xref: /linux/net/vmw_vsock/af_vsock.c (revision b85d45947951d23cb22d90caecf4c1eb81342c96)
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15 
16 /* Implementation notes:
17  *
18  * - There are two kinds of sockets: those created by user action (such as
19  * calling socket(2)) and those created by incoming connection request packets.
20  *
21  * - There are two "global" tables, one for bound sockets (sockets that have
22  * specified an address that they are responsible for) and one for connected
23  * sockets (sockets that have established a connection with another socket).
24  * These tables are "global" in that all sockets on the system are placed
25  * within them. - Note, though, that the bound table contains an extra entry
26  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27  * that list. The bound table is used solely for lookup of sockets when packets
28  * are received and that's not necessary for SOCK_DGRAM sockets since we create
29  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
30  * sockets out of the bound hash buckets will reduce the chance of collisions
31  * when looking for SOCK_STREAM sockets and prevents us from having to check the
32  * socket type in the hash table lookups.
33  *
34  * - Sockets created by user action will either be "client" sockets that
35  * initiate a connection or "server" sockets that listen for connections; we do
36  * not support simultaneous connects (two "client" sockets connecting).
37  *
38  * - "Server" sockets are referred to as listener sockets throughout this
39  * implementation because they are in the SS_LISTEN state.  When a connection
40  * request is received (the second kind of socket mentioned above), we create a
41  * new socket and refer to it as a pending socket.  These pending sockets are
42  * placed on the pending connection list of the listener socket.  When future
43  * packets are received for the address the listener socket is bound to, we
44  * check if the source of the packet is from one that has an existing pending
45  * connection.  If it does, we process the packet for the pending socket.  When
46  * that socket reaches the connected state, it is removed from the listener
47  * socket's pending list and enqueued in the listener socket's accept queue.
48  * Callers of accept(2) will accept connected sockets from the listener socket's
49  * accept queue.  If the socket cannot be accepted for some reason then it is
50  * marked rejected.  Once the connection is accepted, it is owned by the user
51  * process and the responsibility for cleanup falls with that user process.
52  *
53  * - It is possible that these pending sockets will never reach the connected
54  * state; in fact, we may never receive another packet after the connection
55  * request.  Because of this, we must schedule a cleanup function to run in the
56  * future, after some amount of time passes where a connection should have been
57  * established.  This function ensures that the socket is off all lists so it
58  * cannot be retrieved, then drops all references to the socket so it is cleaned
59  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
60  * function will also cleanup rejected sockets, those that reach the connected
61  * state but leave it before they have been accepted.
62  *
63  * - Sockets created by user action will be cleaned up when the user process
64  * calls close(2), causing our release implementation to be called. Our release
65  * implementation will perform some cleanup then drop the last reference so our
66  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
67  * perform additional cleanup that's common for both types of sockets.
68  *
69  * - A socket's reference count is what ensures that the structure won't be
70  * freed.  Each entry in a list (such as the "global" bound and connected tables
71  * and the listener socket's pending list and connected queue) ensures a
72  * reference.  When we defer work until process context and pass a socket as our
73  * argument, we must ensure the reference count is increased to ensure the
74  * socket isn't freed before the function is run; the deferred function will
75  * then drop the reference.
76  */
77 
78 #include <linux/types.h>
79 #include <linux/bitops.h>
80 #include <linux/cred.h>
81 #include <linux/init.h>
82 #include <linux/io.h>
83 #include <linux/kernel.h>
84 #include <linux/kmod.h>
85 #include <linux/list.h>
86 #include <linux/miscdevice.h>
87 #include <linux/module.h>
88 #include <linux/mutex.h>
89 #include <linux/net.h>
90 #include <linux/poll.h>
91 #include <linux/skbuff.h>
92 #include <linux/smp.h>
93 #include <linux/socket.h>
94 #include <linux/stddef.h>
95 #include <linux/unistd.h>
96 #include <linux/wait.h>
97 #include <linux/workqueue.h>
98 #include <net/sock.h>
99 #include <net/af_vsock.h>
100 
101 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
102 static void vsock_sk_destruct(struct sock *sk);
103 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
104 
105 /* Protocol family. */
106 static struct proto vsock_proto = {
107 	.name = "AF_VSOCK",
108 	.owner = THIS_MODULE,
109 	.obj_size = sizeof(struct vsock_sock),
110 };
111 
112 /* The default peer timeout indicates how long we will wait for a peer response
113  * to a control message.
114  */
115 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
116 
117 #define SS_LISTEN 255
118 
119 static const struct vsock_transport *transport;
120 static DEFINE_MUTEX(vsock_register_mutex);
121 
122 /**** EXPORTS ****/
123 
124 /* Get the ID of the local context.  This is transport dependent. */
125 
126 int vm_sockets_get_local_cid(void)
127 {
128 	return transport->get_local_cid();
129 }
130 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
131 
132 /**** UTILS ****/
133 
134 /* Each bound VSocket is stored in the bind hash table and each connected
135  * VSocket is stored in the connected hash table.
136  *
137  * Unbound sockets are all put on the same list attached to the end of the hash
138  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
139  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
140  * represents the list that addr hashes to).
141  *
142  * Specifically, we initialize the vsock_bind_table array to a size of
143  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
144  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
145  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
146  * mods with VSOCK_HASH_SIZE to ensure this.
147  */
148 #define VSOCK_HASH_SIZE         251
149 #define MAX_PORT_RETRIES        24
150 
151 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
152 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
153 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
154 
155 /* XXX This can probably be implemented in a better way. */
156 #define VSOCK_CONN_HASH(src, dst)				\
157 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
158 #define vsock_connected_sockets(src, dst)		\
159 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
160 #define vsock_connected_sockets_vsk(vsk)				\
161 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
162 
163 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
164 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
165 static DEFINE_SPINLOCK(vsock_table_lock);
166 
167 /* Autobind this socket to the local address if necessary. */
168 static int vsock_auto_bind(struct vsock_sock *vsk)
169 {
170 	struct sock *sk = sk_vsock(vsk);
171 	struct sockaddr_vm local_addr;
172 
173 	if (vsock_addr_bound(&vsk->local_addr))
174 		return 0;
175 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
176 	return __vsock_bind(sk, &local_addr);
