xref: /linux/net/vmw_vsock/af_vsock.c (revision a634dda26186cf9a51567020fcce52bcba5e1e59)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115 #include <uapi/asm-generic/ioctls.h>
116 
117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
118 static void vsock_sk_destruct(struct sock *sk);
119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
120 static void vsock_close(struct sock *sk, long timeout);
121 
122 /* Protocol family. */
123 struct proto vsock_proto = {
124 	.name = "AF_VSOCK",
125 	.owner = THIS_MODULE,
126 	.obj_size = sizeof(struct vsock_sock),
127 	.close = vsock_close,
128 #ifdef CONFIG_BPF_SYSCALL
129 	.psock_update_sk_prot = vsock_bpf_update_proto,
130 #endif
131 };
132 
133 /* The default peer timeout indicates how long we will wait for a peer response
134  * to a control message.
135  */
136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
137 
138 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
141 
142 /* Transport used for host->guest communication */
143 static const struct vsock_transport *transport_h2g;
144 /* Transport used for guest->host communication */
145 static const struct vsock_transport *transport_g2h;
146 /* Transport used for DGRAM communication */
147 static const struct vsock_transport *transport_dgram;
148 /* Transport used for local communication */
149 static const struct vsock_transport *transport_local;
150 static DEFINE_MUTEX(vsock_register_mutex);
151 
152 /**** UTILS ****/
153 
154 /* Each bound VSocket is stored in the bind hash table and each connected
155  * VSocket is stored in the connected hash table.
156  *
157  * Unbound sockets are all put on the same list attached to the end of the hash
158  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
159  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
160  * represents the list that addr hashes to).
161  *
162  * Specifically, we initialize the vsock_bind_table array to a size of
163  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
164  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
165  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
166  * mods with VSOCK_HASH_SIZE to ensure this.
167  */
168 #define MAX_PORT_RETRIES        24
169 
170 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
172 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
173 
174 /* XXX This can probably be implemented in a better way. */
175 #define VSOCK_CONN_HASH(src, dst)				\
176 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
177 #define vsock_connected_sockets(src, dst)		\
178 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
179 #define vsock_connected_sockets_vsk(vsk)				\
180 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
181 
182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
183 EXPORT_SYMBOL_GPL(vsock_bind_table);
184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
185 EXPORT_SYMBOL_GPL(vsock_connected_table);
186 DEFINE_SPINLOCK(vsock_table_lock);
187 EXPORT_SYMBOL_GPL(vsock_table_lock);
188 
189 /* Autobind this socket to the local address if necessary. */
190 static int vsock_auto_bind(struct vsock_sock *vsk)
191 {
192 	struct sock *sk = sk_vsock(vsk);
193 	struct sockaddr_vm local_addr;
194 
195 	if (vsock_addr_bound(&vsk->local_addr))
196 		return 0;
197 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
198 	return __vsock_bind(sk, &local_addr);
199 }
200 
201 static void vsock_init_tables(void)
202 {
203 	int i;
204 
205 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
206 		INIT_LIST_HEAD(&vsock_bind_table[i]);
207 
208 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
209 		INIT_LIST_HEAD(&vsock_connected_table[i]);
210 }
211 
212 static void __vsock_insert_bound(struct list_head *list,
213 				 struct vsock_sock *vsk)
214 {
215 	sock_hold(&vsk->sk);
216 	list_add(&vsk->bound_table, list);
217 }
218 
219 static void __vsock_insert_connected(struct list_head *list,
220 				     struct vsock_sock *vsk)
221 {
222 	sock_hold(&vsk->sk);
223 	list_add(&vsk->connected_table, list);
224 }
225 
226 static void __vsock_remove_bound(struct vsock_sock *vsk)
227 {
228 	list_del_init(&vsk->bound_table);
229 	sock_put(&vsk->sk);
230 }
231 
232 static void __vsock_remove_connected(struct vsock_sock *vsk)
233 {
234 	list_del_init(&vsk->connected_table);
235 	sock_put(&vsk->sk);
236 }
237 
238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
239 {
240 	struct vsock_sock *vsk;
241 
242 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
243 		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
244 			return sk_vsock(vsk);
245 
246 		if (addr->svm_port == vsk->local_addr.svm_port &&
247 		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
248 		     addr->svm_cid == VMADDR_CID_ANY))
249 			return sk_vsock(vsk);
250 	}
251 
252 	return NULL;
253 }
254 
255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
256 						  struct sockaddr_vm *dst)
257 {
258 	struct vsock_sock *vsk;
259 
260 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
261 			    connected_table) {
262 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
263 		    dst->svm_port == vsk->local_addr.svm_port) {
264 			return sk_vsock(vsk);
265 		}
266 	}
267 
268 	return NULL;
269 }
270 
271 static void vsock_insert_unbound(struct vsock_sock *vsk)
272 {
273 	spin_lock_bh(&vsock_table_lock);
274 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
275 	spin_unlock_bh(&vsock_table_lock);
276 }
277 
278 void vsock_insert_connected(struct vsock_sock *vsk)
279 {
280 	struct list_head *list = vsock_connected_sockets(
281 		&vsk->remote_addr, &vsk->local_addr);
282 
283 	spin_lock_bh(&vsock_table_lock);
284 	__vsock_insert_connected(list, vsk);
285 	spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_insert_connected);
288 
289 void vsock_remove_bound(struct vsock_sock *vsk)
290 {
291 	spin_lock_bh(&vsock_table_lock);
292 	if (__vsock_in_bound_table(vsk))
293 		__vsock_remove_bound(vsk);
294 	spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_bound);
297 
298 void vsock_remove_connected(struct vsock_sock *vsk)
299 {
300 	spin_lock_bh(&vsock_table_lock);
301 	if (__vsock_in_connected_table(vsk))
302 		__vsock_remove_connected(vsk);
303 	spin_unlock_bh(&vsock_table_lock);
304 }
305 EXPORT_SYMBOL_GPL(vsock_remove_connected);
306 
307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
308 {
309 	struct sock *sk;
310 
311 	spin_lock_bh(&vsock_table_lock);
312 	sk = __vsock_find_bound_socket(addr);
313 	if (sk)
314 		sock_hold(sk);
315 
316 	spin_unlock_bh(&vsock_table_lock);
317 
318 	return sk;
319 }
320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
321 
322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
323 					 struct sockaddr_vm *dst)
324 {
325 	struct sock *sk;
326 
327 	spin_lock_bh(&vsock_table_lock);
328 	sk = __vsock_find_connected_socket(src, dst);
329 	if (sk)
330 		sock_hold(sk);
331 
332 	spin_unlock_bh(&vsock_table_lock);
333 
334 	return sk;
335 }
336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
337 
338 void vsock_remove_sock(struct vsock_sock *vsk)
339 {
340 	vsock_remove_bound(vsk);
341 	vsock_remove_connected(vsk);
342 }
343 EXPORT_SYMBOL_GPL(vsock_remove_sock);
344 
345 void vsock_for_each_connected_socket(struct vsock_transport *transport,
346 				     void (*fn)(struct sock *sk))
347 {
348 	int i;
349 
350 	spin_lock_bh(&vsock_table_lock);
351 
352 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
353 		struct vsock_sock *vsk;
354 		list_for_each_entry(vsk, &vsock_connected_table[i],
355 				    connected_table) {
356 			if (vsk->transport != transport)
357 				continue;
358 
359 			fn(sk_vsock(vsk));
360 		}
361 	}
362 
363 	spin_unlock_bh(&vsock_table_lock);
364 }
365 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
366 
367 void vsock_add_pending(struct sock *listener, struct sock *pending)
368 {
369 	struct vsock_sock *vlistener;
370 	struct vsock_sock *vpending;
371 
372 	vlistener = vsock_sk(listener);
373 	vpending = vsock_sk(pending);
374 
375 	sock_hold(pending);
376 	sock_hold(listener);
377 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
378 }
379 EXPORT_SYMBOL_GPL(vsock_add_pending);
380 
381 void vsock_remove_pending(struct sock *listener, struct sock *pending)
382 {
383 	struct vsock_sock *vpending = vsock_sk(pending);
384 
385 	list_del_init(&vpending->pending_links);
386 	sock_put(listener);
387 	sock_put(pending);
388 }
389 EXPORT_SYMBOL_GPL(vsock_remove_pending);
390 
391 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
392 {
393 	struct vsock_sock *vlistener;
394 	struct vsock_sock *vconnected;
395 
396 	vlistener = vsock_sk(listener);
397 	vconnected = vsock_sk(connected);
398 
399 	sock_hold(connected);
400 	sock_hold(listener);
401 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
402 }
403 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
404 
405 static bool vsock_use_local_transport(unsigned int remote_cid)
406 {
407 	if (!transport_local)
408 		return false;
409 
410 	if (remote_cid == VMADDR_CID_LOCAL)
411 		return true;
412 
413 	if (transport_g2h) {
414 		return remote_cid == transport_g2h->get_local_cid();
415 	} else {
416 		return remote_cid == VMADDR_CID_HOST;
417 	}
418 }
419 
420 static void vsock_deassign_transport(struct vsock_sock *vsk)
421 {
422 	if (!vsk->transport)
423 		return;
424 
425 	vsk->transport->destruct(vsk);
426 	module_put(vsk->transport->module);
427 	vsk->transport = NULL;
428 }
429 
430 /* Assign a transport to a socket and call the .init transport callback.
431  *
432  * Note: for connection oriented socket this must be called when vsk->remote_addr
433  * is set (e.g. during the connect() or when a connection request on a listener
434  * socket is received).
