 2504 cid = transport_h2g->get_local_cid(); 2505 2506 if (put_user(cid, p) != 0) 2507 retval = -EFAULT; 2508 break; 2509 2510 default: 2511 retval = -ENOIOCTLCMD; 2512 } 2513 2514 return retval; 2515 } 2516 2517 static long vsock_dev_ioctl(struct file *filp, 2518 unsigned int cmd, unsigned long arg) 2519 { 2520 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 2521 } 2522 2523 #ifdef CONFIG_COMPAT 2524 static long vsock_dev_compat_ioctl(struct file *filp, 2525 unsigned int cmd, unsigned long arg) 2526 { 2527 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 2528 } 2529 #endif 2530 2531 static const struct file_operations vsock_device_ops = { 2532 .owner = THIS_MODULE, 2533 .unlocked_ioctl = vsock_dev_ioctl, 2534 #ifdef CONFIG_COMPAT 2535 .compat_ioctl = vsock_dev_compat_ioctl, 2536 #endif 2537 .open = nonseekable_open, 2538 }; 2539 2540 static struct miscdevice vsock_device = { 2541 .name = "vsock", 2542 .fops = &vsock_device_ops, 2543 }; 2544 2545 static int __init vsock_init(void) 2546 { 2547 int err = 0; 2548 2549 vsock_init_tables(); 2550 2551 vsock_proto.owner = THIS_MODULE; 2552 vsock_device.minor = MISC_DYNAMIC_MINOR; 2553 err = misc_register(&vsock_device); 2554 if (err) { 2555 pr_err("Failed to register misc device\n"); 2556 goto err_reset_transport; 2557 } 2558 2559 err = proto_register(&vsock_proto, 1); /* we want our slab */ 2560 if (err) { 2561 pr_err("Cannot register vsock protocol\n"); 2562 goto err_deregister_misc; 2563 } 2564 2565 err = sock_register(&vsock_family_ops); 2566 if (err) { 2567 pr_err("could not register af_vsock (%d) address family: %d\n", 2568 AF_VSOCK, err); 2569 goto err_unregister_proto; 2570 } 2571 2572 vsock_bpf_build_proto(); 2573 2574 return 0; 2575 2576 err_unregister_proto: 2577 proto_unregister(&vsock_proto); 2578 err_deregister_misc: 2579 misc_deregister(&vsock_device); 2580 err_reset_transport: 2581 return err; 2582 } 2583 2584 static void __exit vsock_exit(void) 2585 { 2586 misc_deregister(&vsock_device); 2587 sock_unregister(AF_VSOCK); 2588 proto_unregister(&vsock_proto); 2589 } 2590 2591 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk) 2592 { 2593 return vsk->transport; 2594 } 2595 EXPORT_SYMBOL_GPL(vsock_core_get_transport); 2596 2597 int vsock_core_register(const struct vsock_transport *t, int features) 2598 { 2599 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local; 2600 int err = mutex_lock_interruptible(&vsock_register_mutex); 2601 2602 if (err) 2603 return err; 2604 2605 t_h2g = transport_h2g; 2606 t_g2h = transport_g2h; 2607 t_dgram = transport_dgram; 2608 t_local = transport_local; 2609 2610 if (features & VSOCK_TRANSPORT_F_H2G) { 2611 if (t_h2g) { 2612 err = -EBUSY; 2613 goto err_busy; 2614 } 2615 t_h2g = t; 2616 } 2617 2618 if (features & VSOCK_TRANSPORT_F_G2H) { 2619 if (t_g2h) { 2620 err = -EBUSY; 2621 goto err_busy; 2622 } 2623 t_g2h = t; 2624 } 2625 2626 if (features & VSOCK_TRANSPORT_F_DGRAM) { 2627 if (t_dgram) { 2628 err = -EBUSY; 2629 goto err_busy; 2630 } 2631 t_dgram = t; 2632 } 2633 2634 if (features & VSOCK_TRANSPORT_F_LOCAL) { 2635 if (t_local) { 2636 err = -EBUSY; 2637 goto err_busy; 2638 } 2639 t_local = t; 2640 } 2641 2642 transport_h2g = t_h2g; 2643 transport_g2h = t_g2h; 2644 transport_dgram = t_dgram; 2645 transport_local = t_local; 2646 2647 err_busy: 2648 mutex_unlock(&vsock_register_mutex); 2649 return err; 2650 } 2651 EXPORT_SYMBOL_GPL(vsock_core_register); 2652 2653 void vsock_core_unregister(const struct vsock_transport *t) 2654 { 2655 mutex_lock(&vsock_register_mutex); 2656 2657 if (transport_h2g == t) 2658 transport_h2g = NULL; 2659 2660 if (transport_g2h == t) 2661 transport_g2h = NULL; 2662 2663 if (transport_dgram == t) 2664 transport_dgram = NULL; 2665 2666 if (transport_local == t) 2667 transport_local = NULL; 2668 2669 mutex_unlock(&vsock_register_mutex); 2670 } 2671 EXPORT_SYMBOL_GPL(vsock_core_unregister); 2672 2673 module_init(vsock_init); 2674 module_exit(vsock_exit); 2675 2676 MODULE_AUTHOR("VMware, Inc."); 2677 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 2678 MODULE_VERSION("1.0.2.0-k"); 2679 MODULE_LICENSE("GPL v2"); 2680