177 }
178 
179 static void vsock_init_tables(void)
180 {
181 	int i;
182 
183 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
184 		INIT_LIST_HEAD(&vsock_bind_table[i]);
185 
186 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
187 		INIT_LIST_HEAD(&vsock_connected_table[i]);
188 }
189 
190 static void __vsock_insert_bound(struct list_head *list,
191 				 struct vsock_sock *vsk)
192 {
193 	sock_hold(&vsk->sk);
194 	list_add(&vsk->bound_table, list);
195 }
196 
197 static void __vsock_insert_connected(struct list_head *list,
198 				     struct vsock_sock *vsk)
199 {
200 	sock_hold(&vsk->sk);
201 	list_add(&vsk->connected_table, list);
202 }
203 
204 static void __vsock_remove_bound(struct vsock_sock *vsk)
205 {
206 	list_del_init(&vsk->bound_table);
207 	sock_put(&vsk->sk);
208 }
209 
210 static void __vsock_remove_connected(struct vsock_sock *vsk)
211 {
212 	list_del_init(&vsk->connected_table);
213 	sock_put(&vsk->sk);
214 }
215 
216 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
217 {
218 	struct vsock_sock *vsk;
219 
220 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
221 		if (addr->svm_port == vsk->local_addr.svm_port)
222 			return sk_vsock(vsk);
223 
224 	return NULL;
225 }
226 
227 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
228 						  struct sockaddr_vm *dst)
229 {
230 	struct vsock_sock *vsk;
231 
232 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
233 			    connected_table) {
234 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
235 		    dst->svm_port == vsk->local_addr.svm_port) {
236 			return sk_vsock(vsk);
237 		}
238 	}
239 
240 	return NULL;
241 }
242 
243 static bool __vsock_in_bound_table(struct vsock_sock *vsk)
244 {
245 	return !list_empty(&vsk->bound_table);
246 }
247 
248 static bool __vsock_in_connected_table(struct vsock_sock *vsk)
249 {
250 	return !list_empty(&vsk->connected_table);
251 }
252 
253 static void vsock_insert_unbound(struct vsock_sock *vsk)
254 {
255 	spin_lock_bh(&vsock_table_lock);
256 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
257 	spin_unlock_bh(&vsock_table_lock);
258 }
259 
260 void vsock_insert_connected(struct vsock_sock *vsk)
261 {
262 	struct list_head *list = vsock_connected_sockets(
263 		&vsk->remote_addr, &vsk->local_addr);
264 
265 	spin_lock_bh(&vsock_table_lock);
266 	__vsock_insert_connected(list, vsk);
267 	spin_unlock_bh(&vsock_table_lock);
268 }
269 EXPORT_SYMBOL_GPL(vsock_insert_connected);
270 
271 void vsock_remove_bound(struct vsock_sock *vsk)
272 {
273 	spin_lock_bh(&vsock_table_lock);
274 	__vsock_remove_bound(vsk);
275 	spin_unlock_bh(&vsock_table_lock);
276 }
277 EXPORT_SYMBOL_GPL(vsock_remove_bound);
278 
279 void vsock_remove_connected(struct vsock_sock *vsk)
280 {
281 	spin_lock_bh(&vsock_table_lock);
282 	__vsock_remove_connected(vsk);
283 	spin_unlock_bh(&vsock_table_lock);
284 }
285 EXPORT_SYMBOL_GPL(vsock_remove_connected);
286 
287 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
288 {
289 	struct sock *sk;
290 
291 	spin_lock_bh(&vsock_table_lock);
292 	sk = __vsock_find_bound_socket(addr);
293 	if (sk)
294 		sock_hold(sk);
295 
296 	spin_unlock_bh(&vsock_table_lock);
297 
298 	return sk;
299 }
300 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
301 
302 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
303 					 struct sockaddr_vm *dst)
304 {
305 	struct sock *sk;
306 
307 	spin_lock_bh(&vsock_table_lock);
308 	sk = __vsock_find_connected_socket(src, dst);
309 	if (sk)
310 		sock_hold(sk);
311 
312 	spin_unlock_bh(&vsock_table_lock);
313 
314 	return sk;
315 }
316 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
317 
318 static bool vsock_in_bound_table(struct vsock_sock *vsk)
319 {
320 	bool ret;
321 
322 	spin_lock_bh(&vsock_table_lock);
323 	ret = __vsock_in_bound_table(vsk);
324 	spin_unlock_bh(&vsock_table_lock);
325 
326 	return ret;
327 }
328 
329 static bool vsock_in_connected_table(struct vsock_sock *vsk)
330 {
331 	bool ret;
332 
333 	spin_lock_bh(&vsock_table_lock);
334 	ret = __vsock_in_connected_table(vsk);
335 	spin_unlock_bh(&vsock_table_lock);
336 
337 	return ret;
338 }
339 
340 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
341 {
342 	int i;
343 
344 	spin_lock_bh(&vsock_table_lock);
345 
346 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
347 		struct vsock_sock *vsk;
348 		list_for_each_entry(vsk, &vsock_connected_table[i],
349 				    connected_table)
350 			fn(sk_vsock(vsk));
351 	}
352 
353 	spin_unlock_bh(&vsock_table_lock);
354 }
355 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
356 
357 void vsock_add_pending(struct sock *listener, struct sock *pending)
358 {
359 	struct vsock_sock *vlistener;
360 	struct vsock_sock *vpending;
361 
362 	vlistener = vsock_sk(listener);
363 	vpending = vsock_sk(pending);
364 
365 	sock_hold(pending);
366 	sock_hold(listener);
367 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
368 }
369 EXPORT_SYMBOL_GPL(vsock_add_pending);
370 
371 void vsock_remove_pending(struct sock *listener, struct sock *pending)
372 {
373 	struct vsock_sock *vpending = vsock_sk(pending);
374 
375 	list_del_init(&vpending->pending_links);
376 	sock_put(listener);
377 	sock_put(pending);
378 }
379 EXPORT_SYMBOL_GPL(vsock_remove_pending);
380 
381 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
382 {
383 	struct vsock_sock *vlistener;
384 	struct vsock_sock *vconnected;
385 
386 	vlistener = vsock_sk(listener);
387 	vconnected = vsock_sk(connected);
388 
389 	sock_hold(connected);
390 	sock_hold(listener);
391 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
392 }
393 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
394 
395 static struct sock *vsock_dequeue_accept(struct sock *listener)
396 {
397 	struct vsock_sock *vlistener;
398 	struct vsock_sock *vconnected;
399 
400 	vlistener = vsock_sk(listener);
401 
402 	if (list_empty(&vlistener->accept_queue))
403 		return NULL;
404 
405 	vconnected = list_entry(vlistener->accept_queue.next,
406 				struct vsock_sock, accept_queue);
407 
408 	list_del_init(&vconnected->accept_queue);
409 	sock_put(listener);
410 	/* The caller will need a reference on the connected socket so we let
411 	 * it call sock_put().
412 	 */
413 
414 	return sk_vsock(vconnected);
415 }
416 
417 static bool vsock_is_accept_queue_empty(struct sock *sk)
418 {
419 	struct vsock_sock *vsk = vsock_sk(sk);
420 	return list_empty(&vsk->accept_queue);
421 }
422 
423 static bool vsock_is_pending(struct sock *sk)
424 {
425 	struct vsock_sock *vsk = vsock_sk(sk);
426 	return !list_empty(&vsk->pending_links);
427 }
428 
429 static int vsock_send_shutdown(struct sock *sk, int mode)
430 {
431 	return transport->shutdown(vsock_sk(sk), mode);
432 }
433 
434 void vsock_pending_work(struct work_struct *work)
435 {
436 	struct sock *sk;
437 	struct sock *listener;
438 	struct vsock_sock *vsk;
439 	bool cleanup;
440 
441 	vsk = container_of(work, struct vsock_sock, dwork.work);
442 	sk = sk_vsock(vsk);
443 	listener = vsk->listener;
444 	cleanup = true;
445 
446 	lock_sock(listener);
447 	lock_sock(sk);
448 
449 	if (vsock_is_pending(sk)) {
450 		vsock_remove_pending(listener, sk);
451 	} else if (!vsk->rejected) {
452 		/* We are not on the pending list and accept() did not reject
453 		 * us, so we must have been accepted by our user process.  We
454 		 * just need to drop our references to the sockets and be on
455 		 * our way.
456 		 */
457 		cleanup = false;
458 		goto out;
459 	}
460 
461 	listener->sk_ack_backlog--;
462 
463 	/* We need to remove ourself from the global connected sockets list so
464 	 * incoming packets can't find this socket, and to reduce the reference
465 	 * count.