435  * The vsk->remote_addr is used to decide which transport to use:
436  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
437  *    g2h is not loaded, will use local transport;
438  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
439  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
440  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
441  */
442 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
443 {
444 	const struct vsock_transport *new_transport;
445 	struct sock *sk = sk_vsock(vsk);
446 	unsigned int remote_cid = vsk->remote_addr.svm_cid;
447 	__u8 remote_flags;
448 	int ret;
449 
450 	/* If the packet is coming with the source and destination CIDs higher
451 	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
452 	 * forwarded to the host should be established. Then the host will
453 	 * need to forward the packets to the guest.
454 	 *
455 	 * The flag is set on the (listen) receive path (psk is not NULL). On
456 	 * the connect path the flag can be set by the user space application.
457 	 */
458 	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
459 	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
460 		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
461 
462 	remote_flags = vsk->remote_addr.svm_flags;
463 
464 	switch (sk->sk_type) {
465 	case SOCK_DGRAM:
466 		new_transport = transport_dgram;
467 		break;
468 	case SOCK_STREAM:
469 	case SOCK_SEQPACKET:
470 		if (vsock_use_local_transport(remote_cid))
471 			new_transport = transport_local;
472 		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
473 			 (remote_flags & VMADDR_FLAG_TO_HOST))
474 			new_transport = transport_g2h;
475 		else
476 			new_transport = transport_h2g;
477 		break;
478 	default:
479 		return -ESOCKTNOSUPPORT;
480 	}
481 
482 	if (vsk->transport) {
483 		if (vsk->transport == new_transport)
484 			return 0;
485 
486 		/* transport->release() must be called with sock lock acquired.
487 		 * This path can only be taken during vsock_connect(), where we
488 		 * have already held the sock lock. In the other cases, this
489 		 * function is called on a new socket which is not assigned to
490 		 * any transport.
491 		 */
492 		vsk->transport->release(vsk);
493 		vsock_deassign_transport(vsk);
494 
495 		/* transport's release() and destruct() can touch some socket
496 		 * state, since we are reassigning the socket to a new transport
497 		 * during vsock_connect(), let's reset these fields to have a
498 		 * clean state.
499 		 */
500 		sock_reset_flag(sk, SOCK_DONE);
501 		sk->sk_state = TCP_CLOSE;
502 		vsk->peer_shutdown = 0;
503 	}
504 
505 	/* We increase the module refcnt to prevent the transport unloading
506 	 * while there are open sockets assigned to it.
507 	 */
508 	if (!new_transport || !try_module_get(new_transport->module))
509 		return -ENODEV;
510 
511 	if (sk->sk_type == SOCK_SEQPACKET) {
512 		if (!new_transport->seqpacket_allow ||
513 		    !new_transport->seqpacket_allow(remote_cid)) {
514 			module_put(new_transport->module);
515 			return -ESOCKTNOSUPPORT;
516 		}
517 	}
518 
519 	ret = new_transport->init(vsk, psk);
520 	if (ret) {
521 		module_put(new_transport->module);
522 		return ret;
523 	}
524 
525 	vsk->transport = new_transport;
526 
527 	return 0;
528 }
529 EXPORT_SYMBOL_GPL(vsock_assign_transport);
530 
531 bool vsock_find_cid(unsigned int cid)
532 {
533 	if (transport_g2h && cid == transport_g2h->get_local_cid())
534 		return true;
535 
536 	if (transport_h2g && cid == VMADDR_CID_HOST)
537 		return true;
538 
539 	if (transport_local && cid == VMADDR_CID_LOCAL)
540 		return true;
541 
542 	return false;
543 }
544 EXPORT_SYMBOL_GPL(vsock_find_cid);
545 
546 static struct sock *vsock_dequeue_accept(struct sock *listener)
547 {
548 	struct vsock_sock *vlistener;
549 	struct vsock_sock *vconnected;
550 
551 	vlistener = vsock_sk(listener);
552 
553 	if (list_empty(&vlistener->accept_queue))
554 		return NULL;
555 
556 	vconnected = list_entry(vlistener->accept_queue.next,
557 				struct vsock_sock, accept_queue);
558 
559 	list_del_init(&vconnected->accept_queue);
560 	sock_put(listener);
561 	/* The caller will need a reference on the connected socket so we let
562 	 * it call sock_put().
563 	 */
564 
565 	return sk_vsock(vconnected);
566 }
567 
568 static bool vsock_is_accept_queue_empty(struct sock *sk)
569 {
570 	struct vsock_sock *vsk = vsock_sk(sk);
571 	return list_empty(&vsk->accept_queue);
572 }
573 
574 static bool vsock_is_pending(struct sock *sk)
575 {
576 	struct vsock_sock *vsk = vsock_sk(sk);
577 	return !list_empty(&vsk->pending_links);
578 }
579 
580 static int vsock_send_shutdown(struct sock *sk, int mode)
581 {
582 	struct vsock_sock *vsk = vsock_sk(sk);
583 
584 	if (!vsk->transport)
585 		return -ENODEV;
586 
587 	return vsk->transport->shutdown(vsk, mode);
588 }
589 
590 static void vsock_pending_work(struct work_struct *work)
591 {
592 	struct sock *sk;
593 	struct sock *listener;
594 	struct vsock_sock *vsk;
595 	bool cleanup;
596 
597 	vsk = container_of(work, struct vsock_sock, pending_work.work);
598 	sk = sk_vsock(vsk);
599 	listener = vsk->listener;
600 	cleanup = true;
601 
602 	lock_sock(listener);
603 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
604 
605 	if (vsock_is_pending(sk)) {
606 		vsock_remove_pending(listener, sk);
607 
608 		sk_acceptq_removed(listener);
609 	} else if (!vsk->rejected) {
610 		/* We are not on the pending list and accept() did not reject
611 		 * us, so we must have been accepted by our user process.  We
612 		 * just need to drop our references to the sockets and be on
613 		 * our way.
614 		 */
615 		cleanup = false;
616 		goto out;
617 	}
618 
619 	/* We need to remove ourself from the global connected sockets list so
620 	 * incoming packets can't find this socket, and to reduce the reference
621 	 * count.
622 	 */
623 	vsock_remove_connected(vsk);
624 
625 	sk->sk_state = TCP_CLOSE;
626 
627 out:
628 	release_sock(sk);
629 	release_sock(listener);
630 	if (cleanup)
631 		sock_put(sk);
632 
633 	sock_put(sk);
634 	sock_put(listener);
635 }
636 
637 /**** SOCKET OPERATIONS ****/
638 
639 static int __vsock_bind_connectible(struct vsock_sock *vsk,
640 				    struct sockaddr_vm *addr)
641 {
642 	static u32 port;
643 	struct sockaddr_vm new_addr;
644 
645 	if (!port)
646 		port = get_random_u32_above(LAST_RESERVED_PORT);
647 
648 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
649 
650 	if (addr->svm_port == VMADDR_PORT_ANY) {
651 		bool found = false;
652 		unsigned int i;
653 
654 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
655 			if (port <= LAST_RESERVED_PORT)
656 				port = LAST_RESERVED_PORT + 1;
657 
658 			new_addr.svm_port = port++;
659 
660 			if (!__vsock_find_bound_socket(&new_addr)) {
661 				found = true;
662 				break;
663 			}
664 		}
665 
666 		if (!found)
667 			return -EADDRNOTAVAIL;
668 	} else {
669 		/* If port is in reserved range, ensure caller
670 		 * has necessary privileges.
671 		 */
672 		if (addr->svm_port <= LAST_RESERVED_PORT &&
673 		    !capable(CAP_NET_BIND_SERVICE)) {
674 			return -EACCES;
675 		}
676 
677 		if (__vsock_find_bound_socket(&new_addr))
678 			return -EADDRINUSE;
679 	}
680 
681 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
682 
683 	/* Remove connection oriented sockets from the unbound list and add them
684 	 * to the hash table for easy lookup by its address.  The unbound list
685 	 * is simply an extra entry at the end of the hash table, a trick used
686 	 * by AF_UNIX.
687 	 */
688 	__vsock_remove_bound(vsk);
689 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
690 
691 	return 0;
692 }
693 
694 static int __vsock_bind_dgram(struct vsock_sock *vsk,
695 			      struct sockaddr_vm *addr)
696 {
697 	return vsk->transport->dgram_bind(vsk, addr);
698 }
699 
700 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
701 {
702 	struct vsock_sock *vsk = vsock_sk(sk);
703 	int retval;
704 
705 	/* First ensure this socket isn't already bound. */
706 	if (vsock_addr_bound(&vsk->local_addr))
707 		return -EINVAL;
708 
709 	/* Now bind to the provided address or select appropriate values if
710 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
711 	 * like AF_INET prevents binding to a non-local IP address (in most
712 	 * cases), we only allow binding to a local CID.
713 	 */
714 	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
715 		return -EADDRNOTAVAIL;
716 
717 	switch (sk->sk_socket->type) {
718 	case SOCK_STREAM:
719 	case SOCK_SEQPACKET:
720 		spin_lock_bh(&vsock_table_lock);
721 		retval = __vsock_bind_connectible(vsk, addr);
722 		spin_unlock_bh(&vsock_table_lock);
723 		break;
724 
725 	case SOCK_DGRAM:
726 		retval = __vsock_bind_dgram(vsk, addr);
727 		break;
728 
729 	default:
730 		retval = -EINVAL;
731 		break;
732 	}
733 
734 	return retval;
735 }
736 
737 static void vsock_connect_timeout(struct work_struct *work);
738 
739 static struct sock *__vsock_create(struct net *net,
740 				   struct socket *sock,
741 				   struct sock *parent,
742 				   gfp_t priority,
743 				   unsigned short type,
744 				   int kern)
745 {
746 	struct sock *sk;
747 	struct vsock_sock *psk;
748 	struct vsock_sock *vsk;
749 
750 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
751 	if (!sk)
752 		return NULL;
753 
754 	sock_init_data(sock, sk);
755 
756 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
757 	 * non-NULL. We make sure that our sockets always have a type by
758 	 * setting it here if needed.
759 	 */
760 	if (!sock)
761 		sk->sk_type = type;
762 
763 	vsk = vsock_sk(sk);
764 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
765 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
766 
767 	sk->sk_destruct = vsock_sk_destruct;
768 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
769 	sock_reset_flag(sk, SOCK_DONE);
770 
771 	INIT_LIST_HEAD(&vsk->bound_table);
772 	INIT_LIST_HEAD(&vsk->connected_table);
773 	vsk->listener = NULL;
774 	INIT_LIST_HEAD(&vsk->pending_links);
775 	INIT_LIST_HEAD(&vsk->accept_queue);
776 	vsk->rejected = false;
777 	vsk->sent_request = false;
778 	vsk->ignore_connecting_rst = false;
779 	vsk->peer_shutdown = 0;
780 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
781 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
782 
783 	psk = parent ? vsock_sk(parent) : NULL;
784 	if (parent) {
785 		vsk->trusted = psk->trusted;
786 		vsk->owner = get_cred(psk->owner);
787 		vsk->connect_timeout = psk->connect_timeout;
788 		vsk->buffer_size = psk->buffer_size;
789 		vsk->buffer_min_size = psk->buffer_min_size;
790 		vsk->buffer_max_size = psk->buffer_max_size;
791 		security_sk_clone(parent, sk);
792 	} else {
793 		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
794 		vsk->owner = get_current_cred();
795 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
796 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
797 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
798 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
799 	}
800 
801 	return sk;
802 }
803 
804 static bool sock_type_connectible(u16 type)
805 {
806 	return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
807 }
808 
809 static void __vsock_release(struct sock *sk, int level)
810 {
811 	struct vsock_sock *vsk;
812 	struct sock *pending;
813 
814 	vsk = vsock_sk(sk);
815 	pending = NULL;	/* Compiler warning. */
816 
817 	/* When "level" is SINGLE_DEPTH_NESTING, use the nested
818 	 * version to avoid the warning "possible recursive locking
819 	 * detected". When "level" is 0, lock_sock_nested(sk, level)
820 	 * is the same as lock_sock(sk).
821 	 */
822 	lock_sock_nested(sk, level);
823 
824 	if (vsk->transport)
825 		vsk->transport->release(vsk);
826 	else if (sock_type_connectible(sk->sk_type))
827 		vsock_remove_sock(vsk);
828 
829 	sock_orphan(sk);
830 	sk->sk_shutdown = SHUTDOWN_MASK;
831 
832 	skb_queue_purge(&sk->sk_receive_queue);
833 
834 	/* Clean up any sockets that never were accepted. */
835 	while ((pending = vsock_dequeue_accept(sk)) != NULL) {
836 		__vsock_release(pending, SINGLE_DEPTH_NESTING);
837 		sock_put(pending);
838 	}
839 
840 	release_sock(sk);
841 	sock_put(sk);
842 }
843 
844 static void vsock_sk_destruct(struct sock *sk)
845 {
846 	struct vsock_sock *vsk = vsock_sk(sk);
847 
848 	/* Flush MSG_ZEROCOPY leftovers. */
849 	__skb_queue_purge(&sk->sk_error_queue);
850 
851 	vsock_deassign_transport(vsk);
852 
853 	/* When clearing these addresses, there's no need to set the family and
854 	 * possibly register the address family with the kernel.
855 	 */
856 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
857 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
858 
859 	put_cred(vsk->owner);
860 }
861 
862 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
863 {
864 	int err;
865 
866 	err = sock_queue_rcv_skb(sk, skb);
867 	if (err)
868 		kfree_skb(skb);
869 
870 	return err;
871 }
872 
873 struct sock *vsock_create_connected(struct sock *parent)
874 {
875 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
876 			      parent->sk_type, 0);
877 }
878 EXPORT_SYMBOL_GPL(vsock_create_connected);
879 
880 s64 vsock_stream_has_data(struct vsock_sock *vsk)
881 {
882 	if (WARN_ON(!vsk->transport))
883 		return 0;
884 
885 	return vsk->transport->stream_has_data(vsk);
886 }
887 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
888 
889 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
890 {
891 	struct sock *sk = sk_vsock(vsk);
892 
893 	if (WARN_ON(!vsk->transport))
894 		return 0;
895 
896 	if (sk->sk_type == SOCK_SEQPACKET)
897 		return vsk->transport->seqpacket_has_data(vsk);
898 	else
899 		return vsock_stream_has_data(vsk);
900 }
901 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
902 
903 s64 vsock_stream_has_space(struct vsock_sock *vsk)
904 {
905 	if (WARN_ON(!vsk->transport))
906 		return 0;
907 
908 	return vsk->transport->stream_has_space(vsk);
909 }
910 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
911 
912 void vsock_data_ready(struct sock *sk)
913 {
914 	struct vsock_sock *vsk = vsock_sk(sk);
915 
916 	if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
917 	    sock_flag(sk, SOCK_DONE))
918 		sk->sk_data_ready(sk);
919 }
920 EXPORT_SYMBOL_GPL(vsock_data_ready);
921 
922 /* Dummy callback required by sockmap.
923  * See unconditional call of saved_close() in sock_map_close().
924  */
925 static void vsock_close(struct sock *sk, long timeout)
926 {
927 }
928 
929 static int vsock_release(struct socket *sock)
930 {
931 	struct sock *sk = sock->sk;
932 
933 	if (!sk)
934 		return 0;
935 
936 	sk->sk_prot->close(sk, 0);
937 	__vsock_release(sk, 0);
938 	sock->sk = NULL;
939 	sock->state = SS_FREE;
940 
941 	return 0;
942 }
943 
944 static int
945 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
946 {
947 	int err;
948 	struct sock *sk;
949 	struct sockaddr_vm *vm_addr;
950 
951 	sk = sock->sk;
952 
953 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
954 		return -EINVAL;
955 
956 	lock_sock(sk);
957 	err = __vsock_bind(sk, vm_addr);
958 	release_sock(sk);
959 
960 	return err;
961 }
962 
963 static int vsock_getname(struct socket *sock,
964 			 struct sockaddr *addr, int peer)
965 {
966 	int err;
967 	struct sock *sk;
968 	struct vsock_sock *vsk;
969 	struct sockaddr_vm *vm_addr;
970 
971 	sk = sock->sk;
972 	vsk = vsock_sk(sk);
973 	err = 0;
974 
975 	lock_sock(sk);
976 
977 	if (peer) {
978 		if (sock->state != SS_CONNECTED) {
979 			err = -ENOTCONN;
980 			goto out;
981 		}
982 		vm_addr = &vsk->remote_addr;
983 	} else {
984 		vm_addr = &vsk->local_addr;
985 	}
986 
987 	if (!vm_addr) {
988 		err = -EINVAL;
989 		goto out;
990 	}
991 
992 	/* sys_getsockname() and sys_getpeername() pass us a
993 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
994 	 * that macro is defined in socket.c instead of .h, so we hardcode its
995 	 * value here.
996 	 */
997 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
998 	memcpy(addr, vm_addr, sizeof(*vm_addr));
999 	err = sizeof(*vm_addr);
1000 
1001 out:
1002 	release_sock(sk);
1003 	return err;
1004 }
1005 
1006 static int vsock_shutdown(struct socket *sock, int mode)
1007 {
1008 	int err;
1009 	struct sock *sk;
1010 
1011 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
1012 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
1013 	 * here like the other address families do.  Note also that the
1014 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
1015 	 * which is what we want.
1016 	 */
1017 	mode++;
1018 
1019 	if ((mode & ~SHUTDOWN_MASK) || !mode)
1020 		return -EINVAL;
1021 
1022 	/* If this is a connection oriented socket and it is not connected then
1023 	 * bail out immediately.  If it is a DGRAM socket then we must first
1024 	 * kick the socket so that it wakes up from any sleeping calls, for
1025 	 * example recv(), and then afterwards return the error.
1026 	 */
1027 
1028 	sk = sock->sk;
1029 
1030 	lock_sock(sk);
1031 	if (sock->state == SS_UNCONNECTED) {
1032 		err = -ENOTCONN;
1033 		if (sock_type_connectible(sk->sk_type))
1034 			goto out;
1035 	} else {
1036 		sock->state = SS_DISCONNECTING;
1037 		err = 0;
1038 	}
1039 
1040 	/* Receive and send shutdowns are treated alike. */
1041 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1042 	if (mode) {
1043 		sk->sk_shutdown |= mode;
1044 		sk->sk_state_change(sk);
1045 
1046 		if (sock_type_connectible(sk->sk_type)) {
1047 			sock_reset_flag(sk, SOCK_DONE);
1048 			vsock_send_shutdown(sk, mode);
1049 		}
1050 	}
1051 
1052 out:
1053 	release_sock(sk);
1054 	return err;
1055 }
1056 
1057 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1058 			       poll_table *wait)
1059 {
1060 	struct sock *sk;
1061 	__poll_t mask;
1062 	struct vsock_sock *vsk;
1063 
1064 	sk = sock->sk;
1065 	vsk = vsock_sk(sk);
1066 
1067 	poll_wait(file, sk_sleep(sk), wait);
1068 	mask = 0;
1069 
1070 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
1071 		/* Signify that there has been an error on this socket. */
1072 		mask |= EPOLLERR;
1073 
1074 	/* INET sockets treat local write shutdown and peer write shutdown as a
1075 	 * case of EPOLLHUP set.