466 	 */
467 	if (vsock_in_connected_table(vsk))
468 		vsock_remove_connected(vsk);
469 
470 	sk->sk_state = SS_FREE;
471 
472 out:
473 	release_sock(sk);
474 	release_sock(listener);
475 	if (cleanup)
476 		sock_put(sk);
477 
478 	sock_put(sk);
479 	sock_put(listener);
480 }
481 EXPORT_SYMBOL_GPL(vsock_pending_work);
482 
483 /**** SOCKET OPERATIONS ****/
484 
485 static int __vsock_bind_stream(struct vsock_sock *vsk,
486 			       struct sockaddr_vm *addr)
487 {
488 	static u32 port = LAST_RESERVED_PORT + 1;
489 	struct sockaddr_vm new_addr;
490 
491 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
492 
493 	if (addr->svm_port == VMADDR_PORT_ANY) {
494 		bool found = false;
495 		unsigned int i;
496 
497 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
498 			if (port <= LAST_RESERVED_PORT)
499 				port = LAST_RESERVED_PORT + 1;
500 
501 			new_addr.svm_port = port++;
502 
503 			if (!__vsock_find_bound_socket(&new_addr)) {
504 				found = true;
505 				break;
506 			}
507 		}
508 
509 		if (!found)
510 			return -EADDRNOTAVAIL;
511 	} else {
512 		/* If port is in reserved range, ensure caller
513 		 * has necessary privileges.
514 		 */
515 		if (addr->svm_port <= LAST_RESERVED_PORT &&
516 		    !capable(CAP_NET_BIND_SERVICE)) {
517 			return -EACCES;
518 		}
519 
520 		if (__vsock_find_bound_socket(&new_addr))
521 			return -EADDRINUSE;
522 	}
523 
524 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
525 
526 	/* Remove stream sockets from the unbound list and add them to the hash
527 	 * table for easy lookup by its address.  The unbound list is simply an
528 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
529 	 */
530 	__vsock_remove_bound(vsk);
531 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
532 
533 	return 0;
534 }
535 
536 static int __vsock_bind_dgram(struct vsock_sock *vsk,
537 			      struct sockaddr_vm *addr)
538 {
539 	return transport->dgram_bind(vsk, addr);
540 }
541 
542 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
543 {
544 	struct vsock_sock *vsk = vsock_sk(sk);
545 	u32 cid;
546 	int retval;
547 
548 	/* First ensure this socket isn't already bound. */
549 	if (vsock_addr_bound(&vsk->local_addr))
550 		return -EINVAL;
551 
552 	/* Now bind to the provided address or select appropriate values if
553 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
554 	 * like AF_INET prevents binding to a non-local IP address (in most
555 	 * cases), we only allow binding to the local CID.
556 	 */
557 	cid = transport->get_local_cid();
558 	if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
559 		return -EADDRNOTAVAIL;
560 
561 	switch (sk->sk_socket->type) {
562 	case SOCK_STREAM:
563 		spin_lock_bh(&vsock_table_lock);
564 		retval = __vsock_bind_stream(vsk, addr);
565 		spin_unlock_bh(&vsock_table_lock);
566 		break;
567 
568 	case SOCK_DGRAM:
569 		retval = __vsock_bind_dgram(vsk, addr);
570 		break;
571 
572 	default:
573 		retval = -EINVAL;
574 		break;
575 	}
576 
577 	return retval;
578 }
579 
580 struct sock *__vsock_create(struct net *net,
581 			    struct socket *sock,
582 			    struct sock *parent,
583 			    gfp_t priority,
584 			    unsigned short type,
585 			    int kern)
586 {
587 	struct sock *sk;
588 	struct vsock_sock *psk;
589 	struct vsock_sock *vsk;
590 
591 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
592 	if (!sk)
593 		return NULL;
594 
595 	sock_init_data(sock, sk);
596 
597 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
598 	 * non-NULL. We make sure that our sockets always have a type by
599 	 * setting it here if needed.
600 	 */
601 	if (!sock)
602 		sk->sk_type = type;
603 
604 	vsk = vsock_sk(sk);
605 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
606 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
607 
608 	sk->sk_destruct = vsock_sk_destruct;
609 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
610 	sk->sk_state = 0;
611 	sock_reset_flag(sk, SOCK_DONE);
612 
613 	INIT_LIST_HEAD(&vsk->bound_table);
614 	INIT_LIST_HEAD(&vsk->connected_table);
615 	vsk->listener = NULL;
616 	INIT_LIST_HEAD(&vsk->pending_links);
617 	INIT_LIST_HEAD(&vsk->accept_queue);
618 	vsk->rejected = false;
619 	vsk->sent_request = false;
620 	vsk->ignore_connecting_rst = false;
621 	vsk->peer_shutdown = 0;
622 
623 	psk = parent ? vsock_sk(parent) : NULL;
624 	if (parent) {
625 		vsk->trusted = psk->trusted;
626 		vsk->owner = get_cred(psk->owner);
627 		vsk->connect_timeout = psk->connect_timeout;
628 	} else {
629 		vsk->trusted = capable(CAP_NET_ADMIN);
630 		vsk->owner = get_current_cred();
631 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
632 	}
633 
634 	if (transport->init(vsk, psk) < 0) {
635 		sk_free(sk);
636 		return NULL;
637 	}
638 
639 	if (sock)
640 		vsock_insert_unbound(vsk);
641 
642 	return sk;
643 }
644 EXPORT_SYMBOL_GPL(__vsock_create);
645 
646 static void __vsock_release(struct sock *sk)
647 {
648 	if (sk) {
649 		struct sk_buff *skb;
650 		struct sock *pending;
651 		struct vsock_sock *vsk;
652 
653 		vsk = vsock_sk(sk);
654 		pending = NULL;	/* Compiler warning. */
655 
656 		if (vsock_in_bound_table(vsk))
657 			vsock_remove_bound(vsk);
658 
659 		if (vsock_in_connected_table(vsk))
660 			vsock_remove_connected(vsk);
661 
662 		transport->release(vsk);
663 
664 		lock_sock(sk);
665 		sock_orphan(sk);
666 		sk->sk_shutdown = SHUTDOWN_MASK;
667 
668 		while ((skb = skb_dequeue(&sk->sk_receive_queue)))
669 			kfree_skb(skb);
670 
671 		/* Clean up any sockets that never were accepted. */
672 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
673 			__vsock_release(pending);
674 			sock_put(pending);
675 		}
676 
677 		release_sock(sk);
678 		sock_put(sk);
679 	}
680 }
681 
682 static void vsock_sk_destruct(struct sock *sk)
683 {
684 	struct vsock_sock *vsk = vsock_sk(sk);
685 
686 	transport->destruct(vsk);
687 
688 	/* When clearing these addresses, there's no need to set the family and
689 	 * possibly register the address family with the kernel.
690 	 */
691 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
692 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
693 
694 	put_cred(vsk->owner);
695 }
696 
697 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
698 {
699 	int err;
700 
701 	err = sock_queue_rcv_skb(sk, skb);
702 	if (err)
703 		kfree_skb(skb);
704 
705 	return err;
706 }
707 
708 s64 vsock_stream_has_data(struct vsock_sock *vsk)
709 {
710 	return transport->stream_has_data(vsk);
711 }
712 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
713 
714 s64 vsock_stream_has_space(struct vsock_sock *vsk)
715 {
716 	return transport->stream_has_space(vsk);
717 }
718 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
719 
720 static int vsock_release(struct socket *sock)
721 {
722 	__vsock_release(sock->sk);
723 	sock->sk = NULL;
724 	sock->state = SS_FREE;
725 
726 	return 0;
727 }
728 
729 static int
730 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
731 {
732 	int err;
733 	struct sock *sk;
734 	struct sockaddr_vm *vm_addr;
735 
736 	sk = sock->sk;
737 
738 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
739 		return -EINVAL;
740 
741 	lock_sock(sk);
742 	err = __vsock_bind(sk, vm_addr);
743 	release_sock(sk);
744 
745 	return err;
746 }
747 
748 static int vsock_getname(struct socket *sock,
749 			 struct sockaddr *addr, int *addr_len, int peer)
750 {
751 	int err;
752 	struct sock *sk;
753 	struct vsock_sock *vsk;
754 	struct sockaddr_vm *vm_addr;
755 
756 	sk = sock->sk;
757 	vsk = vsock_sk(sk);
758 	err = 0;
759 
760 	lock_sock(sk);
761 
762 	if (peer) {
763 		if (sock->state != SS_CONNECTED) {
764 			err = -ENOTCONN;
765 			goto out;
766 		}
767 		vm_addr = &vsk->remote_addr;
768 	} else {
769 		vm_addr = &vsk->local_addr;
770 	}
771 
772 	if (!vm_addr) {
773 		err = -EINVAL;
774 		goto out;
775 	}
776 
777 	/* sys_getsockname() and sys_getpeername() pass us a
778 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
779 	 * that macro is defined in socket.c instead of .h, so we hardcode its
780 	 * value here.
781 	 */
782 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
783 	memcpy(addr, vm_addr, sizeof(*vm_addr));
784 	*addr_len = sizeof(*vm_addr);
785 
786 out:
787 	release_sock(sk);
788 	return err;
789 }
790 
791 static int vsock_shutdown(struct socket *sock, int mode)
792 {
793 	int err;
794 	struct sock *sk;
795 
796 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
797 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
798 	 * here like the other address families do.  Note also that the
799 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
800 	 * which is what we want.
801 	 */
802 	mode++;
803 
804 	if ((mode & ~SHUTDOWN_MASK) || !mode)
805 		return -EINVAL;
806 
807 	/* If this is a STREAM socket and it is not connected then bail out
808 	 * immediately.  If it is a DGRAM socket then we must first kick the
809 	 * socket so that it wakes up from any sleeping calls, for example
810 	 * recv(), and then afterwards return the error.
811 	 */
812 
813 	sk = sock->sk;
814 	if (sock->state == SS_UNCONNECTED) {
815 		err = -ENOTCONN;
816 		if (sk->sk_type == SOCK_STREAM)
817 			return err;
818 	} else {
819 		sock->state = SS_DISCONNECTING;
820 		err = 0;
821 	}
822 
823 	/* Receive and send shutdowns are treated alike. */
824 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
825 	if (mode) {
826 		lock_sock(sk);
827 		sk->sk_shutdown |= mode;
828 		sk->sk_state_change(sk);
829 		release_sock(sk);
830 
831 		if (sk->sk_type == SOCK_STREAM) {
832 			sock_reset_flag(sk, SOCK_DONE);
833 			vsock_send_shutdown(sk, mode);
834 		}
835 	}
836 
837 	return err;
838 }
839 
840 static unsigned int vsock_poll(struct file *file, struct socket *sock,
841 			       poll_table *wait)
842 {
843 	struct sock *sk;
844 	unsigned int mask;
845 	struct vsock_sock *vsk;
846 
847 	sk = sock->sk;
848 	vsk = vsock_sk(sk);
849 
850 	poll_wait(file, sk_sleep(sk), wait);
851 	mask = 0;
852 
853 	if (sk->sk_err)
854 		/* Signify that there has been an error on this socket. */
855 		mask |= POLLERR;
856 
857 	/* INET sockets treat local write shutdown and peer write shutdown as a
858 	 * case of POLLHUP set.
859 	 */
860 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
861 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
862 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
863 		mask |= POLLHUP;
864 	}
865 
866 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
867 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
868 		mask |= POLLRDHUP;
869 	}
870 
871 	if (sock->type == SOCK_DGRAM) {
872 		/* For datagram sockets we can read if there is something in
873 		 * the queue and write as long as the socket isn't shutdown for
874 		 * sending.
875 		 */
876 		if (!skb_queue_empty(&sk->sk_receive_queue) ||
877 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
878 			mask |= POLLIN | POLLRDNORM;
879 		}
880 
881 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
882 			mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
883 
884 	} else if (sock->type == SOCK_STREAM) {
885 		lock_sock(sk);
886 
887 		/* Listening sockets that have connections in their accept
888 		 * queue can be read.
889 		 */
890 		if (sk->sk_state == SS_LISTEN
891 		    && !vsock_is_accept_queue_empty(sk))
892 			mask |= POLLIN | POLLRDNORM;
893 
894 		/* If there is something in the queue then we can read. */
895 		if (transport->stream_is_active(vsk) &&
896 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
897 			bool data_ready_now = false;
898 			int ret = transport->notify_poll_in(
899 					vsk, 1, &data_ready_now);
900 			if (ret < 0) {
901 				mask |= POLLERR;
902 			} else {
903 				if (data_ready_now)
904 					mask |= POLLIN | POLLRDNORM;
905 
906 			}
907 		}
908 
909 		/* Sockets whose connections have been closed, reset, or
910 		 * terminated should also be considered read, and we check the
911 		 * shutdown flag for that.
912 		 */
913 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
914 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
915 			mask |= POLLIN | POLLRDNORM;
916 		}
917 
918 		/* Connected sockets that can produce data can be written. */
919 		if (sk->sk_state == SS_CONNECTED) {
920 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
921 				bool space_avail_now = false;
922 				int ret = transport->notify_poll_out(
923 						vsk, 1, &space_avail_now);
924 				if (ret < 0) {
925 					mask |= POLLERR;
926 				} else {
927 					if (space_avail_now)
928 						/* Remove POLLWRBAND since INET
929 						 * sockets are not setting it.
930 						 */
931 						mask |= POLLOUT | POLLWRNORM;
932 
933 				}
934 			}
935 		}
936 
937 		/* Simulate INET socket poll behaviors, which sets
938 		 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
939 		 * but local send is not shutdown.
940 		 */
941 		if (sk->sk_state == SS_UNCONNECTED) {
942 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
943 				mask |= POLLOUT | POLLWRNORM;
944 
945 		}
946 
947 		release_sock(sk);
948 	}
949 
950 	return mask;
951 }
952 
953 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
954 			       size_t len)
955 {
956 	int err;
957 	struct sock *sk;
958 	struct vsock_sock *vsk;
959 	struct sockaddr_vm *remote_addr;
960 
961 	if (msg->msg_flags & MSG_OOB)
962 		return -EOPNOTSUPP;
963 
964 	/* For now, MSG_DONTWAIT is always assumed... */
965 	err = 0;
966 	sk = sock->sk;
967 	vsk = vsock_sk(sk);
968 
969 	lock_sock(sk);
970 
971 	err = vsock_auto_bind(vsk);
972 	if (err)
973 		goto out;
974 
975 
976 	/* If the provided message contains an address, use that.  Otherwise
977 	 * fall back on the socket's remote handle (if it has been connected).
978 	 */
979 	if (msg->msg_name &&
980 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
981 			    &remote_addr) == 0) {
982 		/* Ensure this address is of the right type and is a valid
983 		 * destination.
984 		 */
985 
986 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
987 			remote_addr->svm_cid = transport->get_local_cid();
988 
989 		if (!vsock_addr_bound(remote_addr)) {
990 			err = -EINVAL;
991 			goto out;
992 		}
993 	} else if (sock->state == SS_CONNECTED) {
994 		remote_addr = &vsk->remote_addr;
995 
996 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
997 			remote_addr->svm_cid = transport->get_local_cid();
998 
999 		/* XXX Should connect() or this function ensure remote_addr is
1000 		 * bound?