1076 	 */
1077 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1078 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1079 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1080 		mask |= EPOLLHUP;
1081 	}
1082 
1083 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
1084 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
1085 		mask |= EPOLLRDHUP;
1086 	}
1087 
1088 	if (sk_is_readable(sk))
1089 		mask |= EPOLLIN | EPOLLRDNORM;
1090 
1091 	if (sock->type == SOCK_DGRAM) {
1092 		/* For datagram sockets we can read if there is something in
1093 		 * the queue and write as long as the socket isn't shutdown for
1094 		 * sending.
1095 		 */
1096 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1097 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1098 			mask |= EPOLLIN | EPOLLRDNORM;
1099 		}
1100 
1101 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1102 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1103 
1104 	} else if (sock_type_connectible(sk->sk_type)) {
1105 		const struct vsock_transport *transport;
1106 
1107 		lock_sock(sk);
1108 
1109 		transport = vsk->transport;
1110 
1111 		/* Listening sockets that have connections in their accept
1112 		 * queue can be read.
1113 		 */
1114 		if (sk->sk_state == TCP_LISTEN
1115 		    && !vsock_is_accept_queue_empty(sk))
1116 			mask |= EPOLLIN | EPOLLRDNORM;
1117 
1118 		/* If there is something in the queue then we can read. */
1119 		if (transport && transport->stream_is_active(vsk) &&
1120 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1121 			bool data_ready_now = false;
1122 			int target = sock_rcvlowat(sk, 0, INT_MAX);
1123 			int ret = transport->notify_poll_in(
1124 					vsk, target, &data_ready_now);
1125 			if (ret < 0) {
1126 				mask |= EPOLLERR;
1127 			} else {
1128 				if (data_ready_now)
1129 					mask |= EPOLLIN | EPOLLRDNORM;
1130 
1131 			}
1132 		}
1133 
1134 		/* Sockets whose connections have been closed, reset, or
1135 		 * terminated should also be considered read, and we check the
1136 		 * shutdown flag for that.
1137 		 */
1138 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1139 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1140 			mask |= EPOLLIN | EPOLLRDNORM;
1141 		}
1142 
1143 		/* Connected sockets that can produce data can be written. */
1144 		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1145 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1146 				bool space_avail_now = false;
1147 				int ret = transport->notify_poll_out(
1148 						vsk, 1, &space_avail_now);
1149 				if (ret < 0) {
1150 					mask |= EPOLLERR;
1151 				} else {
1152 					if (space_avail_now)
1153 						/* Remove EPOLLWRBAND since INET
1154 						 * sockets are not setting it.
1155 						 */
1156 						mask |= EPOLLOUT | EPOLLWRNORM;
1157 
1158 				}
1159 			}
1160 		}
1161 
1162 		/* Simulate INET socket poll behaviors, which sets
1163 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1164 		 * but local send is not shutdown.
1165 		 */
1166 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1167 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1168 				mask |= EPOLLOUT | EPOLLWRNORM;
1169 
1170 		}
1171 
1172 		release_sock(sk);
1173 	}
1174 
1175 	return mask;
1176 }
1177 
1178 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1179 {
1180 	struct vsock_sock *vsk = vsock_sk(sk);
1181 
1182 	return vsk->transport->read_skb(vsk, read_actor);
1183 }
1184 
1185 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1186 			       size_t len)
1187 {
1188 	int err;
1189 	struct sock *sk;
1190 	struct vsock_sock *vsk;
1191 	struct sockaddr_vm *remote_addr;
1192 	const struct vsock_transport *transport;
1193 
1194 	if (msg->msg_flags & MSG_OOB)
1195 		return -EOPNOTSUPP;
1196 
1197 	/* For now, MSG_DONTWAIT is always assumed... */
1198 	err = 0;
1199 	sk = sock->sk;
1200 	vsk = vsock_sk(sk);
1201 
1202 	lock_sock(sk);
1203 
1204 	transport = vsk->transport;
1205 
1206 	err = vsock_auto_bind(vsk);
1207 	if (err)
1208 		goto out;
1209 
1210 
1211 	/* If the provided message contains an address, use that.  Otherwise
1212 	 * fall back on the socket's remote handle (if it has been connected).
1213 	 */
1214 	if (msg->msg_name &&
1215 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1216 			    &remote_addr) == 0) {
1217 		/* Ensure this address is of the right type and is a valid
1218 		 * destination.
1219 		 */
1220 
1221 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1222 			remote_addr->svm_cid = transport->get_local_cid();
1223 
1224 		if (!vsock_addr_bound(remote_addr)) {
1225 			err = -EINVAL;
1226 			goto out;
1227 		}
1228 	} else if (sock->state == SS_CONNECTED) {
1229 		remote_addr = &vsk->remote_addr;
1230 
1231 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1232 			remote_addr->svm_cid = transport->get_local_cid();
1233 
1234 		/* XXX Should connect() or this function ensure remote_addr is
1235 		 * bound?
1236 		 */
1237 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1238 			err = -EINVAL;
1239 			goto out;
1240 		}
1241 	} else {
1242 		err = -EINVAL;
1243 		goto out;
1244 	}
1245 
1246 	if (!transport->dgram_allow(remote_addr->svm_cid,
1247 				    remote_addr->svm_port)) {
1248 		err = -EINVAL;
1249 		goto out;
1250 	}
1251 
1252 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1253 
1254 out:
1255 	release_sock(sk);
1256 	return err;
1257 }
1258 
1259 static int vsock_dgram_connect(struct socket *sock,
1260 			       struct sockaddr *addr, int addr_len, int flags)
1261 {
1262 	int err;
1263 	struct sock *sk;
1264 	struct vsock_sock *vsk;
1265 	struct sockaddr_vm *remote_addr;
1266 
1267 	sk = sock->sk;
1268 	vsk = vsock_sk(sk);
1269 
1270 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1271 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1272 		lock_sock(sk);
1273 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1274 				VMADDR_PORT_ANY);
1275 		sock->state = SS_UNCONNECTED;
1276 		release_sock(sk);
1277 		return 0;
1278 	} else if (err != 0)
1279 		return -EINVAL;
1280 
1281 	lock_sock(sk);
1282 
1283 	err = vsock_auto_bind(vsk);
1284 	if (err)
1285 		goto out;
1286 
1287 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1288 					 remote_addr->svm_port)) {
1289 		err = -EINVAL;
1290 		goto out;
1291 	}
1292 
1293 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1294 	sock->state = SS_CONNECTED;
1295 
1296 	/* sock map disallows redirection of non-TCP sockets with sk_state !=
1297 	 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1298 	 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1299 	 *
1300 	 * This doesn't seem to be abnormal state for datagram sockets, as the
1301 	 * same approach can be see in other datagram socket types as well
1302 	 * (such as unix sockets).
1303 	 */
1304 	sk->sk_state = TCP_ESTABLISHED;
1305 
1306 out:
1307 	release_sock(sk);
1308 	return err;
1309 }
1310 
1311 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1312 			  size_t len, int flags)
1313 {
1314 	struct sock *sk = sock->sk;
1315 	struct vsock_sock *vsk = vsock_sk(sk);
1316 
1317 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1318 }
1319 
1320 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1321 			size_t len, int flags)
1322 {
1323 #ifdef CONFIG_BPF_SYSCALL
1324 	struct sock *sk = sock->sk;
1325 	const struct proto *prot;
1326 
1327 	prot = READ_ONCE(sk->sk_prot);
1328 	if (prot != &vsock_proto)
1329 		return prot->recvmsg(sk, msg, len, flags, NULL);
1330 #endif
1331 
1332 	return __vsock_dgram_recvmsg(sock, msg, len, flags);
1333 }
1334 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1335 
1336 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd,
1337 			  int __user *arg)
1338 {
1339 	struct sock *sk = sock->sk;
1340 	struct vsock_sock *vsk;
1341 	int ret;
1342 
1343 	vsk = vsock_sk(sk);
1344 
1345 	switch (cmd) {
1346 	case SIOCOUTQ: {
1347 		ssize_t n_bytes;
1348 
1349 		if (!vsk->transport || !vsk->transport->unsent_bytes) {
1350 			ret = -EOPNOTSUPP;
1351 			break;
1352 		}
1353 
1354 		if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) {
1355 			ret = -EINVAL;
1356 			break;
1357 		}
1358 
1359 		n_bytes = vsk->transport->unsent_bytes(vsk);
1360 		if (n_bytes < 0) {
1361 			ret = n_bytes;
1362 			break;
1363 		}
1364 
1365 		ret = put_user(n_bytes, arg);
1366 		break;
1367 	}
1368 	default:
1369 		ret = -ENOIOCTLCMD;
1370 	}
1371 
1372 	return ret;
1373 }
1374 
1375 static int vsock_ioctl(struct socket *sock, unsigned int cmd,
1376 		       unsigned long arg)
1377 {
1378 	int ret;
1379 
1380 	lock_sock(sock->sk);
1381 	ret = vsock_do_ioctl(sock, cmd, (int __user *)arg);
1382 	release_sock(sock->sk);
1383 
1384 	return ret;
1385 }
1386 
1387 static const struct proto_ops vsock_dgram_ops = {
1388 	.family = PF_VSOCK,
1389 	.owner = THIS_MODULE,
1390 	.release = vsock_release,
1391 	.bind = vsock_bind,
1392 	.connect = vsock_dgram_connect,
1393 	.socketpair = sock_no_socketpair,
1394 	.accept = sock_no_accept,
1395 	.getname = vsock_getname,
1396 	.poll = vsock_poll,
1397 	.ioctl = vsock_ioctl,
1398 	.listen = sock_no_listen,
1399 	.shutdown = vsock_shutdown,
1400 	.sendmsg = vsock_dgram_sendmsg,
1401 	.recvmsg = vsock_dgram_recvmsg,
1402 	.mmap = sock_no_mmap,
1403 	.read_skb = vsock_read_skb,
1404 };
1405 
1406 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1407 {
1408 	const struct vsock_transport *transport = vsk->transport;
1409 
1410 	if (!transport || !transport->cancel_pkt)
1411 		return -EOPNOTSUPP;
1412 
1413 	return transport->cancel_pkt(vsk);
1414 }
1415 
1416 static void vsock_connect_timeout(struct work_struct *work)
1417 {
1418 	struct sock *sk;
1419 	struct vsock_sock *vsk;
1420 
1421 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1422 	sk = sk_vsock(vsk);
1423 
1424 	lock_sock(sk);
1425 	if (sk->sk_state == TCP_SYN_SENT &&
1426 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1427 		sk->sk_state = TCP_CLOSE;
1428 		sk->sk_socket->state = SS_UNCONNECTED;
1429 		sk->sk_err = ETIMEDOUT;
1430 		sk_error_report(sk);
1431 		vsock_transport_cancel_pkt(vsk);
1432 	}
1433 	release_sock(sk);
1434 
1435 	sock_put(sk);
1436 }
1437 
1438 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1439 			 int addr_len, int flags)
1440 {
1441 	int err;
1442 	struct sock *sk;
1443 	struct vsock_sock *vsk;
1444 	const struct vsock_transport *transport;
1445 	struct sockaddr_vm *remote_addr;
1446 	long timeout;
1447 	DEFINE_WAIT(wait);
1448 
1449 	err = 0;
1450 	sk = sock->sk;
1451 	vsk = vsock_sk(sk);
1452 
1453 	lock_sock(sk);
1454 
1455 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1456 	switch (sock->state) {
1457 	case SS_CONNECTED:
1458 		err = -EISCONN;
1459 		goto out;
1460 	case SS_DISCONNECTING:
1461 		err = -EINVAL;
1462 		goto out;
1463 	case SS_CONNECTING:
1464 		/* This continues on so we can move sock into the SS_CONNECTED
1465 		 * state once the connection has completed (at which point err
1466 		 * will be set to zero also).  Otherwise, we will either wait
1467 		 * for the connection or return -EALREADY should this be a
1468 		 * non-blocking call.
1469 		 */
1470 		err = -EALREADY;
1471 		if (flags & O_NONBLOCK)
1472 			goto out;
1473 		break;
1474 	default:
1475 		if ((sk->sk_state == TCP_LISTEN) ||
1476 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1477 			err = -EINVAL;
1478 			goto out;
1479 		}
1480 
1481 		/* Set the remote address that we are connecting to. */
1482 		memcpy(&vsk->remote_addr, remote_addr,
1483 		       sizeof(vsk->remote_addr));
1484 
1485 		err = vsock_assign_transport(vsk, NULL);
1486 		if (err)
1487 			goto out;
1488 
1489 		transport = vsk->transport;
1490 
1491 		/* The hypervisor and well-known contexts do not have socket
1492 		 * endpoints.
1493 		 */
1494 		if (!transport ||
1495 		    !transport->stream_allow(remote_addr->svm_cid,
1496 					     remote_addr->svm_port)) {
1497 			err = -ENETUNREACH;
1498 			goto out;
1499 		}
1500 
1501 		if (vsock_msgzerocopy_allow(transport)) {
1502 			set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1503 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1504 			/* If this option was set before 'connect()',
1505 			 * when transport was unknown, check that this
1506 			 * feature is supported here.
1507 			 */
1508 			err = -EOPNOTSUPP;
1509 			goto out;
1510 		}
1511 
1512 		err = vsock_auto_bind(vsk);
1513 		if (err)
1514 			goto out;
1515 
1516 		sk->sk_state = TCP_SYN_SENT;
1517 
1518 		err = transport->connect(vsk);
1519 		if (err < 0)
1520 			goto out;
1521 
1522 		/* Mark sock as connecting and set the error code to in
1523 		 * progress in case this is a non-blocking connect.
1524 		 */
1525 		sock->state = SS_CONNECTING;
1526 		err = -EINPROGRESS;
1527 	}
1528 
1529 	/* The receive path will handle all communication until we are able to
1530 	 * enter the connected state.  Here we wait for the connection to be
1531 	 * completed or a notification of an error.
1532 	 */
1533 	timeout = vsk->connect_timeout;
1534 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1535 
1536 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1537 		if (flags & O_NONBLOCK) {
1538 			/* If we're not going to block, we schedule a timeout
1539 			 * function to generate a timeout on the connection
1540 			 * attempt, in case the peer doesn't respond in a
1541 			 * timely manner. We hold on to the socket until the
1542 			 * timeout fires.
1543 			 */
1544 			sock_hold(sk);
1545 
1546 			/* If the timeout function is already scheduled,
1547 			 * reschedule it, then ungrab the socket refcount to
1548 			 * keep it balanced.
1549 			 */
1550 			if (mod_delayed_work(system_wq, &vsk->connect_work,
1551 					     timeout))
1552 				sock_put(sk);
1553 
1554 			/* Skip ahead to preserve error code set above. */
1555 			goto out_wait;
1556 		}
1557 
1558 		release_sock(sk);
1559 		timeout = schedule_timeout(timeout);
1560 		lock_sock(sk);
1561 
1562 		if (signal_pending(current)) {
1563 			err = sock_intr_errno(timeout);
1564 			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1565 			sock->state = SS_UNCONNECTED;
1566 			vsock_transport_cancel_pkt(vsk);
1567 			vsock_remove_connected(vsk);
1568 			goto out_wait;
1569 		} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1570 			err = -ETIMEDOUT;
1571 			sk->sk_state = TCP_CLOSE;
1572 			sock->state = SS_UNCONNECTED;
1573 			vsock_transport_cancel_pkt(vsk);
1574 			goto out_wait;
1575 		}
1576 
1577 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1578 	}
1579 
1580 	if (sk->sk_err) {
1581 		err = -sk->sk_err;
1582 		sk->sk_state = TCP_CLOSE;
1583 		sock->state = SS_UNCONNECTED;
1584 	} else {
1585 		err = 0;
1586 	}
1587 
1588 out_wait:
1589 	finish_wait(sk_sleep(sk), &wait);
1590 out:
1591 	release_sock(sk);
1592 	return err;
1593 }
1594 
1595 static int vsock_accept(struct socket *sock, struct socket *newsock,
1596 			struct proto_accept_arg *arg)
1597 {
1598 	struct sock *listener;
1599 	int err;
1600 	struct sock *connected;
1601 	struct vsock_sock *vconnected;
1602 	long timeout;
1603 	DEFINE_WAIT(wait);
1604 
1605 	err = 0;
1606 	listener = sock->sk;
1607 
1608 	lock_sock(listener);
1609 
1610 	if (!sock_type_connectible(sock->type)) {
1611 		err = -EOPNOTSUPP;
1612 		goto out;
1613 	}
1614 
1615 	if (listener->sk_state != TCP_LISTEN) {
1616 		err = -EINVAL;
1617 		goto out;
1618 	}
1619 
1620 	/* Wait for children sockets to appear; these are the new sockets
1621 	 * created upon connection establishment.
1622 	 */
1623 	timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK);
1624 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1625 
1626 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1627 	       listener->sk_err == 0) {
1628 		release_sock(listener);
1629 		timeout = schedule_timeout(timeout);
1630 		finish_wait(sk_sleep(listener), &wait);
1631 		lock_sock(listener);
1632 
1633 		if (signal_pending(current)) {
1634 			err = sock_intr_errno(timeout);
1635 			goto out;
1636 		} else if (timeout == 0) {
1637 			err = -EAGAIN;
1638 			goto out;
1639 		}
1640 
1641 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1642 	}
1643 	finish_wait(sk_sleep(listener), &wait);
1644 
1645 	if (listener->sk_err)
1646 		err = -listener->sk_err;
1647 
1648 	if (connected) {
1649 		sk_acceptq_removed(listener);
1650 
1651 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1652 		vconnected = vsock_sk(connected);
1653 
1654 		/* If the listener socket has received an error, then we should
1655 		 * reject this socket and return.  Note that we simply mark the
1656 		 * socket rejected, drop our reference, and let the cleanup
1657 		 * function handle the cleanup; the fact that we found it in
1658 		 * the listener's accept queue guarantees that the cleanup
1659 		 * function hasn't run yet.