1001 		 */
1002 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1003 			err = -EINVAL;
1004 			goto out;
1005 		}
1006 	} else {
1007 		err = -EINVAL;
1008 		goto out;
1009 	}
1010 
1011 	if (!transport->dgram_allow(remote_addr->svm_cid,
1012 				    remote_addr->svm_port)) {
1013 		err = -EINVAL;
1014 		goto out;
1015 	}
1016 
1017 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1018 
1019 out:
1020 	release_sock(sk);
1021 	return err;
1022 }
1023 
1024 static int vsock_dgram_connect(struct socket *sock,
1025 			       struct sockaddr *addr, int addr_len, int flags)
1026 {
1027 	int err;
1028 	struct sock *sk;
1029 	struct vsock_sock *vsk;
1030 	struct sockaddr_vm *remote_addr;
1031 
1032 	sk = sock->sk;
1033 	vsk = vsock_sk(sk);
1034 
1035 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1036 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1037 		lock_sock(sk);
1038 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1039 				VMADDR_PORT_ANY);
1040 		sock->state = SS_UNCONNECTED;
1041 		release_sock(sk);
1042 		return 0;
1043 	} else if (err != 0)
1044 		return -EINVAL;
1045 
1046 	lock_sock(sk);
1047 
1048 	err = vsock_auto_bind(vsk);
1049 	if (err)
1050 		goto out;
1051 
1052 	if (!transport->dgram_allow(remote_addr->svm_cid,
1053 				    remote_addr->svm_port)) {
1054 		err = -EINVAL;
1055 		goto out;
1056 	}
1057 
1058 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1059 	sock->state = SS_CONNECTED;
1060 
1061 out:
1062 	release_sock(sk);
1063 	return err;
1064 }
1065 
1066 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1067 			       size_t len, int flags)
1068 {
1069 	return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1070 }
1071 
1072 static const struct proto_ops vsock_dgram_ops = {
1073 	.family = PF_VSOCK,
1074 	.owner = THIS_MODULE,
1075 	.release = vsock_release,
1076 	.bind = vsock_bind,
1077 	.connect = vsock_dgram_connect,
1078 	.socketpair = sock_no_socketpair,
1079 	.accept = sock_no_accept,
1080 	.getname = vsock_getname,
1081 	.poll = vsock_poll,
1082 	.ioctl = sock_no_ioctl,
1083 	.listen = sock_no_listen,
1084 	.shutdown = vsock_shutdown,
1085 	.setsockopt = sock_no_setsockopt,
1086 	.getsockopt = sock_no_getsockopt,
1087 	.sendmsg = vsock_dgram_sendmsg,
1088 	.recvmsg = vsock_dgram_recvmsg,
1089 	.mmap = sock_no_mmap,
1090 	.sendpage = sock_no_sendpage,
1091 };
1092 
1093 static void vsock_connect_timeout(struct work_struct *work)
1094 {
1095 	struct sock *sk;
1096 	struct vsock_sock *vsk;
1097 
1098 	vsk = container_of(work, struct vsock_sock, dwork.work);
1099 	sk = sk_vsock(vsk);
1100 
1101 	lock_sock(sk);
1102 	if (sk->sk_state == SS_CONNECTING &&
1103 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1104 		sk->sk_state = SS_UNCONNECTED;
1105 		sk->sk_err = ETIMEDOUT;
1106 		sk->sk_error_report(sk);
1107 	}
1108 	release_sock(sk);
1109 
1110 	sock_put(sk);
1111 }
1112 
1113 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1114 				int addr_len, int flags)
1115 {
1116 	int err;
1117 	struct sock *sk;
1118 	struct vsock_sock *vsk;
1119 	struct sockaddr_vm *remote_addr;
1120 	long timeout;
1121 	DEFINE_WAIT(wait);
1122 
1123 	err = 0;
1124 	sk = sock->sk;
1125 	vsk = vsock_sk(sk);
1126 
1127 	lock_sock(sk);
1128 
1129 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1130 	switch (sock->state) {
1131 	case SS_CONNECTED:
1132 		err = -EISCONN;
1133 		goto out;
1134 	case SS_DISCONNECTING:
1135 		err = -EINVAL;
1136 		goto out;
1137 	case SS_CONNECTING:
1138 		/* This continues on so we can move sock into the SS_CONNECTED
1139 		 * state once the connection has completed (at which point err
1140 		 * will be set to zero also).  Otherwise, we will either wait
1141 		 * for the connection or return -EALREADY should this be a
1142 		 * non-blocking call.
1143 		 */
1144 		err = -EALREADY;
1145 		break;
1146 	default:
1147 		if ((sk->sk_state == SS_LISTEN) ||
1148 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1149 			err = -EINVAL;
1150 			goto out;
1151 		}
1152 
1153 		/* The hypervisor and well-known contexts do not have socket
1154 		 * endpoints.
1155 		 */
1156 		if (!transport->stream_allow(remote_addr->svm_cid,
1157 					     remote_addr->svm_port)) {
1158 			err = -ENETUNREACH;
1159 			goto out;
1160 		}
1161 
1162 		/* Set the remote address that we are connecting to. */
1163 		memcpy(&vsk->remote_addr, remote_addr,
1164 		       sizeof(vsk->remote_addr));
1165 
1166 		err = vsock_auto_bind(vsk);
1167 		if (err)
1168 			goto out;
1169 
1170 		sk->sk_state = SS_CONNECTING;
1171 
1172 		err = transport->connect(vsk);
1173 		if (err < 0)
1174 			goto out;
1175 
1176 		/* Mark sock as connecting and set the error code to in
1177 		 * progress in case this is a non-blocking connect.
1178 		 */
1179 		sock->state = SS_CONNECTING;
1180 		err = -EINPROGRESS;
1181 	}
1182 
1183 	/* The receive path will handle all communication until we are able to
1184 	 * enter the connected state.  Here we wait for the connection to be
1185 	 * completed or a notification of an error.
1186 	 */
1187 	timeout = vsk->connect_timeout;
1188 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1189 
1190 	while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1191 		if (flags & O_NONBLOCK) {
1192 			/* If we're not going to block, we schedule a timeout
1193 			 * function to generate a timeout on the connection
1194 			 * attempt, in case the peer doesn't respond in a
1195 			 * timely manner. We hold on to the socket until the
1196 			 * timeout fires.
1197 			 */
1198 			sock_hold(sk);
1199 			INIT_DELAYED_WORK(&vsk->dwork,
1200 					  vsock_connect_timeout);
1201 			schedule_delayed_work(&vsk->dwork, timeout);
1202 
1203 			/* Skip ahead to preserve error code set above. */
1204 			goto out_wait;
1205 		}
1206 
1207 		release_sock(sk);
1208 		timeout = schedule_timeout(timeout);
1209 		lock_sock(sk);
1210 
1211 		if (signal_pending(current)) {
1212 			err = sock_intr_errno(timeout);
1213 			goto out_wait_error;
1214 		} else if (timeout == 0) {
1215 			err = -ETIMEDOUT;
1216 			goto out_wait_error;
1217 		}
1218 
1219 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1220 	}
1221 
1222 	if (sk->sk_err) {
1223 		err = -sk->sk_err;
1224 		goto out_wait_error;
1225 	} else
1226 		err = 0;
1227 
1228 out_wait:
1229 	finish_wait(sk_sleep(sk), &wait);
1230 out:
1231 	release_sock(sk);
1232 	return err;
1233 
1234 out_wait_error:
1235 	sk->sk_state = SS_UNCONNECTED;
1236 	sock->state = SS_UNCONNECTED;
1237 	goto out_wait;
1238 }
1239 
1240 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags)
1241 {
1242 	struct sock *listener;
1243 	int err;
1244 	struct sock *connected;
1245 	struct vsock_sock *vconnected;
1246 	long timeout;
1247 	DEFINE_WAIT(wait);
1248 
1249 	err = 0;
1250 	listener = sock->sk;
1251 
1252 	lock_sock(listener);
1253 
1254 	if (sock->type != SOCK_STREAM) {
1255 		err = -EOPNOTSUPP;
1256 		goto out;
1257 	}
1258 
1259 	if (listener->sk_state != SS_LISTEN) {
1260 		err = -EINVAL;
1261 		goto out;
1262 	}
1263 
1264 	/* Wait for children sockets to appear; these are the new sockets
1265 	 * created upon connection establishment.