1660 		 */
1661 		if (err) {
1662 			vconnected->rejected = true;
1663 		} else {
1664 			newsock->state = SS_CONNECTED;
1665 			sock_graft(connected, newsock);
1666 			if (vsock_msgzerocopy_allow(vconnected->transport))
1667 				set_bit(SOCK_SUPPORT_ZC,
1668 					&connected->sk_socket->flags);
1669 		}
1670 
1671 		release_sock(connected);
1672 		sock_put(connected);
1673 	}
1674 
1675 out:
1676 	release_sock(listener);
1677 	return err;
1678 }
1679 
1680 static int vsock_listen(struct socket *sock, int backlog)
1681 {
1682 	int err;
1683 	struct sock *sk;
1684 	struct vsock_sock *vsk;
1685 
1686 	sk = sock->sk;
1687 
1688 	lock_sock(sk);
1689 
1690 	if (!sock_type_connectible(sk->sk_type)) {
1691 		err = -EOPNOTSUPP;
1692 		goto out;
1693 	}
1694 
1695 	if (sock->state != SS_UNCONNECTED) {
1696 		err = -EINVAL;
1697 		goto out;
1698 	}
1699 
1700 	vsk = vsock_sk(sk);
1701 
1702 	if (!vsock_addr_bound(&vsk->local_addr)) {
1703 		err = -EINVAL;
1704 		goto out;
1705 	}
1706 
1707 	sk->sk_max_ack_backlog = backlog;
1708 	sk->sk_state = TCP_LISTEN;
1709 
1710 	err = 0;
1711 
1712 out:
1713 	release_sock(sk);
1714 	return err;
1715 }
1716 
1717 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1718 				     const struct vsock_transport *transport,
1719 				     u64 val)
1720 {
1721 	if (val > vsk->buffer_max_size)
1722 		val = vsk->buffer_max_size;
1723 
1724 	if (val < vsk->buffer_min_size)
1725 		val = vsk->buffer_min_size;
1726 
1727 	if (val != vsk->buffer_size &&
1728 	    transport && transport->notify_buffer_size)
1729 		transport->notify_buffer_size(vsk, &val);
1730 
1731 	vsk->buffer_size = val;
1732 }
1733 
1734 static int vsock_connectible_setsockopt(struct socket *sock,
1735 					int level,
1736 					int optname,
1737 					sockptr_t optval,
1738 					unsigned int optlen)
1739 {
1740 	int err;
1741 	struct sock *sk;
1742 	struct vsock_sock *vsk;
1743 	const struct vsock_transport *transport;
1744 	u64 val;
1745 
1746 	if (level != AF_VSOCK && level != SOL_SOCKET)
1747 		return -ENOPROTOOPT;
1748 
1749 #define COPY_IN(_v)                                       \
1750 	do {						  \
1751 		if (optlen < sizeof(_v)) {		  \
1752 			err = -EINVAL;			  \
1753 			goto exit;			  \
1754 		}					  \
1755 		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1756 			err = -EFAULT;					\
1757 			goto exit;					\
1758 		}							\
1759 	} while (0)
1760 
1761 	err = 0;
1762 	sk = sock->sk;
1763 	vsk = vsock_sk(sk);
1764 
1765 	lock_sock(sk);
1766 
1767 	transport = vsk->transport;
1768 
1769 	if (level == SOL_SOCKET) {
1770 		int zerocopy;
1771 
1772 		if (optname != SO_ZEROCOPY) {
1773 			release_sock(sk);
1774 			return sock_setsockopt(sock, level, optname, optval, optlen);
1775 		}
1776 
1777 		/* Use 'int' type here, because variable to
1778 		 * set this option usually has this type.
1779 		 */
1780 		COPY_IN(zerocopy);
1781 
1782 		if (zerocopy < 0 || zerocopy > 1) {
1783 			err = -EINVAL;
1784 			goto exit;
1785 		}
1786 
1787 		if (transport && !vsock_msgzerocopy_allow(transport)) {
1788 			err = -EOPNOTSUPP;
1789 			goto exit;
1790 		}
1791 
1792 		sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
1793 		goto exit;
1794 	}
1795 
1796 	switch (optname) {
1797 	case SO_VM_SOCKETS_BUFFER_SIZE:
1798 		COPY_IN(val);
1799 		vsock_update_buffer_size(vsk, transport, val);
1800 		break;
1801 
1802 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1803 		COPY_IN(val);
1804 		vsk->buffer_max_size = val;
1805 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1806 		break;
1807 
1808 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1809 		COPY_IN(val);
1810 		vsk->buffer_min_size = val;
1811 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1812 		break;
1813 
1814 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1815 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1816 		struct __kernel_sock_timeval tv;
1817 
1818 		err = sock_copy_user_timeval(&tv, optval, optlen,
1819 					     optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1820 		if (err)
1821 			break;
1822 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1823 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1824 			vsk->connect_timeout = tv.tv_sec * HZ +
1825 				DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1826 			if (vsk->connect_timeout == 0)
1827 				vsk->connect_timeout =
1828 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1829 
1830 		} else {
1831 			err = -ERANGE;
1832 		}
1833 		break;
1834 	}
1835 
1836 	default:
1837 		err = -ENOPROTOOPT;
1838 		break;
1839 	}
1840 
1841 #undef COPY_IN
1842 
1843 exit:
1844 	release_sock(sk);
1845 	return err;
1846 }
1847 
1848 static int vsock_connectible_getsockopt(struct socket *sock,
1849 					int level, int optname,
1850 					char __user *optval,
1851 					int __user *optlen)
1852 {
1853 	struct sock *sk = sock->sk;
1854 	struct vsock_sock *vsk = vsock_sk(sk);
1855 
1856 	union {
1857 		u64 val64;
1858 		struct old_timeval32 tm32;
1859 		struct __kernel_old_timeval tm;
1860 		struct  __kernel_sock_timeval stm;
1861 	} v;
1862 
1863 	int lv = sizeof(v.val64);
1864 	int len;
1865 
1866 	if (level != AF_VSOCK)
1867 		return -ENOPROTOOPT;
1868 
1869 	if (get_user(len, optlen))
1870 		return -EFAULT;
1871 
1872 	memset(&v, 0, sizeof(v));
1873 
1874 	switch (optname) {
1875 	case SO_VM_SOCKETS_BUFFER_SIZE:
1876 		v.val64 = vsk->buffer_size;
1877 		break;
1878 
1879 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1880 		v.val64 = vsk->buffer_max_size;
1881 		break;
1882 
1883 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1884 		v.val64 = vsk->buffer_min_size;
1885 		break;
1886 
1887 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1888 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1889 		lv = sock_get_timeout(vsk->connect_timeout, &v,
1890 				      optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1891 		break;
1892 
1893 	default:
1894 		return -ENOPROTOOPT;
1895 	}
1896 
1897 	if (len < lv)
1898 		return -EINVAL;
1899 	if (len > lv)
1900 		len = lv;
1901 	if (copy_to_user(optval, &v, len))
1902 		return -EFAULT;
1903 
1904 	if (put_user(len, optlen))
1905 		return -EFAULT;
1906 
1907 	return 0;
1908 }
1909 
1910 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1911 				     size_t len)
1912 {
1913 	struct sock *sk;
1914 	struct vsock_sock *vsk;
1915 	const struct vsock_transport *transport;
1916 	ssize_t total_written;
1917 	long timeout;
1918 	int err;
1919 	struct vsock_transport_send_notify_data send_data;
1920 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1921 
1922 	sk = sock->sk;
1923 	vsk = vsock_sk(sk);
1924 	total_written = 0;
1925 	err = 0;
1926 
1927 	if (msg->msg_flags & MSG_OOB)
1928 		return -EOPNOTSUPP;
1929 
1930 	lock_sock(sk);
1931 
1932 	transport = vsk->transport;
1933 
1934 	/* Callers should not provide a destination with connection oriented
1935 	 * sockets.
1936 	 */
1937 	if (msg->msg_namelen) {
1938 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1939 		goto out;
1940 	}
1941 
1942 	/* Send data only if both sides are not shutdown in the direction. */
1943 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1944 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1945 		err = -EPIPE;
1946 		goto out;
1947 	}
1948 
1949 	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1950 	    !vsock_addr_bound(&vsk->local_addr)) {
1951 		err = -ENOTCONN;
1952 		goto out;
1953 	}
1954 
1955 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1956 		err = -EDESTADDRREQ;
1957 		goto out;
1958 	}
1959 
1960 	if (msg->msg_flags & MSG_ZEROCOPY &&
1961 	    !vsock_msgzerocopy_allow(transport)) {
1962 		err = -EOPNOTSUPP;
1963 		goto out;
1964 	}
1965 
1966 	/* Wait for room in the produce queue to enqueue our user's data. */
1967 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1968 
1969 	err = transport->notify_send_init(vsk, &send_data);
1970 	if (err < 0)
1971 		goto out;
1972 
1973 	while (total_written < len) {
1974 		ssize_t written;
1975 
1976 		add_wait_queue(sk_sleep(sk), &wait);
1977 		while (vsock_stream_has_space(vsk) == 0 &&
1978 		       sk->sk_err == 0 &&
1979 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1980 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1981 
1982 			/* Don't wait for non-blocking sockets. */
1983 			if (timeout == 0) {
1984 				err = -EAGAIN;
1985 				remove_wait_queue(sk_sleep(sk), &wait);
1986 				goto out_err;
1987 			}
1988 
1989 			err = transport->notify_send_pre_block(vsk, &send_data);
1990 			if (err < 0) {
1991 				remove_wait_queue(sk_sleep(sk), &wait);
1992 				goto out_err;
1993 			}
1994 
1995 			release_sock(sk);
1996 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1997 			lock_sock(sk);
1998 			if (signal_pending(current)) {
1999 				err = sock_intr_errno(timeout);
2000 				remove_wait_queue(sk_sleep(sk), &wait);
2001 				goto out_err;
2002 			} else if (timeout == 0) {
2003 				err = -EAGAIN;
2004 				remove_wait_queue(sk_sleep(sk), &wait);
2005 				goto out_err;
2006 			}
2007 		}
2008 		remove_wait_queue(sk_sleep(sk), &wait);
2009 
2010 		/* These checks occur both as part of and after the loop
2011 		 * conditional since we need to check before and after
2012 		 * sleeping.
2013 		 */
2014 		if (sk->sk_err) {
2015 			err = -sk->sk_err;
2016 			goto out_err;
2017 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
2018 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
2019 			err = -EPIPE;
2020 			goto out_err;
2021 		}
2022 
2023 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
2024 		if (err < 0)
2025 			goto out_err;
2026 
2027 		/* Note that enqueue will only write as many bytes as are free
2028 		 * in the produce queue, so we don't need to ensure len is
2029 		 * smaller than the queue size.  It is the caller's
2030 		 * responsibility to check how many bytes we were able to send.
2031 		 */
2032 
2033 		if (sk->sk_type == SOCK_SEQPACKET) {
2034 			written = transport->seqpacket_enqueue(vsk,
2035 						msg, len - total_written);
2036 		} else {
2037 			written = transport->stream_enqueue(vsk,
2038 					msg, len - total_written);
2039 		}
2040 
2041 		if (written < 0) {
2042 			err = written;
2043 			goto out_err;
2044 		}
2045 
2046 		total_written += written;
2047 
2048 		err = transport->notify_send_post_enqueue(
2049 				vsk, written, &send_data);
2050 		if (err < 0)
2051 			goto out_err;
2052 
2053 	}
2054 
2055 out_err:
2056 	if (total_written > 0) {
2057 		/* Return number of written bytes only if:
2058 		 * 1) SOCK_STREAM socket.
2059 		 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
2060 		 */
2061 		if (sk->sk_type == SOCK_STREAM || total_written == len)
2062 			err = total_written;
2063 	}
2064 out:
2065 	if (sk->sk_type == SOCK_STREAM)
2066 		err = sk_stream_error(sk, msg->msg_flags, err);
2067 
2068 	release_sock(sk);
2069 	return err;
2070 }
2071 
2072 static int vsock_connectible_wait_data(struct sock *sk,
2073 				       struct wait_queue_entry *wait,
2074 				       long timeout,
2075 				       struct vsock_transport_recv_notify_data *recv_data,
2076 				       size_t target)
2077 {
2078 	const struct vsock_transport *transport;
2079 	struct vsock_sock *vsk;
2080 	s64 data;
2081 	int err;
2082 
2083 	vsk = vsock_sk(sk);
2084 	err = 0;
2085 	transport = vsk->transport;
2086 
2087 	while (1) {
2088 		prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2089 		data = vsock_connectible_has_data(vsk);
2090 		if (data != 0)
2091 			break;
2092 
2093 		if (sk->sk_err != 0 ||
2094 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2095 		    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2096 			break;
2097 		}
2098 
2099 		/* Don't wait for non-blocking sockets. */
2100 		if (timeout == 0) {
2101 			err = -EAGAIN;
2102 			break;
2103 		}
2104 
2105 		if (recv_data) {
2106 			err = transport->notify_recv_pre_block(vsk, target, recv_data);
2107 			if (err < 0)
2108 				break;
2109 		}
2110 
2111 		release_sock(sk);
2112 		timeout = schedule_timeout(timeout);
2113 		lock_sock(sk);
2114 
2115 		if (signal_pending(current)) {
2116 			err = sock_intr_errno(timeout);
2117 			break;
2118 		} else if (timeout == 0) {
2119 			err = -EAGAIN;
2120 			break;
2121 		}
2122 	}
2123 
2124 	finish_wait(sk_sleep(sk), wait);
2125 
2126 	if (err)
2127 		return err;
2128 
2129 	/* Internal transport error when checking for available
2130 	 * data. XXX This should be changed to a connection
2131 	 * reset in a later change.
2132 	 */
2133 	if (data < 0)
2134 		return -ENOMEM;
2135 
2136 	return data;
2137 }
2138 
2139 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2140 				  size_t len, int flags)
2141 {
2142 	struct vsock_transport_recv_notify_data recv_data;
2143 	const struct vsock_transport *transport;
2144 	struct vsock_sock *vsk;
2145 	ssize_t copied;
2146 	size_t target;
2147 	long timeout;
2148 	int err;
2149 
2150 	DEFINE_WAIT(wait);
2151 
2152 	vsk = vsock_sk(sk);
2153 	transport = vsk->transport;
2154 
2155 	/* We must not copy less than target bytes into the user's buffer
2156 	 * before returning successfully, so we wait for the consume queue to
2157 	 * have that much data to consume before dequeueing.  Note that this
2158 	 * makes it impossible to handle cases where target is greater than the
2159 	 * queue size.
2160 	 */
2161 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2162 	if (target >= transport->stream_rcvhiwat(vsk)) {
2163 		err = -ENOMEM;
2164 		goto out;
2165 	}
2166 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2167 	copied = 0;
2168 
2169 	err = transport->notify_recv_init(vsk, target, &recv_data);
2170 	if (err < 0)
2171 		goto out;
2172 
2173 
2174 	while (1) {
2175 		ssize_t read;
2176 
2177 		err = vsock_connectible_wait_data(sk, &wait, timeout,
2178 						  &recv_data, target);
2179 		if (err <= 0)
2180 			break;
2181 
2182 		err = transport->notify_recv_pre_dequeue(vsk, target,
2183 							 &recv_data);
2184 		if (err < 0)
2185 			break;
2186 
2187 		read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2188 		if (read < 0) {
2189 			err = read;
2190 			break;
2191 		}
2192 
2193 		copied += read;
2194 
2195 		err = transport->notify_recv_post_dequeue(vsk, target, read,
2196 						!(flags & MSG_PEEK), &recv_data);
2197 		if (err < 0)
2198 			goto out;
2199 
2200 		if (read >= target || flags & MSG_PEEK)
2201 			break;
2202 
2203 		target -= read;
2204 	}
2205 
2206 	if (sk->sk_err)
2207 		err = -sk->sk_err;
2208 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
2209 		err = 0;
2210 
2211 	if (copied > 0)
2212 		err = copied;
2213 
2214 out:
2215 	return err;
2216 }
2217 
2218 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2219 				     size_t len, int flags)
2220 {
2221 	const struct vsock_transport *transport;
2222 	struct vsock_sock *vsk;
2223 	ssize_t msg_len;
2224 	long timeout;
2225 	int err = 0;
2226 	DEFINE_WAIT(wait);
2227 
2228 	vsk = vsock_sk(sk);
2229 	transport = vsk->transport;
2230 
2231 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2232 
2233 	err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2234 	if (err <= 0)
2235 		goto out;
2236 
2237 	msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2238 
2239 	if (msg_len < 0) {
2240 		err = msg_len;
2241 		goto out;
2242 	}
2243 
2244 	if (sk->sk_err) {
2245 		err = -sk->sk_err;
2246 	} else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2247 		err = 0;
2248 	} else {
2249 		/* User sets MSG_TRUNC, so return real length of
2250 		 * packet.
2251 		 */
2252 		if (flags & MSG_TRUNC)
2253 			err = msg_len;
2254 		else
2255 			err = len - msg_data_left(msg);
2256 
2257 		/* Always set MSG_TRUNC if real length of packet is
2258 		 * bigger than user's buffer.
2259 		 */
2260 		if (msg_len > len)
2261 			msg->msg_flags |= MSG_TRUNC;
2262 	}
2263 
2264 out:
2265 	return err;
2266 }
2267 
2268 int
2269 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2270 			    int flags)
2271 {
2272 	struct sock *sk;
2273 	struct vsock_sock *vsk;
2274 	const struct vsock_transport *transport;
2275 	int err;
2276 
2277 	sk = sock->sk;
2278 
2279 	if (unlikely(flags & MSG_ERRQUEUE))
2280 		return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2281 
2282 	vsk = vsock_sk(sk);
2283 	err = 0;
2284 
2285 	lock_sock(sk);
2286 
2287 	transport = vsk->transport;
2288 
2289 	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2290 		/* Recvmsg is supposed to return 0 if a peer performs an
2291 		 * orderly shutdown. Differentiate between that case and when a
2292 		 * peer has not connected or a local shutdown occurred with the
2293 		 * SOCK_DONE flag.
2294 		 */
2295 		if (sock_flag(sk, SOCK_DONE))
2296 			err = 0;
2297 		else
2298 			err = -ENOTCONN;
2299 
2300 		goto out;
2301 	}
2302 
2303 	if (flags & MSG_OOB) {
2304 		err = -EOPNOTSUPP;
2305 		goto out;
2306 	}
2307 
2308 	/* We don't check peer_shutdown flag here since peer may actually shut
2309 	 * down, but there can be data in the queue that a local socket can
2310 	 * receive.
2311 	 */
2312 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
2313 		err = 0;
2314 		goto out;
2315 	}
2316 
2317 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
2318 	 * is not an error.  We may as well bail out now.