1266 	 */
1267 	timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1268 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1269 
1270 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1271 	       listener->sk_err == 0) {
1272 		release_sock(listener);
1273 		timeout = schedule_timeout(timeout);
1274 		lock_sock(listener);
1275 
1276 		if (signal_pending(current)) {
1277 			err = sock_intr_errno(timeout);
1278 			goto out_wait;
1279 		} else if (timeout == 0) {
1280 			err = -EAGAIN;
1281 			goto out_wait;
1282 		}
1283 
1284 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1285 	}
1286 
1287 	if (listener->sk_err)
1288 		err = -listener->sk_err;
1289 
1290 	if (connected) {
1291 		listener->sk_ack_backlog--;
1292 
1293 		lock_sock(connected);
1294 		vconnected = vsock_sk(connected);
1295 
1296 		/* If the listener socket has received an error, then we should
1297 		 * reject this socket and return.  Note that we simply mark the
1298 		 * socket rejected, drop our reference, and let the cleanup
1299 		 * function handle the cleanup; the fact that we found it in
1300 		 * the listener's accept queue guarantees that the cleanup
1301 		 * function hasn't run yet.
1302 		 */
1303 		if (err) {
1304 			vconnected->rejected = true;
1305 			release_sock(connected);
1306 			sock_put(connected);
1307 			goto out_wait;
1308 		}
1309 
1310 		newsock->state = SS_CONNECTED;
1311 		sock_graft(connected, newsock);
1312 		release_sock(connected);
1313 		sock_put(connected);
1314 	}
1315 
1316 out_wait:
1317 	finish_wait(sk_sleep(listener), &wait);
1318 out:
1319 	release_sock(listener);
1320 	return err;
1321 }
1322 
1323 static int vsock_listen(struct socket *sock, int backlog)
1324 {
1325 	int err;
1326 	struct sock *sk;
1327 	struct vsock_sock *vsk;
1328 
1329 	sk = sock->sk;
1330 
1331 	lock_sock(sk);
1332 
1333 	if (sock->type != SOCK_STREAM) {
1334 		err = -EOPNOTSUPP;
1335 		goto out;
1336 	}
1337 
1338 	if (sock->state != SS_UNCONNECTED) {
1339 		err = -EINVAL;
1340 		goto out;
1341 	}
1342 
1343 	vsk = vsock_sk(sk);
1344 
1345 	if (!vsock_addr_bound(&vsk->local_addr)) {
1346 		err = -EINVAL;
1347 		goto out;
1348 	}
1349 
1350 	sk->sk_max_ack_backlog = backlog;
1351 	sk->sk_state = SS_LISTEN;
1352 
1353 	err = 0;
1354 
1355 out:
1356 	release_sock(sk);
1357 	return err;
1358 }
1359 
1360 static int vsock_stream_setsockopt(struct socket *sock,
1361 				   int level,
1362 				   int optname,
1363 				   char __user *optval,
1364 				   unsigned int optlen)
1365 {
1366 	int err;
1367 	struct sock *sk;
1368 	struct vsock_sock *vsk;
1369 	u64 val;
1370 
1371 	if (level != AF_VSOCK)
1372 		return -ENOPROTOOPT;
1373 
1374 #define COPY_IN(_v)                                       \
1375 	do {						  \
1376 		if (optlen < sizeof(_v)) {		  \
1377 			err = -EINVAL;			  \
1378 			goto exit;			  \
1379 		}					  \
1380 		if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {	\
1381 			err = -EFAULT;					\
1382 			goto exit;					\
1383 		}							\
1384 	} while (0)
1385 
1386 	err = 0;
1387 	sk = sock->sk;
1388 	vsk = vsock_sk(sk);
1389 
1390 	lock_sock(sk);
1391 
1392 	switch (optname) {
1393 	case SO_VM_SOCKETS_BUFFER_SIZE:
1394 		COPY_IN(val);
1395 		transport->set_buffer_size(vsk, val);
1396 		break;
1397 
1398 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1399 		COPY_IN(val);
1400 		transport->set_max_buffer_size(vsk, val);
1401 		break;
1402 
1403 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1404 		COPY_IN(val);
1405 		transport->set_min_buffer_size(vsk, val);
1406 		break;
1407 
1408 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1409 		struct timeval tv;
1410 		COPY_IN(tv);
1411 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1412 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1413 			vsk->connect_timeout = tv.tv_sec * HZ +
1414 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1415 			if (vsk->connect_timeout == 0)
1416 				vsk->connect_timeout =
1417 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1418 
1419 		} else {
1420 			err = -ERANGE;
1421 		}
1422 		break;
1423 	}
1424 
1425 	default:
1426 		err = -ENOPROTOOPT;
1427 		break;
1428 	}
1429 
1430 #undef COPY_IN
1431 
1432 exit:
1433 	release_sock(sk);
1434 	return err;
1435 }
1436 
1437 static int vsock_stream_getsockopt(struct socket *sock,
1438 				   int level, int optname,
1439 				   char __user *optval,
1440 				   int __user *optlen)
1441 {
1442 	int err;
1443 	int len;
1444 	struct sock *sk;
1445 	struct vsock_sock *vsk;
1446 	u64 val;
1447 
1448 	if (level != AF_VSOCK)
1449 		return -ENOPROTOOPT;
1450 
1451 	err = get_user(len, optlen);
1452 	if (err != 0)
1453 		return err;
1454 
1455 #define COPY_OUT(_v)                            \
1456 	do {					\
1457 		if (len < sizeof(_v))		\
1458 			return -EINVAL;		\
1459 						\
1460 		len = sizeof(_v);		\
1461 		if (copy_to_user(optval, &_v, len) != 0)	\
1462 			return -EFAULT;				\
1463 								\
1464 	} while (0)
1465 
1466 	err = 0;
1467 	sk = sock->sk;
1468 	vsk = vsock_sk(sk);
1469 
1470 	switch (optname) {
1471 	case SO_VM_SOCKETS_BUFFER_SIZE:
1472 		val = transport->get_buffer_size(vsk);
1473 		COPY_OUT(val);
1474 		break;
1475 
1476 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1477 		val = transport->get_max_buffer_size(vsk);
1478 		COPY_OUT(val);
1479 		break;
1480 
1481 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1482 		val = transport->get_min_buffer_size(vsk);
1483 		COPY_OUT(val);
1484 		break;
1485 
1486 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1487 		struct timeval tv;
1488 		tv.tv_sec = vsk->connect_timeout / HZ;
1489 		tv.tv_usec =
1490 		    (vsk->connect_timeout -
1491 		     tv.tv_sec * HZ) * (1000000 / HZ);
1492 		COPY_OUT(tv);
1493 		break;
1494 	}
1495 	default:
1496 		return -ENOPROTOOPT;
1497 	}
1498 
1499 	err = put_user(len, optlen);
1500 	if (err != 0)
1501 		return -EFAULT;
1502 
1503 #undef COPY_OUT
1504 
1505 	return 0;
1506 }
1507 
1508 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1509 				size_t len)
1510 {
1511 	struct sock *sk;
1512 	struct vsock_sock *vsk;
1513 	ssize_t total_written;
1514 	long timeout;
1515 	int err;
1516 	struct vsock_transport_send_notify_data send_data;
1517 
1518 	DEFINE_WAIT(wait);
1519 
1520 	sk = sock->sk;
1521 	vsk = vsock_sk(sk);
1522 	total_written = 0;
1523 	err = 0;
1524 
1525 	if (msg->msg_flags & MSG_OOB)
1526 		return -EOPNOTSUPP;
1527 
1528 	lock_sock(sk);
1529 
1530 	/* Callers should not provide a destination with stream sockets. */
1531 	if (msg->msg_namelen) {
1532 		err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1533 		goto out;
1534 	}
1535 
1536 	/* Send data only if both sides are not shutdown in the direction. */
1537 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1538 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1539 		err = -EPIPE;
1540 		goto out;
1541 	}
1542 
1543 	if (sk->sk_state != SS_CONNECTED ||
1544 	    !vsock_addr_bound(&vsk->local_addr)) {