2319 	 */
2320 	if (!len) {
2321 		err = 0;
2322 		goto out;
2323 	}
2324 
2325 	if (sk->sk_type == SOCK_STREAM)
2326 		err = __vsock_stream_recvmsg(sk, msg, len, flags);
2327 	else
2328 		err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2329 
2330 out:
2331 	release_sock(sk);
2332 	return err;
2333 }
2334 
2335 int
2336 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2337 			  int flags)
2338 {
2339 #ifdef CONFIG_BPF_SYSCALL
2340 	struct sock *sk = sock->sk;
2341 	const struct proto *prot;
2342 
2343 	prot = READ_ONCE(sk->sk_prot);
2344 	if (prot != &vsock_proto)
2345 		return prot->recvmsg(sk, msg, len, flags, NULL);
2346 #endif
2347 
2348 	return __vsock_connectible_recvmsg(sock, msg, len, flags);
2349 }
2350 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2351 
2352 static int vsock_set_rcvlowat(struct sock *sk, int val)
2353 {
2354 	const struct vsock_transport *transport;
2355 	struct vsock_sock *vsk;
2356 
2357 	vsk = vsock_sk(sk);
2358 
2359 	if (val > vsk->buffer_size)
2360 		return -EINVAL;
2361 
2362 	transport = vsk->transport;
2363 
2364 	if (transport && transport->notify_set_rcvlowat) {
2365 		int err;
2366 
2367 		err = transport->notify_set_rcvlowat(vsk, val);
2368 		if (err)
2369 			return err;
2370 	}
2371 
2372 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2373 	return 0;
2374 }
2375 
2376 static const struct proto_ops vsock_stream_ops = {
2377 	.family = PF_VSOCK,
2378 	.owner = THIS_MODULE,
2379 	.release = vsock_release,
2380 	.bind = vsock_bind,
2381 	.connect = vsock_connect,
2382 	.socketpair = sock_no_socketpair,
2383 	.accept = vsock_accept,
2384 	.getname = vsock_getname,
2385 	.poll = vsock_poll,
2386 	.ioctl = vsock_ioctl,
2387 	.listen = vsock_listen,
2388 	.shutdown = vsock_shutdown,
2389 	.setsockopt = vsock_connectible_setsockopt,
2390 	.getsockopt = vsock_connectible_getsockopt,
2391 	.sendmsg = vsock_connectible_sendmsg,
2392 	.recvmsg = vsock_connectible_recvmsg,
2393 	.mmap = sock_no_mmap,
2394 	.set_rcvlowat = vsock_set_rcvlowat,
2395 	.read_skb = vsock_read_skb,
2396 };
2397 
2398 static const struct proto_ops vsock_seqpacket_ops = {
2399 	.family = PF_VSOCK,
2400 	.owner = THIS_MODULE,
2401 	.release = vsock_release,
2402 	.bind = vsock_bind,
2403 	.connect = vsock_connect,
2404 	.socketpair = sock_no_socketpair,
2405 	.accept = vsock_accept,
2406 	.getname = vsock_getname,
2407 	.poll = vsock_poll,
2408 	.ioctl = vsock_ioctl,
2409 	.listen = vsock_listen,
2410 	.shutdown = vsock_shutdown,
2411 	.setsockopt = vsock_connectible_setsockopt,
2412 	.getsockopt = vsock_connectible_getsockopt,
2413 	.sendmsg = vsock_connectible_sendmsg,
2414 	.recvmsg = vsock_connectible_recvmsg,
2415 	.mmap = sock_no_mmap,
2416 	.read_skb = vsock_read_skb,
2417 };
2418 
2419 static int vsock_create(struct net *net, struct socket *sock,
2420 			int protocol, int kern)
2421 {
2422 	struct vsock_sock *vsk;
2423 	struct sock *sk;
2424 	int ret;
2425 
2426 	if (!sock)
2427 		return -EINVAL;
2428 
2429 	if (protocol && protocol != PF_VSOCK)
2430 		return -EPROTONOSUPPORT;
2431 
2432 	switch (sock->type) {
2433 	case SOCK_DGRAM:
2434 		sock->ops = &vsock_dgram_ops;
2435 		break;
2436 	case SOCK_STREAM:
2437 		sock->ops = &vsock_stream_ops;
2438 		break;
2439 	case SOCK_SEQPACKET:
2440 		sock->ops = &vsock_seqpacket_ops;
2441 		break;
2442 	default:
2443 		return -ESOCKTNOSUPPORT;
2444 	}
2445 
2446 	sock->state = SS_UNCONNECTED;
2447 
2448 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2449 	if (!sk)
2450 		return -ENOMEM;
2451 
2452 	vsk = vsock_sk(sk);
2453 
2454 	if (sock->type == SOCK_DGRAM) {
2455 		ret = vsock_assign_transport(vsk, NULL);
2456 		if (ret < 0) {
2457 			sock->sk = NULL;
2458 			sock_put(sk);
2459 			return ret;
2460 		}
2461 	}
2462 
2463 	/* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
2464 	 * proto_ops, so there is no handler for custom logic.
2465 	 */
2466 	if (sock_type_connectible(sock->type))
2467 		set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2468 
2469 	vsock_insert_unbound(vsk);
2470 
2471 	return 0;
2472 }
2473 
2474 static const struct net_proto_family vsock_family_ops = {
2475 	.family = AF_VSOCK,
2476 	.create = vsock_create,
2477 	.owner = THIS_MODULE,
2478 };
2479 
2480 static long vsock_dev_do_ioctl(struct file *filp,
2481 			       unsigned int cmd, void __user *ptr)
2482 {
2483 	u32 __user *p = ptr;
2484 	u32 cid = VMADDR_CID_ANY;
2485 	int retval = 0;
2486 
2487 	switch (cmd) {
2488 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2489 		/* To be compatible with the VMCI behavior, we prioritize the
2490 		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2491 		 */
2492 		if (transport_g2h)
2493 			cid = transport_g2h->get_local_cid();
2494 		else if (transport_h2g)
2495 			cid = transport_h2g->get_local_cid();
2496 
2497 		if (put_user(cid, p) != 0)
2498 			retval = -EFAULT;
2499 		break;
2500 
2501 	default:
2502 		retval = -ENOIOCTLCMD;
2503 	}
2504 
2505 	return retval;
2506 }
2507 
2508 static long vsock_dev_ioctl(struct file *filp,
2509 			    unsigned int cmd, unsigned long arg)
2510 {
2511 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2512 }
2513 
2514 #ifdef CONFIG_COMPAT
2515 static long vsock_dev_compat_ioctl(struct file *filp,
2516 				   unsigned int cmd, unsigned long arg)
2517 {
2518 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2519 }
2520 #endif
2521 
2522 static const struct file_operations vsock_device_ops = {
2523 	.owner		= THIS_MODULE,
2524 	.unlocked_ioctl	= vsock_dev_ioctl,
2525 #ifdef CONFIG_COMPAT
2526 	.compat_ioctl	= vsock_dev_compat_ioctl,
2527 #endif
2528 	.open		= nonseekable_open,
2529 };
2530 
2531 static struct miscdevice vsock_device = {
2532 	.name		= "vsock",
2533 	.fops		= &vsock_device_ops,
2534 };
2535 
2536 static int __init vsock_init(void)
2537 {
2538 	int err = 0;
2539 
2540 	vsock_init_tables();
2541 
2542 	vsock_proto.owner = THIS_MODULE;
2543 	vsock_device.minor = MISC_DYNAMIC_MINOR;
2544 	err = misc_register(&vsock_device);
2545 	if (err) {
2546 		pr_err("Failed to register misc device\n");
2547 		goto err_reset_transport;
2548 	}
2549 
2550 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2551 	if (err) {
2552 		pr_err("Cannot register vsock protocol\n");
2553 		goto err_deregister_misc;
2554 	}
2555 
2556 	err = sock_register(&vsock_family_ops);
2557 	if (err) {
2558 		pr_err("could not register af_vsock (%d) address family: %d\n",
2559 		       AF_VSOCK, err);
2560 		goto err_unregister_proto;
2561 	}
2562 
2563 	vsock_bpf_build_proto();
2564 
2565 	return 0;
2566 
2567 err_unregister_proto:
2568 	proto_unregister(&vsock_proto);
2569 err_deregister_misc:
2570 	misc_deregister(&vsock_device);
2571 err_reset_transport:
2572 	return err;
2573 }
2574 
2575 static void __exit vsock_exit(void)
2576 {
2577 	misc_deregister(&vsock_device);
2578 	sock_unregister(AF_VSOCK);
2579 	proto_unregister(&vsock_proto);
2580 }
2581 
2582 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2583 {
2584 	return vsk->transport;
2585 }
2586 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2587 
2588 int vsock_core_register(const struct vsock_transport *t, int features)
2589 {
2590 	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2591 	int err = mutex_lock_interruptible(&vsock_register_mutex);
2592 
2593 	if (err)
2594 		return err;
2595 
2596 	t_h2g = transport_h2g;
2597 	t_g2h = transport_g2h;
2598 	t_dgram = transport_dgram;
2599 	t_local = transport_local;
2600 
2601 	if (features & VSOCK_TRANSPORT_F_H2G) {
2602 		if (t_h2g) {
2603 			err = -EBUSY;
2604 			goto err_busy;
2605 		}
2606 		t_h2g = t;
2607 	}
2608 
2609 	if (features & VSOCK_TRANSPORT_F_G2H) {
2610 		if (t_g2h) {
2611 			err = -EBUSY;
2612 			goto err_busy;
2613 		}
2614 		t_g2h = t;
2615 	}
2616 
2617 	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2618 		if (t_dgram) {
2619 			err = -EBUSY;
2620 			goto err_busy;
2621 		}
2622 		t_dgram = t;
2623 	}
2624 
2625 	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2626 		if (t_local) {
2627 			err = -EBUSY;
2628 			goto err_busy;
2629 		}
2630 		t_local = t;
2631 	}
2632 
2633 	transport_h2g = t_h2g;
2634 	transport_g2h = t_g2h;
2635 	transport_dgram = t_dgram;
2636 	transport_local = t_local;
2637 
2638 err_busy:
2639 	mutex_unlock(&vsock_register_mutex);
2640 	return err;
2641 }
2642 EXPORT_SYMBOL_GPL(vsock_core_register);
2643 
2644 void vsock_core_unregister(const struct vsock_transport *t)
2645 {
2646 	mutex_lock(&vsock_register_mutex);
2647 
2648 	if (transport_h2g == t)
2649 		transport_h2g = NULL;
2650 
2651 	if (transport_g2h == t)
2652 		transport_g2h = NULL;
2653 
2654 	if (transport_dgram == t)
2655 		transport_dgram = NULL;
2656 
2657 	if (transport_local == t)
2658 		transport_local = NULL;
2659 
2660 	mutex_unlock(&vsock_register_mutex);
2661 }
2662 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2663 
2664 module_init(vsock_init);
2665 module_exit(vsock_exit);
2666 
2667 MODULE_AUTHOR("VMware, Inc.");
2668 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2669 MODULE_VERSION("1.0.2.0-k");
2670 MODULE_LICENSE("GPL v2");
2671