1545 		err = -ENOTCONN;
1546 		goto out;
1547 	}
1548 
1549 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1550 		err = -EDESTADDRREQ;
1551 		goto out;
1552 	}
1553 
1554 	/* Wait for room in the produce queue to enqueue our user's data. */
1555 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1556 
1557 	err = transport->notify_send_init(vsk, &send_data);
1558 	if (err < 0)
1559 		goto out;
1560 
1561 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1562 
1563 	while (total_written < len) {
1564 		ssize_t written;
1565 
1566 		while (vsock_stream_has_space(vsk) == 0 &&
1567 		       sk->sk_err == 0 &&
1568 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1569 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1570 
1571 			/* Don't wait for non-blocking sockets. */
1572 			if (timeout == 0) {
1573 				err = -EAGAIN;
1574 				goto out_wait;
1575 			}
1576 
1577 			err = transport->notify_send_pre_block(vsk, &send_data);
1578 			if (err < 0)
1579 				goto out_wait;
1580 
1581 			release_sock(sk);
1582 			timeout = schedule_timeout(timeout);
1583 			lock_sock(sk);
1584 			if (signal_pending(current)) {
1585 				err = sock_intr_errno(timeout);
1586 				goto out_wait;
1587 			} else if (timeout == 0) {
1588 				err = -EAGAIN;
1589 				goto out_wait;
1590 			}
1591 
1592 			prepare_to_wait(sk_sleep(sk), &wait,
1593 					TASK_INTERRUPTIBLE);
1594 		}
1595 
1596 		/* These checks occur both as part of and after the loop
1597 		 * conditional since we need to check before and after
1598 		 * sleeping.
1599 		 */
1600 		if (sk->sk_err) {
1601 			err = -sk->sk_err;
1602 			goto out_wait;
1603 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1604 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1605 			err = -EPIPE;
1606 			goto out_wait;
1607 		}
1608 
1609 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1610 		if (err < 0)
1611 			goto out_wait;
1612 
1613 		/* Note that enqueue will only write as many bytes as are free
1614 		 * in the produce queue, so we don't need to ensure len is
1615 		 * smaller than the queue size.  It is the caller's
1616 		 * responsibility to check how many bytes we were able to send.
1617 		 */
1618 
1619 		written = transport->stream_enqueue(
1620 				vsk, msg,
1621 				len - total_written);
1622 		if (written < 0) {
1623 			err = -ENOMEM;
1624 			goto out_wait;
1625 		}
1626 
1627 		total_written += written;
1628 
1629 		err = transport->notify_send_post_enqueue(
1630 				vsk, written, &send_data);
1631 		if (err < 0)
1632 			goto out_wait;
1633 
1634 	}
1635 
1636 out_wait:
1637 	if (total_written > 0)
1638 		err = total_written;
1639 	finish_wait(sk_sleep(sk), &wait);
1640 out:
1641 	release_sock(sk);
1642 	return err;
1643 }
1644 
1645 
1646 static int
1647 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1648 		     int flags)
1649 {
1650 	struct sock *sk;
1651 	struct vsock_sock *vsk;
1652 	int err;
1653 	size_t target;
1654 	ssize_t copied;
1655 	long timeout;
1656 	struct vsock_transport_recv_notify_data recv_data;
1657 
1658 	DEFINE_WAIT(wait);
1659 
1660 	sk = sock->sk;
1661 	vsk = vsock_sk(sk);
1662 	err = 0;
1663 
1664 	lock_sock(sk);
1665 
1666 	if (sk->sk_state != SS_CONNECTED) {
1667 		/* Recvmsg is supposed to return 0 if a peer performs an
1668 		 * orderly shutdown. Differentiate between that case and when a
1669 		 * peer has not connected or a local shutdown occured with the
1670 		 * SOCK_DONE flag.
1671 		 */
1672 		if (sock_flag(sk, SOCK_DONE))
1673 			err = 0;
1674 		else
1675 			err = -ENOTCONN;
1676 
1677 		goto out;
1678 	}
1679 
1680 	if (flags & MSG_OOB) {
1681 		err = -EOPNOTSUPP;
1682 		goto out;
1683 	}
1684 
1685 	/* We don't check peer_shutdown flag here since peer may actually shut
1686 	 * down, but there can be data in the queue that a local socket can
1687 	 * receive.
1688 	 */
1689 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1690 		err = 0;
1691 		goto out;
1692 	}
1693 
1694 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1695 	 * is not an error.  We may as well bail out now.
1696 	 */
1697 	if (!len) {
1698 		err = 0;
1699 		goto out;
1700 	}
1701 
1702 	/* We must not copy less than target bytes into the user's buffer
1703 	 * before returning successfully, so we wait for the consume queue to
1704 	 * have that much data to consume before dequeueing.  Note that this
1705 	 * makes it impossible to handle cases where target is greater than the
1706 	 * queue size.
1707 	 */
1708 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1709 	if (target >= transport->stream_rcvhiwat(vsk)) {
1710 		err = -ENOMEM;
1711 		goto out;
1712 	}
1713 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1714 	copied = 0;
1715 
1716 	err = transport->notify_recv_init(vsk, target, &recv_data);
1717 	if (err < 0)
1718 		goto out;
1719 
1720 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1721 
1722 	while (1) {
1723 		s64 ready = vsock_stream_has_data(vsk);
1724 
1725 		if (ready < 0) {
1726 			/* Invalid queue pair content. XXX This should be
1727 			 * changed to a connection reset in a later change.
1728 			 */
1729 
1730 			err = -ENOMEM;
1731 			goto out_wait;
1732 		} else if (ready > 0) {
1733 			ssize_t read;
1734 
1735 			err = transport->notify_recv_pre_dequeue(
1736 					vsk, target, &recv_data);
1737 			if (err < 0)
1738 				break;
1739 
1740 			read = transport->stream_dequeue(
1741 					vsk, msg,
1742 					len - copied, flags);
1743 			if (read < 0) {
1744 				err = -ENOMEM;
1745 				break;
1746 			}
1747 
1748 			copied += read;
1749 
1750 			err = transport->notify_recv_post_dequeue(
1751 					vsk, target, read,
1752 					!(flags & MSG_PEEK), &recv_data);
1753 			if (err < 0)
1754 				goto out_wait;
1755 
1756 			if (read >= target || flags & MSG_PEEK)
1757 				break;
1758 
1759 			target -= read;
1760 		} else {
1761 			if (sk->sk_err != 0 || (sk->sk_shutdown & RCV_SHUTDOWN)
1762 			    || (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1763 				break;
1764 			}
1765 			/* Don't wait for non-blocking sockets. */
1766 			if (timeout == 0) {
1767 				err = -EAGAIN;
1768 				break;
1769 			}
1770 
1771 			err = transport->notify_recv_pre_block(
1772 					vsk, target, &recv_data);
1773 			if (err < 0)
1774 				break;
1775 
1776 			release_sock(sk);
1777 			timeout = schedule_timeout(timeout);
1778 			lock_sock(sk);
1779 
1780 			if (signal_pending(current)) {
1781 				err = sock_intr_errno(timeout);
1782 				break;
1783 			} else if (timeout == 0) {
1784 				err = -EAGAIN;
1785 				break;
1786 			}
1787 
1788 			prepare_to_wait(sk_sleep(sk), &wait,
1789 					TASK_INTERRUPTIBLE);
1790 		}
1791 	}
1792 
1793 	if (sk->sk_err)
1794 		err = -sk->sk_err;
1795 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1796 		err = 0;
1797 
1798 	if (copied > 0) {
1799 		/* We only do these additional bookkeeping/notification steps
1800 		 * if we actually copied something out of the queue pair
1801 		 * instead of just peeking ahead.
1802 		 */
1803 
1804 		if (!(flags & MSG_PEEK)) {
1805 			/* If the other side has shutdown for sending and there
1806 			 * is nothing more to read, then modify the socket
1807 			 * state.
1808 			 */
1809 			if (vsk->peer_shutdown & SEND_SHUTDOWN) {
1810 				if (vsock_stream_has_data(vsk) <= 0) {
1811 					sk->sk_state = SS_UNCONNECTED;
1812 					sock_set_flag(sk, SOCK_DONE);
1813 					sk->sk_state_change(sk);
1814 				}
1815 			}
1816 		}
1817 		err = copied;
1818 	}
1819 
1820 out_wait:
1821 	finish_wait(sk_sleep(sk), &wait);
1822 out:
1823 	release_sock(sk);
1824 	return err;
1825 }
1826 
1827 static const struct proto_ops vsock_stream_ops = {
1828 	.family = PF_VSOCK,
1829 	.owner = THIS_MODULE,
1830 	.release = vsock_release,
1831 	.bind = vsock_bind,
1832 	.connect = vsock_stream_connect,
1833 	.socketpair = sock_no_socketpair,
1834 	.accept = vsock_accept,
1835 	.getname = vsock_getname,
1836 	.poll = vsock_poll,
1837 	.ioctl = sock_no_ioctl,
1838 	.listen = vsock_listen,
1839 	.shutdown = vsock_shutdown,
1840 	.setsockopt = vsock_stream_setsockopt,
1841 	.getsockopt = vsock_stream_getsockopt,
1842 	.sendmsg = vsock_stream_sendmsg,
1843 	.recvmsg = vsock_stream_recvmsg,
1844 	.mmap = sock_no_mmap,
1845 	.sendpage = sock_no_sendpage,
1846 };
1847 
1848 static int vsock_create(struct net *net, struct socket *sock,
1849 			int protocol, int kern)
1850 {
1851 	if (!sock)
1852 		return -EINVAL;
1853 
1854 	if (protocol && protocol != PF_VSOCK)
1855 		return -EPROTONOSUPPORT;
1856 
1857 	switch (sock->type) {
1858 	case SOCK_DGRAM:
1859 		sock->ops = &vsock_dgram_ops;
1860 		break;
1861 	case SOCK_STREAM:
1862 		sock->ops = &vsock_stream_ops;
1863 		break;
1864 	default:
1865 		return -ESOCKTNOSUPPORT;
1866 	}
1867 
1868 	sock->state = SS_UNCONNECTED;
1869 
1870 	return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1871 }
1872 
1873 static const struct net_proto_family vsock_family_ops = {
1874 	.family = AF_VSOCK,
1875 	.create = vsock_create,
1876 	.owner = THIS_MODULE,
1877 };
1878 
1879 static long vsock_dev_do_ioctl(struct file *filp,
1880 			       unsigned int cmd, void __user *ptr)
1881 {
1882 	u32 __user *p = ptr;
1883 	int retval = 0;
1884 
1885 	switch (cmd) {
1886 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1887 		if (put_user(transport->get_local_cid(), p) != 0)
1888 			retval = -EFAULT;
1889 		break;
1890 
1891 	default:
1892 		pr_err("Unknown ioctl %d\n", cmd);
1893 		retval = -EINVAL;
1894 	}
1895 
1896 	return retval;
1897 }
1898 
1899 static long vsock_dev_ioctl(struct file *filp,
1900 			    unsigned int cmd, unsigned long arg)
1901 {
1902 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1903 }
1904 
1905 #ifdef CONFIG_COMPAT
1906 static long vsock_dev_compat_ioctl(struct file *filp,
1907 				   unsigned int cmd, unsigned long arg)
1908 {
1909 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1910 }
1911 #endif
1912 
1913 static const struct file_operations vsock_device_ops = {
1914 	.owner		= THIS_MODULE,
1915 	.unlocked_ioctl	= vsock_dev_ioctl,
1916 #ifdef CONFIG_COMPAT
1917 	.compat_ioctl	= vsock_dev_compat_ioctl,
1918 #endif
1919 	.open		= nonseekable_open,
1920 };
1921 
1922 static struct miscdevice vsock_device = {
1923 	.name		= "vsock",
1924 	.fops		= &vsock_device_ops,
1925 };
1926 
1927 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1928 {
1929 	int err = mutex_lock_interruptible(&vsock_register_mutex);
1930 
1931 	if (err)
1932 		return err;
1933 
1934 	if (transport) {
1935 		err = -EBUSY;
1936 		goto err_busy;
1937 	}
1938 
1939 	/* Transport must be the owner of the protocol so that it can't
1940 	 * unload while there are open sockets.
1941 	 */
1942 	vsock_proto.owner = owner;
1943 	transport = t;
1944 
1945 	vsock_init_tables();
1946 
1947 	vsock_device.minor = MISC_DYNAMIC_MINOR;
1948 	err = misc_register(&vsock_device);
1949 	if (err) {
1950 		pr_err("Failed to register misc device\n");
1951 		goto err_reset_transport;
1952 	}
1953 
1954 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
1955 	if (err) {
1956 		pr_err("Cannot register vsock protocol\n");
1957 		goto err_deregister_misc;
1958 	}
1959 
1960 	err = sock_register(&vsock_family_ops);
1961 	if (err) {
1962 		pr_err("could not register af_vsock (%d) address family: %d\n",
1963 		       AF_VSOCK, err);
1964 		goto err_unregister_proto;
1965 	}
1966 
1967 	mutex_unlock(&vsock_register_mutex);
1968 	return 0;
1969 
1970 err_unregister_proto:
1971 	proto_unregister(&vsock_proto);
1972 err_deregister_misc:
1973 	misc_deregister(&vsock_device);
1974 err_reset_transport:
1975 	transport = NULL;
1976 err_busy:
1977 	mutex_unlock(&vsock_register_mutex);
1978 	return err;
1979 }
1980 EXPORT_SYMBOL_GPL(__vsock_core_init);
1981 
1982 void vsock_core_exit(void)
1983 {
1984 	mutex_lock(&vsock_register_mutex);
1985 
1986 	misc_deregister(&vsock_device);
1987 	sock_unregister(AF_VSOCK);
1988 	proto_unregister(&vsock_proto);
1989 
1990 	/* We do not want the assignment below re-ordered. */
1991 	mb();
1992 	transport = NULL;
1993 
1994 	mutex_unlock(&vsock_register_mutex);
1995 }
1996 EXPORT_SYMBOL_GPL(vsock_core_exit);
1997 
1998 MODULE_AUTHOR("VMware, Inc.");
1999 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2000 MODULE_VERSION("1.0.1.0-k");
2001 MODULE_LICENSE("GPL v2");
2002